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Abstract

de Alencar, Rodrigo Rolim Mendes; Landau, Lukas Tobias Nepo-
muk (Advisor). 1-Bit Quantization Applied to Continuous
Phase Modulation. Rio de Janeiro, 2020. 82p. Dissertação de
Mestrado – Departamento de Engenharia Elétrica, Centro de Estu-
dos em Telecomunicações, Pontifícia Universidade Católica do Rio
de Janeiro.

Energy and spectral efficiency are appealing features for military com-
munications and internet of things (IoT). On this thesis, systems and schemes
with 1-bit quantization and continuous phase modulation (CPM) are studied
and proposed to address the needs for modern and power efficient communi-
cations. In this context, oversampling with respect to the symbol duration is
promising because the information is conveyed in the phase transitions of the
CPM signals, which are not strictly bandlimited. With this, the loss in achie-
vable rate caused by the coarse quantization can be greatly reduced, even for
higher order modulation schemes. This study investigates different approaches
to enhancing the performance of the proposed system model. A channel co-
ding scheme is designed with a tailored bit mapping, by means of employing a
soft-in soft-out (SISO) turbo receiver. CPM waveforms with symbol durations
significantly shorter than the inverse of the signal bandwidth are proposed,
termed faster-than-Nyquist CPM. Higher oversampling is applied with a sam-
ple selection strategy for a nonuniform adaptive oversampling model. Finally,
numerical results confirm better performance on bit error rate, spectral effici-
ency and achievable rate for the proposed methods in comparison with state
of the art techniques.

Keywords
1-bit Quantization; Continuous Phase Modulation; Iterative Decoding;

Faster-than-Nyquist Signaling; Adaptive Sampling.
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Resumo

de Alencar, Rodrigo Rolim Mendes; Landau, Lukas Tobias Nepo-
muk. Quantização de 1-bit Aplicada a Sistemas de Modu-
lação de Fase Contínua. Rio de Janeiro, 2020. 82p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Centro de
Estudos em Telecomunicações, Pontifícia Universidade Católica do
Rio de Janeiro.

Eficiência energética e espectral são características importantes para co-
municações militares e internet das coisas (IoT). Nesta tese, métodos e sistemas
de quantização de 1-bit com modulação de fase contínua (CPM) são estudados
e propostos para resolver as necessidades de sistemas de comunicações moder-
nos com baixo consumo energético. Nesse contexto, o método de superamos-
tragem em relação a duração de um símbolo é promissor, pois a informação
está contida ao longo da transição de fase de sinais CPM, que não são estri-
tamente limitados em banda. Consequentemente, a perda de taxa alcançável
causada pela quantização de 1-bit pode ser reduzida consideravelmente, até
mesmo para esquemas com maior ordem de modulação. Este estudo investiga
diferentes abordagens para melhorar o desempenho do modelo de sistema pro-
posto. Um esquema de codificação de canal é projetado com mapeamento de
bits adaptado ao problema de quantização grosseira, fazendo uso de um soft-in
soft-out (SISO) turbo receiver. Formas de onda CPM com duração de símbolo
significamente menor que o inverso da banda do sinal são propostas, nomeadas
de faster-than-Nyquist CPM. Um fator maior de superamostragem é aplicado
com uma estratégia de seleção de amostras em um modelo de amostragem
adaptativa. Finalmente, resultados numéricos confirmam melhor desempenho
em taxa de erro de bit, eficiência espectral e taxa alcançável para os métodos
propostos, em comparação às técnicas recentemente utilizadas.

Palavras-chave
Quantização de 1-bit; Modulação de Fase Contínua; Decodificação Ite-

rativa; Sinalização em taxas Faster-than-Nyquist; Amostragem Adaptativa.
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1 Introduction

With the growth of wireless communications technologies, more and
more transceiver architectures have been implementing analog components and
functions into the digital domain as digital signal processing (DSP) routines.
This trend brings a lot of flexibility to communication systems, such as the
ones conceived with the software-defined radio (SDR) technology, which poses
high demands on performance of analog-to-digital converters (ADCs).

At the same time, data transmission rates in modern communications
have been increasing towards the multi-gigabit order. According to [2], the
bottleneck in scaling transceiver hardware architecture to work on multi-
gigabit rates becomes the ADC, because high-speed and high-precision ADCs
are too costly and not favorable in terms of energy efficiency, since the energy
consumption of the ADC scales exponentially with its resolution [3]. One
promising approach to overcome the limitation with respect to the ADC power
consumption is the 1-bit quantization, i.e., only the sign of the signal is known
to the receiver. This coarse quantization is combined with oversampling at the
receiver in order to compensate for the losses in terms of achievable rate, even
for a noisy scenario [4], an argument that goes in accordance with [5], where
oversampling is used to achieve extra bits of resolution.

As in military communications applications, commercial applications,
like internet of things (IoT), also demand power efficient devices, that in many
cases will function entirely on batteries. A great challenge becomes the achieve-
ment of high power efficiency as well as addressing all the requirements for
transceiver designs on transmit power, receiver sensitivity, battery autonomy,
bandwidth coverage, data rate, security and etc., which demand more technical
requisites on hardware, firmware and software. In order to meet those needs,
spread spectrum, coding and modulation techniques are employed.

In this context, variations of the continuous phase frequency-shift keying
(CPFSK) modulation, or more generically the continuous phase modulation
(CPM), are widely applied, since constant envelope modulation techniques
are attractive because its use on a communication system relaxes the power
amplifier design, regarding its linearity. Once the information is conveyed in
the phase or in the frequency, efficient non-linear power amplifiers with limited
dynamic range can be considered. High spectral efficiency can be achieved by

DBD
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Chapter 1. Introduction 17

using smooth phase transitions, which reduces the out-of-band radiation. In
such scenario, the information is implicitly conveyed in phase transitions, which
makes the use of oversampling promising in the presence of coarse quantization.

1.1 State of the Art

In [6], where a bandlimited channel is considered, a marginal benefit
of 1-bit quantization and oversampling at the receiver in terms of achievable
rate has been reported. In [7], a significant gain in terms of the achievable
rate has been reported due to oversampling, by using a Zakai bandlimited
process [8]. Both studies [6, 7] considered a noiseless channel. However, by
considering the capacity per unit cost, it has been shown in [4] that 1-bit
quantization and oversampling at the receiver can also be beneficial in a
noisy scenario, as it was shown later in [9] for bandlimited channels. The high
signal-to-noise ratio (SNR) regime has been considered based on the concept
of the generalized mutual information [10], which results in a minor benefit
in terms of achievable rate. For a mid to high SNR scenario, an analytical
evaluation of a lower bound on the mutual information rate is derived in [11]
for a 1-bit quantized continuous-time bandlimited additive white Gaussian
noise (AWGN) channel. Later, a practical approach for a 16-QAM system
is presented in [12], where filter coefficients are optimized by maximizing
the minimum distance to decision thresholds, a concept that is extended
for multiple-input-single-output channels in [13]. With respect to multiple-
input-multiple-output (MIMO) systems, 1-bit ADCs are attractive due to low-
cost hardware and low power consumption per antenna, especially in massive
MIMO systems [14, 15], where it can also benefit from oversampling [16],
being able to perform channel estimation [17]. In this MIMO context with
1-bit quantization, iterative detection and decoding has been studied in [18]
to improve the overall bit error rate performance.

Oversampling and 1-bit quantization have been studied before in com-
bination with continuous phase modulation (CPM) in [19, 20]. CPM signals
are spectrally efficient, having smooth phase transitions and constant envelope
[1, 21], which allows for energy-efficient power amplifiers. The information is
implicitly conveyed in phase transitions, which makes the use of oversampling
promising in the presence of coarse quantization at the receiver. The approach
presented in [9, 22] shows that the achievable rate of the bandlimited channel
is lower-bounded by a truncation based auxiliary channel law. The resulting
channel has a finite state memory, where a sequence design is beneficial in
terms of achievable rate. The same idea is considered for CPM with 1-bit
quantization and oversampling at the receiver in [19], where it is shown how
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Chapter 1. Introduction 18

oversampling increases the achievable rate. Later, more practical approaches
were proposed in [20], where the intermediate frequency and the waveform is
considered in a geometrical analysis of the phase transitions.

This work aims to further explore the study done in the usage of 1-bit
quantization and oversampling at receiver in CPM systems, which consists in
a favorable combination that promotes spectral and energy efficiency.

1.2 Overview and Contributions

Chapter 2 introduces a generic CPM system model with a 1-bit ADC
at the receiver. The concepts behind the continuous phase modulation is
presented with the mathematical description of the CPM signal and its phase
term. For a better formulation of the receiving process, the signal suffers a
decomposition approach to expose time-independent state transitions, which
is important to represent the CPM system as a finite-state channel with
well-defined states. In the scenario of 1-bit quantization, the choice of some
CPM parameters is key to take advantage of the phase crossings through the
quantization levels. To serve as support material for the numerical results of
the following chapters, a time-discrete system model is derived.

Chapter 3 provides an information theory background as foundation
for the numerical evaluation of the achievable information rate for the CPM
system presented in Chapter 2. The achievable information rate can be lower-
bounded by considering an auxiliary channel law, which often is much simpler
than the computation of the actual achievable information rate. Preliminary
results for the achievable rate indicate points of improvement that are explored
in the following chapters.

Chapter 4 extends the discrete system model for CPM signals received
with 1-bit quantization and oversampling, for a sophisticated coding and
decoding scheme. The proposed channel coding method implies the processing
of soft information using a BCJR algorithm, which is part of an iterative
decoding strategy. Additionally, a sophisticated channel coding scheme is
proposed which exploits the special properties of the channel with 1-bit
quantization. In summary, the main contributions of this chapter are the
following:

• An iterative detection and decoding scheme for CPM systems with 1-bit
quantization and oversampling at the receiver;

• A novel phase-state-dependent bit mapping, which is designed for the
1-bit ADC problem;
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• A channel coding scheme suited for the bit stream separation into bit
sub-channels.

Chapter 5 tries to solve the problem brought by coarse quantization
with simplicity by reformulating a low-modulation-order CPM scheme with
faster-than-Nyquist signaling rate. The idea is promising because it provides
good spectral efficiency with a simple demodulation scheme suitable for the
1-bit quantization problem. The contribution of this chapter includes:

• A novel faster-than-Nyquist CPM waveform design for high spectral
efficiency;

• A low complexity receiver scheme in accordance with the 1-bit quantiza-
tion approach.

Finally, Chapter 6 opens new possibilities with a nonuniform adaptive
oversampling strategy. With higher resolution in time the receiver complexity
grows accordingly, but specific sample time instances are more relevant than
the others, which can be discarded. A mean squared error (MSE) criterion
is used for sample selection. The study of this chapter is carried out with
the consideration of a raised cosine frequency pulse for the CPM signals. The
contributions of the referred chapter are:

• An adequate model for CPM systems with adaptive oversampling;

• The investigation of an MSE criterion for sample selection in the context
of adaptive sampling.

1.3 Notation Remarks

To express probabilities of random quantities we use the simplified no-
tation with P (yn|xn) = P (Y n = yn|Xn = xn), where the random quantities
are denoted by capital letters and its realizations by lower-case letters. Bold
symbols denote vectors, namely oversampling vectors, e.g., yk is a column vec-
tor with M entries, where k indicates the kth symbol in time or rather its
corresponding time interval. Sequences are denoted with xn = [x1, . . . , xn]T .
Likewise, sequences of vectors are written as yn = [yT1 , . . . ,yTn ]T . A segment
of a sequence is given by xkk−L = [xk−L, . . . , xk]T and ykk−L = [yTk−L, . . . ,yTk ]T .
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2 CPM System with 1-bit Quantization

This chapter covers the fundamental concepts used in this thesis. It de-
scribes the base system model, for CPM with 1-bit quantization and oversam-
pling at the receiver, investigated in the next chapters. With emphasis on its
phase term, the CPM signal is presented with an analytical expression, used
for the derivation of a discrete-time system model description that includes
1-bit quantization and oversampling.

2.1 System Model

At the transmitter side, a CPM modulator can be implemented by
using a voltage-controlled oscillator (VCO) driven by a baseband pulse-
amplitude modulation (PAM) signal, as shown in Fig.2.1, where the output
signal frequency varies around a central frequency f0, maintaining the phase
continuity. As for the receiver side, where the 1-bit quantization is applied, the
constituent blocks are detailed in the following sections, after the description
of the CPM signal, which is presented first.

DAC f(t) VCO

f0

g(t) f0 −∆f − nIF
Ts

nRF(t)

1-bit
ADC

CPM
Demod.

αk

z(t)ykα̂k

Figure 2.1: System model, continuous phase modulation at a low-IF, with 1-bit
quantization and oversampling at the receiver

2.2 Continuous Phase Modulation

The CPM signal in the passband with carrier frequency f0 [21] is
described by

s(t) = Re
{√

2Es

Ts
ej(2πf0t+φ(t))

}
, (2-1)

DBD
PUC-Rio - Certificação Digital Nº 1821115/CA



Chapter 2. CPM System with 1-bit Quantization 21

where Re {·} denotes the real part. The phase term is given by

φ (t) = 2πh
∞∑
k=0

αkf(t− kTs) + ϕ0, (2-2)

where Ts denotes the symbol duration, h = Kcpm
Pcpm

is the modulation index, f (·)
is the phase response, ϕ0 is a phase-offset and αk represents the transmit
symbols with symbol energy Es. Kcpm and Pcpm must be relatively prime
positive integers in order to obtain a finite number of phase states.

The phase response function shapes the phase transition between the
phase states. It fulfills the following condition

f(τ) =

0, if τ ≤ 0,
1
2 , if τ > LcpmTs,

(2-3)

where Lcpm is the depth of the memory in terms of transmit symbols. As it
is depicted in Fig. 2.2, the phase response corresponds to the integration over
the frequency pulse gf (·), which is conventionally a rectangular pulse, a raised
cosine pulse, or a Gaussian pulse. Some of these popular pulse shapes are
listed Table 2.1. The notation LcpmREC and LcpmRC refers to a rectangular
pulse and a raised cosine pulse, respectively, with pulse of length Lcpm symbol
intervals, e.g., the 1REC, which is most often referred to as CPFSK, and the
3RC, a raised cosine pulse of length 3Ts. The transmit symbols are drawn from
an alphabet described by

αk ∈

{±1,±3, . . . ,±(Mcpm − 1)} , if Mcpm even,

{0,±2,±4, . . . ,±(Mcpm − 1)} , if Mcpm odd,
(2-4)

whereMcpm is the modulation order. Since in digital systems the data is usually
binary, the value for Mcpm is often chosen to be a power of 2, i.e., the symbols
are associated to distinct binary sequences of the same length.

REC gf (τ) =


1
2LcpmTs , 0 ≤ τ ≤ LcpmTs

0 , otherwise

RC gf (τ) =


1
2LcpmTs

[
1− cos 2πτ

LcpmTs

]
, 0 ≤ τ ≤ LcpmTs

0 , otherwise

Table 2.1: Frequency pulse functions gf (τ) [1]
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Ts 2Ts 3Ts

1
2Ts

τ

gf (τ)

2.2(a): gf (τ), 1REC (CPFSK)
Ts 2Ts 3Ts

1/2

τ

f(τ)

2.2(b): f(τ), 1REC (CPFSK)

Ts 2Ts 3Ts

1
2Ts

τ

gf (τ)

2.2(c): gf (τ), 3RC
Ts 2Ts 3Ts

1/2

τ

f(τ)

2.2(d): f(τ), 3RC

Figure 2.2: Frequency pulse shapes gf (τ) and their phase responses f(τ) for
1REC(CPFSK) and 3RC CPM schemes

2.3 Tilted Trellis

Generally, the corresponding phase trellis of (2-2) is time variant, which
means that the possible phase states are time-dependent. Because of that,
the number of wrapped absolute phase states can be larger than Mcpm, e.g.,
when Mcpm = 2 and h = 1

2 , there are at least four trellis states in total and
even more depending on the memory of the channel. In order to reduce the
complexity at the receiver, a time invariant trellis is constructed by tilting the
trellis according to the decomposition approach in [23]. This is illustrated in
Fig. 2.3 and Fig. 2.4. The tilt corresponds to an extension of the phase term
given by (2-2) as

ψ(t) = φ(t) + πh (Mcpm − 1) t

Ts
, (2-5)

where the second term on the RHS corresponds to the tilt of the trellis. Taking
the derivative of this tilt with respect to time and dividing by 2π results in a
frequency offset given by

∆f = h(Mcpm − 1)
2Ts

. (2-6)

A modified data sequence is obtained by replacing the symbol notation
with the change of variable xk = (αk +Mcpm − 1)/2, where the corresponding
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symbol alphabet can be described with xk ∈ X = {0, 1, . . . ,Mcpm − 1}.
According to [23], substituting t = τ + kTs and αk = 2xk − Mcpm + 1 in
equation (2-2) leads to the tilted phase expression within one symbol duration

ψ(τ + kTs) =2πh
k−Lcpm∑
l=0

xl + 4πh
Lcpm−1∑
l=0

xk−lf(τ + lTs)

+ πh(Mcpm − 1) τ
Ts

− 2πh (Mcpm − 1)
Lcpm−1∑
l=0

f(τ + lTs)

+ (Lcpm − 1) (Mcpm − 1) πh+ ϕ0 , 0 ≤ τ < Ts.

(2-7)

where the time-dependent terms on the RHS depend only on the variable τ ,
which is well-defined along one symbol duration. Applying the mod 2π operator
to the first term on the right hand side of (2-7) yields

2πh
k−Lcpm∑
l=0

xl

 mod 2π = 2π
Pcpm

Kcpm

k−Lcpm∑
l=0

xl

 mod Pcpm


= 2π
Pcpm

βk−Lcpm , (2-8)

which introduces the absolute phase state βk, i.e., it is related to the 2π-
wrapped accumulated phase contributions of the input symbols that are prior
to the CPM memory. With this, the phase expression for one symbol duration
can be fully described by the absolute phase state βk−Lcpm and the previous and
the current transmit symbols xkk−Lcpm+1 given by s̃k =

[
βk−Lcpm , x

k
k−Lcpm+1

]
.

Note that s̃k is the appropriate state description for the modeling of the

T 2T 3T 4T

−2π

2π

π

−π

π/2

−π/2

3π/2

−3π/2

t

Phase

2π

π

Phase

t4T3T2TT

3π

4π

5π

5T

φ(t) ψ(t)

Figure 2.3: CPM trellis (left) and its tilted version (right), Mcpm = 2, h = 1/2, φ0 = 0,
Lcpm = 1 and rectangular frequency pulse
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T 2T 3T 4T

2π

π

π/2

3π/2

t

Phase

2π

π

Phase

t4T3T2TT

φ(t)

ψ(t)

Figure 2.4: CPM wrapped trellis (above) and its tilted version (below)

Re
{
ejψ(t)

}

Im
{
ejψ(t)

}

Figure 2.5: Mcpm = 8 Constellation diagram of the tilted continuous phase modulation
with representation of the state transitions

signal at the intermediate frequency. To model the signal which has passed the
bandpass filter at the intermediate frequency another state description, namely
sk will be introduced later. For better integration with 1-bit quantization,
ϕ0 = πh is used instead of ϕ0 = 0 whenever it avoids phase states placed on
the axis in the constellation diagram, which is the case in all the considered
examples. For instance, the constellation of a tilted CPM signal withMcpm = 8
and h = 1/Mcpm can have its phase states and transitions described by Fig. 2.5.

2.4 Low-IF Reception

The tilt of the phase can be established in the actual communication
system by receiving at an intermediate frequency (IF). With this, we can
consider that different low-IF frequencies can be used, which motivates the
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CPM
Modulator

RX Filter
G

Decimation
D

nk

1-bit ADC
Q(·)

CPM
Demod.

xk

zk yk x̂k

Figure 2.6: Discrete-time description of the CPM system with 1-bit quantization and
oversampling at the receiver

definition of

ψIF(τ + kTs) = ψ(τ + kTs) + 2πnIF
Ts
τ , (2-9)

where Pcpm ·nIF must be a non-negative integer. Choosing nIF > 0 is promising
because the appearance of zero-crossings can be adjusted, as proposed in [20].
Therefore, such intermediate frequency is expressed with

(
∆f + nIF

Ts

)
= h(Mcpm − 1)

2Ts
+ nIF

Ts
, (2-10)

where ∆f represents the trellis tilt introduced in (2-6). Similarly as in [24], the
receiver model contains a complex bandpass filter g(t) with the pass band at the
low-IF, which yields an increase of memory in the system by Lg symbols, where
(Lg − 1)Ts < Tg ≤ LgTs. The received signal is then given by the convolution
of the complex IF signal distorted by additive white Gaussian noise (AWGN)
n(t)1 and the complex bandpass filter g(t)

z (t) =
∫ ∞
−∞

(√
Es

Ts
ejψIF(τ) + n(τ)

)
g(t− τ)dτ , (2-11)

which is sampled with rate M
Ts

and quantized with 1-bit resolution in the
in-phase component and the quadrature-phase component, where M is the
oversampling factor with respect to the transmit symbol duration Ts.

2.5 Discrete-time System Model

The discrete-time description presented in Fig. 2.6 implies that the CPM
phase should be represented in a vector notation. The corresponding tilted
CPM phase ψIF(τ+kTs) for one symbol interval, i.e., 0 ≤ τ < Ts, is discretized

1The statistics of a white noise process are invariant with respect to frequency transfor-
mations.
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into MD samples, which composes the vector denoted by

ψk(s̃k) =
[
ψIF

(
Ts
MD

(kMD + 1)
)
, ψIF

(
Ts
MD

(kMD + 2)
)
, . . . , ψIF (Ts(k + 1))

]T
,

where M is the oversampling factor, and D is a higher resolution multiplier.
In order to express a subsequence of (η+ 1) oversampling output symbols, the
receive filter g(t) is represented in a matrix form with G, as a MD(η + 1) ×
MD(Lg + η + 1) Toepliz matrix described as follows

G =



[
gT

]
0 · · · 0 0

0
[
gT

]
0 · · · 0 0

. . . . . . . . .
0 · · · 0

[
gT

]
0

 , (2-12)

where

gT =
√

Ts
MD

[
g(LgTs), g

(
Ts
MD

(LgMD − 1)
)
, . . . , g

(
Ts
MD

)]
,

and unit energy normalization is considered with
∫∞
−∞ g(t)2dt = 1 and ‖g‖2

2 =
1. Once the CPM signal is not strictly bandlimited, the higher sampling
grid adopted permits the model to consider the aliasing effect properly.
Consequently, the filtered samples are decimated to the vector zkk−η according
to the oversampling factor M , by multiplication with the D-fold decimation
matrix D with dimensions M(η + 1)×MD(η + 1), described by

Di,j =

1 for j = (i− 1)D + 1,

0 otherwise.
(2-13)

Then, the result zkk−η is 1-bit quantized to the vector ykk−η. All these operations
can be represented by the following equations

ykk−η = Q
(
zkk−η

)
= Q

(
D G

[√
Es

Ts
e
ψkk−η−Lg + nkk−η−Lg

])
, (2-14)

where the quantization operator Q(·) is applied element-wise. The quantization
operator applied to the vector zk is described by

yk,m = sgn(Re {zk,m}) + jsgn(Im {zk,m}),
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where m denotes the oversampling index that runs from 1 to M and yk,m ∈
{1 + j, 1− j,−1 + j,−1− j}. The vector nkk−η−Lg contains complex zero-mean
white Gaussian noise samples with variance σ2

n = N0.
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3 Achievable Information Rate

Achievable information rate (AIR) is determined by the number of
information bits per symbol that can be transmitted through a given channel
reliably. In this context, AIR relies on the mutual information definition
measured between the input and output processes of the considered channel.
The channel capacity concept, developed by Shannon in [25], is the largest
AIR for which exits a coding scheme that can, in principle, achieve any
arbitrarily small error probability by choosing a block length sufficiently large.
For a given communication system, the channel capacity can be achieved by
maximizing the AIR with an optimized input distribution. For CPM systems,
an optimization strategy based on a Markov source model is explored in [26].
Later in [19], a scenario with 1-bit quantization is considered with respect to
an auxiliary channel law, which is presented in this chapter.

This chapter consists of the study of information rates on the system
model presented in the chapter 2.

3.1 Information Theory Background

This section covers some concepts on information theory that are relevant
for the evaluation of the AIR for the considered system model.

3.1.1 Mutual Information

According to Shannon in [25], mutual information is described by the
amount of information obtained about one random variable or process by
observing another random variable or process. In a communication system
with two random processes, input X and output Y , it is desirable to achieve
as much mutual information as possible, i.e., when Y is observed, the amount
of information collected from the observation should be enough to reconstruct
the input X with certain accuracy, otherwise the communication wouldn’t be
reliable. In terms of entropy, which is the amount of information contained in
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a message often measured in bits, the mutual information can be defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3-1)
= H(X)−H(X|Y )
= H(Y )−H(Y |X).

By using the entropy definition, the expression from above can rewritten with
respect to the probability distributions P (x), P (y) and the joint probability
distribution P (x,y), as follows

I(X;Y ) =
∑
y∈Y

∑
x∈X

P (x,y) log2

(
P (x,y)
P (x)P (y)

)
. (3-2)

3.1.2 Information Rates

The concept of mutual information rate, or only information rate, de-
scribes the mutual information exchange between the processes X and Y per
unit of time, i.e., a throughput measurement. Thus, by considering the symbol
period and the finite alphabet random processes, the information rate is com-
puted by averaging the mutual information of the symbol based sequences Xn

and Y n, which is given by

I(Xk;Y k) = lim
n→∞

1
n
I(x1, . . . , xn;y1, . . . ,yn)

= lim
n→∞

1
n
I(Xn;Y n), (3-3)

where n is the length of the input and output sequences. The information rate
can also be written as a function of the entropy rates by using (3-1) with

I(Xk;Y k) = H(Xk) +H(Y k)−H(Xk,Y k). (3-4)

3.1.3 Information Rates for Finite-State Channels

The memory brought by the CPM waveform and the receive filter in
the system model considered in the previous chapter, permits the channel to
be modeled as a finite-state machine (FSM), where current state realizations
depend on the previous ones. In such a scenario, the information is conveyed
in sequences, which implies that for the evaluation of the information rate,
sequences shall be considered.

Assuming that the considered processes are stationary and ergodic the
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Shannon-McMillan-Brieman theorem states the following on the entropy rate

H(Xk) = lim
n→∞

− 1
n

log2 P (xn). (3-5)

With this, the information rate given in (3-4) can be expressed with

I(Xk;Y k) = lim
n→∞

(
− 1
n

log2 P (xn)− 1
n

log2 P (yn) + 1
n

log2 P (xn,yn)
)

= lim
n→∞

(
− 1
n

log2 P (yn) + 1
n

log2 P (yn|xn)
)
, (3-6)

where the right-hand side of the equality can be numerically evaluated based
on long sequence realizations of yn and xn generated with respect to the
distributions P (xn) and P (yn|xn).

3.2 Lower bound with an Auxiliary Channel Law

With the purpose to reduce the complexity of the computation of the
AIR, a simplifying auxiliary channel law is used, which corresponds to a lower
bound on the AIR. This section presents such a channel law for the considered
CPM system as well as a method for the numerical evaluation of the lower
bound on the AIR.

3.2.1 Auxiliary Channel Law

The auxiliary channel law W (·|·) approximates the actual channel law
by limiting the memory of the channel to N previous channel output symbols
yk−1
k−N , i.e.,

P
(
yk|yk−1, xk

)
≈ W

(
yk|yk−1, xk

)
= P

(
yk
∣∣∣yk−1
k−N , x

k
)
. (3-7)

Employing this auxiliary channel law in (3-6), as stated in [27], the AIR
can be lower bounded by

I(Xk;Y k) = lim
n→∞

1
n
I(Xn;Y n)

≥ lim
n→∞

1
n

(− log2W (yn) + log2W (yn|xn)) , (3-8)

where the limit on the right hand side of (3-8) can be numerically approached
with long sequences of channel output observations of the actual channel yn.

The formulation of the auxiliary channel law for the CPM system
proposed in Chapter 2 is done by taking into account the channel output
yk on N previous channel realizations, Lcpm + Lg + N − 1 previous transmit
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symbols and the absolute phase state, such that

W (yk|yk−1, xn) = P (yk|yk−1
k−N , x

n)
= P (yk|yk−1

k−N , βk−Lcpm−Lg−N , x
k
k−Lcpm−Lg−N+1)

= P (yk|yk−1
k−N , βk−L, x

k
k−L+1)

= P (ykk−N |βk−L, xkk−L+1)
P (yk−1

k−N |βk−L, xk−1
k−L+1)

, (3-9)

where L = Lcpm + Lg + N would be the overall memory considered in the
auxiliary channel law. Note that it ignores the potential dependency on further
previous channel outputs yk−N−1, which exists because the noise samples are
correlated after passing the receive filter. In order to consider the influence of
the receive filter on the noise correlation and the waveform at some level, an
extended state representation, namely sk is required

sk =

[βk−L+1, x
k
k−L+2], if L > 1,

[βk], if L = 1,
(3-10)

where N is brought into the model within the overall memory L. For all time
index k, sk belongs to a finite set of states, i.e.,

sk ∈ S = {S1, S2, . . . Snst} (3-11)

where nst = Pcpm · ML−1
cpm is the cardinality of S. As a consequence of this

definition, the notation of the auxiliary channel law can be written in terms of
the state notation sk

W (yk|yk−1, xn) = P (yk|yk−1
k−N , βk−L, x

k
k−L+1)

= P (yk|yk−1
k−N , sk, sk−1).

(3-12)

Note that (sk, sk−1) is equivalent to the notation (βk−L, xkk−L+1), as the absolute
phase βk−L+1 can be described by (βk−L, xkk−L+1), vide equation (2-8).

3.2.2 Numerical evaluation

As illustrated in [22], the probabilitiesW (yn) andW (yn|xn) in (3-8) can
be computed recursively with the forward recursion of the Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm [28]. By using the state notation sk, W (yn) can be
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determined with the equations

W (yk) =
∑
sk

W (yk, sk) =
∑
sk

fk(sk), (3-13)

fk(sk) =
∑
sk−1

W (yk, sk, sk−1)

=
∑
sk−1

W
(
yk, sk|yk−1, sk−1

)
· fk−1(sk−1)

=
∑
sk−1

P
(
yk|yk−1

k−N , sk, sk−1
)
· P (sk|sk−1) · fk−1(sk−1),

(3-14)

where the use of (3-12) with the forward probability fk(sk) defines the branch
metric of the BCJR algorithm. Similarly the conditional probabilityW (yn|xn)
is computed with the following recursion rule

W (yk|xn) = f̃k
= W (yk|yk−1, xn) ·W (yk−1|xn)
= P (yk|yk−1

k−N , sk, sk−1) · f̃k−1.

(3-15)

The initialization of the algorithm is performed by defining the metrics fk=0(sk)
and f̃k=0 = 1. In practice, it was observed in [27] that during the recursion steps,
those branch metrics tend to go to zero after a few iterations, therefore, the
recursion (3-14) is slightly changed to

fk(sk) = µk
∑
sk−1

P
(
yk|yk−1

k−N , sk, sk−1
)
· P (sk|sk−1) · fk−1(sk−1), (3-16)

where the scaling factors µk are chosen such that ∑sk fk(sk) = 1. Regarding
the recursion in (3-15), auxiliary variables µ̃k are defined as

µ̃k = P (yk|yk−1
k−N , sk, sk−1)−1,

with the aim of express the desired information rate quantity as

− 1
n

log2W (yn) + 1
n

log2W (yn|xn) = 1
n

n∑
k=1

log2 µk −
1
n

n∑
k=1

log2 µ̃k, (3-17)

which approaches its true value for larges values of n.
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3.3 Channel Output Probability

The Bayes’ rule illustrated in (3-9), can also be rewritten in terms of the
state notation sk as follows

P
(
yk|yk−1

k−N , sk, sk−1
)

= P (ykk−N |sk, sk−1)
P (yk−1

k−N |sk−1)
, (3-18)

which is the probability used for the recursions in (3-14) and (3-15). Numerator
and denominator in (3-18) are channel output probabilities that must be
computed to serve as input to the BCJR algorithm.

According to [19], the channel output probability can be calculated for a
system with CPM with 1-bit quantization by integrating the given Gaussian
multivariate density distribution

P (ykk−N |sk−1, sk) =
∫

zk
k−N∈Y

k
k−N

p(zk−1
k−N |sk, sk−1)dzkk−N , (3-19)

where Yk
k−N represents the quantization interval which belongs to the channel

output symbol ykk−N , described in (2-14) with η = N . The vector zkk−N is a
complex Gaussian random vector that describes the input of the ADC, with
mean vector and covariance matrix defined by

mz = DG

[√
Es

Ts
e
ψkk−N−Lg

]
, (3-20)

Kz = σ2
nDGG

HDT , (3-21)

respectively, with D and G as introduced before in (2-12) and (2-13).
In order to numerically evaluate (3-19) using an existing quasi-Monte

Carlo integration algorithm, based on methods developed in [29], a real valued
formulation is required. Thus, the conditional probability density function
p(zkk−N |sk, sk−1) is written as follows

p(zkk−N |sk, sk−1) = 1√
(2π)2M(N+1) |K ′z|

× exp
(
−1

2
(
zkk−N

′ −m′z
)T
K ′z

−1 (
zkk−N

′ −m′z
))

,
(3-22)

where |·| denotes the determinant, zkk−N
′ =

[
Re

{
zkk−N

}T
, Im

{
zkk−N

}T ]T
and

the mean vectorm′z contains the real and imaginary components in a stacked
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fashion as given by

m′z =
Re {mz}

Im {mz}

 =

Re
{
D G

[√
Es
Ts
e
ψkk−Lg−N

]}
Im

{
D G

[√
Es
Ts
e
ψkk−Lg−N

]}
 . (3-23)

Accordingly, the covariance matrix is denoted as

K ′z =E

D Re {G} −D Im {G}
D Im {G} D Re {G}

 Re
{
nkk−Lg−N

}
Im

{
nkk−Lg−N

}
×

Re
{
nkk−Lg−N

}
Im

{
nkk−Lg−N

}T D Re {G} −D Im {G}
D Im {G} D Re {G}

T
 .

(3-24)

As detailed in [20], the number of evaluations nev of the multivariate
integral in (3-19) required for the model, respects the proportion

nev ∝ 4MML
cpm (3-25)

where 4M is the number of all possible observed complex vectors yk and ML
cpm

is proportional to the number of all the possible state transitions. With this,
the evaluation of all channel output probabilities becomes computationally
expensive when the oversampling factor M , the modulation order Mcpm and
the overall channel memory L are large.

3.4 Preliminary Results

This section presents preliminary results for the computation of a lower
bound on the achievable rate for the discrete-time system model detailed in
Section 2.5. Such results serve as a motivation for the next chapters, which
propose methods to enhance the overall system performance. The results in
this section were presented before in [19, 30].

3.4.1 Initial Considerations for Numerical Computations

The considered CPM signals for the results in this section have modula-
tion order Mcpm = 4 and Mcpm = 8 with the modulation index h = 1

Mcpm
and

no further frequency is considered with nIF = 0. The frequency pulse used for
such signals is given by

gf (τ) = 1
2 · Ts

rect
(
τ − Ts/2

Ts

)
, (3-26)
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which defines the 1REC [21] frequency pulse. To preserve the transmit wave-
form and its zero-crossings, a suboptimal bandpass noise filtering is considered
as follows

g(t) =
√

1
Tg

rect
(
t− Ts/2
Tg

)
· ej2π∆f(t−Ts/2), (3-27)

where Tg = 1
2Ts. Such a filter is similar to the integrate and dump receiver

considered in [31], but with its frequency response centered in low-IF. Note that
the common receiver based on a matched filter bank is hardware demanding
and not compatible with the considered 1-bit approach. Additionally the
number of previous channel realizations N is chosen to be zero. In that case, for
M = 2 the auxiliary channel is equivalent to the actual channel and forM = 3,
noise correlation exists such that samples within one received oversampling
block yk are correlated, but there is no correlation between different blocks.

The SNR is given by the ratio between the transmit power and the
product of the noise power spectral density N0 and the two-sided 90% power
containment bandwidth B90%

SNR =
limT→∞

1
T

∫
T |x (t)|2 dt

N0 B90%
= Es

N0
(TsB90%)−1, (3-28)

which alternatively can be interpreted as the ratio between the energy associ-
ated to a Nyquist interval and noise power density N0. Note that the discrete
noise samples in (2-14) have a variance of σ2

n = N0. Considering that 5% out
of band radiation can be tolerated at the lower and higher frequencies we get

∫ B90%,↑

−∞
S(f)df =

∫ ∞
B90%,↓

S(f)df = 0.95
∫ ∞
−∞

S(f)df , (3-29)

where S(f) denotes the power spectral density of the complex baseband
representation at zero-IF x(t) =

√
Es
Ts
ejφ(t). With this, the power containment

bandwidth is given by B90% = B90%,↑ −B90%,↓.

3.4.2 Information rate results and discussion

The lower bound on the achievable rate is computed the way it is
presented throughout this chapter. The Fig. 3.1 shows how oversampling
increases the AIR due to the extra information provided during the symbol
transitions. With Mcpm = 4 the achievable rate reaches log2(Mcpm) = 2 [bpcu]
for higher values of SNR, on the other hand, for the low SNR regime, channel
coding is in general required for practically approaching the achievable rates.

However, with Mcpm = 8 shown in Fig. 3.2, the achievable rate does
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Figure 3.1: Effect of the oversampling factor M on the achievable rate for Mcpm = 4
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Figure 3.2: Effect of the oversampling factor M on the achievable rate for Mcpm = 8

DBD
PUC-Rio - Certificação Digital Nº 1821115/CA



Chapter 3. Achievable Information Rate 37

not approach the source entropy rate of log2(Mcpm) = 3 [bpcu] and hence an
error free transmission is impossible without channel coding. In the sequel such
a channel coding scheme is studied in order to approach the addressed rates.
Moreover, in the later chapters novel concepts are presented which yield higher
spectral efficiency and a lower bit error rate as compared to conventional CPM
signal with uniform oversampling.
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4 Iterative Detection and Decoding

This chapter considers the design and analysis of CPM schemes with 1-bit
quantization and oversampling at the receiver, employing convolutional codes
in scenarios with higher modulation order. For such cases, e.g.,Mcpm = 8, based
on the achievable rates computed in the previous chapter, channel coding is
essential for establishing reliable communications with low probability of error,
because the achievable rate at high SNR is lower than the input entropy. In
this context, it is proposed to extend the discrete system model for CPM
signals received with 1-bit quantization and oversampling, presented in [19],
for a sophisticated coding and decoding scheme.

For the CPM system proposed in [19, 30], with 1-bit quantization and
oversampling at the receiver, the lower bound on the achievable rate is the
base information used to choose or design the channel coding scheme. The
parameter used to assist this choice is mainly the code rate. For a specific
SNR a coding scheme must satisfy the following condition

0 ≤ R · log2(Mcpm) < IMcpm ≤ log2(Mcpm) [bpcu], (4-1)

where R denotes the code rate of the channel code and IMcpm denotes the
achievable rate conditioned on the corresponding CPM modulation scheme.
Note that log2(Mcpm) is the maximum entropy rate of the input, which is an
upper bound of the achievable rate.

4.1 Extended System Model

The system model considered in this chapter is an extension of the
discrete-time system model presented in Fig. 2.6 that is proposed in [19, 30]. In
this context of CPM with 1-bit quantization and oversampling at the receiver,
the Fig. 4.1 illustrates the extension in terms of the additional coding blocks.
The purpose of this extension is to design a system for reliable communication
by considering sophisticated forward error correction.

On the transmit path, the channel encoder receives information bits and
generates an encoded message adding redundant information. The encoded
message is interleaved to protect the coded information against burst errors.
Then, the interleaved bits are grouped according to the modulation order
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Filtering and
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DemapperDeinterleaver

Decoder

Interleaver Soft
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Figure 4.1: Extended discrete system model, 1-bit quantization, oversampling and coding
blocks with an iterative decoding strategy

and mapped to CPM symbols. After that, a signal is generated by a CPM
modulator and noise is applied due to the considered AWGN channel.

On the receive path the signal is filtered and quantized by a 1-bit ADC.
The quantized data are then processed by an iterative detection and decoding
(IDD) scheme. First the binary samples are processed by a soft detection
algorithm. Then the soft information is converted to bit oriented log-likelihood
ratios, which are deinterleaved subsequently. Finally, the soft information is
given to the channel decoder, which returns extrinsic soft information to the
detection algorithm via an interleaver and a soft mapper. In the sequel the
individual blocks are described in detail.

4.2 Soft Detection

The maximum a posteriori (MAP) decision metric for each bit corre-
sponds to the a posteriori probability (APP) given the received sequence yn,
which, for the considered system, can be approximately computed via a BCJR
algorithm [28] based on an auxiliary channel law, which is described in 3.2.1
for computing a lower bound on the achievable rate.

4.2.1 BCJR Algorithm based on an Auxiliary Channel Law

With the purpose of evaluate the APPs for the bit sequence, the value
P (sk, sk−1|yn) must be determined. This can be achieved by normalizing the
joint probability P (sk, sk−1,y

n), which can be decomposed into

P (sk, sk−1,y
n) = P (sk, sk−1,y

k−1,yk,y
n
k+1)

= P (sk−1,y
k−1) · P (sk,yk|yk−1, sk−1) · P (ynk+1|sk,yk)

≈ W (sk−1,y
k−1)︸ ︷︷ ︸

fk−1(sk−1)
·W (sk,yk|yk−1, sk−1)︸ ︷︷ ︸

γk(sk−1, sk)
·W (ynk+1|sk,yk)︸ ︷︷ ︸

bk(sk)

,
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where the considered auxiliary channel law is applied. The factor γk(sk−1, sk)
can be rewritten as

γk(sk−1, sk) = W (sk,yk|yk−1, sk−1)
= P (yk|yk−1

k−N , sk, sk−1) · P (sk|sk−1) ,
(4-2)

which relates to the state transition probabilities and to the channel output
probability explored in section 3.3. The factor fk−1(sk−1) is the forward
probability which contains all the paths that leads to the state sk−1. The
forward recursion used to compute fk−1(sk−1) is described in (3-14) and can be
rewritten in terms of γk(sk−1, sk)

fk(sk) = W (sk,yk) =
∑
sk−1

W (sk, sk−1,y
k)

=
∑
sk−1

W (sk,yk|yk−1, sk−1) ·W (sk−1,y
k−1)

=
∑
sk−1

γk(sk−1, sk) · fk−1(sk−1).

(4-3)

Finally, bk(sk) is the backward probability that contains all possible paths from
state sk to sn. Similarly, bk(sk) is computed using the backward recursion

bk(sk) = W (ynk+1|sk,yk) =
∑
sk+1

W (sk+1,y
n
k+1|sk,yk)

=
∑
sk+1

W (sk+1,yk+1|yk, sk) ·W (ynk+2|sk, sk+1,y
k+1)

=
∑
sk+1

γk(sk, sk+1) · bk+1(sk+1).

(4-4)

With this, an approximate value Paux(sk, sk−1|yn) of the probability
P (sk, sk−1|yn) can be computed by normalizing for P (yn), the equation

Paux(sk, sk−1|yn) · P (yn) = fk−1(sk−1) · γk(sk−1, sk) · bk(sk). (4-5)

Note that for the recursions described in (4-3) and (4-4), initial values for
fk=0(sk) and bk=n+1(sk) are required.

While the BCJR algorithm can be implemented using the steps above,
it is practical to employ a matrix form of the algorithm. In order to achieve
this, the following definitions are required:

• fk is the vector form of the forward probabilities fk(sk) for all states at
time index k;

• bk is the vector form of the backward probabilities bk(sk) for all states
at time index k;

DBD
PUC-Rio - Certificação Digital Nº 1821115/CA



Chapter 4. Iterative Detection and Decoding 41

• Γk(ykk−N) is the matrix form of the transition probabilities γk(sk, sk+1)
at time index k, depending on the received vector ykk−N .

In more detail, the transition probability matrix Γk(ykk−N) is expressed as

Γk(ykk−N) =


γk(S1, S1) γk(S1, S2) · · · γk(S1, Snst)
γk(S2, S1) γk(S2, S2) · · · γk(S2, Snst)

... ... . . . ...
γk(Snst , S1) γk(Snst , S2) · · · γk(Snst , Snst)

 , (4-6)

which allows for the matrix representation of the recursions with the equations

fk = Γk(ykk−N) · fk−1

bk = Γk(ykk−N)T · bk+1.
(4-7)

4.2.2 A Posteriori Probabilities and Soft Information

The probabilities Paux (sk−1, sk|yn) are used to compute the APPs for the
bits that are computed by the demapper block. Letting dm = [d1, . . . , dm] as
the interleaved bit sequence that is mapped into CPM symbols, its bit APPs
are described with the summation

P (dq = d|yn) =
∑

∀sk−1,sk⊇xk
such that

map−1
k

(xk,i)=d

Paux(sk, sk−1|yn)

= 1
P (yn)

∑
∀sk−1,sk⊇xk
such that

map−1
k

(xk,i)=d

fk−1(sk−1) · γk(sk−1, sk) · bk(sk)

=
bkT ·

(
Σi(d)� Γk(ykk−N)

)
· fk−1

bkT · Γk(ykk−N) · fk−1
, (4-8)

where dq = map−1
k (xk, i) with bit index q = (k − 1) · log2(Mcpm) + i denotes

extraction of the bit dq, which corresponds to the ith bit, most significant bit
(MSB) first, of the kth demapped symbol with i ∈ {1, 2, . . . , log2(Mcpm)}. To
the vector notation in (4-8), Σi(d) is introduced as a matrix of 1’s and 0’s
that translates the summation condition into an element-wise multiplication,
represented by the operator �, with the matrix Γk(ykk−N). More on that, the
fraction 1/P (yn) is replaced by a normalization on the measurement of the
probability. Finally, the whole description of the soft detection algorithm is
described in Table 4.1.

The posterior probabilities P (dq|yn) are the natural choice for the soft
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Input

– Received sequence yn
– Transition probabilities Γk(ykk−N)
– Summation matrix Σi(d) depending on the bit mapping of symbols
Initialization

f0 = 1nst/nst
bn+1 = 1nst/nst
BCJR Algorithm

for k = 1 to n do
fk = Γk(ykk−N) · fk−1 . forward recursion
fk = fk/(fTk · 1nst) . normalization

end for

for k = n to 1 do
bk = Γk(ykk−N)T · bk+1 . backward recursion
bk = bk/(bTk · 1nst) . normalization

end for
Output

P (dq = d|yn) = bkT ·
(
Σi(d)� Γk(ykk−N)

)
· fk−1/bkT · Γk(ykk−N) · fk−1

Table 4.1: Soft Detection with BCJR Algorithm

information s(dq) about the demapped bits. Such probabilites can also be
expressed by marginalizing over dq in the sequence-base posterior probability
P (dm|yn), where m = n · log2(Mcpm), with the following expressions

P (dq = d|yn) =
∑

dm|dq=d
P (dm|yn)

= 1
P (yn)

∑
dm|dq=d

P (yn|dm) · P (dm). (4-9)

With binary random variables described by the probabilities P (dq = 0|yn)
and P (dq = 1|yn), the use of log-likelihood ratios (LLR) given the received
sequence yn is appropriate [32] and obtained with

L(dq|yn) = ln P (dq = 0|yn)
P (dq = 1|yn) = ln s(dq = 0)

s(dq = 1), (4-10)

which can be decomposed, according to [32, 33], into an extrinsic and an a
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priori LLR as follows

L(dq|yn) = ln
∑
dm|dq=0 P (yn|dm) · P (dm)∑
dm|bq=1 P (yn|dm) · P (dm)

= ln
∑
dm|dq=0 P (yn|dm) ·∏m

j=1;j 6=q P (dj)∑
dm|dq=1 P (yn|dm) ·∏m

j=1;j 6=q P (dj)
+ ln P (cq = 0)

P (dq = 1)

= Lext(dq|yn) + ln P (dq = 0)
P (dq = 1)

= Lext(dq|yn) + L(dq). (4-11)

The extrinsic LLR Lext(dq|yn) represents the information about dq contained
in yn and P (dj) for all j 6= q. The a priori LLR L(dq) describes the available a
priori information about dq. The concept of extrinsic information is a crucial
point in the context of turbo equalization, which will be explained in detail in
the next section.

4.3 Channel Coding and Iterative Decoding

The iterative decoding process relies on the feedback of soft information
from the decoder to adjust the transition probabilities of the soft detector,
which becomes aware of the underlying code. Let cm = [c1, . . . , cm] the code bit
sequence that represents the encoded message. The soft information s(cq), with
q ∈ {1, . . . ,m}, serves as the input of the channel decoder, which computes an
update version s′(cq) of this soft information, which reads as

s′(cq) = P (cq|s(c1), s(c2), . . . , s(cm)). (4-12)

The redundancy introduced during the encoding process certifies that the
reliability of s′(cq) is generally improved by the channel decoder in comparison
to s(cq). This soft information is interleaved into the sequence corresponded
to s′(dq), which is incorporated to the soft detector, that uses this knowledge
acquired from the channel decoder to recompute s(dq). This message passing
algorithm is done iteratively with soft information exchange between the
detection and decoding steps. Following the described steps, the bit error rate
can be improved in comparison to the scenario without feedback information.
However, even better results in terms of bit error rate can be achieved when
the following information is fed back from the decoder to the detector:

s′ext(cq) = P (cq|s(c1), . . . , s(cq−1), s(cq+1), . . . , s(cm)), (4-13)
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which is the extrinsic soft information about cq contained in s(c1), . . . , s(cm)
except of s(cq). The idea of passing extrinsic soft information between the
receive algorithms was first proposed in [33] for decoding turbo codes and
has been applied to coded data transmission over channels with intersymbol
interference (ISI) [34, 35], where it is called turbo equalization. In practical
terms, it is often more convenient to replace the two probabilities s(dq = 0)
and s(dq = 1) by the LLR in (4-10), which reads as

λ(dq) = L(dq|yn) = ln s(dq = 0)
s(dq = 1).

Accordingly, instead of the extrinsic soft information s′ext(cq), the extrinsic LLR
is considered, which can be expressed with

λ′ext(cq) = ln s′ext(cq = 0)
s′ext(cq = 1) = P (cq = 0|s(c1), . . . , s(cq−1), s(cq+1), . . . , s(cm))

P (cq = 1|s(c1), . . . , s(cq−1), s(cq+1), . . . , s(cm)) .

Because s′(cq) is a posterior probability, a decomposition similar to (4-11), can
be applied with λ′(cq), which yields

λ′ext(cq) = P (cq = 0|s(c1), . . . , s(cm))
P (cq = 1|s(c1), . . . , s(cm)) − ln s(cq = 0)

s(cq = 1)

= ln s′(cq = 0)
s′(cq = 1) − ln s(cq = 0)

s(cq = 1)
= λ′(cq)− λ(cq). (4-14)

The iterative decoding steps are summarized in Fig. 4.2, were the soft
information exchange between detector and decoder is represented with the
considered LLRs. In the sequel, more details on the turbo equalization method
are discussed.

yk

λ(dq)λ(cq)

b̂r

λ′ext(cq) λ′ext(dq)

Soft
Detection
(BCJR)

DemapperDeinterleaver
(S-Random)

Decoder
(BCJR)

Interleaver
(S-Random)

Soft
Mapper

Figure 4.2: Iterative Decoding procedure on receive path of the system model

4.3.1 Interleaving and Deinterleaving

The interleaving process shuffles the bits according to a permutation
function, say Π(·), on the bit indexes, i.e., Π : {1, . . . ,m} −→ {1, . . . ,m}. During
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the transmit path the code bits are interleaved given such a permutation,
expressed as

[c1, . . . , cm] interleaving−−−−−−−→ [d1, . . . , dm],

where cq = dΠ(q). Regarding the receive path, the detection algorithm outputs
the demapped bit-related LLR sequence, which is deinterleaved according to
the considered permutation, as follows

[λ(d1), . . . , λ(dm)] deinterleaving−−−−−−−−→ [λ(c1), . . . , λ(cm)],

such that λ(dΠ(q)) = λ(cq). The resulting sequence represents the detected soft
information used as input for the channel decoder.

With an iterative decoding scheme the interleaving operation happens
not only in the transmit path, but also in the receive path, as follows

[λ′ext(c1), . . . , λ′ext(cm)] interleaving−−−−−−−→ [λ′ext(d1), . . . , λ′ext(dm)],

where extrinsic soft information about the code bits are routed to the soft
detection processing from the channel decoder.

4.3.2 Convolutional Codes

This chapter uses convolutional codes as the simplest non-trivial example
for channel coding. Convolutional codes are characterized by their constraint
length and its generator polynomials [36], often represented in its octal form,
e.g., (5 7). In general, a longer constraint length code has better performance
in terms of bit error rate, but it requires more computation resources in the
decoder. The Fig. 4.3 represents a convolutional encoder that takes one input
bit and outputs two coded bits, meaning that its code rate is 1/2.

br−1 br−2

c2r−1

c2r

br

Figure 4.3: Example of Convolutional Encoder (5 7) with code rate 1/2
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Figure 4.4: Example of Convolutional Encoder from Fig. 4.3 represented as a state
machine (left) and as a trellis (right)

The convolutional codes can also be described by a state machine. The
state is basically the status of the shift registers values. From that a trellis
structure can be derived, which is the base description of the code used in the
decoding process, that can be implemented using the Viterbi algorithm, which
is a maximum likelihood (ML) decoder, or using the BCJR algorithm (MAP
decoder). For instance, the formulation of a soft-input soft-output (SISO)
channel decoder that takes into account the encoder illustrated in Fig. 4.3
and Fig. 4.4 can be described by the algorithm presented in Table 4.2.

High rate convolutional codes, e.g., 3/4, can be implemented using the
puncturing technique to create any desired code rate from a basic low-rate
code [37]. This is used to adapt the code rate while keeping a low-complexity
decoder. Puncturing can be applied to modify the system throughput and
robustness level by changing the puncturing pattern, which describes the bits
that are propagated and discarded during the encoding procedure. The decoder
must take this pattern into account to compute metrics and survivor paths. For
a SISO decoder, e.g., the one considered in the Table 4.2, the corresponding
discarded bits of the pattern are inserted into the LLR sequence as a zero
valued LLR, so no information about the discarded bit exists on the receive
path.

4.3.3 Turbo Equalization

The turbo equalization described in [35] guided the iterative decoding
procedure implemented for results contained in this chapter. This iterative
decoding consists of the exchange of soft information between the detector
and the channel decoder. This scenario is illustrated in Fig. 4.2.
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Input

Γr =

s(c2r−1 = 0)s(c2r = 0) s(c2r−1 = 1)s(c2r = 1) 0 0
0 0 s(c2r−1 = 0)s(c2r = 1) s(c2r−1 = 1)s(c2r = 0)

s(c2r−1 = 1)s(c2r = 1) s(c2r−1 = 0)s(c2r = 0) 0 0
0 0 s(c2r−1 = 1)s(c2r = 0) s(c2r−1 = 0)s(c2r = 1)


for r = 1, 2, 3, . . . ,m/2

U(0) =

1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

 , U(1) =

0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1


Initialization

f0 = [1 0 0 0]T
bm/2+1 = [1 0 0 0]T

BCJR Algorithm

for r = 1 to m/2 do
fr = Γr · fr−1 . forward recursion
fr = fr/(fTr · 14) . normalization

end for

for r = m/2 to 1 do
br = ΓTr · br+1 . backward recursion
br = br/(bTr · 14) . normalization

end for
Output

P (br = b|s(c1), s(c2), . . . , s(cm)) = brT · (U(b)� Γr) · fr−1/(brT · Γr · fr−1)

Table 4.2: Channel Decoder with BCJR Algorithm

Initially, the state transition probabilities are considered to be uniformly
distributed, i.e., P (sk|sk−1) = 1/Mcpm, such assumption is suboptimal, but
it is possible to take into account that state transitions can have different
probabilities by feeding back updated extrinsic soft information about the code
bits. This extrinsic information, can be computed during the channel decoding
procedure by means of employing a second BCJR algorithm. For instance,
the channel decoder described in Table 4.2 for a memory-2 convolutional code
illustrated in Fig. 4.3, can output the soft information in (4-12) with

s′(c2r−1) = P (c2r−1 = c|s(c1), s(c2), . . . , s(cm))
= brT · (V −1(c)� Γr) · fr−1/(brT · Γr · fr−1),

(4-15)

s′(c2r) = P (c2r = c|s(c1), s(c2), . . . , s(cm))
= brT · (V 0(c)� Γr) · fr−1/(brT · Γr · fr−1),

(4-16)
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where

V −1(0) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , V −1(1) =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 ,

V 0(0) =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , V 0(1) =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 1 1

 .

With this, it is possible to compute the extrinsic LLR described in (4-14) with
the following expression

λ′ext(c2r+i) = ln brT · (V i(0)� Γr) · fr−1

brT · (V i(1)� Γr) · fr−1
− λ(c2r+i),

where i ∈ {−1, 0}. As asserted in [35], this equation faces problems when a
numerical evaluation is performed due to the logarithm nature of the difference
on the right-hand side (RHS) of the equality. To solve this for practical
implementations, λ′ext(cq) is computed as follows:

λ′ext(c2r+i) = ln brT · (V i(0)� Γext,i,r) · fr−1

brT · (V i(1)� Γext,i,r) · fr−1
, (4-17)

where Γext,i,r are extrinsic transition matrices, that has the dependency on
the input LLR λ(c2r+i) removed, while computing λ′ext(c2r+i). For example,
the extrinsic transition matrix Γext,−1,r corresponding to λ′ext(c2r−1), for the
convolutional code that has been considered so far, is given by

Γext,−1,r =


s(c2r = 0) s(c2r = 1) 0 0

0 0 s(c2r = 1) s(c2r = 0)
s(c2r = 1) s(c2r = 0) 0 0

0 0 s(c2r = 0) s(c2r = 1)

 .

The extrinsic LLRs computed with (4-17) are interleaved into a sequence
represented by the soft information λ′ext(dq) and soft mapped to new values
of state transition probabilities P (sk|sk−1). This soft mapping is achieved by
bringing the log-likelihood representation back to a probability description [35],
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which is given by

P (sk|sk−1) = P (xk)

=
log2(Mcpm)∏

i=1

exp (−b′i · λ′ext(dq))
1 + exp (−λ′ext(dq))

∣∣∣∣∣∣
q=(k−1)·log2(Mcpm)+i

, (4-18)

xk = map([b′1, . . . , b′log2(Mcpm)]),

where xk is the input symbol that produce the state transition from the state
sk−1 to sk, [b′1, . . . , b′log2(Mcpm)] is the bit sequence which such symbol is mapped
to, and λ′ext(dq) represents the interleaved extrinsic soft information fed back by
the channel decoder of the bit dq. The probabilities P (sk|sk−1) can be used to
perform the soft detection step again by updating the transition probabilities
in the BCJR algorithm, detailed in 4.2.1.

In the final step of the channel decoder, i.e., after the execution of the
required number of iterations, the soft information on the information bits are
computed

λ(br) = ln P (br = 0|s(c1), . . . , s(cm))
P (br = 1|s(c1), . . . , s(cm)) , ∀r ∈ {1, . . . ,m ·R}, (4-19)

whereR is the used code rate. At last, the estimation of the original information
bits are evaluated based on the sign of the corresponding soft information λ(br)

b̂r =

1, if λ(br) < 0,

0, if λ(br) ≥ 0,
(4-20)

To summarize this section, the iterative decoding steps illustrated in
Fig. 4.2 is described in Table 4.3.

4.4 Proposed Modified Sub-channel Coding

The extra amount of information provided by the oversampling is often
not enough for the system to provide reliable communication, which motivated
the proposition of the CPM system in Fig. 4.1 with additional coding blocks.
With the purpose to further improve the performance of the proposed system,
this section covers a different coding strategy and an alternative bit mapping
scheme illustrated for the example of Mcpm = 8.

4.4.1 Bit Mapping

For the considered CPM waveform with Lcpm = 1, the 1-bit quantization
of the in-phase and quadrature components leads to a four-level phase decision,
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Iterative Detection and Decoding

(1) Initialization: Set P (sk|sk−1) = 1/Mcpm for every possible state transition,
to evaluate the transition probabilities γk(sk−1, sk) in (4-2)

(2) Soft Detection and Demapping: Perform the BCJR Algorithm de-
scribed in Subsection 4.2.1, compute the A Posteriori Probabilities in (4-8)
based on the adopted bit mapping, and evaluate the LLR sequence corre-
sponding to λ(dq) for all q ∈ {1, . . . ,m}

(3) Deinterleaving: Permute the LLR sequence [λ(d1), . . . , λ(dm)] into
[λ(c1), . . . , λ(cm)]

(4) Soft Decoding: Use the SISO decoder to compute the soft information
λ(br) and feed back the extrinsic soft information λ′ext(cq) for all q ∈
{1, . . . ,m}

(5) Termination: verify the stop condition, i.e., whether the number of iter-
ations has been achieved. If so, the bit estimations b̂r are computed for all
r ∈ {1, . . . ,m ·R}, vide (4-20)

(6) Interleaving: Permute the extrinsic soft information sequence
[λ′ext(c1), . . . , λ′ext(cm)] into [λ′ext(d1), . . . , λ′ext(dm)]

(7) Soft Mapping: compute new values of P (sk|sk−1) based on the soft
mapping in (4-18) and update values for γk(sk−1, sk)

(8) go to (2)

Table 4.3: Iterative detection and decoding algorithm steps

which grants two bits of information when the sample at time τ = Ts is
observed in a noise free scenario. This is the reason why, when noise is
considered, the computed achievable rate for Mcpm = 4 reaches 2 bpcu in
a high SNR regime, vide Fig. 3.1. As it was concluded from Chapter 3, more
than two bits per channel use can be achieved with oversampling, which allows
for the extraction of more information along the phase transition between the
phase states. This is shown in Fig. 3.2 with the achievable rate result for
Mcpm = 8. This idea is key to understand the motivation to study bit mapping
alternatives, and how the available information at the receiver is distributed
for the bits. In summary, this subsection presents two mapping strategies and
how they deal with bit allocation.

The Fig. 4.5 shows the CPM tilted phase constellation on how bit sets
are associated to the phase transition when using the Gray mapping, given an
“even” or an “odd” initial state, whose parity is defined by the parity of the
absolute phase state described in (2-8). The symbols are distinguished by on
how much the phase is increased for each possible input.

The established Gray mapping scheme implies well known benefits for
conventional communication systems. However, in the sequel it is proposed
to modify the Gray coding scheme in order to enable the exploitation of the
properties of the CPM system with 1-bit quantization and oversampling at
the receiver. Similarly to the Gray mapping the Fig. 4.6 illustrates the CPM
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Figure 4.5: Gray Mapping for 8-CPFSK with 1-bit quantization

tilted phase transitions with the corresponding bits for the novel mapping
scheme, termed advanced mapping, which allows for the separation of the
information that can be readily extracted from the orthants of the symbols
and the additional information brought by oversampling. In this regard, it is
possible to divide the log2(Mcpm) = 3 bits into binary sub-channels where
two sub-channels can each yield up to 1 bit per channel use and the third
sub-channel yields a lower achievable rate which depends on the oversampling
factor.
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4.6(a): “Even" State
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Figure 4.6: Advanced Mapping for 8-CPFSK with 1-bit quantization

The gray mapping shuffles the uncertainties brought by the coarse
quantization for every bit sub-channel, whereas the advanced mapping aims
to concentrate the uncertainty on the third bit, by doing a circular shift on
the gray mapping when phase transition happens from a phase state of “odd"
order. The Fig. 4.7(b) proves what is being said by showing increased BER
performance on the first two bits of the mapping in comparison with Fig. 4.7(a).

4.4.2 Sub-channel Coding Scheme

The coding scheme which is referred as the conventional approach,
consists of the system model illustrated in Fig. 4.1, that contemplates the
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4.7(a): Gray Mapping
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Figure 4.7: BER results for each bit sub-channels according to the considered bit mapping,
M = 3

use of channel coding for forward error correction (FEC), interleavers to
protect the system against burst errors and an iterative decoding procedure
as part of a sophisticated channel decoding approach. However, no regard
with respect to bit sub-channel performance, presented in Fig. 4.7, is taken
into account. In order to take advantage of the novel advanced mapping,
a modified coding scheme is proposed. This coding scheme has the same
structure of the conventional one, but applies different code rates for the bit
sub-channels separately, i.e., in transmission, bit sub-channels streams that are
more sensitive to noise or channel impairments would pass through a channel
encoder with a lower code rate.

Encoder
3rd bit sub-channel

1st/2nd bit

sub-channels

Encoder

4.8(a): Coding Scheme

Encoder
3rd bit sub-channel

1st / 2nd bit sub-channels

Encoder

4.8(b): Scheme for R = 7/9

Figure 4.8: Proposed Coding Scheme for Mcpm = 8

For the case study, no coding is applied to the first two bit sub-channels
whereas a strong convolutional code is applied to the third sub-channel. This
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is illustrated in Fig. 4.8(a), where in (b) a code rate of 1/3 is applied to the
third sub-channel, which corresponds to an overall code rate of R = 7/9.

4.5 Bit Error Rate Results and discussion

All the computations rely on Mcpm = 8, modulation index h = 1
Mcpm

and oversampling factor M = 3. The simulation environment is set in a
similar fashion to what is considered in Section 3.4.1. For instance, the used
frequency pulse is the 1REC in (3-26) and the receive filter is assumed to be
the suboptimal bandpass filter in (3-27). Additionally, the SNR definition is
brought from equation (3-28) and reads as

SNR = Es

N0
(TsB90%)−1,

where B90% denotes the 90% power containment bandwidth. With respect to
channel decoding parameters used in this section, the Table 4.4 displays punc-
turing patterns applied to convolutional codes represented by their polynomial
generator in its octal form. For the simulations in this section, blocks contain-
ing approximately 1000 information bits are randomly generated to be input
of the CPM system.

Code Rate Generator Puncturing Pattern
1/3 (5 7 7) 1 1 1
1/2 (5 7) 1 1
2/3 (5 7) 1 1 | 0 1
3/4 (5 7) 1 1 | 0 1 | 1 0

Table 4.4: Puncturing patterns examples for codes with constraint length Kcc = 3

Bit error rate results are presented as the comparative performance
evaluation of the methods and ideas described in this chapter.

4.5.1 Number of iterations

Given the presented scenario applied to the extended system model
described in Fig. 4.1, it is possible to observe the gain provided by the iterative
decoding scheme by varying the number of iterations parameter. From the
Fig. 4.9, one is able to notice that after the second iteration, the iterative
process grants a decreased BER performance gain. Naturally, the simulation
results show that using channel coding with lower code rates yield a better
BER performance.
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Figure 4.9: BER results for the considered CPM signal with channel coding of different
code rates and constraint length Kcc = 3 using Gray Mapping

4.5.2 Novel bit mapping

The bit mapping is the first part of the proposed enhancements presented
in Section 4.4 to be analyzed. The Gray mapping is compared against the novel
advanced mapping. The Fig. 4.10 illustrates the BER simulation results, which
confirm that system designs using Advanced mapping outperform system
designs using Gray mapping in terms of BER. For systems with Gray mapping
three iterations are considered and for systems with Advanced mapping only
two, because no further performance gain was observed by increasing the
iterations for the latter.

4.5.3 Sub-channel coding

Finally, in Fig. 4.11, the BER results for the proposed coding scheme are
presented. The conventional coding scheme uses a convolutional code with rate
7/9, generator polynomial (5 7) and puncturing pattern 11|01|01|10|10|01|11.
In contrast, the proposed coding scheme uses a convolutional code with rate
1/3 for the third bit sub-channel as shown in Fig. 4.8(b). In this last scenario,
the use of the proposed coding scheme brings a consistent performance gain
from low to high SNR levels.

DBD
PUC-Rio - Certificação Digital Nº 1821115/CA



Chapter 4. Iterative Detection and Decoding 55

−5 0 5 10 15 20 25 30 35 40
10−6

10−5

10−4

10−3

10−2

10−1

Uncoded
Code Rate 3/4
Code Rate 2/3
Code Rate 1/2
Code Rate 1/3

SNR [dB]

BE
R

Gray Mapping (3rd iter.)
Advanced Mapping (2nd iter.)

Figure 4.10: BER comparison between Gray and Advanced Mapping, Kcc = 3
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Figure 4.11: BER results for a code rate of 7/9. Performance gain due to the modified
sub-channel coding scheme
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5 Faster-than-Nyquist CPM

The utilization of channel coding and iterative decoding to mitigate the
loss brought by the coarse quantization has been proven of benefit, but it
brings considerable complexity to the receiver by aggregating two froward-
backward algorithms for detection and decoding. An alternative way to deal
with the problem is to dive deeper into the physical layer of the continuous
phase modulation by choosing a set of parameters suited for the 1-bit ADCs
at the receiver. In this chapter, a CPM waveform is introduced with a symbol
duration that is only a fraction of the symbol duration of an equivalent CPFSK.
The new waveform is designed with the aim of construct zero-crossings along
the phase transitions, which is promising for the 1-bit quantization approach.

The proposed CPM waveform conveys the same information per time
interval as the common CPFSK considered in the previous chapters, while its
bandwidth can be the same or even lower. Referring to the high signaling rate,
like it is typical for faster-than-Nyquist signaling [38], the novel waveform is
termed faster-than-Nyquist continuous phase modulation (FTN-CPM). Nu-
merical results confirm that the proposed waveform yields a significantly re-
duced bit error rate (BER) as compared to the existing methods [19, 20] with at
least the same spectral efficiency. In addition, FTN-CPM can be detected with
low-complexity and with a lower effective oversampling factor in comparison
with the state-of-the-art methods.

5.1 CPM Reformulation

According to the concepts presented in Section 2.2, the CPM signal
contemplates the existence of memory and, therefore, a frequency pulse larger
than Ts, i.e., Lcpm > 1, leads to the overlapping of phase transitions, which
requires the system model to incorporate a state definition to describe the CPM
waveform. Due to the integer nature of the CPM memory, this phase transition
overlap happens in multiples of Ts. By willing to define a waveform that comply
with Mazo’s idea of faster-than-Nyquist signaling [38] a reformulation on the
CPM phase response is proposed. The elaboration of a novel phase response
function is made with aim to admit a fractional part of Ts added to length of
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the frequency pulse shape. With this, the reformulation of (2-3) is given by

f(τ) =

0, if τ ≤ 0,
1
2 , if τ > Tcpm,

(5-1)

where Tcpm is the length of the frequency pulse. Consequently, the CPM
memory is written in terms of Lcpm = dTcpm/Tse transmit symbols, where d·e
returns the smallest integer value that is bigger than or equal to the operand.
The Fig. 5.1 illustrates a phase response function for the case of a rectangular
frequency pulse with Tcpm = 1.5 Ts in comparison with the 1REC CPM scheme.

Ts 2Ts

1/2

τ

f(τ)
Tcpm = Ts (1REC)
Tcpm = 1.5 Ts

Figure 5.1: Comparison between phase responses f(τ)

This formulation can be recognized as a faster-than-Nyquist approach
once the signaling rate 1/Ts can become higher than the inverse of the actual
phase response length 1/Tcpm. Moreover, due to the fractional part of Ts
included in Tcpm, a partial overlapping of the phase symbols is present, which
can be identified as an ISI. To illustrate this, the phase response examples
presented in Fig. 5.1 are used to construct the CPM tilted phase trellises in
Fig. 5.2(a), with additional CPM parameters Mcpm = 2, h = 1/4, φ0 = π/4.
Furthermore, the Fig. 5.2(b) displays the normalized power spectral density
(PSD) of this case study. As expected, a longer phase transition leads to a
smaller spectrum occupancy, which can possibly result in a better spectral
efficiency.

5.2 Faster-than-Nyquist CPM Waveform

As known from linear modulation schemes, a faster-than-Nyquist signal-
ing can yield a benefit for the design of zero-crossings [22], which is key for
channels with 1-bit quantization at the receiver. In this section, a new subclass
of CPM waveforms is introduced by using the reformulation described in the
previous section, which provides relatively high, signaling rate and, potentially,
high spectral efficiency at the same time. The illustrated special configurations
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Figure 5.2: Comparison with Mcpm = 2, h = 1/4, φ0 = π/4

of the proposed waveform only require low-complexity at the transmitter and
receiver.

In the sequel the proposed waveform is considered with the rectangular
frequency pulse with duration Tcpm, but the extension to frequency pulses like
raised cosine and or Gaussian pulses can be done in a similar fashion. To go
forward with a faster-than-Nyquist CPM definition, a bandwidth analysis is
performed by using Carson’s rule.

5.2.1 Proof-of-concept with Carson’s Rule

The idea behind the advantages of using a novel FTN-CPM, is the that
CPM signals can be constructed with significantly reduced symbol duration as
compared to standard CPFSK, which convey the same information per time
interval and occupy the same bandwidth. To evaluate this, spectral properties
of CPM signals must be measured. Because of its mathematical tractability,
Carson’s bandwidth criterion, as used in [26, 39], is considered for the proof-
of-concept of an FTN-CPM waveform. The generalized Carson’s Rule states
that the bandwidth of a frequency modulated signal m(t) is described by

Bc = 2(βc + 1)fm, (5-2)

where

βc = h

√
Pm
fm

, (5-3)
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fm is the largest “significant” frequency of m(t), Pm is the power of m(t) and
h is the modulation index. The parameter βc is often referred as the effective
modulation index. To be more precise, fm can be defined to be the one-sided
effective bandwidth of m(t), i.e.,

fm = Pm
2Sm(0), (5-4)

where Sm(f) is the PSD of m(t). From (2-2), the expression of m(t) for CPM
signals can be written in terms of the frequency pulse gf as

m(t) =
∞∑
k=0

αk gf (t− kTs). (5-5)

Then, by following the steps in [39], the power of m(t), using i.u.d. input
symbols, is expressed as

Pm =
M2

cpm − 1
3Ts

∫ LcpmTs

0
g2
f (t)dt. (5-6)

Equation (2-3) implies that
∫ LcpmTs

0 gf (t)dt = 1/2, which can be used in (5-4),
which yields

fm = Pm
2Sm(0) = 6TsPm

M2
cpm − 1. (5-7)

With this, the Carson’s bandwidth in (5-2) for CPM signals can be written as

Bc = 2h
√
Pm + 2fm,

= 2h
√
M2

cpm − 1
3Ts

(∫ LcpmTs

0
g2
f (t)dt

)1/2

+ 4
∫ LcpmTs

0
g2
f (t)dt, (5-8)

which can be reduced for the rectangular pulse shape as follows

Bc = h

Ts

√√√√M2
cpm − 1
3Lcpm

+ 1
LcpmTs

. (5-9)

Apart from that, the phase shape reformulation in (5-1) can also be used for
the rectangular pulse shape in (5-8), which leads to the expression

Bc = h

√√√√M2
cpm − 1

3TsTcpm
+ 1
Tcpm

. (5-10)

As a reference, a standard CPFSK signal shall be considered, whose
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Figure 5.3: 8-symbol CPFSK (a) and three-symbol-period FTN-CPM (b) tilted trellises

parameters are indicated with ′. The reference CPFSK is fully described by
T
′
s , M

′
cpm, h

′ = 1
M ′cpm

, T ′cpm = T
′
s and B′c. Now, it is aimed to construct a FTN-

CPM signal with a shorter symbol duration Ts, such that the ratio T ′s/Ts is
an integer value, as shown in Fig. 5.3. The conveyed information per time
interval is equal for both signals in Fig. 5.3(a) and Fig. 5.3(b) by defining
MT

′
s /Tscpm = M

′
cpm = 8. With this, by using the Carson’s bandwidth in (5-10),

the relation between the bandwidth of the FTN-CPM signal and the reference
CPFSK signal can be expressed as

Bc

B′c
= T

′
s
Ts

h
√√√√M2

cpm − 1
3Tcpm/Ts

+ Ts
Tcpm


1 + 1

M
T ′s /Tscpm

√√√√M
2T ′s /Tscpm − 1

3


−1

. (5-11)

For the case of predefined design parameter T
′
s
Ts

andMcpm, the relation in (5-11)
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Figure 5.4: Equi-bandwidth (Bc/B
′

c) lines due to Carson’s criterion, T ′

s/Ts = 3, Mcpm = 2
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is a function of modulation index h and relative frequency pulse length Tcpm/Ts.
Aiming for a high spectral efficiency for the FTN-CPM signal a low relative
bandwidth (5-11) is promising. An example case is illustrated for T ′s/Ts = 3
and Mcpm = 2 in Fig. 5.4. As can be seen, the bandwidth increase brought by
the higher signaling rate can be compensated by adjustment of the modulation
index h and the length of the frequency pulse Tcpm.

In the sequel the FTN-CPM waveform configurations are detailed which
are promising in the presence of 1-bit quantization at the receiver.

5.2.2 FTN-CPM for 1-bit quantization at the receiver

A widely used waveform design criterion for channels with 1-bit quanti-
zation at the receiver is given by the maximization of distance to the decision
threshold [12]. By assuming that the receive filter g(t) only marginally changes
the signal phase ψ(t) at the receiver, zero-crossings appear whenever the phase
crosses integer multiples of π

2 . Note that the appearance of zero-crossing can
be further improved by adjusting the low-IF [20]. Considering that sampling
rate is equal to the FTN signaling rate, the illustrated FTN-CPM phase tree
on the RHS of Fig. 5.3 is optimal in terms of distance to decision threshold,
i.e., this waveform design relies on maximizing the distances between samples
for the 1-bit quantization problem, which defines four phase levels. The corre-
sponding binary FTN-CPM constellation diagram is shown in Fig. 5.5, which
implies that a zero-crossing conveys the transmit symbol 1 and 0 otherwise. In
order to achieve a spectral efficiency similar to the corresponding conventional
CPFSK waveform, the length of the frequency pulse Tcpm can be increased, cf.
Fig. 5.4, where different cases are examined in the sequel.

Re
{
ejψ(t)

}

Im
{
ejψ(t)

}
01

π
2

ψ(t)

t

(a) Ts

3π
2

π

(b)

0

1

Figure 5.5: Tilted CPM constellation diagram (a) and trellis (b) of the proposed
FTN-CPM with Tcpm = Ts, h = 1/4 and φ0 = π/4
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5.3 A Simple Demodulation

The CPM demodulator has been discussed previously in 4.2.1, from
that, an optimal receiver implemented with the BCJR algorithm becomes
very complex when the modulation order Mcpm and the oversampling factor
M increase. In order to relieve the computational load at the receiver, some
versions of the proposed FTN-CPM scheme can be demodulated with an
alternative simple strategy. The receive strategy for the binary FTN-CPM
case with h = 1

4 , and sufficiently small Tcpm, like Tcpm = 2Ts, only involves the
evaluation of a change in real or imaginary part, depending on the previous
sample yk−1, which can be cast as

x̂k =


1
2 |{Re{yk} − Re{yk−1}|, if yk−1 ∈ {1 + j,−1− j},
1
2 |{Im{yk} − Im{yk−1}|, if yk−1 ∈ {1− j,−1 + j}.

(5-12)

Alternatively, a lookup table can also be constructed to assist the demodulation
process, e.g, the Table 5.1 represents the bit decisions when yk was received,
given that yk−1 was the previous input to the simple demodulator. Fig. 5.6

Yk
yk

1 + j −1 + j −1− j 1− j

yk−1

1 + j 0 1 1 0
−1 + j 0 0 1 1
−1− j 1 0 0 1

1− j 1 1 0 0

Table 5.1: Decision table for the simple receive strategy

illustrates the receiver decisions in a noise-free scenario for Tcpm = Ts in
Fig. 5.6(a), Tcpm = 1.5Ts in Fig. 5.6(b) and Tcpm = 2Ts in Fig. 5.6(c), where
the phase distortion brought by the receive filter is neglected for illustration
purposes. Note that for larger values for Tcpm the noise sensitivity increases.
A special case is given by Tcpm = 2Ts which results in the same number of
equidistant constellation points as the corresponding 8-symbol CPFSK.

5.4 FTN-CPM results and Discussion

Table 5.2 gathers the simulation parameters for all considered CPM wave-
forms. 4-CPFSK [19] serves a standard reference waveform, which provides re-
liable communication without additional coding when considering 1-bit quan-
tization. The same holds for 8-CPFSK [20] which serves as reference waveform
that does not require additional coding for M = 5 and optimized low-IF with
nIF = 0.25. As it was adopted throughout this chapter, the rectangular fre-
quency pulse is used for the CPM-FTN waveform with different durations Tcpm,
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Figure 5.6: Simple receive strategy: decide for 0 (dashed line) and 1 (solid line); Different
FTN-CPM configurations are shown: (a) Tcpm = Ts, (b) Tcpm = 1.5Ts and (c) Tcpm = 2Ts

which goes into accordance with the CPFSK schemes that is aimed to com-
pare it with. Moreover, the proposed FTN-CPM is represented by the running
example from Section 5.2 and 5.3 specified by Mcpm = 2, h = 1

4 . Note that for
the considered FTN-CPM schemes the receive filter is such that noise samples
are uncorrelated and an auxiliary channel law (specified by N) is not required.

Waveform Simulation Parameters

4-CPFSK [19] Mcpm = 4, Lcpm = 1, Tg = 0.5Ts,
h = 1/4, nIF = 0, φ0 = π/4, N = 0

8-CPFSK [20] Mcpm = 8, Lcpm = 1, M = 5, Tg = 0.5Ts,
h = 1/8, nIF = 0.25, φ0 = π/8, N = 0

Proposed FTN-CPM Mcpm = 2, M = 1, Tg = Ts,
h = 1/4, nIF = 0, φ0 = π/4

Table 5.2: Considered waveforms

Similarly to what has been done in the Sections 4.5 and 3.4.1, the receive
filter described by equation (3-27) is selected due to the maintenance of zero
crossings. Additionally, the adjustable power containment bandwidth B90% is
considered, where we refer to 90% power containment as default and use 95%
as an alternative for some cases. For consistency with the previous chapters
simulations, the SNR is defined by

SNR = Es

N0
(TsB90%)−1.

5.4.1 Spectral Efficiency and Effective Oversampling Ratio

The spectral efficiency can be described with the ratio between the
information rate the system can provide and the frequency bandwidth that the
corresponding radio frequency (RF) signal occupies in the spectrum. Referring
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to the 90% power containment bandwidth, it can be represented with

spectral eff. = Ibpcu
B90%Ts

≤ log2Mcpm

B90%Ts
[bit/s/Hz], (5-13)

where Ibpcu is the achievable rate with respect to one symbol duration Ts, which
is computed by applying the methods presented in chapter 3. The effective
oversampling ratio, regarding the bandwidth B90%, is given by

OSR′ = M (B90%Ts)−1 . (5-14)

Table 5.3 displays computed values for effective oversampling factor and
maximum spectral efficiency for the waveforms considered in Table 5.2.

Waveform Tcpm
Ts

M log2 Mcpm
B90%Ts

log2 Mcpm
B95%Ts

OSR′

8-CPFSK [20] 1 5 3.467 2.873 5.778
4-CPFSK [19] 1 4 2.372 1.976 4.744
4-CPFSK [19] 1 2 2.372 1.976 2.372

Proposed FTN-CPM 1 1 2.853 1.983 2.853
Proposed FTN-CPM 1.2 1 3.079 2.176 3.079
Proposed FTN-CPM 1.4 1 3.297 2.359 3.297
Proposed FTN-CPM 1.6 1 3.507 2.544 3.507
Proposed FTN-CPM 1.8 1 3.691 2.720 3.691
proposed FTN-CPM 2 1 3.891 2.881 3.891

Table 5.3: Computed power containment bandwidths and effective oversampling factor

−5 0 5 10 15 20 25 300

1

2

3

4

SNR [dB]

Sp
ec
tr
al

Eff
.[
bi
t/
s/
H
z]

Prop. FTN-CPM, M = 1, Tcpm = 2Ts
Prop. FTN-CPM, M = 1, Tcpm = 1.6Ts
8-CPFSK, M = 5, [20]
Prop. FTN-CPM, M = 1, Tcpm = Ts
4-CPFSK, M = 4 [19]
4-CPFSK, M = 2 [19]

Figure 5.7: Spectral Efficiency with respect to the 90% power containment bandwidth
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Moreover, Fig. 5.7 illustrates the spectrum efficiency with respect to
B90% versus SNR. For this bandwidth criterion choosing Tcpm ≥ 1.6Ts can
yield a higher spectral efficiency as the corresponding CPFSK waveform for
medium and high SNR. When referring to the B95% it is required to choose
Tcpm ≥ 2Ts for approaching the spectral efficiency of the corresponding
CPFSK, cf. Table 5.3.

5.4.2 Bit Error Rate Results

The uncoded BER is shown in Fig. 5.8. The increase of the length of
the frequency pulse Tcpm in the proposed binary CPM reduces the distance
between the constellations points, which results in increased sensitivity to
noise. Different to the 1-bit customized 8-CPFSK [20], the proposed FTN-
CPM shows a BER performance which decreases fast for higher SNR. An
additional highlight is that the proposed simple receiver strategy results in
a BER performance which is almost identical with the performance of the
optimal BCJR-based CPM demodulator especially at medium and high SNR.
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Figure 5.8: BER performance of the considered CPM waveforms
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6 Adaptive Oversampling

Discretizations in sampling and quantization were first carried out in
conventional forms employing a uniform partitioning of the respective domain.
Later on, quantizer designs started to use nonuniform schemes, which would
have the rate-distortion performance improved by taking input data statistics
into account. In Bennett’s work [40], the source probability distribution is
considered to design a nonuniform quantization based on a companding
model. Regarding the time domain, Shannon’s classical uniform sampling
theory detailed in [41] were also extended to nonuniform structures where
the sampling-rate is adapted to an estimation of the signal bandwidth [42].
This idea is explored in [43], where a nonuniform sampling grid was designed
by allocating more sampling time instances to high bandwidth signal time
segments. High-rate quantization studied in [44] is associated with an adaptive
sampling analysis explored in [45], which formulates optimal high-resolution
sampling of one-dimensional signals, based on the MSE criterion.

In this chapter, in order to compensate for the loss in terms of the achiev-
able rate for CPM systems with 1-bit quantization, an adaptive oversampling
with respect to the signal bandwidth is considered. In this context, an MSE-
based nonuniform sampling approach suited for the 1-bit quantized CPM signal
is proposed. As result to the increase of the oversampling factorM , the compu-
tation complexity of the model grows reasonably high due to the exponential
nature of the number of evaluations of the channel output probability, seen in
equation (3-25). The nonuniform sampling scheme presented in this chapter
reduces the complexity of a dense uniform sampling grid scenario by choosing
appropriate samples to compose the model.

6.1 System Model Adjustment

In order to model the adaptive oversampling for the CPM scheme
that was developed throughout this thesis, the discrete-time system model
presented in Fig. 2.6 is adjusted.

Previously in chapter 2, a higher sampling grid has already been con-
sidered with M as the oversampling factor and D as a higher resolution mul-
tiplier. With the adaptive oversampling, the difference consists in replacing
the decimation process for a sample selection strategy that aims to represent
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Figure 6.1: Discrete-time description of the CPM system with 1-bit quantization and
adaptive oversampling at the receiver

the considered nonuniform sampling, covered in this chapter. To illustrate this
idea, the discrete-time system model adjusted for adaptive oversampling is
shown in Fig. 6.1.

Although the general description of the 1-bit quantized CPM signal
is maintained, the nonuniform adaptive sampling needs to be detailed as
part of the model. The adaptive sampling selects Meff samples per symbol
from the filtered received vector, where Meff can be identified as an effective
oversampling factor. Such operation is implemented by multiplying the filtered
signal with the sample selection matrix S, which has dimension Meff(η + 1)×
MD(η + 1), to be in accordance with the CPM discrete model covered in
Section 2.5, and has its representation defined as follows

Si,j =

1 for j = (νi − 1)D + 1,

0 otherwise,
(6-1)

where the vector [ν1, . . . , νMeff(η+1)]T is chosen such that its entries specify the
indexes of the samples that will compose the resulting vector zkk−η, i.e., the
received samples that are input to the 1-bit quantization operation. Therefore,
the received and 1-bit quantized vector ykk−η has a similar representation as
compared to the equation (2-14), where the matrix D is now replaced by the
matrix S

ykk−η = Q
(
zkk−η

)
= Q

(
S G

[√
Es

Ts
e
ψkk−η−Lg + nkk−η−Lg

])
, (6-2)

where, likewise, the quantization operator Q(·) is applied on each element of
zkk−η.

DBD
PUC-Rio - Certificação Digital Nº 1821115/CA



Chapter 6. Adaptive Oversampling 68

6.2 MSE Criterion for Sample Selection

Similarly to what is presented [45], this study adopts a MSE criterion
to assist the decision for sampling times, which are chosen based on the
quantization error averaged over all possible phase transitions. This MSE
analysis is done along one symbol duration of the tilted-phase CPM signal
in a noise free scenario. Let Ψk(τ) the tilted phase description of the CPM
signal in (2-7), 0 ≤ τ < Ts, for a given state s̃k, but with the extra frequency
offset expressed in (2-10), i.e.,

Ψk(τ) = ψ(τ + kTs) + 2πnIF(τ + kTs)/Ts.

With this, the tilted CPM signal that corresponds to the state s̃k is described
by

√
Es
Ts
ejΨk(τ), which is a complex baseband representation of a RF signal,

that has the real and imaginary components separated prior to analog-to-
digital conversion at the receiver. However, to deal with quantization error of
complex valued signals, the absolute value operator | · | is considered in this
analysis. Then the quantization error EQ for both imaginary and real part of
the tilted-phase CPM baseband signal can be expressed as follows

EQ(k, τ) =
√
Es
Ts

∣∣∣∣∣ejΨk(τ) − 1√
2
Q
(
ejΨk(τ)

)∣∣∣∣∣ , (6-3)

where 1√
2Q(·) is the normalized 1-bit quantization operator applied continu-

ously over the symbol period. The Fig. 6.2 illustrates an example of the evalua-
tion of the quantization EQ for two tilted CPM phase transition scenarios, both
starting from the same initial phase. The first one, depicted in blue, has a lower
phase increase along the symbol period Ts, i.e., it represents a lower frequency
component, which causes a smaller number of phase crossings through the
four-phase quantization levels established by the 1-bit quantization process.
On the other hand, the second phase transition scenario, colored in red, corre-
sponds to more quantization-level-crossings due to the higher phase increase.
Moreover, this illustration shows the squared quantization error, displayed on
the top, which indicates optimal sampling time instances when there is a mini-
mum in the graph. However, the receiver does not rely on deterministic signals,
thus the statistics of the CPM symbols must be considered. For a conventional
approach, a uniform distribution is assumed for the input symbols. With this,
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Figure 6.2: Squared quantization error of CPM tilted phase transitions

an MSE concept as function of τ is described with an average denoted by

MSE(τ) = 1
nst

∑
s̃k

EQ(k, τ)2

= 1
nst

∑
s̃k

Es
Ts

∣∣∣∣∣ejΨk(τ) − 1√
2
Q
(
ejΨk(τ)

)∣∣∣∣∣
2

, (6-4)

where nst is the number of all possible states s̃k. The expectation in performing
this MSE evaluation is to identify minima that are relevant, which may be
common for every tilted phase transition scenario. The next section explores
this idea applied to CPM signals with raised cosine frequency pulse shape.
In advance, the Fig. 6.5 represents some phase transitions of CPM signals
with Mcpm = 8, h = 1/Mcpm, φ0 = π/Mcpm, raised cosine as the frequency
pulse (1RC), oversampling factor of M = 11, tilted with the frequency offset
in (2-10) with nIF = 0.25. This scheme is also used to illustrate (6-4) with
Fig. 6.6, where it is possible to identify the best sampling time instances with
the minimum values of the graph.

6.3 Case Study on Raised Cosine Frequency Pulse

As proof of concept, this chapter uses the 1RC frequency pulse, illustrated
in Fig. 6.3 in comparison with the 1REC frequency pulse, as a case study
for two major reasons. First, the use of smooth phase transition reduces the
amount of out-of-band radiation, which is a desirable feature for real-world
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Figure 6.3: Frequency pulse shapes and their phase responses

systems. The second reason, which is a consequence of the first, consists of the
presence of near-zero derivative regions of the phase response at the beginning
and by the end of the phase transition. These regions present a predictable
linear behavior for the tilted phase trellis for every possible phase transition.
When the low-IF variable nIF is adjusted, zero-crossings can be forced onto
those regions. With this in mind, the estimation of an appropriate oversampling
factor M and distance between the sampling time instances dsTs/M , can be
done by rewriting the IF equation in (2-10) as

2π
(
h(Mcpm − 1)

2Ts
+ nIF

Ts

)
= ∆ψ

∆τ = 2πh
dsTs/M

, (6-5)

where ds is a non-negative integer and ∆ψ = 2πh is the minimum phase
increase that would yield crossings through the 1-bit quantization decision
regions, i.e., it is chosen to be the required phase shift that changes an uncertain
phase level to a distinguishable one. Furthermore 2πh is the phase distance
between the phase symbols in time Ts, where the quantization error evaluation
(6-3) is often a minimum, vide Fig. 6.2. Equation (6-5) can be reduced to

2Ts
M

7Ts
M

Ts

π/2

π

3π/2

2π

5π/2

∆τ

∆ψ

∆τ

∆ψ
τ

Ψk(τ)

Figure 6.4: 1RC Tilted phase transitions with Mcpm = 4, h = 1/Mcpm, nIF = 0.75, M = 9
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M

ds
= Mcpm − 1

2 + nIF
h

, (6-6)

where the irreducible fraction M/ds, can be used to describe the nonuniform
sampling adapted to the CPM parametersMcpm, h, nIF. This formulation aims
to reproduce, approximately, the quantization error value in τ = Ts, possibly a
minimum, for other sampling time instances Ts±dsTs/M . This concept can also
be used for other CPM schemes with smooth phase transitions and Lcpm = 1.

The Fig. 6.4 illustrates an example for (6-6), withMcpm = 4, h = 1/Mcpm

and nIF = 0.75, where the ratioM/ds becomes 9/2, which indicates thatM = 9
would be an appropriate oversampling factor and the sampling instances at
2Ts/11, 7Ts/11 and Ts correspond to the samples with less quantization error.
This idea can be reproduced with the case of Fig. 6.5, where M/ds = 11/2,
and verified with the MSE profile in Fig. 6.6. Note that in Fig. 6.5 the samples
at 9Ts/M resolve all the uncertainties brought by the coarse quantization with
the sample at Ts, i.e., it would be possible to reach the log2(Mcpm) = 3 bits per
channel use with an effective oversampling factor Meff = 2, using an adaptive
nonuniform sampling.

2Ts
M

9Ts
M

Ts

π/2

π

3π/2

2π

5π/2

τ

Ψk(τ)

Figure 6.5: 1RC Tilted phase transitions with, Mcpm = 8, h = 1/Mcpm, φ0 = π/Mcpm,
nIF = 0.25, M = 11
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Figure 6.6: MSE profile for the scenario in Fig. 6.5

6.4 Adaptive Oversampling Results

Before presenting the simulation parameters and results, the rest of the
CPM model described so far needs to be consistent with the adjustment made
in Section 6.1. In order to compute the channel output probabilities with the
required multivariate Gaussian integral in (3-19), the random vector zkk−N
is now described by its mean vector and covariance matrix defined by the
following

mz = SG

[√
Es

Ts
e
ψkk−N−Lg

]
, (6-7)

Kz = σ2
nSGG

HST , (6-8)

where S is the sample selection matrix introduced in (6-1). In the sequel the
simulation parameters of the numerical results are presented

The simulations aim to show the benefit brought by the adaptive sam-
pling over the conventional uniform sampling. With this, the considered CPM
waveforms are listed below with their respective simulation parameters:

• 4-CPFSK [19] : 1REC, Mcpm = 4, M = 3, nIF = 0 ;
• 8-CPFSK [20] : 1REC, Mcpm = 8, M = 3 and 5, nIF = 0.25 ;
• 4-CPM (Meff = 2) : 1RC, νMeff = [7, 9]T , Mcpm = 4, M = 9, nIF = 0.75;
• 4-CPM (Meff = 3) : 1RC, νMeff = [2, 7, 9]T , Mcpm = 4, M = 9, nIF = 0.75;
• 8-CPM (Meff = 2) : 1RC, νMeff = [9, 11]T , Mcpm = 8, M = 11, nIF = 0.25;
• 8-CPM (Meff = 3) : 1RC, νMeff = [2, 9, 11]T , Mcpm = 8, M = 11, nIF = 0.25;

all of them with Lcpm = 1, h = 1/Mcpm, φ0 = π/Mcpm, N = 0. Similar
to the simulated waveforms in the previous chapter, the CPM schemes 4-
CPFSK [19] and 8-CPFSK [20] serve as reference waveforms that use uniform
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sampling and 1REC frequency pulse depicted in Fig. 6.3. The rest of the
simulation environment is configured in an analogous way to what is considered
throughout this thesis, i.e., the receive filter is assumed to be the suboptimal
bandpass filter in (3-27) and the SNR definition follows the equation (3-28),
with the 90% power containment bandwidth B90%. Subsequently, results and
discussions for AIR and BER are presented.

6.4.1 Achievable Information Rate

The method to compute a lower-bound on the achievable rate is explored
in Chapter 3, where an auxiliary channel law is introduced. The Fig. 6.7
illustrates how the increase of the effective oversampling factor can benefit
the information rate results for the adaptive oversampling.
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Figure 6.7: Achievable Rate of the considered CPM waveforms
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Figure 6.8: BER performance of the considered CPM waveforms

The advantage can be seen more clearly for the scenarios withMcpm = 8,
where the conventional uniform sampling is outperformed from mid to high
SNR values by the nonuniform adaptive sampling. The results confirm that
based on the adaptive sampling scheme the full rate of 8-CPM signals can be
achieved with 2-fold oversampling (Meff = 2) at high SNR.

6.4.2 Bit Error Rate

All BER results, from Fig. 6.8, has been computed using the BCJR algo-
rithm that implies the auxiliary channel law presented in 4.2.1. In comparison
to uniform sampling, a significant benefit can be observed when using the
adaptive sampling in every considered scenario with the same or less number
of sampling time instances.
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7 Conclusions

Throughout this thesis, new approaches for CPM systems with 1-bit
quantization at the receiver have been developed and studied. In the beginning
of the thesis, the basic concepts about continuous phase modulation and some
concepts from information theory are presented, with the aim to introduce
the environment, part of the system description, for which the developed
schemes rely on. The CPM system is modeled in a discrete-time form with 1-bit
quantization and oversampling at the receiver. With analysis on the mutual
information by considering an auxiliary channel law, a lower-bound on the
achievable rate is computed. With this, the benefits of the oversampling and
the impact of the coarse quantization were identified.

The employment of channel coding was the first idea to be conceived. An
iterative detection and decoding scheme applied to the CPM system with 1-bit
quantization and oversampling at the receiver has been studied. Different code
rates have been considered and it turns out that channel coding is beneficial
in all the cases. The bit error rate performance gain achieved by increasing
the number of iterations of the turbo equalization scheme was not satisfactory,
which stimulated the development of a sub-channel coding scheme. This was
motivated by a deeper analysis of bit-to-symbol allocations that refers to a
state-dependent bit mapping, appropriate for the 1-bit ADC problem. Then,
further improvements on the BER could be obtained by using the proposed
tailored bit mapping strategy in combination with a coding scheme that
considers different binary sub-channels separately.

Afterwards, a subclass of CPM signals is introduced, namely CPM signals
with faster-than-Nyquist signaling. The novel waveform is especially promising
in the context of 1-bit quantization at the receiver, because it provides a
good steering of zero-crossings. By considering Carson’s bandwidth criterion
it is shown that a waveform equivalent to common CPFSK in bandwidth
and information bits per time interval can be constructed by utilizing a
higher signaling rate. Numerical results show superior performance in terms
of spectral efficiency and BER for the channel with 1-bit quantization at the
receiver. The illustrated binary FTN-CPM signal can be detected with an
extremely simple detector with a performance close to MAP detection.

Finally, this study proposes an adaptive sampling technique for CPM
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signals with 1-bit quantization and oversampling. The proposed method selects
appropriate sampling time instances based on an MSE criterion, which is
related to the quantization error. It was shown that the frequency offset can be
adjusted to induce zero-crossings and minima for quantization error. The RC
frequency pulse is adopted as case study due to the smooth phase transitions.
Numerical results show that the corresponding receiver with nonuniform
sampling provides a better BER performance as compared to receivers with a
higher complexity that use uniform sampling.

Future Work

Based on the observations and results obtained in this thesis, a wide
range of future topics emerges. Regarding the iterative detection and decoding
scheme presented in chapter 4, it would be interesting to evaluate additional
results for modern channel coding techniques, e.g., LDPC and Polar Codes.
Moreover, an IDD scheme is often suitable for a faster-than-Nyquist approach
to mitigate the effects of ISI, i.e., the combined ideas presented in chapters 4
and 5 are worth investigating. Furthermore, in order to extend the concept to
other frequency pulse shapes, a stronger criterion for adaptive oversampling,
presented in chapter 6, needs to be developed. This work has considered 1-
bit quantization with continuous phase modulation because of the energy and
spectral efficiency combination in both transmit and receive chains. To leverage
energy efficiency to modern communication systems with high data rate
and multiple antennas, 1-bit quantization combined with constant-envelope
modulations in a MIMO scenario should be investigated.
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