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Abstract

Cardeñoso Fernandez, Franklin; Caarls, Wouter (Advisor). Deep
reinforcement learning for haptic shared control in unk-
nown tasks. Rio de Janeiro, 2020. 123p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Recent years have shown a growing interest in using haptic shared
control (HSC) in teleoperated systems. In HSC, the application of virtual
guiding forces decreases the user’s control effort and improves execution time
in various tasks, presenting a good alternative in comparison with direct
teleoperation. HSC, despite demonstrating good performance, opens a new
gap: how to design the guiding forces. For this reason, the real challenge
lies in developing controllers to provide the virtual guiding forces, able to
deal with new situations that appear while a task is being performed. This
work addresses this challenge by designing a controller based on the deep
deterministic policy gradient (DDPG) algorithm to provide the assistance, and
a convolutional neural network (CNN) to perform the task detection. The agent
learns to minimize the time it takes the human to execute the desired task,
while simultaneously minimizing their resistance to the provided feedback.
This resistance thus provides the learning algorithm with information about
which direction the human is trying to follow, in this case, the pick-and-place
task. Diverse results demonstrate the successful application of the proposed
approach by learning custom policies for each user who was asked to test the
system. It exhibits stable convergence and aids the user in completing the task
with the least amount of steps possible.

Keywords
Teleoperation;; Shared control;; Reinforcement learning..
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Resumo

Cardeñoso Fernandez, Franklin; Caarls, Wouter. Aprendizado
por reforço profundo para controle háptico compartilhado
em tarefas desconhecidas. Rio de Janeiro, 2020. 123p. Disserta-
ção de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Os últimos anos mostraram um interesse crescente no uso do controle
háptico compartilhado (HSC) em sistemas teleoperados. No HSC, a aplicação
de forças orientadoras virtuais, diminui o esforço de controle do usuário
e melhora o tempo de execução em várias tarefas, apresentando uma boa
alternativa em comparação com a teleoperação direta. O HSC, apesar de
demonstrar bom desempenho, abre uma nova lacuna: como disenhar as forças
orientadoras. Por esse motivo, o verdadeiro desafio está no desenvolvimento de
controladores para fornecer as forças orientadoras virtuais, capazes de lidar com
novas situações que aparecem enquanto uma tarefa está sendo executada. Este
trabalho aborda esse desafio, projetando um controlador baseado no algoritmo
Deep Deterministic Policy Gradient (DDPG) para fornecer assistência, e
uma rede neural convolucional (CNN) para executar a detecção da tarefa.
O agente aprende a minimizar o tempo que o ser humano leva para executar
a tarefa desejada, minimizando simultaneamente sua resistência ao feedback
fornecido. Essa resistência fornece ao algoritmo de aprendizado informações
sobre a direção que o humano está tentando seguir, neste caso na tarefa
pick-and-place. Diversos resultados demonstram a aplicação bem-sucedida da
abordagem proposta, aprendendo políticas personalizadas para cada usuário
que foi solicitado a testar o sistema. Ele exibe convergência estável e ajuda o
usuário a concluir a tarefa com o menor número possível de etapas.

Palavras-chave
Teleoperação;; Controle compartilhado;; Aprendizado por reforço..
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1
INTRODUCTION

1.1
Motivation

Robotic systems exist everywhere. Because of their wide diversity, robots
can be used for all kinds of applications. As a result, the coexistence between
humans and robots has been growing in recent years and consequently, the
necessity to develop human-robot collaboration to share control to perform
different tasks [1]. A common example of this collaboration are teleoperated
systems, where users control robots placed in remote locations. Thereby, the
shared control (SC) approach becomes a very useful tool in teleoperated
systems combining the most powerful features of humans and robots for
situations where humans cannot interact directly with the environment.

SC in teleoperation is not a new topic, earlier approaches demonstrated
its performance and efficiency by applying optimal control and potential fields
comparing direct and assistive control [2], learning how to modulate the control
between the human and the robot semi autonomously as presented in [3] or
learning how to produce forces to interact with unknown objects with different
stiffness in virtual environments [4]. However, despite the fact that SC for
teleoperation was widely addressed, it has not yet been solved in terms of
optimizing the combined human-robot system’s performance.

For many years this issue was addressed targeting complete transparency
of the teleoperation system. However, despite all the research performed in
this area, unfortunately, optimal transparency has not been achieved yet. In
this context, later research has shown that user performance is improved by
decreasing the transparency level and increasing the force feedback through
the application of forces in the input device to guide the user movements. This
decreases the user’s control effort and improves the execution time to complete
the task, obtaining in this way a new level of shared control known as Haptic
Shared Control (HSC) [5], [6], [7]. This kind of control, despite demonstrating
good performance in teleoperated systems providing haptic guidance [8], [9],
opens a new gap: how to design the guiding forces.

Moreover, although HSC has been sucessfully tested in a wide diversity
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Chapter 1. INTRODUCTION 22

of tasks, such as: peg-in-hole [10], grasping objects [11], page turning task
[12], home-service tasks [13], bolt-spanner task [5], [6] or achieve goals given a
trajectory distribution [14], [15] and [16], [17]. It is possible to see that all of
these controllers are designed to deal with fixed tasks or explicit information.
However it is known that real-world tasks are not always presented with fixed
goals or trajectories, for this reason, the real challenge lies in developing
controllers to provide the guiding forces and at the same time able to deal
with new situations that appear while a task is being performed [18], [19].

Although linear and nonlinear control-based controllers present stable
functionality in HSC for teleoperation as is described in [8] where the controller
allows avoiding obstacles in the slave side or [20] where trajectories for mobile
robots are generated; it is necessary to have previous knowledge of the system
model and dynamics. In the context of this thesis, the designed controllers
should be able to handle unknown tasks as similar as humans do without
much knowledge of the system. This kind of behavior is addressed by machine
learning (ML) algorithms where performance is measured by the capability of
abstraction and generalization.

In addition, to deal with situations where the task is unknown, it is
desirable to implicitly give the controller some information about the task we
are trying to do, so that the controller is able to compute the optimal behavior
to complete the proposed task without explicit commands. Therefore, the
algorithm only needs to be supplied with enough information about the task
and with a learning function that reflects in a general way the user intention.
This intention can be inferred from the user’s actions, or implicitly observing
the environment and user behavior visually.

Thereby, images can be passed to the learning controller giving implicit
information about the task intention. That kind of information can be delivered
to the controller directly or previously pre-processed with computer vision
techniques. To achieve generalization in the image processing, Convolutional
Neural Networks (CNN) are a good option, to provide the controller with the
relevant features of the task.

In addition, given that the real challenge remains in designing a controller
with enough adaptability to assist the user it is necessary to choose an approach
able to provide this feature. Reinforcement Learning (RL) is an interesting
option because it brings us the possibility to teach the controller what our
intention is through trial and error interaction. The general learning rules are
encoded in the reward function which is used as a metric to measure the
performance of the controller during the training. Thus, learning the system
model is not necessary (such as in control engineering techniques) and we

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



Chapter 1. INTRODUCTION 23

only need to supply the algorithm with the observations composed of relevant
information about the current states every time step the algorithm is executed.
These observations about the task intention can be supplied in different ways,
in some cases manually. Alternatively, that information can be provided using
a camera, sending visual information which can be processed through the
combination of RL with Deep Learning (DL) methods for computer vision
applications termed as Deep Reinforcement Learning (DRL), becoming a
powerful method taking as inputs information composed by measurements
and images, and giving as outputs the needed assistance with the guide forces
to complete the task (See Figure 1.1).

1.2
Objectives

1.2.1
General Objective

According all exposed, the main objective in this research is to develop a
Haptic Shared Control (HSC) controller composed by a control-based section
to perform the direct teleoperation and an RL-based section that learns the
guiding forces according the user preferences and at the same time performs
the task decoding from visual information.

1.2.2
Specific Objectives

The specific objectives of this work are the following:

1. Implement a master and slave side simulator to perform hyperparameter
tuning and preliminary tests.

SLAVE
SIDE

MASTER SIDE

Camera

Robotic
armControllerHaptic

deviceUser

Figure 1.1: Overview of the system’s architecture: A user on the master side
interacts with a robotic arm placed on the slave side through a haptic device.
On the slave side the information about the performed task is captured by a
camera. Then, all the information is processed by a central controller.
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2. Build an HSC controller that performs direct teleoperation from numer-
ical information and task detection from visual information.

3. Design a reward function that influences the learning of the RL agent to
provide the optimal guiding forces.

4. Analyze different approaches to select the best approach in terms of
performance and stability.

5. Evaluate the performance of the developed controller in different sub-
jects.

1.3
Contributions

As main contributions of this research we can consider:

– The design of a simulator for the teleoperated system from recorded data
for preliminary tests.

– The design of a reward function based on user resistance to avoid
dependency on predefined end-points or trajectories.

– A visual task detector that learns any visually distinguishable task.

1.4
Organization of the remaining parts of this thesis

The remainder of this document is as follows:
Chapter 2 presents all the theoretical foundations related to the field of

teleoperated robotic systems, as well as the Shared Control approach and its
variant known as Haptic Shared Control[5], [6], [7]. Next, are exposed some
intelligent controllers used in robot learning and focusing on Reinforcement
Learning and the policy gradient algorithm DDPG, as well as autocorrelated
noise like ARP-noise and Deep Learning methods for computer vision appli-
cations. These concepts give the reader enough information to understand the
implemented system.

Chapter 3 introduces an overall description of the HSC-controller de-
scribing the chosen states, the designed reward functions, and describing the
proposed network architectures. In addition a simulator is presented, which
serves as testing object to test the different parameter and hyperparameter
configurations, as well as the variations in the reward function in order to
improve performance.
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Chapter 4 describes the experimental setup giving more details about
the different parts of the system, physical restrictions and controller imple-
mentations. In addition, the different considerations used in order to perform
the tests and experiments are explained.

Chapter 5 presents the preliminary tests performed with the simulator in
order to validate the application of the HSC controller, before the final mount-
ing of the system and its experimental evaluation. Moreover, the algorithms
used, chosen parameters and the network architectures for the different varia-
tions are presented. Resulting plots for all the implementations are also shown
followed by a brief discussion of the obtained results.

Chapter 6 details the experiments carried out in a real system validating
the obtained results in simulations. Then, the different variations of the
proposed method are introduced, combining the CNN as a task detector and
the DDPG algorithm as central controller. Similar to chapter 5, resulting
curves for all the implementations are shown followed by a brief discussion
of the obtained results. Then, further experiments are presented to validate
the effectiveness in different subjects for the proposed approach as well as a
further discussion for all the combinations.

Finally, in chapter 7 the research is summarized, presenting the conclu-
sions of this research and giving guidelines for further implementations in order
to improve the proposed method.
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2
BACKGROUND

In this chapter, the fundamental theory for a proper understanding
of the proposed system is provided. We will start by describing the basis
for teleoperation applied in robotics as well as its types. Then, the basic
concept of haptic shared control and a brief description of the functioning of
haptic devices will be presented. Next, different intelligent controllers for robot
learning, focusing on the Reinforcement Learning approach will be described,
including their functioning, types and methods. Next, the Deep Deterministic
Policy Gradient algorithm and the Autorregressive process as exploration noise
function are presented. Finally, we will explain the fundamentals of Deep
Learning as well as transfer learning method used to improve pre-trained
networks.

2.1
Telerobotics

Telerobotics is an area in robotics initially designed for scenarios where
human-environment interaction is not directly possible. For instance hazardous
environments, sub-sea, etc. Instead, robots are remotely controlled by opera-
tors to perform the desired task. A common implementation is presented in
Figure 2.1, where an operator, located on the master side, sends control signals
to a robot, placed on the slave-side. To do this, the operator uses input devices
to send the orders and output devices to receive information about the actual
state of the robot. In this way, the robot executes the received orders through
its actuators and returns measured information from its sensors.

2.1.1
Robot control

When teleoperation is performed, the slave tries to mimic the master
performing similar movements during the system operation. This is known as
position control. According to the kinematics similarity of the input device and
the controlled robot, the position control can be performed in the joint level
or tip level [21].
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Master-side Slave-side

Controller

Acoustic
display

Visual
display

Tactile
display

Haptic
display

Local control

Environment
Teleoperator

Kinesthetic-tactile

Acoustic
Visual haptic

Sensors/actuators

measures

Figure 2.1: Robot control in a teleoperated scenery. Source: adapted from [21]

2.1.1.1
Position control in joint level

If the master and slave devices have a kinematically equivalent mecha-
nism if not entirely identical (for example same number of joints, same con-
figuration, same link lengths, etc) is said that both devices are kinematically
similar [21]. In this case, the position control for both devices is performed on
the joint level. Therefore, the slave desired position is given by the following
equation:

qqqSd = qqqM + qqqoffset , (2-1)
where qqq denotes the joint coordinates vector, the sub-index S denotes the
slave device, the sub-index M denotes the master device and the sub-index
d denotes the desired value. The sub-index offset denotes the value to couple
both devices.

Assuming that both devices are coupled, the position control is done
maintaining the joint position error between the desired position and the actual
position on the slave side as zero; that is:

qqqSd − qqqS → 0 . (2-2)

2.1.1.2
Position control in tip level

On the other hand, when the mechanisms are kinematically dissimilar
(for example different number of joints, different robot configuration, different
link lengths, etc.), the position control is performed on the tip level [21]. The
used equations are similar to the last case with the difference that it is necessary
apply some modifications to perform the control:
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pppSd = pppM + pppoffset , (2-3)

where ppp denotes the end-effector coordinates vector, the sub-index S denotes
the slave device, the sub-index M denotes the master device and the sub-index
d denotes the desired value. The sub-index offset denotes the value to couple
both devices.

In addition, because of the differences in their mechanisms, the workspace
could be slightly different. Therefore, it is necessary map one workspace into
another by applying a scaling factor ξ:

pppSd = ξpppM + pppoffset . (2-4)

To improve operator’s performance, as recommends [21], the ξ parameter
value should be selected to map both workspaces as close as possible or
according the user comfort.

Similar to last section, if both devices are coupled, then position control
is done maintaining the tip position error between the desired position and the
actual position on the slave side as zero, that is:

pppSd − pppS → 0 . (2-5)

2.1.2
Control configuration

Another important topic in telerobotics is the kind of control configu-
ration of the system. In this context, three kinds of control architectures can
be recognized according the control type of the system in order of increasing
autonomy [21]:

– Direct control.

– Shared control.

– Supervisory control.

2.1.2.1
Direct control

Direct control (also called direct teleoperation) is related to systems
where there is no existence of intelligent control in the master and the slave
side. As well as the nonexistence of transparency on the master side. Therefore,
the user commands are directly sent to the robot without any kind of force
feedback to help to the user control. The functionality of this control is limited
as well as its applications, a well known example is the remote control of
unmanned vehicles [22].
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2.1.2.2
Shared control

Shared control in contrast, combines the human control with an intel-
ligent controller or increasing the transparency level in order to assist the
user in the task completion. In this way, the user’s performance is improved
through sensory feedback such as the application of virtual fixtures [23] or
semi-autonomous functionality such as avoiding accidental drops in grasping
tasks [24].

2.1.2.3
Supervisory control

Finally, supervisory control takes more advantage of autonomous con-
trollers using the human only as supervisor. Thereby, the operator supervises
the robot during its functioning providing directives to the robot when they are
required in order to complete the given task such as telesensor programming
in space applications [25].

2.1.3
Telerobotics applications

Telerobotics has been successfully applied with a wide range of input
devices. For instance, from simple devices as computer keyboards [27], passing

Figure 2.2: Control configuration classification. Source: taken from [60]
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to smart devices, for instance mobile phones [13] or VR devices [10]; to more
complex input devices as intracortical brain-computer interfaces (BCI) [28].
Although teleoperated systems can be controlled directly with only visual
feedback as demonstrated in [29] and [12], performance can be improved
by adding another kind of feedback. For instance, force feedback, which is
often used to provide transparency or touch sensations to the operators.
Taking advantage of this type of feedback, providing assistance by processing
information about the remote environment is a natural next step. In this way,
assistance can be performed using error potentials [2], through visual-audio
signals illustrating restrictions [30], or using pure visual-force feedback [4], [3].

2.2
Haptic Shared Control

Haptics is a word believed to be derived from the Greek word haptesthai,
which means related to the sense of touch [31]. In this context, Haptic Shared
Control (HSC) is a sub-area in telerobotics where teleoperated systems use
force feedback in the master side as the principal feedback by using haptic
interfaces as input device. The main difference with other controllers that also
use force feedback is that HSC does not try to increase the transparency level of
the system. Instead, the controller takes advantage of the feedback decreasing
the transparency level, in order to design virtual guiding forces in the input
devices. These virtual forces allow decreasing the control effort of the operator
to complete the task improving his performance as demonstrated in [5], [6] and
[7].

2.2.1
Haptic devices

As was mentioned, the particularity in HSC is that the operator uses a
haptic interface like the one shown in Figure 2.3 as input on the master side
to perform the teleoperation. This kind of devices is able to provide touch
sensations in human operators enhancing the touch experience by rendering
virtual remote environments. In addition, haptic devices allow the operator
to make desired motions because they are equipped with enough degrees of
freedom to perform the different movements without difficulty.

The basic functionality of these devices is as follow: first, sense the
operator commands with their input sensors, encoders for example. Next,
this information is processed by a control program. And finally, the output
is rendered with the actuators in the device to provide tactile sensations to the
operator. Two broad classes of haptic devices exist: admittance or impedance
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Figure 2.3: The Touch Haptic Device from 3D Systems. Source: taken from [32]

type. The difference between these classes lies in the input information that
these are able to process. While the admittance devices sense the applied
operator force, the impedance devices read the tip position.

Haptic devices have been tested in several implementations, providing
haptic sensations to robots [33] and teleoperated systems improving perfor-
mance as demonstrated in [34], or covering a wide range of applications as-
sisting in task completion [8], [9], helping to generate trajectories [20], [35], or
guiding to follow a reference point or trajectory [14], [15], [16], [17].

2.3
Robot learning

In the future, apart from repeatedly executing the same task thousands
of times, robots will be faced with different tasks that rarely repeat in an
ever changing environment. To achieve this behavior, robots will need to learn
by themselves or with the help of humans. This problem is addressed by the
field of Machine Learning (ML), which allows machines to gain a high level
of abstraction and generalization. In this context, robot learning consists of a
multitude of ML approaches used in robotics covering a wide range of topics
such as: learning control and behavior generation, state abstraction, decision
making, etc [60]. In this project, the robot learning approach was particularly
focused on learning action generation and control as will be explained in later
sections.

As is presented in Figure 2.4, the two main branches of robot learning for
action generation and control use two key ingredients: the available data D,
generated from an expert or by interaction, and the learning approach that
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learns from the data. The data sets D are usually composed by samples Di
which contain information about states sssi, actions aaai, next states sss′i and
depending on the approach, rewards ri.

2.3.1
Model learning

Figure 2.4 presents the model learning approach as part of the main
branch. Models are a very important part of robotics because they describe the
main features of the system and allow to predict the behavior and the influence
of the agent in the environment. Although classical methods like control
engineering techniques have been applied to manually generate mathematical
models, a large diversity of ML approaches are able to learn models from
available datasets. Model learning is mainly used in robot control to design
their control laws according the different situations. For instance, to perform
accurate control without damaging the robot, to describe non-linear behavior
of robotic components or to interact with unknown environments learning
models online.

2.3.2
Reinforcement learning approaches

In contrast with model learning approach, reinforcement learning (RL)
employs the available data directly to find the optimal policy π∗ which guides
the agent to take the action a that will maximize the expected future rewards
given a certain state s. In contrast with other ML approaches, RL uses rewards

Figure 2.4: Main branches of robot learning classification. Source: adapted
from [60]
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as feedback to obtain the optimal policy π∗. Optimal control with learnt models
are model-based methods that learn a model from which they subsequently
learn an optimal value function and policy. Instead, model-free methods learn
a control policy without model knowledge either through a value function or
by directly optimizing the policy with the available data.

2.3.3
Inverse Reinforcement Learning and Behavioral cloning

One of the most difficult parts, when RL controllers are designed, is
to choose a reward function that is suitable for the given task. Inverse
Reinforcement Learning (IRL) addresses this problem by reconstructing the
reward function from expert’s demonstrations in order to reproduce observed
behavior πE [60].

On the other hand, behavioral cloning (BC) is a method that can be
treated as supervised learning because it tries to produce control rules that
can clone the skills of an expert human operator given the respective dataset.
Thereby, the system only tries to replicate the given demonstrations learning
a policy that directly maps from the input to the action [36].

BC and IRL form two major classes of Learning from Demonstration
(LfD) methods. LfD, also called Programming by Demonstration (PbD) or
Imitation Learning (IL), is a set of paradigms that allow the robot to learn
new tasks from demonstrations, provided by an expert, of how to perform the
task [35].

2.3.4
Robot learning applications in telerobotics

In this context, the use of ML techniques in telerobotics has been growing
in the last years as shown by the applications with different approaches, such
as LfD in SC [3], [38], [10] and HSC [9] applications and IRL, as demonstrated
in [17], or by using RL algorithms: in movements assistance [14], path planing
in static and dynamic environments [15] and [16], dexterous telemanipulation
in virtual environments [12], in semiautonomous control playing video-games
or flying a real quadrotor [27].

2.4
Reinforcement Learning

Reinforcement Learning (RL), as illustrated in Figure 2.5, is an ML
method that bases its operation on the maximization of rewards received
by an agent that interacts with its environment following a certain control
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policy π(which can be deterministic or probabilistic) that defines the learning
agent’s way of behaving at a given time [39]. RL problems are mathematically
defined as Markov decision processes (MDPs), which describe the problem of
learning from interaction to achieve a goal. MDPs are composed of: a set of
states S, a set of actions A, a probability distribution p(sss′|sss, aaa) where p is the
probability of reaching a state sss′ ∈ S from the state sss ∈ S taking an action
aaa ∈ A, and a reward function r(sss,aaa). Using this information MDPs are able
to model the dynamics of the environment.

In robotics, RL is a widely used framework because it allows flexibility
in the learning of complex behaviors. Thereby, it provides the robot with the
capability to discover optimal behaviors within the environment through trial
and error interactions.

RL is an interesting approach because there are no explicit teaching rules
in the algorithm, but rather implicit rules are given to the robot through the
reward function r(sss,aaa). This is a scalar function that specifies how good it
is to take action aaa in state sss in an immediate sense. The main objective of
RL is to find the optimal policy π∗ (often called controller or control policy)
that maximizes the expected return E[Rt], defined as the future accumulated
rewards [40]. To find π∗, a given policy π is evaluated and updated during the
training of the agent as the result of its interaction with the environment. This
evaluation may be performed through a value function (V π(sss)) that uses the
relevant information collected by the robot every time step. This function is
the expected return (E[Rt]) starting in a state sss following policy π thereafter.

Observations

Rewards

Actions

Policy

Environment

Value
function

Error

Agent

Actor

Critic s

s′
a

r(s, a)

Figure 2.5: Reinforcement Learning scheme in the agent-environment interac-
tion. Source: adapted from [39]
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2.4.1
Reinforcement Learning classification

The different methods that are found in RL can be classified in: model-
based and model-free. Model-based RL performs planning after attempting to
learn the system model with the collected information to mimic or simulate
experience. Planning is a way to optimize trajectories considering possible
future situations before they are actually experienced. In contrast, model-free
methods performs learning without knowledge of the system model through
direct trial-and-error.

On the other hand, on-policy and off-policy methods, are related in
the way how the policy is trained. Whereas on-policy methods learn and
follow a determined policy evaluating and updating this policy during the
training, off-policy methods learn a target policy from information generated
by a behavior policy. In general, off-policy algorithms are more sample-efficient
because they can re-use experience gathered in previous episodes [41], while
on-policy algorithms are more stable.

Finally, according the action selection an extra classification appears.
Thus, we can classify RL algorithms in value-based or policy-based algorithms.
In value-based approach, the action is taken through using the value function
and an exploration strategy (ε-greedy or softmax for instance) [39]. So that,
the policy estimation is derived from the value-function. Unlike value-based
methods, policy-based algorithms estimate the policy directly, adjusting the
policy parameters following an optimization method. The use of a direct policy
parameterization allows using continuous actions.

2.4.2
Value-functions and optimal value-functions

Most RL algorithms base their operation in the computation of value
functions. This function give us an idea of how good, in terms of expected
discounted return, a given policy π will be when executed starting in an initial
state sss. In this context, the discounted return (Rt) is the sum of discounted

Table 2.1: Reinforcement learning algorithms classification.
RL algorithms classification

According the use of a model • Model-based
• Model-free

According the policy training • On-policy
• Off-policy

According the action selection • Value-based
• Policy-based
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future rewards, and is mathematically defined by:

Rt =rt+1 + γrt+2 + γ2rt+3 + ...

Rt =
∞∑
i=0

γirt+i+1 , (2-6)

where r{.} ∈ R are the future rewards and γ ∈ [0, 1] is known as the discount
factor. The selection of this parameter determines the present value of future
rewards [39].

There are two kind of value functions: the state-value function and the
action-value function:

V π(sss) =Eπ[Rt | ssst = sss] , (2-7)
Qπ(sss,aaa) =Eπ[Rt | ssst = sss, aaat = aaa] . (2-8)

The state-value function(2-7), denoted by V π(sss), is the expected return
given a certain state sss and following the policy π. This function can be defined
in its recursive definition in form of the Bellman equation by:

V π(sss) = Eπ[rt+1 + γV π(ssst+1)|ssst = sss] . (2-9)
Similarly, the action-value function(2-8), denoted by Qπ(sss,aaa), is the

expected return given a certain state sss, taking the action aaa, and following
the policy π. The action-value function can be defined in form of the Bellman
equation by:

Qπ(sss,aaa) = Eπ[rt+1 + γQπ(ssst+1, aaat+1)|ssst = sss, aaat = aaa] . (2-10)
When an optimal policy (denoted by π∗) is found, the expected return is

better than or equal to any other policy. In this case, the value-functions are
optimal.

Q∗(sss,aaa) = max
π

Qπ(sss,aaa) (2-11)

= E[rt+1 + γmax
aaa′
Q∗(ssst+1, aaa

′)|ssst = sss, aaat = aaa] .

2.4.3
Value function approximation and policy gradient methods

When actions and states are discrete and low-dimensional, tabular meth-
ods to value-function calculation are highly recommended. However, for contin-
uous states and actions, complexity increases immensely and the use of tabular
methods is not suitable. Therefore, it is necessary to find a lower dimensional
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representation of the system. This is achieved using value function approxima-
tion. Real-world RL problems, especially in robotics, are high-dimensional and
present continuous states and actions. Policy gradient algorithms are probably
the most common approach used to address this kind of problem. They use a
parametric policy representation (πθθθ) through a parameter vector θθθ. Then, in
order to maximize the cumulative discounted reward, it is possible to define a
performance objective function J(πθθθ) that integrates the performance over the
entire state space. This objective function can be written as:

J(πθθθ) =
∫
S
ρπθθθ(sss)

∫
A
π̂(aaa|sss;θθθ)r(sss,aaa)daaadsss ,

=Eπθθθ [r(sss,aaa)] , (2-12)

where ρπθθθ(s) is the state distribution. Thereby, the parameter vector θθθ may be
optimized to maximize the objective function in direction of the performance
gradient denoted by ∇θθθJ(πθθθ) [42], resulting in the well known policy gradient
theorem [39] for stochastic policies:

∇θθθJ(πθθθ) =
∫
S
ρπθθθ(sss)

∫
A
∇θθθπ̂(aaa|sss;θθθ)Qπ(sss,aaa)daaadsss , (2-13)

which can be rewritten in terms of an expectation:

∇θθθJ(πθθθ) = Eπθθθ [∇θθθlogπ̂(aaa|sss;θθθ)Qπ(sss,aaa)] . (2-14)

Based on policy gradient theorem, a widely used architecture is actor-
critic. In this architecture the actor adjusts the parameter vector θθθ of the
policy through (2-14), and the action-value function is approximated through
a parameter vector www that is evaluated and updated by the critic.

Qπ(sss,aaa) ≈ Q̂(sss,aaa;www) , (2-15)

thus, the policy gradient becomes:

∇θθθJ(πθθθ) = Eπθθθ [∇θθθlogπ̂(aaa|sss;θθθ)Q̂(sss,aaa;www)] . (2-16)

2.4.4
Deterministic policy gradient theorem

Similar to the stochastic case, the policy gradient theorem presented in
(2-14) can be extended to the deterministic case [42]. Given a deterministic
policy µθθθ with parameter vector θθθ denoted by µ̂(sss;θθθ), the objective function
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can be defined as:

J(µθθθ) =Eµθθθ [Rt|µ̂(sss;θθθ)]
=Eµθθθ [r(sss, µ̂(sss;θθθ))]

=
∫
S
ρµθθθ(sss)r(sss, µ̂(sss;θθθ))dsss . (2-17)

Then, the deterministic policy gradient theorem can be calculated as:

∇θθθJ(µθθθ) =
∫
S
ρµθθθ(s)∇θθθµ̂(sss;θθθ)∇aaaQµθθθ(sss,aaa)|a=µ̂(sss;θθθ)dsss

=Eµθθθ [∇θθθµ̂(sss;θθθ)∇aaaQµθθθ(sss,aaa)|aaa=µ̂(sss;θθθ)] . (2-18)

2.4.5
Deep Deterministic Policy Gradient algorithm (DDPG)

Since we have a real system with continuous actions which is difficult to
model because of the presence of the human in the control loop, it is necessary
to choose an RL algorithm able to deal with these specifications that also
allows faster convergence. Therefore, the designed controller for this project is
based on the Deep Deterministic Policy Gradient (DDPG) algorithm. This is a
model-free off-policy actor-critic method that uses an experience replay buffer
R. This buffer consists in a series of tuples containing relevant information
of the interaction of the agent with the environment as states (initial and
final), rewards and actions: (sss,aaa, r, sss′). This information is then sampled in
mini batches and used to update the parameters of the function approximators
in order to achieve the optimal policy. DDPG takes advantage of the two
innovations presented in [43] to learn stable and robust policies: off-policy
training with random samples from a replay buffer to minimize correlation
between samples and train the main function with a target Q-function to
obtain consistent targets during temporal difference backups. Unlike [43], the
target network is composed of a copy of the actor and critic networks and
it is softly updated through an update parameter τ . Thereby, the weights of
the target networks are slowly updated from the learned networks rather than
directly copy the weights. This modification results in a stable architecture
able to learn competitive polices using low-dimensional observations, same
hyper-parameters and same structure [44].

DDPG was the state-of-the-art in continuous control tasks at its intro-
duction in 2015 presenting good performance in simulated and real implemen-
tations [41].
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2.4.5.1
DDPG functioning

Given a deterministic policy µ in an actor-critic configuration, the actor
can be parameterized with θθθ and the critic with www respectively. Thereby, both
are parametric functions denoted by:

µ̂(sss;θθθ) , (2-19)
Q̂(sss,aaa;www) , (2-20)

where (2-19) denotes the deterministic parameterized actor (policy) and
(2-20) denotes the deterministic parameterized critic (action-value function).
Then, the deterministic target parameterized action-value function can be
defined as:

Q̂(sss,aaa;www†) = Eµθθθ [r(sss,aaa) + γQ̂(sss′, µ̂(sss′;θθθ†);www†)] , (2-21)

where γ is the discount rate, sss′ denotes a next state, θθθ† is the target
parameter vector for the actor and www† is the target parameter vector for the
critic. On the other hand, we can consider parameterized approximated action-
value functions that are optimized by minimizing the loss function:

L(www) = Eµθθθ [Q̂(sss,aaa;www)− y] , (2-22)

with
y = r(sss,aaa) + γQ̂(sss′, µ̂(sss′;θθθ†);www†) , (2-23)

where y is calculated in a separate target representation in the same way as
in [43]. Thereby, using (2-22) and (2-23) and applying the concept of batch
learning for stability, the parameter vector www can be optimized defining the
next loss function for a mean of N samples per mini-batch:

L(www) = 1
N

N∑
i=1

[(Q̂(sssi, aaai;www)− yi)2] . (2-24)

Then, the actor can be updated applying the deterministic version of the policy
gradient theorem, presented in (2-18) for the mini-batch:

1
N

N∑
i=1

[∇aaaQ̂(sss,aaa;www)|sss=sssi,aaa=µ̂(sssi;θθθ)∇θθθµ̂(sss;θθθ)|sss=sssi ] . (2-25)

The samples used to train the actor and critic functions come from the replay
buffer R where are stored all the past transitions (sss,aaa, r, sss′) sampled from the
environment using the exploration policy. In addition, to build the exploration
policy, noise sampled from a suitable noise process N is added to the actor
policy. Finally, to avoid instabilities, when the network is being trained , the
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parameter vectors in the target network are softly updated through:

θθθ† ← θθθ† + τ(θθθ − θθθ†) , (2-26)
www† ← www† + τ(www −www†) .

where θθθ† and www† denote the parameter vector of the target network, with
an update target parameter τ << 1. The complete algorithm is presented in
Algorithm 1. For additional reading, the complete mathematical foundation
of policy gradient methods as well as the complete analysis of the DDPG
algorithm can be found in [42] and [44] respectively.

Algorithm 1 DDPG algorithm
function DDPG(γ, τ)

Initialize www,θθθ,www†, θθθ† with random values close to zero
t← 0
while True do

sss← Start
repeat

Select action aaat from µ̂(ssst;θθθ) +Nt
Execute action aaat, observe reward r and observe new state sss′t
Store transition (ssst, aaat, rt, sss′t) in R
Train-minibatch(B, γ, τ, θθθ, θθθ†,www,www†)
θθθ† ← θθθ† + τ(θθθ − θθθ†)
www† ← www† + τ(www −www†)
t← t+ 1

until episode ends

function Train-minibatch(B, γ, τ, θθθ, θθθ†,www,www†)
Sample a random minibatch B ⊂ R with N samples
for each bi : (sssi, aaai, ri, sss

′
i) ∈ B do

yi = ri + γQ̂(sss′i, µ̂(sss′i;θθθ†);www†)
Train Q̂(sss,aaa;www) on all samples N
Move µ̂(sss;θθθ) according to the sampled deterministic policy gradient
1
N

N∑
i=1

[∇aaaQ̂(sss,aaa;www)|sss=sssi,aaa=µ̂(sssi;θθθ)∇θθθµ̂(sss;θθθ)|sss=sssi ]

2.4.6
Autorregressive (AR) processes

To encourage exploration, noise is added to the policy in the action
selection when the RL agent is being trained. Usually, Gaussian noise is used
to achieve this effect of exploration showing high effectiveness in simulated
systems. However, for real implementations, changing the control signal very
quickly can result in damages to the system. This is due to the large amount of
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training that is required until convergence. For this reason, noise signals with
correlated terms need to be chosen to avoid the chattering effect, changing
smoothly in relation to the previous term. Ohrnstein-Uhlenbeck (OU) process
is one kind of noise with smooth changes used in previous work for continuous
cases [44]. In a discrete-time form, it can be shown that OU process is a first-
order Gaussian autorregressive (AR) process [45]. Thereby, the AR process
(termed as AR-p for now on), used in this work, generalizes the OU processes
and provide a wider space of possible exploration trajectories. A stationary
AR-p Xt of order p, with zero mean and finite variance is defined by:

Xt =
p∑
i=1

φ̃iXt−i + Zt ,

φ̃i = (−1)i+1
(
p

i

)
αi ,

Zt ∼ N (0, σ̃2
Z) . (2-27)

where φ̃i ∈ R, i = 1, ..., p are real coefficients,
(
p
i

)
= p!

i!(p−i)! , the AR-p parameter
α ∈ [0, 1), and Zt is a white noise Zt ∼ N (0, σ̃2

Z) with σ̃2
Z <∞. σ̃2

Z is a solution
of the system of Yuve-Walker equations described in [45] with {φi = φ̃i}. For
continuous control, actions taken given the parameterized polices are defined
by:

aaat = µ̂(ssst;θθθ) +Nt , (2-28)
where Nt is white Gaussian noise. In order to use AR-p process in the action
selection, Gaussian noise Nt in (2-28) is replaced by an Xt term with order
p ∈ N and α ∈ [0, 1) parameters defined in (2-27), obtaining:

aaat = µ̂(ssst;θθθ) + Xt . (2-29)

So, the noise added in the action selected is time-correlated with the
previous terms obtaining in this way a smoothed noise that prevents hardware
damage.

2.5
Deep Learning (DL)

Deep learning (DL), also known as deep networks, is a machine learning
subset that uses artificial neural networks (ANN) at its core. Deep Learning
models have gained attention in the last years by outperforming classical
machine learning methods in different competitions and challenges. DL works
as any ANN representation, where a function y = f̂(x;θθθ) is trained to match
the real representation f ∗(x) which give us a desired output y. Thereby, y trains
the value of the parameters θθθ that result in the best function approximation
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for every input x [46].
In this context, as every layer can be considered as a function approxima-

tor, the stack of layers is denoted as: fN◦...◦f 2◦f 1(x) = f (N)(...f (2)(f (1)(x))...),
where f (1) is called the input layer and the overall length N is the depth of
the model.

The different architectures used for DL models depend on the application
and the available dataset. If a labeled dataset is used, the method is known as
supervised learning, and every input x is accompanied by a label (or desired
output) y ≈ f̂(x). The objective of this approach is to minimize the error
between the network output and the given label. In this way, the network
is trained and updated until achieving a minimal error or reach the desired
performance.

On the other hand, when a no-labelled dataset is given, the method
is known as unsupervised learning. In this approach, the error is calculated
according to a series of features that the network learns by itself along with
the training.

The choice of the number of units, layers, activation functions and
parameters of the network are part of the design and the application type in
which it will be used. In recent years, deep learning has become an important
tool to address different tasks such as signal processing, object recognition,
natural language processing, etc [47].

2.5.1
Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN), as indicated by their name, are a
kind of ANN that uses the mathematical operation of convolution in at least
one of their layers [46]. Their popularity and success lie in the fact that they

Input Output
layer

Hidden layers

Figure 2.6: Basic architecture for an ANN representation.
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can be applied in a wide range of applications with arrays of any dimension
as the particular input type. Thereby, image data can be easily treated with
CNN. In recent years, CNN have been widely adopted as the main processing
tool for computer vision applications.

2.5.1.1
Convolution principle

Remembering, the convolution is a simple multiplication between two
signals (continuous or discrete), where one of them is flipped and displaced
along the time axis. Mathematically it is denoted with:

y(t) =
∞∑

τ=−∞
x(τ)h(t− τ) , (2-30)

for the discrete case. Where x and h are causal signals, τ is the lag time and
y is the signal output. This operation is typically denoted with an asterisk in
the following way:

y(t) = (x ∗ h)(t) . (2-31)
This approach can be extended to the ANN approach where x represents

a multidimensional input array with shape: width × height × channels. h is
represented as a multidimensional kernel with shape: k × k × N, where N
represents the number of features. And finally the output y is the resulting
feature map whose shape is defined by the next equation:

Output shape =
[width + 2p− k

s + 1
]
×
[height + 2p− k

s + 1
]
× N . (2-32)

where p is the padding of the image (usually zero) and s is the stride used for
the kernel to move it along all the image.

For example (See Figure 2.7), given an input image with shape 5×5×1,
and a kernel of shape 3 × 3 × 1. Using a padding p = 1, and a stride s = 1,
applying (2-32), the resulting output shape will be: 5× 5× 1.

2.5.1.2
CNN architecture

In a common configuration of CNN, three types of layers can be found:

1. Convolutional

2. Pooling

3. Fully connected
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(a) Convolution at start.
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(b) Convolution in the next step.

Figure 2.7: Convolution process. Source: adapted from [48]

The convolutional layers are applied to extract relevant features from
the image input, obtaining in this way the relevant information. One prob-
lem, especially when convolutional layers are stacked, is that the number of
parameters grows considerably. Training many parameters can result in a time-
consuming process. To avoid this effect, a pooling layer is used after the set of
convolutional layers performing the pooling operation. This operation replaces
the output at a certain location with a summary statistic of the nearby out-
puts. Thereby, the spatial size of the feature map is reduced and consequently,
the number of parameters and the computation time are decreased. The most
common pooling operation is themax-pooling, which takes the maximum value,
discarding the other elements in the pooling kernel’s input field. Finally, the
fully connected layers are a common ANN architecture where the information
obtained of the input image in the previous layers is processed, computing the
desired outputs.

2.5.2
VGG16 network

VGG16 is a CNN architecture proposed by Simonyan and Zisserman that
in 2014 won the imagenet large scale visual recognition (ILSVRC) competition.
This is an annual competition for localization and classification tasks with
1000 classes, where VGG obtained the 1st and 2nd place respectively [49]. The
novelty with respect to its predecessors was the analysis and inclusion of very
small convolutional kernels (k = 3) and the increase of the network depth.
This change reduced the number of parameters in the proposed architecture
and increased non-linearity. In this context, it was demonstrated that a better
image representation could be achieved using a deeper network [50]. The
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architecture representation is presented in Figure 2.8 and is composed of a
series of convolution blocks, each followed by a max-pooling layer. And finally,
three fully connected layers are used whose size depends on the number of
classes of the proposed task.

Due to its high performance, the VGG network can be found as a pre-
trained model in most known frameworks for DL, such as tensorflow [52],
keras [53], pytorch [54], caffe [55] and so on, to load it and use it in different
applications, for instance in a transfer learning approach.

2.5.3
Transfer learning

The transfer learning approach is a tool of ML that addresses the problem
of insufficient training data. Here, the objective is to transfer knowledge from
a source domain to the target domain [56]. In this context, the technique
takes advantage of pre-trained networks to transfer learned knowledge to new
neural networks. Thereby, there is no necessity to train all the parameters from
scratch. Besides, it is not necessary to have a large-scale dataset to perform
the training and the computation time is also decreased.

To apply transfer learning the following methods can be used:

– Frozen features

– Fine-tuning features

When frozen features method is used, the basic functioning is as follows:
the first part of the source network (called base), previously trained with a
large-scale dataset, is copied to a target network and then is frozen. Next, in
the last part of the target network, new layers are added with non-trained
weights. Finally, the target network is trained according to the objective task
with a new small dataset until the desired performance is achieved. In this

Input
224x224x3 Softmax

Fully connected+ReLU
Max pooling
Convolution+ReLU

1x1x4096

7x7x512

14x14x51228x28x512
56x56x256

112x112x128

224x224x64

Output
1x1x1000

Figure 2.8: VGG16 network architecture. Source: adapted from [51].
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way, the target network is composed of a base that contains general pre-learned
knowledge and new layers that contain specific knowledge for the task.

On the other hand, the fine-tuning feature method has practically the
same basic functionality as the first technique. However, the main difference lies
in the fact that the base is not frozen. In this way, all the weights are trained to
perform a fine-tune of the parameters according to the new dataset. Previous
research shows that in the target network the features learned previously still
persist after use the fine-tuning technique with a new dataset [57].

In addition, an extra method, combines the power of both variants, per-
forming first a feature extraction with the frozen features technique and then,
performing a fine-tuning unfreezing gradually the frozen layers performing dif-
ferent training in order to achieve a higher performance in comparison with
the initial approaches [58].
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3
Haptic Shared Control controller design

In this chapter, the design of the proposed system to perform haptic
shared control is described. The necessity to achieve complex behaviors with
flexible algorithms gave rise to robot learning approach, where the use of RL-
based controllers is becoming popular. Thereby, a desired behavior can be
learned with few training episodes. We will describe the proposed method based
on the DDPG algorithm including a task detector section which is responsible
for decoding the user intention when performing the task. We will also describe
the different approaches used in order to improve performance in the task
completion as well as the implementation of a simulator that serves to test the
different proposed modifications.

3.1
System Description

As was discussed in the previous chapter, HSC has shown promising
results improving the operator’s performance in teleoperation [5] [6] [7]. On
the other hand, the use of ML methods to achieve complex behaviors has
grown in recent years. Previous applications presented in Chapter 2 using ML
showed its successful application in telerobotics by applying different control
algorithms. However, practically all applications learn at their core of a set of
trajectory distributions [3] [15] [16]. Although it is well known the importance
of inferring user’s goal from his actions in shared autonomy, recent research
still uses fixed goals [59]. Therefore, despite the good performance achieved
with these algorithms, we can not consider them if the intention is to help the
user to perform tasks that depend on implicit information, for example current
images of the performed task. We propose to address the problem of implicitly
encoding task intention using two types of data: visual and numerical. In this
way, it is possible to perform any task that is able to be encoded through the
state vector, which will be described in the next sections.

Thereby, the architecture presented in Figure 1.1 can be extended to
an HSC approach applying an RL-based controller as central core. In this
way, as input/output devices can be used a haptic device in the master side
and a robotic manipulator on the slave side. Considering that both devices
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are kinematically dissimilar, the position control will be performed on the tip
level.

As shown in Figure 3.1, the proposed system bases its operation in
the central controller which is composed of two separate sub-controllers: the
teleoperation controller and the RL-controller. The teleoperation controller
is responsible for replicating the master movements on the slave side, while
the RL-controller is responsible for processing the information and sending
the commands to the haptic device in order to assist the operator. The basic
functioning of the two controllers can be explained by the flowcharts presented
in Figure 3.2 and Figure 3.3 respectively.

The chosen task will be the pick-and-place task due to its simple
operation. This task consists of picking an object from one place, named
initial point, and dropping it in an objective position, named goal. For this
implementation, the initial point and the goal are selected randomly into the

SLAVE
SIDE

Robotic
manipulator

Haptic
device

User

MASTER SIDE

p pT

fTf

task

pD

ṗD

CONTROLLER

Camera

Teleoperation
controller

RL-controller

Figure 3.1: Overall functionality of the system: The teleoperation controller
performs the imitation and the RL-controller performs the assistance.
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Figure 3.2: Teleoperation controller flowchart.
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Send force
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to controller

Read tip position
from both devices

Send tip position
to controller

Encode user
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Figure 3.3: RL-controller flowchart.

manipulator end-effector workspace to avoid physical restrictions. To increase
complexity in performing the task, an obstacle will be placed between the initial
and the final points. In addition, the pick-and-place task will be performed in
a bidirectional way; that is, take the ball from the first position to the goal,
and then, in the next half, the point positions are exchanged as illustrated
in Figure 3.4; this modification was added to demonstrate that the proposed
system is able to learn more than one task. So, a complete episode is considered
to following the next trajectory: initial point-goal-initial point.

3.2
HSC controller

As was mentioned in Section 3.1, the HSC controller is composed of
two sub-controllers: the teleoperation controller and the RL-controller. It is
worth to mention that both controllers work in an independent way; that is,
despite both controllers share some information (position and velocity), the
functioning of one does not affect directly the functioning of the remaining
controller. Therefore, any influence one has on the other is mediated through
the user who is performing the task. This can be observed in Figures 3.2
and 3.3, where the flowcharts describe the general functionality of each
controller (See Figure 3.1).
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Manipulator
end-effector

Initial point Goal

(a) Initial point in the left side.

Obstacle

Manipulator
end-effector

Initial pointGoal

(b) Initial point in the right side.

Figure 3.4: Task definition.

3.2.1
Teleoperation controller

The teleoperation controller is responsible to replicate the user move-
ments with the Haptic device in the manipulator. This is performed through
direct teleoperation using position control in the tip level using the position
coordinates of the haptic device pppT and the manipulator pppD respectively. The
basic implementation for this controller is presented in Figure 3.5

The direct teleoperation is achieved in the next way: Let pppT =
[xT, yT, zT] and pppD = [xD, yD, zD] be the current position of the end-effector
for the haptic device and the manipulator w.r.t their base link in Cartesian
coordinates respectively. Then, the desired manipulator position is obtained
using( 2-4). The error between the desired and the current position is calcu-
lated by:

eee = pppDd − pppD , (3-1)
pppDd = ξpppT + pppoffset . (3-2)

CONTROLLER

Haptic
device

User

MASTER SIDE

p

pT
pD

SLAVE
SIDE

ṗD

Robotic
manipulator

Teleoperation
controller

Figure 3.5: Basic teleoperation setup: The teleoperation controller takes pppT
and pppD as inputs and sends velocity commands ṗ̇ṗpD to the slave side.
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where eee = [ex, ey, ez] are the calculated errors for axis x, y and z respectively.
The manipulator velocity to track the haptic device tip is calculated applying
a proportional positive gain kD to the error vector calculated in (3-2):

ṗ̇ṗpD = kDeee . (3-3)

where ṗ̇ṗpD = [ẋD, ẏD, żD] are the calculated velocities for the manipulator
end-effector. Thereby, the manipulator replicates the haptic device movements
with a velocity proportional to the error between both devices.

3.2.2
RL-controller

The RL-controller is responsible to perform the assistance to the teleop-
erator. This controller bases its operation in the DDPG algorithm explained
in Section 2.4.5. To perform the assistance, the DDPG network is trained with
relevant information as inputs about the positions to provide the guiding forces
as outputs.

3.2.2.1
DDPG state vector

To handle the information coming from both devices and the task
detector, the information is encapsulated in the form of a state vector. This
state vector is used in the DDPG network and stored in the replay buffer with
other samples to train the agent. The proposed state vector for the DDPG
network consists in the tip positions for the manipulator pppD and the haptic
device pppT respectively. In addition, an extra term called task is appended which
encodes the task direction intention:

sss = [pppD, pppT, task] , (3-4)

where the position points are in Cartesian coordinates; that is,
pppD = [xD, yD, zD] and pppT = [xT, yT, zT]. Moreover, the task term
is set according to one of the architectures that will be described in the
next sections. An extra condition that needs to be considered is the network
input. It is common that the input vector that ANN handles is in the range
of [−1, 1], therefore, the position vectors need to be scaled in an accepted
range before being processed by the DDPG network in the RL-controller. This
pre-processing is done using a scale factor ω which divides the position vector
in order to be in the determined range.

To re-scale the states vector, this value was chosen as the maximum
value in meters between the largest possible value that both devices can reach
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in their respective workspaces as shown in the following:

ω = max(max(pppD),max(pppT)) . (3-5)

In this way, the result of applying a scaling in the state vector given
in (3-4) is:

sss = [p̃̃p̃pD, p̃̃p̃pT, task] , (3-6)
where p̃̃p̃pD = pppD

ω
and p̃̃p̃pT = pppT

ω
. Resulting in p̃̃p̃pD = [x̃D, ỹD, z̃D] and p̃̃p̃pT =

[x̃T, ỹT, z̃T] respectively. The resulting state vector is:

sss = [x̃D, ỹD, z̃D, x̃T, ỹT, z̃T, task] . (3-7)

3.2.2.2
DDPG network architecture

Here, it is worth noticing that (3-4) in Section 3.2.2.1 presents an extra
term in the state vector that is appended to encode the task information.
To perform this task coding in the DDPG network is considered a new
functionality in the proposed system which we name as task detector. A first
look of the task detector was shown in Figure 1.1, where task information
comes from a camera placed on the slave side.

As part of the implementation of the task detector functionality, two
implementations are proposed: manual task detection and autonomous task
detection. Because the addressed task is a simple pick-and-place bidirectional
movement, then, it is possible to encode the direction as a single value
which determines which is the direction that the user wants to perform
the task. Taking advantage of this condition, the first approach encodes the
task direction as a numeric character passed to the DDPG network through
the terminal. In this way, the operator provides the information about the
task intention before performing the task. The basic implementation of this
approach is presented in Figure 3.6.

On the other hand, in the second approach, the task is encoded in
a dynamical way through images that are then decoded using an image
processing technique. Thereby, the operator does not have to provide any extra
information while is performing the task. The basic implementation is shown
in Figure 3.7.

The first approach is implemented to demonstrate that the DDPG
network can learn to assist the user in more than one task. In contrast, the
second approach shows that the system can detect the task autonomously, as
well as learn the task detection on-the-fly. Figure 3.8 summarizes the proposed
implementation.
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Figure 3.6: RL-controller with manual task selection: This approach takes the
state vector sss, where the task information is given by the user, as input and
provides the force commands fffT to the haptic device to provide the assistance.
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Figure 3.7: RL-controller with autonomous task detection: This approach takes
the state vector sss, where the task information is given by a camera, as input and
provides the force commands fffT to the haptic device to provide the assistance.
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Figure 3.8: HSC controller with camera input functionality.
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3.2.3
Reward function design

As explained in [60], one of the underestimated problems in RL is the goal
specification, which is achieved by designing a proper reward function. This
function must capture the general learning rules allowing the RL algorithm
to converge to the desired behavior. In practice, designing a proper reward
function is very difficult. Therefore, tuning becomes an important part of the
path to find a good reward function. For that reason, for the HSC controller
proposed in this thesis, two reward functions are designed.

3.2.3.1
Angle-based reward function

The first reward function is an angle-based function which takes as
arguments the force vector and the haptic device velocities vector as illustrated
in Figure 3.9. Thereby, the desired behavior that the reward function pretends
to learn is to assist the user with the haptic device in the direction of the user
movements. In addition, to boost learning, an extra reward is considered at
the end of the episode, based on whether the episode was successful or not.

The functioning of the angle-based reward function is described in the
following:

r(sss,aaa) =

rA , if sss is an absorbing state

−β , otherwise

where

rA =

+10 , if goal position was reached

−10 , if goal position was not reached
(3-8)

The sub-index A in the reward term indicates that it is an absorbing state and
β is the angle between the assistive force and the velocity vector. This angle

f T

ṗT

β

Figure 3.9: First reward function: calculates the rewards based in the angle
difference between the fffT and ṗ̇ṗpT vectors.
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can be calculated through:

β = arccos
(

fffT · ṗ̇ṗpT

‖fffT‖‖ṗ̇ṗpT‖

)
. (3-9)

The functioning of this function is as follows: the reward will be maxi-
mized when the direction of the assistive force fffT is equal to the haptic device
velocity ṗ̇ṗpT. The negative signal ensures that the agent will try to minimize
the angle between both vectors when maximizing the expected reward along
all the training.

3.2.3.2
Fuzzy-based reward function

Although the angle-based reward function is designed to learn assistive
forces in the direction of the user movements, it does not take into account the
force or velocity magnitude, which could result in an undesired behavior.

Therefore, a second reward function is proposed as a fuzzy-based reward
function. This approach bases its operation on the difference of magnitude
between the assistive force and the user velocity presented in Figure 3.10.
Thereby, this function can be designed to encourage the agent to influence
the user to execute the task quickly and give him more control in the task
execution; to achieve that, fuzzy rules condition the amount of reward that
the agent receives according the velocity of the user.

The functioning of the fuzzy-based reward function is described in the

fT‖ = ‖fT‖ cos β

β

fT⊥ = ‖fT‖ sin β
f T

ṗT

Figure 3.10: Second reward function diagram: calculates the rewards based in
the magnitude of the fffT and ṗ̇ṗpT vectors.

r0 = −‖fT‖ r1 = −fT⊥ + fT‖ − c

‖ṗT‖0 x

Figure 3.11: Second reward function: conditional rules.
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following:

r(sss,aaa) =

rA , if sss is an absorbing state

rF , otherwise

where

rA =

+10 , if goal position was reached

−10 , if goal position was not reached
(3-10)

where the sub-index A indicates that it is an absorbing state and the sub-index
F indicates that it is a fuzzified reward. This reward term is defined as:

rF = ϕr1 + (1− ϕ)r0 ,

r0 = −‖fffT‖ ,

r1 = −fT⊥ + fT‖ − c . (3-11)

The predicted force vector components are defined by fT‖ = ‖fffT‖ sin β and
fT⊥ = fffT cos β respectively. The term c is defined by: c = ‖max(fffT)‖ and the
ϕ term is defined as:

ϕ =


0 , if ‖ṗ̇ṗpT‖ = 0

1 , if ‖ṗ̇ṗpT‖ > x

‖ṗ̇ṗpT‖
x

, otherwise

(3-12)

The scalar positive x term is defined as the maximum user velocity when
random forces are applied. This ϕ term gives the reward function a particular
behavior. When the user is performing the task and his current velocity is
greater than x, then the term r0 is eliminated from the reward function. In
this case, the rewards are maximum when assistance forces go in the same
direction as user velocity encouraging high assistive forces.

In contrast, when the user does not perform movements and the velocity
is zero, then the r1 term is eliminated from the reward function. Thereby, the
assistance forces are not required and reward values are maximum when the
forces go to zero. In this context, when the user decreases the velocity less
than x, then, the reward function encourages the DDPG agent to decrease the
assistance. In this way, the force magnitude is decreased in a smooth way to
provide the user more control in the final part of the execution in order to
reach the desired position. In addition, using the constant c in r1, is ensured
that the reward function maintains the rewards below to zero without achieve
positive values, and continues implicitly minimizing the number of required
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steps.

3.3
Behavioral cloning

As part of the preliminary test, the use of behavioral cloning (BC)
approach is proposed. This approach is commonly used as initialization in order
to boost agent learning endowing some initial performance [26]. The proposed
approach consists of using a simple FC-ANN as part of the implementation of
the BC method. Thereby, the network can be trained with input data as the
state vector sss and some output vector that provides the basic intention of the
task. For this case, a velocity vector ṗ̇ṗp can be used as output of the network and
then used to approximate the assistive forces to guide the user in performing
the task. In this way, it is possible to calculate the velocity information from the
haptic device or the manipulator from different demonstrations and then use it
to train the network. To build the dataset, a set of successful demonstrations is
recorded with all the relevant information of the system; in this case, position
and velocities for both devices executing the task. Then, two networks to be
tested are proposed, the first one is trained using the proposed state vector
sss as input, and the estimated velocities of the haptic device ˆ̇pT as output,
and the second one, which is trained using the proposed state vector sss as
input and the estimated velocities of the robot manipulator ˆ̇pD as output as
is presented in Figure 3.12 where both networks are presented respectively.
Because of the delay presented between both devices when the teleoperation is
being performed, it is intended to test both approaches in the output network
( ˆ̇pT or ˆ̇pD). Thereby with ˆ̇pD it is expected a higher delay than ˆ̇pT in the
beginning of the episode.

Finally, to approximate the assistive forces, the outputs of the FC-ANNs
are multiplied with a positive proportional gain kBC for every approach as
following the next equations:

fffT = kBC ˆ̇pD (3-13)
fffT = kBC ˆ̇pT

s FC-ANN ˆ̇pT

(a) ANN with ˆ̇pT as output.

s FC-ANN ˆ̇pD

(b) ANN with ˆ̇pD as output.

Figure 3.12: ANN trained for the behavioral cloning approach.

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



Chapter 3. Haptic Shared Control controller design 58

3.4
Simulator

Following the implementation of the proposed system, the programming
of a simulator in an open-source platform is also proposed. The objective
of this functionality is to simulate the behavior of the master and the slave
sides given the different configurations. Thereby, it is possible to test different
network architectures of the proposed HSC-controller, as well as perform a
hyper-parameter tuning, or test the different proposed reward functions. The
intention to implement this simulator is not to repĺace the user in the different
task executions in a virtual way. As was mentioned, the final objective is to
have an approximation that can be used to find the architecture in which
the system achieves better performance. The functioning of the simulator is
explained in the next paragraph.

3.4.1
Simulator functioning

Similar to the real system, the simulator is composed of a master side and
a slave side. The master side is responsible for providing the virtual trajectory
simulating the user behavior in terms of user position in every time step. To
do this, the master-side simulator uses a pre-recorded dataset of N successful
trajectories which are then used to simulate the current position. Then, using
a proportional function, the virtual user’s forces are simulated together with
the haptic device forces that come from the RL-controller. Finally, combining
the haptic device and user forces, the user velocity is obtained and used to
simulate the next virtual user position. In contrast, the slave-side simulator is
used to provide the virtual manipulator position using the velocity commands
coming from the teleoperation controller.

3.4.1.1
Master-side simulator

Consider a set of N successfully executed demonstrated trajectories:

D = {{(xi0, yi0, zi0), (xi1, yi1, zi1), ...., (xiMi
, yiMi

, ziMi
)}Ni=1}, Mi > 0 . (3-14)

A single trajectory Di, i ∈ [1, N ] can be randomly chosen to simulate a single
episode for task execution in the following way: the mean of the initial points
(x̄0, ȳ0, z̄0) of the sampled trajectories is taken as the starting point. On the
other hand, the mean of the final points (x̄Mi

, ȳMi
, z̄Mi

) is taken as the goal
point. In this context, at time t, the current index I it of the i-th trajectory is
calculated as the nearest point between the current simulated position p̌̌p̌pT and
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the sampled trajectory Di.

I it = arg min(Di, p̌̌p̌pT) . (3-15)

Then, the index of the next desired point is calculated as the current index
added with a step constant.

I it+1 = I it + step . (3-16)

So that, given the current simulated position and the next desired sampled
position, the simulated user force vector (f̌̌f̌fU) is approximated as the difference
between the two points multiplied with a proportional gain ku.

f̌̌f̌fU = ku(DiIit+1
− p̌̌p̌pT) . (3-17)

Moreover, because we are modeling the human behavior, which translates felt
force to a velocity, not an acceleration, the velocity vector is approximated as
the addition between the user force vector f̌̌f̌fU with the assistance forces fffT

received from the HSC controller, multiplied with a scaling gain ks.

˙̌ṗ̌ṗ̌pT = ks(f̌̌f̌fU + fffT) (3-18)

This equation is used to simulate the effect of the application of the combined
forces in the system. Finally, this velocity vector is multiplied with the delta
time and added to the current simulated point to get the next simulated point.
This process is repeated every time step simulating the virtual trajectory.

p̌̌p̌pT(t+ ∆t) = p̌̌p̌pT + ˙̌ṗ̌ṗ̌pT∆t . (3-19)

Figure 3.13 illustrates the basic functioning of the master-side simulator. In
this way, the Master-side simulator provides a position vector p̌̌p̌pT and receives
the assistance forces fffT from the controller.

3.4.1.2
Slave-side simulator

On the other hand, the functioning of the Slave-side simulator is more
simple. Since the slave side replicates the movements of the master side, only
the velocity commands and the initial and final points are necessary. Similarly
to the Master-side simulator, the mean of the samples’ initial points (x̄0, ȳ0, z̄0)
and the mean of the samples’ final points (x̄j, ȳj, z̄j) can be calculated from
a set of demonstrated trajectories for the manipulator case becoming in the
initial position and the goal position.

Then, at time t, given a certain position for the manipulator p̌̌p̌pD, the
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(x′, y′, z′)

(x, y, z)

p̌T

argmin (Di, p̌T){

(
xMi

, yMi
, zMi

)
(x0, y0, z0)

f̌U + fT
p̌′

T

Figure 3.13: Master-side simulator: Once the reference point w.r.t the sampled
trajectory is calculated with the argmin function, the virtual user force is
obtained through a proportional difference between a desired and the current
position.

next position can be calculated simply by using the Euler integration method,
similar to (3-19). Thereby, the virtual manipulator position p̌̌p̌pD is sent to the
HSC controller. Similar with the master-side simulator, this process is repeated
every time step until the current manipulator position reaches the goal point,
where the episode ends and the trajectory is restarted.

p̌̌p̌pD(t+ ∆t) = p̌̌p̌pD + ˙̌ṗ̌ṗ̌pD∆t . (3-20)
A complete architecture for the simulator basic functionalities is shown

in Figure 3.14.
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ṗD

SLAVE
SIDE

p̌D

RL-controller

CONTROLLER

MASTER SIDE

p̌T

fT

task direction task direction

s
Slave-side
simulator

Master-
side

simulator

DDPG
network

States
vector

Teleoperation
controller

Figure 3.14: Simulator basic functionality: Based on the real system, the
simulator replicates the master and the slave side functioning providing the
information to the agent for the training.
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4
EXPERIMENTAL SETUP

This chapter presents the experimental implementation of the proposed
HSC-controller presented in the last chapter. Technical specifications of soft-
ware and hardware are first presented followed by the explanation for the basic
implementation of the teleoperation and the RL-controllers in the simulator
and real system respectively.

4.1
Hardware and software specifications

The implemented system is composed of three components: the master
side, the central controller and the slave side. For the real system, the master
side is composed of the 6 DOF Touch 3D haptic device from 3D Systems
(Figure 4.1(a)); in the slave side is used the 4 DOF robotic manipulator Dobot
Magician from Dobot (Figure 4.1(b)). On the other hand, for the simulation,
the master and the slave side were replaced by two programs implemented
following the specifications given in Section 3.4. For both implementations, the
real system and the simulator, a computer was used as a central controller. This
computer is a desktop workstation with a 4-core Intel® Core™ i7-7700 CPU @
3.60GHz as the processor, 16 GB of RAM, GeForce GTX 1080 as graphic card
and Ubuntu 18.04.3 LTS as operating system. The Robot Operating System
(ROS) Melodic was the middleware used for communication between the
various software components in the system. The main programming language
used to implement the controller codes was Python 2.7 with the exception of
the Touch device whose controller was written in C++. The ROS controller
for the Touch device and the Dobot magician were adapted from [61] and
[62] respectively. The artificial neural networks used in this research were
implemented using the Keras libraries and trained using the Tensorflow back-
end. Finally, for the visual tests an HD USB webcam from Logitech was
used[63].

Although both devices are kinematically similar, differences are found in
the workspace level and the axis configuration (both axes are displaced and
rotated in relation to each other). For this reason, both devices are treated
as dissimilar and the position control is performed at tip level following the
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(a) (b)

Figure 4.1: Input/output devices. (a): Touch Haptic Device from 3D Systems
used in the master side, taken from [32] and (b): Dobot Magician robotic arm
from Dobot.cc used in the slave-side, taken from [64].

concepts presented in Section 2.1.1.2. First of all, axis translation and rotation
were performed on the master side with respect to the slave side as shown
in Figure 4.2. Thereby, both devices have the same axis reference located
in their base link (same origin). In addition, both workspaces were mapped
using a scaling factor ξ as given in (2-4) which will be repeated here for the
reader convenience: pppSd = ξpppM + pppoffset. This value was selected following the
recommendation to provide comfort in user control [21]. In what follows we
describe all the needed operations in order to have both devices coupled in the
same orientation and scale.

xDd

yDd

zDd

1

 =


−1 0 0 0
0 0 ξ 0.2464
0 1 0 0.098
0 0 0 1




xT

yT

zT

1

 (4-1)

with ξ = 1.4.

4.1.1
Teleoperation controller implementation

To perform direct teleoperation, the teleoperation controller code was
implemented following the specifications given in Section 3.2.1. This controller
allows the slave side to track the reference point given by the current position
of the master side using position control. This functioning is valid for the real
system and simulator equally.

The teleoperation-controller uses a proportional linear control where
the robot velocities ṗ̇ṗpD are calculated based on the tracking error vector eee
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xT

zT

yT

xD

yD

zD

0.
07

[m
]

0.1
76

[m
]

XY Z = ”0 [m], −0.07[m], −0.176 [m]”
rpy = ”0 rad, 3.14 rad, −1.57 rad”

Figure 4.2: Axis displacement and rotation presented between the Touch haptic
device and the robotic manipulator Dobot magician.

multiplied with a positive proportional gain kD = 3 following the control law
given in (3-3).

Summarizing, the basic functioning of the teleoperation controller is
as follows, the tip positions for both sides (master and slave) are mapped
every time-step in Cartesian coordinates, while the controller sends velocity
commands proportional with the calculated error between both positions to
the slave side (Algorithm 2). In addition, for the real system, one of the user
buttons located in the pen of the touch was used to activate the suction motor
to grip the ball on the remote side. Thereby, the suction motor is only activated
while the white button is pressed on the master side, otherwise, the suction
motor is always inactive.

Algorithm 2 Teleoperation-controller
function Teleoperation-controller()

while True do
Read pppT, pppD
xDd ← −xT
yDd ← 1.4zT + 0.2464
zDd ← yT + 7
pppDd ← [xDd, yDd, zDd]
eee = pppDd − pppD
ṗ̇ṗpD = kDeee
Send ṗ̇ṗpD to Dobot

4.1.2
RL-controller implementation

Chapter 3 presented the RL-controller. This controller is responsible
for providing the assistive forces exerted on the master side in order to
help the user in the task completion. This controller is based on the DDPG
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algorithm presented in Chapter 2 and the implementation was adapted from
the configuration described in the supplementary information section of [44].
For the preliminary tests, the network architecture is the same as the example
found in the original paper.

Figure 4.3 presents the network architecture for the implemented actor-
critic DDPG algorithm. As we can see, the actor network consists of an ANN
with three layers of 400, 300 and 3 units with ReLU activation for the first two
layers and tanh activation in the last layer respectively. Moreover, the input
size is a batch of state vectors sss described in Section 3.2.2.1 and the output
assistive force vectors fffT.

In contrast, the critic network is composed of three layers of 400, 300 and
1 units with ReLU activation for the first two layers and linear activation in
the last layer respectively. The input size is similar to the actor network with
the difference that the action vector aaa is concatenated in the second hidden
layer. The critic network output is the set of q-values for the given input state
vectors.

On the other hand, the replay buffer R is a set of tuples, where each
tuple is composed of previous observation sss, the action aaa, the reward r, the
current observation sss′ and an extra element termed A which indicates if the
state was terminal or not:

R ← R∪ {(sss,aaa, r, sss′,A)} (4-2)

Action
[fTx, fTy, fTz]

Linear

(None, 300)

(None, 3)
Dense Activation

Output

Input

ReLU

(None, 400)

(None, 300)
Dense Activation

Output

Input

tanh

(None, 400)

(None, 7)
Dense Activation

Output

Input

ReLU

ACTOR

(None, 300)

(None, 1)
Dense Activation

Output

Input

ReLU

(None, 403)

(None, 300)
Dense Activation

Output

Input

(None, 400)

(None, 7)
Dense Activation

Output

Input

ReLU

CRITIC

Q

States
[x̃D, ỹD, z̃D, x̃T, ỹT, z̃T, task]

Figure 4.3: DDPG original architecture implemented.
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Finally, according to the Dobot Magician manufacturer [65], the maxi-
mum exerted forces are 3.3 N. For this reason, to prevent possible damage to
the device, the output forces were bounded following two different approaches:
using normalized forces or bounded variable forces. For the first approach,
the guiding force vector was normalized according to (4-3) such that every
time-step the force vector has a constant magnitude of 1 N.

f̂ffT = fffT

‖fffT‖
. (4-3)

For the second approach, variable forces clipped in a safe range of [-1 N, 1 N]
were used as following:

fffTmin ≤ fffT ≤ fffTmax . (4-4)
with fffTmin = −1 N and fffTmax =1 N.

Figure 4.4 shows the mounted system with the haptic device, the robot
manipulator and the computer.

Figure 4.4: Mounted system.
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5
SIMULATION ANALYSIS

This chapter presents the various experiments carried out using the simu-
lator. Starting from the preliminary tests, as well as the different modifications
used. The experiments are presented with the description of the network and
the set of parameters used, followed by the obtained results and a brief discus-
sion of them. Table 5.1 summarizes the simulations performed in this Chapter.

Table 5.1: Simulations summary.
Experiment Description

Preliminary
tests

Hyperparameter search and first tests performed
to demonstrate the performance and functioning
of the proposed approach. (See Section 5.1)

Behavior cloning
approach as ini-
tialization

Simulations using each FC-ANNs described in
Chapter 3 as initialization using the BC approach
to analyze the performance effects of its applica-
tion. (See Section 5.2)

5.1
Preliminary tests

As preliminary tests, the simulator was first applied in order to perform
the parameter search and choosing the network architecture to be used in
the real system implementation. Following the specifications given in previous
chapters, different experiments were performed with the simulator varying the
different hyperparameters for the DDPG network: batch size, discount rate γ,
and the update target parameter τ . In the same way, the parameters for the
AR-p process were also varied: the order p and the parameter α. The complete
set of parameters and the variations are summarized in Table 5.3. Table 5.2
shows the parameters used for the master side simulator. As task detector,
the manual task selection approach was modified. Thereby, simulations were
performed selecting the task automatically at the beginning of the episodes,
this modification is presented in Algorithm 3. In addition, as every episode of
the simulation is composed of the task execution in one direction, therefore,
since the task is being performed in both directions, we can consider two
episodes as an epoch. An extra consideration was the addition of a testing
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epoch every 10 training epochs and the condition that the simulator always
finished successfully. This condition remains in the fact that the master side
simulator bases its trajectory in a set of successful demonstrations. For this
reason, in the final part of the execution of the simulated trajectory, its final
position is always proximal to the goal position, which leads to a successful
execution.

5.1.1
Results

Figure 5.1 shows the results obtained for preliminary tests. These graphs
are a mean of a set of five simulations. The solid line represents the mean
value and the shaded area represents the standard error for rewards and steps
graphs respectively.

5.1.2
Discussion

As show the results of the preliminary tests simulated for the proposed
system, the implemented algorithm achieves convergence in a limited amount
of episodes. Practically, after 15 epochs approximately the DDPG agent is
able to learn an acceptable policy presenting stable functioning in training

Table 5.2: Parameters used for master-side simulator. These values were
obtained using a similar technique as in Table 5.3

Parameter Value
Step 12

User gain (ku) 5
Force gain (ks) 5

Sampling time (∆t) 0.01

Table 5.3: Parameters used for DDPG simulation.
Parameter Min Max Best value

Batch size (N) 32 128 64
Discount rate (γ) 0.96 0.99 0.99

Update target parameter (τ) 0.001 0.01 0.01
Assistance forces - - Normalized
Actor optimizer - - Adam

Actor learning rate 0.0001 0.001 0.001
Critic optimizer - - Adam

Critic learning rate 0.0001 0.001 0.0001
Epochs 15 100 25

AR-p order (p) 2 3 3
AR-p parameter (α) 0.8 0.9 0.8
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Algorithm 3 DDPG training in simulation
function DDPG(γ, τ,M,N)

Initialize www,θθθ,www†, θθθ† with random values close to zero
n← 0, t← 0, task ← 0
for episode=1,M do

sss← Start for task
while sss is not sssn do

Select action aaat from µ̂(ssst;θθθ) + Xt
Execute action aaat, observe reward r and observe new state sss′t
Store transition (ssst, aaat, rt, sss′t, 0) in R
ssst ← sss

′
t

n← n+ 1
t← t+ 1

rn ← rn + 10
Store transition (sssn, aaan, rn, sss′n, 1) in R
for steps=1,n do

Train-minibatch(R, γ, τ, θθθ, θθθ†,www,www†, N)
task ← not task

function Train-minibatch(R, γ, τ, θθθ, θθθ†,www,www†, N)
Sample a random minibatch B ⊂ R of size N
for each bi : (sssi, aaai, ri, sss

′
i,Ai) ∈ B do

if Ai = 0 then
yi = ri + γQ̂(sss′i, µ̂(sss′i;θθθ†);www†)

else
yi = ri

Train Q̂(sss,aaa;www) on all samples N
Move µ̂(sss;θθθ) according to the sampled deterministic policy gradient
1
N

N∑
i=1

[∇aaaQ̂(sss,aaa;www)|sss=sssi,aaa=µ̂(sssi;θθθ)∇θθθµ̂(sss;θθθ)|sss=sssi ]
θθθ† ← θθθ† + τ(θθθ − θθθ†)
www† ← www† + τ(www −www†)
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Figure 5.1: Learning curves obtained for DDPG preliminary test.
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and testing episodes (Figure 5.1(a)). This was confirmed using the necessary
amount of steps required to perform the task shown in Figure 5.1(b), where
it can be observed that the steps decrease along the training w.r.t the first
episodes.

5.2
Behavior cloning (BC) as initialization

For the presented system, BC as initialization was tested by training
two ANN named BC-networks: using the DDPG states vector sss as inputs and
as outputs the Dobot velocities (ṗ̇ṗpD) or the touch velocities (ṗ̇ṗpT) respectively.
Previously, a set of N = 14 demonstrations for every task direction were
recorded to build the needed dataset D used to train the networks. The
dataset was composed of information of the scaled dobot tip position p̃̃p̃pD =
[x̃D, ỹD, z̃D], the scaled touch tip position p̃̃p̃pT = [x̃T, ỹT, z̃T] and the task
direction task. Finally, to encode the task, a signed integer was used for both
directions: left = 1 and right = −1. Thereby:

D = {{(p̃̃p̃pD, p̃̃p̃pT, task)i0, .., (p̃̃p̃pD, p̃̃p̃pT, task)iMi
}}Ni=1, Mi > 0 . (5-1)

task =

1 , if task follows left direction

−1 , if task follows right direction
(5-2)

The architecture used for the ANN consisted of a fully connected network of
two hidden layers of 256 units with tanh and ReLU activation respectively,
and an output layer of 3 units with linear activation as presents Figure 5.2.
Moreover, Table 5.4 summarizes the parameters used to train the networks.

For the experiments, the BC networks were used in the first four
episodes. Some modifications with respect to Algorithm 3 were performed as
presents Algorithm 4. The same considerations as in the preliminary tests
were used in this experiment (set of five simulations, episode composition and
training/testing episodes, parameters).

Table 5.4: Parameters used for BC network training. These values were
obtained using a similar technique as in Table 5.3

Parameter Value
Optimizer Adam

Learning rate 0.001
Loss Mean squared error

Batch size 32
ANN epochs 100
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Input

Output
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(a) ANN with ˆ̇pT as output.
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(b) ANN with ˆ̇pD as output.

Figure 5.2: ANN architecture implemented for BC approach.

Algorithm 4 DDPG simulator with initialization
function DDPG(γ, τ,M,N)

Initialize www,θθθ,www†, θθθ† with random values close to zero
n← 0, t← 0, task ← 0
for episode=1,M do

ssst ← Start for task
while sss is not sssn do

if episode < 4 then
Select action aaat from BC-network

else
Select action aaat from µ̂(ssst;θθθ) + Xt

Execute action aaat, observe reward r and observe new state sss′t
Store transition (ssst, aaat, rt, sss′t, 0) in R
ssst ← sss

′
t

n← n+ 1
t← t+ 1

rn ← rn + 10
Store transition (ssst, aaat, rt, sss′t, 1) in R
for steps=1,n do

Train-minibatch(R, γ, τ, θθθ, θθθ†,www,www†, N)
task ← not task
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5.2.1
Results

Figures 5.3 and 5.4 present the training results for accuracy and loss
metrics for both BC networks used. Besides, Figures 5.5 and 5.6 present the
resulting learning curve for both BC-networks showing the mean (solid line)
and the standard error (shaded area) in training and testing for rewards and
steps respectively.

5.2.2
Discussion

The obtained results using BC-networks as initialization present a stable
functioning after approximately 15 epochs as in the previous case (without
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Figure 5.3: Learning curves obtained for BC network with ˆ̇pD as outputs.
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Figure 5.4: Learning curves obtained for BC network with ˆ̇pT as outputs.
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Figure 5.5: Learning curves obtained for DDPG using BC with ˆ̇pD as outputs.
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Figure 5.6: Learning curves obtained for DDPG using BC with ˆ̇pT as outputs.

initialization tests). Despite the initialization, the obtained rewards in the final
episodes are not better than the first tests of section 5.1 and the obtained
behavior is similar as in the previous section.

5.3
General discussion

Table 5.5 summarizes the obtained final results for all the experiments
described in this chapter. The presented values are the results (mean and
standard error) in the last testing epoch for the rewards and number of steps
per episode respectively. As can be observed, the mean value is almost the same
but the standard error is a bit different, particularly with respect to rewards.
So, it is possible to say that results for both approaches (with and without
initialization) present statistically the same results. In addition, the learning
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curves in all the presented graphs illustrate stable functioning for the agent
in the final episodes of the training. As was mentioned in the last paragraph,
despite the use of BC as initialization, the agent was not able to achieve better
performance than an agent that was trained without initialization, nor does it
train faster. This affirmation can be confirmed by observing Figures 5.1, 5.5
and 5.6 and the results in Table 5.5. Following these affirmations, it is possible
to say that using BC as initialization does not present a high influence in the
proposed system. Finally, it can be concluded that the use of the proposed
system presents a stable convergence in the learning of the virtual guiding
forces to assist users in the pick-and-place task realization.

Table 5.5: Comparison of the results obtained in the last testing epoch for the
different DDPG approaches implemented

Rewards Steps
Mean Std. Error Mean Std. Error

Without initialization −73.607 8.608 147.7 4.676
Using ṗ̇ṗpD as initialization −74.642 2.586 148.9 6.752
Using ṗ̇ṗpT as initialization −72.141 4.27 141.6 4.049
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6
EXPERIMENTAL ANALYSIS

Chapter 5 showed preliminary results demonstrating that the learned
policy of the DDPG algorithm in the teleoperated simulated system presents
stable convergence. Those results serve as a basis for the application of the
proposed method in a real system. This chapter presents the implementation
and results in the real system described in Chapter 4 validating the obtained
results. Next, different stages of improvement are described until the final
implementation described in Chapter 3 is reached (See Table 6.1). Finally, a
set of experiments using different subjects was carried out in order to validate
the implemented controller.

6.1
Preliminary considerations

For the real system setup, some considerations were added in contrast
with the simulator. First of all, the main difference lies in the fact that
the simulations always finish in a successful episode, however, in the real
system, this condition does not always hold. For that reason, it was necessary
to implement a conditional function that described the episode behavior.
Three conditions were considered: successful task completion, unsuccessful task
completion and finally, task fail and repeat episode. Successful task completion
refers to when the user completes the task placing the object in the goal
position. Unsuccessful task completion refers to when the user completes the
task but places the object in a wrong position. Finally, if the ball is dropped
or an unexpected event occurs, then the task fails and the episode needs to be
restarted (See Figure 6.1).

Thereby, after performing every task execution, the operator was asked
to select the option that best described his performance in that execution. In
this context, conditions presented in Equation 3-8 were added in the absorbing
state assigning different rewards according to the described conditions; that is,
if the user chooses the first option, an extra high reward (+10) is assigned
for the absorbing state. In contrast, if it was an unsuccessful episode and the
user chooses the second option, a high penalty reward (−10) is assigned to the
absorbing state in that episode. Finally, if the third option is selected, then

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



Chapter 6. EXPERIMENTAL ANALYSIS 76

Table 6.1: Experiments summary.
Approach Description

Manual task se-
lection (MTS)

Experiments performed to validate the results ob-
tained with the simulator in the real system. The
task is selected manually through the terminal and
the policy is trained using a DDPG network. (See
Section 6.2)

Supervised task
detection (STD)

Experiments performed replacing the manual task
selection with a visual task detector using a CNN
previously trained with a small dataset of the se-
lected task. (See Section 6.3)

End-to-End
learning (E2E)

Experiments performed enhancing the STD ap-
proach appending the CNN network to the DDPG
network in order to detect the task autonomously.
(See Section 6.4)

DDPG: Single-
shot task detec-
tion (SSTD)

Experiments performed modifying the E2E to de-
crease the number of trainable parameters and the
inference time, using for that, only the first frame
of the task and a modified architecture of the net-
work. (See Section 6.5)

SSTD with vari-
able forces

Experiments performed using variable forces to de-
crease the oscillations appeared in previous ap-
proaches in the task execution. (See Section 6.6)

SSTD with
variable forces
and fuzzy-based
reward function

Experiments performed using all the improvements
achieved in previous approaches and a new reward
function based on fuzzy rules to eliminate com-
pletely undesired behaviors in the task execution.
(See Section 6.7)

the episode is repeated from the last start position and the collected samples
in the current episode are discarded from the replay buffer memory.

As a final consideration, similar to the simulator, an epoch was considered
as a set of two episodes, a different task direction for each one.

In addition, Figure 6.2 shows a successful execution of the task following
the way from left to right and using direct teleoperation without force feedback.
One observable feature that becomes apparent in this figure is the delay
presented in the trajectory described by the robotic arm with respect to the
haptic device.

6.2
Manual task selection (MTS) approach

To validate the results presented in Chapter 5, only one set of experiments
was carried out performing manual task selection (MTS). In simulations,
task directions were automatically encoded at the start of the episodes and
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Goal Initial point

Obstacle

(a) Successful task completion.

Goal Initial point

Obstacle

(b) Unsuccessful task completion.

Obstacle

Dobot end-effector

Initial pointGoal

(c) Task fail and repeat task episode.

Figure 6.1: Episode events conditions.

sent to the different parts of the implementation. For the real system, the
task direction can be manually selected using the terminal through a prompt
input. Thereby, the user can write the value he wants to encode the task
direction he is going to perform. For this implementation, Algorithm 3 was
slightly modified to add the manual task selection method as presented
in Algorithm 5. In addition, according the hyperparameters found in the
previous chapter, Table 6.2 summarizes the hyperparameters used in this
implementation which are practically the same as the presented in Table 5.3.
Unlike the simulator, only one set of experiments was performed using this
approach to validate the use of the proposed controller in the real system. The
remaining considerations (epochs composition and training/testing episodes)
were maintained. Moreover, since the BC approach does not provide better
performance than without initialization, as shown in Table 5.5, its use was
dismissed for the presented approaches in this Chapter.

6.2.1
Results

Figure 6.3 shows the learning curve for the rewards and the number of
steps for the MTS approach. Besides presented graphs, numerical results are
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Figure 6.2: Direct teleoperation without force feedback. Notice the delay
presented in the trajectory described of both devices.
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Table 6.2: Parameters used for MTS approach.
Parameter Value

Batch size (N) 64
Discount rate (γ) 0.99

Update target parameter (τ) 0.01
Assistance forces Normalized
Actor optimizer Adam

Actor learning rate 0.001
Critic optimizer Adam

Critic learning rate 0.0001
Epochs 25

AR-p order (p) 3
AR-p parameter (α) 0.9

Algorithm 5 DDPG used with MTS
function DDPG(γ, τ,M,N)

Initialize www,θθθ,www†, θθθ† with random values close to zero
n← 0, t← 0, task ← 0
for episode=1,M do

Get task from user
sss← Start for task
while sss is not sssn do

Select action aaat from µ̂(ssst;θθθ) + Xt
Execute action aaat, observe reward r and observe new state sss′t
Store transition (ssst, aaat, rt, sss′t, 0) in R
ssst ← sss

′
t

n← n+ 1
t← t+ 1

Define behavior()
Store transition (sssn, aaan, rn, sss′n, 1) in R
for steps=1,n do

Train-minibatch(B, γ, τ, θθθ, θθθ†,www,www†, N)

function Define behavior()
if episode was successful then

rn ← rn + 10
else if episode was unsuccessful then

rn ← rn − 10
else

Discard samples from current episode
episode ← episode −1
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summarized for the last testing epoch for the current approach in Table 6.3.

6.2.2
Discussion

According to the presented results in this section, various conclusions
can be drawn. First of all, for the learning curve case, obtained results in
the real system (Figure 6.3) show a similar trend to obtained results with
the simulator (Figures 5.1, 5.5 and 5.6) in both training and testing phases,
presenting proximal values for the rewards in both implementations. In this
context, with the presented results (Table 6.3), it is possible to validate the
use of an RL-controller for the learning of assistance guiding forces in a real
system for the pick-and-place task.

6.3
Supervised task detection (STD) approach

Placing a camera on the slave side (as the presented in Chapter 4),
the manual task selection method can be enhanced to an autonomous and
supervised task detection method. This can be done by capturing different
images of the task intention and subsequently performing a labelling to build
a dataset. Then, this dataset can be used to train a CNN using supervised
learning being applied as task detector. In this way, the task element in the
DDPG state vector sss is provided by the CNN which performs the task detection
automatically.
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Figure 6.3: Learning curves obtained for the MTS approach.

Table 6.3: Results obtained in the last testing epoch for the MTS approach.

Forces Reward
function Rewards Steps

MTS normalized angle −85.431 160.5
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The supervised task detection method was implemented applying the
transfer learning approach described in Chapter 2 using the pre-trained
network VGG16 with input size 160x160x3 as base network, removing the last
dense layers and placing instead a GlobalAveragePolling2D layer with 512 units
and finally a dense layer with sigmoid activation with a single unit to obtain
the task direction (Figure 6.4). The method selected to train the built network
was the frozen features method. To practical effects, the trained network will
be represented as presented in Figure 6.5 in the remain network illustrations.
To build the dataset, different images were taken placing the object in different
positions of the region of interest (ROI) for both directions (Figures 6.6 and
6.7). Given the task definition described in Section 3.1 the taken pictures were
labelled for each task direction using a binary classification as presented in
Table 6.4.

To have diversity in the dataset, a data augmentation image preprocess-
ing function was used varying the shift, rotation, brightness and zoom of the
images within a given range (Table 6.5). The trained model for the task detec-
tor has a binary output were each value is related to a task direction. Table 6.6
summarizes the parameters used to train the task detection model. Besides,
the amount of images used for training and validation datasets are also shown.

Input
160x160x3

Output
task

Frozen model
Ne
w
lay
ers

160x160x64

80x80x128
40x40x256

20x20x512 10x10x512

5x5x512

512 1

GlobalAveragePolling2D
Dense+Sigmoid

Max pooling
Convolution+ReLU

Figure 6.4: VGG16 modified model. Notice the substitution of the last FC
original layers for a new ones to detect the task direction.

Table 6.4: Task direction labelling.
Label

Right direction 0
Left direction 1
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Output: task
(None, 1)

TASK DETECTION

Input: task image
(None, 160, 160, 3)

Input
Output

Frozen
model (None, 5, 5, 512)

(None, 160, 160, 3)

Input
OutputGlobalAveragePooling2D (None, 512)

(None, 5, 5, 512)

Input

Output
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(None, 1)

(None, 512)
Sigmoid

Figure 6.5: VGG16 task detection network implemented.

Table 6.5: Parameters used for the data augmentation function.
Parameter Value

Height shift range 10px
Width shift range 10px
Rotation range ±5°
Brightness range [0.5, 2]

Zoom range 0.1

Figure 6.6: Sample images used for right direction.

Figure 6.7: Sample images used for left direction.
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Table 6.6: Parameters used for transfer learning training.
Parameter Value
Optimizer Adam

Learning rate 0.001
Loss Binary cross-entropy

Batch size 8
ANN Epochs 100

Training dataset size 136
Testing dataset size 28
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Figure 6.8: Learning curves obtained for the VGG16 network training.

Table 6.7: Results obtained for the VGG16 network training
Accuracy Loss

Training 0.9688 0.08
Validation 0.9583 0.104

The algorithm presented in Algorithm 5 is also valid for the STD
approach, due to there are no significant differences in comparison with the
previous MTS approach. The unique difference lies in the addition of the
VGG16 function which uses the CNN trained network to provide the task
direction value. Table 6.8 shows the parameters which were modified for this
experiment w.r.t Table 6.2.

6.3.1
Results

Accuracy and loss curves for the CNN training and testing are presented
in Figure 6.8 as well as the numerical values for both metrics achieved after
100 epochs (Table 6.7). In contrast with the previous approach, the obtained
graphs correspond to a set of five experiments applying the STD approach,
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Table 6.8: Parameters used for STD training.
Parameter Value

Discount rate (γ) 0.97
Epochs 50

which are illustrated in Figure 6.9 1. In addition, a comparison between STD
and MTS approaches is shown in Table 6.9, where the results for the STD
approach were calculated as the mean of the last testing epoch for the rewards
and the number of steps per epoch respectively.

6.3.2
Discussion

Again, the obtained results for the STD approach validated the use of
the RL-controller (See Table 6.9). The results of the CNN network trained
as task detector present an acceptable accuracy. This means that despite the
limited dataset, the trained network was able to extract enough features to
predict the correct label output.

In overall terms, the present set of experiments demonstrated that it
is possible to perform the task detection autonomously using a pre-trained

1Results presented in this section were obtained with a modified DDPG network.
However, because previous simulations presented statistically the same results for original
and modified DDPG, these results were considered valid. DDPG modifications are presented
in appendix section.
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Figure 6.9: Learning curves obtained for STD approach.

Table 6.9: Results obtained in the last testing epoch for the MTS and STD
approaches.

Forces Reward
function Rewards Steps

MTS normalized angle −85.431 160.5
STD normalized angle −37.129 94.3
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CNN network. An extra observable feature is the reduction of the number
of steps required and the higher reward value obtained with this approach.
However, to use this method, the user should have previous knowledge about
which task they are going to perform in order to build the dataset. This is
not useful if the intention is to use the system for new tasks because the
training process becomes tedious work. This inconvenience is addressed with
next implementation. To analyze the impact of the use of the VGG16 network
in the training and testing epochs, an extra calculation was performed, the
required time to perform the task was measured. Thereby, the number of steps
per epoch was divided by this value being obtained the working frequency
used for this approach, this impact will be discussed later. In addition, the
inference time is around of ∼ 31ms, which can become a serious problem if it
is necessary to make decisions with high velocity.

6.4
End-to-End learning (E2E) approach

As was demonstrated in the last section, images can be used to build a
dataset and train a CNN network in order to perform the task detection.
However, this approach can be difficult to use when the task is unknown
and when there is not a fixed number of task intentions (unknown labels). In
addition, building a dataset for this kind of situations can be tedious and time
consuming. For this reason, an approach was implemented taking advantage of
the DRL principle, where the agent can learn directly from pixels. Thereby, it is
not necessary to train previously a CNN network to encode the task intention;
the CNN layers can be included in the RL-network to train the agent. As such,
the images of the task execution are captured by the camera and then stored
in the DDPG replay buffer R every time-step (Figure 6.10). However, despite
that images can be used to map the current state of the task, it is necessary
to remember that the single output of the CNN network is used as part of
the state vector sss for the actor and critic respectively (See Figure 6.11). This
is due to the fact that, as was mentioned in Chapter 3, the direction of the
addressed task can be represented as a single value. Therefore, although we
can denote the task images as part of the replay buffer R, they are still part
of the state vector.

The complete architecture for this implementation is shown in Fig-
ure 6.11. In addition, as was mentioned previously, the replay buffer is now
composed of numerical and visual information as shown in Relation 6-1. To
perform the training, the hyperparameters used in this implementation are
presented in Table 6.10.
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Figure 6.10: Basic functioning of end-to-end learning: In every time-step an
image of the performed task is obtained with the camera and sent it to the
HSC-controller.

R ← R∪ {sss,aaa, r, sss′,A, task image} (6-1)

6.4.1
Results

The graphs for the reward and the number of steps per epoch are
presented in Figure 6.12. The solid line represents the mean value and the
shaded area represents the standard error obtained. Additionally, Figure 6.13
illustrates the behavior obtained2.

6.4.2
Discussion

Results presented in Figure 6.12 validates the use of images directly to
train the RL agent, presenting similar behavior with respect to previous im-
plementations. In both sub-graphs of Figure 6.12, two points can be observed:
the higher variation of the amount of steps and the stable convergence of the

2Similar to the previous section, the results presented for this approach were obtained
with a modified DDPG network.

Table 6.10: Parameters used for E2E training.
Parameter Value

Discount rate (γ) 0.97
Epochs 50
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Figure 6.11: E2E learning architecture implemented.

Table 6.11: Results obtained in the last testing epoch for the MTS and STD
approaches.

Forces Reward
function Rewards Steps

MTS normalized angle −85.431 160.5
STD normalized angle −37.129 94.3
E2E normalized angle −37.758 102.9
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Figure 6.12: Curves obtained for E2E approach.

Figure 6.13: Behavior obtained using the E2E approach. Notice the larger
oscillations in the end of the episode.

learning despite the noisier performance in the training phase. As such, it can
be seen that training both networks at the same time (DDPG and VGG16
output) can achieve good performance. However, despite the acceptable re-
sults, this implementation presents one inconvenience: the higher the network
complexity, the more training time required; that is, according the increased
amount of parameters, the time required to train all the network is increased
as well (around ∼ 1 min. per episode). In this way, the training process of this
approach can become time consuming. Moreover, similar to the STD approach,
the inference time used by the complete network takes around 30ms. On the
other hand, an atypical behavior was observed in its execution, as presents the
Figure 6.13, oscillations appear when the goal position is reached.

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



Chapter 6. EXPERIMENTAL ANALYSIS 89

6.5
DDPG: Single-shot task detection (SSTD) approach

In order to decrease the training time, a set of modifications was made.
First of all, the use of RGB images in the replay buffer (R) can lead to
a memory saturation of the computer. In addition, the training time used
increases due to the amount of parameters of the complete network. To deal
with this situation, the next modification was made: the CNN frozen model
until the GlobalAveragePooling2D layer was separated maintaining only the
last dense layer into the DDPG network . In this way, the separated part of
the CNN network is used to provide the resulting features of the convolutions
from the passed frames. In addition, to decrease the inference time, the first
frame is passed through the CNN network and the resulting output values are
maintained along the entire episode. Using this modification the number of
parameters to be trained and the inference time were decreased which leads to
less time to train the HSC controller.

Using the current image of the task, as in the E2E approach, it is not
possible to determine the task direction intention when low velocities are
applied, leading to the oscillations seen in Figure 6.13. For this reason, the
SSTD approach uses the information of the first image to decode the task
direction.

Note that this approach will only be effective if the addressed task can
be determined with visual information of the initial position, for example the
pick-and-place task in this case. However, this information is not necessarily
the case, for example peg-in-hole task. If the intention is to address any task,
it is recommendable to use the visual information of both the first and the
current image, thereby, any task intention could be completely decoded.

Figure 6.15 presents the mounted network with the proposed modifi-
cations. It can be noted that the VGG16 network is separated and is not
trained within the DDPG network (Figure 6.14). In this way, only the output
of the dense layer is concatenated with the position vectors. To validate this
approach, only one experiment was performed since DDPG convergence was
demonstrated in previous implementations. Algorithm 6 was used in this im-
plementation and the complete set of parameters is summarized in Table 6.12.

6.5.1
Results

Results for the use of this approach are shown in Figure 6.16 showing
the reward per epoch and the number of steps per epoch. In contrast with
previous results, for this approach was performed only one experiment. Besides
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Algorithm 6 DDPG used with SSTD
function DDPG(γ, τ,M,N)

www ← 0, θθθ ← 0, www† ← 0, θθθ† ← 0, n← 0
for episode=1,M do

sss← Start for task
while sss is not sssn do

if steps=1 then
convolutions ←VGG16(task image)

Select action aaat from µ̂(ssst;θθθ) + Xt
Execute action aaat, observe reward r and observe new state sss′

t

Store transition (ssst, aaat, rt, sss′t, 0, convolutions) in R
ssst ← sss

′
t

n← n+ 1
t← t+ 1

Define behavior()
Store transition (sssn, aaan, rn, sss′n, 1, convolutions) in R
for steps=1,n do

Train-minibatch(B, γ, τ, θθθ, θθθ†,www,www†, N)

Table 6.12: Parameters used for SSTD implementation.
Parameter Value

Batch size (N) 64
Discount rate (γ) 0.99

Update target parameter (τ) 0.01
Assistance forces Normalized
Reward function Angle-based

Episodes 25
AR-p order (p) 3

AR-p parameter (α) 0.9

Output: convolutions
(None, 512)

TASK DETECTION

Input: task image
(None, 160, 160, 3)

Input
Output

Frozen
model (None, 5, 5, 512)

(None, 160, 160, 3)

Input
OutputGlobalAveragePooling2D (None, 512)

(None, 5, 5, 512)

Figure 6.14: Task detector CNN network architecture used.
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(None, 7)
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(None, 512)
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Input

Action
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[x̃D, ỹD, z̃D, x̃T, ỹT, z̃T]

Figure 6.15: SSTD architecture implemented.
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the stable convergence of the DDPG agent, the amount of steps required to
perform the task decreases along the RL-controller reaches the convergence.

6.5.2
Discussion

The main features of this modification are reduced amount of param-
eters(which leads to less processing time) and reduced amount of memory
required for the replay buffer. Thereby, similar behavior can be achieved with-
out decrease performance in the assistance guiding forces. The main advantage
remains in the fact that images are only used to encode the user intention in
the beginning of the episode. Table 6.13 summarizes the numeric results ob-
tained in the experiments performed in real system where interesting results
can be observed. First of all, an observable result is the amount of steps for the
STD and E2E approaches, which are lower than the remain implementations.
However, despite the promising results, it is not possible to say that both ap-
proaches present better performance w.r.t the other ones. As was explained
before, this is due to the inference time that is required by the CNN network
(∼ 30ms for both cases), which influences their working frequency (∼ 28Hz)
in comparison to remaining implementations which working frequency is un-
altered (∼ 50 Hz). For this reason, it is possible to say that although both im-
plementations work, their performance is not the best. This can be confirmed
with normalized values presented in the bottom side of Table 6.13 where the
results for STD and E2E approaches were normalized to a frequency rate of
50Hz to establish a fair comparison with the previous results, showing similar
performance in terms of steps with MTS results. Unlike previous approaches,
the SSTD approach presents better results in terms of rewards and steps. In
addition, due to the VGG16 network is only used twice every episode (both
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Figure 6.16: Learning curves obtained for SSTD with normalized forces.
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directions), the amount of steps is not as affected as in STD and E2E ap-
proaches. In the other hand, the training time (∼ 4s) per episode is much less
than the E2E approach (∼ 56s).

All approaches presented until now, present one problem that could be
observed by testing the learned policy: the appearance of assistive forces that
produce oscillations in the user movements when the goal position is reached
(Figure 6.13). This behavior is obtained due to the use of normalized forces
described in the last part of Section 4.1.2. Due to the experience replay buffer
being built with normalized forces, there is no way for the agent to learn how to
modulate the assistance forces along the task execution. In this way, as result
of the combination of the explained situations, reaching the goal position by
the user becomes a difficult part of the task. To deal with this situation, the
use of clipped variable forces was applied as presented in the next section.

6.6
SSTD with variable forces

Despite the acceptable performance achieved in previous experiments,
all the described implementations presented a set of oscillations that appeared
in the last part of the trajectories in the task execution. These oscillations
appeared because the addition of different situations: first, the force magnitude
is the same along all the steps while the user is performing the task. Second,
exists a position delay between both devices when the task is being executed,
resulted in large oscillations at the end of the trajectory. Thereby, the learned
policy did not allow the user to place the object accurately in the goal without
significant effort. To avoid this kind of behavior, a new modification was
implemented: the use of variable forces along the training, storing directly the
forces in the replay buffer without performing normalization. For this approach,
only one experiment was performed and the algorithm used was not modified.
In addition, the set of parameters is also maintained.

Table 6.13: Comparison of the results obtained in the last testing epoch for
the different DDPG implemented. The first values for STD and E2E are valid
for 28Hz, the normalized values correspond for 50Hz

Forces Reward
function Rewards Steps

MTS normalized angle −85.431 160.5
STD normalized angle −37.129 94.3
E2E normalized angle −37.758 102.9

Normalized STD normalized angle −66.302 168.4
Normalized E2E normalized angle −67.425 183.75
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6.6.1
Results

Results for the use of this approach are shown in Figure 6.17 showing
the learning curve and the amount of the steps. Similar to previous imple-
mentations, besides the stable convergence of the DDPG agent, the amount
of steps required to perform the task decreases as the RL-controller reaches
convergence.

6.6.2
Discussion

Despite the good performance achieved as shown in Figure 6.17, the
trajectory illustrated in Figure 6.18 still presents oscillations. In this figure it
can be observed that despite the oscillations force is being attenuated using
variable forces they are still present. This is because, despite the use of variable
forces and the visual information about the initial position of the task, the
reward function is independent of force and velocity magnitudes. Therefore,
it is not able to transfer enough knowledge to the agent about the correct
behavior when the user is reaching the goal position. In order to provide
the correct assistance forces a composite reward function was proposed as
described in Section 3.2.3.2.

6.7
SSTD with variable forces and fuzzy-based reward function

As was explained in the last section a composite reward function, named
fuzzy-based reward function, was implemented to deal with the oscillation
problem presented in the previous implementations. This function was de-
signed based on decisions along the different stages in the task trajectory (Sec-
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Figure 6.17: Learning curves obtained for SSTD with variable forces.
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Figure 6.18: Trajectory obtained using the SSTD with variable forces. Notice
that in the final of the execution the oscillations are still present.

tion 3.2.3.2). Thereby, the function is able to influence the agent learning when
small velocities are required, providing the user accurate control when reaching
the goal position. The final implementation of this approach includes the main
changes presented in the previous implementations: variable forces in the SSTD
approach. Table 6.14 summarizes the parameters used in this experiment .

6.7.1
Results

Results for the use of this approach are shown in Figure 6.16 showing
the learning curve and the amount of the steps for a set of three experiments.
The solid line represents the mean value and the shaded area represents the
standard error obtained. Moreover, graphs showing the trajectory described on
a successful episode and the forces received by the operator using the learned
policy are presented in Figures 6.20 and 6.21 respectively. Besides the graphs,
Table 6.15 summarizes the results obtained for all the implemented approaches

Table 6.14: Parameters used for SSTD with variable forces and fuzzy-based
reward function.

Parameter Value
Batch size (N) 64

Discount rate (γ) 0.99
Update target parameter (τ) 0.01

Assistance forces Variable
Reward function Fuzzy-based

Episodes 25
AR-p order (p) 3

AR-p parameter (α) 0.9
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performed in this research.

6.7.2
Discussion

As is observed in the learning curves, the set of experiments performed
for the SSTD second variant present similar results with the previous SSTD
implementations in terms of steps per epoch. The large difference in terms
of rewards presented in Table 6.15 for the SSTD second variant is due to
the use of the fuzzy-based reward function with respect to the remaining
variants that use the angle-based reward function which evaluates the taken
action with a different argument. Another observable difference is presented in
Figure 6.22 where it can be seen that the forces decrease when goal position
is being reached by the user. Thereby, residual oscillations in the final part of
the execution were eliminated using this modification. As expected, similar to
previous experiments, the DDPG agent presents a stable convergence in the
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Figure 6.19: Learning curves obtained for SSTD with fuzzy-based reward
function.

Table 6.15: Comparison of the results obtained in the last testing epoch for
the different SSTD implemented.

Forces Reward
function Rewards Steps

MTS normalized angle −85.431 160.5
STD normalized angle −37.129 94.3
E2E normalized angle −37.758 102.9

Normalized STD normalized angle −66.302 168.4
Normalized E2E normalized angle −67.425 183.75

SSTD base normalized angle −36.729 138
SSTD first variant variable angle −53.268 161

SSTD second variant variable fuzzy −138.439 145.5
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Figure 6.20: Trajectory described by both devices using the SSTD approach
with variable forces and the fuzzy-based reward function.
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Figure 6.21: Forces received by the operator through the haptic device using
the SSTD approach with variable forces and the fuzzy-based reward function.
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final part of the training in terms of rewards and steps, which leads the next
conclusion: the SSTD approach with variable forces and fuzzy-based reward
function can be successfully applied in teleoperated systems providing helping
to users in the task completion. Finally, it is worth mentioning that all the
experiments were performed by the student in charge of this research, for
future references named as subject 0.

6.8
Validation with different subject

To investigate the functioning of the developed HSC controller, two dif-
ferent subjects were asked to perform a series of tests. These tests consisted in
four stages: familiarity with the system, pre-training tests, policy training and
post-training tests. In the first stage, the basic functioning of the implemented
system was explained while the testing subject was manipulating the devices
using the teleoperation controller. Next, a set of episodes were tested with and
without providing assistance with a trained policy by subject zero (named as
policy-zero) while the testing subject was trying to perform the task. Then,
the testing subject was asked to train a new policy with the RL-controller per-
forming the designed task. Finally, a new set of tests with the same structure
as the pre-training stage was performed with the trained policy.

6.8.1
Results

Results comparing the number of steps per epochs for both subjects
before and after performing the training are presented in Table 6.16. In
addition, results using the same criterion comparing the velocity are presented

Figure 6.22: Trajectory obtained with last SSTD variant: Notice the complete
elimination of the oscillations when the goal position is reached.
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in Table 6.17. Finally, force results receiving assistance before and after the
training for both directions are presented in Tables 6.18.

6.8.2
Discussion

Various conclusions can be drawn with the results presented in this
section. As was mentioned in the introduction part: every subject is unique,
thus, each one performs the task in a different way, this conclusion is reflected
with the trajectories illustrated in Appendix D and E for subjects 1 and 2.

First of all, despite the RL-agent learns an assistance policy, this policy
is unique for each subject and not universal for all users. This conclusion can
be explained using Figure 6.23 where is presented the basic scheme of the
implemented system. In a common RL-implementation, the observations and
rewards received by the RL agent are result of his direct interaction with the
environment through the taken actions. However, in RL-implementations with
a human-in-the-loop (See Figure 6.23), the interaction between the RL agent
and the environment is through the user. As result, the RL agent optimizes the
combined user-environment system. Therefore, if the user behaves differently,
a different policy will be optimal. Thereby the policy becomes particular for
every user. Additional data presented in Tables 6.17 and 6.18 reinforce this
conclusion, where is shown the particular behavior for the different subjects.

In this context, another observable result that confirms the unique be-

Table 6.16: Number of steps per epoch for test subjects. The bold values
represents the less amount of steps per epoch.

Number of steps per epoch
Mean Std. dev Assistance

Subject 0

After training 230.25 63.86 -
200.75 19.397 X

Subject 1

Before training 496.25 107.8 -
487.5 54.51 X3

After training 337.25 79.65 -
315.5 23.01 X

Subject 2

Before training 300.25 79.65 -
275.0 55.76 X3

After training 208.5 39.04 -
166.25 44.31 X

3 Using policy-zero
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Table 6.17: Velocity results for test subjects. The bold values represents the
highest value for all cases.

Velocity [cm/s]
Max Mean Direction Assistance

Subject 0

After training

14.073 6.229 Left -
22.38 8.988 X
14.274 5.949 Right -
17.688 6.73 X

Subject 1

Before training

8.02 3.166 Left -
10.987 3.779 X4

9.346 3.376 Right -
8.973 2.836 X4

After training

10.751 4.861 Left -
11.328 4.848 X
9.558 4.076 Right -

13.175 4.578 X
Subject 2

Before training

52.579 10.372 Left -
44.915 9.542 X4

27.692 6.909 Right -
45.525 10.567 X4

After training

14.849 6.254 Left -
23.286 7.784 X
23.75 6.726 Right -

32.196 10.884 X

4 Using policy-zero

Table 6.18: Force results for test subjects. The bold values represents the
highest value for all cases.

Forces [N]
Max Mean Direction

Subject 0

After training 1.549 1.134 Left
1.086 0.825 Right

Subject 1

Before training 1.374 0.842 Left
0.992 0.839 Right

After training 1.12 0.599 Left
1.248 0.46 Right

Subject 2

Before training 1.44 0.902 Left
1.418 0.848 Right

After training 1.52 1.262 Left
1.728 0.864 Right
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Figure 6.23: Reinforcement Learning scheme in the agent-environment inter-
action in a human-in-the loop approach.

havior for each user is when velocity and steps are compared, for example,
clearly, Subject 2 presents the highest velocity, which results in less number
of steps for all cases: before and after perform training and with and without
receive assistance (Tables 6.16 and 6.17). On the other hand, opposite perfor-
mance is achieved by Subject 1, who presented the lowest velocity and more
amount of steps. Finally, we can see that Subject 0 presents an intermediate
behavior compared with the other subjects.

Next, the amount of assistance depends on the policy learned by the RL
agent for each user. As was presented before, the policy is highly influenced by
the user execution and the reward function. Therefore, for quicker subjects the
assistance forces will be greater than the other, as well as in the opposite case
(See Table 6.18). Despite the reward function captures most of the intention
of the different subjects, threshold x was defined according the Subject 0
behavior. However, this value could be not optimal for the other subjects.
Then, the fuzzy-based reward function could be improved by changing the x
value according the subject preference. An additional test was made lowering
the value of the threshold to x = 3 for the Subject 1, the results of this test
are presented in Appendix F.

Another interesting result observed in Table 6.16 is that the number
of steps required to complete the task for each subject decreases in all cases
comparing before and after performing the training, which can lead to say that
the subjects are able to learn the task independent of the received assistance.
However, the difference between without assistance and with assistance also
increases. This may be attributed to the user being more in tune with his own
trained policy than with the policy trained by subject 0.
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Finally, from Table 6.16, it is possible to observe that when the test sub-
jects use the implemented system for first time, they present some difficulties
to adapt to the functioning. This is reflected in the amount of steps per epoch
required before perform the training, which decreases according the subjects
become familiar with the implemented system after the trained was performed.
This values demonstrate the capability for humans to adapt to policies that
were not training for them, even for sub-optimal polices. However, it is ob-
served that the performance achieved for each subject is better for all the
cases after perform a training for the pick-and-place task.
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7
CONCLUSIONS AND FUTURE REMARKS

In this work, a novel HSC controller was developed to be used in a
teleoperated system composed by a robotic arm and a haptic device. The
proposed controller is composed by an RL section and a direct teleoperation
section. Taking advantage of the policy gradient methods that present stable
functioning on continuous control systems, the RL-controller was implemented
using as core the DDPG algorithm. On the other side, a proportional controller
was used as the base of the teleoperation controller.

The resulting HSC controller was able to learn custom guiding forces
for every subject who tested the system (Section 6.8). Thereby, the learned
policy becomes a personal policy which contains enough guidelines to assist
the particular behavior of the user it was trained for. Besides, task direction
was learned dynamically using the VGG16 network without defining which is
the task to be performed. Therefore, the RL-controller learns on-the-fly the
guiding forces with a limited amount of training episodes. Finally, the learned
policy presented acceptable behavior in terms of convergence and performance,
being able to assist successfully the subjects to execute the task faster and in
a personal way.

During the HSC controller development, diverse variants were tested
before reaching the final implementation. Those approaches included the use
of a CNN (STD and E2E approaches) to perform the task detection. However,
it was demonstrated that the processing time increases greatly when there is a
large number of parameters to use. Because of this, we chose use the VGG16
network in the beginning of the episode (SSTD approach), which decreased
enormously the training and testing time.

Despite of the promising results obtained with the use of the SSTD
approach, irregular behavior appeared using the normalized forces approach.
The policy became sub-optimal in terms of controllability in the final part of
the task execution. One of the solutions proposed was the use of a variable
forces approach. However, despite the improvements obtained, this problem
was not completely solved.

For this reason, it was necessary to design a new reward function that
helped the learning of the variation of the force magnitudes and encouraged
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high assistive forces. These specifications were condensed in the fuzzy-based
reward function proposed, which showed the complete elimination of the
atypical oscillations described previously. Extra features were the learning of
custom policies and the performance improvements in terms of the amount of
steps that users require to complete the task.

Finally, it is worth noting that, despite good results obtained with
normalized forces and angle-based reward function for SSTD base presented in
Table 6.15, these results are only valid with an experienced user. Novel users
present difficulties when trying to execute the task, especially to place the
object in the goal position. This was the main reason to deprecate the policy
and consider it as sub-optimal.

Future implementations

Despite the good results obtained with the implemented simulator, it
was not possible to completely mimic the human behavior. In this context,
modelling techniques as cybernetics modelling or system identification methods
could be used to improve the simulator functioning for future training.

In addition, different RL algorithms (for instance: PPO [66], ACER [67],
TD3 [68], SAC [69], etc) could be tested in simulations in order to observe
resulting behavior in the implemented system and perform a comparison
between them in terms of performance and required number of training
episodes.

In the real system, most of the basic parameters were set empirically.
For instance: proportional gains in algorithms. It is necessary to perform new
analysis in these sections in order to improve performance in the implemented
system.

In the design of the system it was intended that the slave side follows all
the orders received by the master side. So that, any movement in the slave side
is the result of tracking the interaction between the user and the RL-controller.
Thereby, the proportional control used in the teleoperation controller could
be improved using a proportional-integral controller or maybe an advanced
control technique, as adaptive or robust control for instance, to avoid or handle
the singularities appeared in the robotic manipulator when the task is being
performed.

In this context, chosen value for x term in fuzzy-based reward function
worked for all subjects. However, an additional test was performed for subject
one decreasing this threshold. This test showed better performance for this
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subject with threshold x = 3 instead of x = 61. Therefore, it is necessary to
design a method to find the value that is more suitable for each user.

Finally, the use of the image of the initial state allow the users to perform
tasks that depends on this kind of information, the pick-and-place task for
example. However, to perform any kind of task, for instance the peg-in-hole
task, it is desirable to have information about the initial and the current
state. Therefore, it could be advisable this modification as part of the future
implementations as well as more tests per approach.

1Results presented in Appendix F
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A
Simulator ROS nodes
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Figure A.1: ROS nodes from simulator
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B
Real system ROS nodes
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Figure B.1: ROS nodes from real system

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



C
DDPG modified network architecture
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Figure C.1: DDPG modified architecture implemented.
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D
Behavior obtained before perform training
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Figure D.1: Trajectory obtained for Subject 1 in the slave side with assistance
forces. Notice the difficult to perform the task when the policy is not suitable
for the user.
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Figure D.2: Assistance forces for Subject 1 in the slave side. Despite the forces
assist the user, the behavior obtained is not optimal
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Figure D.3: Trajectory obtained for Subject 2 in the slave side with assistance
forces. In contrast with Subject 1, Subject 2 behavior is completely different.
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Figure D.4: Assistance forces for Subject 2 in the slave side. Due to the different
behavior, the assistive forces magnitude is different for Subject 2.

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



E
Behavior obtained after perform training
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Figure E.1: Trajectory obtained for Subject 1 in the slave side with assistance
forces. As expected, the trajectory obtained for his own policy is smoother.
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Figure E.2: Assistance forces for Subject 1 in the slave side. Notice that the
forces are more suitable when the subject trains his own policy.

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA



Appendix E. Behavior obtained after perform training 120

−5 0 5 10

−2

0

2

4

6

x-axis

z-
ax

is

Goal position
0

5

10

15

20

ve
lo
ci
ty

[c
m
/s
]

(a) Left direction.

−10 −5 0 5

−2

0

2

4

x-axis

z-
ax

is

Goal position
0

10

20

30

ve
lo
ci
ty

[c
m
/s
]

(b) Right direction.

Figure E.3: Trajectory obtained for Subject 2 in the slave side with assistance
forces. Similar to previous subject, Subject 2 presents a better behavior when
uses its own policy.
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(a) Left direction.
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(b) Right direction.

Figure E.4: Assistance forces for Subject 1 in the slave side. Notice the
difference of the assistance for each direction.
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F
Results for Subject 1 with decreased threshold x

As expected, the performance achieved by Subject 1 was influenced by
varying the value of the threshold x. As result, the number of steps required to
reach the goal position decreased as shown in Table F.1. In addition, velocity is
also influenced by the effect of receiving better assistance through the guiding
forces (See Table F.2).

This influence can be observed when the obtained results for the different
threshold values are compared as presented in Tables F.4, F.5 and F.6.
Where Subject 1 presented better performance using the decreased threshold
in comparison with original value. Then, the resulting performance can be
summarized as less number of steps required, higher velocity and better
assistance received.

Moreover, by taking into account the mean values of the force received
and the velocity applied for every direction, it can be inferred that the
user executes the task in a different way in every direction. These results
demonstrate the particular behavior for every user to execute any movements.
Despite that the same person is performing the task with the same hand, it
can be noticed a difference in the expertise between performing the left and
right movements.

Finally, an extra conclusion from the results in Table F.4 lies in the
number of steps required to perform the task when all the stages are compared.
Again, it is observable that the steps required to perform the task decreases
for both cases: with and without receive assistance. This could mean that
according ot the user trains the agent, the assistive forces help the user to
increase his ability to perform the task, independent of whether he receives
assistance or not.

Table F.1: Number of steps per epoch for decreased threshold (x = 3). The
bold values represents the less amount the steps

Number of epochs per epoch
Mean Std dev Assistance
236.75 28.9 -
192.25 44.31 X
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Table F.2: Velocity results for decreased threshold (x = 3). The bold values
represents the highest value for all cases.

Velocity [cm/s]
Max Mean Direction Assistance
14.894 5.577 Left -
18.622 7.112 X
18.262 6.337 Right -
18.539 7.667 X

Table F.3: Force results for decreased threshold (x = 3). The bold values
represents the highest value for all cases.

Forces[N]
Max Mean Direction
1.307 0.888 Left
1.492 1.123 Right

Table F.4: Number of steps per epoch comparing the different tests. The bold
values represents the less amount the steps.

Number of steps per epoch
Mean Std. dev Assistance

Before training
496.25 107.8 -
487.5 54.51 X1

After training

Threshold 6 337.25 79.65 -
315.5 23.01 X

Threshold 3 236.75 28.65 -
192.25 28.9 X

1Using policy-zero
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Table F.5: Comparison of velocity results for original and decreased thresholds.
The bold values represents the highest value for all cases.

Velocity [cm/s]
Max Mean Assistance

Left direction

Threshold 6 10.751 4.861 -
11.328 4.848 X

Threshold 3 14.894 5.577 -
18.622 7.112 X

Right direction

Threshold 6 9.558 4.076 -
13.175 4.578 X

Threshold 3 18.262 6.337 -
18.539 7.667 X

Table F.6: Comparison of force results for original and decreased thresholds.
The bold values represents the highest value for all cases.

Forces [N]
Max Mean

Left direction
Threshold 6 1.12 0.599
Threshold 3 1.307 0.888

Right direction
Threshold 6 1.248 0.46
Threshold 3 1.492 1.123

DBD
PUC-Rio - Certificação Digital Nº 1813278/CA


	Deep reinforcement learning for haptic shared control in unknown tasks
	Resumo
	Table of contents
	INTRODUCTION
	Motivation
	Objectives
	General Objective
	Specific Objectives

	Contributions
	Organization of the remaining parts of this thesis

	BACKGROUND
	Telerobotics
	Robot control
	Position control in joint level
	Position control in tip level

	Control configuration
	Direct control
	Shared control
	Supervisory control

	Telerobotics applications

	Haptic Shared Control
	Haptic devices

	Robot learning
	Model learning
	Reinforcement learning approaches
	Inverse Reinforcement Learning and Behavioral cloning
	Robot learning applications in telerobotics

	Reinforcement Learning
	Reinforcement Learning classification
	Value-functions and optimal value-functions
	Value function approximation and policy gradient methods
	Deterministic policy gradient theorem
	Deep Deterministic Policy Gradient algorithm (DDPG)
	DDPG functioning

	Autorregressive (AR) processes

	Deep Learning (DL)
	Convolutional Neural Networks (CNN)
	Convolution principle
	CNN architecture

	VGG16 network
	Transfer learning


	Haptic Shared Control controller design
	System Description
	HSC controller
	Teleoperation controller
	RL-controller
	DDPG state vector
	DDPG network architecture

	Reward function design
	Angle-based reward function
	Fuzzy-based reward function


	Behavioral cloning
	Simulator
	Simulator functioning
	Master-side simulator
	Slave-side simulator



	EXPERIMENTAL SETUP
	Hardware and software specifications
	Teleoperation controller implementation
	RL-controller implementation


	SIMULATION ANALYSIS
	Preliminary tests
	Results
	Discussion

	Behavior cloning (BC) as initialization
	Results
	Discussion

	General discussion

	EXPERIMENTAL ANALYSIS
	Preliminary considerations
	Manual task selection (MTS) approach
	Results
	Discussion

	Supervised task detection (STD) approach
	Results
	Discussion

	End-to-End learning (E2E) approach
	Results
	Discussion

	DDPG: Single-shot task detection (SSTD) approach
	Results
	Discussion

	SSTD with variable forces
	Results
	Discussion

	SSTD with variable forces and fuzzy-based reward function
	Results
	Discussion

	Validation with different subject
	Results
	Discussion


	CONCLUSIONS AND FUTURE REMARKS
	Bibliography
	Simulator ROS nodes
	Real system ROS nodes
	DDPG modified network architecture
	Behavior obtained before perform training
	Behavior obtained after perform training
	Results for Subject 1 with decreased threshold x



