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Abstract

Menescal Tupper Palhares, Victoria; Caiado de Lamare, Ro-
drigo (Advisor). Precoding and Resource Allocation for Cell-
Free Massive MIMO Systems. Rio de Janeiro, 2020. 110p. Dis-
sertação de mestrado – Departamento de Engenharia Elétrica, Pon-
tifícia Universidade Católica do Rio de Janeiro.
Cell-Free Massive multiple-input multiple-output (MIMO) systems

have emerged in recent years as a combination of massive MIMO, distributed
antenna systems (DAS) and network MIMO. This thesis explores the
downlink channel of such scenario with single and multiple-antenna access
points (APs) and takes into account both perfect and imperfect channel
state information (CSI). We propose transmit processing schemes that
combine precoding, power allocation and AP selection (APS). To begin
with, two APS strategies have been investigated, one based on exhaustive
search (ES-APS) and the other on the large-scale fading coefficients (LS-
APS), in order to reduce the complexity of cell-free networks. Subsequently,
we present two iterative precoding techniques following the minimum mean-
square error (MMSE) criterion with total power constraint. The first we
call MMSE, with total power constraint. We also incorporate robustness
in the developed method, called RMMSE, a robust precoder with total
power constraint. As the third element of the proposed schemes, power
allocation techniques are developed, with optimal, adaptive and uniform
approaches. An optimal power allocation (OPA) algorithm is presented
based on the maximization of the minimum signal-to-interference-plus-noise
ratio (SINR). The adaptive solution (APA) is characterized by the stochastic
gradient of the mean-square error (MSE) and the uniform alternative (UPA)
proposes to equalize all power coefficients. All configurations must fulfil an
antenna power constraint, imposed by the system. A sum-rate analysis is
carried out for all studied techniques and the computational cost of each
one is calculated. Numerical results prove that the proposed techniques
outperform existing conjugate beamforming (CB) and zero-forcing (ZF)
precoders, both with uniform and optimal power allocation, in terms of
bit error rate (BER), sum-rate and minimum SINR. Furthermore, we also
attest that performance can be maintained or even improved in the presence
of APS.

Keywords
Cell-Free Massive MIMO; MMSE Precoding; Power Allocation; AP

Selection; Distributed Antenna Systems; Optimization.
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Resumo

Menescal Tupper Palhares, Victoria; Caiado de Lamare, Rodrigo.
Pré-Codificação e Alocação de Recursos em Sistemas de
Múltiplas Antenas Massivos Livres de Células. Rio de Ja-
neiro, 2020. 110p. Dissertação de Mestrado – Departamento de En-
genharia Elétrica, Pontifícia Universidade Católica do Rio de Ja-
neiro.
Sistemas de múltiplas antenas livres de células surgiram recentemente

como uma combinação de MIMO massivo, sistemas de antenas distribuídas
(DAS) e network MIMO. Esta dissertação explora o downlink deste cenário
com pontos de acesso (PAs) de uma ou múltiplas antenas e considerando co-
nhecimento perfeito e imperfeito do canal. São desenvolvidos esquemas que
combinam pré-codificação, alocação de potência e seleção de PAs (SPA).
Para começar, duas estratégias de SPA foram investigadas, uma baseada
em busca exaustiva (BE-SPA) e a outra em coeficientes de desvanecimento
de larga escala (LE-SPA), com o intuito de reduzir a complexidade das redes
livres de células. Subsequentemente, apresentamos duas técnicas iterativas
de pré-codificação, todas seguindo o critério Minimum Mean-Square Error
(MMSE), combinadas à restrição de potência total. A primeira nós chama-
mos de MMSE, com restrição de potência total. Nós também incorporamos
robustez ao método desenvolvido chamado RMMSE, um pré-codificador
robusto com restrição de potência total. Como terceiro elemento da confi-
guração proposta, esquemas de alocação de potência foram desenvolvidos,
com abordagens ótimas, adaptativas e uniformes. Um algoritmo de aloca-
ção de potência ótima (APO) é apresentado, baseado na maximização da
mínima Signal-to-Interference-plus-Noise Ratio (SINR). A solução adapta-
tiva (APA) é caracterizada pelo gradiente estocástico (GE) do mean-square
error (MSE) e a alternativa uniforme (UPA) propõe a equalização de todos
os coeficientes de potência. Todas as configurações devem respeitar a res-
trição de potência por antena, imposta pelo sistema. Uma análise de soma
das taxas é feita, para todas as técnicas estudadas e o custo computacio-
nal de cada uma delas é calculado. Resultados numéricos provam que as
técnicas propostas têm performance superior à pré-codificadores Conjugate
Beamforming (CB) e Zero-Forcing (ZF), ambos com alocação de potência
uniforme e ótima, na forma de taxa de erro de bit (BER), soma das taxas
e mínima SINR. Além disso, os resultados atestam que o desempenho pode
ser mantido e até melhorado com a aplicação de SPA.

Palavras-chave
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ĝm,k - channel estimation coefficient between the mth antenna element and the
kth user, where ĝm,k ∈ C1×1
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G - channel matrix, where G ∈ CM×K
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t - midpoint of the interval (tb, te)
tb - lower limit of the bisection method
te - upper limit of the bisection method
TOPA - number of iterations of the OPA algorithm
µ - step size of the APA algorithm
TAPA - number of iterations of the APA algorithm
(·)∗ - complex conjugate
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(·)T - transpose
(·)H - Hermitian operator
(·)
′
- variable after APS

E [·] - expected value
tr (·) - trace of a matrix
Re (·) - real part of the argument
‖·‖2 - Euclidean norm
‖·‖F - Frobenius norm
� - Hadamard or element-wise product
diag {D} - retains the main diagonal elements of a generic matrix D in a col-
umn vector
x ∼ N (0, σ2) - Gaussian random variable (RV) x with zero mean and variance
σ2

x ∼ CN (0, σ2) - circularly symmetric complex Gaussian RV x with zero mean
and variance σ2(
a
b

)
- Combination of a elements in b elements.
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1
Introduction

Massive multiple-input multiple-output (MIMO) systems have been ex-
tensively investigated as a very attractive solution to the fifth generation (5G)
of cellular networks. By considering a base station (BS) with many antennas
serving simultaneously many users in the same time-frequency resource, this
technology can provide high throughput, energy efficiency (EE) and reliability,
with simple signal processing [3].

In the context of massive MIMO systems and their potential deploy-
ments, possible setups include those with co-located antenna systems (CAS)
and distributed antenna systems (DAS). In a CAS, a BS is co-located at the
center of each cell, with the advantage of low backhaul requirement. Conversely,
in DAS, remote radio heads (RRHs) are spread all over the cell and connected
to a central processing unit (CPU) at a BS by optical fiber, coaxial cable or
microwave [4]. The latter has been examined over the last decade thanks to its
open architecture, flexible resource management, higher power efficiency and
larger capacities than CAS, due to the shorter distances between RRHs and
users and exploitation of diversity against shadow fading, [5].

In MIMO technology, network MIMO has been suggested in the interest
of mitigating the interference between cells. By providing cooperation between
BSs, users receive their desired signals through the ones close to them [6].
This has been proven to improve spectral efficiency (SE) and overall system
performance [7], at the cost of higher complexity, due to a great amount of
data being shared between BSs, CPU and users.

A special case of a large DAS with cooperative BSs has been proposed
in [8], where randomly-located single antenna access points (APs) serve simul-
taneously a much smaller number of users. All APs cooperate phase-coherently
via a backhaul network, and serve all users in the same time-frequency resource
via time-division duplex (TDD) operation. Unlike Multi-cell Massive MIMO,
in the described structure, called Cell-Free Massive MIMO, there are no cell
boundaries and consequently, no interference between cells.

In cell-free systems, all APs are connected to a CPU in order to process
payload data and to perform power control. Due to the fact that in these setups,
APs do not have perfect channel state information (CSI), each one performs
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channel estimation through uplink pilots without sharing information with the
CPU. The channel estimates are used to perform precoding on the downlink
and detection on the uplink.

The great aspect of these systems is their computational simplicity
concerning signal processing and the exploitation of favorable propagation
and channel hardening. These phenomena enable the use of computationally
efficient and globally optimal algorithms for power control and simple pilot
assignment.

1.1
Motivation

Although many works have studied massive MIMO, cell-free systems are
quite recent. Precoding schemes with power allocation applied to this type
of network have been introduced in [8, 9]. In the studies in [8, 9], conjugate
beamforming (CB) and zero-forcing (ZF) precoders have been indicated, with
optimal and uniform power allocations, involving convex optimization. In [9],
four solutions for the CB precoder are provided, considering quasiconvex and
heuristic approaches. For the ZF precoder, two schemes are given, one solving
a quasilinear problem and another with a low complexity solution.

Despite the fact that many works have employed minimum mean-square
error (MMSE) based precoders in MIMO systems, the technology has never
been developed and applied to cell-free networks before. In [10], a MMSE
processing is examined for the uplink. Here, we devise MMSE solutions for the
downlink, based on different constraints required by the system.

Naturally, as it was previously derived based on the ZF precoder in [9],
for the MMSE precoder it was necessary as well to derive appropriate power
allocation techniques. For this matter, not only we provide the standard
solution with a max-min problem based on the MMSE precoder, but also
an adaptive one using a stochastic gradient (SG) algorithm, with lower
computational complexity.

To address the increasing backhaul requirements necessary for cell-free
networks, AP selection (APS) has been suggested. In [2], two selection schemes
have been investigated. Motivated by them, we decided to analyse the optimal
selection, based on an exhaustive search (ES), and to propose a suboptimal
one to approach the performance of the former.

Robust techniques have been extensively applied to sensor arrays and
MIMO systems and have the potential to mitigate the effect of imperfect CSI
in cell-free networks. Since the robustness of cell-free systems has never been
approached previously in the literature, in this work, we examine this issue.
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Based on previous robust MMSE precoders applied to MIMO systems, [11–15],
we develop one of our own, fulfilling cell-free systems requirements.

1.2
Contributions

In summary, the main contributions of this work are:

– Optimal and suboptimal APS schemes are presented. The first is de-
signed through ES, but requires high computational complexity. As an
alternative, a suboptimal technique, with lower complexity, based on the
large-scale fading (LS) coefficients is developed, with the objective of
approximating the optimal solution.

– An iterative linear MMSE precoder with total power constraint is for-
mulated, which takes into account the power allocation matrix in its
derivation, unlike existing approaches.

– An iterative robust MMSE precoder with total power constraint
(RMMSE) is derived, taking into account the power allocation matrix
in its derivation, with the purpose of mitigating the effects of channel
estimation errors.

– Optimal and uniform power allocation techniques are introduced, aiming
to maximize the minimum signal-to-interference-plus-noise ratio (SINR),
with per-antenna power constraint. An adaptive power allocation (APA)
algorithm is also presented. Nevertheless, in this case, it is based on the
minimization of the mean-square error (MSE), with an antenna power
constraint as well.

– Analysis of the achievable rate expressions of the studied methods are
obtained, as a means to enable optimal power allocation (OPA).

– An analysis of the computational complexity of the techniques in terms
of arithmetic operations is carried out.

– Numerical results are shown, in terms of sum-rate, minimum SINR and
bit error rate (BER), to provide insight on the potential of the proposed
schemes.
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1.3
Thesis Outline

This thesis is organized as follows:

– In Chapter 2, a review of the most important works in massive MIMO,
DAS and cooperative networks is given. Then, we introduce the state of
the art of cell-free networks and give a short summary of robust tech-
niques. After that, we present the system model, channel estimation and
downlink transmission. In the end of the chapter, we present the latest
precoding, power allocation and APS techniques previously designed in
the literature.

– In Chapter 3, we present two techniques for APS, followed by an MMSE
precoder designed with total power constraint. Next, we introduce three
power allocation techniques, with optimal, adaptive and uniform strate-
gies. A sum-rate analysis is carried out and the computational cost of
the techniques is calculated. Numerical results and discussions are then
displayed in the end of the chapter.

– In Chapter 4, a robust MMSE (RMMSE) precoder is presented, with
total power constraint. Then, a power allocation scheme based on the
RMMSE precoder is proposed. A sum-rate analysis based on the meth-
ods is developed, and the computational cost, calculated. In the end,
numerical results and discussions are carried out.

– In Chapter 5, conclusions and future challenges of this work are drawn.

1.4
Notation

See List of Symbols on pages 17-21.

1.5
List of Publications

Some results of this dissertation are under review in the following
conferences and journals:

– Victoria M. T. Palhares, Rodrigo C. de Lamare, Andre R. Flores and
Lukas T. N. Landau, "Seleção de Pontos de Acesso, Pré-Codificação
MMSE e Alocação de Potência Iterativa para Sistemas de Múltiplas An-
tenas Livres de Células", XXXVIII Simpósio Brasileiro de Telecomuni-
cações e Processamento de Sinais (SBrT), 2020, submitted.

Journal Papers:
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– Victoria M. T. Palhares, Rodrigo C. de Lamare, Andre R. Flores and
Lukas T. N. Landau, "Iterative AP Selection, MMSE Precoding and
Power Allocation in Cell-Free Massive MIMO Systems", IET Communi-
cations, 2020, submitted.

– Victoria M. T. Palhares, Andre R. Flores and Rodrigo C. de Lamare,
"Robust MMSE Precoding and Power Allocation for Cell-Free Massive
MIMO Systems", IEEE Transactions on Vehicular Technology, 2020,
submitted.
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2
Cell-Free Massive MIMO Systems Review

In this chapter, we review the literature on massive MIMO, DAS and
cooperative networks that have lead to the development of Cell-Free Massive
MIMO Systems. Subsequently, a review of the main contributions in cell-free
networks is given. Next, we provide an overview of robust techniques and their
benefits, when applied to MIMO systems.

The second part of this chapter presents a description of the cell-free
system model, channel estimation and transmission of downlink payload data.
Precoding, power allocation and APS techniques that were previously derived
are presented. Numerical results are showcased at the end of the chapter to
provide an insight on the discussed strategies.

2.1
Literature Review

In the past decade, many works have discussed what the 5G of wireless
communications could be. Instead of an incremental advance compared to the
fourth generation (4G), 5G is actually a fresh new start in the telecommuni-
cations area, rethinking network architecture, signal processing, efficiency and
coverage, with the purpose of delivering high rates for all users [16].

Among the many technologies that have been researched so as to make
this generation possible, the literature has been filled with subjects such as
millimetre wave (mmWave), device-centric architectures, machine-to-machine
(M2M) communications and massive MIMO.

Massive MIMO or large-scale MIMO, as it is also called, is a MIMO
system, with a very large number of antennas at the BS, in order to multiplex
messages to several users in the same time-frequency resource [17]. The
antennas focus on radiating power towards desired directions, bringing benefits
in terms of EE and minimizing interference between cells [18].

As any other technology, massive MIMO has a good number of advan-
tages and challenges that need to be overcome as a means to provide a good
experience for all users in the network. In terms of benefits, it can dramatically
improve capacity and have inexpensive infrastructure. In addition, it can ex-
ploit reduced latency and increased robustness to deal with interference [19].
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Regarding its challenges, many have been analysed over the years, such as pilot
contamination, hardware impairments, modulation and channel characteriza-
tion [19,20]. Today, massive MIMO has been proven to enhance the reliability
and throughput of wireless networks.

In recent years, many practical experiments have been carried out in
order to test the potential of massive MIMO. In [21], it has been described
some of the trials done until that point, where the technology has been explored
below 6 GHz. The experiments could verify the gains theoretically expected,
as well as demonstrate reciprocity based operation in mobile scenarios with
users moving in higher speed (above 50 km/h). Big companies such as Huawei,
Ericsson, Nokia, Samsung and even Facebook have reported their own tests
with large-scale arrays. Not only massive MIMO has been implemented in
cellular systems but also in Wi-Fi technology. Aligned to 5G, Wi-Fi has started
using massive MIMO in indoor applications and unlicensed spectrum [22].

Within the possible setups for massive MIMO we have CAS and DAS. In
a multicell environment with CAS, a BS is co-located at the center of each cell,
with the advantage of low backhaul requirement. In contrast, in DAS systems,
RRHs are spread all over the cell and connected to a CPU at a BS by optical
fibers, coaxial cables or microwave [4].

Potential and obstacles of DAS have been thoroughly explored in multi-
cellular systems. In [23], it has been proven that DAS can perform well with
reduced power and increase system capacity while reducing interference from
other cells and providing greater improvements for users near cell boundaries.
A multiuser DAS setup has been examined as well as resource allocation tech-
niques based on channel coefficients between RRHs and users [24]. Besides, it
was pointed out that by using an appropriate power allocation, users just need
to be connected to a few RRHs.

For the 5G of wireless systems, DAS are being considered with a focus
on providing higher coverage probability, flexible resource management, higher
power efficiency and larger capacities by the exploitation of smaller distances
between BSs and users, and of spatial diversity [25].

As another direction on MIMO technology, virtual MIMO, coordinated
multi-point joint processing (CoMP) and network MIMO have been proposed,
[26–29], aiming to improve SE and diminish inter-cell interference. The idea
is that BSs act together as a single antenna array and users can receive their
desired signals through BSs close to them. By choosing correctly the antenna
outputs, interference can be minimized and the system capacity increased [6].

Backhaul traffic, synchronization and feedback have been numbered out
as some of the challenges brought by these technologies. However, due to its
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ability to mitigate interference between cells, BSs and users, network MIMO
can achieve significant gains in both the uplink and downlink [30]. Furthermore,
it has been reported that virtual MIMO can obtain additional multiuser
diversity gains by user clustering, [31].

By capitalizing on the benefits of cooperative transmissions, at the cost
of acquiring CSI and sharing the transmit data, virtual MIMO can greatly
improve systems performance [7]. This cooperation helps mitigate inter-cell
interference by jointly processing the user data in multiple BSs. This type of
network does not necessarily need more antennas and offer advantages over
simpler beamforming coordination schemes. Its extra complexity is due to
the additional information being exchanged between users, BSs and CPUs
participating in the cooperation [26].

The combination of massive MIMO with DAS systems and of virtual
MIMO with DAS has been tested in the past, and proved that distributed
setups can achieve higher rates than CAS [7, 32]. In [33], it is indicated
that large-scale DAS (L-DAS) systems are energy-efficient and have simpler
precoding and power control, when associated with antenna selection and user
clustering methods.

As an evolution of massive MIMO, DAS and virtual MIMO, in Cell-
Free Massive MIMO, many randomly distributed APs are connected to a
CPU and serve simultaneously a much smaller number of users. At the CPU,
precoding techniques and power allocation algorithms can be performed. The
main goal is to use advanced backhaul to provide a good experience for all
users [34]. Compared to a cellular system, cell-free concepts have been shown
to increase EE and per-user throughput, both in rural and urban scenarios [35].
Moreover, they can have simple signal processing which facilitates the usage
of phenomena such as favorable propagation with channel hardening to their
own advantage [3].

Many precoding and receive processing schemes have been previously
designed for cell-free networks. In the uplink, a matched filter (MF) has
been examined in [8], whereas in [10, 36], an MMSE and large-scale fading
decoding (LSFD) receivers have been demonstrated to provide higher outage
rate than the former. On the other hand, in the downlink, a CB precoder
has been investigated for computationally simple signal processing, at the
cost of lower performance [8, 9, 37]. With more backhaul requirements, a ZF
precoding design has been extensively used with the objective of improving
system performance [9] and of maximizing the EE [38].

Uniformly good service for all users is a key point of cell-free systems,
leading to the combination of many beamforming and detection techniques
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with power control algorithms. Different criteria have been used in the litera-
ture to satisfy certain aspects of the network. In [39], power allocation has been
performed on the uplink to maximize the minimum user rate under per-user
power constraints. An MF receiver and a CB precoder have been combined
with an optimization that maximizes the smallest of all user rates under per-
AP constraints, [8]. Similarly, CB and ZF precoders were combined with the
maximization of the minimum SINR from all users under per-AP power con-
straints in [9]. With a different criterion, ZF precoders were combined with
EE maximization, under a per-AP power constraint and a per-user SE con-
straint, [37], taking into account backhaul power consumption and imperfect
CSI [38].

To decrease the energy consumption in cell-free systems, some works
have indicated APS, where each user is served by a subset of APs. In [2], two
APS schemes have been proposed, one based on the received power and the
other on the largest LS coefficients. Most works addressing Cell-Free Massive
MIMO systems consider single-antenna APs. Nevertheless, multiple-antenna
APs have been analysed with the intention of improving channel hardening and
increasing the likelihood of favorable propagation occurence [40]. Additionally,
it has been concluded that, in terms of costs, it is better to add more antennas
to an AP than to install more APs [41] .

Since the seminal work that introduced the cell-free concept [8], imperfect
CSI has been taken into account in most papers of the literature, as to provide a
more realistic analysis of the scenario. As previously applied to MIMO systems
and sensor arrays, robust techniques have been developed with an eye toward
interference and CSI estimation error mitigation. Although never applied to
cell-free before, robustness can be a useful tool to improve the performance of
current systems, without much alteration in computational complexity.

In sensor array signal processing, robust adaptive beamforming has been
carefully investigated to deal with random steering vector errors. One of the
most famous techniques to treat mismatch errors and random perturbations
is called diagonal load (DL). During a long time, there were no established
rules on how to correctly acquire optimal values to apply this technique. Many
works have explored this issue, being suggested in [42] that the parameters for
DL can be precisely calculated based on the uncertainty of steering vectors,
when applied to a Capon beamformer. Similarly, a variable loading strategy
has been proposed to the same beamforming technique as a means to provide
on demand loading instead of fixed or continuous [43]. We can as well mention
a study where DL coefficients were found through spatial-matched method
aiming to deal with covariance matrix mismatch and steering vector error in
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large-scale arrays [44].
Despite the obvious benefits of DL, the literature also addresses to other

loading methods. In [45], a class of beamformers has been derived based on
generalized loading, which does not necessarily present real advantages when
compared to diagonal, but can be effective in some special cases.

When applied to MIMO systems, robust precoders have enabled the
analysis of several classes of channel uncertainty. A robust MIMO precoder
has been calculated based on the maximum worst-case received SINR or
on the minimum worst-case error probability in [46]. In multicell scenarios,
coordinated beamforming has been used with the purpose of mitigating
interference between cells and providing quality of service (QoS). However, to
treat channel uncertainties in these systems, and supposing constrained CSI,
robust precoders applying the worst-case methodology have been provided in
order to maximize the worst-case weighted sum-rate and the minimum worst-
case rate and to minimize the weighted sum power of base stations subject
to the worst-case SINR of users. Centralized and distributed processing have
been considered [47,48].

Aiming to treat the high complexity of these well-known approaches (DL
and worst-case), dimensionality schemes have been investigated for the purpose
of decreasing the complexity of the algorithms and improving convergence rate.
In [49], a low-rank technique is presented where the cross-correlation between
the array data and the output of the beamformer is exploited. To update the
steering vector mismatch, this cross-correlation is projected into a Krylov sub-
space. In addition, algorithms based on different gradients have been derived
to update the beamforming weights, reducing computational cost. In the same
way, cross-correlation methods have been applied to relay systems, where the
correlation is explored between the system’s output and received data from
the relays at the destination [50]. The proposed distributed beamforming with
low-rank and cross-correlation has the objective to maximize the output SINR
under total relay power constraint.

Referring to robust precoders and specifically to the ones with MMSE
strategy, [11–15], robustness has been further incorporated to them and has
provided significant advances. In [13], a robust joint linear MMSE precoder
and decoder which takes into account the statistics of the outdated CSI at
the transmitter is proposed. An optimization has been performed in [15]
by minimizing the maximum MSE, taking into consideration the channel
estimation matrix and the channel estimation error matrix. Reformulating the
problem into a min-min convex minimization problem enables the solution to
be found in closed form. Similarly, in [14, 51], the same objective function is

DBD
PUC-Rio - Certificação Digital Nº 1821407/CA



Chapter 2. Cell-Free Massive MIMO Systems Review 32

used, with a tolerance for the channel estimation error, yet with total power
constraint.

Robust ZF and MMSE precoders have been applied to relay systems
in the past considering channel quantization errors and total power con-
straint [12]. They conclude that to calculate the precoding vectors, we only
need the channel direction information (CDI) feedback. Likewise, in [11], a ro-
bust MMSE precoder based on switched relaying is indicated, outperforming
previous precoding techniques applied to relay systems. By creating all possi-
bilities of matrix pairs, the BS and the relay station (RS) precoding matrices,
a selection scheme based on the MSE criteria has been derived, in favor of the
most suitable options. Not only ZF and MMSE precoders have exploited the
advantages of robustness, but also the Tomlinson–Harashima precoder (THP).
A multibranch strategy has been developed, combining a THP with a linear
precoder in a relay system, which are jointly optimized to minimize the MSE,
taking into account an MMSE detector at the destination [52].

2.2
System Model

The downlink of a Cell-Free Massive MIMO system is assumed with
L randomly distributed single-antenna APs (N = 1) and K single-antenna
users, where LN = M and M >> K. The total number of antenna elements
is represented by M and the number of antenna elements per AP is N . In this
system, all APs are connected to a CPU and serve simultaneously all users, as
shown in Fig. 2.1. Each AP obtains CSI and sends them to the CPU, which
performs APS, precoding and power allocation whose parameters are then fed
back to the APs.

CPU

Figure 2.1: Cell-Free Massive MIMO System.
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The channel coefficients between the mth antenna element and the kth
user are defined as [8]

gm,k =
√
βm,khm,k, (2-1)

where βm,k is the LS coefficient (path loss and shadowing effects) and hm,k ∼
CN (0, 1) is the small-scale fading coefficient, defined as independent and
identically distributed (i.i.d) random variables (RVs) that remain constant
during a coherence interval and are independent over different coherence
intervals. Nonetheless, the LS coefficients change less frequently, being constant
for several coherence intervals. Depending on the user’s mobility, the LS
coefficients may change at least 40 times slower than hm,k [8].

2.2.1
Multiple-Antenna APs

If, instead of assuming single-antenna APs as most works do, we decide
to consider multiple-antenna APs [40, 41], the system will have L randomly
distributed APs equipped with N antenna elements each, where LN = M .

Regarding that each AP has N antenna elements, we know that for the
lth AP

β(l−1)·N+1,k = β(l−1)·N+2,k = · · · = βl·N,k, for l = 1, . . . , L, (2-2)

where we suppose that the links between the antenna elements of an AP and
the users have the same distance and are affected by the same path loss and
shadowing effects as illustrated by


β1,1 β1,2

β2,1 β2,2

β3,1 β3,2

β4,1 β4,2


︸ ︷︷ ︸
L=4, N=1, K=2

multiple-antenna APs−−−−−−−−−−−−→



β1,1 β1,2

β1,1 β1,2

β2,1 β2,2

β2,1 β2,2

β3,1 β3,2

β3,1 β3,2

β4,1 β4,2

β4,1 β4,2


︸ ︷︷ ︸
L=4, N=2, K=2

(2-3)

2.2.2
Large Scale Fading Coefficient Model

Considering M antenna elements in total and K single-antenna users
uniformly distributed at random, the LS coefficients from (2-1) are modelled
by

βm,k = PLm,k · 10
σshzm,k

10 , (2-4)
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where PLm,k is the path loss and 10
σshzm,k

10 refers to shadow fading, [8], with

σsh = 8 dB

zm,k ∼ N (0, 1) .
(2-5)

The path loss is based on a three-slope model [53], in dB, described as

PLm,k =


−L− 35 log10 (dm,k) , if dm,k > d1

−L− 15 log10 (d1)− 20 log10 (dm,k) , if d0 < dm,k ≤ d1

−L− 15 log10 (d1)− 20 log10 (d0) , if dm,k ≤ d0

(2-6)

where

L , 46.3 + 33.9 log10 (ffreq)− 13.82 log10 (hAP)

− (1.1 log10 (ffreq)− 0.7)hu + (1.56 log10 (ffreq)− 0.8) ,

d0 = 10 m,

d1 = 50 m,

ffreq = 1900 MHz,

hAP = 15 m,

hu = 1.65 m,

(2-7)

ffreq is the carrier frequency in MHz, hAP is the AP antenna height in meters,
hu is the user antenna height in meters, and dm,k is the distance between the
mth antenna element and the kth user, as in [8]. When dm,k ≤ d1 there is no
shadowing.

2.2.3
Channel Estimation

For the purpose of reducing interference between signals intended for
different users, bearing in mind that each user is served by all APs, channel
coefficients need to be taken into account when forming transmitted signals.
The system employs the TDD protocol, where the channel is estimated through
uplink training. Assuming TDD operation together with the perfect calibration
of hardware chains, channel reciprocity can be considered, meaning that
the channel coefficients for the uplink and downlink are the same [8]. To
begin with, all users send simultaneously and synchronously pilot sequences,
Π1, . . . ,ΠK ∈ Cτ , to each antenna, where ‖ΠK‖2 = 1 and τ is the length
of pilot sequences. Then, APs perform MMSE channel estimation and obtain
ĝm,k, the estimate of the channel coefficient gm,k between the mth antenna and
the kth user. With ĝm,k, the data are transmitted to all users.
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Supposing a carrier frequency of 1.9GHz and low user’s mobility, the
coherence interval is large and many orthogonal pilots can be used in channel
estimation. As a result, we assume that the pilot sequences assigned to the
corresponding users are orthonormal. Taking into account that the same pilot
is assigned to users far away from each other, pilot contamination is assumed
negligible [9]. On the contrary, if we increased the users’ mobility, we would
have to consider interference caused by pilot contamination given that the
number of orthogonal pilots available would be much smaller. In Fig. 2.2, a
description of the TDD protocol is illustrated.

coherence interval

τrp T − 1− τrp1

reverse pilots

computation

forward QPSK symbols

(T OFDM symbols)

Figure 2.2: TDD Protocol

In the training step, the mth antenna receives

ym = √ρrτ
K∑
k=1

gm,kΠk + wm, (2-8)

where ρr is the uplink power and wm ∼ CN (0, Iτ ) is the additive noise.
The MMSE estimate of gm,k can be expressed as

ĝm,k =
√
ρrτβm,k

1 + ρrτβm,k
ΠH
k ym. (2-9)

Due to channel hardening in massive MIMO systems [17], we infer that
each user is only aware of the statistics of the estimated channel coefficients.
Then, the variance of the estimate, E

(
|ĝm,k|2

)
, is equal to

αm,k =
ρrτβ

2
m,k

1 + ρrτβm,k
. (2-10)

Since
g̃m,k = gm,k − ĝm,k, (2-11)

where g̃m,k is the CSI error between the mth antenna element and the kth
user, we write

ĝm,k ∼ CN (0, αm,k), g̃m,k ∼ CN (0, βm,k − αm,k). (2-12)

We notice that αm,k as well as ĝm,k are functions of βm,k. Consequently,
to evaluate perfect and different levels of imperfect CSI we set αm,k as an
adjustable percentage of βm,k (0 ≤ n ≤ 1). Thus, we get
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αm,k = nβm,k

g̃m,k = gm,k − ĝm,k, and

E
[
|g̃m,k|2

]
= (1− n) βm,k.

(2-13)

2.2.4
Downlink Payload Data Transmission

After channel estimation is carried out, the data are transmitted to all
users. The signal received by the kth user is described by

yk = √ρf gTk Ps + wk, (2-14)

where ρf is the maximum transmitted power of each antenna, gk =
[g1,k, . . . , gM,k]T are the channel coefficients for user k, P ∈ CM×K is a generic
precoding matrix, s = [s1, . . . , sK ]T is the zero mean symbol vector, with
σ2
s = E(|sk|2), sk is the data symbol intended for user k, wk ∼ CN (0, σ2

w)
is the additive noise for user k and σ2

w is the noise variance. We presume that
the elements of s are mutually independent, and independent of all noise and
channel coefficients.

For all users combined, we have the following model

y = √ρf GTPs + w, (2-15)

where G ∈ CM×K is the channel matrix with elements [G]m,k = gm,k and
w = [w1, . . . , wK ]T is the noise vector.

Due to the strong path loss characteristic of Cell-Free Massive MIMO
systems, ρf takes the form of [54]

ρf = SNR · tr (Cw)
E[||Ĝ||2F ]

= SNR ·Kσ2
w

tr(ĜĜH)
, (2-16)

where

σ2
w = T0 × kB ×B × NF(W),

T0 = 290 K,

kB = 1.381× 10−23 J/K,

B = 20 MHz,

NF = 9 dB,

(2-17)

[Ĝ]m,k = ĝm,k is the CSI matrix, Cw is the noise covariance matrix, T0 is the
noise temperature in Kelvin, kB is the Boltzmann constant in Joule per Kelvin,
B is the bandwidth in Hz and NF is the noise figure in Watts.

Hence, the SNR is written as
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SNR = ρfE[||Ĝ||2F ]
tr (Cw) = ρf tr(ĜĜH)

Kσ2
w

. (2-18)

In this work, we will compare different precoding designs combined with APS
and power allocation techniques, so an abstract SNR is mandatory. Note that
the expression above does not take in account the beamforming gain. Thus,
the resulting SINR of all the techniques studied can be higher than the SNR
in the numerical results [55].

2.3
Precoding and Power Allocation Techniques

Here we describe the two precoding techniques that were already created
for Cell-Free Massive MIMO Systems: CB and ZF, both taken from [8,9].

2.3.1
Conjugate Beamforming

First, the lth AP estimates βm,k, k = 1, . . . , K and sends them to the
CPU. Then, the CPU computes the power coefficients ηm,k, m = 1, . . . ,M ,
k = 1, . . . , K as a function of βm,k and sends these coefficients to corresponding
APs. In parallel, users are sending pilot sequences to the lth AP so that they
can get the channel estimates ĝm,k, k = 1, . . . , K.

With this approach, the mth antenna transmits the following signal

xm = √ρf
K∑
i=1

√
ηm,iĝ

∗
m,isi, (2-19)

where ηm,i is the power coefficient used by the mth antenna for transmission
to user i, ĝ∗m,i is the conjugate of the estimated channel coefficient between the
mth antenna and user i and si is the symbol intended for user i.

The signal received by the kth user is

yk =
M∑
m=1

gm,kxm + wk. (2-20)

The achievable rate of user k assuming Gaussian signalling in the
downlink has been described in [9] as

Rk,CB = log2(1 + SINRk,CB) (2-21)

where
SINRk,CB =

ρf
(∑M

m=1
√
ηm,kαm,k

)2

σ2
w + ρf

∑K
i=1

∑M
m=1 ηm,iβm,kαm,i

(2-22)
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2.3.1.1
Optimal Power Allocation (OPA)

In [8,9], an optimal power allocation is suggested for the CB precoder. We
would like to find the ηm,k, m = 1, . . . ,M , k = 1, . . . , K that maximizes the
minimum SINRk,CB, k = 1, . . . , K under the constraint that the transmitted
power of each antenna is limited by ρf .

The expected transmitted power of the mth antenna is equal to

E
(
|xm|2

)
= ρf

K∑
i=1

ηm,iαm,i. (2-23)

Then, the max-min problem is formulated as follows:

max
η

min
k

SINRk,CB (η) =
ρf
(∑M

m=1
√
ηm,kαm,k

)2

σ2
w + ρf

∑K
i=1

∑M
m=1 ηm,iβm,kαm,i

(2-24a)

s.t.
K∑
i=1

ηm,iαm,i ≤ 1,m = 1, . . . ,M. (2-24b)

Since the numerator of SINRk,CB is a concave function and the denomina-
tor is a linear function of η, the problem (2-24) is quasiconcave, which requires
the application of the bisection method approached in [1]. Despite this, before,
the problem is put in an epigraph form:

max
η,t

t (2-25a)

s.t. SINRk,CB (η) ≥ t, k = 1, . . . , K, and (2-25b)
K∑
i=1

ηm,iαm,i ≤ 1, m = 1, . . . ,M. (2-25c)

By setting a fixed t inside an interval (tb, te), the domain of constraints in
(2-25) is convex and then it needs to be decided if for a certain t the problem
is feasible or not. The bisection method is explained in Algorithm 1.

Algorithm 1 Bisection Method [1]
1: Set tb ≤ t∗ ≤ te with tolerance ε > 0
2: While |te − tb| > ε
3: t = (tb + te)/2.
4: Solve the convex feasibility problem (2-25).
5: If (2-25) is feasible, tb = t; else te = t
6: end

The complexity of this algorithm is high. For this reason we will compare
its performance with the case of a Uniform Power Allocation (UPA), derived
in a few moments.
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To perform this optimization problem in CVX, a different formulation
is needed. Therefore, we suggest that (2-25) is reformulated as a second-order
cone program (SOCP) [1].

After doing several manipulations in (2-24a), we obtain the following:
√
ρf
t

(η′′m,k)Tαm,k ≥

√√√√σ2

w + ρf
K∑
i=1

(
(η′′m,i)Tdiag(βm,kαm,i)η′′m,i

) (2-26)

where η′′m,k = √ηm,k.
To transform the expression above into a SOCP form, we do, for the case

of K = 2, as the example:

minimize fTx (2-27a)

subject to ||Aix+ bi||2 ≤ cTi x+ di, i = 1, . . . ,m (2-27b)

Fx = g (2-27c)

where

Ai =



√
ρfβ1,Kα1,1 . . . 0 0 0 0

... . . . 0 0 0 0 0
0 0

√
ρfβM,KαM,1 0 0 0 0

0 0 0
√
ρfβ1,Kα1,2 0 0 0

0 0 0 0 . . . 0 0
0 0 0 0 0

√
ρfβM,KαM,2 0

0 0 0 0 0 0 0


,

x =
[
η
′′
1,1 . . . η

′′
M,1 η

′′
1,2 . . . η

′′
M,2 0

]T
(1×(M∗K)+1)

,

ci =
[√

ρf
t
α1,1 . . .

√
ρf
t
αM,1 0 . . . 0

]T
(1×(M∗K)+1)

,

bi =
[
0 . . . 0 σw

]T
(1×(M∗K)+1)

,

di = 0.
(2-28)

2.3.1.2
Uniform Power Allocation (UPA)

A UPA scheme is suggested in [9], in the interest of reducing the
complexity of the algorithm without loosing much of the performance. Here we
suppose that themth antenna transmits with fixed power pm (βmax

m ) = e(−κβmax
m )

and that ηm,k = ηm, for k = 1, . . . , K, which means that the power coefficients
are the same for all users. The power coefficients are calculated directly from
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the per-antenna power constraint as

ηm = pm (βmax
m )∑K

i=1 αm,i
, (2-29)

where βmax
m = maxk βm,k. The coefficient κ is chosen to best fit the exponential

function, given a certain M and K, as detailed in [9].

2.3.2
Zero Forcing

As performed in the CB design, in the ZF technique, the lth AP estimates
βm,k, k = 1, . . . , K and sends them to the CPU. The CPU computes the
power coefficients ηm,k, m = 1, . . . ,M , k = 1, . . . , K as a function of βm,k.
In parallel, users send pilot sequences to the lth AP so that they can get
the channel estimates ĝm,k, k = 1, . . . , K. Differently from CB, the estimated
channel coefficients are sent to the CPU and put together with the power
coefficients, ηm,k so as to form ZF precoding vectors that are sent back to the
APs.

The most important fact about ZF is that the signal transmitted to a
user does not create interference to other users [55]. In [9], a ZF precoder with
power allocation was developed and is described by

PZF = Ĝ∗
(
ĜT Ĝ∗

)−1
N, (2-30)

where N is the power allocation matrix. To avoid interference, instead of having
entries ηm,k, N will be a diagonal matrix where its coefficients are only function
of k, such as ηm,k = ηk, k = 1, . . . , K. Then, N is a diagonal matrix with
√
η1, . . . ,

√
ηK on its diagonal. The kth user receives

yk = √ρf gTk PZF s + wk. (2-31)

An achievable rate of the kth user with the ZF precoder is introduced
in [9] as

Rk,ZF = log2(1 + SINRk,ZF) (2-32)
where

SINRk,ZF = ρfηk

σ2
w + ρf

∑K
i=1 ηiγk,i

, (2-33)

γk = diag
{
E
((

ĜT Ĝ∗
)−1

ĜTE
(
g̃∗kg̃Tk

)
Ĝ∗

(
ĜT Ĝ∗

)−1
)}

, (2-34)

g̃k is the CSI error vector for user k and E
(
g̃∗kg̃Tk

)
is a diagonal matrix with

(1− n) βm,k on its mth diagonal element.
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2.3.2.1
Optimal Power Allocation (OPA)

In the optimal power allocation for the ZF design, we would like to
find ηk, k = 1, . . . , K that maximizes the minimum SINRk,ZF, k = 1, . . . , K
under a certain constraint. Differently from CB, power coefficients are only
functions of k in order to cancel the interference to other users, meaning that
η1,k = · · · = ηM,k.

The max-min problem can be formulated as follows:

max
η

min
k

SINRk,ZF (η) = ρfηk

σ2
w + ρf

∑K
i=1 ηiγk,i

(2-35a)

s.t.
K∑
i=1

ηiδm,i ≤ 1,m = 1, . . . ,M. (2-35b)

where
δm = diag

{
E
((

ĜT Ĝ∗
)−1

ĝmĝHm
(
ĜT Ĝ∗

)−1
)}

, (2-36)
γk,i is the ith element of vector γk, δm,i is the ith element of vector δm and ĝm
is the CSI vector for the mth antenna.

The numerator and denominator of SINRk,ZF are linear functions of
η, meaning that (2-35) is quasilinear, which requires the employment of the
bisection method introduced in [1]. The problem can be written in an epigraph
form:

find η (2-37a)

s.t. SINRk,ZF (η) ≥ t, k = 1, . . . , K, (2-37b)
K∑
i=1

ηiδm,i ≤ 1, m = 1, . . . ,M. (2-37c)

In this case, there was no need for reformulations and the problem could be
automatically put in CVX.

2.3.2.2
Uniform Power Allocation (UPA)

In view of the fact that the OPA algorithm has a high complexity, we
will compare its performance with the case of an UPA algorithm:

ηk = 1/
(

max
m

K∑
i=1

δm,i

)
, k = 1, . . . , K. (2-38)

Although it does not perform as well as the optimal approach, it is a nice
alternative with lower computational complexity.
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2.4
Transmit Wiener Filter for MIMO Systems

Here we introduce the Wiener Filter (WF), [56], already designed for
MIMO systems which will be used as a background for the techniques presented
further in this work.

To begin with, we assume the following received signal vector for all users
combined

y = E
(
GTPs + w

)
, (2-39)

where E is the receive filter.
To solve the problem, the following optimization is solved:

{PWF, fWF} = argmin{P,f}E
[
‖s− f−1y‖2

2

]
E
[
‖Ps‖2

2

]
= Etr.

(2-40)

For this problem, the solution is given by

PWF = fWFF−1G∗EH (2-41)

where
fWF =

√
Etr

tr (F−2G∗EHCsEGT ) (2-42)

and
F = G∗EHEG +

tr
(
ECwEH

)
Etr

IM . (2-43)

Later on, this optimization problem will be adapted to cell-free networks as
well as integrated to robustness.

2.5
Access Point Selection (APS)

In this part we highlight the APS techniques already present in the
literature, [2], which gave us the inspiration to develop our own methods.
Both selection techniques are based on the CB precoder.

2.5.1
Received-Power-Based Selection

Firstly, we present an APS scheme based on the received power. The
total received power of the desired signal of the kth user becomes

DSk = √ρfN
L∑
l=1

√
ηl,kαl,k (2-44)

where the lth AP contributes to √ρfN
√
ηl,kαl,k. Therefore, its contribution to

the total received power of the kth user is
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χ(l, k) =
√
ηl,kαl,k∑L

i=1
√
ηi,kαi,k

. (2-45)

A set of Ak is formed with the largest χ(l, k) until a certain tolerance∑
l∈Ak

χ(l, k) ≥ ζ%. (2-46)

By putting χ(l, k) in a descending order and choosing the largest until it reaches
the tolerance, we find the set of selected APs. After choosing Ak, k = 1, . . . , K
we can determine Ul, which is the set of users served by the lth AP. The
procedure is better explained in Algorithm 2.

Algorithm 2 Received-Power-Based Selection [2]
1: Choose ζ, perform OPA to find optimal power coefficients {ηl,k}.
2: Compute χ(l, k) according to χ(l, k) =

√
ηl,kαl,k∑L

i=1
√
ηi,kαi,k

.

3: For each k, find set Ak: Sort χ(l, k) in descending order χ(k(1), k) ≤
χ(k(2), k) ≤ · · · ≤ χ(k(L), k), where k(l) ∈ {1, . . . , L}. Let Ak =

{
k(1)

}
.

4: for i = 2 to L do
5: if ∑l∈Ak χ(l, k) ≥ ζ% then stop,
6: else Ak = Ak ∪

{
k(i)

}
,

7: end if
8: end for
9: From Ak, determine Ul, l = 1, . . . , L. Let α′l,k = αl,k when k ∈ Ul and 0

otherwise, k = 1, . . . , K, l = 1, . . . , L.
10: Perform OPA, replacing αl,k with α

′
l,k, to find the optimal power coefficients

{ηl,k}.

2.5.2
Largest-Large-Scale-Fading-Based Selection

Furthermore, a largest LS coefficients technique is considered in [2]. The
kth user is associated to the L0,k < L, where L0,k is the set of the largest
LS coefficients. First, βl,k is sorted in a descending order, and the largest
coefficients are chosen until their sum reaches a certain tolerance as expressed
below: L0,k∑

l=1

βl,k∑L
i=1 βi,k

≥ ζ%, (2-47)

where βl,k is the element of the sorted (in descending order) set of the set
{β1,k, . . . , βL,k}

In Algorithm 3, the method is described.
The benefit of the second scheme compared to the former is that it

does not need to compute power coefficients ηl,k before being performed. This
reduces the complexity of the problem significantly.
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Algorithm 3 Largest-Large-Scale-Fading Based Selection [2]

1: By using ∑L0,k
l=1

βl,k∑L

i=1 βi,k
≥ ζ%, user k chooses a group of L0,k serving

APs which correspond to the L0,k largest LS coefficients. Then, we can
determine Ul, l = 1, . . . , L.

2: Let α′l,k = αl,k when k ∈ Ul and 0 otherwise, k = 1, . . . , K, l = 1, . . . , L.
3: Perform OPA, replacing αl,k with α

′
l,k, to find the optimal power coefficients

{ηl,k}.

2.6
Numerical Results

Here, we showcase numerical results that compare the performance of
the techniques and arrangements introduced in this chapter.

First, we illustrate in Fig. 2.3 the performance of a ZF precoder, in
four different setups: Multi-cell CAS, Multi-cell DAS, Cell-Free and Multi-
cell Network MIMO+CAS. In the multi-cell cases, we considered four cells.
For a fair comparison, the total number of transmit antennas and users is the
same in all scenarios.

0 5 10 15 20 25

SNR (dB)

20

40

60

80

100

120

140

160

S
u

m
 R

a
te

 (
b

it
s/

H
z
/s

)

CAS - ZF Prec. - 4 Cells

DAS - ZF Prec. - 4 Cells

Cell-Free - ZF Prec.

Network MIMO + CAS - ZF Prec. - 4 Cells

Figure 2.3: Sum-Rate vs. SNR with L = 128, N= 1, K = 16, n = 1, and 120
channel realizations.

We can observe that for higher SNR values, the cell-free system provides
higher rates than other configurations. As expected, DAS outperforms CAS
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for all SNR values and having a cooperative network actually provides better
results than to have a distributed arrangement.

The results collaborate with the theories exposed in [57], where it has
been presented a comparison between centralized massive MIMO, network
MIMO and Cell-free Massive MIMO systems. According to [57], cell-free
provides improved uniform coverage and higher EE, when compared to others
setups.

Next, we compare the CB precoder with the ZF precoder, both with
UPA and OPA, as shown in Fig. 2.4. As we can see, the OPA algorithm in
both cases perform much better than UPA and ZF provides better rates than
those of CB.
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Figure 2.4: Sum-Rate vs. SNR with L = 128, N= 1, K = 16, n = 0.99 and 120
channel realizations

2.7
Summary

In this chapter we presented a review on the main topics that lead to the
emergence of Cell-Free Massive MIMO Systems, as well as an introduction
of important techniques developed over the years which can be perfectly
applied to enhance the performance of this scenario, such as precoding, power
allocation, APS and robust schemes.
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Then, we described the cell-free system model, together with an explana-
tion on how to perform channel estimation and transmit data on the downlink.
Additionally, we provide expressions to compute CB and ZF precoders com-
bined with UPA and OPA techniques from [8, 9]. The transmit WF, which is
the foundation of this work, is presented and two APS strategies are explained.
Numerical results are shown to better illustrate the performance of evaluated
techniques.
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3
Iterative AP Selection, MMSE Precoding and Power Alloca-
tion for Cell-Free Massive MIMO Systems

In this chapter, we introduce two APS techniques, one based on ES and
the other on LS coefficients. Next, an iterative linear MMSE precoding scheme
is designed based on the total power constraint. Power allocation schemes based
on max-min fairness and adaptive techniques are investigated to improve the
performance of the proposed approach. Additionally, a sum-rate analysis is
derived, based on the studied designs and the computational complexity of
the methods is calculated for comparison purposes. Finally, numerical results
of the developed schemes, are individually and integrally displayed.

In Section 3.1, we present APS, how to combine it with precoding, and
the two techniques elaborated. Then, in Section 3.2, an MMSE precoder is
described, based on the total transmit power. In Section 3.3, OPA, APA and
UPA schemes are designed. Sum-rate analysis and the computational cost are
evaluated in Section 3.4. Numerical results and discussions are presented in
Section 3.5. Conclusions of this chapter are drawn in Section 3.6.

3.1
Access Point Selection (APS)

We describe two APS techniques for reducing power consumption, and
consequently, increasing the EE in cell-free settings. To begin with, we explain
how to perform APS in multiple precoding techniques, taking into consider-
ation the power allocation problems that are examined in this work. An ES
APS (ES-APS) scheme and a suboptimal LS coefficients based APS (LS-APS)
with low computational cost are devised [2].

3.1.1
Precoding with APS

To perform APS with precoding, different approaches need to be used
in the optimization problems. First, an auxiliary matrix Q ∈ NM×K , where
[Q]m,k = qm,k ∈ {0, 1} is defined in order to set which links between APs and
users are taken into account (as 1) and the ones that are discarded (as 0). If,
for an user k the best set is to take APs 1, 3 and 5, from a set of 5 APs, qk will
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be

qk =



1
0
1
0
1


(3-1)

where qk is the kth column of Q associated to user k.
In this work, we examine the case of multiple-antenna APs as well.

We perform APS rather than selecting antenna elements, meaning that all
antennas from the lth AP should be considered or discarded. As a consequence,
the same procedure carried out for the LS coefficients (βm,k) is done for qm,k
where, q(l−1)·N+1,k = q(l−1)·N+2,k = · · · = ql·N,k, for l = 1, . . . , L. Now imagine a
case where for an user k the best set is to take APs 1, 3 and 5, from a set of 5
APs with 2 antenna elements each. Then, qk will be

qk =



1
1
0
0
1
1
0
0
1
1



. (3-2)

Before calculating the MMSE precoder, each coefficient qm,k will be
multiplied by αm,k, βm,k, ĝm,k and g̃m,k so that α′m,k = qm,k ·αm,k, β

′
m,k = qm,k ·

βm,k, ĝ
′
m,k = qm,k ·ĝm,k and g̃

′
m,k = qm,k ·g̃m,k. Subsequently, precoding and power

allocation algorithms are performed with these parameters. Similarly, we apply
the same method to the ZF precoder from [9]. On the other hand, to perform
APS in the CB precoder from [8, 9], the max-min fairness power allocation
algorithm turns into a mixed continuous/discrete optimization problem [58].
By annulling multiple coefficients in matrices α, β, Ĝ and G̃, we considerably
reduce the complexity of computing the CB, ZF and MMSE precoders and
their respective SINRs. To apply APS in future calculations, substitute α, β,
Ĝ and G̃ with α′ , β′ , Ĝ′ and G̃′ .
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3.1.2
Exhaustive Search Selection (ES-APS)

In this scheme, all possible sets in a total of L APs, S selected APs and
K users, will be tested so that the combination that maximizes the minimum
SINR is chosen. Each possible vector will be a column of matrix V, formed by
S 1s and (L−S) 0s. By choosing a set of K columns of matrix V, performing
all combinations between them,

(
L
S

)K
, and by replicating every row N times

to represent the selection of all N antenna elements of a certain AP, we form
all possibilities for Q. The optimization problem that performs APS using ES
can be formulated as follows

max
Q

min
k

SINRk (3-3a)

s.t.
M∑
j=1

qj,k = SN, k = 1, . . . , K, (3-3b)

where
SINRk = E [|A1|2]

σ2
w +∑K

i=1,i 6=k E [|A2,i|2] + E [|A3|2]
(3-4)

is the SINR of user k, A1 is the desired signal, σ2
w is the noise variance, A2,i is

the interference caused by user i in user k, for i 6= k, i = 1, . . . , K, A3 is the
CSI error, and qj,k is the jth element of the kth column of Q. After testing all
possibilities of Q we choose the one that provides the highest minimum SINR.

3.1.3
Large-Scale-Fading-Based Selection with Fixed Number of APs (LS-APS)

As an alternative to ES-APS, we devise a LS coefficients based selection
method, where user k will only be associated with S ≤ L APs corresponding
to the SN largest LS coefficients for user k, inspired by the algorithm in [2].
Unlike the approach in [2] that chooses the number of selected APs based on
their contribution to the sum of the LS coefficients, LS-APS performs APS
with a fixed S. This allows a fair comparison with ES-APS.

To perform APS with LS-APS, as detailed in Algorithm 4, we primarily
need to estimate βk = [β1,k, . . . , βM,k]T , for a certain user k, and sort the
elements in a descending order. Next, we assign in an auxiliary vector qk, 1s
corresponding to the SN largest elements of βk and 0s to the remaining entries.
By grouping the qk columns, we obtain matrix Q. The coefficients of matrix
Q must be applied to the matrices α, β, Ĝ and G̃ and then, precoding and
power allocation can be performed with these new parameters. This completes
the APS stage.
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Algorithm 4 Large-Scale-Fading-Based Selection with Fixed Number of APs
(LS-APS)

1: Estimate βk = [β1,k, . . . , βM,k]T for user k and sort the elements in a
descending order.

2: Choose the largest SN elements of βk.
3: In the auxiliary vector qk, assign 1s to the corresponding SN largest

elements of βk and 0s to the remaining ones.
4: Let qk, k = 1, . . . , K be the columns of the matrix Q.
5: Let α

′
m,k = qm,k · αm,k, β

′
m,k = qm,k · βm,k, ĝ

′
m,k = qm,k · ĝm,k and

g̃
′
m,k = qm,k · g̃m,k, where qm,k is the mth element of vector qk.

6: Perform precoding and power allocation with the new parameters.

Below we give an example of vector βk with L = 6, N = 1 and S = 3:

βk =



β1,k

β2,k

β3,k

β4,k

β5,k

β6,k


descending order−−−−−−−−−→



β3,k

β4,k

β1,k

β5,k

β2,k

β6,k


corresponding qk−−−−−−−−−→



1
0
1
1
0
0


β3,k > β4,k > β1,k > β5,k > β2,k > β6,k

(3-5)

3.2
Iterative MMSE Precoder with Total Power Constraint

This part of the work presents the derivation of a linear MMSE precoder.
The technique is based on a total power constraint and iteratively adapted to
perform power allocation in order to maximize the minimum SINR with a
per-antenna power constraint or to minimize the MSE under a per-antenna
power constraint. All the variables referring to this technique have a subscript
"MMSE".

Unlike existing approaches [9, 56], in this specific precoder, we consider
power allocation in the derivation and take into account the CSI matrix, Ĝ,
instead of the actual channel matrix G, since the APs have imperfect CSI.
Furthermore, we derive an iterative MMSE precoder with power allocation in
order to maximize the minimum SINR. If the conventional transmit WF in [56]
was applied to this type of system, the performance would be degraded due
to the lack of appropriate power allocation. In the precoder design we also
take into account a normalization factor f−1 at the receivers, which can be
interpreted as an automatic gain control [56].
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By modifying the expression in (2-14) and inserting a power allocation
matrix N, the kth user receives

yk = √ρf gTk P N s + wk, (3-6)

where N ∈ RK×K
+ is the power allocation diagonal matrix with √η1, . . . ,

√
ηK

on its diagonal and ηk is the power coefficient of user k. For all users combined,
we have

y = √ρf GTP Ns + w. (3-7)
To obtain the MMSE precoder, the following optimization is solved [56]:

{PMMSE,N, fMMSE} = argmin{P,N,f}E
[∥∥∥s− f−1y

∥∥∥2

2

]
(3-8a)

s.t.: E
[
‖x‖2

2

]
= Etr, (3-8b)

where the transmitted signal is

x = √ρf P N s. (3-9)

The average transmitted power is obtained through

E
[
‖x‖2

2

]
= E

[(√
ρfPNs

)H (√
ρfPNs

)]
= ρfE

[
sHNHPHPNs

]
= ρf tr

(
E
[
sHNHPHPNs

])
= ρfE

[
tr
(
NHPHPNssH

)]
= ρf tr

(
PNCsNHPH

)
= Etr,

(3-10)

where Cs = E
[
ssH

]
is the symbol covariance matrix.

The MSE cost function is given by:

E
[∥∥∥s− f−1y

∥∥∥2

2

]
= E

[(
s− f−1y

)H (
s− f−1y

)]
= E

[
sHs− f−1sHy− f−1yHs + f−2yHy

]
= E

[
sHs− f−1sH

(√
ρfĜTPNs + w

)
−f−1

(√
ρfĜTPNs + w

)H
s

+f−2
(√

ρfĜTPNs + w
)H (√

ρfĜTPNs + w
)]
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= E
[
sHs

]
− f−1E

[√
ρfsHĜTPNs

]
− f−1E

[
sHw

]
− f−1E

[√
ρfsHNHPHĜ∗s

]
− f−1E

[
wHs

]
+ f−2E

[
ρfsHNHPHĜ∗ĜTPNs

]
+ f−2E

[√
ρfsHNHPHĜ∗w

]
+ f−2E

[√
ρfwHĜTPNs

]
+ f−2E

[
wHw

]
.

(3-11)

Data symbols are independent from the noise, leading to:

E
[∥∥∥s− f−1y

∥∥∥2

2

]
= E

[
sHs

]
− f−1√ρfE

[
sHĜTPNs

]
− f−1√ρfE

[
sHNHPHĜ∗s

]
+ f−2ρfE

[
sHNHPHĜ∗ĜTPNs

]
+ f−2E

[
wHw

]
.

(3-12)

Applying the trace operator we have:

E
[∥∥∥s− f−1y

∥∥∥2

2

]
= tr

(
E
[
sHs

])
− f−1√ρf tr

(
E
[
sHĜTPNs

])
− f−1√ρf tr

(
E
[
sHNHPHĜ∗s

])
+ f−2ρf tr

(
E
[
sHNHPHĜ∗ĜTPNs

])
+ f−2tr

(
E
[
wHw

])
= E

[
tr
(
ssH

)]
− f−1√ρfE

[
tr
(
ĜTPNssH

)]
− f−1√ρfE

[
tr
(
NHPHĜ∗ssH

)]
+ f−2ρfE

[
tr
(
NHPHĜ∗ĜTPNssH

)]
+ f−2E

[
tr
(
wwH

)]
= tr (Cs)− f−1√ρf tr

(
ĜTPNCs

)
− f−1√ρf tr

(
NHPHĜ∗Cs

)
+ f−2ρf tr

(
NHPHĜ∗ĜTPNCs

)
+ f−2tr (Cw) ,

(3-13)

where Cw = E
[
wwH

]
is the noise covariance matrix.

By constructing the Lagrangian function with the Lagrange multiplier λ,
setting its derivatives to zero and bearing in mind a power allocation matrix
N, we can compute the precoder P and the normalization f , as shown below:
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L (P,N, f, λ) = E
[∥∥∥s− f−1y

∥∥∥2

2

]
+ λ

(
ρf tr

(
PNCsNHPH

)
− Etr

)
= tr (Cs)− f−1√ρf tr

(
ĜTPNCs

)
− f−1√ρf tr

(
Ĝ∗CsNHPH

)
+ f−2ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
+ f−2tr (Cw)

+ λ
(
ρf tr

(
PNCsNHPH

)
− Etr

)
.

(3-14)

Using Wirtinger’s calculus and the result of the partial derivative
∂tr

(
BXH

)
/∂X∗ = B, we have

∂L (P,N, f, λ)
∂P∗ = f−2ρfĜ∗ĜTPNCsNH + λρfPNCsNH

− f−1√ρfĜ∗CsNH = 0,
(3-15)

and
∂L (P,N, f, λ)

∂f
= f−2√ρf tr

(
ĜTPNCs

)
+ f−2√ρf tr

(
NHPHĜ∗Cs

)
− 2f−3ρf tr

(
NHPHĜ∗ĜTPNCs

)
− 2f−3tr (Cw) = 0.

(3-16)

By solving (3-15),

f−2ρfĜ∗ĜTPNCsNH + λρfPNCsNH − f−1√ρfĜ∗CsNH = 0

f
√
ρfĜ∗CsNH = ρfĜ∗ĜTPNCsNH + λf 2ρfPNCsNH

f
√
ρfĜ∗ = ρfĜ∗ĜTPN + λf 2ρfPN

f
√
ρfĜ∗ = ρf

(
Ĝ∗ĜT + λf 2IM

)
PN

PN = f
√
ρf

(
Ĝ∗ĜT + λf 2IM

)−1
Ĝ∗︸ ︷︷ ︸

P̃

P = f
√
ρf

(
Ĝ∗ĜT + λf 2IM

)−1
Ĝ∗︸ ︷︷ ︸

P̃

N−1

P = f
√
ρf

P̃N−1.

(3-17)

By using the expression in (3-16), we arrive at
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f−2√ρf tr
(
ĜTPNCs

)
+ f−2√ρf tr

(
NHPHĜ∗Cs

)
− 2f−3ρf tr

(
NHPHĜ∗ĜTPNCs

)
− 2f−3tr (Cw) = 0

2f−2√ρfRe
(
tr
(
ĜTPNCs

))
− 2f−3ρf tr

(
NHPHĜ∗ĜTPNCs

)
− 2f−3tr (Cw) = 0

tr
(
−
(
ρfNHPHĜ∗ĜTPNCs + Cw

)
+ f
√
ρf Re

(
ĜTPNCs

))
= 0

tr
(
−
(
ρf

f
√
ρf

NH
(
N−1

)H
P̃HĜ∗ĜT f

√
ρf

P̃N−1NCs + Cw

)

+f√ρf Re
(

ĜT f
√
ρf

P̃N−1NCs

))
= 0

tr
(
−
(
f 2P̃HĜ∗ĜT P̃Cs + Cw

)
+ f 2Re

(
ĜT P̃Cs

))
= 0

f 2tr
(
Re

(
ĜT P̃Cs

))
= f 2tr

(
Ĝ∗ĜT P̃CsP̃H

)
+ tr (Cw)

(3-18)

Using the relation introduced in [56],

tr
(
Re

(
ĜT P̃Cs

))
= tr

((
Ĝ∗ĜT + ε IM

)
P̃CsP̃H

)
, (3-19)

equalling to (3-18) and setting ε = λf 2, we yield

f 2tr
((

Ĝ∗ĜT + ε IM
)

P̃CsP̃H
)

= f 2tr
(
Ĝ∗ĜT P̃CsP̃H

)
+ tr (Cw)

f 2tr
(
Ĝ∗ĜT P̃CsP̃H

)
+ f 2tr

(
εP̃CsP̃H

)
= f 2tr

(
Ĝ∗ĜT P̃CsP̃H

)
+ tr (Cw)

f 2tr
(
εP̃CsP̃H

)
= tr (Cw)

εf 2tr
(
P̃CsP̃H

)
= tr (Cw)

εEtr = tr (Cw)

ε = tr (Cw)
Etr

(3-20)

since

Etr = ρf tr
(
PNCsNHPH

)
= ρf tr

(
f
√
ρf

P̃N−1NCsNH
(
N−1

)H
P̃H f
√
ρf

)

= f 2tr
(
P̃CsP̃H

)
.

(3-21)

As a result, the MMSE precoder that takes into account power allocation for
cell-free systems is written as

PMMSE = fMMSE√
ρf

(
Ĝ∗ĜT + tr (Cw)

Etr
IM
)−1

Ĝ∗N−1, (3-22)

where
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fMMSE =
√√√√ Etr

tr
(
P̃CsP̃H

) , (3-23)

[Ĝ]m,k = ĝm,k is the CSI matrix. The noise is uncorrelated meaning that
Cw = σ2

wIK and tr (Cw) = Kσ2
w. We initialize the precoder considering a power

allocation matrix N = IK . After the MMSE precoder is obtained, we perform
power allocation. With the new power allocation matrix N, we substitute it in
PMMSE. The last step of the iteration is to recalculate matrix N by employing
PMMSE to perform power allocation. This final N, called NMMSE, guarantees
that the power constraint is satisfied. Note that the N present in the PMMSE

expression is different from the final NMMSE. Consequently, N and NMMSE will
not cancel each other.

3.3
Power Allocation

We develop OPA, APA and UPA techniques to calculate N, a diagonal
matrix with √η1, . . . ,

√
ηK on its main diagonal, which is used to recompute

the precoder PMMSE and find the power allocation matrix NMMSE.

3.3.1
Optimal Power Allocation (OPA)

Before presenting the OPA algorithm, we need to derive the per-antenna
power constraint, taking into consideration a power allocation matrix. Given
a matrix A = PMMSENMMSE, the transmitted power for the mth antenna can
be expressed as

ρfE
[
aTma∗m

]
= ρfE

[
NMMSEpTmp∗mNMMSE

]
= ρf tr

(
E
[
NMMSEpTmp∗mNMMSE

])
= ρf tr

(
N2

MMSEE
[
pTmp∗m

])
= ρf

K∑
i=1

ηiδm,i

(3-24)

where
δm = diag

{
E
[
pTmp∗m

]}
,m = 1, . . . ,M, (3-25)

am is the mth row of matrix A, pm = [pm,1, . . . , pm,K ] is the mth row of
the precoder PMMSE and δm,i is the ith element of vector δm. The maximum
transmitted power per-antenna is ρf , resulting in the following per-antenna
power constraint
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ρf
K∑
i=1

ηiδm,i ≤ ρf ,m = 1, . . . ,M,

K∑
i=1

ηiδm,i ≤ 1,m = 1, . . . ,M.

(3-26)

Therefore, the max-min fairness power allocation problem with antenna
power constraint becomes

max
η

min
k

SINRk (η) (3-27a)

s.t.
K∑
i=1

ηiδm,i ≤ 1,m = 1, . . . ,M, (3-27b)

where
SINRk = E [|A1|2]

σ2
w +∑K

i=1,i 6=k E [|A2,i|2] + E [|A3|2]
(3-28)

is the SINR of user k, A1 is the desired signal, σ2
w is the noise variance, A2,i is

the interference caused by user i in user k, for i 6= k, i = 1, . . . , K and A3 is
the CSI error.

The optimization problem in an epigraph form employs the bisection
method at each step and is formulated by

find η (3-29a)

s.t. SINRk (η) ≥ t, k = 1, . . . , K, (3-29b)
K∑
i=1

ηiδm,i ≤ 1, m = 1, . . . ,M, (3-29c)

where t = tb+te
2 is the midpoint of a chosen interval (tb, te) that contains

the optimal value t∗, as in [1]. The parameter TOPA refers to the number of
iterations for the bisection method. Its procedure is detailed in Algorithm 1.

3.3.2
Adaptive Power Allocation (APA)

We propose an adaptive SG learning algorithm, which takes into account
the gradient of the error in (3-13) to perform APA and has a per-antenna
power constraint. Our main objective here is to propose alternatives to the
OPA and UPA algorithms.

The APA technique aims to adjust the power coefficients ηk so that they
minimize the effect of the interference at the received signal vector y, [59,60].
Firstly, an unconstrained optimization is performed in accordance with (3-32)
to minimize the interference. Second, a per-antenna power constraint is applied
in order to fulfil the cell-free network power requirements.
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To start with the optimization we will first calculate the cost function
as:

C(N) = E
[∥∥∥s− f−1y

∥∥∥2

2

]
= tr (Cs)− f−1√ρf tr

(
ĜTPNCs

)
− f−1√ρf tr

(
PHĜ∗CsNH

)
+ f−2ρf tr

(
PHĜ∗

ĜTPNCsNH
)

+ f−2tr (Cw) .

(3-30)

The instantaneous gradient with respect to N∗ is

∇̂
N∗
C (N) = −f−1√ρfPHĜ∗Cs + f−2ρfPHĜ∗ĜTPNCs (3-31)

Hence, the matrix N is updated by

N[i+ 1] = N[i]− µ
(
−f−1√ρfPHĜ∗Cs

+f−2ρfPHĜ∗ĜTPN[i]Cs

) (3-32)

In Algorithm 5, the adaptive SG learning strategy that performs APA is
explained in details:

Algorithm 5 Adaptive Power Allocation Algorithm Based on the Stochastic
Gradient (APA)

1: Parameters: µ (step size) and TAPA (number of iterations).
2: Initialization: ηk[0] = 10−3, k = 1, . . . , K.
3: For i= 0:TAPA

4: Set N[i] as a diagonal matrix with
√
η[i] on its diagonal.

5: Define C (N) = tr (Cs)− f−1√ρf tr
(
ĜTPNCs

)
6: −f−1√ρf tr

(
PHĜ∗CsNH

)
7: +f−2ρf tr

(
PHĜ∗ĜTPNCsNH

)
+ f−2tr (Cw).

8: Compute ∇̂
N∗
C (N) = −f−1√ρfPHĜ∗Cs + f−2ρfPHĜ∗ĜTPNCs .

9: Calculate N[i+ 1] = N[i]− µ∇̂
N∗
C (N)

10: Obtain N[i+ 1] = N[i+ 1]� IK
11: Apply the per-antenna constraint δm · η[i + 1] ≤ 1,m = 1, . . . ,M to

adjust N[i+ 1]
12: end
13: Obtain N = N[i+ 1].

The SG power allocation algorithm for APA has a complexity of
O (TAPAMK2) and converges within only a few iterations. In Fig. 3.1 we illus-
trate the performance of the APA algorithm using a step size of µ = 0.25 that
converges within TAPA = 5 iterations.

DBD
PUC-Rio - Certificação Digital Nº 1821407/CA



Chapter 3. Iterative AP Selection, MMSE Precoding and Power Allocation for
Cell-Free Massive MIMO Systems 58

0 1 2 3 4 5
Iterations

4.5

5

5.5

6

6.5

7

7.5

8

8.5

M
S

E

Figure 3.1: MSE vs. Iterations with L = 24, N = 4, S = 12, K = 8, n = 1,
SNR = 25 dB, µ = 0.25 and Etr = Mρf .

3.3.3
Uniform Power Allocation (UPA)

As an alternative to APA, an UPA scheme is proposed, based on the one
in [9] where a per-antenna power constraint is taken into account. Think of
a case where we wish to find equal ηk and a certain antenna element m that
transmits with full power. Looking for an ηk at its minimum possible value,
we have

ηk = 1/
(

max
m

K∑
i=1

δm,i

)
, k = 1, . . . , K, (3-33)

where δm,i is the ith element of vector δm. Although (3-33) is a suboptimal
solution, it has low complexity, is simple and has the potential to show the
benefits of the MMSE precoder.

3.4
Analysis

In this section, we develop a sum-rate analysis of the studied techniques
along with the computational complexity of the proposed and existing algo-
rithms.
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3.4.1
Sum-Rate

First, we will expand expressions (3-6) and (3-22) to obtain the received
signal by user k considering the MMSE precoder with total power constraint:

yk = √ρf gTk PMMSE NMMSE s + wk

= √ρf (ĝk + g̃k)T
fMMSE√

ρf

(
Ĝ∗ĜT + Kσ2

w

Etr
IM
)−1

Ĝ∗N−1NMMSE s + wk

= √ρf ĝTk
fMMSE√

ρf

(
Ĝ∗ĜT + Kσ2

w

Etr
IM
)−1

Ĝ∗N−1NMMSE s︸ ︷︷ ︸
desired signal + interference

+

√
ρf g̃Tk

fMMSE√
ρf

(
Ĝ∗ĜT + Kσ2

w

Etr
IM
)−1

Ĝ∗N−1NMMSE s︸ ︷︷ ︸
CSI error

+ wk,

(3-34)

where ĝk = [ĝ1,k, . . . , ĝM,k]T is the CSI vector for user k and g̃k =
[g̃1,k, . . . , g̃M,k]T is the CSI error vector for user k.

Assuming Gaussian signalling, the achievable rate of user k with the
iterative MMSE precoder is given by

Rk,MMSE = log2(1 + SINRk,MMSE). (3-35)

The sum-rate is described as

RMMSE =
K∑
k=1

log2(1 + SINRk,MMSE), (3-36)

where
SINRk,MMSE = E [|A1|2]

σ2
w +∑K

i=1,i 6=k E [|A2,i|2] + E [|A3|2]
. (3-37)

In the expression above, the quantity

A1 = √ρf ĝTk pk
√
ηksk, (3-38)

is the desired signal, the parameter

A2,i = √ρf ĝTk pi
√
ηisi, for i 6= k, i = 1, . . . , K, (3-39)

is the interference caused by user i in user k and

A3 = √ρf g̃Tk PMMSENMMSEs (3-40)

refers to CSI error.
The mean-square values of A1, A2,i and A3 are computed as follows:
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E
[
|A1|2

]
= E

[(√
ρf ĝTk pk

√
ηksk

)H (√
ρf ĝTk pk

√
ηksk

)]
= E

[√
ρfs

∗
k

√
ηkpHk ĝ∗k

√
ρf ĝTk pk

√
ηksk

]
= ρf tr

(
E
[√
ηkpHk ĝ∗kĝTk pk

√
ηksks

∗
k

])
= ρf tr

(
ηkE

[
pHk ĝ∗kĝTk pk

])
= ρfηkψk

(3-41)

E
[
|A2,i|2

]
= E

[(√
ρf ĝTk pi

√
ηisi

)H (√
ρf ĝTk pi

√
ηisi

)]
= E

[√
ρfs

∗
i

√
ηipHi ĝ∗k

√
ρf ĝTk pi

√
ηisi

]
= ρf tr

(
E
[√
ηipHi ĝ∗kĝTk pi

√
ηisis

∗
i

])
= ρf tr

(
ηiE

[
pHi ĝ∗kĝTk pi

])
= ρfηiφk,i

(3-42)

E
[
|A3|2

]
= E

[(√
ρf g̃Tk PMMSENMMSEs

)H (√
ρf g̃Tk PMMSENMMSEs

)]
= E

[√
ρfsHNMMSEPH

MMSEg̃∗k
√
ρf g̃Tk PMMSENMMSEs

]
= ρf tr

(
E
[
NMMSEPH

MMSEg̃∗kg̃Tk PMMSENMMSEssH
])

= ρf tr
(
N2

MMSEE
[
PH

MMSEE
[
g̃∗kg̃Tk

]
PMMSE

])
= ρf

K∑
i=1

ηiγk,i

(3-43)

In the expressions above, we have

ψk = E
[
pHk ĝ∗kĝTk pk

]
, for k = 1, . . . , K, (3-44)

φk,i = E
[
pHi ĝ∗kĝTk pi

]
, for i 6= k, i = 1, . . . , K, k = 1, . . . , K, (3-45)

γk = diag
{
E
[
PH

MMSEE
[
g̃∗kg̃Tk

]
PMMSE

]}
, for k = 1, . . . , K, (3-46)

where pk = [p1,k, . . . , pM,k]T is the column k of matrix PMMSE, ψk is the kth
element of vector ψ, φk,i is the ith element of vector φk, γk,i is the ith element
of vector γk, and E

[
g̃∗kg̃Tk

]
is a diagonal matrix with ((1− n)βm,k) on its mth

diagonal element.
By substituting (3-41), (3-42) and (3-43) in the SINRk,MMSE expression

we get
SINRk,MMSE = ρfηkψk

σ2
w + ρf

∑K
i=1,i 6=k ηiφk,i + ρf

∑K
i=1 ηiγk,i

. (3-47)

Note that in SINRk,MMSE (η), the numerator and denominator are lin-
ear functions of η. Consequently, SINRk,MMSE (η) is a quasilinear function,

DBD
PUC-Rio - Certificação Digital Nº 1821407/CA



Chapter 3. Iterative AP Selection, MMSE Precoding and Power Allocation for
Cell-Free Massive MIMO Systems 61

enabling us to employ the bisection method [1].
In the optimization problems, when we express min

k
SINRk, we get the

smallest element of the vector containing the SINR from all the kth users,
k = 1, . . . , K. In MATLAB, this is performed through the min function where
min(u) represents the smallest value of vector u.

3.4.2
Computational Complexity

Here, we evaluate the computational complexity of all techniques covered
in this chapter [61].

Table 3.1: Computational Complexity

APS Techniques
LS-APS O (M2)

ES-APS O (L!)

Precoding
+

Power Allocation

MMSE Precoder O (M3)

ZF Precoder O (M3)

CB Precoder [8, 9] O (MK)

SINR Computation

MMSE Precoder O (M2K2)

ZF Precoder O (M2K2)

CB Precoder [8, 9] O (MK2)

Power Allocation

OPA O (TOPAK
3.5)

APA O (TAPAMK2)

UPA O (MK2)

In Table 3.1, we notice that the overall complexity of LS-APS with
MMSE precoding and OPA is comparable to the same techniques applied to
the existing ZF precoder from [9] and is higher than that of the CB precoder
from [8, 9]. Depending on the number of iterations of the bisection method,
TOPA, the complexity of the OPA algorithm may prevail, or the one of the
MMSE and ZF precoder, if M3 > TOPAK

3.5. The same can be said regarding
the APA algorithm, depending on M3 > TAPAMK2, or the opposite. When
evaluating the impact of APS on precoding and SINR computation, there is
a reduction in computational complexity from O(M3) to O((SN)3) and from
O(M2K2) to O((SN)2K2). For the power allocation techniques developed,
APS only affects the APA and UPA algorithms, with a reduction in complexity
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from O (TAPAMK2) to O (TAPA (SN)K2) and from O (MK2) to O ((SN)K2),
respectively, whereM = LN > SN . For the precoders with ES-APS, we notice
that the complexity is O (L!), which is very costly when compared to LS-APS.
Thus, for ES-APS we only investigate a very small system with L = 5 single-
antenna APs.

The complete calculations of computational cost are presented in Ap-
pendix A.

3.5
Numerical Results

In this section, we assess the proposed and existing techniques using
simulations. The APS methods are previously applied, followed by the MMSE
precoder with total power constraint, which is initially calculated with N = IK ,
where N ∈ RK×K

+ is the power allocation diagonal matrix with √η1, . . . ,
√
ηK

on its diagonal and ηk is the power coefficient of user k. Next, power allocation
is performed. With the corresponding power coefficients, the precoder is
recomputed and the final power allocation is performed, completing two
iterations in total.

We combined different precoding, power allocation and APS techniques.
When describing an approach we will use the following notation:

– Precoding + Power Allocation + APS

For each category, we have the following methods:

– Precoding: CB, ZF, MMSE

– Power Allocation: OPA, APA and UPA

– APS: ES-APS and LS-APS

In the following simulations, the parameter n is used to define the amount
of CSI imperfection, being the adjustable percentage between αm,k and βm,k,
αm,k = nβm,k, where 0 ≤ n ≤ 1. Remember that αm,k is the variance of ĝm,k and
βm,k is the LS coefficient. If we consider, for example, 10% of CSI imperfection,
n = 0.9. Furthermore, we declare the average transmitted power as Etr, the
total number of antenna elements as M and the maximum transmitted power
of each antenna as ρf . In all experiments, we performed 120 channel realizations
and assumed σ2

s = 1, where σ2
s is the symbol variance.

A comparison between the iterative MMSE precoder with OPA and UPA
with the CB and ZF precoders from [8, 9] is presented in Fig. 3.2, in terms of
sum-rate vs. SNR. In the first case, both ES-APS and LS-APS are compared
to a non selective scheme (NS). Considering the high complexity of ES-APS, a
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very small system is analysed in Fig. 3.2 and Fig. 3.3 with L = 5 APs, N = 1
antenna element each, S = 3 selected APs and K = 2 single-antenna users
only. In Fig. 3.3, we explore the same scenario, but instead of looking at OPA,
we examine APA.
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Figure 3.2: Sum-Rate vs. SNR with L = 5, N= 1, S = 3, K = 2, n = 0.99, 120
channel realizations and Etr = Mρf .

As shown in Fig. 3.2, MMSE + OPA is the approach with the best
performance. Furthermore, it is visible that MMSE + UPA achieves higher
rates than ZF + OPA for lower SNR values and it is better than ZF + UPA
in the whole experiment. Additionally, we can see that the application of ES-
APS/LS-APS generates comparable or even improved results for MMSE, ZF
and CB + OPA. In the case of CB + UPA, there is a small degradation in
performance when applying APS techniques. We remark that both selection
schemes are comparable and are illustrated together for aesthetic purposes.
For this reason we can conclude that the suboptimal method is an effective
replacement for the optimal solution, with the advantage of having lower
computational complexity.

Fig. 3.3 provides us some insight on the performance of the MMSE +
APA when compared to MMSE + UPA, and ZF. The uniform and adaptive
technique have a better performance than ZF + OPA for lower values of
SNR. Moreover, we can see that the MMSE+APA performs better than
MMSE+UPA. In all combined techniques, OPA performs better than UPA and
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APA. In both figures, the transmit WF from [56] shows a degraded performance
due to its lack of appropriate power allocation.
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Figure 3.3: Sum-Rate vs. SNR with L = 5, N= 1, S = 3, K = 2, n = 0.99, 120
channel realizations and Etr = Mρf .

In the second experiment, we explore LS-APS in a large system with
L = 128 APs, N = 1 antenna element each, S = 64 selected APs and K = 16
single-antenna users, in terms of minimum SINR and sum-rate. As we did
previously, in Fig. 3.4 and Fig. 3.6 we compare the CB and ZF precoders
from [8,9] with OPA and UPA and in Fig. 3.5 and Fig. 3.7 we substitute OPA
for APA.

The results in Fig. 3.4 and Fig. 3.5 validate the functionality of the max-
min fairness power allocation algorithm, where our main objective was that
the OPA algorithms have at least the same minimum SINR than UPA ones, if
not higher. In higher SINR values, we can see the considerable improvement
provided by the OPA algorithm, when compared to UPA. When it comes to
the APA solution, it is comparable to the MMSE+UPA in terms of minimum
SINR.
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Figure 3.4: Minimum SINR vs. SNR with L = 128, N= 1, S = 64, K = 16,
n = 0.99, 120 channel realizations and Etr = Mρf .
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Figure 3.5: Minimum SINR vs. SNR with L = 128, N= 1, S = 64, K = 16,
n = 0.99, 120 channel realizations and Etr = Mρf .

In Fig. 3.6, the MMSE + OPA has the best performance compared to the
other schemes. Moreover, the MMSE + UPA achieves higher rates than ZF +
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UPA. In addition, we note that performance is maintained when applying LS-
APS for large systems, except for CB + OPA, when performance is improved.
For all precoders, OPA provides significantly better rates than UPA. In a
larger system, the performance of the transmit filter from [56] is not as good
as MMSE+UPA due to its inappropriate design for cell-free systems.

We notice in Fig. 3.7 that MMSE + APA can provide an improvement
in performance when compared to MMSE + UPA, in terms of sum-rate.
Therefore, it is an attractive solution in comparison with the remaining
precoders combined with UPA.
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Figure 3.6: Sum-Rate vs. SNR with L = 128, N= 1, S = 64, K = 16, n = 0.99,
120 channel realizations and Etr = Mρf .

It is important to emphasize that improving the minimum SINR or the
sum-rate is a matter of adjusting the parameters of the bisection method
(Algorithm 1). By increasing tb we force the minimum SINR to go higher
but the tendency is that the sum-rate decreases. When the problem is relaxed,
meaning, when tb is decreased, the sum-rate gets improved but the minimum
SINR is lower. This is a common characteristic of max-min problems and the
big question is whether to decide if the requirement is that all users get at least
an specific rate or if the system as a whole needs to have a certain performance.
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Figure 3.7: Sum-Rate vs. SNR with L = 128, N= 1, S = 64, K = 16, n = 0.99,
120 channel realizations and Etr = Mρf .

Similarly, the next experiment considers a large system, now in terms of
BER vs. SNR using multiple-antenna APs. We assume perfect CSI (n = 1),
Quadrature Phase Shift Keying (QPSK) modulation and 100 symbols per
packet. We test LS-APS with an antenna array of N = 4 elements each,
L = 24 APs (total of M = 96 antennas), S = 12 selected APs (total of 48
selected antennas) and K = 8 users.

As in experiment 2, LS-APS causes no degradation in performance, with
the benefit of reducing the number of active APs by half. The insight provided
by Fig. 3.8 and Fig. 3.9 is the same as before. MMSE + OPA has the best
performance when compared to other precoders and OPA performs better
when applied to all precoding designs. We also emphasize here that MMSE +
APA is a promising approach against UPA and improves performance. Besides,
we remark that in terms of BER, for higher values of SNR, MMSE + APA is
comparable to ZF + OPA.

The final experiment gives an insight on how the number of selected
APs in LS-APS affects the system performance in terms of BER vs. SNR. We
consider L = 24 with N = 4 elements each (total of M = 96 antennas)
and K = 8 users. We vary the number of S selected APs considering
L,L/2, L/3, L/4, L/6 and L/8.
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Figure 3.8: BER vs. SNR with L = 24, N = 4, S = 12, K = 8, n = 1, 120
channel realizations, 100 symbols per packet and Etr = Mρf .
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Figure 3.9: BER vs. SNR with L = 24, N = 4, S = 12, K = 8, n = 1, 120
channel realizations, 100 symbols per packet and Etr = Mρf .

As we can see in Fig. 3.10, when we compare S = 24 with S = 3 curves,
a difference of 4.6 dB can be seen in BER = 4× 10−2. In the same BER value,
the difference between S = 24 and S = 4 is of 2 dB. For BER = 2 × 10−2,
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the difference between S = 24 and S = 8 is of 1.45 dB. We can conclude that
by decreasing the number of selected APs in 66%, the performance does not
suffer much degradation.
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Figure 3.10: BER vs. SNR with L = 24, N = 4, K = 8, n = 1, 120 channel
realizations, 100 symbols per packet and Etr = Mρf .

3.6
Summary

We have introduced iterative APS, MMSE precoding and power alloca-
tion techniques for the downlink of a Cell-Free Massive MIMO system with
single and multiple-antenna APs, in the presence of perfect and imperfect CSI.
Two APS schemes were studied, one based on ES, which takes the experiment
to its optimal scenario and the other, less complex but with comparable per-
formance, based on the largest LS coefficients. An MMSE precoder has been
developed by taking into account a power allocation matrix in its derivation.
Subsequently, three power control algorithms are elaborated, OPA, APA and
UPA, with different performances, criteria and computational complexities.
We have derived sum-rate expressions along with a study of the computa-
tional cost of all techniques. Simulations show that the designed techniques
outperform existing approaches and can reduce computational complexity.
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4
Iterative Robust MMSE Precoding and Power Allocation for
Cell-Free Massive MIMO Systems

In this chapter, we introduce an iterative linear robust MMSE (RMMSE)
precoding scheme based on the total power constraint. In a similar way to
the approach developed in Section 3.2, a power allocation matrix is taken into
account in its derivation. Then, optimal and uniform power allocation schemes
are introduced, based on the max-min fairness approach and the robust design.
A sum-rate analysis is carried out based on the proposed robust scheme, and
the computational complexity of the projected techniques is evaluated. In
the end, numerical results demonstrating the potential of the methods are
displayed.

In Section 4.1 we derive the RMMSE precoder with total power con-
straint. In Section 4.2, OPA and UPA schemes adapted to the robust approach
are explained. A sum-rate analysis and the computational complexity of the
designs are developed in Section 4.3. In Section 4.4, numerical results are pre-
sented and conclusions are drawn in Section 4.5.

4.1
Iterative RMMSE Precoder with Total Power Constraint

As an extension of the precoder from Section 3.2, a robust version is now
derived, in the interest of mitigating the effects of channel estimation errors.
Here, we also consider the power allocation matrix N in the derivation and
use the CSI matrix Ĝ and the CSI error matrix G̃ to derive the method. An
iterative linear RMMSE precoder with power allocation is considered as well,
as a means to maximize the minimum SINR. In the derivation we insert a factor
f−1 at the receiver which can be interpreted as an automatic gain control [56].
All the variables related to this precoder have the subscript "RMMSE".

As in (3-6), the received signal by the kth user is given by

yk = √ρf gTk P N s + wk. (4-1)

For all the users combined, the received signal is
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y = √ρf GTP Ns + w

y = √ρf
(
Ĝ + G̃

)T
P Ns + w

y = √ρf ĜTP Ns +√ρf G̃TP Ns︸ ︷︷ ︸
∆

+w.
(4-2)

The design of the proposed RMMSE precoder has two main objectives:
to minimize the MSE under a total power constraint and to mitigate the effects
of the channel estimation error. The optimal solution would be E [‖∆‖2

2]→ 0,
as in a system with perfect CSI. Therefore, we will insert it as a constraint,
with the aid of a auxiliary variable θ, in order to minimize the effects of this
second term. The constant ρf will be taken out of this proposed constraint
since it does not affect the solution.

To obtain the RMMSE precoder, we solve the following optimization:

{PRMMSE,N, fRMMSE} = argmin{P,N,f}E
[∥∥∥s− f−1y

∥∥∥2

2

]
(4-3a)

s.t.: θE
[∥∥∥G̃TP Ns

∥∥∥2

2

]
= 0 (4-3b)

and E
[
‖x‖2

2

]
= Etr (4-3c)

where the average transmitted power is described by

E
[
‖x‖2

2

]
= ρf tr

(
PNCsNHPH

)
= Etr. (4-4)

The proposed constraint can be rewritten as

θE
[∥∥∥G̃TP Ns

∥∥∥2

2

]
= θE

[(
G̃TPNs

)H (
G̃TPNs

)]
= θE

[
sHNHPHE

[
G̃∗G̃T

]
PNs

]
= θtr

(
E
[
sHNHPHE

[
G̃∗G̃T

]
PNs

])
= θE

[
tr
(
NHPHE

[
G̃∗G̃T

]
PNssH

)]
= θtr

(
E
[
G̃∗G̃T

]
PNCsNHPH

)
= tr

(
MPNCsNHPH

)
.

(4-5)

The auxiliary matrix M is defined as

M = θE
[
G̃∗G̃T

]
, (4-6)

where E
[
G̃∗G̃T

]
is a diagonal matrix with ∑K

k=1 (1− n) βm,k on its mth
diagonal element and θ is a chosen scalar. Although M is diagonal, it does not
fit in the diagonal loading technique, since the diagonal elements are not equal,
M 6= uIM . The proposed constraint is categorized as a generalized loading, as
studied in [45], where the matrix is obtained through steering vector errors
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and complemented by a scalar. Similar to this technique, we propose a matrix
M obtained from the statistics of the channel estimation error matrix G̃ and
scaled by a constant θ.

By constructing the Lagrangian function with the Lagrange multipliers,
λ and Γ, setting its derivatives to zero and considering a power allocation
matrix N, we can compute the precoder P and the normalization factor f , as

L (P,N, f,Γ, λ) = E
[∥∥∥s− f−1y

∥∥∥2

2

]
+ Γ

(
tr
(
MPNCsNHPH

)
− 0

)
+ λ

(
ρf tr

(
PNCsNHPH

)
− Etr

)
= tr (Cs)− f−1√ρf tr

(
ĜTPNCs

)
− f−1√ρf tr

(
Ĝ∗CsNHPH

)
+ f−2ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
+ f−2tr (Cw)

+ Γtr
(
MPNCsNHPH

)
+ λ

(
ρf tr

(
PNCsNHPH

)
− Etr

)
.

(4-7)

Using the result of the partial derivative, ∂tr
(
BXH

)
/∂X∗ = B, we

obtain the following expressions:

∂L (P,N, f,Γ, λ)
∂P∗ = −f−1√ρfĜ∗CsNH + f−2ρfĜ∗ĜTPNCsNH + ΓMPNCsNH

+ λρfPNCsNH = 0,
(4-8)

and
∂L (P,N, f,Γ, λ)

∂f
= f−2√ρf tr

(
ĜTPNCs

)
+ f−2√ρf tr

(
Ĝ∗CsNHPH

)
− 2f−3ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
− 2f−3tr (Cw) = 0.

(4-9)

Solving for (4-8), we get:

− f−1√ρfĜ∗CsNH + f−2ρfĜ∗ĜTPNCsNH + ΓMPNCsNH + λρfPNCsNH = 0

f−1√ρfĜ∗CsNH = f−2ρfĜ∗ĜTPNCsNH + ΓMPNCsNH + λρfPNCsNH

f
√
ρfĜ∗CsNH = ρfĜ∗ĜTPNCsNH + Γf 2MPNCsNH + λf 2ρfPNCsNH

f
√
ρfĜ∗ = ρfĜ∗ĜTPN + Γf 2MPN + λf 2ρfPN

f
√
ρfĜ∗ = ρf

(
Ĝ∗ĜT + Γf 2

ρf
M + λf 2IM

)
PN
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PN = f
√
ρf

(
Ĝ∗ĜT + Γf 2

ρf
M + λf 2IM

)−1

Ĝ∗︸ ︷︷ ︸
P̃

P = f
√
ρf

(
Ĝ∗ĜT + Γf 2

ρf
M + λf 2IM

)−1

Ĝ∗︸ ︷︷ ︸
P̃

N−1 = f
√
ρf

P̃N−1.

(4-10)

By using the expression in (4-9), we arrive at

f−2√ρf tr
(
ĜTPNCs

)
+ f−2√ρf tr

(
Ĝ∗CsNHPH

)
− 2f−3ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
− 2f−3tr (Cw) = 0

2f−2√ρfRe
(
tr
(
Ĝ∗CsNHPH

))
= 2f−3ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
+ 2f−3tr (Cw)

f
√
ρf tr

(
Ĝ∗CsNHPH

)
= ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
+ tr (Cw) .

(4-11)

Multiplying from the right CsNHPH in (4-10), using the trace operator
and considering ε = λf 2, the expression takes the following form:

f
√
ρf tr

(
Ĝ∗CsNHPH

)
= ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
+ Γf 2tr

(
MPNCsNHPH

)
+ ερf tr

(
PNCsNHPH

)
.

(4-12)

Equalling expression (4-11) to (4-12), we have

ρf tr
(
Ĝ∗ĜTPNCsNHPH

)
+ tr (Cw) = ρf tr

(
Ĝ∗ĜTPNCsNHPH

)
+ Γf 2tr

(
MPNCsNHPH

)
+ ερf tr

(
PNCsNHPH

)
tr (Cw) = Γf 2tr

(
MPNCsNHPH

)
+ ερf tr

(
PNCsNHPH

)
.

(4-13)

Since

Etr = ρf tr
(
PNCsNHPH

)
= ρf tr

(
f
√
ρf

P̃N−1NCsNH
(
N−1

)H
P̃H f
√
ρf

)

= f 2tr
(
P̃CsP̃H

)
,

(4-14)

it yields
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tr (Cw) = Γf 2tr
(
MPNCsNHPH

)
+ εEtr

ε = tr (Cw)
Etr

−
Γf 2tr

(
MPNCsNHPH

)
Etr

ε = tr (Cw)
Etr

− Γf 2

Etr
tr
(

M f
√
ρf

P̃N−1NCsNH f
√
ρf

(
N−1

)H
P̃H

)

ε = tr (Cw)
Etr

−
Γf 4tr

(
MP̃CsP̃H

)
ρfEtr

,

(4-15)

and
f = fRMMSE =

√√√√ Etr

tr
(
P̃CsP̃H

) . (4-16)

Therefore, the RMMSE precoder is

PRMMSE = fRMMSE√
ρf

(
Ĝ∗ĜT + tr (Cw)

Etr
IM

+
Γf 2

RMMSE

(
EtrM− f 2

RMMSEtr
(
MP̃CsP̃H

)
IM
)

ρfEtr

−1

Ĝ∗N−1

= fRMMSE√
ρf

P̃N−1,

(4-17)

where tr (Cw) = Kσ2
w.

Note that if we assume perfect CSI, G̃ = 0M×K , or set Γ = 0 then
the RMMSE precoder becomes the MMSE precoder for cell-free. Thus, the
advantages of the RMMSE precoder will be only perceived in an imperfect
CSI scenario.

For the RMMSE precoder to outperform the one in Section 3.2, it is
necessary that the diagonal elements of H are nonnegative, where

H =
Γf 2

RMMSE

(
EtrM− f 2

RMMSEtr
(
MP̃CsP̃H

)
IM
)

ρfEtr
. (4-18)

Similarly to the technique presented in Chapter 3, we perform power
allocation after computing the robust precoder. With a new matrix N, we
recompute PRMMSE. Finally, we repeat the computation of N to find NRMMSE,
by using PRMMSE in the calculation. It is important to highlight that the power
allocation matrix N present in PRMMSE is different from the final NRMMSE.
Thus, they will not cancel each other.

In Algorithm 6 we show how to compute the RMMSE precoder with
power allocation. The technique requires pre calculated values for P̃[1] and
fRMMSE[1]. Therefore, first, we assume these values to be the same from the
MMSE precoder from Chapter 3. Then, to calculate the RMMSE precoder
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we have to set values of Γ and θ. Throughout the experiments, we noticed
that the coefficients of H had to be greater or equal to 0, but could not have
higher values than 103 tr(Cw)

Etr
IM , as to avoid performance deterioration. It was

necessary to first turn the elements into positive, by setting θ = −1, and
then regulate the matrix around 102 tr(Cw)

Etr
IM , with the application of Γ, so

as to maximize the SINR of the system. After regulating Γ[i + 1], we obtain
our new P̃[i + 1] and fRMMSE[i + 1]. Fixing these values, we enter the power
allocation loop, as done in the iterative MMSE precoder from the previous
chapter. We start with N[1] equal to the final NMMSE and then iteratively find
its own NRMMSE. Each of the loops perform two iterations in total, meaning
that ITERprec = ITERpa = 2.

Algorithm 6 Iterative RMMSE Precoding With Total Power Constraint
(RMMSE)

1: Initialize fRMMSE[1] = fMMSE, θ = −1, N[1] = NMMSE, ITERprec (number
of iterations for the precoder), ITERpa (number of iterations for power
allocation).

2: Initialize P̃[1] =
(
Ĝ∗ĜT + tr(Cw)

Etr
IM
)−1

Ĝ∗
3: For i=1:ITERprec

Update Γ, P̃ and fRMMSE:
4: Calculate Γ[i+ 1] to optimize the SINR
5: Calculate P̃[i+ 1]← (4-17)
6: Calculate fRMMSE[i+ 1] =

√
Etr

tr(P̃[i+1]CsP̃[i+1]H)
7: end for
8: Obtain P̃ = P̃[i+ 1] and fRMMSE = fRMMSE[i+ 1]
9: For j=1:ITERpa

10: Calculate PRMMSE[j]← (4-17)
11: Calculate N[j + 1]← (4-22) or (4-23)(with fixed PRMMSE[j])
12: end for
13: Obtain PRMMSE = PRMMSE[j] and NRMMSE = N[j + 1].

4.2
Robust Power Allocation

In this section we introduce OPA and UPA techniques, now applied to
the RMMSE precoder. The objective is to find the power allocation matrix N,
which will be used to recompute the robust precoder PRMMSE and the final
NRMMSE.

4.2.1
Optimal Power Allocation (OPA)

Similarly to the optimization problem from Section 3.3.1, the max-
min fairness power allocation problem with antenna power constraint for the
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RMMSE precoder can be formulated as

max
η

min
k

SINRk (η) (4-19a)

s.t.
K∑
i=1

ηiδm,i ≤ 1,m = 1, . . . ,M, (4-19b)

where
SINRk = E [|A1|2]

σ2
w +∑K

i=1,i 6=k E [|A2,i|2] + E [|A3|2]
(4-20)

is the SINR of user k, A1 is the desired signal, σ2
w is the noise variance, A2,i is

the interference caused by user i in user k, for i 6= k, i = 1, . . . , K and A3 is
the CSI error.

We also define

δm = diag
{
E
[
pTmp∗m

]}
,m = 1, . . . ,M, (4-21)

where pm = [pm,1, . . . , pm,K ] is the mth row of the precoder PRMMSE and δm,i
is the ith element of vector δm.

The power allocation problem expressed in an epigraph form to employ
the bisection method is

find η (4-22a)

s.t. SINRk (η) ≥ t, k = 1, . . . , K, (4-22b)
K∑
i=1

ηiδm,i ≤ 1, m = 1, . . . ,M, (4-22c)

where t = tb+te
2 is the midpoint of a chosen interval (tb, te) that contains the

optimal value t∗, as in [1].

4.2.2
Uniform Power Allocation (UPA)

As in Section 3.3.3, we also present an alternative to the OPA scheme,
based on [9]. Imagining a situation where a certain antenna element m

transmits with full power and all ηk, for k = 1, . . . , K are equal and at their
minimum possible value, we have

ηk = 1/
(

max
m

K∑
i=1

δm,i

)
, k = 1, . . . , K, (4-23)

where δm,i is the ith element of vector δm.
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4.3
Analysis

In this section, a sum-rate analysis is derived and the computational
complexity of the investigated scheme is evaluated.

4.3.1
Sum-Rate

Expanding expression (4-1), we obtain:

yk = √ρf gTk PRMMSE NRMMSE s + wk

= √ρf (ĝk + g̃k)T PRMMSENRMMSE s + wk

= √ρf ĝTk PRMMSENRMMSE s︸ ︷︷ ︸
desired signal + interference

+√ρf g̃Tk PRMMSENRMMSE s︸ ︷︷ ︸
CSI error

+ wk,
(4-24)

Assuming Gaussian signalling, the achievable rate of the kth user with
the iterative RMMSE precoder is equal to

Rk,RMMSE = log2(1 + SINRk,RMMSE). (4-25)

The sum-rate is expressed by

RRMMSE =
K∑
k=1

log2(1 + SINRk,RMMSE), (4-26)

where
SINRk,RMMSE = E [|A1|2]

σ2
w +∑K

i=1,i 6=k E [|A2,i|2] + E [|A3|2]
, (4-27)

A1 = √ρf ĝTk pk
√
ηksk, (4-28)

is the desired signal by the kth user,

A2,i = √ρf ĝTk pi
√
ηisi, for i 6= k, i = 1, . . . , K, (4-29)

is the interference caused by user i in k and

A3 = √ρf g̃Tk PRMMSENRMMSEs (4-30)

is the CSI error.
As calculated before, the mean-square values of A1, A2,i and A3 are:

E
[
|A1|2

]
= ρfηkψk, for k = 1, . . . , K, (4-31)

E
[
|A2,i|2

]
= ρfηiφk,i, for i 6= k, i = 1, . . . , K, k = 1, . . . , K, (4-32)

E
[
|A3|2

]
= ρf

K∑
i=1

ηiγk,i, for i = 1, . . . , K, k = 1, . . . , K (4-33)

where
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ψk = E
[
pHk ĝ∗kĝTk pk

]
, for k = 1, . . . , K, (4-34)

φk,i = E
[
pHi ĝ∗kĝTk pi

]
, for i 6= k, i = 1, . . . , K, k = 1, . . . , K, (4-35)

γk = diag
{
E
[
PH

RMMSEE
[
g̃∗kg̃Tk

]
PRMMSE

]}
, for k = 1, . . . , K, (4-36)

pk = [p1,k, . . . , pM,k]T is the column k of matrix PRMMSE, ψk is the kth element
of vector ψ, φk,i is the ith element of vector φk, γk,i is the ith element of vector
γk, and E

[
g̃∗kg̃Tk

]
is a diagonal matrix with ((1− n)βm,k) on its mth diagonal

element.
By substituting (4-31), (4-32) and (4-33) in the SINRk,RMMSE expression

we get

SINRk,RMMSE = ρfηkψk

σ2
w + ρf

∑K
i=1,i 6=k ηiφk,i + ρf

∑K
i=1 ηiγk,i

. (4-37)

In the expression above, the numerator and denominator are linear functions
of η, creating a quasilinear function, meaning that the bisection method can
be used [1].

4.3.2
Computational Complexity with RMMSE

Now we will update Table 3.1 with the investigated methods of this
chapter.

As shown in Table 4.1, the complexity of the RMMSE precoder is
comparable to the MMSE and the ZF precoder from [9]. The CB precoder,
[8, 9], however, presents much lower computational complexity, at the cost of
degraded performance. The same can be said in terms of SINR computation. If
M3 > TOPAK

3.5, the computational cost of RMMSE + OPA will be O (M3).
Depending on the number of iterations of the bisection method, TOPA, the
OPA scheme may prevail when applied to all precoders. In contrast, if UPA
is applied, it will not affect the complexity of the RMMSE, MMSE and ZF
techniques. We conclude that the proposed RMMSE precoder has comparable
computational cost to previous methods but can outperform existing precoders
in the presence of imperfect CSI, as shown in Section 4.4.

The results presented in this table were obtained in Appendix A.
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Table 4.1: Computational Complexity with RMMSE

APS Techniques
LS-APS O (M2)

ES-APS O (L!)

Precoding
+

Power Allocation

MMSE Precoder O (M3)

RMMSE Precoder O (M3)

ZF Precoder O (M3)

CB Precoder [8, 9] O (MK)

SINR Computation

MMSE Precoder O (M2K2)

RMMSE Precoder O (M2K2)

ZF Precoder O (M2K2)

CB Precoder [8, 9] O (MK2)

Power Allocation

OPA O (TOPAK
3.5)

APA O (TAPAMK2)

UPA O (MK2)

4.4
Numerical Results

In this section, we add the RMMSE precoder to our experiments, to be
compared to the CB and ZF precoders and most importantly, to the MMSE
scheme. Note that all simulations consider imperfect CSI since under perfect
CSI the RMMSE precoder converges to the MMSE precoder for cell-free.

The caption has the same notation of Chapter 3. We considered the
following:

– Precoding + Power Allocation + APS

For each category, we have the following methods:

– Precoding: CB, ZF, MMSE and RMMSE

– Power Allocation: OPA and UPA

– APS: LS-APS

Before presenting our experiments, let’s first recapitulate some parame-
ters used in the simulations. The parameter n is used to define the percentage
of CSI imperfection (0 ≤ n ≤ 1), building a relation between αm,k and βm,k
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where αm,k = nβm,k, αm,k is the variance of ĝm,k and βm,k is the LS coefficient.
If we would like to consider 5% of CSI imperfection, for example, n = 0.95.
We also describe Etr as the average transmitted power,M as the total number
of antenna elements and ρf as the maximum transmitted power of each an-
tenna. All experiments are averaged over 120 channel realizations and assumed
σ2
s = 1, where σ2

s is the symbol variance.
In the first experiment we compare the strategies in terms of BER vs.

SNR, only with UPA. We assume imperfect CSI (n = 0.99), QPSK modulation
and 100 symbols per packet. No APS scheme is considered. We analyse both
single and multiple-antenna APs, in Fig. 4.1 and Fig. 4.2, respectively. In the
first scenario we have L = 96 APs with N = 1 antennas each, and K = 8 users.
In contrast, for the multiple-antenna case we present the same total number
of transmit antennas, but now with L = 24 APs and N = 4 antennas each.
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RMMSE + UPA + NS

Figure 4.1: BER vs. SNR with L = 96, N = 1, K = 8, n = 0.99, 120 channel
realizations, 100 symbols per packet and Etr = Mρf .

As we can observe, much lower bit error rates can be achieved in the
single-antenna APs scenario. However, as mentioned before, it is much more
expensive to install more APs than to add more antennas to an AP [41].

In Fig. 4.1 we can notice that in higher SNRs, for a same BER value, a dif-
ference of 2.2 dB can be achieved between RMMSE+UPA and MMSE+UPA,
where RMMSE outperforms MMSE. The highest difference achieved is around
4 dB. Between RMMSE+UPA and ZF+UPA, gains can go up to 5 dB.
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Figure 4.2: BER vs. SNR with L = 24, N = 4, K = 8, n = 0.99, 120 channel
realizations, 100 symbols per packet and Etr = Mρf .

On the other hand, in Fig. 4.2, smaller differences are obtained between
RMMSE+UPA and MMSE+UPA, up to 1.9 dB, but greater improvements are
seen between RMMSE+UPA and ZF+UPA, where differences can go from 3.2
to 13.5 dB.

In Fig. 4.3 and Fig. 4.4, we maintain the UPA curves and add the OPA
scheme to each of the precoding techniques.

When comparing RMMSE+UPA with RMMSE+OPA in Fig. 4.3, we re-
mark differences up to 2.35 dB, demonstrating the benefits of the OPA scheme.
In addition, differences up to 2 dB can be obtained between RMMSE+OPA
and MMSE+OPA in highest SNRs, for a same BER value. A bigger change can
be observed between RMMSE+OPA and MMSE+UPA, where the discrepancy
goes from 3 dB to 6 dB. Compared to the ZF precoder, the RMMSE+OPA
can outperform the ZF+OPA by about 3.38 dB, closer to the highest SNR.

In Fig. 4.4, differences up to 3.9 dB are seen between RMMSE+UPA
and RMMSE+OPA. Regarding RMMSE+OPA and MMSE+OPA, in lower
SNRS, RMMSE+OPA outperforms the latter in 3 dB and in higher SNRs, is
comparable to it. In the same way as the previous results, greater differences
are seen between RMMSE+OPA and MMSE+UPA, where the gain can go up
to 5.9 dB. When compared to the ZF+OPA, the maximum difference is of 4.4
dB in favor of the RMMSE+OPA.
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Figure 4.3: BER vs. SNR with L = 96, N = 1, K = 8, n = 0.99, 120 channel
realizations, 100 symbols per packet and Etr = Mρf .
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Figure 4.4: BER vs. SNR with L = 24, N = 4, K = 8, n = 0.99, 120 channel
realizations, 100 symbols per packet and Etr = Mρf .

The last experiment in terms of BER vs. SNR describes the same system
as before, but now with APS. The main objective is to decrease the number
of selected APs by half, meaning that S = L/2, without loosing much of the
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performance. In the single-antenna AP scenario, we have L = 96 APs and
S = 48 selected ones. In the multiple-antenna case, we consider an antenna
array of N = 4 elements each, L = 24 APs (total of M = 96 antennas) and
S = 12 selected APs (total of 48 selected antennas).
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Figure 4.5: BER vs. SNR with L = 96, N = 1, S = 48, K = 8, n = 0.99, 120
channel realizations, 100 symbols per packet and Etr = Mρf .

It is remarkable that Fig. 4.5 and Fig. 4.3 are extremely similar. This is
due to the fact that APS makes almost no modifications in the performance of
the precoding and power allocation techniques. The greatest change that can
be seen is in RMMSE+OPA for SNR = 25 dB, where the difference was only
of 6%, between the NS and the LS-APS scheme.

Likewise, in Fig. 4.6 and Fig. 4.4, the same can be observed. Even in a
multiple-antenna APs system, APS does not deteriorate the performance. The
biggest change happens in MMSE+UPA, where a difference of 10% can be
obtained when comparing with and without APS.

The next experiment is to compare the analysed techniques in terms of
sum-rate vs. SNR. In the subsequent tests, the CSI imperfection is raised to
10%, meaning that n = 0.9. Moreover, we enlarged the system, now assuming
L = 128 APs, N = 1 antenna elements each and K = 16 users.
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Figure 4.6: BER vs. SNR with L = 24, N = 4, S = 12, K = 8, n = 0.99, 120
channel realizations, 100 symbols per packet and Etr = Mρf .
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Figure 4.7: Sum-Rate vs. SNR with L = 128, N= 1, K = 16, n = 0.9, 120
channel realizations and Etr = Mρf .

What can be concluded from Fig. 4.7 is that the RMMSE precoder is
more successful than all other precoders, when UPA is applied. In 10 dB, for
example, a gain of more than 70% can be experienced by the RMMSE+UPA in
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comparison with MMSE+UPA. Regarding the ZF+UPA, in the same SNR, the
difference between it and the RMMSE+UPA is of more than 110%. A partial
conclusion that can be taken from this is that, with higher CSI imperfection,
the discrepancy between RMMSE and the other precoders is increased, since
they are not designed to mitigate the effects of channel estimation error.

In Fig. 4.8, the precoders with UPA techniques are kept and compared
with the same precoding schemes, combined with OPA.
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Figure 4.8: Sum-Rate vs. SNR with L = 128, N= 1, K = 16, n = 0.9, 120
channel realizations and Etr = Mρf .

When OPA is applied to the precoding techniques, all rates are im-
proved, compared to the uniform schemes. Between RMMSE+OPA and
RMMSE+UPA we can see a gain of 53% in SNR = 0 dB, for example. Smaller
gains are observed between RMMSE+OPA and MMSE+OPA where the max-
imum achieved is around 15% in 5 dB. Greater improvements can be seen
between RMMSE+OPA and MMSE+UPA where the gain goes around 110%
in SNR = 5 dB. Finally, between RMMSE+OPA and ZF+OPA, the gain can
be up to 175%, for example, in SNR = 0 dB.
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The last figure we would like to illustrate in terms of sum-rate vs. SNR is
about the APS technique being applied to the previous system. As in the first
APS experiment presented in this chapter, shown in Fig. 4.5 and Fig. 4.6, we
would like to reduce the computational complexity and decrease the number
of selected APs in 50%. In the results below, we consider single-antenna APs
scenario with L = 128 APs and S = 64 selected ones.
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Figure 4.9: Sum-Rate vs. SNR with L = 128, N= 1, S = 64, K = 16, n = 0.9,
120 channel realizations and Etr = Mρf .

The insight provided by Fig. 4.9 is the same as provided by Fig. 4.5 and
Fig. 4.6. When we compare the performance obtained in a NS scheme (Fig. 4.8)
with LS-APS (Fig. 4.9), almost no change can be observed. The highest
improvement happens in CB+OPA, where the LS-APS technique provides a
gain of 5% in 0 dB. For the RMMSE with OPA and UPA, no gain or loss can
be perceived. In a general way, changes between NS and LS-APS are of less
than 1%.

In the last experiment of this chapter, we compare the investigated strate-
gies in terms of Minimum SINR vs. SNR, in order to attest the effectiveness
of the OPA algorithm. Here, we only investigate the MMSE and RMMSE
techniques and take APS into account.
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Figure 4.10: Minimum SINR vs. SNR with L = 128, N= 1, S = 64, K = 16,
n = 0.9, 120 channel realizations and Etr = Mρf .

As we can see in Fig. 4.10, for both MMSE and RMMSE techniques, the
minimum SINRs of the OPA strategies have at least the same performance of
the UPA ones, which is what we were aiming for. Although in low SNR values
the MMSE outperforms RMMSE for both power allocation techniques, from
15 dB, RMMSE+OPA presents an improved performance when compared to
MMSE+OPA.

As highlighted in the last chapter, the choice of whether to improve the
minimum SINR or the sum-rate is a decision taken in the project. By adjusting
the parameters in the bisection method (Algorithm 1), tb and te, both can be
achieved, but not simultaneously, in accordance with the challenges faced by
max-min problems.

4.5
Summary

In this part, we have developed an iterative RMMSE precoder with total
power constraint. Two power allocation techniques taking into account the
RMMSE precoding scheme have been derived. A sum-rate analysis of the
proposed strategy has been carried out and its computational cost, evaluated.
Numerical results show that the robust alternative outperforms previous ones
in the presence of imperfect CSI. Furthermore, the technique is not affected
by APS strategies and presents comparable computational complexity.
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5
Conclusion and Future Work

In this thesis, we developed APS, precoding and power allocation tech-
niques for Cell-Free Massive MIMO Systems. First, we proposed two APS
schemes, one based on ES and a suboptimal solution, based on the LS coeffi-
cients. We derive an iterative precoder with MMSE criteria, considering total
power constraint. Power allocation schemes are also presented, with optimal,
adaptive and uniform solutions. Then, we extend the precoding technique to a
robust version, where total power constraint is also taken into account. Both
optimal and uniform power allocation techniques based on the robust precod-
ing are created. We have also developed a sum-rate analysis of the proposed
schemes, as well as an evaluation of their computational complexity, to be com-
pared with the cost of existing strategies. Numerical results put in evidence
the potential of the developed solutions, outperforming CB and ZF precoder
in both UPA and OPA schemes and maintaining performance when APS is
applied.

In Chapter 2 we summarized the ideas and works that have lead to the
creation of Cell-Free Massive MIMO Systems. Topics such as massive MIMO,
DAS and network MIMO are covered. Moreover, we provided an insight on the
most important precoding, power allocation and APS techniques, as well as
robust solutions, that can be applied in these scenarios to improve performance
and mitigate interference and channel estimation errors. The system model is
also presented, together with channel estimation and downlink payload data
transmission. Simulations show the benefits of DAS, cooperative networks and
cell-free systems, when compared to CAS.

In Chapter 3, two APS techniques are developed. The first is based on
ES, testing all possibilities of arrangements, given a fixed number S of selected
APs. The second is based on the LS coefficients, where they are put in a
descending order and the largest ones are chosen, also respecting the limit of
S selected APs. The chosen configurations are applied to the CSI matrix, the
CSI error matrix and their respective variances. Next, an MMSE precoding
scheme is derived, with total power constraint. Power allocation methods are
proposed as well, with optimal, adaptive and uniform approaches. The OPA
scheme is configured as a max-min fairness power allocation problem, where
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we aim to maximize the minimum SINR among all users. On the other hand,
APA is defined as a SG learning algorithm where we take into consideration
the gradient of the MSE. Then, UPA is simply described as a technique where
all power coefficients (ηk) are equal. All resource allocation methods must fulfil
the per-antenna power constraint. A sum-rate analysis is made based on the
introduced techniques and their computational complexity is calculated. In the
end, numerical results are illustrated, testifying that the MMSE precoder has
improved performance when compared to CB and ZF, in terms of BER, sum-
rate and minimum SINR. In all precoding schemes OPA performs better than
APA and UPA, and APA can surpass UPA in terms of BER and sum-rate. In a
small system, ES-APS can be more successful or at least maintain performance
when compared to a NS scheme and LS-APS can sustain performance in larger
systems.

A robust version of the precoding schemes is presented in Chapter 4,
where the total power constraint is considered. The presented technique has
almost the same design from the one in Chapter 3, but now, is projected to
outperform previous ones in the presence of imperfect CSI. Respective power
allocation methods are developed to fit the robustness design, in the same
fashion as before, with OPA and UPA. A sum-rate analysis is derived, as well
as the calculation of the computational cost of each strategy. Numerical results
and discussions are shown in the end of the chapter proving that the robust
strategy outperforms standard approaches when we consider imperfect CSI.

Most of the techniques proposed in this thesis are centralized and carried
out at the CPU. As a result, the solutions lack an appropriate analysis of the
system’s scalability. For this reason, in the future, a fully distributed version
of the developed schemes can be examined, in terms of precoding and power
control, as a means to improve the scalability of such networks.

Another possibility to continue this work is to analyse an equivalent ver-
sion on the uplink channel. All the techniques presented here are practical and
can be derived and adapted to the uplink, due to the TDD protocol, which
provides channel reciprocity. Detection techniques can be also incorporated to
successive interference cancellation (SIC), in order to facilitate the demodula-
tion of signals affected by interference and increase capacity [62].

Finally, for the downlink, precoding schemes that are variants or ex-
tensions from the analysed precoders can be developed, such as an MMSE
precoder with per-antenna power constraint, a robust MMSE precoder with
per-antenna power constraint or a robust ZF precoder. Furthermore, other
precoding strategies can be applied to these systems, such as THP, which has
never been used before in cell-free networks.
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A
Computational Complexity

A.1
APS Complexity

ES-APS

– Permutation of a string = O (L!)

– Permutation of vectors = O (K!)

Overall Complexity: O (L!) +O (K!) = O (L!), considering L > K

LS-APS

– Quick sort = O (M2)

– Element-wise multiplication of Q by α, β, Ĝ and G̃ = 4MK

Overall Complexity: O (M2) +O (MK) = O (M2)

A.2
Precoders

MMSE Precoder

PMMSE = fMMSE√
ρf

(
Ĝ∗ĜT + tr (Cw)

Etr
I
)−1

Ĝ∗N−1 (A-1)

with
fMMSE =

√√√√ Etr

tr
(
P̃CsP̃H

) . (A-2)
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P̃Cs →MK2 multiplications +MK (K − 1) additions.

P̃CsP̃H →M2K multiplications +M2 (K − 1) additions.
Etr

tr
(
P̃CsP̃H

) → 1 division + (M − 1) additions.

√√√√ Etr

tr
(
P̃CsP̃H

) → 1 square root

Ĝ∗ĜT →M2K multiplications +M2 (K − 1) additions.
tr (Cw)
Etr

I→ 1 division +M2 multiplications + (K − 1) additions.

Ĝ∗ĜT + tr (Cw)
Etr

I→M2 additions.(
Ĝ∗ĜT + tr (Cw)

Etr
I
)−1

→ M2 +M

2 divisions

+ 2M3 + 3M2 − 5M
6 multiplications + 2M3 + 3M2 − 5M

6 additions.(
Ĝ∗ĜT + tr (Cw)

Etr
I
)−1

Ĝ∗ →M2K multiplications

+MK (M − 1) additions.

N−1 → K2 +K

2 divisions + 2K3 + 3K2 − 5K
6 multiplications

+ 2K3 + 3K2 − 5K
6 additions.(

Ĝ∗ĜT + tr (Cw)
Etr

I
)−1

Ĝ∗N−1 →MK2 multiplications

+MK (K − 1) additions.

fMMSE√
ρf

(
Ĝ∗ĜT + tr (Cw)

Etr
I
)−1

Ĝ∗N−1 → 1 division +MK multiplications

+ 1 square root
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Overall Complexity:

Divisions = M2 +M

2 + K2 +K

2 + 3

Multiplications = 2MK2 + 3M2K +M2 + 2M3 + 3M2 − 5M
6

+ 2K3 + 3K2 − 5K
6 +MK

= M3

3 +M2
(

3K + 3
2

)
+M

(
2K2 − 5

6 +K
)

+ 2K3 + 3K2 − 5K
6

Additions = 2MK (K − 1) + 2M2 (K − 1) + (M − 1) + (K − 1) +M2

+ 2M3 + 3M2 − 5M
6 +MK (M − 1) + 2K3 + 3K2 − 5K

6

= M3

3 +M2 (3K − 1/2) +M
(

2K2 − 3K + 1
6

)
+ 2K3 + 3K2 +K

6 − 2

Square Roots = 2

According to the Big O notation, the complexity of the MMSE precoder
is O (M3).

RMMSE Precoder

PRMMSE = fRMMSE√
ρf

(
Ĝ∗ĜT + tr (Cw)

Etr
IM

+
Γf 2

RMMSE

(
EtrM− f 2

RMMSEtr
(
MP̃CsP̃H

)
IM
)

ρfEtr

−1

Ĝ∗N−1

(A-3)

with
fRMMSE =

√√√√ Etr

tr
(
P̃CsP̃H

) . (A-4)

For the RMMSE precoder, the computational complexity will be almost
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the same of the MMSE precoder, but with an additional cost as shown below:

MP̃→M2K multiplications +MK (M − 1) additions

MP̃Cs →MK2 multiplications +MK (K − 1) additions

MP̃CsP̃H →M2K multiplications +M2 (K − 1) additions

tr
(
MP̃CsP̃H

)
→ (M − 1) additions

f 2
RMMSEtr

(
MP̃CsP̃H

)
IM →

(
M2 + 2

)
multiplications

EtrM→M2 multiplications

EtrM− f 2
RMMSEtr

(
MP̃CsP̃H

)
IM →M2 additions

Γf 2
RMMSE
ρfEtr

→ 1 divisions + 2 multiplications

Γf 2
RMMSE

(
EtrM− f 2

RMMSEtr
(
MP̃CsP̃H

)
IM
)

ρfEtr
→M2 multiplications

tr (Cw)
Etr

IM +
Γf 2

RMMSE

(
EtrM− f 2

RMMSEtr
(
MP̃CsP̃H

)
IM
)

ρfEtr
→M2 additions

Overall Complexity:

Divisions = M2 +M

2 + K2 +K

2 + 4

Multiplications = 3MK2 + 5M2K + 4M2 + 2M3 + 3M2 − 5M
6

+ 2K3 + 3K2 − 5K
6 +MK + 4

= M3

3 +M2
(

5K + 9
2

)
+M

(
3K2 − 5

6 +K
)

+ 2K3 + 3K2 − 5K
6 + 4

Additions = 3MK (K − 1) + 3M2 (K − 1) + 2 (M − 1) + (K − 1) + 3M2

+ 2M3 + 3M2 − 5M
6 + 2MK (M − 1) + 2K3 + 3K2 − 5K

6

= M3

3 +M2 (5K + 1/2) +M
(

3K2 − 5K + 11
6

)
+ 2K3 + 3K2 +K

6 − 3

Square Roots = 2

According to the Big O notation, the complexity of the RMMSE precoder
is O (M3).

ZF Precoder

PZF =
(
Ĝ∗ĜT

)−1
Ĝ∗ (A-5)
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Ĝ∗ĜT →M2K multiplications +M2 (K − 1) additions.(
Ĝ∗ĜT

)−1
→ M2 +M

2 divisions + 2M3 + 3M2 − 5M
6 multiplications

+ 2M3 + 3M2 − 5M
6 additions.(

Ĝ∗ĜT
)−1

Ĝ∗ →M2K multiplications +MK (M − 1) additions.

Overall Complexity:

Divisions = M2 +M

2

Multiplications = 2M2K + 2M3 + 3M2 − 5M
6

= M3

3 +M2
(

2K + 1
2

)
− 5M

6

Additions = M2 (K − 1) + 2M3 + 3M2 − 5M
6 +MK(M − 1)

= M3

3 +M2
(

2K − 1
2

)
−M

(5
6 +K

)

According to the Big O notation, the complexity of the ZF precoder is
O (M3).

If the matrix inversion lemma, [63], is applied to the MMSE, RMMSE
and ZF precoders, the complexity can decrease from O (M3) to O (K3).

CB Precoder

There is no complexity involved in calculating the CB precoder since it
is just

PCB = Ĝ∗ (A-6)

A.3
Precoders + Power Allocation

MMSE Precoder + Power Allocation

PMMSENMMSE →MK2 multiplications +MK (K − 1) additions

+K square roots.
(A-7)
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RMMSE Precoder + Power Allocation

PRMMSENRMMSE →MK2 multiplications +MK (K − 1) additions

+K square roots.
(A-8)

ZF Precoder + Power Allocation

PZFNZF →MK2 multiplications +MK (K − 1) additions

+K square roots.
(A-9)

CB Precoder + Power Allocation

PCB�NCB = Ĝ∗�NCB →MK multiplications +MK square roots. (A-10)

A.4
SINR Computation

MMSE and RMMSE Precoders from (3-47) or (4-37)

SINRk,MMSE = ρfηkψk

σ2
w + ρf

∑K
i=1,i 6=k ηiφk,i + ρf

∑K
i=1 ηiγk,i

, (A-11)

ψk = E
[
pHk ĝ∗kĝTk pk

]
ĝ∗kĝTk →M2 multiplications.

pHk ĝ∗kĝTk →M2 multiplications +M (M − 1) additions.

pHk ĝ∗kĝTk pk →M multiplications + (M − 1) additions.

Multiplications = 2M2 +M.

Additions = (M − 1) (M + 1)

= M2 − 1.

(A-12)
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φk,i = E
[
pHi ĝ∗kĝTk pi

]
, i 6= k, i = 1, . . . , K.

ĝ∗kĝTk →M2 multiplications.

pHi ĝ∗kĝTk →M2 (K − 1) multiplications +M (M − 1) (K − 1) additions.

pHi ĝ∗kĝTk pi →M (K − 1) multiplications + (M − 1) (K − 1) additions.

Multiplications = M2 +M2 (K − 1) +M (K − 1)

= M2K +M (K − 1)

Additions = M (M − 1) (K − 1) + (M − 1) (K − 1)

= M2 (K − 1)−K + 1
(A-13)

γk = diag
{
E
[
PH

MMSEE
[
g̃∗kg̃Tk

]
PMMSE

]}
ĝ∗kĝTk →M2 multiplications.

PH
MMSEE

[
g̃∗kg̃Tk

]
→M2K multiplications +MK (M − 1) additions.

PH
MMSEE

[
g̃∗kg̃Tk

]
PMMSE →MK2 multiplications +K2 (M − 1) additions.

Multiplications = M2 +M2K +MK2

= M2 (K + 1) +MK2

Additions = MK (M − 1) +K2 (M − 1)

= M2K +M
(
K2 −K

)
−K2

(A-14)

SINRk,MMSE = ρfηkψk

σ2
w + ρf

∑K
i=1,i 6=k ηiφk,i + ρf

∑K
i=1 ηiγk,i

ρfηkψk → 2 multiplications.

ρf
K∑

i=1,i 6=k
ηiφk,i → K multiplications +K − 2 additions.

ρf
K∑
i=1

ηiγk,i → K + 1 multiplications +K − 1 additions.

σ2
w + ρf

K∑
i=1,i 6=k

ηiφk,i + ρf
K∑
i=1

ηiγk,i → 2 additions.

Divisions = 1

Multiplications = 2K + 3

Additions = 2K − 1

(A-15)

Overall Complexity:
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Divisions = 1

Multiplications = 2M2 +M +M2K +M (K − 1) +M2 (K + 1)

+MK2 + 2K + 3

= M2 (2K + 3) +M
(
K2 +K

)
+ 2K + 3

Additions = M2 − 1 +M2 (K − 1)−K + 1 +M2K +M
(
K2 −K

)
−K2 + 2K − 1

= M2 (2K) +M
(
K2 −K

)
−K2 +K + 1

(A-16)

Given that SINRk,MMSE, for k = 1, . . . , K, the complexity of the SINR com-
putation for the MMSE precoder is O (M2K2).

ZF Precoder

SINRk,ZF = ρfηk

σ2
w + ρf

∑K
i=1 ηiγk,i

, (A-17)

γk = diag
{
E
[
PH

ZFE
[
g̃∗kg̃Tk

]
PZF

]}
E
[
g̃∗kg̃Tk

]
→M2 multiplications.

PH
ZFE

[
g̃∗kg̃Tk

]
→M2K multiplications +MK (M − 1) additions.

PH
ZFE

[
g̃∗kg̃Tk

]
PZF →MK2 multiplications +K2 (M − 1) additions.

Multiplications = M2 +M2K +MK2

= M2 (K + 1) +MK2

Additions = MK (M − 1) +K2 (M − 1)

= M2K +M
(
K2 −K

)
−K2

(A-18)

SINRk,ZF = ρfηk

σ2
w + ρf

∑K
i=1 ηiγk,i

ρfηk → 1 multiplications.

ρf
K∑
i=1

ηiγk,i → K + 1 multiplications +K − 1 additions.

σ2
w + ρf

K∑
i=1

ηiγk,i → 1 additions.

Divisions = 1

Multiplications = K + 2

Additions = K

(A-19)
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Overall Complexity:

Divisions = 1

Multiplications = M2 (K + 1) +MK2 +K + 2

Additions = M2K +M
(
K2 −K

)
−K2 +K

(A-20)

Given that SINRk,ZF, for k = 1, . . . , K, the complexity of the SINR
computation for the ZF precoder is O (M2K2).

CB Precoder

SINRk,CB =
ρf
(∑M

m=1
√
ηmkαmk

)2

σ2
w + ρf

∑K
i=1

∑M
m=1 ηmiβmkαmi

, (A-21)

M∑
m=1

√
ηmkαmk →M multiplications + (M − 1) additions +M square roots.

ρf

(
M∑
m=1

√
ηmkαmk

)2

→ 2 multiplications.

σ2
w + ρf

K∑
i=1

M∑
m=1

ηmiβmkαmi → (2MK + 1) multiplications

+ (M − 1) (K − 1) + 1 additions.
(A-22)

Overall Complexity:

Divisions = 1

Multiplications = M + 2 + 2MK + 1

= M (2K + 1) + 3

Additions = M − 1 + (M − 1) (K − 1) + 1

= MK −K + 1

Square Roots = M

(A-23)

Given that SINRk,CB, for k = 1, . . . , K, the complexity of the SINR
computation for the CB precoder is O (MK2).

A.5
Power Allocation

OPA Algorithm
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A.5.0.0
MMSE and RMMSE Precoders

(ρfηkψk)− t
σ2

w + ρf
K∑

i=1,i 6=k
ηiφk,i + ρf

K∑
i=1

ηiγk,i

 , for t = 1, ..., TOPA

ρfηkψk → 2 multiplications.

ρf
K∑

i=1,i 6=k
ηiφk,i → K multiplications + (K − 2) additions.

ρf
K∑
i=1

ηiγk,i → (K + 1) multiplications + (K − 1) additions.

t

σ2
w + ρf

K∑
i=1,i 6=k

ηiφk,i + ρf
K∑
i=1

ηiγk,i

→ 1 multiplication + 2 additions.

(ρfηkψk)− t
σ2

w + ρf
K∑

i=1,i 6=k
ηiφk,i + ρf

K∑
i=1

ηiγk,i

→ 1 addition.

K∑
i=1

ηiδmi → K multiplications + (K − 1) additions.

Multiplications = TOPA (K (2 +K +K + 1 + 1) +MK)

= TOPA
(
MK + 2K2 + 4K

)
Additions = TOPA (K (K − 2 +K − 1 + 2 + 1) +M (K − 1))

= TOPA
(
MK −M + 2K2

)
(A-24)

An SDPT3 solver is applied to compute the OPA algorithm. To solve
this problem, it may require O (TOPAK

3.5) [64].
Since usually K3.5 > MK, the complexity of the OPA algorithm for the

MMSE and RMMSE precoders is O (TOPAK
3.5).
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A.5.0.0
ZF Precoder

(ρfηk)− t
(
σ2
w + ρf

K∑
i=1

ηiγk,i

)
, for t = 1, ..., TOPA

ρfηk → 1 multiplication.

ρf
K∑
i=1

ηiγk,i → (K + 1) multiplications + (K − 1) additions.

t

(
σ2
w + ρf

K∑
i=1

ηiγk,i

)
→ 1 multiplication + 1 addition.

(ρfηk)− t
(
σ2
w + ρf

K∑
i=1

ηiγk,i

)
→ 1 addition.

K∑
i=1

ηiδmi → K multiplications + (K − 1) additions.

Multiplications = TOPA (K (1 +K + 1 + 1) +MK)

= TOPA
(
MK +K2 + 3K

)
Additions = TOPA (K (K − 1 + 1 + 1) +M (K − 1))

= TOPA
(
MK −M +K2 +K

)

(A-25)

As in the OPA algorithm for MMSE and RMMSE precoders, the com-
plexity is also O (TOPAK

3.5), [64], considering that K3.5 > MK.
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A.5.0.0
CB Precoder

ρfβk →M multiplications.

ρfβkαi for i = 1, ..., K,→MK multiplications.√
ρfβkαi for i = 1, ..., K,→MK square roots.

Aix→ (MK + 1)2 multiplications +MK (MK + 1) additions.

Aix+ bi →MK + 1 additions.

||Aix+ bi||2 → (MK + 1) multiplications +MK additions.

cTi x→ (MK + 1) multiplications +MK additions.
K∑
i=1

ηiδmi → K multiplications + (K − 1) additions.

Multiplications = TOPA
(
K
(
M +MK + (MK + 1)2 + (MK + 1) + (MK + 1)

)
+MK

)
= TOPA

(
M2K3 + 5MK2 + 2MK + 3

)
Additions = TOPA (K (MK (MK + 1) +MK + 1 +MK +MK) +M (K − 1))

= TOPA
(
M2K3 + 4MK2 +MK −M +K

)
Square Roots = TOPA (MK)

(A-26)

Again, the SDPT3 solver is used to perform the OPA algorithm for the CB
precoder. However, differently from previous precoders, the complexity of this
algorithm is higher since MK variables are being calculated. Therefore, the
complexity is O

(
TOPA (MK)3.5

)
, [64].

APA Algorithm

N[i+ 1] = N[i]− µ
(
−f−1√ρfPHĜ∗Cs + f−2ρfPHĜ∗ĜTPN[i]Cs

)
(A-27)
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PHĜ∗ →MK2 multiplications +K2 (M − 1) additions.

PHĜ∗Cs → K3 multiplications +K2(K − 1) additions.

f−1√ρf → 1 division + 1 square root.

f−1√ρfPHĜ∗Cs → K2 multiplications.

PHĜ∗ĜT →MK2 multiplications +MK (K − 1) additions.

PHĜ∗ĜTP→MK2 multiplications +K2(M − 1) additions.

PHĜ∗ĜTPN[i]→ K3 multiplication +K2 (K − 1) additions.

PHĜ∗ĜTPN[i]Cs → K3 multiplications +K2 (K − 1) additions.

f−2ρf → 1 division + 1 multiplication.

f−2ρfPHĜ∗ĜTPN[i]Cs → K2 multiplications.

− f−1√ρfPHĜ∗Cs + f−2ρfPHĜ∗ĜTPN[i]Cs → K2 additions.

N[i]− µ
(
−f−1√ρfPHĜ∗Cs + f−2ρfPHĜ∗ĜTPN[i]Cs

)
→ K2 multiplications +K2 additions.

(A-28)

Overall Complexity:

Divisions = 2

Multiplications = TAPA
(
MK2 +K3 +K2 +MK2 +MK2 +K3 +K3 + 1 +K2 +K2

)
= TAPA

(
3MK2 + 3K3 + 3K2 + 1

)
Additions = TAPA

(
K2 (M − 1) +K2 (K − 1) +MK (K − 1) +K2 (M − 1)

+K2 (K − 1) +K2 (K − 1) +K2 +K2
)

= TAPA
(
M
(
3K2 −K

)
+ 3K3 − 3K2

)
Square Roots = TAPA (1)

(A-29)

According to the Big O notation, the complexity of the APA algorithm
is O (TAPAMK2).

UPA Algorithm

ηk = 1/
(

max
m

K∑
i=1

δmi

)
, k = 1, . . . , K,

δm = diag
{
E
[
pTmp∗m

]}
, for m = 1, . . . ,M.

(A-30)
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diag
{
E
[
pTmp∗m

]}
→MK2 multiplications.

K∑
i=1

δmi →M (K − 1) additions.

max
m

K∑
i=1

δmi →M

1/
(

max
m

K∑
i=1

δmi

)
→ 1 division.

(A-31)

Overall Complexity:

Divisions = 1

Multiplications = MK2

Additions = M (K − 1)

Sorting = M

(A-32)

According to the Big O notation, the complexity of the UPA algorithm
is O (MK2).
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