
Elias Fukim Lozano Ching

A geometric algorithm to generate random
polydisperse dense arrangements of non

over-lapping disk particles

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Marcelo Gattass

Rio de Janeiro
August 2020

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Elias Fukim Lozano Ching

A geometric algorithm to generate random
polydisperse dense arrangements of non

over-lapping disk particles

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee.

Prof. Marcelo Gattass
Advisor

Departamento de Informática – PUC-Rio

Prof. Anselmo Antunes Montenegro
Departamento de Ciência da Computação – UFF

Prof. Creto Augusto Vidal
Departamento de Ciência da Computação – UFC

Dr. Rodrigo de Souza Lima Espinha
Instituto Tecgraf – PUC-Rio

Prof. Waldemar Celes Filho
Departamento de Informática – PUC-Rio

Rio de Janeiro, August 14th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

All rights reserved.

Elias Fukim Lozano Ching

Graduated from the Universidad Nacional Mayor de San
Marcos (UNMSM) in Systems engineering. Master in

Informatics by the Pontificial Catholic University of Rio de
Janeiro (PUC-Rio)

Bibliographic data
Lozano Ching, Elias Fukim

A geometric algorithm to generate random polydisperse
dense arrangements of non over-lapping disk particles / Elias
Fukim Lozano Ching; advisor: Marcelo Gattass. – 2020.

116 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2020.

Inclui bibliografia

1. Informática – Teses. 2. Empacotamento de partículas.
3. Frente de avanço. 4. Algoritmo geométrico. 5. Malha
DEM inicial. I. Gattass, Marcelo. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

To Doris Ching, my mother.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Acknowledgments

I would first like to thank my advisor, Prof. Marcelo Gattass, for providing
invaluable guidance and feedback throughout this research.
I thank Tecgraf/PUC-Rio Institute, for the financial support, without which
this work would not have been realized.
Last but not least, I would like to thank my family, my parents, Doris and
Elias; my brothers, Kiway and Jou; and my niece Camila for their support
and encouragement.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Abstract

Lozano Ching, Elias Fukim; Gattass, Marcelo (Advisor). A geo-
metric algorithm to generate random polydisperse dense
arrangements of non over-lapping disk particles. Rio de Ja-
neiro, 2020. 116p. Tese de Doutorado – Departamento de Informá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

This work aims to present a new strategy for the non-overlapping
disk packing problem to generate dense random assemblies. The geometric
algorithm adopts an advancing front approach that uses new heuristics to
determine the next positions for the incoming particles with the support of a
polygonal mesh. Furthermore, we propose relocation schemes to improve the
packing at the pack’s interior and near the container borders. Experiments
prove that our algorithm outperforms previous results, w.r.t the desired
particle radii distribution function and increases the packing density and mean
number of particle contacts.

Keywords
Particle packing; Advancing-front approach; Geometric algorithm; Initial

DEM mesh.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Resumo

Lozano Ching, Elias Fukim; Gattass, Marcelo. Um algoritmo
geométrico gerador de arranjos polidispersos densos de
discos sem sobreposição. Rio de Janeiro, 2020. 116p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

O objetivo deste trabalho é apresentar uma nova estratégia para o
problema de empacotamento de discos sem sobreposição para gerar arranjos
aleatórios densos. O algoritmo geométrico adota uma abordagem frente de
avanço que, com o apoio de uma malha poligonal, utiliza novas heurísticas
para determinar as próximas posições para as próximas partículas. Além disso,
propomos esquemas de realocação para melhorar o empacotamento no interior
do arranjo e perto das bordas dos objetos arbitrários que contêm as partículas.
Os resultados provam que nosso algoritmo pode superar trabalhos anteriores,
não apenas com a função de distribuição de raios de partículas desejada, mas
também aumentando a densidade de empacotamento e o número médio de
contatos.

Palavras-chave
Empacotamento de partículas; Frente de avanço; Algoritmo geométrico;

Malha DEM inicial.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Table of contents

1 Introduction 18
1.1 Motivation 18
1.2 Two-dimensional random disk packing 20
1.3 Goals 21
1.4 Contributions 22
1.5 Organization 23

2 Previous Work 24
2.1 Geometric separation methods 25
2.2 Apollonian based methods 26
2.3 Mesh based methods 26
2.4 Advancing front methods 27
2.5 Mesh support in disk packing 30

3 Topological and Spatial Data Structures 35
3.1 Particle grid index 35
3.2 Polygonal mesh 37
3.3 Boundary detection 44

4 Particle generation 50
4.1 Outward strategy 50
4.2 Metrics 54

5 Packing improvements 58
5.1 Internal strategy (IS) 58
5.2 Outer loop strategy (OLS) 60
5.3 Boundary strategy (BS) 66

6 Results 69
6.1 Geometric characteristics 69
6.2 Algorithm variants 71
6.3 Analysis of the front removal parameters 72
6.4 Monodisperse and bidisperse arrangements 73
6.5 Variants comparison 75
6.6 Analysis of the OLS 81
6.7 Analysis of the BS 83
6.8 Stability tests 84
6.9 Benchmark with other approaches 85
6.10 Complex geometries 91

7 Conclusions 100
7.1 Future work 102

Bibliography 104

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

A Mesh operations 113

B Distance field for simple geometries 114

C Flowcharts 115

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

List of figures

Figure 1.1 DEM application examples. 19
Figure 1.2 Regular packings. 20
Figure 1.3 In 2D, disks tend to form hexagonal patterns. (Source:

[Aste et al. 2005]) 21

Figure 2.1 Categories of geometric methods. 25
Figure 2.2 Wang’s advancing front pack (modified from

[Wang et al. 2007]) 30
Figure 2.3 Liu’s front loops (modified from [Liu 2008]) 31
Figure 2.4 Liu’s pack and mesh triangulation (modified from

[Liu 2008]) 31
Figure 2.5 Benabbou’s packs produces packs with heterogeneous

local density (modified from [Benabbou et al. 2008]) 32
Figure 2.6 Liu’s local Delaunay Tessellation (modified from

[Liu et al. 2012]) 33
Figure 2.7 Spetch’s contact matrix (modified from [Specht 2015]) 33

Figure 3.1 Neighborhood box logic around the current front. 36
Figure 3.2 Four particles, connected through four edges, define an

irregular quad. 37
Figure 3.3 Left-hand rule criterion. Starting a path from A → B,

the criterion closes the polygon ABCD. 39
Figure 3.4 Insertion on the outer loop. 40
Figure 3.5 Sequence of polygon search for three iterations. 41
Figure 3.6 Insertion in the outer loop (Continuation). 41
Figure 3.7 A polygonal mesh created along with a small pack. 42
Figure 3.8 Insertion in polygons. a) The particle F is placed inside

the pentagon ABCDE. b) A temporal graph with the new
contacts and the polygon. 43

Figure 3.9 Insertion in polygons. a) The left-hand rule finds two
paths. b) The insertion yields two new polygons FDEAB and
FBCD. 43

Figure 3.10 Particles A and C are boundary vertices until the inser-
tion of particle H. The VertexStar(A) procedure returns the
particles B, C, D and E. 44

Figure 3.11 Tree subdivision – Dragon head. 48
Figure 3.12 Signed distance field – Dragon. 48
Figure 3.13 Slice of Micro-CT Sand pack LV60C. In black the solid

phase and in white the porous space. 49
Figure 3.14 Signed distance field – Solid phase in a slice of Micro-CT

Sand pack LV60C. 49

Figure 4.1 Placing a particle in contact with two other particles. 52
Figure 4.2 Particle B yields a single candidate position. Particle C

yields two positions. Particle D and E do not generate points 52

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Figure 4.3 Geometric position of the candidate points product of
the intersection of both halos. 53

Figure 5.1 The maximum size of a disk tangent to the particles A
and B depends on the closest third particle C. 59

Figure 5.2 A pentagon formed by particles ABCDE with three
Soddy circles without collisions. 59

Figure 5.3 OLS Example 1. Withdrawal step. 61
Figure 5.4 OLS Example 1 (Continuation). Good relocation with

twelve triangles. 66
Figure 5.5 OLS Example 2. Bad relocation. 67
Figure 5.6 Border treatment example – First iteration. 67
Figure 5.7 Border treatment example – Second iteration. 68

Figure 6.1 Frequency histogram. 72
Figure 6.2 Front removal logic 73
Figure 6.3 Monodisperse pack inside a circle of 10u radius with disks

of radius 0.25u with a refilling procedure (0.15u minrad). 74
Figure 6.4 Bidisperse pack of instance N◦35 – Radius and contact

frequencies. 74
Figure 6.5 Bidisperse pack of instance N◦35 – Ratio 1:1.4 75
Figure 6.6 Uniform packs inside a rectangular container with three

variants using the same data set. 76
Figure 6.7 Lognormal packs inside a circular container with four

variants using the same data set. 77
Figure 6.8 Log-normal packs inside a circular container with four

variants using the same data set (continuation). 77
Figure 6.9 Verification of radius frequencies and contact orienta-

tions for the log-normal test with AFMeshOLSIS 78
Figure 6.10 Variant comparison with different ratios. 78
Figure 6.11 Particles (N) vs Time(s) for 1:2 and 1:3 ratios. 79
Figure 6.12 Particles (N) vs Time(s) for the 1:4 ratio. 80
Figure 6.13 Particles (N) vs Time(s) for 1:5 and 1:6 ratios. 80
Figure 6.14 Clustering of algorithm’s outputs. 82
Figure 6.15 Clustering of algorithm’s outputs (continuation). 82
Figure 6.16 Clustering of algorithm’s outputs (continuation). 83
Figure 6.17 Border improvement. From top to bottom Brmin= 0.20,

0.10, 0.08, 0.06, 0.04. Added particles in cyan. 84
Figure 6.18 Experiment with Brmin. 84
Figure 6.19 Initial packs for simulations 85
Figure 6.20 Final packs after simulations. 85
Figure 6.21 Comparison 1 – Pack and mesh 87
Figure 6.22 Comparison 2 – AFMeshOLSIS instance N◦4 88
Figure 6.23 AFMesh pack densification with IS (post process) + BS

using Brmin= 0.065. IS and BS particles are in red and cyan
respectively. 91

Figure 6.24 Zhang’s slope model. 92
Figure 6.25 Zoom at the slope model. Pack and mesh. 92
Figure 6.26 Slope model – Radius frequencies. 92

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Figure 6.27 Dragon model. 93
Figure 6.28 Merging two fronts. Active fronts in red. 93
Figure 6.29 Dragon detail. Added particle with the BS improvement

in cyan. 94
Figure 6.30 Octopus model 94
Figure 6.31 Octopus detail. 95
Figure 6.32 Octopus detail (Continuation). 95
Figure 6.33 Extracted models. 97
Figure 6.34 Extracted models (Continuation). 97
Figure 6.35 Pack on images. 98
Figure 6.36 Pack on images (Continuation). 98
Figure 6.37 LV60C and carbonate pack zooms. 99
Figure 6.38 Berea and ketton pack zooms. 99

Figure C.1 Packing algorithm flowchart. 115
Figure C.2 Radius rejection and front removal logic. 116

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

List of tables

Table 3.1 Distance field - Models. 47

Table 6.1 Bidisperse packs with AFMeshOLS – Average of 100
instances. 74

Table 6.2 Uniform pack results summary. 76
Table 6.3 Lognormal pack results summary. 76
Table 6.4 Combination of relocation triggers in 16 scenarios. 81
Table 6.5 Boundary strategy results varying the Brmin value. 83
Table 6.6 Benabbou desired frequencies 86
Table 6.7 Our frequencies with the highest and lowest chi-square

value. 86
Table 6.8 Comparison 1 – Summary of 100 instances. 86
Table 6.9 Comparison 2 – Literature results. 87
Table 6.10 Comparison 2 – AFMeshOLS – Summary of 100 instances. 88
Table 6.11 Comparison 2 – AFMeshOLSIS – Summary of 100 instances. 88
Table 6.12 Comparison 2 – Polygon count of AFMeshOLSIS instance

N◦4. 89
Table 6.13 Comparison 2 – Relocations and front logic output data. 89
Table 6.14 Comparison 3 – Literature results. 90
Table 6.15 Comparison 3 – Densification results. 90
Table 6.16 Dual contouring inputs and outputs. 96
Table 6.17 Summary of rock image packing. 96

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

List of algorithms

1 ADF construction 47

2 Assembly Generation Algorithm 55
3 HandleFrontRemoval 55

4 ProcessFronts(newFronts, Lp) 63
5 SearchCandidates(f, lp, ToRemove, candidates, bestCandidate) 64
6 Update(newParticle, fronts, Lp, candidates, bestCandidate) 64
7 Relocate(pack, grid, mesh, fronts, Lp) 65

8 Circle distance field 114
9 Rectangle distance field 114

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

List of Symbols

N – Number of particles in the pack

rmin – Minimum radius in the pack

rmax – Maximum radius in the pack

PDF – Distribution function for the radii creation

rnew – Radius for the new particle

rcurr – Radius of the current particle in the loop

rhalo – Radius of the halo of a particle

δbox – Size of the neighborhood box

qnr – Queue of newly rejected radii

qpr – Queue of previously rejected radii

DF – Distance to first metric

IN – Inside outer loop metric

NP – Number of polygon metric

PS – Polygon size metric

ψp – Number of sides of a polygon

ADF – Adaptively distance field

OLS – Outer loop relocation strategy

IS – Internal insertion strategy

BS – Boundary insertion strategy

Brmin – Minimum radius used in the BS strategy

AF16 – The algorithm described in Lozano et al. 2016

AFMesh – Current algorithm with the new heuristics

AFMeshIS – The AFMesh algorithm with the IS improvement

AFMeshOLS – The AFMesh algorithm with the OLS improvement

AFMeshOLSIS – The AFMeshOLS algorithm with the IS improvement

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

AFMeshOLSISBS – The AFMeshOLSIS algorithm with the BS improvement

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

A complex structure is the result of and to a
large extend the records of its past.

Cyril Stanley Smith (1903-1992), The pursuit of perfect packing.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

1
Introduction

Granular materials are ubiquitous in nature. For the last decades, it
has been a topic of active research from different perspectives due to its
academic and industrial importance. The research scope ranges from mining,
3d printing, to pharmaceutical processing. Depending on the research area,
granular material varies from small scales as molecules, to dust, even up to
celestial bodies.

Among the numerical methods that study granular materials, there is
the Discrete Element Method (DEM) formulated by [Cundall et al. 1979]. The
method assumes that granular medium, within a domain, can be represented
by a large set of individual particles. Particles can be modeled with different
sizes and shapes, but are commonly represented by disks in 2D or spheres in
3D. The particles interact with each other, and the method predicts positions,
velocities, accelerations, and contacts of all the particles by solving Newton’s
equations of motion.

1.1
Motivation

The DEM has a wide range of applications. Among the re-
cent, we identify a few: modeling of grinding wheels [Osa et al. 2018];
modeling of brittle elastic materials [Nguyen et al. 2019]; simulation of
ice floes and floating structures [Liu et al. 2018]; synthetic rock mass
modeling [Vallejos et al. 2016]; manufacturing process simulation in
the pharmaceutical industry [Yeom et al. 2019]; modeling fracture in
rock [Azevedo et al. 2013]; bi-dimensional simulation of scree-slope dy-
namics [Bithell et al. 2014]; simulation of earthquake surface fault rup-
ture [Taniyama 2017, Garcia 2018]; simulation of sheared granular fault
systems with a two-dimensional DEM combined with FDEM [Gao et al. 2018];
tissue modeling with deformable cells [Gardiner et al. 2015]; modeling
polyethylene pipes subjected to axial ground movement [Meidani et al. 2018];
simulation of damage evolution in coatings under uniaxial substrate ten-
sion [Ghasemi et al. 2020]; study of the mechanics of two-dimensional nanopar-
ticle assemblies [Marchi et al. 2019].

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 1. Introduction 19

1.1(a): Scree-slope dynamics (modified
from [Bithell et al. 2014]).

1.1(b): DEM with X-ray µ-
CT images (modified from
[Nitka et al. 2018]).

1.1(c): Deformable cells modelling (modified from
[Gardiner et al. 2015]).

Figure 1.1: DEM application examples.

Regardless of the application, the first step in a DEM simulation is the
generation of the particle specimen (a packing is defined by a set of positions
and radii within the domain of simulation). The initial arrangement must
comply with some requirements, such as the radial distribution, volume density,
geometric isotropy, and homogeneity to be useful in realistic simulations.

There are two main approaches to this initial step. The first contemplates
the filling of the space with the DEM simulation itself. The disadvantage of this
approach lies on the inherent computational complexity. A simulation could
take hours or days for a required time step and number of particles that can
reach the order of millions.
The second approach generates the specimen with geometric procedures. While
the static algorithms do not always guarantee completely stable arrangements,
they are faster than the dynamic methods in several orders of magnitude,
especially when handling complex containers and particles with a high detail
such as irregular polygons or polyhedron. Besides, they are better capable of
controlling geometrical properties such as radii size distribution and porosity.

Geometric algorithms have been proposed for DEM applications for the
last two decades. Currently, there is still ongoing research on the subject due to
its importance in engineering applications. The research pays attention to the
generation of samples with a high number of particles with lower computational
time. In this work, we focused on the generation of disk particles, a common
particle shape simplification used in the literature.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 1. Introduction 20

1.2
Two-dimensional random disk packing

For centuries, mathematicians and physicists have been studying how to
efficiently pack spheres or circles to maximize the occupied volume or area.
There are three types of disk packing of equal size forming regular tes-
sellations composed of triangles, squares and hexagons. Each one reach-
ing a density of π√

12 ' 0.906..., π
4 ' 0.785... and π√

27 ' 0.604... respec-
tively [Weaire et al. 2008].

1.2(a): Triangle tiling. 1.2(b): Square tiling.

1.2(c): Hexagon tiling.

Figure 1.2: Regular packings.

The maximum density, the fraction of the space covered by the particles,
in 2D for circular packings, with a valence of six for each disk, is

π√
12
' 0.9069

Joseph Louis Lagrange proved the maximum density for this type of configu-
ration in 1773 but did not consider other non-lattice arrangements. Axel Thue
proposed his theorem about the subject in 1890, but his proof was not accepted
as it was found to be incomplete. Finally, the Hungarian mathematician Lás-
zló Fejes Tóth provided the first complete proof for the general circle packing
problem in 1940 [Chang et al. 2010].

Even though some natural elements present hexagonal or face-centered
cubic packs [Weaire et al. 2008], they are not used for simulation of granular
matter.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 1. Introduction 21

A packing process is said to be random if it does not favor any spe-
cific region of the uncovered part of the domain when adding a new parti-
cle [Ebeida et al. 2016].

The term “closed packed” implies that the particles are placed within
a given domain with the highest possible number of contacts with other
particles on average, a property also called as the mean coordination number
[Torquato et al. 2000].

[Berryman 1983], among other works, predicted a maximum density of
ρrcp ' 0.82 for random close packings (rcp). [Atkinson et al. 2014] proved the
existence of a maximally random jammed packing (MRJ, a concept introduced
by [Torquato et al. 2000]) with a density of ρ ' 0.826 using a sequential linear
programming algorithm.

In practice, disordered packings of monodisperse disks are difficult to
investigate in 2D. Even for a large number of particles, there is a strong
tendency to obtain crystal formations. Therefore, to study random packing
in 2D, we use bidisperse, or polydisperse arrangements, a mixture of disks of
different radii. Such randomly packed non-uniform mixtures are usually stable
against ordering.

In the case of bidisperse packing, simulations have proven a maximum
density ρrcp ' 0.842 for a ratio of 1.4 [O’Hern et al. 2002, Donev et al. 2004,
Henkes et al. 2007, Meyer et al. 2010].

Figure 1.3: In 2D, disks tend to form hexagonal patterns. (Source:
[Aste et al. 2005])

1.3
Goals

The main goal of this work is to propose a new dense particle generation
method based on an advancing front method approach to pack disk particles,
from now on referred to as particles, following a given radii probability distri-
bution function inside arbitrary domains represented by connected segments.
To accomplish this, we identified the following specific objectives:

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 1. Introduction 22

– Construct a polygonal mesh along with the particle generation. The
resulting polygons will allow us to characterize the void space of the
whole pack at every iteration.

– Propose new heuristics to determine the next particle’s position that not
only encourages a compact generation but also seeks to increase contacts
between particles.

– Define new strategies to improve the particle positions to increment the
packing density during and after the generation using additional infor-
mation provided by the auxiliary structures. Among the improvements,
we contemplate a local optimization, insertions anywhere in the pack,
and boundary contact improvement.

– Handle domains with complex non-convex geometries with holes and
composed with more than one component.

1.4
Contributions

In a previous work, we proposed a fast 3D sphere package generator
called (Packgen) [Lozano et al. 2016]. To test this idea in practical cases, we
collaborate with Marcelo Sampaio de Simone Teixeira and Prof. Deane Roehl
in applying Packgen as the first step in a DEM simulation. This work resulted
in a paper entitled “The influence of sample generation and model resolution on
mechanical properties obtained from DEM simulations” that was submitted to
the Computers and Geotechnics Journal 1 and is currently under review. This
paper’s development reinforced the importance of increasing the coordination
number and the number of particles in the pack. Given the difficulty of
achieving these goals, we decided to start this evolution in the 2D space.

The current work introduces a polygonal mesh where the edges represent
particles in contact. This introduction of the mesh brought new metrics, such
as the number of sides in the polygons. The use of these metrics yielded a
small improvement in the packing density and allowed new strategies for the
progression of the front procedure. These strategies significantly improve the
geometric properties of the arrangements while maintaining good computa-
tional time. They are the main contribution of this thesis.

1https://www.journals.elsevier.com/computers-and-geotechnics/

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 1. Introduction 23

1.5
Organization

This thesis is structured as outlined below.
In Chapter 2, it is introduced some of the most relevant work related to

the disk and sphere packing problem. Related methods are classified into four
types of geometric approaches. The chapter also identifies the methods that
use topological meshes in the context of particle packing.

In Chapter 3, the topological and spatial structures essential for our
method are introduced. First, a grid index for the neighbor and contact search
is detailed. Second, it is explained the construction of a polygonal mesh along
with the particle generation. The last section describes an adaptive distance
field implementation to handle the packing of complex geometries.

In Chapter 4 it is described the core of the advancing front approach. The
chapter introduces new metrics to decide the next positions for new particles
using the polygonal mesh’s information.

In Chapter 5, three strategies to improve the packing are presented.
The first strategy describes how to improve the packing inside polygons. The
second strategy details how to optimize the packing procedure at the borders
of the pack. The last procedure improves the packing near the borders of the
container.

Chapter 6 presents the results for the proposed method and the different
adopted strategies in different scenarios. The chapter analyzes the geometric
properties of the packs employing diverse particle sizes. A comparison to other
methods, through reproducible test scenarios, is given. The last section shows
the results for complex geometries.

Finally, in Chapter 7, it is given a summary of the problems and solutions
presented in this thesis. The chapter concludes with a list of potential future
work.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

2
Previous Work

Packing algorithms in the literature are mainly classified into two cate-
gories: dynamic and constructive.

The dynamic approach uses physical simulations to create the parti-
cle assemblies (such as event-driven or a DEM simulation). One group of
these simulations uses a multi-layer deposition to progressively fill the do-
main with particles, letting them interact with each other according to the
Newtonian equations of motion [Jian et al. 2003, Campello et al. 2016]. An-
other group adopts a rearrangement technique, by a concurrent generation
of particle positions within the domain. Then, assigns them an initial veloc-
ity and continually increases their sizes until a stable arrangement is reached
[Lubachevsky et al. 1990].
These algorithms yield satisfactory results regarding producing stable arrange-
ments with higher densities and coordination number, and providing contact
force information for every particle. However, their drawbacks are the same
ones inherent to any DEM implementation: They are computationally inten-
sive and time-consuming. E.g., [Bagi 1993] proposed a depositional method
that can take up to 139 hours to generate 39,000 disk particles. This limita-
tion restricts the number of particles in the arrangement. Moreover, with a
dynamic algorithm, it is hard to control packing properties, such as density.
Dynamic approaches are impractical in situations where particles are needed
in the order of millions, and also when research requires more than one
random assembly, with the same porosity and grain size distribution. E.g.,
[Van der Linden et al. 2016] generates 536 packings of spherical particles to
study the relationship between fluid flow and the internal pore structure.

Constructive approaches are based solely on geometrical computations,
and for this reason, they are also known as “geometric methods”. Therefore,
they are more efficient in terms of execution time (in several orders of
magnitude) and yield better control package properties, such as the particles’
radius size distribution or the final porosity within the domain. They also
can create arrangements without overlaps, resulting in stress-free packs. On
the other hand, they are not always in equilibrium under gravitational forces
because of the pure geometric criteria.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 25

The majority of the literature’s geometric methods can be classified into
four main subcategories: geometric separation, Apollonian based, mesh-based,
and advancing front.

2.1(a): Geometric separation (modi-
fied from [Labra et al. 2009]).

2.1(b): Apollonian-based (modified
from [Bonneau et al. 2020]).

2.1(c): Mesh-based (modified from
[Zhang et al. 2020]).

2.1(d): Advancing front (modi-
fied from [Bagi 2005]).

Figure 2.1: Categories of geometric methods.

2.1
Geometric separation methods

Methods in this category iteratively modify the position of a set of parti-
cles. [Labra et al. 2009] presents an optimization algorithm to improve parti-
cle assemblies in order to obtain dense configurations. Labra uses the Stienen
model [Stoyan98], a fast geometrical algorithm that generates a non-dense set
of stationary Poisson points to then proceed with the void space minimization
obtaining a dense pack inside a finite element mesh. The package optimization
considers the minimization of the distances between particles and the distance
between particles and the boundaries.
[Lopes et al. 2020] proposed an algorithm in 2D to fill arbitrary shapes with
given particle size distributions and prescribed filling ratio, ensuring homogene-
ity for the spatial distribution. Their work reproduces granular models’ charac-
teristics, like soils, and uses the experimental data used by [Frery et al. 2012]
to validate the results. The method starts with the random insertion of parti-
cles in the domain and then, with a geometric separation mechanism, reduces
the overlapping iteratively by displacing the disks. To further reduce the over-
laps, the algorithm also relocates and removes some particles. These particles

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 26

are re-inserted to low filling rate areas. To avoid the filling rate error caused
by the permanent removal of particles, they propose using a response surface.

2.2
Apollonian based methods

The Apollonian packing is a fractal generation method that initially
places three tangent disks, each tangent two the other two. The method re-
peatedly places disks in the largest possible circular hole from the remaining
empty space [Borkovec et al. 1994].
[Weller et al. 2010] introduced the “Protosphere” algorithm based in the Apol-
lonian sphere packing to fill arbitrary objects with non-overlapping spheres.
The method fills models with spheres as big as possible that can be placed in
the empty regions. For a random point, named as a “prototype”, the method
defines the final position and radius of the point based on an optimization
process that pushes it away for the closest particle or boundary. A particle dis-
placement reduction guarantees the convergence of the process. The method
defines a grid of cells to accelerate the particle insertion, and for each cell
creates a “prototype”. Then, in parallel, it let the points converge inside their
respective cells. The algorithm inserts the particle with the biggest radius. The
grid of prototypes is updated to continue again with a new convergence step.
The algorithm ends as soon as the pack reaches a given maximum number of
sphere particles.
[Teuber et al. 2013] extends Weller’s method with an adaptive grid approach
for the prototype cells to improve performance.
Recently, [Bonneau et al. 2020] proposed an algorithm for generating mechan-
ically sound sphere packings in geological models that solve the drawback of
the “Protosphere” algorithm for uniform distributions between [rmin - rmax].
Their optimization process differs by minimizing the distance to other particles
instead of maximizing it.
The main disadvantage of these methods is that they follow a greedy insertion
and cannot follow a given arbitrary radii distribution function.

2.3
Mesh based methods

The second group of constructive algorithms focuses on the generation of
particles inside non-trivial domain boundaries defined by triangular or tetra-
hedral meshes. These methods exploit the internal structure (vertices, edges,
and faces) to place new particles.
[Cui et al. 2003] developed a relatively fast and simple method to generate

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 27

packs of spheres. The method starts by creating random points inside the
domain. Then, using these points, triangles (or tetrahedrons in 3D) are con-
structed using a Delaunay triangulation (Qhull algorithm [Barber et al. 1996]).
Then, a single circle (sphere) is inserted in the position of the “inscribed cir-
cle” (“inscribed sphere”) of each triangle (tetrahedron). Finally, new circles or
spheres are placed on the vertices of the respective elements without collisions.
As a result, the pack quality depends on the tetrahedralization algorithm;
regular tetrahedra achieve higher particle contacts, and higher densities are
obtained using more initial points. A derivation of this work is the algorithm in-
troduced by [Jerier et al. 2009, Jerier et al. 2010] to create polydisperse sphere
packs within tetrahedral meshes. They define a geometric procedure to place
particles on nodes and in the middle of the edges; next, adds new particles
in contact with four near particles. In the first version [Jerier et al. 2009], an
inversion function is used, and in the second [Jerier et al. 2010] version, an
equation system is used. An inconvenience related to the tetrahedron approach
is the size of the pack radii. New tetrahedrons or triangles need to be generated
to obtain a new pack with a different radius range. These works experiment
with meshes that models open-pit mines with benches (1,000,000 spheres) and
meshes obtained from portions of tomographies of porous ceramic.
Recently, [Zhang et al. 2020] presented two geometric algorithms modifying
the Cui’s method to improve the coordination number of disk particle ar-
rangements within triangular meshes. The first algorithm places one disk per
triangle. However, unlike Cui’s method, it does not always compute the triangle
in-circle. It looks to generate a circle in contact with disks in the adjacent trian-
gles if they exist. The second algorithm has the same logic but inserting three
disks per triangle. The system of equations is solved with the Newton-Raphson
method. The method also performs a vertex filling procedure to place particles
at the triangles’ vertices using the biggest particle in contact with three disks
in the neighborhood around the vertex.
A disadvantage of this category of packing algorithms is the dependence of a
mesh generator to pack a free form domain. Besides, the particle radii distri-
bution depends on the quality of the given mesh.

2.4
Advancing front methods

The advancing front technique was initially employed in mesh generation
procedures [Lo 1985]. For the particle generation problem, the strategy itera-
tively places new particles in contact with previously inserted particles. They
compute the new particles’ positions using the information of local regions of

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 28

the recently formed pack. The fronts are updated, either by removing or adding
elements until there are no more fronts to process.

2.4.1
Outward expansion

In one of the first constructive algorithms, [Feng et al. 2003] presents an
advancing front approach to obtain disks’ arrangements. The proposed “closed
form” starts with the placement of three particles in the center of the domain.
Then, for each front (a segment connecting two particles), a new disk is placed
in contact with two disks. Newly formed segments connecting the new particle
are added to the front list. The algorithm ends when there are no more seg-
ments to process. [Feng et al. 2003] also proposed a second method, the “open
form”. It begins the packing from the bottom to the top of the container and
mainly differs from the previous method in that the front of segments is not
closely connected. Later, [Zsaki 2009a, Zsaki 2009b] defines a similar method
to create disks layer by layer from the bottom. It even explores the parallel
generation of packs by subdividing the domain into subdomains.
Feng’s “closed form” approach that starts the packing inside the domain to
the frontiers is later known as the “outward packing method” and variations
are widely used in the literature.
[Liu et al. 2012] proposed the “seed expansion method”. Using a local Delau-
nay tessellation (Qhull algorithm [Barber et al. 1996]) and a distance function
with boolean operations on simple geometries, the package assigns a level num-
ber to the particles generated in each layer and use a given number of layers
as the fronts. With this criterion, the method is capable of inserting particles
inside the pack restricted to the last generated layers.
[Lozano et al. 2016] developed an algorithm (Packgen1) to create random par-
ticle assemblies of a given sphere size distribution function within volumes of
arbitrary shape. In every iteration, the algorithm uses the sphere at the top
of the queue of front spheres to compute new positions using a radius size
retrieved from the radii generator. This queue is updated with the insertion
of new particles and the removal of front spheres that cannot generate more
candidate points. The process continues until the queue of fronts is empty. The
computation of the new position uses the halo concept of [Ferreira 2009].
A disadvantage commonly described by the outward advancing front meth-
ods is the poor placement of particles near the boundaries. Recently,
[Dong et al. 2020] extended the work of Feng by developing a strategy to solve
the gap between disk particles close to the frontiers of the container by defin-

1https://git.tecgraf.puc-rio.br/elozano/packgen

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 29

ing a critical distance D. When the distance from a particle’s center to the
container is within D, the particle radius is adjusted to create a contact with
the boundary.

2.4.2
Inward expansion

[Bagi 2005], on the other hand, proposed the “inwards packing method”,
for rectangular domains to create particles from the domain frontiers to its
center. The method starts by placing disks in a continuous chain in contact
with the walls. This initial set is known as the “initial front”. For a current front
particle, the method looks for a new particle in contact with two previously
inserted disks. The neighborhood is the set of particles preceding and following
the current front along the front chain. Based on this strategy, [Ferreira 2009]
also designed an algorithm to pack disks based on an initial front composed
of circles representing rectangular and circular containers. Ferreira introduced
the concept of “particle halo” as a geometric support to compute candidate
positions for the new disks. Also, the method combines the packing with a
genetic algorithm to obtain arrangements with desired porosity.
[Benabbou et al. 2008, Benabbou et al. 2009] presented another variation of
inward packing that initially places particles within the container and in
contact with the walls. Consequently, the front initially representing the
domain is a set of segments in 2D and triangles in 3D. Then, new particles are
inserted tangent to the other spheres, and the front list is updated. Benabbou
introduced the concept of “front level” to guarantee the convergence of the
algorithm. The level of a front is defined as the sum of the levels of its particles.
A relevant feature of this algorithm is its ability to pack the particles with a
given radii distribution.
Despite being useful for parallelepipeds and simple geometries, most of the
above solutions have difficulties addressing complex domains because placing
particles on the frontiers is a complicated task. One solution to this problem is
discussed by [Liu 2008], where a disk and sphere packing algorithm is proposed
to generate high-quality meshes within B-rep domain representations. The
method describes how to create an initial front by placing particles on the
vertices, edges, and faces (for the container’s 3D case). However, Liu’s approach
accepts particle overlappings.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 30

2.5
Mesh support in disk packing

Mesh and particle generation are related topics given that the advancing
front packing method comes from mesh generation methods. Some packing
techniques in the literature are mainly designed to create meshes. Other
methods use a mesh or graph connectivity as a support structure constructed
after or along with the particles’ generation.

2.2(a): Front chain and polygon triangu-
lation after Ci insertion.

2.2(b): Final pack.

Figure 2.2: Wang’s advancing front pack (modified from [Wang et al. 2007])

[Wang et al. 2007] creates particles for unbounded domains. Thus, the
algorithm uses a maximum radial distance and a maximum number of particles
as a termination condition. As the output, the method creates a triangular
mesh for FEM applications. The front concept is composed of a linked list of
circles, similar to [Feng et al. 2003]. The algorithm adds new particles on top
of the front, and as a result, it creates new triangles. If the insertion creates
polygons between the front and the new particles, they are subdivided with a
triangulation procedure, as we see in Figure2.2(a).

[Liu 2008] uses and inward advancing front method with a circle packing
to create triangle meshes. The front list in this work is composed of the main
loop, representing the boundary borders, and several inner loops to model
possible holes in the domain. During the generation, the method detects closed
regions with few particles that are removed from the front, and the detected
polygon is subdivided into triangles. Also, it can merge the main loop with
inner loops if there is a circle connecting them. As Figure 2.4 illustrates, the
resulting pack can present particles with overlappings.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 31

2.3(a): Polygon detection 2.3(b): Loop merge.

Figure 2.3: Liu’s front loops (modified from [Liu 2008])

Figure 2.4: Liu’s pack and mesh triangulation (modified from [Liu 2008])

As described, [Wang et al. 2007, Liu 2008] used the disk packing as an
application to produce triangular meshes and not to create arrangements for
particle simulations. [Wang et al. 2007] produces packs with low density, and
[Liu 2008] allows the particle overlappings to adjust the triangulation to the
model boundaries. Both methods tend to form closed loops that need to be
triangulated, that in the context of disk packing, it leads to a low coordination
number of the particles. Besides, both methods, as the usual advancing front,
only produce particles in contact with the front, leaving potential empty spaces
generated in the previous regions that are unable to be efficiently filled.

[Benabbou et al. 2008, Benabbou et al. 2009] acknowledge that their
packs have heterogeneous local density, as we can see in Figure 2.5(a). To
reduce impacts on physical simulations, the method defines a point relocation
algorithm to equally distribute empty areas around each particle. It builds a
weighted Delaunay triangulation with the particle centers as point clouds with
their radii as weights and considers points at the boundary with zero radii.
The points at the boundary are carefully computed so that the cells of the La-
guerre diagram (dual of the triangulation) contain the particles entirely. The
relocation procedure iteratively moves the particles within the space defined
by its nearest neighbors. The process must check that no particle can overlap
others.
Despite producing packs with evenly distributed void space in a post-process
step, its main problem resides in the packing method itself, allowing the gen-

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 32

2.5(a): 2D nanostructure. 2.5(b): Weighted Delaunay triangulation
and Laguerre diagram.

Figure 2.5: Benabbou’s packs produces packs with heterogeneous local density
(modified from [Benabbou et al. 2008])

eration of significant empty areas. A modification of the approach could use
the initial Delaunay triangulation to insert additional particles in the biggest
void spaces and improve the pack’s density.

[Liu et al. 2012] used a Delaunay tessellation on the outer layers of the
pack. The number of layers is a parameter given by the user and influences
the density and computing time. With more layers, the algorithm reaches
more regions inside the pack and, in consequence, increases the density and
execution time. The algorithm has a linear complexity based on the number
of layers. Figure 2.6 shows a small pack with a local Delaunay tessellation for
two-layer of particles. Liu explores the generation of packs using up to eight
layers for the Delaunay tessellation. The work also offers a refilling process
to place additional particles inside the pack. Potential positions for new disks
are identified by performing a range search of neighboring particles around a
disk. This process is time consuming and furthermore, it does not respect the
desired PDF.

From a computer modeling and simulation perspective, [Specht 2015]
packs particles inside circular containers for the polydisperse circle packing
problem. The approach constructs a graph representing the connections of the
particles. Specht identifies the cycles surrounding void space with the graph.
Several jumping strategies, swaps, and shift heuristics are defined to move
particles around the container and increase density.

The work defines an embedding depth of two circles

ωij = dij − (ri + rj), 1 ≤ j < i ≤ N

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 33

Figure 2.6: Liu’s local Delaunay Tessellation (modified from [Liu et al. 2012])

And due to a floating point number implementation, it introduces a small
numerical tolerance ε ≈ 10−12 that leads to three cases:

for ωij > ε : a strict separation,

for |ωij| ≤ ε : a precise contact,

for ωij < −ε : an overlap.

Even though the work never mentions the creation of a polygonal mesh,
the loop cycle collection can be treated as a mesh. Figure 2.7 presents an
example of a small instance and its corresponding contact matrix. Besides the
limitation of only considering the packing of circular containers, the needed
computational time to achieve packs for a high number of particles makes this
approach impractical for our purposes. E.g. Packing 100,000 particles can take
up to 24,700 seconds ≈ 411 hours.

Figure 2.7: Spetch’s contact matrix (modified from [Specht 2015])

The importance of tools from network science and related mathematical
subjects in the study of granular material properties gained importance in
the last years. They are powerful approaches to study granular matter and to

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 2. Previous Work 34

enhance understanding of their underlying physics. [Papadopoulos et al. 2018]
studies granular systems from a complex network theory’s perspective.

In this work, we propose an evolution of an outward advancing front
method proposed by the authors in [Lozano et al. 2016]. Among the improve-
ments, we aim to construct a polygonal mesh, along with the particle genera-
tion, following [Specht 2015] void cycle definition. The mesh allows to establish
new heuristics for the calculation of the locus for the incoming particles. To the
best of our knowledge, no other pack algorithm creates a global scope contact
network during the pack construction.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

3
Topological and Spatial Data Structures

Geometric algorithms often require distance or neighborhood informa-
tion, and to efficiently retrieve this information, spatial and/or topological data
structures are required. We use three data structures to support the packing
generation. The first is a spatial grid index to handle particle collisions, inser-
tions, and deletions from the pack. The second is a topological polygonal mesh
that stores the connections between the particles. Finally, the third is a spatial
hierarchical distance field to deal with complex boundary geometries.

3.1
Particle grid index

In a DEM simulation, it is necessary to build a list of neighboring par-
ticles as candidates for contact detection. Without an auxiliary data struc-
ture, this search has a quadratic complexity on the number of particles O(n2).
Efficient algorithms use different strategies to improve this algorithm detec-
tion. The neighboring-cell contact scheme [Munjiza et al. 1998], the nearest-
neighbor contact detection scheme [Panigraphy et al. 2008] and sweep and
prune [Cohen et al. 1995].
Similarly, finding the neighboring particles around a point is a recurring
and important task in packing generation algorithms according to the
literature [Han et al. 2005, Ferreira 2009, Liu et al. 2012, Morfa et al. 2018,
Li et al. 2018, Lopes et al. 2020].

In this work, neighboring and contact detection are procedures that lie
in our algorithm’s heart, and they are repeated many times. Here, we use
a hash grid [Eitz et al. 2007, Miao et al. 2014], a uniform grid variation that
divides the space into a set of equal size cells. This variation does not explicitly
store the grid and only creates cells on-demand at the regions where they are
required. This strategy reduces the use of RAM and is especially important
for complex and non-convex containers.
As suggested by [Ericson 2004], the optimal cell size is the smallest size that
can hold the largest object in the scene in all rotated positions. Since we are
only dealing with disk particles, the cell size is twice the maximum radius rmax,
given as an input.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 36

In a grid with the origin at o = (ox , oy) and with npx , and npy cells on
the x and y axes, respectively, a given point p = (px , py) is assigned to the cell
(i, j), where:

(i, j) = (b(px − ox)
rmax

c, b(py − oy)
rmax

c) (3-1)

We map occupied grid cells to a 1D table with the following function:

c = (i+ j ∗ npx) (3-2)

There are two possible strategies to store disks in the spatial grid. The first
is to store a reference to a disk in all cells it intercepts. The second strategy
consists of storing a disk reference only in the cell that contains its center.
With the first strategy, to build a list of neighbors, one must test all particles
referenced in all cells the current particle intersects. This procedure yields
repeated references to the same particle. The repetition of references increases
the cost of this core procedure and thus is undesirable for our algorithm. So,
for performance reasons, we use the second strategy, and a particle reference
is stored only to the cell that contains its center.

3.1(a): The extreme case that places a
particle between two other particles A
and B.

3.1(b): Neighbor particles: B, C, and D.
Not neighbor: E.

Figure 3.1: Neighborhood box logic around the current front.

To select the particles in the neighborhood of the “current front” disk,
rcurr, we create a square box, centered at the rcurr position with the size, δbox,
given by:

δbox = 2(rcurr + 2rnew + rmax) (3-3)
All disks in the grid cells that intersect this square are neighbor candidates to
rcurr.

The formula adds one unit of rcurr to cover the area of the front, plus
two units of rnew (the radius of the new particle) to contemplate the extreme
case where there is one contact point with a neighbor, and an additional unit

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 37

of the rmax to cover the bins of the extreme case. Figure 3.1(a) shows the front
A and a search box around it seeking to insert a particle with the maximum
size rmax. The box is large enough to detect the particle B that, along with
the particle A, generates a contact point for the new particle. In Figure 3.1(b),
we see a small particle A in the middle with its search box. Only particles B,
C and D are considered neighbors because they belong to grid cells colliding
with the search box. Particle E belongs to a bin that does not intersect the
search box; therefore, it is not considered a neighbor.

3.2
Polygonal mesh

We include a mesh structure, with irregular polygons, build alongside
the pack generation. The mesh reflects the network connectivity among the
particles and assists the main algorithm in identifying the container’s wasted
space.

A vertex in the mesh represents a particle in the pack. The edges represent
the contact between a pair of particles. The polygons are associated to a void
space formed by a loop of contacts between particles.

Definition 3.1 A vertex vi corresponds to the center of the particle di in the
pack arrangement PA .

Definition 3.2 An edge eij is a connection between two vertices vi and vj
whose respective particles di and dj are in contact.

Definition 3.3 Let po be a polygon of n sides composed of a circular list of
edges, eab, ebc, ..., ena. A polygon has no repeated vertices or edges.

Figure 3.2: Four particles, connected through four edges, define an irregular
quad.

Definition 3.4 An edge is a boundary edge if it is shared by only one polygon.
It is an internal edge if two polygons share it.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 38

Definition 3.5 A polygon is an internal polygon if all its edges are internal.
It is a boundary polygon if at least one of its edges is boundary.

Definition 3.6 A vertex is an internal vertex if all its incident edges are
internal. Otherwise, it is a boundary vertex.

We identify a polygon linking only boundary vertices at the frontier of
the pack (connecting boundary edges); we refer to this polygon as the “outer
loop”. Most of the new particles will be added to the “outer loop”. Most outward
advancing front algorithms use equivalent structures as the front list.

Definition 3.7 An outer loop is a two-connected set of edges linking boundary
edges.

An issue identified during the generation of particle arrangements PA,
with the approach in [Lozano et al. 2016], is the creation of a high number of
large polygons and polygons with high porosity, that waste space, reducing
the density and, in some cases, the mean coordination number of the pack.
Consequently, the arrangement allows a higher mobility of the particles under
physical simulations.
With the mesh construction, it is now possible to detect weak configurations
and make local corrections immediately. Furthermore, with the new geometri-
cal information available, we propose new heuristics to define the new particles’
positions.

3.2.1
Mesh construction

The creation of the polygonal mesh data structure, PM, starts after the
third disk’s insertion into the pack. From that point on, every particle is
initially in contact with two other particles, known as the parents. Thus, we
start with constructing a triangle, and then, with every disk inclusion, we build
new polygons and add them to the mesh.
We keep a list of vertices per polygon and another map of polygons per vertex.
Each vertex v and polygon po have a unique id represented by an integer
number. All vertices share the id of their corresponding particle.

vid → poi1 , poi2 , ..., poinpi

poid → vi1 , vi2 , ..., vinvi

where npi is the number of polygons that share vid and nvi is the number of
vertices of polygon poid. Here, by convention, the sequence of vertices in the
polygons follows a clockwise order.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 39

We handle the “outer loop” as a directed graph where each association
reflects a frontier edge. Note that the first and last vertices are connected:

v∗a → v∗b , v∗b → v∗c , ..., v∗x → v∗a

As mentioned before, initially, the outer loop is a triangle. Before and after
the insertion of new particles, every node must be strictly connected by two
other nodes in the graph (2-connected). During an insertion, this condition is
temporarily broken to find the new polygon’s position. Following the clockwise
convention established for the inner polygons, the sequence of vertices in the
“outer loop” follows a counterclockwise order.
The following sections describe in detail the two possible scenarios handling
the polygon mesh.

3.2.1.1
Finding polygons on graphs

To find polygons using the network information of the arrangement, we
use the “left-hand rule” criterion. Given an initial edge eab, the next edge in
the path is chosen by comparing the angles between eba and all the edges ebci

where ci is a vertex connected to b, but different than a. To obtain clockwise
polygons, we select the edge with the highest angle. The search adds edges to
the path until it returns to the initial vertex of the first edge.
For example, in Figure 3.3 starting from the edge eAB, the method selects the
edge eBC as the new edge in the path because it has the highest angle among
all other directions from the vertex B. In further iterations the path walks over
the edges eCD and eDA applying the same criterion. The path returns to the
vertex A, closing a quad.

Figure 3.3: Left-hand rule criterion. Starting a path from A→ B, the criterion
closes the polygon ABCD.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 40

3.2.1.2
Insertion on the outer loop

New disks are inserted in contact to the parent particles, but they may
also be in contact to other neighbors. At each insertion, we must perform a
search in the surrounding area to detect other possible contacts. Figure 3.4(a)
depicts an example where a new particle C is placed in contact with the parents
A and B. A search in the insertion procedure discovers three other contacts
with the disks D, K, and L.

When we insert a new particle in an outer loop, and it touches n border
particles, the algorithm must create (n−1) polygons and repair the outer loop
graph.

Our solution expands the outer loop graph inserting two new edges
between the new particle and every particle it touches, i.e., an edge goes
from the new particle to the one it touches in the outer loop, and another
edge goes in the opposite direction. These new edges temporarily break the
2-connectivity condition of the outer loop.

The algorithm proceeds to find a polygon for each edge that leaves the
new particle, and with the “left-hand rule”, traverses the outer loop edges until
it returns to the new particle. The edges of the new polygons are removed
from the outer loop. In the end, the outer loop’s 2-connectivity is restored.
In Figure 3.4(b), ten edges are included in the graph, two for each of the five
particles in contact D∗, A∗, B∗, K∗ and L∗.

3.4(a): Front A and neighbor B yield
the particle C.

3.4(b): Every contact adds two edges
into the “outer loop”.

Figure 3.4: Insertion on the outer loop.

Figure 3.5 shows that the parallel walk on the extended graph closes two
paths in three iterations.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 41

Figure 3.5: Sequence of polygon search for three iterations.

3.6(a): Valid paths to polygon con-
struction.

3.6(b): Addition of polygons and up-
date of the “outer loop”.

Figure 3.6: Insertion in the outer loop (Continuation).

Figure 3.6(a) illustrates the identification of the four valid paths that
leads to the construction of the respective polygons after seven iterations. The
new polygons receive new indices, and each polygon registers the indices of the
particles involved (mapping of vertices per polygon and polygons per vertex).

Then, the edges connecting the polygons are removed from the directed
graph. The removal restores the 2-connected property of the “outer loop”, a
single path connecting all the particles at the border of the mesh. Note that,
in Figure 3.6(b), the edges D∗ → C∗ and C∗ → L∗, that were not considered

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 42

for the new polygons, are now part of the “outer loop”.
Another important procedure in the stage is the estimation of the

polygon’s porosity or void ratio. This information is essential for a local
optimization that reorders small portions of the arrangement. When a polygon
is created, we compute its area (Ap) and the sum of the solid portions of disks
inside it (Sp).

Figure 3.7(a) shows a small set of polygons for a disk arrangement
in the background. The mesh is composed of triangles (4), quads (3),
and pentagons (D). The thick black line represents the outer loop. In
Figure 3.7(b), we only shade the polygons with a porosity (1− Sp/As) higher
than 19.3%. Note that none of the triangles is shaded.

3.7(a): Polygons on top of the pack. 3.7(b): Polygons with porosity higher
than 19.3%.

Figure 3.7: A polygonal mesh created along with a small pack.
It supports the identification of wasted space in certain areas. The “outer

loop” is presented as a thick black line.

3.2.1.3
Insertion inside a polygon

Heterogeneous arrangements, with a high ratio between the maximum
rmax and the minimum rmin size, are prone to generate void spaces large
enough to place small particles inside. A packing method needs to consider
those potential places to add more particles to increase the density and contacts
in the arrangement.
As in the previous section, we detect other possible contacts, besides the parent
particles, among the particles at the polygon’s vertices. Then, we build a
directed graph with the edges of the polygon. Next, the graph is expanded
with two edges between the new particle and the disks in contact. To split the
polygon, here we also traverse the graph using the “left-hand rule” for each
edge that leaves the new particle, until it creates a polygon. Insertions inside
polygons create n polygons for n contacts, not n− 1 as in the border case. So,
here, every contact creates a new polygon.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 43

The original polygon, po, and the vertex indices’ references to po must
be removed from the respective data structures. The new PM data structure
must include the new polygons poi, and all affected vertices must be updated.

Figure 3.8 and Figure 3.9 illustrate an inner insertion where the procedure
splits an irregular pentagon into two polygons, a quad, and a pentagon.

Figure 3.8: Insertion in polygons. a) The particle F is placed inside the
pentagon ABCDE. b) A temporal graph with the new contacts and the
polygon.

Figure 3.9: Insertion in polygons. a) The left-hand rule finds two paths. b) The
insertion yields two new polygons FDEAB and FBCD.

3.2.2
Neighborhood search for particles inserted in polygons

Our insertion algorithm uses a “current front” particle and another
neighbor particle as parents to the new disk. In the “outer loop” insertion,
we use a spatial grid structure to get this neighbor. For the internal particles,
our strategy is to use the VertexStar(v) procedure instead. We believe this
choice is better than the range search because it avoids unfeasible particles,
as illustrated in Figure 3.10. In this figure, A is the “current front” particle.
Particles F andG are not feasible parents with A, but they would be candidates
for neighbors if the search were based on the spatial grid index. It is impossible
to generate new valid positions with one of them and A.
Figure 3.10 also illustrates how a “current front” particle can end up in the
mesh’s interior. A was part of the “outer loop” before the insertion of the
particle H.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 44

Figure 3.10: Particles A and C are boundary vertices until the insertion of
particle H. The VertexStar(A) procedure returns the particles B, C, D and
E.

3.3
Boundary detection

All packing methods need to efficiently determine whether a particle
is entirely inside a given static domain. This work considers two types of
boundary representations.
For simple known geometries it is straightforward to define if a disk is in
collision or contained in the domain. We refer to Appendix B for the details
of the implementation for circles and rectangles.
For the case of complex geometries, we consider non-convex closed domains
composed of connected line segments.

We can compute the closest distance from a query point x to the
boundary’s geometry ∂O identifying the closest primitive:

CP (x,O) = ocp ∈ O | dist(x, ocp) = min
∀o∈O

(dist(x, o))

where dist(x, o) is the distance between the point x and the primitive o,
which in our case are line segments.

Definition 3.8 Let x be a point in space. The exact distance of x, ED(x), to
∂O is dist(x, CP(x,O)), the distance to the closest segment.

The exact distance computation for a point has a linear complexity O(n)
on the number of primitives n in O. A brute-force approach for the packing
generation is impractical given the number of required queries.
Since the packing algorithm needs an efficient query with a constant time to
determine if a particle is inside the object O, we use a distance field, a scalar
field that specifies the minimum distance to a shape.

Considering that we are just interested in distances inside the container
and that the distances will be compared with the particle radii, we use the
convention that the sign is positive for inside points.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 45

Sign(x) =

1 if x ∈ O

−1 otherwise

Furthermore, for those points beyond the frontiers of the region of
interest, we just assign the invalid negative distance of -MAX_DISTANCE.

We implement an adaptive distance field, ADF, based on a top-bottom
subdivision strategy [Frisken et al. 2000] with some variations for our context.
Specifically, we need an accurate distance for a region equal to the maximum
radius in the pack rmax inside ∂O. Beyond this offset, it is acceptable to obtain
inaccurate distances.
To recompute the approximate distance of an arbitrary point x in space to
∂O, we use a bilinear interpolation with the corner values of the quadtree cell
enclosing x.

The tree construction needs to find the closest primitive in O for spe-
cific points to determine their exact distance. To speed up these computa-
tions, we use a dynamic grid partition of the primitives of O proposed by
[Scrimieri et al. 2014]. After the signed distance tree construction, the mem-
ory allocated by the grid partitioning can be released.

3.3.1
Tree division strategy

A cell is defined as an axis-aligned rectangular area. Hereafter, the
quadtree cells are going to be noted as cells. We identify nine points of interest
within a cell: its center, four middle edges, and four corners.
A first criterion classifies the cells based on their closeness to ∂O.

Definition 3.9 Let C be a cell and C.c its center. C is a boundary cell if the
exact distance of the center, ED(C.c), is smaller than the half diagonal of C.
These cells need to be subdivided up to the maximum level Lmax if they cannot
approximate the distances of their middle edges and center.

Non-boundary cells are also classified based on the signs of their corner
distances. They are either entirely inside or outside ∂O.

Definition 3.10 C is an inner cell or an outer cell if it is non-boundary
and the exact distances of its four corners have positive or negative distances,
respectively.

Only if the four corners have negative values (outside the region of
interest), we do not subdivide the cell.

Rule 1 Subdivision rule: If C is an outer cell. It should not be subdivided
because it encloses a region that is not relevant for the packing purpose.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 46

Similarly, for an inner cell, if none of its four corners have an exact
distance smaller than the maximum radius rmax, we do not subdivide the
cell. The interpolation distance for a point within the cell will be inaccurate.
However, it will be higher than rmax, indicating that a particle with a radius
in the range of [rmin - rmax] could be placed without boundary collision.
In consequence, particles with the center inside these cells do not need the
interpolation computation.

Rule 2 Subdivision rule: If C is an inner cell and none of its corners have
an exact distance smaller than the maximum radius rmax, it should not be
subdivided because it is far from the boundary.

Finally, we perform the subdivision on differences like
[Frisken et al. 2000]. We compute the exact distance at five positions: the
four middle edges and the center. We then interpolate distances for these
points with a bilinear interpolation using the exact distances at the four cor-
ners. If, for some of these interpolations, the error is higher than the threshold
ε = rmin × 10−10, the cell is marked for division.

Rule 3 Subdivision rule: A cell C should be subdivided if some of its sample
points cannot be correctly interpolated. If ε > threshold

To test if a point is inside or outside the boundary, it suffices to
check whether its interpolation yields negative or positive values. If a particle
centered at p with radius r is inside, its distance must satisfy the following:

distance(p) ≥ r (3-4)

Algorithm 1 summarizes the signed distance field subdivision. The recur-
sive approach involves the computation of the exact distance of shared posi-
tions by neighboring cells. To avoid recomputing the distance of the points of
interest, they are stored in a hash table. The hash values are based on the in-
teger world coordinates (i,j) of positions (x,y) considering a uniform grid with
the maximum subdivision level Lmax. The hash value is computed as

H(i, j) = (i · p1 ⊕ j · p2) mod m

where p1, p2 are large prime numbers, in our case 73856093, 19349669,
respectively. The value m is the hash table size.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 47

Algorithm 1: ADF construction
Input : Geometry O. Maximum tree level Lmax. Error threshold ε
Output: The signed distance field

1 Create an empty cellQueue;
2 Create a root cell and add it into the cellQueue;
3 while (cellQueue is not empty) do
4 cell ← retrieve(cellQueue);
5 if cell.level == Lmax then
6 continue;
7 Compute cell’s center distance: ed0 = ED(cell.center);
8 Compute corner distances: ed1, ed2, ed3, ed4;
9 if |cell.ed0| > cell.diagonal/2 then // Not a boundary cell

10 if cell.ed1 < 0 and cell.ed2 < 0 and
11 cell.ed3 < 0 and cell.ed4 < 0 then
12 continue; // Rule 1

13 if cell.ed1 > rmax and cell.ed2 > rmax and
14 cell.ed3 > rmax and cell.ed4 > rmax then
15 continue; // Rule 2

16 Compute cell’s edge distances: ed5, ed6, ed7, ed8;
17 Compute approximate distances: ad0, ad5, ad6, ad7, ad8;
18 if |cell.ed0 - ad0| > ε or |cell.ed5 - ad5| > ε or
19 |cell.ed6 - ad6| > ε or |cell.ed7 - ad7| > ε or
20 |cell.ed8 - ad8| > ε then // Rule 3
21 for i = 1 to 4 do
22 Create child i of cell and add it to cellQueue

3.3.2
Distance field examples

This section presents examples of the ADF implementation for two
sample models. The first model is a silhouette of the dragon, and the second
is a slice of a volumetric micro-computed tomography image (micro-CT).

Table 3.1 summarizes the model properties and input data to create their
respective trees for specific rmax values.
It is essential for our method to identify the subset of connected segments
surrounding void areas and contained in a solid area. We refer to these loops
as the domain holes DH.

Dimensions Segments Components Holes Lmax rmax
Dragon [254, 254] 2,398 1 1 7 0.72
Rock - Solid phase [450, 450] 21,029 152 43 9 0.40

Table 3.1: Distance field - Models.

Also, given that the “outer loop” of the arrangement must be a single loop,

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 48

we use a DFS-based algorithm to determine the connected components of the
model. The packing procedure is applied to each component independently.
This applies to complex geometries like models extracted from micro-CT
images of microstructures.

Figure 3.11 shows the difference of two trees for two rmax values. Note
that with a higher value, the ADF generates more leaf cells close to the model
boundaries.

3.11(a): rmax = 0.72 3.11(b): rmax = 5.76

Figure 3.11: Tree subdivision – Dragon head.

We present in Figure 3.12 and Figure 3.14 the distance fields and errors
of the sample models. Note that the error regions are located in inner cells far
from the boundaries and with distances higher than the rmax. Domain holes
DH are represented in red loops. Figure 3.13 presents a slice of a micro-CT
image. It also highlights some domain holes surrounded by red segments.
Even though we show the complete ADF of the solid phase in Figure 3.14(a),
for the pack generation, we compute the ADF for each connected component.

3.12(a): Distances. 3.12(b): Errors.

Figure 3.12: Signed distance field – Dragon.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 3. Topological and Spatial Data Structures 49

Figure 3.13: Slice of Micro-CT Sand pack LV60C. In black the solid phase and
in white the porous space.

3.14(a): Distances. 3.14(b): Errors.

Figure 3.14: Signed distance field – Solid phase in a slice of Micro-CT Sand
pack LV60C.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

4
Particle generation

4.1
Outward strategy

The algorithm proposed here is an evolution of an incremental placement
of particles with an advancing front strategy. On every step, a particle front
generates a new particle placed in contact with two parent particles, the
front and another particle in the neighborhood. The algorithm makes better
decisions about how to select the new particle positions based on additional
information provided by the polygonal mesh. It also introduces two parameters
to correct an early removal of particle fronts. All these changes do not hinder
the algorithm’s capacity to follow a given particle size probability distribution
function, PDF, specified by the user.

4.1.1
Particle size distribution

Our algorithm produces packs of particles with a set of radius sizes, r, by
varying between rmin and rmax according to a desired PDF. The distribution
can be defined in two forms: a known function, such as a Bernoulli or truncated
Log-normal distributions, or by a histogram of the radius size.
To achieve the desired PDF our algorithm uses a random generation function
to select the particle radius r. However, most computer languages only include
functions to produce uniform random numbers in their standard library, and
we use a simple procedure to adapt the PDF. Given a set of discrete radii and
their corresponding probability, the algorithm partitions the interval of the
uniform variable into sub-intervals of different sizes, in accordance with the
probability of the corresponding radius, r. When the uniform variable value
falls in a sub-interval, the corresponding radius is selected. The probability of
a given radius to be selected is proportional to the size of its sub-interval. For
a large number of radius selections, this procedure yields, for each radius, a
probability that is proportional to the size of its sub-interval, thus achieving
the desired PDF [Devroye et al. 1986].
A large r may be rejected in our algorithm if it does not fit in the neighborhood

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 51

of the current front, e.g., a front close to the container boundaries. This
rejection cannot be, however, permanent to avoid the degradation of the
resulting PDF. The rejected radii must be used in future insertions when the
front moves to a new position. Due to this requirement, our generation scheme
contemplates the usage of waiting queues of rejected radii.

4.1.2
Generation loop

The current algorithm follows an outward front approach. Particles in
the assembly represent the fronts, and they are stored in a queue. The initial
front queue is typically composed of two particles tangent to each other and
entirely located inside the container. They are also known as seed particles.
For practical reasons, as a default position, we choose the center of mass of
the container as the starting point. The user may specify any position inside
the boundary to start the generation of the assembly. For complex boundaries,
where the center of mass is not an interior point, the initial position is a
necessary input parameter.

In every loop iteration, the algorithm finds a valid position for a new
particle using the information of the neighborhood particles. More precisely,
the algorithm selects a particle at the top of the active front to be the “current
front” and tries to create a new one touching it and another particle in the
surroundings.
To determine the candidate positions for the new particle center, cnew, the
proposed algorithm uses the concept of “halo” [Ferreira 2009]. A circular halo
of a particle, s, is an expanded concentric circle with the radius determined by

rhalo = rs + rnew (4-1)
The algorithm matches the “current front” rcurr with the particles inside the
neighborhood box. For every pair, we intersect their halos. To check if two
circles (ca, ra) and (cb, r b) intersect, we compute the possible overlap by

ωab = ‖cb − ca‖ − (ra + rb) (4-2)

We use a small overlapping tolerance, εo = rmin × 10−10, that leads to three
scenarios:

for ωab > εo : the circles do not overlap and there are no intersections points,

for |ωab| < εo : the circles are touching at one point,

for ωab < −εo : there are two intersection points.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 52

In Figure 4.1, we see three scenarios between two halos.

4.1(a): No intersections. 4.1(b): One intersection. 4.1(c): Two intersections.

Figure 4.1: Placing a particle in contact with two other particles.
The black circles represent the halos. Small points are shown in yellow. a) No valid
intersection between the halos. b) A single point of intersection between the halos.

c) Two points of intersection between the halos. After the gathering of all the
points, the algorithm decides which one is the “winner” for insertion.

Figure 4.2 illustrates a small example for a particle A in the middle
with its search box. Only particles B and C are neighbor particles that yield
candidate points. The particle D is collected with the search box, but its halo
does not collide A’s halo. Particle E belongs to a bin that does not intersect
the search box; therefore, it is not considered as a neighbor.

Figure 4.2: Particle B yields a single candidate position. Particle C yields two
positions. Particle D and E do not generate points

Using the equations of a pair of halos, with the positions of the parti-
cles they belong, and their respective rhalo, it is straightforward to find the
intersection points of both circles, known as the “candidate points”.
The center point cm, product of the intersection between two halos (ca, ra) and
(cb, rb) on a plane with normal −→n , as illustrated in Figure 4.3, is given by

cm = (1− α)ca + αcb (4-3)
with

α = 1
2

(
1− rb2 − ra2

‖cacb‖2

)
(4-4)

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 53

Figure 4.3: Geometric position of the candidate points product of the intersec-
tion of both halos.

The height h is computed using the Pythagorean theorem with any of the right
triangles:

h =
√

ra2 − ‖cacm‖2 (4-5)

Finally, the intersection points p1 and p2 are computed by

p1,2 = cm ± h
−→n × (cacm)
‖−→n × (cacm)‖ (4-6)

Not all the candidates may be valid positions for the new particle. We
must test if the new particle in that position does not collide with any other
particle in the neighborhood and is also entirely contained by the container.
Once again, we use the grid to detect possible collisions with the surrounding
particles, considering the same overlapping threshold used for the halos. We
employ the distance field for complex containers to test if the new particle is
inside the boundaries.

The number of points left in the candidate’s list, after the removal of
invalid positions, decides the algorithm’s next actions.
If there is one or more valid candidate points, the algorithm proceeds to select
the best position. To obtain tight arrangements, the algorithm needs to select
the next position based on criteria detailed in Section 4.2.
When the algorithm finds the optimum valid candidate position, it inserts
the newly created particle in the pack. Regarding the data structures of the
algorithm, this means that there are four insertions: (a) in the assembly list,
(b) in the active front queue, (c) in the grid index, and (d) in the polygonal
mesh.
A front should not be directly removed from the queue of fronts if it cannot
generate valid points for a given radius because this radius can be a large
number for specific neighboring conditions, such as boundary proximity. The
removal could lead to a premature halt of the generation near that location.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 54

To mitigate this situation, we introduce the parameter, maxRejections, that
represents the maximum number of rejections for a front.
If the number of valid points is less than 2, and there exists a collision with
the boundary, the algorithm spares the front from removal and increases its
rejection counter. In the next iteration, the algorithm sorts a new radius for
insertion. We only proceed with the front removal from the queue if there
are no boundary collisions, or the counter of rejections reaches the maximum
allowed value.
Also, when the algorithm does not use a sorted radius for a current front, it is
not discarded. To avoid the disposal of radii, that would yield a distribution
that does not agree with the prescribed PDF; the algorithm manages two
queues: a queue of previously rejected particles, prevRejectedQueue (qpr), and
a queue of newly rejected particles, newlyRejectedQueue (qnr). The first one
contains a queue of all the particle sizes rejected in previous loop cycles. When
a new radius is needed, the stored radius is tested again. If it is rejected again,
it is stored in the newlyRejectedQueue. Only when the prevRejectedQueue is
empty the algorithm uses the probability distribution function PDF to select
a new radius. When an insertion is successful, the algorithm removes all values
stored in newlyRejectedQueue and inserts them in the prevRejectedQueue. With
this procedure, we seek to preserve the PDF, ensuring persistent testing of
rejected particles until its final insertion or packing completion.
As a consequence of the new front rejection logic (which is summarized
in Algorithm 3), it is possible that a series of big radii will cause the
increment of the rejection counter of a front and will also increase the queue
of newly rejected radii. To avoid a big queue, we add another parameter,
maxQueueSize, that when is reached, all the radii from newlyRejectedQueue

go to prevRejectedQueue, so that the number generator could reuse these
radii in the subsequent iterations and respect the desired PDF.
The algorithm continues with the insertion and removal of particles from the
active front until it is empty. The pseudo-code in Algorithm 2 recaps the
generation loop.

4.2
Metrics

Given the set of candidate points, the algorithm must select the best
point as the position for the new particle (Line 13 in Algorithm 2). With
the support of the polygonal mesh, build on top of the pack, we can obtain
additional geometric information of how the mesh will change regarding the
insertion of each candidate point in the pack. We identify the following metrics

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 55

Algorithm 2: Assembly Generation Algorithm

1 Create an empty frontQueue, assemblyList, gridIndex, prevRejectedQueue
and newlyRejectedQueue;

2 Create two seed particles in seedPosition and add them in the
frontQueue, assemblyList and gridIndex;

3 while (frontQueue is not empty) do
4 currentParticle ← retrieve(frontQueue);
55 rnew ← selectARadius(PDF , rmin, rmax, prevRejectedQueue);
6 box ← computeNeighborhoodBox(currentParticle, rnew, rmax);
7 neighboringParticles ← gatherParticlesThatInstersect(gridIndex,

box);
8 candidatePointList ← all interceptions of halos of two

neighboringParticles and the currentParticle;
9 hasBorderCollisions ← Exists a position in candidatePointList where

newParticle intercepts boundaryMesh;
10 remove from candidatePointList all positions where newParticle

intercepts boundaryMesh or any other neighboringParticles;
11 numberOfValidPoints ← numberOfPointsIn(candidatePointList);
12 if (numberOfValidPoints > 0) then
1313 bestPoint ← bestPointIn(candidatePointList);
14 newParticle ← particle(bestPoint, rnew);
1515 insert newParticle in frontQueue, assemblyList and gridIndex;
16 remove all particles from newlyRejectedQueue and insert them in

prevRejectedQueue;
1717 MeshUpdate(newParticle, parentsOf(newParticle));
18 else
19 add rnew in newlyRejectedQueue;
20 if (newlyRejectedQueue.size() > maxQueueSize) then
21 remove all particles from newlyRejectedQueue and insert them

in prevRejectedQueue;

22 HandleFrontRemoval(); // See Algorithm 3

Algorithm 3: HandleFrontRemoval

1 if (numberOfValidPoints < 2) then
2 if (maxRejections > 0) then
3 if (!hasBorderCollisions) then
4 remove currentParticle from frontQueue;
5 else
6 if (currentParticle.rejections >= maxRejections) then
7 remove currentParticle from frontQueue;
8 else
9 currentParticle.rejections++ ;

10 else
11 remove currentParticle from frontQueue;

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 56

considering a candidate point CP insertion:

– Distance to first (DF): Distance from the candidate point CP to the
first particle placed in the pack. This metric, used in [Wang et al. 2007,
Lozano et al. 2016], promotes a concentric generation around the first
particle.

– Inside or outside the outer loop (IN): The point CP in most cases is
located outside the outer loop; but sometimes can be located inside a
polygon in the mesh. Collisions with neighbor particles are not possible
because candidate points have no collisions.

– Number of new polygons (NP): The number of polygons that a new
particle can create is computed based on the connections with other
disks. Initially, the new particle has two exact contacts, so a range search
is necessary to detect other contacts.

– Highest polygon size (PS): The highest polygon size among all the new
polygons.

Some metrics are minimized others maximized:

– min(DF) A shorter distance to the first particle yields a concentric pack.

– max(IN) Inside candidates are preferable to outside candidates because
they are filling empty spaces generated by previous insertions.

– max(NP) More polygons are desirable because it implies that the candi-
date has more contacts with other particles in the pack.

– min(PS) A polygon with fewer sides is preferred because it wastes less
space than large-sized polygons. The ideal polygon is the triangle.

4.2.1
Ranking

We proceed to rank the points from best to worst with the metrics. The
method classifies the candidates in two sets based on the IN metric value, the
IN_SET and the OUT_SET. When there is one or more points classified as
“inside candidates”, only these are considered for the ranking. Otherwise, the
method chooses a point from the OUT_SET.

If, IN_SET 6= ∅, the algorithm chooses a CP ∈ IN_SET with the metrics:

max(NP(pi)), min(DF(pi)) (4-7)
Otherwise, the algorithm chooses a CP ∈ OUT_SET with the metrics:

min(PS(pi)), max(NP(pi)), min(DF(pi)) (4-8)

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 4. Particle generation 57

We consider the metrics in the left to right order given above. If there is
a tie, then we evaluate the next metric. Note that our new criteria give higher
priority to the number of contacts and also seeks to reduce the creation of
large polygons. We still use the distance to the first particle as the last metric
to reinforce the concentric generation.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

5
Packing improvements

Repacking is a complex task because, depending on the particle distri-
bution, it may be challenging to find radii within the [rmin - rmax] range that
could be inserted within the pack or near the container boundary. Moreover,
if we only accept small radii or even radii below rmin, the pack will not respect
the desired PDF.
We devise three optional repacking procedures that will increase the packing
density and coordination number. The first two procedures could be used dur-
ing the iterative loop of the generation. The third is proposed as a post-packing
procedure.

5.1
Internal strategy (IS)

This procedure aims to place incoming particles, during the main loop of
the algorithm, inside previously constructed polygons. The procedure contem-
plates any polygon in the pack, not only polygons associated with the current
front, which are already considered in the main loop.
We prescribe this strategy for arrangements with heterogeneous particle size or
a large radii range where it is likely to place particles inside the resultant poly-
gons’ void space. Here, the method will handle a set of polygon holes created
and consumed during the pack creation.

5.1.1
Creation of the set of polygon holes

Immediately after a polygon is added to the mesh, we compute the longest
radius, within the given particle size range, that could be placed inside the
polygon in contact with two vertices.
First, we match the associated particles of the polygon in triplets. For every
combination of three disks, we compute the Soddy’s circle, a fourth particle
tangent to the triplet. The radii of the four disks are related by an equation
known as the Descartes’ theorem [Lagarias et al. 2002]

(k1 + k2 + k3 + ks)2 = 2(k2
1 + k2

2 + k2
3 + k2

s)

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 59

Figure 5.1: The maximum size of a disk tangent to the particles A and B
depends on the closest third particle C.

where ks = 1/rs and rs are the fourth disk’s curvature and radius respectively.
However, the Descartes’ theorem only considers mutually tangent circles, so,
to compute the fourth internal particle in general situations, we use the three
equations of the triplet, i.e.

(x− x1)2 + (y − y1)2 = (r + r1)2

(x− x2)2 + (y − y2)2 = (r + r2)2

(x− x3)2 + (y − y3)2 = (r + r3)2

The fourth particle is used as a reference for the upper bound radius for every
pair of particles in each triplet. In Figure 5.1, we present two particles A and B
that yield a new disk in contact. The maximum radius for a particle in contact
with both disks will be determined by a third particle C.
We only collect disks with a size larger than rmin and that do not collide with
other particles in the polygon. The resulting set of disks helps us identify the
largest radius for each pair of vertices in the triplet.
Figure 5.2 shows a pentagon and the potential positions and radii for a
3-contact particle. Each 3-contact defines a hole: AED, ADC, and BAC.
Following a greedy criterion, we just register the biggest radius into the set of
holes. In this case, the hole composed of the particles ADC.

Figure 5.2: A pentagon formed by particles ABCDE with three Soddy circles
without collisions.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 60

5.1.2
Queries on the set of polygon holes

The query for a polygon hole is performed right after a particle radius is
sorted. We aim to avoid all the candidate metric computations and rankings
just to find a right polygon to be split with the new disk.

If the current radius rnew is bigger than the biggest radius in the set of
holes, then the main algorithm proceeds as usual. Otherwise, we perform a
binary search to find a valid hole with a radius value close to the rnew. The
algorithm computes the candidate positions for each pair of particles in the
triplet of the hole. In the end, the selected hole is removed from the set.
The selected candidate position will split the polygon associated with the hole;
therefore, the method triggers the creation of the respective holes for the new
polygons.

5.2
Outer loop strategy (OLS)

The incremental mesh construction allows keeping track of the external
frontier and the polygon additions after the insertion of new particles. This
strategy aims to reorder particles near the polygonal mesh border immediately
upon the detection of a new polygon that fits specific properties. The trigger
condition may be based on the number of sides or the porosity of the new
polygon.
This strategy contemplates three primary phases. The first step performs the
temporary removal of some disks. Next, we run a local sub-packing algorithm
to obtain new positions for the removed particles. Finally, we compare the
previous configuration to the new one to determine if a rollback operation is
needed.

5.2.1
Withdrawal

The algorithm removes the disks pi of the polygon that triggered the local
reordering. Furthermore, to keep the 2-connectivity property of the segments
in the “outer loop”, some surrounding particles should be pulled out from
the pack and polygonal mesh. In addition to the removal of the respective
vertices and polygons, the grid must reflect the withdrawal of particles from
the container. Observe that the method does not need to remove the particles
from the pack structure. We only need to assign to the involved particles an
invalid position value, such as a coordinate outside the container. From now
on, we will refer to these particles as the limbo particles Lp.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 61

We can see, in Figure 5.3(a), a scenario where the generation of polygons
with more than six sides executes this strategy. The polygonal mesh detects
the creation of a heptagon after the placement of the 88-th particle. The
withdrawal procedure removes the particles in the heptagon (88–76–75–48–80–
45–55). Also, the 87-th and 78-th particles are removed because they belong
to polygons destroyed as a consequence of the heptagon removal. They break
the 2-connectivity rule.
Finding non-2-connected segments in the “outer loop” graph and identifying
isolated particle clusters can be computationally expensive, considering that
the loop grows with the assembly. Aiming to avoid this potential bottleneck
and acknowledging that our method tries to optimize the positions of a set of
particles in a local region, we extract a portion of the loop, centered at the
removed polygon. The method performs the queries to verify the connectivity
condition on this subgraph.

5.3(a): Particle 88 triggers the relo-
cation.

5.3(b): Withdrawal.

Figure 5.3: OLS Example 1. Withdrawal step.
(a) The placement of the 88-th particle triggers the relocation procedure; (b)

Temporal withdrawal of particles 88,76,75,48,80,45 and 55. Additional
removed particles: 87 and 78; The procedure removed one irregular heptagon,

three quads, and six triangles. (4 , 3 , D , He).

The algorithm stores the removed vertices, polygons and edges of the “outer
loop” in local maps.

5.2.2
Relocation

The new relocation procedure is based on a greedy strategy, similar to the
algorithm proposed by [Akeb 2014]. The “3DMHD greedy heurisic” solves the
packing of spheres into 3D bins of fixed height and depth but variable length.
This problem is known as the 3D strip packing problem. The algorithm employs
a constructive greedy heuristic that computes a set of candidate positions for

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 62

the particles that are not yet placed into the bin. After the insertion of a new
sphere, the set of candidate positions is updated. The procedure ends when all
the particles are inside the bin.
We adapt Akeb’s algorithm to our scheme and handle the limbo particles’
reinsertion as a sub-packing problem.
Unlike our main iterative approach in Algorithm 2, here, the local optimization
computes more candidate points taking advantage of the small set of incoming
radii and the small number of local fronts composed of new particles at the
border of the pack. The following sections describe the relocation strategy
decomposed into three sub-procedures.

5.2.2.1
Local front processing

Compared to our main scheme that calculates positions for a single front
and a single new radius, the local optimization computes more candidate
locations by matching all the local fronts to the remaining radii at the limbo
set. That is, for every front and radius combination, we collect new candidate
points. In particular, for this relocation strategy, a candidate is identified by
the triplet (radid, radval, pos). Where radid corresponds to the id of a limbo
particle, radval is the respective radius and pos is the new computed position.
During the removal, we identify the new edges in the “outer loop” and use
the particles connecting them as the local front from where the new particles
will be relocated. In Figure 5.3(b) the new edges in the outer loop are (42–16;
16–x; x–23; 23–54). Based on this set of edges, we create a local front list with
the particles (42–16–x–23–54).
To obtain the initial points, the ProcessFronts procedure pairs the front
particles and radii described in the particle removal step. Additionally, as
shown in Algorithm 4, it is possible that during the search for candidates,
some fronts will not be able to generate new locations so, they are marked for
removal from the local front set at the end of the procedure.

5.2.2.2
Candidates search

The search of candidates and the computation of points are analogous to
the scheme used in Algorithm 2. A front f builds a box around its center to find
the particles in its proximity. Then, computes the positions of the intersection
of the halos between itself and another particle nearby with the radius rnew.
Next, every point is tested with the container to guarantee that the new particle
will be completely inside. We must verify that the new particle will not collide

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 63

Algorithm 4: ProcessFronts(newFronts, Lp)
Input : front particles newFronts and set of limbo particles Lp.
Output: Initial list of candidates for insertion and best candidate.

1 Create a set of fronts to remove ToRemove;
2 Create an empty set of candidates;
3 for lp in Lp do
4 for f in newFronts do
5 SearchCandidates(f, lp, ToRemove, candidates,

bestCandidate);

6 Remove all fronts in ToRemove from newFronts;
7 Return candidates, bestCandidate;

with other particles in the pack. The procedure keeps a counter of the number
of valid positions and the number of collisions with the container. Only if a
front does not generate valid points for rnew and has no border collisions is
marked for removal. The second condition avoids the premature removal of a
front close to the boundaries of the container. However, if the front particle
produces candidates for another limbo radius in future iterations, it is erased
from the ToRemove set.
Finally, the new computed points are added to the set of candidates. The new
bestCandidate is also identified.
Given that the relocation procedure computes more candidate position and
can be CPU intensive, we use a simpler metric ranking in comparison to the
ranking defined in Section 4.2.1. Here, we rank the number of polygons (NP)
and distance to first (DF) metrics in the left to right order:

max(NP(pi)), min(DF(pi))

Algorithm 5 summarizes the SearchCandidates procedure.

5.2.2.3
Candidate’s update

Besides the modification in the underlying structures such as the assem-
bly list, uniform grid, and polygonal mesh, additional updates are necessary
for the context of the repacking.
First, all the candidates colliding with the new particle must be re-
moved. The procedure must update the bestCandidate too. And second, the
SearchCandidates procedure is used to compute new candidates product of
the intersection of newParticle with its neighbors. If some fronts do not gener-
ate candidate points during this search, they are removed from the front list.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 64

Algorithm 5: SearchCandidates(f, lp, ToRemove, candidates,
bestCandidate)

Input : A current front f and a limbo particle lp.
Output: Detects new candidates and fronts ToRemove. Identifies

the bestCandidate.
1 Create an empty candidatePointList;
2 box ← computeNeighborhoodBox(f,lp.rad,rmax);
3 closerParticles←gatherParticlesThatInstersect(gridIndex,box);
4 for (neighbor in closerParticles) do
5 candidatePointList ← add interceptions of halos of neighbor and

the front f with lp.rad;
6 hasBorderCollisions ← Exists a position in candidatePointList

where newParticle intercepts boundaryMesh;
7 remove from candidatePointList all positions where newParticle

intercepts boundaryMesh or any other closerParticles;
8 numberOfValidPoints ← numberOfPointsIn(candidatePointList);
9 if (numberOfValidPoints = 0) then

10 if (!hasBorderCollisions) then
11 add f to ToRemove;
12 else
13 remove f from ToRemove;
14 candidates ← add triples with candidatePointList and (lp.id,lp.rad);
15 bestCandidate ← bestCandidateIn(candidates);

Algorithm 6 summarizes the Update procedure.

Algorithm 6: Update(newParticle, fronts, Lp, candidates, best-
Candidate)

Input : A newParticle, the local fronts, the set of limbo particles
Lp, the current set of candidates and the bestCandidate.

Output: The candidates, fronts and bestCandidate updated.
1 remove all the points in candidates that collide with the newParticle;
2 bestCandidate ← bestCandidateIn(candidates);
3 Create an empty set ToRemove;
4 for (lp in Lp) do
5 SearchCandidates(newParticle, lp, ToRemove, candidates,

bestCandidate);
6 remove all fronts in ToRemove from fronts

5.2.2.4
Local packing

Finally, a broader view of the Relocate procedure is summarized in
Algorithm 7. The procedure receives a set of limbo particles Lp and a set of

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 65

local fronts. The former consists of the removed particles; the latter contains the
particles of the edges at the pack’s borders near that region. In the beginning,
the ProcessFronts procedure computes the initial candidate points using
the local front and the set of the new radius. Then, in every iteration, the
best candidate becomes a particle and is reinserted into the pack, grid index,
and mesh. Note that the bestCandidate is being updated continuously during
the whole process. Then, the procedure removes from the candidates and Lp
sets all the values matching the radius’ id of the bestCandidate. Next, the
Update procedure is responsible for eliminating colliding candidates with the
new particle and the computation of the new candidates. The loop ends when
there are no more available candidates.

Algorithm 7: Relocate(pack, grid, mesh, fronts, Lp)
Input : The new fronts and Lp.
Output: The updated pack, grid and mesh.

1 candidates, bestCandidate ← ProcessFronts(fronts, Lp);
2 while (candidates is not empty) do
3 Insert the bestCandidate into the pack, grid and mesh;
4 remove from candidates all values matching Lp.radiusId;
5 remove bestCandidate.radid from Lp;
6 Update(bestCandidate, fronts, Lp, candidates, bestCandidate);

This procedure also records the added vertices, polygons and “outer loop”
edges in local maps.

5.2.3
Rollback

Sometimes the new configuration of the relocated particles is worse than
the undesired detected configuration. We use the void space area as a metric
to compare scenarios before the withdrawal step and after the relocation step.
We compute the area unoccupied by the particles on the removed and added
polygons for both scenarios.
A small particle may subdivide a polygon inside the frontier (an inside polygon)
during the relocation. In that scenario, the solid areas of the inserted disks
are considered as negative void areas for the added polygons because they
reduce the packing porosity instead of increasing it. On the other side, if an
added polygon outside the frontier is split during the sub-packing, only the
new polygons must be included in the computation.
If the new total void area is less than the removed polygons’ void area, then we
keep the new configuration. Otherwise, we rollback the whole operation and

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 66

keep the old setting. More precisely, we revert the added local maps and apply
the removed local maps.

Figure 5.4, continues the example in Figure 5.3, the new configuration
improves the local density of the pack. Note that particles 75, 76, 80, 48, and
45 become frontier particles and part of the “outer loop”, in consequence, they
must be pushed into the queue of fronts of the main algorithm, so that they
can be used to produce more particles around them in future iterations.

Figure 5.4: OLS Example 1 (Continuation). Good relocation with twelve
triangles.

A good relocation yields a configuration that reduces the porosity of the
pack. The method keeps the new positions. (4 , 3 , D).

On the other side, Figure 5.5 shows a case where the new positions of
the particles increase the pack’s porosity.

5.3
Boundary strategy (BS)

A common problem in advancing front generation methods is the pres-
ence of unoccupied areas between the final arrangements and the domain’s
frontiers.
Some works offer methods to increase the contact of the disks with the con-
tainer. [Liu et al. 2012] allows the generation of particles colliding with the
frontiers and then reduces their radii to fit the gap region. [Dong et al. 2020]
proposed a strategy that replaces particles within a certain distance to the
borders, with particles of a greater size that are tangent to the boundaries.
In this work, we propose a local and simple procedure to continue the packing
near the borders looking for new particles tangent to the frontier to improve
arrangement stability under physical simulations. The procedure also increases
the density. However, to keep adding small particles affects the given PDF. To
mitigate the effect in the desired radii distribution, we specify a minimum al-
lowed radius Brmin. Sizes below this parameter are rejected, and the border
improvement terminates in that region.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 67

5.5(a): Particle 662 triggers
the relocation.

5.5(b): Particle withdraw.

5.5(c): Bad relocation. Adds
two hexagons.

Figure 5.5: OLS Example 2. Bad relocation.
The greedy strategy generates two hexagons that waste more space than the
previous arrangement. The algorithm rollbacks to the previous configuration.

(4 , 3 , D , 7).

Figure 5.6: Border treatment example – First iteration.

In every iteration, the method goes through the “outer loop” pairing
consecutive particles and particles at the extreme of consecutive triplets, trying
to handle concave regions.
For every pair, we compute the minimum disk tangent to both particles without
overlapping other disks. We grow its radius until the new particle is tangent
to the boundaries. If the particle generates a collision or if the final disk size
is smaller than Brmin, it is discarded.
All the computed particles are sorted by radii size in decreasing order. The
strategy has a greedy criterion and gives priority to larger particles. Before
placing a new disk, the method checks for collisions with recent insertions,

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 5. Packing improvements 68

e.g., in Figure 5.6, the pairs CD and DE yield two particles tangent to the
container. Only the biggest of both disks is inserted, the smallest will generate
an overlapping.
After each insertion, the method updates the pack assembly, the “outer loop”,
the polygonal mesh, and the grid index. The method is repeated until the pairs
yield no new valid disk larger or equal than Brmin.

Figure 5.7: Border treatment example – Second iteration.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

6
Results

This chapter presents the results of our method in different types of
containers and particle distributions. Here we also analyze and tune the input
parameters. Whenever possible, we compare the packs yielded by our algorithm
in available scenarios for testing defined in previous works.

The first part of this chapter considers the packing inside simple and
commonly used container geometries. In the second part, we focus on complex
geometries extracted from slices of micro-CT images of rocks.

We analyze our algorithm, both in terms of the quality of the resulting
pack and its efficiency. To perform a quality evaluation, we use several
geometric properties presented below. To illustrate the efficiency, we present
the algorithm’s execution time in an Intel Core i5-3330 @ 3.00 GHz with 8 GB
of RAM in Windows 7 64-bit.

6.1
Geometric characteristics

The evaluation of the quality of the packs uses the following geometrical
properties:

– Density(ρ): Is the ratio between the total area of the N particles of the
arrangement and the container area Ac.

ρ = 1
Ac

N∑
i=1

πr2
i (6-1)

– Porosity(φ): Is the ratio of the total area of the void space and the
container area Ac. It can be computed as the complement of the density.

φ = 1.0− ρ (6-2)

– Mean coordination number(Z): Characterizes the packing’s local den-
sity and determines the topological connectivity of the system. It is an
important property because of its relation to the local mechanical sta-
bility and rigidity of the assembly [Papadopoulos et al. 2018]. The coor-
dination number is a disk property representing the number of neighbor
particles in contact (c). The mean value is computed as

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 70

Z = 1
N

N∑
i=1

ci (6-3)

– Fabric tensor: A directional quantity to characterize directionally depen-
dence in microstructures. It quantifies the alignment of the solid and pore
space, the fabric of the microstructure. It is used for granular assemblies
to determine if the pack exhibits a random (isotropic) distribution or a
degree of directional preference. If Nc are the total number of contacts,
the fabric tensor is given by

ϕij = 1
Nc

Nc∑
α=1

ninj , (6-4)

where ni and nj are the components of the 2D unit vector −→n of the
contact α. Equation 6-4 yields a 2x2 matrix. The eigenvalues of this ma-
trix represent the anisotropy of the assembly. An isotropic assembly has
eigenvalues (β1 = 1/2, β2 = 1/2). For random particle arrangements in
DEM, the packing should ensure the geometric isotropy and homogeneity
of the medium [Ghasemi et al. 2020].

– Angular distribution: Is the orientation of particles around its near
neighbors. The distribution illustrates if the arrangement prefers any
particular angle [Tulluri 2003].

Additionally, since the polygonal mesh is an output of the algorithm
that reflects the connections between the particles around the void spaces, we
consider:

– Polygon frequencies: We quantify the number of triangles (4), quads
(3), pentagons (D), hexagons (7), heptagons (He), octagons
(8), nonagons (No) and decagons (De) of the mesh.

6.1.1
Contact and collision thresholds

Contacts among particles are commonly studied in the literature of
granular packings. And, despite being a straightforward geometrical compu-
tation that uses the positions and sizes of the disks, studies in the litera-
ture use threshold contact values to determine if two particles are touching.
[Tulluri 2003] and [Aste et al. 1992] report the use of 0.05dm, where dm is
the diameter of the particle, to include nearly touching particles as contacts.
[Ardanza et al. 2014] explores contact thresholds in the range of [dm-1.12dm]
to analyze the morphological structure of granular samples in mechanical equi-
librium.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 71

Considering two particles i and j with a distance dij between their centers, we
consider the overlapping as:

ωij = dij − (ri + rj), 1 ≤ j < i ≤ N

In the present work, a particle i is in contact with another particle j if the
distance between their centers is within 5% of the sum of both radii. We
compute the contact threshold as:

εZ(i, j) = 0.05× (ri + rj)

and comparing the overlapping versus the contact threshold,

if ωij > εZ(i, j) : i and j are separated,

if ωij < εZ(i, j) : i and j are in contact.

To detect collisions between particles we use the threshold value defined in
Section 4.1.2.

6.2
Algorithm variants

To evaluate how the new heuristics and optimizations perform from a
geometric perspective, six main algorithm variants will be considered:

– AF16: The direct implementation of the advancing front algorithm
described in [Lozano et al. 2016] that only uses the distance to first (DF)
criteria to select the next best position.

– AFMesh: Our algorithm with the new front removal logic and the new
heuristics.

– AFMeshIS: The AFMesh variant plus the internal strategy (IS).

– AFMeshOLS: The AFMesh variant plus the outer loop improvement
(OLS).

– AFMeshOLSIS: The AFMeshOLS variant plus the internal strategy (IS).

– AFMeshOLSISBS: The AFMeshOLSIS variant plus the boundary treat-
ment (BS).

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 72

6.3
Analysis of the front removal parameters

This section examines the inclusion of the maxRejections and maxQueue-
Size parameters on the AF16 variant. The new parameters are introduced to
avoid the premature removal of fronts generating particles colliding with the
domain boundaries.
The test scenario uses a rectangular domain with dimensions [50u, 50u] with a
radius range between [0.1u - 0.5u]. Figure 6.1 illustrates the histogram for the
radius distribution. We consider six values for the maximum number of times
a front can be rejected (1, 2, 4, 6 and 8) and seven values for the maximum
size of the queue of newly rejected particles qnr (1, 2, 4, 8, 10, 12 and ∞).

0.06 0.1 0.2 0.3 0.4
0

0.4

0.8

1.2

1.6

2

2.4
·104

Radii values

F
re
q
u
en
cy

Figure 6.1: Frequency histogram.

For each parameter combination, we execute 50 runs and present their
mean values. Specifically, we are interested in four outputs: the number of
particles N , the number of elements in the queues qnr and qpr, and the mean
distance of the particles in the “outer loop”. The mean distance indicates how
close to the domain frontier are the particles at the border of the arrangement.
The heat maps in Figure 6.2 depict the results of the executions varying the
two new parameters. Higher values are preferable in the case of the number
of particles. In contrast, in the other three outputs, lower values are desirable.
We see that increasing the number of rejections increases the number of disks
and, inversely, reduces the mean distance. More disks are inserted near the
borders. The size of the queues qnr and qpr grows too, but in this scenario,
the impact of the ≈50 particles (qnr + qpr) in the PDF is small given that it
is 0.001% of 43,000 particles. A bigger impact is expected for smaller domains
or bigger particles. To increase the packing near the boundaries and to respect
the sizes in the order provided by the number generator maintaining small
queues, the following experiments will consider a fixed maxQueueSize of 10
and a maxRejections of 6.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 73

Figure 6.2: Front removal logic

6.4
Monodisperse and bidisperse arrangements

We present a pack inside a circular container of radius 10u using a
constant size radius of 0.25u. For the monodisperse scenario, there is no
difference between the AF16 and the AFMesh variants. Due to the criteria
that place new particles in contact with two disks, the algorithms yield regular
packs. In hexagonal arrangements, every inner particle is surrounded by six
disks. The preferred contact angles for the pack are reflected in Figure 6.3.
Those angles are defined by the positions of the two first seed particles. In the
example, the first disk was placed at the center of the circle while the position
of the second was randomly selected.

The scenario obtains a density of ρ = 0.870 and a mean coordination
number of Z = 5.80. After the execution of the refilling procedure BS with
a minimum size of Brmin= 0.15u the pack inserts 36 new disks achieving
ρ = 0.883 and Z = 5.73.

To obtain bidisperse arrangements, we use the AFMeshOLS variant and
a Bernoulli random number generator with a 50.0% of probability for the
maximum rmax and minimum rmin radius. The experiment explores packs with
a 1:1.4 ratio that, according to physical simulations in [O’Hern et al. 2002,
Donev et al. 2004, Henkes et al. 2007, Meyer et al. 2010] report a density of
ρ ≈ 0.84.
We display the average outputs of 100 instances in Table 6.1. Figure 6.4 and

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 74

6.3(a): Pack with refill. ρ = 0.883.

0

30

60
90

120

150

180

210

240
270

300

330

0 500 1,000

6.3(b): Contact orientation. Z = 5.73.

Figure 6.3: Monodisperse pack inside a circle of 10u radius with disks of radius
0.25u with a refilling procedure (0.15u minrad).

Figure 6.5 depict an instance of the runs. The latter illustrates the left bottom
corner of the rectangular container. It shows a pack with 22,220 disks with
rmin and 22,080 disks with rmax. On average, our bidisperse packs achieved a
0.822 density. Compared to the fixed size pack, the contact angle distribution
shows that the arrangements have no preferred angles.

Density (ρ) Coord Number (Z) F. Tensor (β1, β2) Particles (N) Time (s)

0.8212 4.2782 0.50,0.49 44,165 5.65

Table 6.1: Bidisperse packs with AFMeshOLS – Average of 100 instances.

2,2

·104

22 22022 080

F
re
q
u
en
cy

rmin rmax

0

30

60
90

120

150

180

210

240
270

300

330

0 1,000 2,000

Figure 6.4: Bidisperse pack of instance N◦35 – Radius and contact frequencies.

The following sections will focus on the generation of heterogeneous
arrangements.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 75

Figure 6.5: Bidisperse pack of instance N◦35 – Ratio 1:1.4
(4 , 3 , D , 7 , He).

6.5
Variants comparison

To compare the variants, and only for the first two experiments in this
section, we remove the method’s random component. To obtain a deterministic
behavior implies that the three-particle seeds are the same in all the variants
(size and position). We have also created a data set of random numbers for the
uniform ([0.2u - 0.4u]) and truncated log-normal ([0.03u, 0.50u], µ = −2.0 and
σ = 0.5) distributions. The algorithms use these numbers in the same order,
and the needed numbers to fill the domains were computed based on the area
of the containers and the radii distributions, plus a 25%.
First, we present a small test with a rectangular container of dimensions
[15u, 35u] and fill it with disks following the uniform distribution. Table 6.2
presents some geometric properties of the packs and polygonal meshes and
Figure 6.6 illustrates the respective results. We observe that the AFMesh and
AFMeshOLS variants increased the density and the mean coordination number
by incrementing the number of the triangles and decreasing the number of the
other polygons.

Next, we present the scenario where we pack particles following a
truncated lognormal distribution inside a circular container with a radius of
10u employing four variants. Figure 6.7 illustrates the outcomes and Table 6.3

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 76

6.6(a): AF16 6.6(b): AFMesh 6.6(c): AFMeshOLS

Figure 6.6: Uniform packs inside a rectangular container with three variants
using the same data set.

(4 , 3 , D , 7).

N ρ Z ψp
4 3 D 7 >= 7

AF16 1,424 0.788 4.102 635 717 159 20 4
AFMesh 1,449 0.800 4.135 669 761 139 15 4
AFMeshOLS 1,464 0.808 4.281 954 725 88 13 1

Table 6.2: Uniform pack results summary.

N ρ Z ψp
4 3 D 7 >= 7

AF16 2,811 0.808 4.192 1,827 811 317 118 85
AFMesh 2,878 0.824 4.189 1,819 935 313 135 57
AFMeshOLS 2,917 0.840 4.539 2,792 951 194 48 20
AFMeshOLSIS 2,953 0.853 4.633 3,014 1,041 126 32 10

Table 6.3: Lognormal pack results summary.

summarizes the geometric properties.
In both examples, we can see that the AF16 variant using only the

DF metric yields many polygons with a high number of sides. Consequently,
they present a low density and mean coordination number compared to the
other two variants. The new metrics’ use slightly improves the properties and
particularly increases the number of quads in the mesh.
The OLS procedure can locally rearrange the pack and produced more triangles
and quads, leading to an increase in the mean coordination number and pack

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 77

6.7(a): AF16 6.7(b): AFMesh

Figure 6.7: Lognormal packs inside a circular container with four variants using
the same data set.

(4 , 3 , D , 7 , He , 8 , No , De).

6.8(a): AFMeshOLS 6.8(b): AFMeshOLSIS

Figure 6.8: Log-normal packs inside a circular container with four variants
using the same data set (continuation).

density.
We did not test the IS procedure to the rectangle example. In scenarios using a
short-range uniform distribution, the algorithm produces few polygons (or not
polygons at all) with enough space to place disks inside. On the other hand,
for highly heterogeneous arrangements, it can further improve the geometric
properties.

Despite the increase of particles inside the container, our method still
respects the given PDF. We display in Figure 6.9(a) a comparison of the
lognormal curve versus the radius frequencies, in 40 bins, of the particles of the
AFMeshOLSIS variant. We also plot the contact orientations in Figure 6.9(b),

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 78

0 10 20 30 40 50
·10−2

Radii values

F
re
q
u
en

cy

6.9(a): Log-normal curve (µ = −2.0, σ =
0.5)

0

30

60
90

120

150

180

210

240
270

300

330

0 50 100 150

6.9(b): Contact orientations [0◦ − 360◦ >

Figure 6.9: Verification of radius frequencies and contact orientations for the
log-normal test with AFMeshOLSIS

it shows that there are no preferred contact angles. The respective eigenvalues
of the pack are (β1 = 0.498, β2 = 0.505), the pack is isotropic.

In a third experiment, we aim to measure the basic geometric pack prop-
erties, density and mean coordination, and the execution time performance of
our method, varying the minimum and maximum radius ratio.
The test scenario uses a rectangular container with fixed height (50u) and vari-
able width (50u - 2,500u). At each run we increase the width in 50u and create
arrangements with a uniform distribution using five variants and five ratios;
1:2 for [0.2u-0.4u], 1:3 for [0.2u-0.6u], 1:4 for [0.2u-0.8u], 1:5 for [0.2u-1.0u]
and 1:6 for [0.2u-1.2u]. For the OLS improvement we use the trigger condition
(φp >= 0.222 or ψp >= 5).

1 : 2 1 : 3 1 : 4 1 : 5 1 : 6

0.81

0.82

0.83

0.84

0.85

0.86

Ratio rmin:rmax

M
ea
n
D
en

si
ty

(ρ
)

AF16
AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

6.10(a): Density ρ.

1 : 2 1 : 3 1 : 4 1 : 5 1 : 6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Ratio rmin:rmax

M
ea
n
C
o
or
d
in
at
io
n
N
u
m
b
er

(Z
) AF16

AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

6.10(b): Mean coordination number Z.

Figure 6.10: Variant comparison with different ratios.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 79

Figure 6.10 presents the averages of the 50 runs for the variants and
ratio cases. The AF16 method exhibits the lowest values and only matches
the mean coordination number of the AFMesh variant. We observe that the
internal strategy (IS) does not improve the geometric properties for the 1:2
ratio because the method cannot generate polygons with enough space to
place particles inside. When the ratio increases, all the variants using the
improvements increment both the density and mean coordination number in
comparison to the AFMesh variant.

0 1.75 3.53

·105

0

7

30

53

Particles (N)

T
im

e(
s)

1:2 Ratio

AF16
AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

0 1 2

·105

0
2
4

15

33

Particles (N)

T
im

e(
s)

1:3 Ratio

AF16
AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

Figure 6.11: Particles (N) vs Time(s) for 1:2 and 1:3 ratios.

In Figure 6.11, Figure 6.12, and Figure 6.13, we depict the execution
times for the runs of each rectangle packing. For these experiments, the
algorithm shows a linear behavior on the number of particles N for all variants
and ratios. We see that for the first three ratios, the use of the IS improvement
does not impact the performance. The plotted lines overlap. The influence of

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 80

the IS is stronger for the last two ratios because a wider particle size range
produces bigger polygon holes. The additional consumed time is acceptable
based on the gains in density and mean coordination number.

0 0.6 1.2

·105

0

3

10

20
21

Particles (N)

T
im

e(
s)

1:4 Ratio

AF16
AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

Figure 6.12: Particles (N) vs Time(s) for the 1:4 ratio.

0 4 8.25

·104

0

2
3

14

16

Particles (N)

T
im

e(
s)

1:5 Ratio

AF16
AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

0 3 6

·104

0

1.5

3

10

13

Particles (N)

T
im

e(
s)

1:6 Ratio

AF16
AFMesh
AFMeshIS
AFMeshOLS
AFMeshOLSIS

Figure 6.13: Particles (N) vs Time(s) for 1:5 and 1:6 ratios.

The OLS improvement outperforms most of the other variants. Only
using a 1:5 ratio, the AFMeshIS variant matches the AFMeshOLS and with a
ratio of 1:6, outperforms the mean coordination number. AFMeshOLSIS is the
variant with the best geometric outcomes. On the other hand, the OLS yields
the highest execution times. The OLSIS can produce up to 353K particles in
53 seconds for the 1:2 ratio, 192K particles in 32 seconds for the 1:3 ratio, 120K
particles in 20 seconds for the 1:4 ratio, 82K particles in 15 seconds for the
1:5 ratio and 60K particles in 12 second for the 1:6 ratio. Each case presents

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 81

an average density of 0.825, 0.837, 0.848, 0.853 and 0.853, and average mean
coordination of 4.343, 4.424, 4.535, 4.619 and 4.660, respectively.

6.6
Analysis of the OLS

Right after creating a polygon that meets a certain condition, a local
optimization is performed to relocate a subset of particles. In this section, we
analyze how the trigger condition for the “outer loop” improvement strategy
varies the pack outputs.
To be specific, we explore the influence of the polygon’s porosity φp (>= 0.214,
>= 0.229 and >= 0.244) and number of sides ψp (>= 5, >= 6 and >= 7) on
the output to identify which performs better.
Table 6.4 summarizes all the combinations for the relocation trigger, including
the “no relocation” which is equivalent to the AFMesh variant. In total, we
have 16 scenarios, and for each one, we execute 50 simulations.

01:ψp >=5 07:(φp >= 0.214 or ψp >= 5) 13:(φp >= 0.244 or ψp >= 5)
02:ψp >=6 08:(φp >= 0.214 or ψp >= 6) 14:(φp >= 0.244 or ψp >= 6)
03:ψp >=7 09:(φp >= 0.214 or ψp >= 7) 15:(φp >= 0.244 or ψp >= 7)
04:φp >= 0.214 10:(φp >= 0.229 or ψp >= 5) 16: None
05:φp >= 0.229 11:(φp >= 0.229 or ψp >= 6)
06:φp >= 0.244 12:(φp >= 0.229 or ψp >= 7)

Table 6.4: Combination of relocation triggers in 16 scenarios.

The following experiment uses a fixed container of dimensions [100u,
100u] and a uniform distribution in the range of [0.2u-0.4u]. We measure the
density, mean coordination number, execution time, polygon frequencies, and
the number of relocations during the pack generation.
The 800 outputs are presented in Figure 6.14, Figure 6.15 and Figure 6.16
organized in 6 plots. For each plot, we cluster the outputs to identify the
associated inputs scenarios.

The obtained arrangements had densities between the range of [0.813,
0.828], producing disks between [27,614 - 28,362].
The best results in density are achieved by scenarios with ψp >= 5. On the
other hand, the worst correspond to the scenarios with no relocation and the
relocation only with ψp >= 7. The probabilities of generating heptagons here
are small; thus, the relocation strategy is not triggered as much as when the
algorithm detects a pentagon.
Figure 6.14(a) shows that both the coordination number and density increases
when the relocation condition is more strict. This is explained by the genera-
tion of more triangles and fewer polygons with a high number of sides.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 82

6.14(a): Density (ρ) vs mean coordination
number (Z).

6.14(b): Density (ρ) vs time (s).

Figure 6.14: Clustering of algorithm’s outputs.

6.15(a): Relocations vs density (ρ). 6.15(b): Triangles (4) vs density (ρ).

Figure 6.15: Clustering of algorithm’s outputs (continuation).

Figure 6.15(b), Figure 6.16(a) and Figure 6.16(b) present the number of poly-
gons in the scenarios. A high density is directly related to the high numbers
of triangles and quads. Moreover, it is inversely related to the number of pen-
tagons. The scenarios with ψp >= 7 and “no relocation” yield more pentagons
than the others.
Regarding the packing density versus the time consumption in Figure 6.14(b),
we can observe an exponential behavior to achieve higher densities. In con-
clusion, if the trigger to execute the local improvement has a strict condition
regarding the number of sides or the porosity of a polygon, the algorithm will
achieve better results at the cost of execution time.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 83

6.16(a): Quads (3) vs density (ρ). 6.16(b): Pentagons (D) vs density (ρ).

Figure 6.16: Clustering of algorithm’s outputs (continuation).

6.7
Analysis of the BS

To test the optional boundary refilling of the packs, we use the scenario
proposed in Section 6.3. A rectangular box of dimensions 50ux50u with
particles in the range of [0.067-0.45] following a frequency histogram resembling
a discrete truncated Gaussian distribution. After the arrangement generation,
we apply the boundary strategy with different Brmin values.

Brmin Density Coord Number Particles
- 0.824 4.352 11,090
0.20 0.824 4.352 11,092
0.10 0.830 4.349 11,367
0.08 0.832 4.346 11,505
0.06 0.833 4.347 11,740
0.04 0.834 4.341 12,181

Table 6.5: Boundary strategy results varying the Brmin value.

Table 6.5 presents the obtained number of particles, density and mean
coordination number varying the value of the minimum allowed refilling
particle size Brmin. Figure 6.17 illustrates the refilling.

It is logical to obtain an increase in the number of disks, and due to the
insertion of new disks, mostly in contact with two other particles, the mean
coordination number slightly decreases. Also, at inserting particles with small
sizes, we are interested in the impact of the resulting frequency histograms.

Figure 6.18 presents two plots with the histograms with no refilling and
the refilling with Brmin = 0.06. There is an increment of 650 particles (≈ 5%
of 11,000) that raises the bars at the left side of the histograms. Thus, the

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 84

Figure 6.17: Border improvement. From top to bottom Brmin= 0.20, 0.10, 0.08,
0.06, 0.04. Added particles in cyan.

6 · 10−2 0.1 0.2 0.3

150

1,000

1,500

4,000

Radii values

F
re
q
u
en

cy

6.18(a): No refill.

6 · 10−2 0.1 0.2 0.3

150

1,000

1,500

4,000

Radii values

F
re
q
u
en

cy

6.18(b): Brmin = 0.06

Figure 6.18: Experiment with Brmin.

application of this procedure will affect the desired PDF. On the other hand,
it could improve the stability of the arrangement under physical forces.

6.8
Stability tests

The new algorithm yields assemblies with more particles and higher con-
tacts. To test the packs’ stability under gravity, we employ Box2d1, a rigid
collision simulator in 2D. The simulator uses the Verlet integration and an
impulse-based contact model.
Our test scenario is the example of the circular container described in Sec-
tion 6.5. We employ, as the initial position for the arrangements, three packs
with different variants. The first uses the AF16 variant. The second employs
the AFMeshOLSIS, and the third applies the boundary refilling procedure
to the second pack, it uses the AFMeshOLSISBS variant with the minimum
radius Brmin = 0.07.

We compare in Figure 6.19 and Figure 6.20 the initial and final positions
1https://box2d.org/

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 85

6.19(a): AF16 6.19(b): AFMeshOLSIS 6.19(c): AFMeshOLSISBS

Figure 6.19: Initial packs for simulations

Figure 6.20: Final packs after simulations.
Left: max(∆pi) = 1.276u and ∆pi = 0.673u; Middle: max(∆pi) = 0.981u and

∆pi = 0.383; Right: max(∆pi) = 0.779u and ∆pi = 0.365u

before and after the simulations. More precisely, we measure the displacements
of the particles. On the left side, we see that the AF16 variant creates fewer
particles. The pack has a lower mean coordination number, so the displace-
ments ∆p are higher in comparison to the new variants. The AFMeshOLSIS
creates more particles at the boundaries and at the interior of the arrange-
ment. The simulation on the right side presents fewer displacements due to
the refilling procedure at the pack’s border.

6.9
Benchmark with other approaches

In this section, we will compare the proposed method with other algo-
rithms in the literature that define reproducible test scenarios. Despite having
execution time in seconds from the other methods, it is somewhat unfair to
compare our algorithm speed. The tests were carried out by different hardware
and programming languages.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 86

6.9.0.1
Comparison 1 – Arbitrary PDF

[Benabbou et al. 2008] fills a square of dimensions 240x300 nm with a
grain size distribution of radii ranging from 2 to 8 nm. Each range size has a
specific frequency detailed in Table 6.6. It achieves 1,330 disks with a density
of 0.80 and a computing time of less than 0.01s.

Radii (nm) Frequencies (%)

[2.0 - 2.5[15.8
[2.5 - 3.0[21.0
[3.0 - 3.5[20.2
[3.5 - 4.0[16.7
[4.0 - 4.5[10.0
[4.5 - 5.0[6.8
[5.0 - 5.5[4.0
[5.5 - 6.0[3.0
[6.0 - 6.5[0.8
[6.5 - 7.0[0.7
[7.0 - 7.5[0.6
[7.5 - 8.0[0.4

Table 6.6: Benabbou desired fre-
quencies

Worst Freq (%) Best Freq (%)
14.652 15.846
21.685 21.128
22.271 20.129
14.725 16.774
8.718 10.136
7.180 6.924
3.736 3.498
3.883 3.355
0.733 0.571
1.172 0.642
0.586 0.571
0.659 0.428

Table 6.7: Our frequencies with the
highest and lowest chi-square value.

We run 100 instances of this scenario with the relocation trigger (φp >=
0.222 or ψp >= 5) for the OLS improvement. Our results are summarized in Ta-
ble 6.8. On average, the new strategy produces a density of 0.82 with 1,406 par-
ticles in 0.22 seconds. Among all the instances, the smallest number of particles
was 1,350, which is greater than the 1,330 obtained by [Benabbou et al. 2008].
Our density is always higher, and our lowest outcome was 0.816. Our execution
time is slower.
Regarding the expected radius frequency, we summed the errors of each range
per instance using the chi-square test. In the fourth column of Table 6.8, we
can see that the chi-square value is small. The frequency distributions with
the highest and lowest cumulative errors are shown in Table 6.7. An instance
is illustrated in Figure 6.21.

Density Coord Number F. Tensor (β1, β2) Particles Frequency errors Time (s)

Min 0.8160 4.3098 0.49,0.49 1,350.000 0.002 0.1891
Max 0.8268 4.4397 0.50,0.50 1,453.000 0.017 0.2605
Mean 0.8210 4.3790 0.49,0.50 1,406.640 0.008 0.2228
Variance 4.e-6 0.0006 7.e-6,7.e-6 702.410 9.e-6 0.0001
S. deviation 2.e-3 0.0253 0.002,0.002 26.503 0.003 0.0117

Table 6.8: Comparison 1 – Summary of 100 instances.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 87

Figure 6.21: Comparison 1 – Pack and mesh
(4 , 3 , D , 7 , He).

6.9.0.2
Comparison 2 – Ratio 1:7

[Bagi 2005] defines a rectangular container of 100x100 cm and fill it with
radii of uniform distribution in the interval of [0.06 cm, 0.42 cm], a 1:7 ratio.
We list in Table 6.9 some packing algorithms in the literature that test this
scenario.
[Benabbou et al. 2009] achieves a density of 0.84 with around 39,000 particles
in 0.9 seconds. [Liu et al. 2012] achieved 0.87 density in two phases. During
the first phase, their algorithm reaches 0.84 in 18 seconds, and after a refilling
phase, the density reaches 0.87 in 9 seconds. A total of 27 seconds. Their
refilling does not strictly respect the given distribution.

Machine Particles ρ Z Time(s)
Lubachevsky et al. 1991 IBM PC, 3GHz, Pentium 4 - 0.840 - Hours
Bagi 2005 IBM PC, 3GHz, Pentium 4 39,219 0.824 3.98 196.0
Benabbou et al. 2009 Intel Core2, 2.8GHz ≈ 39,000 0.840 - 0.9
Liu et al. 2012 Intel Core2, 2.53GHz - 0.840 - 18.0

- 0.870 - 27.0

Table 6.9: Comparison 2 – Literature results.

We run, in a first experiment, 100 instances for this scenario only with the
relocation trigger (φp >= 0.222 or ψp >= 5). Table 6.10 presents a summary
of the results. The minimum achieved density is 0.850, while the maximum is
0.851. Among all the samples, 16 are below the range of [0.8512-s.deviation,
0.8512+s.deviation], 69 are inside that range, and 15 are above. The mean
coordination number is, on average, 4.51. On the downside, the algorithm

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 88

took 7.5 seconds on average, [Benabbou et al. 2009] obtains a better time
performance.

Density Coord Number F. Tensor (β1, β2) Particles Frequency errors (%) Time (s)

Min 0.8502 4.5046 0.49,0.49 39,116.000 0.0007 7.07
Max 0.8522 4.5283 0.50,0.50 40,040.000 0.0018 7.53
Mean 0.8512 4.5157 0.50,0.49 39,634.050 0.0012 7.21
Variance 1.e-7 2.e-5 2.e-7,2.e-7 24,050.767 5.e-8 0.006
S. deviation 0.0003 0.0048 5.e-4,5.e-4 155.083 0.0002 0.079

Table 6.10: Comparison 2 – AFMeshOLS – Summary of 100 instances.

In a second experiment, we maintain the OLS improvement with the
same condition, and we also use the IS improvement to insert disks inside
the polygons along with the generation. Table 6.11 shows that with the
AFMeshOLSIS variant, the algorithm manages to insert ≈ 600 more particles,
increasing the density and the coordination number.

Density Coord Number F. Tensor (β1, β2) Particles Frequency errors (%) Time (s)

Min 0.8633 4.7738 0.49,0.49 39,850.000 0.0006 11.86
Max 0.8654 4.8055 0.50,0.50 40,638.000 0.0018 13.31
Mean 0.8645 4.7921 0.49,0.49 40,243.279 0.0012 12.28
Variance 1.e-7 3.e-5 1.e-7,1.e-7 23,674.701 5.e-8 0.03
S. deviation 0.0004 0.0054 4.e-4,4.e-4 153.865 0.0002 0.19

Table 6.11: Comparison 2 – AFMeshOLSIS – Summary of 100 instances.

We also compute the eigenvalues of the tensor. The mean eigenvalues
in the variants are (β1 = 0.50, β2 = 0.49) and (β1 = 0.49, β2 = 0.49). Figure
6.22(a) presents, for a single instance, the frequency distribution of contact
orientations. The structures do not have a preferred contact direction and are
isotropic.

0

30

60
90

120

150

180

210

240
270

300

330

0 500 1,0001,5002,000

6.22(a): Contact orientation. 6.22(b): Small pack region (4 , 3 ,
D , 7 , He).

Figure 6.22: Comparison 2 – AFMeshOLSIS instance N◦4

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 89

Table 6.12 shows a counter of occurrences per polygon for the fourth
instance in Table 6.11. Note the high number of triangles and quads.

Polygon Size 3 4 5 6 7 8 9
Count 39,950 16,410 1,502 417 87 18 4

Table 6.12: Comparison 2 – Polygon count of AFMeshOLSIS instance N◦4.

We also collect additional data regarding the front removal logic and
the OLS improvement in Table 6.13. With only the OLS, the method executes
approximately 7,800 relocations per run, and approximately 2,600 are rejected,
returning the removed particles to their original configuration. With the IS, the
number of relocations is reduced by≈ 1, 000. The reduction is expected because
the inner insertion is tested before adding new particles to the “outer loop”.
With fewer number of “bad polygons” at the mesh borders, the relocation
trigger declines.

AFMeshOLS AFMeshOLSIS
Relocations Rollbacks qnr qpr Relocations Rollbacks qnr qpr

Min 7,706.0 2,367.0 0.0 0.0 6,590.0 1,938.0 0.00 0.00
Max 8,011.0 2,588.0 10.0 11.0 6,909.0 2,155.0 10.00 11.00
Mean 7,828.9 2,484.9 6.0 4.9 6,752.9 2,047.8 5.71 5.21

Table 6.13: Comparison 2 – Relocations and front logic output data.

In both experiments, in ≈ 70% of the cases, the algorithm improves the
density. On the other hand, ≈ 30% of the cases, the algorithm wastes time
trying to find new locations for the particles
Additionally, we count the remaining elements in the queues of newly rejected
radii (qnr) and previously rejected radii (qpr) at the end of the runs. Those
queues are minimal compared to the total inserted particles; thus, the algo-
rithm followed the specified PDF.

6.9.0.3
Comparison 3 - Densification

[Bagi 2005] employs the output of the previous experiment and use it to
test its densification strategy. It consists of detecting pairs of contacts between
disks and trying to insert a third particle in contact, without generating
collisions. The new particle size must be within a given range size defined
by the user. Bagi reused the [0.06 cm, 0.42 cm] range. The final PDF of the
pack will change. Filling the voids will favor the generation of smaller particles.
Some methods in the literature also use this scenario. Since all of them employ
different particle generation approaches, the test computes the average radius
in the pack ravg as a comparison property.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 90

Machine Particles ravg ρ Z Time(s)
PFC2D∗ - - 0.229 0.857 4.29 64h
Bagi 2005 IBM PC, 3GHz, Pentium 4 56,213 0.221 0.858 3.98 388
Labra et al. 2009 Pentium 4, 3GHz 56,084 0.223 0.903 5.97 118
Cui et al. 2003∗∗# Intel Core i7-8850H 56,241 0.214 0.768 1.01 52
Zhang et al. 2020# Alg1 Intel Core i7-8850H 56,753 0.221 0.849 3.99 80
Zhang et al. 2020# Alg2 Intel Core i7-8850H 55,614 0.219 0.803 4.27 181
* Computed by Labra. **Computed by Zhang. # Unoptimized MATLAB implementation

Table 6.14: Comparison 3 – Literature results.

We see that the final density of Bagi in Table 6.14 is comparable to our
density using the AFMeshOLS variant. For that reason, we will generate a
pack to be densified without any improvement procedure to start with a lower
density, which is the AFMesh variant.
We perform a similar densification procedure as in [Bagi 2005]. In our case, we
repopulate the domain in two steps. The first step performs a particle insertion
similar to the IS strategy. It creates a set of holes using the final polygons at
the mesh and then places particles, between the radii range, inside them. The
insertions trigger the split of holes, and new polygons will be registered in the
set. The procedure ends as soon as the largest hole is smaller than the smallest
allowed particle. The second step performs the BS improvement that inserts
new disks in contact with the border particles and the container.
For our runs, we explore the Brmin minimum radius effect on the densification
outputs.

Brmin Density Coord Number F. Tensor (β1, β2) Particles ravg Time(s)
- 0.828 4.194 (0.492, 0.507) 38,610 0.239 1.06
0.080 0.875 4.691 (0.497, 0.502) 52,186 0.204 1.03
0.075 0.881 4.761 (0.496, 0.503) 55,083 0.197 1.05
0.070 0.887 4.837 (0.498, 0.501) 58,492 0.190 1.06
0.065 0.892 4.912 (0.498, 0.501) 62,466 0.182 1.07
0.060 0.898 4.991 (0.498, 0.501) 67,167 0.174 1.07

Table 6.15: Comparison 3 – Densification results.

The first line in Table 6.15 corresponds to the initial pack. Note that
the initial ravg is close to the Bagi’s average radii after the densification. This
gives us the idea that our densification will lead to the insertions of a huge
number of small particles. Table 6.15 presents the outputs for five values of
Brmin. We see that reaching a particle size of ≈ 56, 000 will yield an ravg of
≈ 0.19. Figure 6.23 shows the left corner of one pack and the corresponding
polygonal mesh.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 91

Figure 6.23: AFMesh pack densification with IS (post process) + BS using
Brmin= 0.065. IS and BS particles are in red and cyan respectively.

(4 , 3 , D , 7).

6.10
Complex geometries

This section shows that our method is not restricted to simple containers
but can handle complex geometries.

6.10.1
Slope

As a first example, we use a model defined by [Zhang et al. 2020]. It rep-
resents a slope, a common problem in civil engineering. Figure 6.24(a) displays
the model and its dimensions. The work does not prescribe a PDF because
Zhang used a mesh-based method to generate particles on triangular meshes
representing the container. The PDF on this kind of approach depends on the
quality of the given triangulation. Nevertheless, it describes the resulting par-
ticle range [0.04, 0.20].
Here, we perform a packing using this range size with a uniform distribution.
The packing will use the AFMeshOLSISBS variant. We apply the BS improve-
ment to increase contacts with the boundary with Brmin = 0.04.

Figure 6.24(b) plots the polar frequencies of the contacts between the
particles. This pack is composed of 32,867 disks, reaching a density of 0.86
with a mean coordination of 4.67 in 6.7 seconds.

Figure 6.25 depicts a small portion of the model and the respective
polygonal mesh. Note the particles generated by the BS improvement in cyan.
Also, to have a closer look at the radius distribution, we use in Figure 6.26(a)
a color palette according to the radii size of the particles.
Finally, we plot the radius frequencies of the packs before and after the BS
improvement. Note the small increase of the smaller particles in Figure 6.26(b).

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 92

6.24(a): Model and pack.

0

30

60
90

120

150

180

210

240
270

300

330

0 500 1,000 1,500

6.24(b): Contact orientations.

Figure 6.24: Zhang’s slope model.

Figure 6.25: Zoom at the slope model. Pack and mesh.
(4 , 3 , D , 7 , He , 8).

6.26(a): Colors by radius size.

4 · 10−2 8 · 10−2 0.12 0.16
0

200

400

600

800

Radii values

F
re
q
u
en

cy

6.26(b): Radius frequencies.

Figure 6.26: Slope model – Radius frequencies.

6.10.2
Handling domains with holes

We explore in this section, the generation of packs for domains with holes.
Figure 6.27 presents a complex test model, the dragon silhouette. The model
exhibits a hole in the region A2.

When packing a domain with holes, there is a moment when two sets

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 93

6.27(a): Polygonal mesh. 6.27(b): A3 – Head.

Figure 6.27: Dragon model.

of advancing fronts merge. In Figure 6.28, we present a small example where
two separate front lines merge after a particle insertion. The “outer loop”
now connects the two front lines. Figure 6.28(c) shows the resulting polygon
surrounding the hole. These polygons will not be considered for the polygonal
mesh frequency or for the interior strategy (IS); it would be too expensive to
compute the Soddy circles of the triplets. Empty spaces of the polygon will
be filled by the fronts nearby in future iterations. Optionally, we could use the
boundary strategy to increase the density around the hole.

6.28(a): Before. 6.28(b): After. 6.28(c): Polygon hole.

Figure 6.28: Merging two fronts. Active fronts in red.
(4 , 3 , D , 7).

Testing if every polygon is related to a domain hole may be expensive,
so we only perform that verification for the polygons created by new particles
placed within a rmax distance from the boundary.
Figure 6.29 focuses on three areas of the dragon. Note the small particles in
cyan added with the BS procedure.

Figure 6.30 introduces a more complex model, the octopus. We consider
this model a good test because of two points:

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 94

6.29(a): A1 – Tail. 6.29(b): A2 – Hole do-
main.

6.29(c): A4 – Neck.

Figure 6.29: Dragon detail. Added particle with the BS improvement in cyan.

– Allow us to observe the algorithm’s behavior handling very narrow
regions. Especially for the tentacles.

– It has several holes of different dimensions in the middle of the model.
It allows us to verify our ADF implementation. The tiny holes in the
region A5 are the product of a discretization error during the extraction
of the model contour from the triangle mesh. Still, our method respects
the holes.

Figure 6.31 and Figure 6.32 show that the method can spread through narrow
regions.

6.30(a): Polygonal mesh. 6.30(b): A4 – Holes.

Figure 6.30: Octopus model

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 95

6.31(a): A1
– Tentacle.

6.31(b): A2 – Tentacle. 6.31(c): A6 – Ten-
tacle.

Figure 6.31: Octopus detail.

6.32(a): A3 – Tentacle. 6.32(b): A5 – Tiny hole do-
mains.

Figure 6.32: Octopus detail (Continuation).

6.10.3
Tomography slices

Among the literature, [Skarżyńksi et al. 2015], [Nitka et al. 2018] and
[Nitka et al. 2020] combine DEM simulations with X-ray micro-CT images to
model concrete fractures in 4-phase material images. All the phases, except for
the void, are populated with particles.
Here, we will treat 2-phase micro-CT images, and create packs in the solid
phase. Our test models were created with an iso-contour extraction algorithm
based on a dual contouring approach [Lobello et al. 2014] on sections of
volumetric images available at the web site of the Department of Earth Science

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 96

and Engineering of the Imperial College London2.
Table 6.16 enumerates the test image names, resolutions and porosity. It also
details the corresponding slice of the image and the number of segments of the
resulting contour mesh.

Image data Extraction data
Name Volume Resolution Porosity XY-Section N◦ N◦Segments
Berea sandstone 4003 5.3450 µm 19.6% 200 7,123
Carbonate C1 4003 2.8500 µm 23.3% 200 5,051
Ketton carbonate 10003 3.0035 µm 13.9% 500 6,820
Sand pack (LV60C) 4503 10.0020 µm 37.2% 100 21,029

Table 6.16: Dual contouring inputs and outputs.

The models of microstructures are complex and heterogeneous. Our
method identifies the connected components of segments surrounded by void
regions, and for each one, we perform the following:

– Compute the bounding box of the segments.

– Compute the signed distance field within the bounding box.

– Define the particle seeds of the component. A random procedure deter-
mines three valid positions and radii for the disks. Only if the compo-
nents’ area is too small to fit three particles or the random procedure
reaches a certain counter, the seed generation fails.

– Generate the pack of the component if the seed generation is successful.

Each component will have a pack, a polygonal mesh, and an “outer loop”.
The ADF structure and the grid are local to each component and can be
deallocated from memory after the generation.

Name Components Uniform Dist. Particles Density Z Time(s)
Berea sandstone 6 [0.10-0.30] 771,970 0.83 4.38 206.0
Carbonate C1 15 [0.10-0.30] 750,320 0.84 4.40 169.0
Ketton carbonate 8 [0.20-0.50] 1,702,998 0.83 4.39 399.0
Sand pack (LV60C) 152 [0.10-0.20] 1,439,529 0.81 4.32 290.0

Table 6.17: Summary of rock image packing.

2https://www.imperial.ac.uk/earth-science/research/research-groups/perm/
research/pore-scale-modelling/micro-ct-images-and-networks/

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 97

6.33(a): Berea sandstone. 6.33(b): Carbonate C1.

Figure 6.33: Extracted models.

6.34(a): Ketton carbonate. 6.34(b): Sand pack (LV60C).

Figure 6.34: Extracted models (Continuation).

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 98

6.35(a): Berea sandstone. 6.35(b): Carbonate C1.

Figure 6.35: Pack on images.

6.36(a): Ketton carbonate. 6.36(b): Sand pack (LV60C).

Figure 6.36: Pack on images (Continuation).

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 6. Results 99

6.37(a): Sand pack (LV60C) right bottom region.

6.37(b): Carbonate left upper corner.

Figure 6.37: LV60C and carbonate pack zooms.

6.38(a): Berea sandstone bottom corner.

6.38(b): Ketton carbonate middle region.

Figure 6.38: Berea and ketton pack zooms.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

7
Conclusions

This work presents a new packing algorithm to create dense random
arrangements of disk particles as an initial step for the discrete element
method (DEM). The algorithm yielded excellent geometric properties while
maintaining good computational time.

The optimal density achieved by hexagonal packings (≈0.9069) is theo-
retically obtained for infinite planes. Using a domain restriction adds an edge
effect that is minimized when the container is scaled up to a certain size or
when the particle size is reduced. The proposed algorithm creates regular ar-
rangements for the monodisperse case. Given a circular container 40 times the
size of the disk radius our method reaches a density of 0.87.

For a mixture of disks with different sizes, our method yields random
arrangements following a given particle distribution function (PDF) or an ar-
bitrary radius frequency histogram.
For the bidisperse case, the algorithm obtained a density of 0.822 for the
1:1.4 ratio between the smallest and the biggest radius. According to phys-
ical simulations in [O’Hern et al. 2002, Donev et al. 2004, Henkes et al. 2007,
Meyer et al. 2010] such packings report a maximum density of ρ ≈ 0.84.
For uniform distributions we reached densities of 0.825, 0.837, 0.848, 0.853 and
0.853 for the ratios of 1:2, 1:3, 1:4, 1:5 and 1:6 respectively. As a reference for
comparison with other geometric algorithms, [Bagi 2005] obtained a density of
≈0.816 for uniform packs with a 1:2 ratio. [Liu et al. 2012] obtained density
values of ≈0.805, ≈0.818, ≈0.826 and ≈0.834 for uniform packs for the ratios
of 1:2, 1:3, 1:4 and 1:5.

The construction of a polygonal mesh on top of the pack allowed the
definition of heuristics to determine the next positions of the incoming radius.
The heuristics favored the insertion of particles inside adjacent polygons to the
current front, enforced the contacts between the new particle and particles in
the neighborhood and reinforced the generation of compact arrangements. The
new heuristics proved to be more effective than the heuristic we proposed in
previous work. Additionally, two new parameters were introduced to enhance
the generation of particles near the domain boundaries.

A new strategy that aims to locally rearrange a small subset of particles

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 7. Conclusions 101

on the pack’s borders is proposed. The maximum porosity and the maximum
number of sides among the new polygons are employed as conditions to
trigger the relocations after a disk insertion. This mechanism improved the
density and coordination number of the arrangements. However, the local
packing algorithm is not 100% effective. Experiments reveal that ≈30% of
the relocations are reverted because they cannot find a better configuration
for the removed disks. From a combinatorial viewpoint, the destruction and
reconstruction of portions of the pack classify this as a non-constructive
strategy. In consequence, the variants AFMeshOLS and AFMeshOLSIS are
semi-constructive algorithms.

Another strategy that permits the insertion of particles in the void space
all over the pack is introduced. We developed a greedy algorithm that uses the
mesh to identify the particles that can be placed inside the polygons during the
packing generation. This mechanism does not affect the PDF of the radii pack
and increases the density and coordination number, mainly in heterogeneous
arrangements.

A refilling procedure was offered to improve the packing near the bound-
aries as a post-packing optional step. It was used a minimum radius as a
stop condition to add more particles at empty regions near the borders of
the domain. This refilling will increase the frequencies of the smaller particles.
Nevertheless, the increment is minimal in comparison to the total number of
particles in the arrangements.

The polygonal mesh structure granted complete control of the void
regions of the packs. The set of holes, created in the IS strategy, supported
further densification by inserting more particles inside the polygons.

Through several experiments and runs of the algorithm and its variants
for the proposed scenarios, our method’s time complexity presented a linear
behavior on the number of particles. The AFMesh and AFMeshIS variants
were the fastest while the AFMeshOLS and AFMeshOLSIS took more time to
produce the arrangements. The AFMeshOLSIS, among the variants, yielded
the highest density and mean coordination number.

In comparison to the AF16, the new variants created more triangles in the
mesh. As stated in [Papadopoulos et al. 2018], triangles tend to be stabilizing
structures than can maintain rigidity under applied forces. The new variants
produced more stable arrangements than the AF16 according to rigid body
simulations only with a gravitational force. This was further enhanced by
employing the boundary strategy to increment the contacts with the boundary
domain. Still, our solution is not completely physically stable.

Finally, our method is capable of handling complex containers such as

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 7. Conclusions 102

rock structures from micro-CT images. Our adaptive distance field implemen-
tation handled domain holes of different dimensions, even tiny holes generated
by discretization errors during the contour extraction of triangle meshes. Poly-
gons enclosing holes were identified to apply the boundary improvement on
them to increase contacts with the frontiers. Each component of the domain
was packed independently for the other components. Our method managed to
expand the particle generation even through narrow regions of the containers.

7.1
Future work

It is missing a smarter trigger for the particles in the “outer loop”
improvement. The relocation algorithm can improve the density in 70% of
the cases. The remaining 30% had to restore the original configuration of the
removed particles. Another alternative is to explore new ways to relocate the
particles. [Akeb 2014] explores other search space algorithms to pack spheres.
More advanced strategies will have an impact on time consumption.

The refilling problem at the domain boundaries is not trivial. A more
sophisticated and global process needs to be implemented to achieve better
results. This includes not only the radii’s adjustment but also the modification
of the locations of particles near the frontiers [Labra et al. 2009].

Further study is needed to adapt the algorithm to handle the porosity as
a user parameter. Having the polygonal mesh provides awareness of the whole
network connections in the pack. So, it is possible to remove some particles,
starting with the ones with fewer contacts, without affecting the stability, until
reaching the desired porosity. The removal strategy is challenging for highly
heterogeneous arrangements because removing big particles will significantly
impact the local contact network.

For complex geometries with a set of connected components, the execu-
tion time could be improved with a parallel execution of the pack generation.

An adaptation of the generation algorithm could be explored to obtain
anisotropic packs following a given tensor field.

A variation of the current algorithm is the sphere packing on top of planes
as an application to create the initial pack for 3D methods that use an inward
packing generation for known containers such as parallelepipeds.

A natural evolution of the packing method is the implementation of the
3D version. Instead of a polygonal mesh, it will be necessary to study the
construction of a polyhedral mesh. The biggest challenge will be to define how
to close polyhedrons upon spherical particle insertions. Note that in 2D, disk
particles’ insertion always closes polygons, while in 3D, this will not hold.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Chapter 7. Conclusions 103

Besides, in 3D, all the void spaces are interconnected, there is no closed void
region. The method must be able to handle a network of interconnected void
spaces. A crucial step in solving this problem is defining the difference between
a void body and a void throat. This is a problem that is still subject of
discussion [Van der Linden et al. 2016].

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography

[Akeb 2014] AKEB, H.. A look-forward heuristic for packing spheres
into a three-dimensional bin. In: 2014 FEDERATED CONFERENCE
ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, p. 397–404.
IEEE, 2014.

[Ardanza et al. 2014] ARDANZA-TREVIJANO, S.; ZURIGUEL, I.; ARÉVALO, R.
; MAZA, D.. Topological analysis of tapped granular media using
persistent homology. Physical Review E, 89(5):052212, 2014.

[Aste et al. 1992] NOLAN, G.; KAVANAGH, P.. Computer simulation of
random packing of hard spheres. Powder technology, 72(2):149–155,
1992.

[Aste et al. 2005] ASTE, T.. Variations around disordered close packing.
Journal of Physics: Condensed Matter, 17(24):S2361, 2005.

[Atkinson et al. 2014] ATKINSON, S.; STILLINGER, F. H. ; TORQUATO, S..
Existence of isostatic, maximally random jammed monodisperse
hard-disk packings. Proceedings of the National Academy of Sciences,
111(52):18436–18441, 2014.

[Azevedo et al. 2013] AZEVEDO, N. M.; LEMOS, J. V.. A 3d generalized
rigid particle contact model for rock fracture. Engineering Compu-
tations: Int J for Computer-Aided Engineering, 30(2):277–300, 2013.

[Bagi 1993] BAGI, K.. A quasi-static numerical model for micro-level
analysis of granular assemblies. Mechanics of materials, 16(1-2):101–
110, 1993.

[Bagi 2005] BAGI, K.. An algorithm to generate random dense arrange-
ments for discrete element simulations of granular assemblies.
Granular Matter, 7(1):31–43, 2005.

[Barber et al. 1996] BARBER, C. B.; DOBKIN, D. P. ; HUHDANPAA, H.. The
quickhull algorithm for convex hulls. ACM Transactions on Mathe-
matical Software (TOMS), 22(4):469–483, 1996.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 105

[Benabbou et al. 2008] BENABBOU, A.; BOROUCHAKI, H.; LAUG, P. ; LU,
J.. Sphere packing and applications to granular structure mod-
eling. In: PROCEEDINGS OF THE 17TH INTERNATIONAL MESHING
ROUNDTABLE, p. 1–18. Springer, 2008.

[Benabbou et al. 2009] BENABBOU, A.; BOROUCHAKI, H.; LAUG, P. ; LU, J..
Geometrical modeling of granular structures in two and three
dimensions. application to nanostructures. International Journal for
Numerical Methods in Engineering, 80(4):425–454, 2009.

[Berryman 1983] BERRYMAN, J. G.. Random close packing of hard
spheres and disks. Phys. Rev. A, 27:1053–1061, Feb 1983.

[Bithell et al. 2014] BITHELL, M.; RICHARDS, K. S. ; BITHELL, E. G.. Simu-
lation of scree-slope dynamics: investigating the distribution of
debris avalanche events in an idealized two-dimensional model.
Earth Surface Processes and Landforms, 39(12):1601–1610, 2014.

[Bonneau et al. 2020] BONNEAU, F.; SCHOLTES, L. ; RAMBURE, H.. An
algorithm for generating mechanically sound sphere packings in
geological models. Computational Particle Mechanics, p. 1–14, 2020.

[Borkovec et al. 1994] BORKOVEC, M.; DE PARIS, W. ; PEIKERT, R.. The
fractal dimension of the apollonian sphere packing. Fractals,
2(04):521–526, 1994.

[Campello et al. 2016] CAMPELLO, E.; CASSARES, K. R.. Rapid generation
of particle packs at high packing ratios for dem simulations of
granular compacts. Latin American Journal of Solids and Structures,
13(1):23–50, 2016.

[Chang et al. 2010] CHANG, H.-C.; WANG, L.-C.. A simple proof of thue’s
theorem on circle packing. arXiv preprint arXiv:1009.4322, 2010.

[Cohen et al. 1995] COHEN, J. D.; LIN, M. C.; MANOCHA, D. ; PONAMGI,
M.. I-collide: An interactive and exact collision detection system
for large-scale environments. In: PROCEEDINGS OF THE 1995
SYMPOSIUM ON INTERACTIVE 3D GRAPHICS, p. 189–ff, 1995.

[Cui et al. 2003] CUI, L.; O’SULLIVAN, C.. Analysis of a triangulation
based approach for specimen generation for discrete element
simulations. Granular Matter, 5(3):135–145, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 106

[Cundall et al. 1979] CUNDALL, P. A.; STRACK, O. D.. A discrete numerical
model for granular assemblies. geotechnique, 29(1):47–65, 1979.

[Devroye et al. 1986] DEVROYE, L.. Sample-based non-uniform random
variate generation. In: PROCEEDINGS OF THE 18TH CONFERENCE
ON WINTER SIMULATION, p. 260–265. ACM, 1986.

[Donev et al. 2004] DONEV, A.; TORQUATO, S.; STILLINGER, F. H. ; CON-
NELLY, R.. Jamming in hard sphere and disk packings. Journal of
applied physics, 95(3):989–999, 2004.

[Dong et al. 2020] DONG, Q.; WANG, Y. ; FENG, D.. An algorithm to gen-
erate dense and stable particle assemblies for 2d dem simulation.
Engineering Analysis with Boundary Elements, 114:127–135, 2020.

[Ebeida et al. 2016] EBEIDA, M. S.; RUSHDI, A. A.; AWAD, M. A.; MAHMOUD,
A. H.; YAN, D.-M.; ENGLISH, S. A.; OWENS, J. D.; BAJAJ, C. L. ;
MITCHELL, S. A.. Disk density tuning of a maximal random
packing. In: COMPUTER GRAPHICS FORUM, volumen 35, p. 259–269.
Wiley Online Library, 2016.

[Eitz et al. 2007] EITZ, M.; LIXU, G..Hierarchical spatial hashing for real-
time collision detection. In: IEEE INTERNATIONAL CONFERENCE ON
SHAPE MODELING AND APPLICATIONS 2007 (SMI’07), p. 61–70. IEEE,
2007.

[Ericson 2004] ERICSON, C.. Real-Time Collision Detection. The Morgan
Kaufmann Series in Interactive 3D Technology. Elsevier Science, 2004.

[Feng et al. 2003] FENG, Y.; HAN, K. ; OWEN, D.. Filling domains with
disks: an advancing front approach. International journal for numerical
methods in engineering, 56(5):699–713, 2003.

[Ferreira 2009] PINTO, A. L. F.. Algoritmo para geração de arranjos de
particulas para utilização no método dos elementos discretos.
Master’s thesis, Pontifícia Universidade Católica do Rio de Janeiro, 2009.

[Frery et al. 2012] FRERY, A. C.; RIVAROLA-DUARTE, L.; RAMOS, V. C. L.;
RAMOS, A. S. ; LIRA, W. W. M.. Stochastic particle packing with
specified granulometry and porosity. Granular Matter, 14(1):27–36,
2012.

[Frisken et al. 2000] FRISKEN, S. F.; PERRY, R. N.; ROCKWOOD, A. P. ;
JONES, T. R.. Adaptively sampled distance fields: A general

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 107

representation of shape for computer graphics. In: PROCEEDINGS
OF THE 27TH ANNUAL CONFERENCE ON COMPUTER GRAPHICS AND
INTERACTIVE TECHNIQUES, p. 249–254, 2000.

[Gao et al. 2018] GAO, K.; EUSER, B. J.; ROUGIER, E.; GUYER, R. A.; LEI, Z.;
KNIGHT, E. E.; CARMELIET, J. ; JOHNSON, P. A.. Modeling of stick-
slip behavior in sheared granular fault gouge using the combined
finite-discrete element method. Journal of Geophysical Research: Solid
Earth, 123(7):5774–5792, 2018.

[Garcia 2018] GARCIA, F. E. T.. Discrete element analysis of surface fault
rupture through granular media. PhD thesis, UC Berkeley, 2018.

[Gardiner et al. 2015] GARDINER, B. S.; WONG, K. K.; JOLDES, G. R.; RICH,
A. J.; TAN, C. W.; BURGESS, A. W. ; SMITH, D. W.. Discrete element
framework for modelling extracellular matrix, deformable cells
and subcellular components. PLoS computational biology, 11(10), 2015.

[Ghasemi et al. 2020] GHASEMI, M.; FALAHATGAR, S.. Discrete element
simulation of damage evolution in coatings. Granular Matter,
22(2):1–16, 2020.

[Han et al. 2005] HAN, K.; FENG, Y. ; OWEN, D.. Sphere packing with
a geometric based compression algorithm. Powder Technology,
155(1):33–41, 2005.

[Henkes et al. 2007] HENKES, S.; O’HERN, C. S. ; CHAKRABORTY, B.. En-
tropy and temperature of a static granular assembly: An ab
initio approach. Physical review letters, 99(3):038002, 2007.

[Jerier et al. 2009] JERIER, J.-F.; IMBAULT, D.; DONZE, F.-V. ; DOREMUS, P..
A geometric algorithm based on tetrahedral meshes to generate
a dense polydisperse sphere packing. Granular Matter, 11(1):43–52,
2009.

[Jerier et al. 2010] JERIER, J.-F.; RICHEFEU, V.; IMBAULT, D. ; DONZÉ, F.-V..
Packing spherical discrete elements for large scale simulations.
Computer Methods in Applied Mechanics and Engineering, 199(25):1668–
1676, 2010.

[Jian et al. 2003] JIANG, M.; KONRAD, J. ; LEROUEIL, S.. An efficient tech-
nique for generating homogeneous specimens for dem studies.
Computers and geotechnics, 30(7):579–597, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 108

[Labra et al. 2009] LABRA, C.; ONATE, E.. High-density sphere packing
for discrete element method simulations. Communications in Numer-
ical Methods in Engineering, 25(7):837–849, 2009.

[Lagarias et al. 2002] LAGARIAS, J. C.; MALLOWS, C. L. ; WILKS, A. R..
Beyond the descartes circle theorem. The American mathematical
monthly, 109(4):338–361, 2002.

[Li et al. 2018] LI, Y.; JI, S.. A geometric algorithm based on the
advancing front approach for sequential sphere packing. Granular
Matter, 20(4):59, 2018.

[Liu 2008] LIU, J.; LI, S. ; CHEN, Y.. A fast and practical method to pack
spheres for mesh generation. Acta Mechanica Sinica, 24(4):439–447,
2008.

[Liu et al. 2012] LIU, J.; YUN, B. ; ZHAO, C.. An improved specimen
generation method for dem based on local delaunay tessellation
and distance function. International Journal for Numerical and Analytical
Methods in Geomechanics, 36(5):653–674, 2012.

[Liu et al. 2018] LIU, L.; JI, S.. Ice load on floating structure simulated
with dilated polyhedral discrete element method in broken ice
field. Applied Ocean Research, 75:53–65, 2018.

[Lo 1985] LO, S.. A new mesh generation scheme for arbitrary planar
domains. International journal for numerical methods in engineering,
21(8):1403–1426, 1985.

[Lobello et al. 2014] LOBELLO, R. U.; DUPONT, F. ; DENIS, F.. Out-of-
core adaptive iso-surface extraction from binary volume data.
Graphical models, 76(6):593–608, 2014.

[Lopes et al. 2020] LOPES, L. G.; CINTRA, D. T. ; LIRA, W. W.. A geometric
separation method for non-uniform disk packing with prescribed
filling ratio and size distribution. Computational Particle Mechanics,
p. 1–14, 2020.

[Lozano et al. 2016] LOZANO, E.; ROEHL, D.; CELES, W. ; GATTASS, M.. An
efficient algorithm to generate random sphere packs in arbitrary
domains. Computers & Mathematics with Applications, 71(8):1586–1601,
2016.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 109

[Lubachevsky et al. 1990] LUBACHEVSKY, B. D.; STILLINGER, F. H.. Geo-
metric properties of random disk packings. Journal of statistical
Physics, 60(5-6):561–583, 1990.

[Marchi et al. 2019] MARCHI, B. C.; KETEN, S.. Microstructure and size
effects on the mechanics of two dimensional, high aspect ratio
nanoparticle assemblies. Frontiers in Materials, 6:174, 2019.

[Meidani et al. 2018] MEIDANI, M.; MEGUID, M. A. ; CHOUINARD, L. E..
A finite-discrete element approach for modelling polyethylene
pipes subjected to axial ground movement. International Journal of
Geotechnical Engineering, p. 1–13, 2018.

[Meyer et al. 2010] MEYER, S.; SONG, C.; JIN, Y.; WANG, K. ; MAKSE,
H. A.. Jamming in two-dimensional packings. Physica A: Statistical
Mechanics and its Applications, 389(22):5137–5144, 2010.

[Miao et al. 2014] MIAO, Q.; HUANG, M.; XUE, J. ; BEN, Y.. Spatial hashing
based contact detection for numerical manifold method. Geome-
chanics and Geoengineering, 9(2):153–159, 2014.

[Morfa et al. 2018] MORFA, C. A. R.; MORALES, I. P. P.; DE FARIAS, M. M.;
DE NAVARRA, E. O. I.; VALERA, R. R. ; CASAÑAS, H. D.-G.. General
advancing front packing algorithm for the discrete element
method. Computational Particle Mechanics, 5(1):13–33, 2018.

[Munjiza et al. 1998] MUNJIZA, A.; ANDREWS, K.. Nbs contact detection
algorithm for bodies of similar size. International Journal for Numerical
Methods in Engineering, 43(1):131–149, 1998.

[Nguyen et al. 2019] NGUYEN, T.-T.; ANDRÉ, D. ; HUGER, M.. Analytic
laws for direct calibration of discrete element modeling of brittle
elastic media using cohesive beam model. Computational Particle
Mechanics, 6(3):393–409, 2019.

[Nitka et al. 2018] NITKA, M.; TEJCHMAN, J.. A three-dimensional meso-
scale approach to concrete fracture based on combined dem with
x-ray µct images. Cement and Concrete Research, 107:11–29, 2018.

[Nitka et al. 2020] NITKA, M.; TEJCHMAN, J.. Meso-mechanical mod-
elling of damage in concrete using discrete element method with
porous itzs of defined width around aggregates. Engineering Frac-
ture Mechanics, p. 107029, 2020.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 110

[O’Hern et al. 2002] O’HERN, C. S.; LANGER, S. A.; LIU, A. J. ; NAGEL, S. R..
Random packings of frictionless particles. Physical Review Letters,
88(7):075507, 2002.

[Osa et al. 2018] OSA, J. L.; ORTEGA, N.; VIDAL, G.; FERNANDEZ-GAUNA,
B.; CARBALLO, A. ; TOLOSA, I.. Future of the discrete element
method in the modelling of grinding wheels. Engineering Computa-
tions, 2018.

[Panigraphy et al. 2008] PANIGRAHY, R.; TALWAR, K. ; WIEDER, U.. A
geometric approach to lower bounds for approximate near-
neighbor search and partial match. In: 2008 49TH ANNUAL IEEE
SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, p. 414–423.
IEEE, 2008.

[Papadopoulos et al. 2018] PAPADOPOULOS, L.; PORTER, M. A.; DANIELS,
K. E. ; BASSETT, D. S.. Network analysis of particles and grains.
Journal of Complex Networks, 6(4):485–565, 2018.

[Scrimieri et al. 2014] SCRIMIERI, D.; AFAZOV, S. M.; BECKER, A. A. ;
RATCHEV, S. M.. Fast mapping of finite element field variables
between meshes with different densities and element types. Ad-
vances in Engineering Software, 67:90–98, 2014.

[Skarżyńksi et al. 2015] SKARŻYŃKSI, Ł.; NITKA, M. ; TEJCHMAN, J.. Mod-
elling of concrete fracture at aggregate level using fem and dem
based on x-ray µct images of internal structure. Engineering Frac-
ture Mechanics, 147:13 – 35, 2015.

[Specht 2015] SPECHT, E.. A precise algorithm to detect voids in poly-
disperse circle packings. Proceedings of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 471(2182):20150421, 2015.

[Stoyan98] STOYAN, D.. Random sets: Models and statistics. Interna-
tional Statistical Review, 66(1):1–27, 1998.

[Taniyama 2017] TANIYAMA, H.. Distinct element analysis of overburden
subjected to reverse oblique-slip fault. Journal of Structural Geology,
96:90–101, 2017.

[Teuber et al. 2013] TEUBER, J.; WELLER, R.; ZACHMANN, G. ; GUTHE,
S.. Fast sphere packings with adaptive grids on the gpu. GI
AR/VRWorkshop (Würzburg, Germany, vol. 4, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 111

[Torquato et al. 2000] TORQUATO, S.; TRUSKETT, T. M. ; DEBENEDETTI,
P. G.. Is random close packing of spheres well defined? Physical
review letters, 84(10):2064, 2000.

[Tulluri 2003] TULLURI, S. S.. Analysis of random packing of uniform
spheres using the Monte Carlo simulation method. PhD thesis,
New Jersey Institute of Technology, Newark, New Jersey, 2003.

[Vallejos et al. 2016] VALLEJOS, J. A.; SUZUKI, K.; BRZOVIC, A. ; IVARS,
D. M.. Application of synthetic rock mass modeling to veined
core-size samples. International Journal of Rock Mechanics and Mining
Sciences, 81:47–61, 2016.

[Van der Linden et al. 2016] VAN DER LINDEN, J. H.; NARSILIO, G. A. ;
TORDESILLAS, A.. Machine learning framework for analysis of
transport through complex networks in porous, granular media:
a focus on permeability. Physical Review E, 94(2):022904, 2016.

[Wang et al. 2007] WANG, W.; MING, C. ; LO, S.. Generation of triangular
mesh with specified size by circle packing. Advances in Engineering
Software, 38(2):133–142, 2007.

[Weaire et al. 2008] WEAIRE, D.; ASTE, T.. The pursuit of perfect pack-
ing. CRC Press, 2008.

[Weller et al. 2010] WELLER, R.; ZACHMANN, G.. Protosphere: A gpu-
assisted prototype guided sphere packing algorithm for arbitrary
objects. In: ACM SIGGRAPH ASIA 2010 SKETCHES, SA ’10, New York,
NY, USA, 2010. Association for Computing Machinery.

[Yeom et al. 2019] YEOM, S. B.; HA, E.-S.; KIM, M.-S.; JEONG, S. H.; HWANG,
S.-J. ; CHOI, D. H.. Application of the discrete element method
for manufacturing process simulation in the pharmaceutical
industry. Pharmaceutics, 11(8):414, 2019.

[Zhang et al. 2020] ZHANG, K.; LIU, F.; ZHAO, G. ; XIA, K.. Fast and
efficient particle packing algorithms based on triangular mesh.
Powder Technology, 2020.

[Zsaki 2009a] ZSAKI, A.. An efficient method for packing polygonal
domains with disks for 2d discrete element simulation. Computers
and Geotechnics, 36(4):568–576, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Bibliography 112

[Zsaki 2009b] ZSAKI, A.. Parallel generation of initial element as-
semblies for two-dimensional discrete element simulations. In-
ternational journal for numerical and analytical methods in geomechanics,
33(3):377–389, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

A
Mesh operations

To perform the necessary procedures on the mesh, we have implemented
the following basic operations:

– ps=PolygonStar(v): Given a vertex v, obtains the list of polygons ps
containing v.

– vs=VertexStar(v): Given a vertex v, obtains the list of vertices sharing
an edge.

– IsBoundary(e): Determines if an edge e is boundary.

– e=NextBoundary(): Loop over the boundary edges in the “outer loop”.

– AddVertex(v): Adds a vertex v to the mesh PM.

– AddPolygon(po): Adds a polygon po to the mesh PM.

– IsBoundary(po): Determines if the polygon po is at the border of the
mesh.

– IsInside(pt, po): Determines if the point pt is inside the polygon po .

– ps=SplitPolygon(v, po): Inserts a new vertex v inside the polygon po.
The polygon po is removed from the mesh and new polygons poi are
added. To create new polygons, it is important to verify the connectivity
of the particles in the polygon po.

– RemovePolygon(po) and RemoveVertex(v): Removes polygons and ver-
tices respectively. We must verify that po and v are boundary, except for
the case of SplitPolygon(v, po). The removal of vertex v must remove
all the associated polygons as well. Removal operations must maintain
the 2-connectivity condition of the “outer loop”. The graph also must
have only one connected component. Sometimes additional vertices and
polygons should be removed to meet these conditions. It is important to
identify the vertices and polygons removed at the end of these operations
because additional modifications on the mesh should be replicated on the
grid index and pack assembly. And, in some cases, the operations must
be reverted.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

B
Distance field for simple geometries

For known geometries, such as circles and rectangles, it is straightforward
to define a continuous signed distance field as described in Algorithm 8 and
Algorithm 9. Note that we are just interested in distances inside the container;
for those points beyond the frontiers of the region of interest, we just assign
them invalid distances with the value of -MAX_DISTANCE.

Algorithm 8: Circle distance field
Input : Circle center and radius (p,r). The query point x.
Output: The signed distance

1 sqDist = sqDist(p, x) ; // square distance from p to x
2 if (sqDist > r * r) then
3 return -MAX_DISTANCE;
4 else
5 return r - sqrt(sqDist);

Algorithm 9: Rectangle distance field
Input : Rectangle’s corners bmin and bmax. The query point x.
Output: The signed distance

1 distance = MAX_DISTANCE;
2 for i = 1 to 2 do
3 v = x[i];
4 if (v > bmax[i]) return -MAX_DISTANCE;
5 if (v < bmin[i]) return -MAX_DISTANCE;
6 distance = min(distance, bmax[i] - v);
7 distance = min(distance, v - bmin[i]);
8 return dist;

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

C
Flowcharts

Figure C.1 gives a broad view of the packing algorithm. The flowchart
includes the use of the outer loop and internal strategies. Figure C.2 illustrates
in detail the logic for the removal of the fronts and radius rejection.

Figure C.1: Packing algorithm flowchart.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

Appendix C. Flowcharts 116

Figure C.2: Radius rejection and front removal logic.

DBD
PUC-Rio - Certificação Digital Nº 1512352/CA

