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Abstract

Mederos Hernández, Rocío; Simon da Rosa, Guilherme (Advisor).
Study of the Electromagnetic Propagation in Stratified
Anisotropic Media via Semi-Analytical Methods. Rio de
Janeiro, 2020. 103p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Electromagnetic well-logging tools have been subject of interest for many
decades due to their applications in oil exploration. In order to obtain accurate
formation evaluation, a wide variety of numerical methods have been developed
on Computational Electromagnetics. The high cost in terms of computational
time and resources of these methods for the spatial discretization procedure is
a negative point of these traditional methods. In this work, we will explore new
semi-analytical approaches to analyze the propagation of electromagnetic fields
in anisotropic media comprising planar layers. We will present a mathematical
formulation for the electromagnetic fields due to a solenoid source in terms
of a sum of modal eigenfunctions. The proposed method allows the analysis
of geophysical scenarios similar to those of the Brazilian Pre-Salt, where
high conductivity carbonate rocks are predominant. In addition, the effect
of pre- and post-salt formations on electromagnetic waves can be easily
incorporated into our model. We will present numerical validation results,
which demonstrate the potential of the approach proposed in this work to
model geophysical sensors in a computationally robust and efficient way.

Keywords
Anisotropic Media; Planarly-Layered Media; Semi-Analytical Method;

Electromagnetic Field Propagation.
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Resumo

Mederos Hernández, Rocío; Simon da Rosa, Guilherme. Estudo
da Propagação Eletromagnética em Meios Anisotrópicos
Estratificados via Métodos Semianalíticos. Rio de Janeiro,
2020. 103p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

As ferramentas de perfilagem eletromagnética para poços e túneis têm
sido objeto de interesse da engenharia por muitas décadas devido às suas
aplicações para a exploração de petróleo. A fim de obter uma avaliação
precisa de uma formação geofísica, uma ampla variedade de métodos de
eletromagnetismo computacional foi desenvolvida. O alto custo em termos
de recursos computacionais para o procedimento da discretização espacial
é um ponto negativo desses métodos tradicionais. Esta pesquisa tem como
objetivo explorar novas abordagens semianalíticas para analisar a propagação
de campos eletromagnéticos em meios anisotrópicos compreendendo camadas
planares. Apresentaremos uma formulação matemática para os campos
eletromagnéticos de uma fonte solenoidal em termos de um somatório de
autofunções modais. O método proposto permite a análise de cenários
geofísicos análogos aos do Pré-Sal brasileiro, onde rochas carbonáticas de alta
condutividade são predominantes. Além disso, o efeito das formações do pré e
pós-sal nas ondas eletromagnéticas pode ser facilmente incorporadas no nosso
modelo. Apresentaremos resultados numéricos de validação, que demonstram
o potencial da abordagem proposta neste trabalho para modelar sensores
geofísicos de forma computacionalmente robusta e eficiente.

Palavras-chave
Meios Anisotrópicos; Meios Estratificados Planares; Método

Semianalítico; Propagação de Campos Eletromagnéticos.
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1
Introduction

1.1
General Introduction

Wireless communications are paramount for today’s engineering ap-
plications. For practical macroscopic engineering, the electromagnetic (EM)
propagation through a given medium is governed by Maxwell’s equations, and a
physical model can be established on the constitutive parameters permittivity
and permeability of the environment. Such constitutive characteristics will
determine the behavior of EM waves in terms of its intensity, power flow
direction, polarization, dispersion, spacial anisotropic coupling, etc. In this
work, our research investigation is on electromagnetic propagation for the oil
and gas industry, where complex (anisotropic, inhomogeneous, and dissipative)
media are prevalent.

The EM wave propagation in complex geophysical media has been
studied for many authors [2, 3, 4, 5] due to its importance to many areas of
extractive industry (including mining and the petroleum exploitation) as well
as the precise agriculture. The oil industry is one of the most prominent in the
demand for novel solutions [6, 7]. In special, there is a continuous development
of sensors for profiling the soil to favor cost-effective oil wells.

EM well-logging tools are one of the many classes of well-logging tools
used in oil exploration. It has been subject of interest for many decades
due to their capability to measure the conductivity or resistivity of an earth
formation [8]. At low operating frequencies (up to 100 MHz), the electrical
resistivity of a soil formation allows us to predict the presence or absence
of fossil hydrocarbons. The resistivity profiling is an important ingredient
that geophysical scientists employ to make decisions about potential pay-
zones to be explored. In that regard, researchers and the oil industry have
been developing advanced logging-while-drilling (LWD) and measurement-
while-drilling (MWD) sensors [2, 8, 9]. These sensors allow real-time data. In
order to obtain accurate formation evaluation models, robust Computational
Electromagnetics (CEM) methods are necessary for modeling the response of
EM tools in complex formations.
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Chapter 1. Introduction 17

In the last decades, driven by the availability of ever-more-powerful
computers, the CEM has experienced a notable flourishment as mature
guidance for solving complex real-life electromagnetic problems. The solution,
whether computational or analytical, is extremely important for analyzing
electromagnetic propagation between wave transmitters and receivers and with
their environment [10]. Such analytical or computational solutions are useful
in increasing productivity, providing improvement procedures for existing
designs, and facilitating the design of new processes and devices.

There are many numerical methods available today for modeling geolog-
ical formations. These methods are usually based on the spatial discretization
of Maxwell’s equations on the grounds of the finite-difference time-domain
method (FDTD) [11, 12, 13] and the finite element method (FEM) [14, 15, 16].
Also, other numerical techniques such as the finite volume method (FVM)
[17, 18], the method of moments (MoM) and the boundary element method
(BEM) [19] are also used. Such methods, however, present a high cost in terms
of computational time and RAM memory requirements, becoming prohibitive
for large problems as well as in iterative solvers.

Many researchers have developed analytical [20], numerical and pseudo-
analytical CEM methods [2, 11, 21] for alleviating the computational cost
of large- and multi-scale problems. The research of novel semi-analytical
approaches is today essential for conferring robustness and accuracy to
representative models where the purely numerical one fails.

The main objective of this dissertation is to explore novel algorithms for
modeling electromagnetic wave propagating phenomena in anisotropic media
conforming to the cylindrical coordinate system. Our studies dwell robust and
numerically efficient computational electromagnetics methods using analytical
and semi-analytical techniques. The proposed method allows the analysis of
geophysical scenarios analogous to those of the Brazilian Pre-Salt where high
conductivity carbonate rocks are predominant. Moreover, the effect of the pre-
and post-salt formations on the electromagnetic fields can be analyzed via a
planarly-layered stratum in order to model various representative problems
of oil well wireless telemetry systems in anisotropic environments. Yet on
the petroleum industry concerns, the methods explored in this study can
be employed to the modeling of electromagnetic logging tools. In addition,
our mathematical model also has applications for the so-called internet of
underground things (IOUT), especially in the area of precision agriculture by
using soil characterization via electromagnetic sensors.

The main scientific contribution of this work relies on a novel formulation
to analyze the propagation of electromagnetic fields in anisotropic media
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Chapter 1. Introduction 18

Figure 1.1: Solenoidal source within an axially-stratified geophysical formation.

comprising planar layers as depicted in Fig. 1.1. The fundamental advantage
of the methodology developed here is that our approach allows us to compute
the field solutions once for any position of source or receptor via a discrete sum
of model eigenfield contributions. In this way, we take the edge off calculating
a radiation integral each time we change the transmitter and receiver positions
as in traditional formalism [2]. Our approach allows a robust and numerically
efficient computational method for modeling complex geophysical sensors.
The fundamental application of this accurate, fast, and stable semi-analytical
solution is the analysis of low-frequency electromagnetic wave propagation for
wireless telemetry systems.

1.2
Organization of the Dissertation

This dissertation is divided into six chapters and is organized as follows.
In Chapter 2, we presented an overview of the standard electromagnetic
propagation modeling for subsoil environments. Some computational electro-
magnetics methods are also presented as well as their relations with analytical
and semi-analytical methods.

In Chapter 3, we introduce a mathematical formulation from Maxwell’s
equations for describing electric and magnetic fields in both axial and transver-
sal direction to propagation for decoupled TE and TM counterparts.

In Chapter 4, we described the boundary-value problem for representing
an axially-stratified soil formation. In this sense, the derive generalized Fresnel
coefficients for accounting multiple reflections and transmissions in complex
anisotropic media. Such findings represent a generalization of the isotropic
model in [2]. Our mathematical formulations as the advantage of employing
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stable scattering-based scalar coefficients (instead of matrix-based ones) for
relating the field amplitudes generated at the of a source with the other where
the fields will de observed. Some simulation results are presented in order to
verify the accuracy and efficiency of the proposed technique.

In Chapter 5, we present a novel and detailed mathematical formulation
for expanding the fields due to a solenoidal source in terms of the solution
eigenfields obtained in Chapter 3. Simulation results are provided in order to
evaluate the performance of the proposed method.

Finally, Chapter 6 is dedicated to presenting the final conclusions of this
study. We summarize the main results as well as we suggest some further
directions for further researches.
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2
Electromagnetic Propagation Overview for Oil Well

2.1
Introduction

An oil well is considered a hole dug into the Earth that is designed
with the purpose of bringing petroleum oil or other hydrocarbons, such as
natural gas, to the surface. Well-logging is an essential field in petrophysical
exploration. Its objective is to locate and extract oil and gas in a formation
along a borehole using physical measurements [15].

This chapter presents an overview of the mechanisms for electromagnetic
propagation. Also, the underground media will be described in terms of its
physical and electromagnetic properties. A brief description of the electro-
magnetic logging tools and some of the usual analytical and computational
electromagnetic methods used in wireless telemetry systems in geophysical
explorations will be revised.

2.2
Underground Media Characterization

The knowledge of the underground media is vital for oil location and
extraction in geophysical exploration. The electromagnetic well-logging tool
response is directly correlated with the soil formation and the geometry
where such sensor is immersed. Formations are typically classified as homoge-
neous, cylindrically-layered, vertically-layered, as well as isotropic, transverse
isotropic (TI), and biaxial anisotropic, etc. The formation itself can exhibit
inhomogeneities such as layered beds, dipping beds, anisotropic response, and
invaded zones [15].

Electromagnetic characterization of the underground media is required to
analyze the EM propagation. Low-frequencies are mostly employed because of
the high attenuation the fields suffer over 100 MHz. In the view of the research
and improvement of mathematical models for describing the electromagnetic
propagation, it is necessary first to understand more deeply the electrical
properties of the soil and the rocks typically found in geophysical scenarios.
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2.2.1
Physics Fundamentals

Rocks are minerals aggregates with a certain degree of cohesion or
consolidation that compose the solid masses of the earth’s crust and mantle.
They are geologically classified according to the physical process responsible
by the origin of their formations as magmatic or igneous, sedimentary, and
metamorphic. Magmatic or igneous rocks come from the consolidation of
magma, which is a material originated inside the Earth. Sedimentary rocks
are derived from other rocks, mainly from the segregation of igneous rocks
by a series of physical-chemical processes. Metamorphic rocks are strongly
anisotropic media and can be generated from variations of the pressure and
temperature conditions of other rock types [22].

The underground soil can be considered as porous media or heterogeneous
media. Porous media are mainly characterized by their intrinsic properties
of permeability, porosity and electrical formation factor. Although rocks are
inherently heterogeneous materials, their precise and detailed knowledge is
almost impossible because they occur on multiple scales, which makes them
have a stochastic character [15].

The physical, chemical and geometric properties of rocks depend on
the physical, chemical and geometric properties of individual minerals, their
volume fractions and their distribution. The micro-structure of the rocks
exhibits a wide variety of heterogeneities like variability in mineralogy and
number and size of pores [22]. In addition, rocks have a wide range of properties
where the particular analysis will depend on the application. For this case, the
electrical conductivity will be the fundamental observed property.

2.2.2
Electromagnetic Characterization

Electromagnetic measurement techniques are routinely used to probe
the Earth at more than 106 MHz for deep magnetic probing, and up to
microwave frequencies (109 − −1011 Hz). At high frequencies, microwave
radiometry visualizes the structure in Earth’s layered over distances of a
fraction of a meter. On the other hand, at lower frequencies, the deep
magnetic probe can penetrate more than one hundred kilometers. At very
high frequencies, dielectric properties prevail, while low frequencies provide us
electrical conductivity information [22].

The understanding of the electromagnetic response of rocks in terms of
their electrical conductivity requires knowledge of the electrical properties of
the rocks. In fact, the electrical properties of rocks are being used routinely
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in applications such as exploration of oil wells, mining, prospecting of mineral
deposits and other purposes in geology and geophysics.

Electromagnetic well-logging tools are designed to measure either the
resistivity or the dielectric constant of downhole formations. From the results
of these measurements, it was possible to obtain that solid materials exhibit a
very large conductivity range. Thus, rocks and rock-forming minerals are also
quite varied in their electrical properties with conductivities ranging from 104

to 10−14 S/m [22]. The measured conductivity represents an average effective
conductivity of the earth formation in the vicinity of the EM tool. The effective
constant or conductivity of the rock is a function of the dielectric constant or
conductivity of each component, the microgeometry of the rock frame, and the
volume fractions of the components. The components in the pore space can
be oil, water, and gas and the resistivity of the rocks is directly related to the
properties of these materials and geometry of the rock pores [15].

2.3
Electromagnetic Logging Tools and Techniques

Today’s oil and gas exploration requires sophisticated processes to be
a profitable business. Once the oil reservoir is located, pilot drilling will be
done. The geophysical properties of the earth formations will be studied based
on drilling samples and logging data. Logging can be done during drilling
or after drilling. When the measurement equipment is directly attached to a
drilling bit, the measurement is performed during the drilling, using the LWD
or MWD tools [23]. These techniques send the information to a telemetry
system, which communicates with the surface platform in real-time [15]. This
approach has the advantage to allows to petrophysicists to make decisions in
real-time, reducing the operational costs, and optimizing the drilling operation.
For these reasons, they become one of the most widely used techniques today
and several works [2, 4, 17, 24, 25, 26, 27, 28, 29, 30] have studied methods for
its improvement.

In [30] is presented a low-cost computational method for the analysis
of the time-domain response of LWD sensors in complex soil formations. The
mode matching technique (MMT) [28, 30] is used in [25] as an efficient method
to analyze the electromagnetic propagation in a model circular structures
filled with complex materials, where it considers an uniaxially anisotropy to
describes each layer of a stratified cylindrical waveguide. Also considering a
uniaxial anisotropy, a perturbation method with a quite fast computational
time is presented in [29] to model electromagnetic fields that describe LWD
tools.
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The operating mechanism of electromagnetic sensing tools can be ex-
plained in a simplified form as an array of solenoidal antennas properly spaced
along the bit of the drilling mandrel. The transmitter antenna is excited
by an alternating current (AC). This current generates an EM field that
propagates through the formation by inducing an electric current on the
receiver antennas. Thus, the received current or voltage is directly proportional
to the conductivity of the formation surrounding the oil well. This process
allows us to estimate the resistivity of the earth formation [11].

The transmitters and receivers are generally reported in the literature
as antennas in the shape of coils and solenoids. The most used antennas are
wrapped around the mandrel of the well along the longitudinal axis of the tool.
They radiate transversal electric (TE) fields (to the longitudinal directions)
due to their spatial orientation. Another class of popular antenna used in such
sensors is the tilted-coil-antenna (TCA), which allows the azimuth sensibility
for MWD and LWD sensors because the radiation of both TE and transversal
magnetic (TM) fields are allowed. All these antennas are placed in different
ways on the tool providing diverse readings of characteristics of the formation
around the well [31]. In [32] and [1, 33], the response of logging tools employing
tilted-coil antennas in isotropic and anisotropic medium are characterized.

EM logging tools can reveal relevant characteristics for the oil profiling
process. They can operate thousands feet underneath the earth surface in a
complex environment. Depending on the relative conductivity of the formation
that involves the drilling region, more complex studies of the formation can
be performed. These include, for example, studies on the heterogeneity and
anisotropy of a given medium. Such tools can provide a range of features that
approximate real cases found by the oil industry in an exploration scenario.
Moreover, the EM logging tools are widely used in the geophysical formation
evaluation and geosteering activities [15, 31].

The performance of a logging tool is related to the tool structure, which
can vary the complexity, depending on the purpose of the analysis. Well logging
tools map formations locally on a very small scale. Therefore, well logging
methods have relatively high spatial resolution [15]. Consequently, the logging
data gives a more detailed geophysical description to petrophysicists about the
formation surrounding the well drilled.

Before computational advances, experiments that required large costs
and approximate analytical techniques were the main methods to analyze the
response of the EM logging tools [34, 35]. With the advance of computational
power, it was possible to model computationally these tools in more complex
environments in a more efficient way.
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2.4
Computational Electromagnetics

Techniques for solving classical electromagnetism problems have evolved
over time. In the beginning, the analysis and design of electromagnetic devices
and structures were done experimentally, achieving their characterization.
This result was used to the development of new technologies. Subsequently,
purely analytical models emerged with solutions obtained in closed form.
These solutions model and describe the electromagnetic phenomenon through
a simplified algebraic equation under ideal situations [36]. Therefore, when the
geometry that defines the problem is simple, finding analytical solutions is a
relatively easy task, otherwise it is a bit complicated.

With the advent of high capacity computers, numerical methods have
become a fundamental tool for solving electromagnetism problems. These
methods can not be applied to all cases. Each problem must be studied until to
find one or more formulations whose results are compatible with the analytical
solution if it is known, or validated by measurements.

Currently, the numerical solution is achieved using computational algo-
rithms, which handle various numerical analysis techniques. These techniques
usually discretize the Maxwells’s equations in time and space [36]. Many
numerical analysis techniques have been developed in recent years, leading to
advances in this area referred to as CEM, one of the most important areas
of engineering today. The wide range of electromagnetic problems has led
to the development of different algorithms in CEM with its advantages and
limitations [37]. Low-frequency (LF) algorithms or numerical methods have
become more available in analyzing logging tools.

The FDTD method [38, 39, 40, 41] excels at study of wave propagation
in complex materials and at analysis of inhomogeneous and nonlinear media,
though its demands for system memory are high due to discretization of the
entire solution domain, and it suffers from dispersion issues and the need to
artificially truncate of the solution boundary [37]. This numerical technique
was used in [42] to simulate the response of LWD tools through anisotropic
conductive formations in cylindrical coordinates. This method is also addressed
in [43] to compute the electromagnetic field due to electrical and magnetic
dipoles embedded in a layered medium.

The FEM [44, 45] is a method used to solve frequency-domain boundary-
valued electromagnetic problems via variational techniques. As in the FDTD,
the solution domain must be discretized and truncated, making the FEM
approach often unsuitable for radiation or scattering problems unless combined
with a boundary integral equation approach [46]. This method is presented
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in [47] to simulate the response of a electromagnetic LWD tool in a three
dimensional (3D) inhomogeneous and horizontal layered medium.

The MoM is widely used for solving radiation and scattering problems
through electromagnetic surface or volume integral equations in the frequency
domain. This method differs from FDTD and FEM as the electromagnetic
sources are the quantities of interest, and so only the surface or volume of the
antenna or scatterer must be discretized [37]. This method is used in [48] to
analyze circularly symmetric reflectors in a simple analytical form to reduce
computational requirements as much as possible.

The above-mentioned methods are typically limited to problems of
small electrical size due to limitations of computation time and the system
memory. Indeed, low-frequency methods are so-named because they solve
Maxwell’s equations with no implicit approximations, and are more demanding
in terms of CPU [37]. Thus, although these methods can be applied with
precision, the speed of simulation restricts their application due to the high
computational consumption that they require. This disadvantage is even
more so in situations where the set of coupled layers compose complex
geophysical formations. Several pseudo-analytical algorithm and techniques to
model electromagnetic telemetry and determine the fields components along
planar stratified media have been proposed in literature [11, 29, 33, 49, 50].
A pseudo-analytical method is presented in [2, Ch. 2] for modeling line and
point sources in planarly-layered isotropic media in terms of Fourier-type
radiation integrals. The authors in [1, 3, 51] presented numerical matching
methods (NMM) to model electromagnetic telemetry systems of vertical and
directional wells in both radial and axial stratifications. These methods were
implemented in order to mitigate the disadvantage of the computational
demand of purely numerical brute-force methods. In what follows, we will
employ the key idea of such well-known semi-analytic CEM to study novel
and more robust approaches to dealing with stratified anisotropic media for
underground engineering applications.
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3
Electromagnetic Field Theory

3.1
Introduction

A mathematical formulation from the Maxwell’s equations will be
introduced in this chapter to derive the electric and magnetic fields. This
fields will be obtained for decoupled TE and TM modes in both axial and
transversal components to axial propagation direction. The study will be done
in a uniaxially anisotropic and axially-stratified medium, where the inclusion of
anisotropy makes the mathematical analysis quite complicated, but very useful
for any geophysical problem. The final expressions of fields will be ready to
apply the boundary conditions in the next chapter, which are imposed by the
geometry of our problem.

3.2
Maxwell’s equations

James Clerk Maxwell’s equations represent, under a mathematical model,
the laws of electromagnetic phenomena. These equations determine the rela-
tionships between the electric flux density (D), the magnetic flux density (B),
the electric current density (J) and the magnetic current density (M). Such
relationships are a function of variation of the electric field intensity (E) and
the magnetic field intensity (H) in space and time. This is true for both fields
in space and material substances [52].

The notation adopted in this work is similar to that used in [2] and [53].
Assuming and omitting a time-harmonic dependence in the form exp(−iωt),
the Maxwell’s equations in the differential form in a homogeneous anisotropic
medium are

∇× E = iω ¯̄µ ·H, (3-1)

∇×H = −iω¯̄ε · E + J, (3-2)

∇ ·D = %e, (3-3)

∇ ·B = 0, (3-4)
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D = ¯̄ε · E (3-5)

B = ¯̄µ ·H (3-6)

where E is given in V/m, J in A/m2, H in A/m and %e is the electric
charge density in C/m3. The media is characterized by the complex magnetic
permeability tensor

¯̄µ =


µs 0 0
0 µs 0
0 0 µz

 = diag(µs, µs, µz), with µ{s,z} = µ0µr{s,z} (3-7)

and by the complex electric permittivity tensor

¯̄ε =


εs 0 0
0 εs 0
0 0 εz

 = diag(εs, εs, εz), with ε{s,z} = ε0εr{s,z} + iσ{s,z}/ω, (3-8)

both represented in cylindrical coordinates, where the subscript s = {ρ, φ}.
The terms µ0 = 4π × 10−7 H/m and ε0 = 8.854 × 10−12 F/m are the values
of permeability and permittivity in vacuum. The relationship between these
two values is given by the propagation velocity of an electromagnetic wave
in vacuum. The terms µr{s,z}, εr{s,z} and σ{s,z} are the relative magnetic and
dielectric constants and the effective electrical conductivity of the medium,
respectively.

Permeability, permittivity and conductivity are the EM parameters
that define a medium where an EM wave was propagated. The effective
dielectric constant and conductivity are interrelated. For high frequencies, the
displacement phenomena dominate over the conductivity phenomena. In this
way, the media are usually characterized from their dielectric constant. For low
frequencies, the term of conductivity predominates.

3.3
Source-Free Axial Electromagnetic Fields

In a source-free region and decomposing the fields in axial (along ẑ) and
transverse (ŝ direction) components to ẑ, we have that

F = Fs + ẑFz, (3-9)

in which F = {E,H}, Fs = {Es,Hs} and Fz = {Ez, Hz}, and

∇ =∇s + ẑ
∂

∂z
, (3-10)

where ∇s denotes the transverse two-dimensional nabla operator given by
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∇s = ρ̂
∂

∂ρ
+ φ̂

1
ρ

∂

∂φ
. (3-11)

Using the procedure described in [2] and [1], taking the curl of the equation
(3-1) and projecting the resulting vector onto ẑ, we obtain

ẑ · [∇× (∇× E)] = iωẑ · [∇× (¯̄µ ·H)], (3-12)

working in the right-hand side (RHS) of the previous equation,

iωẑ · [∇× (¯̄µ ·H)] = iωẑ ·
{(
∇s + ẑ

∂

∂z

)
×
[
( ¯̄µs + ẑẑµz) · (Hs + ẑHz)

]}

= iωẑ ·
[
∇s × ( ¯̄µs ·Hs) +∇s × (ẑµzHz) + ∂

∂z
ẑ × ( ¯̄µs ·Hs) +

∂

∂z
ẑ × ẑµzHz

]
= iωẑ ·

[
∇s × (µs ¯̄Is ·Hs)

]
= iωµsẑ · (∇s ×Hs).

From equation (3-2) we have that
(
∇s + ẑ

∂

∂z

)
× (Hs + ẑHz) = −iω( ¯̄εs + ẑẑεz) · E,

separating in components ŝ and ẑ,
ŝ : ∇s × ẑHz +

∂

∂z
ẑ ×Hs = −iω ¯̄εs · Es

ẑ : ∇s ×Hs = −iωẑεzEz,
(3-13)

projecting the component ẑ of the equation (3-13) onto ẑ and substituting in
the equation (3-12), we can find

ẑ · [∇× (∇× E)] = ω2µsεzEz. (3-14)

From the Gauss’s law for the magnetism, equation (3-4), we obtain

∇ · (¯̄µ ·H) =
(
∇s + ẑ

∂

∂z

)
· (µsHs + ẑµzHz)

= µs∇s ·Hs + µz
∂

∂z
Hz

= µs∇ ·H− µs
(

1− µz
µs

)
∂Hz

∂z
= 0.
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then,

∇ ·H =
(

1− µz
µs

)
∂Hz

∂z
. (3-15)

A dual equation can be easily established for the electric field as

∇ · E =
(

1− εz
εs

)
∂Ez
∂z

, (3-16)

The equations (3-15) and (3-16) show that the divergence of the electric and
magnetic fields do not vanish anymore as in the isotropic media for the limits
µs = µz and εs = εz [2, 54].

Using the vector identity [55]

∇×∇× F =∇(∇ · F)− (∇ ·∇)F (3-17)

and projecting it onto ẑ for to find the left-hand side (LHS) of the equation
(3-14), we obtain

ẑ · [∇× (∇× E)] = ẑ ·∇(∇ · E)− ẑ · (∇ ·∇)E

= ẑ ·
(
∇s + ẑ

∂

∂z

)(
1− εz

εs

)
∂Ez
∂z
− ẑ · ∇2E

=
(

1− εz
εs

)
∂2Ez
∂z2 −∇

2Ez, (3-18)

where ∇2 is the scalar Laplacian in cylindrical coordinates defined as [55]

∇2f = 1
ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+ 1
ρ2
∂2f

∂φ2 + ∂2f

∂z2 . (3-19)

After substituting (3-18) into (3-14), we can find

∇2
sEz + εz

εs

∂2Ez
∂z2 + ω2µsεzEz = 0, (3-20)

in which the two-dimensional Laplacian operator is given by

∇2
sf = ∇2f − ∂2f

∂z2 (3-21)

= 1
ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+ 1
ρ2
∂2f

∂φ2 . (3-22)

Similarly, a wave equation dual to (3-20) can be found for the axial magnetic
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field using a procedure analogous to that shown above. It follows that

∇2
sHz + µz

µs

∂2Hz

∂z2 + ω2µzεsHz = 0. (3-23)

The equations (3-20) and (3-23) are the homogeneous Helmholtz wave
equations for Ez and Hz, respectively. In order to solve these equations in
cylindrical coordinates, the method of separation of variables can be used [55].
The scalar Helmholtz equation for axial fields in cylindrical coordinates is
defined by [

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂φ2 + pz
ps

∂2

∂z2 + ω2pzp̃s

]
Fz = 0, (3-24)

where p = {ε, µ} and p̃ = {µ, ε}. Following the method of separation of
variables, we find the elementary solution to the equation (3-24) in the form

Fz = R(ρ)Φ(φ)Z(z) (3-25)

After substituting the equation (3-25) into (3-24), dividing by Fz and consid-
ering that the partial derivatives becomes total ones, can be derived

1
ρR

d

dρ

(
ρ
dR

dρ

)
+ 1
ρ2Φ

d2Φ
dφ2 + pz

ps

1
Z

d2Z

dz2 + ω2pzp̃s = 0. (3-26)

By noting that the third term is independent of ρ and φ, it must be also
independent of z because the equation is to sum zero for all ρ, φ, z. Hence, we
can do 1

Z

d2Z

dz2 = −k2
z , (3-27)

where kz is a constant and the minus sign is chosen for convenience in the
resulting solutions. Substituting (3-27) into (3-26) and multiplying by ρ2, we
find ρ

R

d

dρ

(
ρ
dR

dρ

)
+ 1

Φ
d2Φ
dφ2 +

(
ω2pzp̃s −

pz
ps
k2
z

)
ρ2 = 0. (3-28)

The second term of the equation (3-28) is independent of ρ and z, as well as
the other terms are independents of φ. Hence, we can assume that

1
Φ
d2Φ
dφ2 = −n2, (3-29)

where n is a constant. After substitution the above into (3-28), we obtain

ρ

R

d

dρ

(
ρ
dR

dρ

)
− n2 +

(
ω2pzp̃s −

pz
ps
k2
z

)
ρ2 = 0. (3-30)

This equation above describes an equation that depends on ρ only. Hence, in
order to summarize, we can introduce

k2
ρ = pz

ps

(
k2
s − k2

z

)
, (3-31)
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and the wavenumber related to the transversal anisotropy given as

k2
s = ω2psp̃s = ω2εsµs. (3-32)

Then, the wave equation can be separated by the equations (3-27), (3-29)
and (3-30) such as

ρ
d

dρ

(
ρ
dR

dρ

)
+
[
(kρρ)2 − n2

]
R = 0, (3-33)

d2Φ
dφ2 + n2Φ = 0, (3-34)

d2Z

dz2 + k2
zZ = 0. (3-35)

The equation (3-33) is a Bessel differential equation of order n, whose solutions
are in general, a linear superposition of any two of the linearly independent
Bessel and Hankel functions of first and second kind, this is, Jn(kρρ), Yn(kρρ),
H(1)
n (kρρ) and H(2)

n (kρρ), respectively. The equations (3-34) and (3-35) are one-
dimensional non-homogeneous Laplaces’s equations, whose solutions are given
by harmonic functions. Finally, the elementary solution for (3-24) is given by

Fz = Rn (kρρ) Φ(nφ)Z(kzz). (3-36)

The quantities kρ and kz can be interpreted as the radial and axial wavenum-
bers, respectively, and n is the azimuthal index related to the modal propaga-
tion constant that gives the azimuthal dependence of fields.

The linear combination of elementary wave functions in the equation
(3-36) is also a solution to the equation (3-24) [1, 31, 55]. More general
solutions can be constructed by summing over all possible values of the kz
(or kρ) eigenvalues and n azimuthal indices. Therefore, the general solution
that represents the solution to the modal fields would be

Fz =
∑
n

∑
kz

Cn,kzRn (kρρ) Φ(nφ)Z(kzz), (3-37)

where the constants Cn,kz can be evaluated when applying the source boundary
condition.

3.4
Axial Field Components

In a compact notation, the equation (3-37) can be represented byEz
Hz

 =
∞∑

n=−∞

∞∑
p=1

ez,np(ρ)
hz,np(ρ)

ez,np(kzz)
hz,np(kzz)

 einφ, (3-38)
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in which p is related to radial propagation constant that gives the radial
dependence of the fields. The values of n are positive and negative integer
due to the choice of the exponential form exp(inφ) and give the azimuthal
dependence of the fields. The radially-dependent functions are given by a linear
combination of first-kind Hankel and Bessel function of integer order n such
as ez,np(ρ)

hz,np(ρ)

 = ¯̄H(1)
zn (kρρ)ā+ ¯̄Jzn(kρρ)b̄ (3-39)

where the kρ,nρ radial propagation constant in the ρ-direction is given by the
equation (3-31). We define Bzn = {H(1)

n or Jn}, where the most appropriate
choice will depend on the problem boundary conditions. The field amplitudes
ā and b̄ are vectors 2×1 defined by the boundary conditions and are given by

ā =
aenp
ahnp

 and b̄ =
benp
bhnp

 . (3-40)

The fields contribution into the axial direction in (3-38) can be written as

ejz,np(kjzz)
hjz,np(kjzz)

 =


e±ike

jzz 0
0 e±ik

h
jzz

+
R̃TM(z)

j,j∓1 0
0 R̃TE(z)

j,j∓1

 e∓ike
jz(z+2z±) 0

0 e∓ik
h
jz(z+2z±)


A±e

j

A±h
j

 (3-41)

where
z± =

 z+ = zj−1

z− = zj.
(3-42)

The kz,np modal propagation constant in the z-direction can be obtained from
the equation (3-31) as

k2
z = k2

s −
ps
pz
k2
ρ, (3-43)

where we have khz for p = µ and kez for p = ε. The R̃j,j∓1 generalized reflection
coefficient due to the axially-stratified media which will be determined in the
section 4.2.

Finally, following the compact shape of the equation (3-38), the axial
fields can be written in decoupled TE and TM modes. Considering a source
that propagates for +z or −z directions, respectively, we have for the TE mode
(Ez = 0) the Hz field given by

Hjz = A±h
j

∞∑
n=−∞

∞∑
p=1

Bzn(kρρ)einφ
[
e±ik

h
jzz + R̃TE(z)

j,j∓1 e
∓ikh

jz(z+2z±)
]
, (3-44)

and for the TM mode (Hz = 0), we have the Ez field given by

Ejz = A±e
j

∞∑
n=−∞

∞∑
p=1

Bzn(kρρ)einφ
[
e±ik

e
jzz + R̃TM(z)

j,j∓1 e
∓ike

jz(z+2z±)
]
. (3-45)
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where z± is given by the equation (3-42). Notice that, in order to simplify the
notation, we have omitted the subscript np in the radial and modal propagation
constants.

3.5
Transversal Field Components

Starting from the Maxwell’s rotational equations (3-1) and (3-2) in a
source-free region, we have that(

∇s + ẑ
∂

∂z

)
× (Es + ẑEz) = iω( ¯̄µs ·Hs + ẑµzHz), (3-46)(

∇s + ẑ
∂

∂z

)
× (Hs + ẑHz) = −iω( ¯̄εs · Es + ẑεzEz), (3-47)

separating the equations (3-46) and (3-47) in components ŝ and ẑ, respectively,
it can be found

ŝ


∇s × ẑEz + ẑ ×

∂

∂z
Es = iω ¯̄µs ·Hs

∇s × ẑHz + ẑ ×
∂

∂z
Hs = −iω ¯̄εs · Es

and

ẑ

 ∇s × Es = iωµz ẑHz

∇s ×Hs = −iωεz ẑEz.

Knowing that ∂/∂z → ±ikz para z ≷ 0, multiplying the vector ẑ on both sides
of the equations from ŝ component and using the vector identities,

ẑ × (∇s × ẑFz) =∇sFz (3-48)

ẑ × (ẑ × Fs) = −Fs, (3-49)

after of some manipulations, we find for z > 0 that

Es = 1
ikz

(∇sEz − iωµsẑ ×Hs) (3-50)

Hs = 1
ikz

(∇sHz + iωεsẑ × Es) . (3-51)

Substituting (3-51) into (3-50) and vice-versa or by duality, we have that the
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transversal fields can be expressed as a combination of the axial ones, such as

Es = 1
k2
ρT

(ikz∇sEz + iωµs∇s × ẑHz) (3-52)

Hs = 1
k2
ρT

(ikz∇sHz − iωεs∇s × ẑEz) , (3-53)

where k2
ρT

= k2
s − k2

z . Substituting (3-11) in both equations above, we have

Es = 1
k2
ρT

[(
ikz

∂Ez
∂ρ

+ iωµs
1
ρ

∂Hz

∂φ

)
ρ̂+

(
ikz

1
ρ

∂Ez
∂φ
− iωµs

∂Hz

∂ρ

)
φ̂

]
, (3-54)

Hs = 1
k2
ρT

[(
ikz

∂Hz

∂ρ
− iωεs

1
ρ

∂Ez
∂φ

)
ρ̂+

(
ikz

1
ρ

∂Hz

∂φ
+ iωεs

∂Ez
∂ρ

)
φ̂

]
. (3-55)

In a compact shape, the transversal fields can be written asEs

Hs

 =
∞∑

n=−∞

∞∑
p=1

es,np(ρ)
hs,np(ρ)

 ei(nφ+kz,npz) (3-56)

in which the ρ- and φ-dependent fields can be expressed, respectively, as a
linear combination of first-kind Hankel and Bessel function given byeρ,np(ρ)

hρ,np(ρ)

 = ¯̄H(1)
ρn (kρρ)ā+ ¯̄Jρn(kρρ)b̄ (3-57)

eφ,np(ρ)
hφ,np(ρ)

 = ¯̄H(1)
φn (kρρ)ā+ ¯̄Jφn(kρρ)b̄, (3-58)

where knowing that ∂/∂φ = in and substituting the axial fields Ez and Hz in
the equations (3-54) and (3-55), we have that

¯̄Bρn(kρρ) = 1
k2
ρT
ρ

ikezkρρB′n(kρρ) −nωµsBn(kρρ)
nωεsBn(kρρ) ikhz kρρB

′
n(kρρ)

 (3-59)

¯̄Bφn(kρρ) = 1
k2
ρT
ρ

 −nkezBn(kρρ) −iωµskρρB′n(kρρ)
iωεskρρB

′
n(kρρ) −nkhzBn(kρρ)

 . (3-60)

The derivative B′n = {H ′(1)
n orJ ′n} is taken with respect to the argument of the

function. Elements 11 and 12 of the matrices in the above equations correspond
to constants in the electric field. Elements 21 and 22 correspond to constants
in the magnetic field. The fields components in (3-59) and (3-60) reduce to
isotropic solution found in [2] for pz = ps in the equation (3-31), where these
terms were introduced.

Finally, following the compact notation of the equation (3-56), the
transversal fields to ẑ domain can be expressed in decoupled TE and TM
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modes. Considering a source that propagates to +z or −z directions, respec-
tively, we have for the TE mode

Ejρ = −
ωµjsA

±h
j

k2
ρT
ρ

∞∑
n=−∞

∞∑
p=1

nBn(kρρ)einφ
[
e±ik

h
jzz + R̃TE(z)

j,j∓1 e
∓ikh

jz(z+2z±)
]

Ejφ = −
iωµjskρA

±h
j

k2
ρT

∞∑
n=−∞

∞∑
p=1

B′n(kρρ)einφ
[
e±ik

h
jzz + R̃TE(z)

j,j∓1 e
∓ikh

jz(z+2z±)
]

Hjρ =
ikρA

±h
j

k2
ρT

∞∑
n=−∞

∞∑
p=1

khjzB
′
n(kρρ)einφ

[
e±ik

h
jzz − R̃TE(z)

j,j∓1 e
∓ikh

jz(z+2z±)
]

Hjφ = −
A±h
j

k2
ρT
ρ

∞∑
n=−∞

∞∑
p=1

nkhjzBn(kρρ)einφ
[
e±ik

h
jzz − R̃TE(z)

j,j∓1 e
∓ikh

jz(z+2z±)
]

and we have for the TM mode

Ejρ =
ikρA

±e
j

k2
ρT

∞∑
n=−∞

∞∑
p=1

kejzB
′
n(kρρ)einφ

[
e±ik

e
jzz − R̃TM(z)

j,j∓1 e
∓ike

jz(z+2z±)
]

Ejφ = −
A±e
j

k2
ρT
ρ

∞∑
n=−∞

∞∑
p=1

nkejzBn(kρρ)einφ
[
e±ik

e
jzz − R̃TM(z)

j,j∓1 e
∓ike

jz(z+2z±)
]

Hjρ =
ωεjsA

±e
j

k2
ρT
ρ

∞∑
n=−∞

∞∑
p=1

nBn(kρρ)einφ
[
e±ik

e
jzz + R̃TM(z)

j,j∓1 e
∓ike

jz(z+2z±)
]

Hjφ =
iωεjskρA

±e
j

k2
ρT

∞∑
n=−∞

∞∑
p=1

B′n(kρρ)einφ
[
e±ik

e
jzz + R̃TM(z)

j,j∓1 e
∓ike

jz(z+2z±)
]
,

where z± is given by the equation (3-42). Notice that, in order to simplify the
notation, we have omitted the subscript np in the radial and modal propagation
constants.
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4
Electromagnetic Fields in Horizontal Stratified Media

4.1
Introduction

Electromagnetic fields in explored media in oil well prospecting are ap-
proached in this chapter. Axially-stratified isotropic and anisotropic formations
will be considered. The fields in the propagation direction of the axial domain
will be represented from the final expressions obtained in the previous chapter
for decoupled TE and TM modes. For computing the fields, it will be necessary
to find from the boundary conditions of our problem, the local and generalized
reflection and transmission coefficients, which allows us to incorporate multiple
layers in the media and describe the fields. Then, the propagation constants
that give us the solution to problem are calculated from our characteristic
equation. Finally, the influence of conductivity in the formation is analyzed.

4.2
Axial Discontinuities

This section is dedicated to finding the Fresnel or local and generalized
reflection and transmission coefficients. A axially-stratified waveguide shown in
Fig. 4.1 is composed by N + 1 layers and it is used as base geometry to deduce
the equations in our boundary problem. Each layer is formed by a uniaxially
anisotropy medium, characterized by ¯̄εj and ¯̄µj where j = 2, 3, ..., N + 1 in the
region of 0 ≤ φ ≤ 2π and ρ constant.

4.2.1
Local Reflection and Transmission Coefficients

We have a propagation of waves in a planar border, in which we will
derive the local reflection and transmission coefficients. From the boundary
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Figure 4.1: Front view of an axially-stratified N + 1 - layers waveguide (z in
meters). The perfect electric conductor (PEC) is represented by the stripes.

conditions for a source-free region given by [2],

−n̂× (E3 − E2) = 0 (4-1)

n̂× (H3 −H2) = 0 (4-2)

n̂ · (D3 −D2) = 0 (4-3)

n̂ · (B3 −B2) = 0, (4-4)

in that n̂ = n̂23, which can be simplified in the z = 0 interface to,

E2ρ |z=0 = E3ρ |z=0 (4-5)

E2φ |z=0 = E3φ |z=0 (4-6)

H2ρ |z=0 = H3ρ |z=0 (4-7)

H2φ |z=0 = H3φ |z=0 . (4-8)

For the TEz mode the fields with ∂/∂φ→ 0 are,

Eφ = 1
k2
ρ

(
−iωµs

∂Hz

∂ρ

)
(4-9)

Hρ = 1
k2
ρ

(
ikz

∂Hz

∂ρ

)
(4-10)

DBD
PUC-Rio - Certificação Digital Nº 1821587/CA



Chapter 4. Electromagnetic Fields in Horizontal Stratified Media 38

with

kz = ±
√
k2
s − k2

ρ, (4-11)

where validating the conditions (4-6) and (4-7), we have the equations,

µ2s
(
1 +R

TE(z)
23

)
= µ3sT

TE(z)
23 (4-12)

k2z
(
−1 +R

TE(z)
23

)
= −k3zT

TE(z)
23 . (4-13)

In general for a source radiating for z ≶ 0, from the above equations we can
find the local reflection and transmission coefficients para the TE mode as,

R
TE(z)
j,j∓1 = kjzµj∓1,s − kj∓1,zµjs

kjzµj∓1,s + kj∓1,zµjs
(4-14)

T
TE(z)
j,j∓1 = 2kjzµjs

kjzµj∓1,s + kj∓1,zµjs
. (4-15)

The local reflection coefficient is the ratio of the amplitude of the reflected
wave to the amplitude of the incident wave. The local transmission coefficient
is the ratio of the amplitude of the transmitted wave to the amplitude of the
incident wave [2].

For the TM z mode the fields with ∂/∂φ = 0 are,

Eρ = 1
k2
ρ

(
ikz

∂Ez
∂ρ

)
(4-16)

Hφ = 1
k2
ρ

(
iωεs

∂Ez
∂ρ

)
(4-17)

with kz given by equation (4-11). Validating the conditions (4-5) and (4-8) or
with a similar procedure to the previous one, we can find for a source radiating
for z ≶ 0 in general, the local reflection and transmission coefficients for the
TM mode as,

R
TM(z)
j,j∓1 = kjzεj∓1,s − kj∓1,zεjs

kjzεj∓1,s + kj∓1,zεjs
(4-18)

T
TM(z)
j,j∓1 = 2kjzεjs

kjzεj∓1,s + kj∓1,zεjs
. (4-19)

Alternatively, the equations above can be derived from the duality principle
with the equations (4-14) and (4-15), respectively.

We can verify that the local reflection and transmission coefficients for
decoupled TE and TM modes represented by the equations (4-14), (4-15), (4-
18) and (4-19) respectively, reduce to the ordinary Fresnel coefficients in [2]
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when the media becomes isotropic.

4.2.2
Generalized Reflection Coefficients

Assuming a source transmitting for z < 0 as shown in Fig. 4.2, the
downgoing wave in region 3 is a consequence of the transmission of the
downgoing wave in region 2 plus a reflection of the upgoing wave in region
3, this is,

A−3 e
−ik3zz = T23A

−
2 e
−ik2zz +R32A

−
3 R34e

ik3z(z+2z3), (4-20)
where R34 is a reflection coefficient that is the ratio of the upgoing wave
amplitude and the downgoing wave amplitude at the interface z = −z3. Note
that the extra phase factor in the exponential that accompanies this coefficient
ensures that this ratio is properly defined [2, 54].

Figure 4.2: Front view of an axially-stratified N + 1 - layers waveguide.

Evaluating the boundary condition at the z = −z2 interface, from the equation
(4-20), we get

A−3 = T23A
−
2 e

i(k2z−k3z)z2

1−R32R34e2ik3z(z3−z2) . (4-21)

In the z = −z2 interface we also have the upgoing wave in region 2, which is
caused by the reflection of the downgoing wave in region 2 plus a transmission
of the upgoing wave in region 3, this is,

A−2 R̃23e
ik2zz2 = R23A

−
2 e

ik2zz2 + T32A
−
3 R34e

ik3z(−z2+2z3). (4-22)

Substituting (4-21) into (4-22), we obtain
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R̃23 = R23 + T23R34T32e
2ik3z(z3−z2)

1−R32R34e2ik3z(z3−z2) . (4-23)

After a some manipulations using the relationships Tij = 1 + Rij and Rij =
−Rji we have that the generalized reflection coefficient at the interface between
region j and region j − 1 or j + 1, can be written in general form as

R̃j,j∓1 = Rj,j∓1 + R̃j∓1,j∓2e
2ikj∓1,z(zj∓1−z̃±)

1 +Rj,j∓1R̃j∓1,j∓2e2ikj∓1,z(zj∓1−z̃±) , (4-24)

where

z̃± =

 z̃+ = zj−2

z̃− = zj.
(4-25)

This generalized reflection coefficient, R̃j+1,j for example, relates the amplitude
of the downgoing wave to the amplitude of the upgoing wave in region j + 1.
It includes the effect of subsurface reflections as well as the reflection from the
last interface [2].

4.3
The Guidance Condition

From the equation (3-41) we have that,

A−j e
−ikjzz = A+

j R̃j,j−1e
−ikjzze−2ikjzzj−1 and (4-26)

A+
j e

ikjzz = A−j R̃j,j+1e
ikjzze2ikjzzj . (4-27)

Substituting (4-26) into (4-27) we can get our characteristic equation,

f(kρ) = 1− R̃j,j−1R̃j,j+1e
2ikjz(zj−zj−1) = 0, (4-28)

similar to the one obtained in [1]. It allows us to find the eigenvalues kρ,np that
satisfy the above equation and each one has a modal propagation constant
associated kz,np.

For finding these eigenvalues, we modeled a simple case of a homogeneous
medium into a parallel plate waveguide. In order to facilitate the validation to
reader with the analytical case in Section 4.3.1, we assume a waveguide height
of one meter, as shown the Fig. 4.3. We assume values of electrical permittivity
and magnetic permeability equal to those of vacuum and a normalized source
amplitude at 200 kHz frequency. The Fig. 4.4 shows the resulting eigenvalues
kρ,np after calculating the zeros of the equation (4-28). The Table 4.1 presents
the results showed in Fig. 4.4. The eigenvalues presented in this Table shown
the expected values proportional to π and divided by the height of the layer,
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Figure 4.3: Front view of an parallel plate waveguide.
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Figure 4.4: Characteristic equation evaluated along the imaginary kρ-axis.

Table 4.1: Eigenvalues for a parallel plate guide.

Mode Number Eigenvalue kρ,np
1st. 3.141589856066267i
2nd. 6.283183891768371i
3rd. 9.424776972783139i
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such as in the analytical solution for a parallel plate waveguide.

4.3.1
Validation via Parallel Plate Waveguide

In this section we will discuss the well-know analytical solution for a
parallel plate waveguide. This result will be useful to validate the numerical
solution obtained from the implemented algorithm.

In a parallel plate waveguide, we have a PEC interface at both the top
and bottom interface. Due to this, when a wave propagates in this medium,
the incident one on this kind of interface suffers a total internal reflection. In
other words, all the energy of the incident wave is reflected. As a consequence,
the magnitude of the reflection coefficients equals to unity at both interfaces.
By substituting this value into (4-28) and making the height of the layer
D = zj − zj−1, we obtain

1− e2ikjzD = 0

eikjzD
(
e−ikjzD − eikjzD

)
= 0

2 i sin(kjzD) = 0

kjz = nπ

D
, (4-29)

where n assumes positive and negative integer values.
We can appreciate the correspondence of the results obtained in Table 4.1

with the analytical solution in (4-29) to problem of a parallel plate waveguide.

4.3.2
Pole-Free Characteristic Equation

The generalized reflection coefficients of the characteristic equation (4-
28) are in function of a local reflection coefficient, which in turn, contains a
denominator equal to denominator of the local transmission coefficient. These
denominators generate poles that must be removed from the characteristic
equation, because they constitute a restriction to search for zeros. In other
words, it is difficult to converge to a zero if it has poles in the vicinity. For
example, if there is a pole (∞) very close to a zero, it can be that the zero is
canceled or it is very difficult to get from one to another. Therefore, we have
to remove the poles of the characteristic equation to stay only with the zeros
of it, which are the ones that satisfy the contour problem.

Consequently, to locate all the poles for N +1 layers of our characteristic
equation (4-28), we define for decoupled TE and TM modes the denominators
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of the characterized local reflection coefficients in Section 4.2.1 as

D
TE(z)
ja = kjzµj+1,s + kj+1,zµj,s, (4-30a)

D
TE(z)
jb = kjzµj−1,s + kj−1,zµj,s, (4-30b)

D
TM(z)
ja = kjzεj+1,s + kj+1,zεj,s, (4-30c)

D
TM(z)
jb = kjzεj−1,s + kj−1,zεj,s. (4-30d)

Further of this denominators, as said before, the poles also come from the
denominators of the generalized reflection coefficients of the equation (4-24).
We define the following denominators for the generalized reflection coefficients
R̃j,j+1 and R̃j,j−1 respectively,

Dminus = 1 +Rj,j+1R̃j+1,j+2e
2ikj+1,z(zj+1−zj), (4-31a)

Dplus = 1 +Rj,j−1R̃j−1,j−2e
2ikj−1,z(zj−1−zj−2). (4-31b)

The poles of the equation (4-28) can be removed using a deflationary
process in which a new characteristic equation is defined as,

fpf (kρ) = f(kρ)fp(kρ). (4-32)

The function fp(kρ) inserts zeros in the position of the poles of f(kρ),
in consequence, fpf (kρ) preserves the same zeros of f(kρ), but is free of
singularities [1].

Noting the denominators in (4-30) for the first and last layer, it is
appropriate to define

for R
TE(z)/TM(z)
21 = −1/1 ⇒ D

TE(z)/TM(z)
2b = 1, (4-33)

for R
TE(z)/TM(z)
N+1,N+2 = −1/1 ⇒ D

TE(z)/TM(z)
N+1,a = 1. (4-34)

Using the above definitions and after some manipulations, we can show that
the zeros of

fp(kρ) = D2bDN+1,a

N∏
j=2

DjaDminus

3∏
j=N+1

DjbDplus (4-35)

are the poles of f(kρ). Substituting (4-28) and (4-35) in (4-32), we can write
a pole free characteristic equation as
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fpf (kρ) =
N+1∏
j=2

[
1− R̃j,j−1R̃j,j+1e

2ikjz(zj−zj−1)
] N∏
j=2

DjaDminus

3∏
j=N+1

DjbDplus.

(4-36)

4.4
Constant Amplitude A±j

4.4.1
Source transmitting to positive z

By considering a source transmitting for z > 0 we have an upgoing
wave in region N in the z = −zj interface. This upgoing wave is caused by
the reflection of the downgoing wave in region N plus a transmission of the
upgoing wave in region N + 1, this is,

A+
j e
−ikjzzj = Rj,j+1A

+
j R̃j,j−1e

−ikjz(−zj+2zj−1) + Tj+1,jA
+
j+1e

−ikj+1,zzj (4-37)

After a some manipulations in the above equation, we have that

A+
j e
−ikjzzj = A+

j+1e
−ikj+1,zzjSj+1,j (4-38)

where
Sj+1,j = Tj+1,j

1−Rj,j+1R̃j,j−1e2ikjz(zj−zj−1) . (4-39)

From an iterative method of equation 4-38 and assuming zN+1 = zN , we
deduced that,

A+
2 e
−ik2zz2 = A+

j+1e
−ikj+1,zzj

3∏
j=N+1

e−i(zj−1−zj)kjzSj,j−1, (4-40)

where a generalized transmission coefficient can be defined by

T̃N+1,2 =
3∏

j=N+1
e−i(zj−1−zj)kjzSj,j−1, (4-41)

in this way we find the amplitude A+
j as

A+
2 e
−ik2zz2 = T̃N+1,2A

+
N+1e

−ikN+1,zzN . (4-42)

4.4.2
Source transmitting to negative z

In a similar procedure to the previous one but considering a source
transmitting for z < 0, we can get the amplitude A−j . From equation 4-21
we obtain

A−j e
ikjzzj−1 = A−j−1e

ikj−1,zzj−1Sj−1,j, (4-43)
where
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Sj−1,j = Tj−1,j

1−Rj,j−1R̃j,j+1e2ikjz(zj−zj−1) . (4-44)

From an iterative method of equation 4-43 and assuming z1 = z2, we deduced
that,

A−N+1e
ikN+1,zzj = A−2 e

ik2zz2
N∏
j=2

ei(zj−zj−1)kjzSj,j+1, (4-45)

where a generalized transmission coefficient can be defined by

T̃2,N+1 =
N∏
j=2

ei(zj−zj−1)kjzSj,j+1, (4-46)

in this way we find the amplitude A−j as

A−N+1e
ikN+1,zzN = T̃2,N+1A

−
2 e

ik2zz2 . (4-47)

4.5
Numerical Implementation and Analysis

In order to implement the proposed method in this work, MATLAB
numerical computing environment was used. For validating the initial part
of algorithm, this section approaches several examples on lossless and lossy
media. In both cases, some scenarios with both isotropic and isotropic layers
are simulated. For all examples in this section was used a frequency of 200 kHz.
We have considered an azimuthal index n = 1 to excite all components of the
electromagnetic fields, considering a coil source with fixed tilt angle of 45◦, but
with normalized amplitude. The contribution of the source will be analyzed
in the next chapter. The fields will be observed throughout of the formations
axial domain, which has a total length of 1 meter for validation purposes.
Moreover, the fields will be represented for decoupled TE and TM modes due
to truncation of our problem along of the axial domain.

4.5.1
Lossless Media

In this section non-conductive media are explored. For these media we
consider isotropic and anisotropic formations. Furthermore, we validate the
first three modes in each case, examining several examples with different
amounts of layers to obtain a detailed validation of the implemented algorithm.

4.5.1.1
Homogeneous Isotropic Formation

In this first example was implemented the same problem of the Section
4.3 for a parallel plate waveguide as shown in Fig. 4.3. Therefore, the

DBD
PUC-Rio - Certificação Digital Nº 1821587/CA



Chapter 4. Electromagnetic Fields in Horizontal Stratified Media 46

resulting eigenvalues are shown in Table 4.1. The propagation direction of
the transmitted waves is towards positive z.

From Fig. 4.5 to Fig. 4.10, the first mode with kρ = 3.141589856066267i
was used for representing the electromagnetic fields. Fig. 4.5 shows the electric
field for the radial component transversal to propagation direction. We can
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Figure 4.5: Normalized amplitude of the radial component of the electric field
(Eρ) for decoupled TE and TM modes in a homogeneous and isotropic medium
confined by a parallel plate waveguide (First Mode).

appreciate that both fields are maximum in center of waveguide and at the
edges it goes to zero, which satisfies the boundary conditions of problem.
In Fig. 4.6 is showed the magnetic field for radial component transversal to
propagation direction. The electric and magnetic field for azimuthal component
transversal to propagation direction are represented in Fig. 4.7 and 4.8,
respectively. In Fig. 4.9 is showed the axial component of the electric and
magnetic field in the propagation sense. Finally for the first mode, the electric
and magnetic flux density onto ẑ is presented in Fig. 4.10, which depend on
electric and magnetic fields to z, respectively. We can notice how the boundary
conditions of this problem are satisfied when at the edges of parallel plate guide
the electric field to ẑ is maximum and the magnetic field to ẑ is minimum.

Similarly, all these fields are showed from Fig. 4.11 to Fig. 4.16. In this
sense, they were simulated for the second eigenvalue kρ = 6.283183891768371i
from Table 4.1.
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Figure 4.6: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (First Mode).

For the third mode with kρ = 9.424776972783139i, these six fields were
also obtained, which are represented from Fig. 4.17 to Fig. 4.22.

4.5.1.2
Half-Space Isotropic Formation

In a second case of validation of algorithm, we implemented an isotropic
Earth formation with two horizontal layers between the interfaces with ẑ-
position z = 0, z = −0.5 and z = −1 m, as shown in Fig. 4.23. The
physical characteristics and eigenvalues of medium that provide the solution
to our problem are shown in Table 4.2 and 4.3, respectively. The propagation

Table 4.2: Physical characteristics of an axially-stratified two-layers isotropic
medium.

Layer Relative Magnetic Permeability Relative Electric Permittivity
2 µr{s,z} = 1.15 εr{s,z} = 1.8
3 µr{s,z} = 2.0 εr{s,z} = 1.2
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Figure 4.7: Normalized amplitude of the azimuthal component of the electric
field (Eφ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (First Mode).

Table 4.3: Eigenvalues for an axially-stratified two-layers isotropic medium.

Mode Number Eigenvalue kρ,np
TE TM

1st. 3.141586520885489i 3.141586492106696i
2nd. 6.283182115262549i 6.283182129630831i
3rd. 9.424775688307591i 9.424775755437505i

direction of the transmitted waves was assumed towards the positive direction
of the axial domain.

The first mode was used from Fig. 4.24 to Fig. 4.26 for representing the
results of the electromagnetic fields for this scenario already described above.
In the same way, the second mode was used from Fig. 4.27 to Fig. 4.31, and
the third mode from Fig. 4.32 to Fig. 4.36. It is easily perceived that the
boundary conditions are also satisfied at the medium edges as in the case of
Section 4.5.1.1. An important point to discuss in this example is the notable
difference in the Dz amplitude to TM mode between the layer 2 and 3. This
field concentration in layer 2 is due to a higher value of the relative electric
permittivity in this layer with respect to the layer 3, as is represented in Table
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Figure 4.8: Normalized amplitude of the azimuthal component of the magnetic
field (Hφ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (First Mode).

4.2.

4.5.1.3
Multi-Layer Isotropic Formations

Three-Layer Isotropic Formation

Another example for isotropic media is considered assuming three layers,
which are found between the interfaces with ẑ-position z = 0, z = −0.3,
z = −0.6 and z = −1 m, as shown in Fig. 4.37. The physical characteristics
of medium and some eigenvalues for this scenario are shown in Table 4.4 and
Table 4.5, respectively. The propagation direction of the transmitted waves

Table 4.4: Physical characteristics of an axially-stratified three-layers isotropic
medium.

Layer Relative Magnetic Permeability Relative Electric Permittivity
2 µr{s,z} = 2.3 εr{s,z} = 3.9
3 µr{s,z} = 1.2 εr{s,z} = 1.4
4 µr{s,z} = 3.8 εr{s,z} = 3.2
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Figure 4.9: Normalized amplitude of the axial component of the electric and
magnetic field (Ez and Hz) in a homogeneous and isotropic medium confined
by a parallel plate waveguide (First Mode).

Table 4.5: Eigenvalues for an axially-stratified three-layers isotropic medium.

Mode Number Eigenvalue kρ,np
TE TM

1st. 2.446160254330170i 3.725765658926201i
2nd. 7.016974738107960i 5.670998168819509i
3rd. 9.157010767173599i 9.607950593823594i

was assumed towards the negative sense of the axial domain.
In Fig. 4.38 and Fig. 4.39 we show the fields for the first mode, from Fig.

4.40 to Fig. 4.42 for the second mode, and from Fig. 4.43 to Fig. 4.45 for the
third mode.
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Figure 4.10: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in a homogeneous and isotropic medium confined by
a parallel plate waveguide (First Mode).
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Figure 4.11: Normalized amplitude of the radial component of the electric field
(Eρ) for decoupled TE and TM modes in a homogeneous and isotropic medium
confined by a parallel plate waveguide (Second Mode).
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Figure 4.12: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (Second Mode).
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Figure 4.13: Normalized amplitude of the azimuthal component of the electric
field (Eφ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (Second Mode).
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Figure 4.14: Normalized amplitude of the azimuthal component of the magnetic
field (Hφ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (Second Mode).
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Figure 4.15: Normalized amplitude of the axial component of the electric and
magnetic field (Ez and Hz) in a homogeneous and isotropic medium confined
by a parallel plate waveguide (Second Mode).
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Figure 4.16: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in a homogeneous and isotropic medium confined by
a parallel plate waveguide (Second Mode).
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Figure 4.17: Normalized amplitude of the radial component of the electric field
(Eρ) for decoupled TE and TM modes in a homogeneous and isotropic medium
confined by a parallel plate waveguide (Third Mode).
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Figure 4.18: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (Third Mode).

-1 -0.8 -0.6 -0.4 -0.2 0

-90

-75

-60

-45

-30

-15

0

Figure 4.19: Normalized amplitude of the azimuthal component of the electric
field (Eφ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (Third Mode).
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Figure 4.20: Normalized amplitude of the azimuthal component of the magnetic
field (Hφ) for decoupled TE and TM modes in a homogeneous and isotropic
medium confined by a parallel plate waveguide (Third Mode).
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Figure 4.21: Normalized amplitude of the axial component of the electric and
magnetic field (Ez and Hz) in a homogeneous and isotropic medium confined
by a parallel plate waveguide (Third Mode).
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Figure 4.22: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in a homogeneous and isotropic medium confined by
a parallel plate waveguide (Third Mode).

Figure 4.23: Axially-stratified two-layers geophysical formation.
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Figure 4.24: Normalized amplitude of the radial component of the electric and
magnetic field (Eρ and Hρ) for decoupled TE and TM modes in an axially-
stratified two-layers isotropic medium (First Mode).
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Figure 4.25: Normalized amplitude of the azimuthal component of the electric
and magnetic field (Eφ and Hφ) for decoupled TE and TM modes in an axially-
stratified two-layers isotropic medium (First Mode).
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Figure 4.26: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified two-layers isotropic medium (First
Mode).
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Figure 4.27: Normalized amplitude of the radial component of the electric
field (Eρ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Second Mode).
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Figure 4.28: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Second Mode).

-1 -0.8 -0.6 -0.4 -0.2 0

-80

-64

-48

-32

-16

0

Figure 4.29: Normalized amplitude of the azimuthal component of the electric
field (Eφ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Second Mode).
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Figure 4.30: Normalized amplitude of the azimuthal component of the magnetic
field (Hφ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Second Mode).
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Figure 4.31: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified two-layers isotropic medium
(Second Mode).
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Figure 4.32: Normalized amplitude of the radial component of the electric
field (Eρ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Third Mode).

-1 -0.8 -0.6 -0.4 -0.2 0

-80

-64

-48

-32

-16

0

Figure 4.33: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Third Mode).
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Figure 4.34: Normalized amplitude of the azimuthal component of the electric
field (Eφ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Third Mode).
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Figure 4.35: Normalized amplitude of the azimuthal component of the magnetic
field (Hφ) for decoupled TE and TM modes in an axially-stratified two-layers
isotropic medium (Third Mode).
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Figure 4.36: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified two-layers isotropic medium
(Third Mode).

Figure 4.37: Axially-stratified three-layers geophysical formation.
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Figure 4.38: Normalized amplitude of the radial component of the electric and
magnetic field (Eρ and Hρ) for decoupled TE and TM modes in an axially-
stratified three-layers isotropic medium (First Mode).
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Figure 4.39: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified three-layers isotropic medium
(First Mode).
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Figure 4.40: Normalized amplitude of the radial component of the electric
field (Eρ) for decoupled TE and TM modes in an axially-stratified three-layers
isotropic medium (Second Mode).
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Figure 4.41: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in an axially-stratified three-layers
isotropic medium (Second Mode).

In this case we modeled with more difference in the physic characteristics
between the layers of formation than in the previous examples. Therefore, by
having more variability in its behavior allows us to notice the continuity of
both fields across of each interface of medium are also satisfied.

Four-Layer Isotropic Formation

In this case is considered a horizontally stratified formation with four
layers in the ẑ-position z = 0, z = −0.2, z = −0.5, z = −0.8 and
z = −1m. The geometry of problem is analogous to all previous ones, except
in number and position of interfaces already mentioned above. The physical
characteristics and resulting eigenvalues for this example are presented in Table
4.6 and 4.7, respectively. The propagation sense of the transmitted waves is
in the negative direction of the axial domain. In order to avoid repetition in
relation to the previous examples, only the electric and magnetic flux densities
are represented for the first three modes from Fig. 4.46 to Fig. 4.48.

Five-Layer Isotropic Formation

For ensuring the correct functioning of the implemented method for
isotropic media, we validate a last example for this type of formations. Now we
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Figure 4.42: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified three-layers isotropic medium
(Second Mode).

Table 4.6: Physical characteristics of an axially-stratified four-layers isotropic
medium.

Layer Relative Magnetic Permeability Relative Electric Permittivity
2 µr{s,z} = 3.8 εr{s,z} = 4.5
3 µr{s,z} = 2.1 εr{s,z} = 2.4
4 µr{s,z} = 1.3 εr{s,z} = 1.7
5 µr{s,z} = 1.5 εr{s,z} = 1.2

Table 4.7: Eigenvalues for an axially-stratified four-layers isotropic medium.

Mode Number Eigenvalue kρ,np
TE TM

1st. 2.837777570398038i 3.309772026956289i
2nd. 6.058185563297657i 6.371034773831773i
3rd. 9.593169665715536i 9.241600211295243i

consider an axially-stratified five-layers gephysical formation with interfaces of
ẑ-position z = −0.2, z = −0.4, z = −0.6, z = −0.8 and z = −1. The physical
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Figure 4.43: Normalized amplitude of the radial component of the electric
field (Eρ) for decoupled TE and TM modes in an axially-stratified three-layers
isotropic medium (Third Mode).

characteristics of medium and eigenvalues for this scenario are showed in Table
4.8 and 4.9, respectively. The propagation direction of the transmitted waves

Table 4.8: Physical characteristics of an axially-stratified five-layers isotropic
medium.

Layer Relative Magnetic Permeability Relative Electric Permittivity
2 µr{s,z} = 1.1 εr{s,z} = 1.7
3 µr{s,z} = 2.3 εr{s,z} = 2.9
4 µr{s,z} = 4.2 εr{s,z} = 5.1
5 µr{s,z} = 2.0 εr{s,z} = 2.5
6 µr{s,z} = 1.4 εr{s,z} = 1.6

is in the positive direction to ẑ. From Fig. 4.49 to Fig. 4.51 we show the electric
and magnetic flux densities for the first three modes in Table 4.9.
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Figure 4.44: Normalized amplitude of the radial component of the magnetic
field (Hρ) for decoupled TE and TM modes in an axially-stratified three-layers
isotropic medium (Third Mode).

Table 4.9: Eigenvalues for an axially-stratified five-layers isotropic medium.

Mode Number Eigenvalue kρ,np
TE TM

1st. 4.022658220958810i 2.320863140103564i
2nd. 6.075565230426880i 6.645057418448241i
3rd. 9.632383349494866i 9.062887589461596i
4th. 11.685281363592152i 13.387081944397289i
5th. 15.707957144302920i 15.707960413373227i

4.5.1.4
Multi-Layer Anisotropic Formation

In this section we consider a medium similar to the latter problem in the
previous section, but with anisotropic formations. The physical characteristics
and some resulting eigenvalues for this example are presented in Table 4.10
and 4.11, respectively. The electric and magnetic flux densities are represented
from Fig. 4.52 to Fig. 4.54 for the first three modes in Table 4.11 .
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Figure 4.45: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified three-layers isotropic medium
(Third Mode).

Table 4.10: Physical characteristics of an axially-stratified five-layers
anisotropic medium.

Layer Relative Magnetic Permeability Relative Electric Permittivity
2 µrs = 1 µrz = 5 εrs = 6 εrz = 10
3 µrs = 2 µrz = 4 εrs = 7 εrz = 9
4 µrs = 3 µrz = 3.5 εrs = 8 εrz = 8.5
5 µrs = 4 µrz = 2 εrs = 9 εrz = 7
6 µrs = 5 µrz = 1 εrs = 10 εrz = 6

4.5.2
Lossy Media

In this section we approach the last example analyzed in the previous
section for an axially-stratified five-layers isotropic medium, but considering
the lossy layer 4. We explore the first five modes for a conductivity range from
10−6 to 1 S/m After considering lossy formation, the eigenvalues are no longer
pure imaginary, but complex. The resulting eigenvalues for these conductivity
values have no significant difference for TE mode. This can be appreciated
in Fig. 4.55, where as the the conductivity increases, the eigenvalues move
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Figure 4.46: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified four-layers isotropic medium
(First Mode).

Table 4.11: Eigenvalues for an axially-stratified five-layers anisotropic medium.

Mode Number Eigenvalue kρ,np
TE TM

1st. 2.855257159257028i 3.068312891519532i
2nd. 5.564013261795316i 6.229140791486254i
3rd. 8.354410110114189i 9.332272597089041i
4th. 10.941861293126705i 12.435983855447910i
5th. 13.809233407332959i 15.551417790948074i

away from the axis of pure imaginary values, but only the real part varies.
For demonstrating the non-influence in TE mode, Fig. 4.56 shows how the
magnetic flux density, obtained from the second eigenvalue, does not vary,
from the lossless case to a conductivity value of 1 S/m.

On the other hand, the conductivity does have a relevant influence on the
TM mode, which is evidenced in the equation (3-8). Some eigenvalues obtained
for the TM mode are presented from Table 4.12 to Table 4.18, varying the
conductivity value in the range mentioned above. The behavior of these
eigenvalues for all conductivity values are shown in Fig. 4.57. With the aim of
a more detailed appreciation of this behavior, each eigenvalue is showed from
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Figure 4.47: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified four-layers isotropic medium
(Second Mode).

Table 4.12: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 10−6 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.010737170690891 + 2.320791056432697i
2nd. -0.015546833948450 + 6.645255941964114i
3rd. 0.015546926989426 + 9.062689064831508i
4th. -0.010736985198983 + 13.387154028176727i
5th. 0.000000004579974 + 15.707960413299830i

Fig. 4.58 to Fig. 4.62. For those eigenvalues with the positive real part for
each conductivity values (eigenvalue 1, 3 and 5), it is plotted on a logarithmic
scale for a best visualization by the reader. In this way, we can easily appreciate
that when there are no losses, our eigenvalue is purely imaginary as expected.
Finally, the Fig. 4.63 shows the electric flux density for the second eigenvalue,
taking into account the lossless case and for conductivity values of 10−4 and
1 S/m. We can then perceive the attenuation in field amplitude as conductivity
increases.
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Figure 4.48: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified four-layers isotropic medium
(Third Mode).

Table 4.13: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 10−5 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.106862328392550 + 2.313691317126018i
2nd. -0.153006065911827 + 6.664596046384765i
3rd. 0.153006983879134 + 9.043348851454198i
4th. -0.106860469982018 + 13.394253777757495i
5th. 0.000000044664362 + 15.707960406215266i

Table 4.14: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 10−4 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.735462716208924 + 1.847739342205968i
2nd. -0.588756636944571 + 7.402333434332047i
3rd. 0.588760309931038 + 8.305606893664212i
4th. -0.735443155911522 + 13.860204830215682i
5th. 0.000000128382604 + 15.707960207626666i
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Figure 4.49: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified five-layers isotropic medium (First
Mode).
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Figure 4.50: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified five-layers isotropic medium
(Second Mode).
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Figure 4.51: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified five-layers isotropic medium
(Third Mode).
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Figure 4.52: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified five-layers anisotropic medium
(First Mode).
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Figure 4.53: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified five-layers anisotropic medium
(Second Mode).
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Figure 4.54: Normalized amplitude of the electric flux density and magnetic
flux density (Dz and Bz) in axially-stratified five-layers anisotropic medium
(Third Mode).
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Figure 4.55: Eigenvalue behavior to several conductivity values for TE mode.
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Figure 4.56: Non-Variation of the magnetic flux density (Bz) to different two
conductivity values in axially-stratified five-layers isotropic medium (Second
Mode).
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Table 4.15: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 10−3 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.504012679965596 + 0.558822120667639i
2nd. -0.092319353860095 + 7.847004086074592i
3rd. 0.092319889254419 + 7.860933613498648i
4th. -0.503866005425398 + 15.149095730954890i
5th. 0.000000017775623 + 15.707960128627615i

Table 4.16: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 10−2 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.167934549018248 + 0.169461496532328i
2nd. -0.009282484592447 + 7.853893887725020i
3rd. 0.009282542492692 + 7.854043777543839i
4th. -0.166748525855869 + 15.538368003891952i
5th. 0.000000001864182 + 15.707960127530091i

Table 4.17: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 10−1 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.053669001261055 + 0.053031374899822i
2nd. -0.000928257971985 + 7.853963142463697i
3rd. 0.000928305655962 + 7.853974522607146i
4th. -0.043218390059025 + 15.655038710909594i
5th. 0.000000000984145 + 15.707960127519843i

Table 4.18: Eigenvalues for an axially-stratified five-layers isotropic medium
with σ = 1 S/m (TM mode).

Mode Number Eigenvalue kρ,np
1st. 0.017998432729488 + 0.015813829345154i
2nd. -0.000092413590718 + 7.853963849232947i
3rd. 0.000092836780005 + 7.853973830341202i
4th. 0.000020208404332 + 15.705264225732185i
5th. 0.000000008075114 + 15.707960127596873i
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Figure 4.57: Eigenvalue behavior to several conductivity values for TM mode.
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Figure 4.58: Behavior of the first eigenvalue to several conductivity values for
TM mode. (Zoom of the eigenvalue 1 from Fig. 4.57).
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Figure 4.59: Behavior of the second eigenvalue to several conductivity values
for TM mode. (Zoom of the eigenvalue 2 from Fig. 4.57).
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Figure 4.60: Behavior of the third eigenvalue to several conductivity values for
TM mode. (Zoom of the eigenvalue 3 from Fig. 4.57).
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Figure 4.61: Behavior of the fourth eigenvalue to several conductivity values
for TM mode. (Zoom of the eigenvalue 4 from Fig. 4.57).
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Figure 4.62: Behavior of the fifth eigenvalue to several conductivity values for
TM mode. (Zoom of the eigenvalue 5 from Fig. 4.57).
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Figure 4.63: Variation of the electric flux density (Dz) to several conductivity
values in axially-stratified five-layers isotropic medium (Second Mode).
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5
Source Expansion

5.1
Introduction

Conventional well-logging tools employing horizontal-coil antenna excite
only TE modes (i.e. perpendicular to the tool axis) as is illustrated in Fig. 5.1.
Logging tools with tilted-coil antenna have been proposed as an alternative to

Figure 5.1: Electric current horizontal source within an axially-stratified
geophysical formation.

provide better evaluation in multilayered complex anisotropic formations [56].
In this chapter, we will study the response of induction due to a finite coil model
in homogeneous formations. We will present the derivation of formulas for to
find the amplitudes delivered by a uniform azimuthally symmetric electric
current in a tilted loop source that is embedded in an arbitrary layer of a
multilayered-uniaxial-anisotropic formation. We assume the antenna is always
completely within the same layer. The solution will be obtained from Maxwell’s
equations and Sturm-Liouville theory. In order to apply this theory, it will
be necessary to formulate the generalized Fourier series, analogous to the
transform presented in [11]. Finally, we will apply the Sturm-Liouville theory,
where a similar procedure is aboard in [49] but for an isotropic medium.
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5.2
Modal Field Excitation

The Maxwell’s equations in linear, homogeneous and dissipative
anisotropic media are given by

∇× E = iω ¯̄µ ·H−MT , (5-1)

∇×H = −iω¯̄ε · E + JT , (5-2)

∇ · (¯̄ε · E) = %e, (5-3)

∇ · (¯̄µ ·H) = %m. (5-4)

Taking the curl of the equation (5-2) and projecting the resulting vector onto
ẑ, we can find

ẑ · [∇× (∇×H)] = −iωẑ ·
[
∇×

(
¯̄ε · E

)]
+ ẑ · (∇× JT )

= −iωẑ ·
[(
∇s + ẑ

∂

∂z

)
×
(
¯̄εsEs + ẑεzEz

)]
+ ẑ ·

{
(∇s × Js) +

[∇s × (ẑJz)] +
(
∂

∂z
ẑ × Js

)
+
[
∂

∂z
ẑ × (ẑJz)

]}
= −iωẑ ·

[
∇s ×

(
¯̄εsEs

)]
+ ẑ (∇s × Js)

= ẑ · [−iωεs (∇s × Es) + (∇s × Js)] . (5-5)

Separating the equation (5-1) in components ŝ and ẑ, we have that
ŝ : ∇s × ẑEz +

∂

∂z
ẑ × Es = iω ¯̄µs ·Hs −Ms

ẑ : ∇s × Es = iωẑµzHz − ẑMz,

(5-6)

projecting the ẑ component of equation (5-6) onto ẑ and substituting the result
obtained in equation (5-5),

ẑ · [∇× (∇×H)] = ω2εsµzHz + iωεsMz + ẑ · (∇s × Js) . (5-7)

After using the vector identity (3-17), the LHS of (5-7) can be simplified to,

∇2Hz + k2Hz = [∇ (∇ ·H)− (∇s × Js)]z − iωεsMz. (5-8)

Making a same previous procedure on equation (5-1), or by duality with
equation (5-8), we can obtain

∇2Ez + k2Ez = [∇ (∇ · E) + (∇s ×Ms)]z − iωµsJz. (5-9)

Substituting the equations (3-15) and (3-16) into (5-8) and (5-9) respec-
tively, and substituting the scalar Laplacian in cylindrical coordinates given
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by
∇2 = ∇2

s + ∂2

∂z2 , (5-10)
we have

∇2
sHz + µz

µs

∂2Hz

∂z2 + k2Hz = −ẑ · (∇s × Js)− iωεsMz, (5-11)

∇2
sEz + εz

εs

∂2Ez
∂z2 + k2Ez = ẑ · (∇s ×Ms)− iωµsJz. (5-12)

where k2 = ω2pzp̃s, with p = {ε, µ} and p̃ = {µ, ε}.

5.3
Current Density

Considering the tilted-coil transmitting antenna in Fig. 5.2, we can derive
its volumetric electric current density JT . The normal to its plane is

Figure 5.2: Transmitting tilted-coil antenna with current density JT [1].

nT = x̂ sin θT cosφT + ŷ sin θT sinφT + ẑ cos θT (5-13)

and the coordinates of tilted filamentary winding

rT = ρ̂ ρT + ẑ [zT − ρT tan θT cos(φ− φT )] (5-14)

satisfy the equation
nT · rT = 0, (5-15)

where ρT and zT are the radial and axial position of the coil center and φT and
θT are the azimuthal and elevation tilt angles, respectively.

The volumetric electric current density can be written as
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JT = IT δT , (5-16)

where IT is the current in the winding and

δT = δ(ρ− ρT ) δ(z − zT + ρT tan θT cos(φ− φT ))

× (φ̂+ ẑ tan θT sin(φ− φT )). (5-17)

5.4
Modal Excitation from an Electric Current Source

In the absence of magnetic sources, i.e., MT = 0, by taking the curl of
Js where [55]

∇s = ρ̂
∂

∂ρ
+ φ̂

1
ρ

∂

∂φ
, (5-18)

and projecting it onto ẑ, the equations (5-11) and (5-12) leads to

∇2
sHz + µz

µs

∂2Hz

∂z2 + k2Hz =IT
ρ
δ(ρ− ρT )δ(z − zT + ρT tan θT cos(φ− φT )),

(5-19)

∇2
sEz + εz

εs

∂2Ez
∂z2 + k2Ez =− iωµsJz. (5-20)

Given the geometries of Fig. 4.1 and Fig. 5.2, it is helpful to employ the
generalized Fourier series:

Fj(ρ, φ, z) =
∞∑

n=−∞

∞∑
p=1

fj(ρ, n, kz) einφ Zp(kzz) (5-21)

fj(ρ, n, kz) = 1
2πNzp

∫
φ

∫
z
Fj(ρ, φ, z) e−inφ Z∗p(kzz) dz dφ, (5-22)

where

Nzp =
∫ z=−z1

z=−zN+1
Zp(kzz)Z∗p(kzz) dz, (5-23)

Zp(kzz) =
N+1∑
j=2

rect(−zj−1,−zj) Φjp(kjzz) (5-24)

and Φjp(kjzz) is given by the equation (3-41), in which we select it depending
of the TE or TM mode. Notice that rect(a, b) is the rectangular function: it is
equal to 1 in the range a < z < b, and 0 otherwise. The Fourier transform given
in (5-22) will be applied to each component of fields and sources, for facilitating
the application of the boundary conditions. A similar procedure was done
in [1, 11, 49]. Setting the wave equations (5-19) and (5-20) to homogeneous
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equations and applying (5-22), we obtain
[

1
ρ

d

dρ

(
ρ
d

dρ

)
− n2

ρ2 −
µz
µs
k2
z + k2

]
hz(ρ, n, kz) = 0 (5-25)[

1
ρ

d

dρ

(
ρ
d

dρ

)
− n2

ρ2 −
εz
εs
k2
z + k2

]
ez(ρ, n, kz) = 0, (5-26)

resulting in the ordinary differential equations[
1
ρ

d

dρ

(
ρ
d

dρ

)
+ k2

ρ −
n2

ρ2

]
hz(ρ, n, kz) = 0 (5-27)[

1
ρ

d

dρ

(
ρ
d

dρ

)
+ k2

ρ −
n2

ρ2

]
ez(ρ, n, kz) = 0, (5-28)

where k2
ρ is given by the equation (3-31) with =m(kρ) > 0. Also applying the

transform (5-22) to the source terms in (5-19) and (5-20), we obtain

sTE(ρ, n, kz) = 1
2πNzp

∫
φ

∫
z
STE e

−inφ Z∗p(kzz) dz dφ (5-29)

sTM(ρ, n, kz) = 1
2πNzp

∫
φ

∫
z
STM e−inφ Z∗p(kzz) dz dφ, (5-30)

where STE and STM are the source terms given by the RHS in the equations
(5-19) and (5-20), respectively. We can convert the equations (5-29) and (5-30)
to

sTE(ρ, n, kz) = 1
2πNzp

∫
φ
e−inφ dφ fzp(kz)TE (5-31)

sTM(ρ, n, kz) = 1
2πNzp

∫
φ
e−inφ dφ fzp(kz)TM , (5-32)

where

fzp(kz)TE =
∫
z
STE e

−inφ Z∗p(kzz) dz (5-33)

fzp(kz)TM =
∫
z
STM e−inφ Z∗p(kzz) dz. (5-34)

Assuming the source transmitting to negative z direction, we find

Zp(kzz) = Z−p (kzz) = A−j
(
e−ikjzz + R̃j,j+1e

ikjz(z+2z−)
)

(5-35)

Z∗p(kzz) = Z(−)∗
p (kzz) = A

(−)∗
j

(
eikjzz + R̃∗j,j+1e

−ikjz(z+2z−)
)
, (5-36)

in that z− is given by the equation (3-42). Then, computing the integrals (5-33)
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and (5-34), we obtain

fzp(kz)TE = IT
ρ
A

(−)∗
j δ(ρ− ρT )

×
∫ z=−z1

z=−zN+1
δ(z−zT+ρT tan θT cos(φ−φT ))

(
eik

h
jzz + R̃

TE(z)∗
j,j+1 e−ik

h
jzze−2ikh

jzzj

)
dz

(5-37)

and

fzp(kz)TM = −iωµsITA(−)∗
j δ(ρ− ρT ) tan θT sin(φ− φT )

×
∫ z=−z1

z=−zN+1
δ(z−zT+ρT tan θT cos(φ−φT ))

(
eik

e
jzz + R̃

TM(z)∗
j,j+1 e−ik

e
jzze−2ike

jzzj

)
dz.

(5-38)

By defining z0 = zT + ρT tan θT cos(φ−φT ) and assuming −zN+1 < z0 < −z1,
we can obtain

fzp(kz)TE = IT
ρ
A

(−)∗
j δ(ρ− ρT )

(
eik

h
jzz0 + R̃

TE(z)∗
j,j+1 e−2ikh

jzzje−ik
h
jzz0

)
(5-39)

and

fzp(kz)TM = −iωµsITA(−)∗
j δ(ρ− ρT ) tan θT sin(φ− φT )

×
(
eik

e
jzz0 + R̃

TM(z)∗
j,j+1 e−2ike

jzzje−ik
e
jzz0

)
. (5-40)

By substituting the equations above in (5-31) and (5-32) and using κT =
kjz ρT tan θT , we obtain

sTE(ρ, n, kz) = IT
2πρNzp

A
(−)∗
j δ(ρ− ρT ) e−ikh

jzzT

×
∫ π

−π
e−inφ

(
e2ikh

jzzT eiκ
h
T cos(φ−φT ) + R̃

TE(z)∗
j,j+1 e−2ikh

jzzje−iκ
h
T cos(φ−φT )

)
dφ (5-41)

and

sTM(ρ, n, kz) = −iωµsIT2πNzp

A
(−)∗
j δ(ρ− ρT ) tan θT e−ik

e
jzzT

∫ π

−π
sin(φ− φT ) e−inφ

×
(
e2ike

jzzT eiκ
e
T cos(φ−φT ) + R̃

TM(z)∗
j,j+1 e−2ike

jzzje−iκ
e
T cos(φ−φT )

)
dφ. (5-42)

By introducing φ̃ = φ− φT , we can continue the development of the previous
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equations:

sTE(ρ, n, kz) = IT
2πρNzp

A
(−)∗
j δ(ρ− ρT ) e−ikh

jzzT e−inφT

×
(
e2ikh

jzzT I+
#1 + R̃

TE(z)∗
j,j+1 e−2ikh

jzzjI−#1

)
(5-43)

sTM(ρ, n, kz) = −iωµsIT2πNzp

A
(−)∗
j δ(ρ− ρT ) tan θT e−ik

e
jzzT e−inφT

×
(
e2ike

jzzT I+
#2 + R̃

TM(z)∗
j,j+1 e−2ike

jzzjI−#2

)
, (5-44)

where

I±#1 =
∫ π−φT

−π−φT

e−inφ̃ e±iκ
h
T cos φ̃ dφ̃

I±#2 =
∫ π−φT

−π−φT

sin φ̃ e−inφ̃ e±iκe
T cos φ̃ dφ̃.

Noting that the integrand is periodic in terms of φ and the integration is over
a period interval (2π), we can perform the integration over the symmetric
interval −π to π. Thus, the integrals reduce to

I±#1 =
∫ π

−π
e−inφ±iκ

h
T cosφ dφ

I±#2 =
∫ π

−π
sinφ e−inφ±iκe

T cosφ dφ.

The integrand exponential exp(±iκT cosφ) is an even function in terms of φ.
Therefore, using the identity exp(−inφ) = cos(nφ) − i sin(nφ), we can verify
that only the function in terms of cos(nφ) contributes for the integration in
I±#1. Accordingly, we can write

I±#1 = 2
∫ π

0
cos(nφ)e±iκh

T cosφ dφ.

Using the identity [57, p. 360, eq. 9.1.21]

Jn(z) = i−n

π

∫ π

0
cos(nφ)eiz cosφ dφ, (5-45)

we can obtain
I±#1 = 2πinJn(±κhT ). (5-46)

Analogously, the integral I±#2 can be written as

I±#2 = −2i
∫ π

0
sinφ sin(nφ)e±iκe

T cosφ dφ.
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Noting that sinφ sin(nφ) = 1
2{cos[(n− 1)φ]− cos[(n+ 1)φ]}, we can find

I±#2 = −i
{∫ π

0
cos[(n− 1)φ]e±iκe

T cosφ dφ−
∫ π

0
cos[(n+ 1)φ]e±iκe

T cosφ dφ
}
,

which can be simplified by using (5-45), resulting in

I±#2 = −i
[
πin−1Jn−1(±κeT )− πin+1Jn+1(±κeT )

]
= −iπin(−i) [Jn−1(±κeT ) + Jn+1(±κeT )]

= −iπin2nJn(±κeT )
±κeT

= 2πin n

±kejz ρT tan θT
Jn(±κeT ). (5-47)

Substituting (5-46) and (5-47) in (5-43) and (5-44), respectively, we can
eventually obtain

sTE(ρ, n, kz) = C̃TE(ρ, n, kz) δ(ρ− ρT ) (5-48)

sTM(ρ, n, kz) = C̃TM(ρ, n, kz) δ(ρ− ρT ), (5-49)

where

C̃TE(ρ, n, kz) = IT
ρNzp

CTE(n, kz)A(−)∗
j e−inφT e−ik

h
jzzT

×
[
e2ikh

jzzT + (−1)nR̃TE(z)∗
j,j+1 e−2ikh

jzzj

]
(5-50)

and

C̃TM(ρ, n, kz) = iωµsIT
Nzp

CTM(n, kz)A(−)∗
j e−inφT e−ik

e
jzzT

×
[
e2ike

jzzT − (−1)nR̃TM(z)∗
j,j+1 e−2ike

jzzj

]
(5-51)

with
CTE(n, kz) = inJn(κhT ) (5-52)

CTM(n, kz) = n in

kejzρ
Jn(κeT ). (5-53)

The transformed source terms, i.e., (5-50) and (5-51), are valid for observation
points to the direction −z. For the source transmitting for +z, we can assume
in (5-35) that

Zp(kzz) = Z+
p (kzz) = A+

j

(
e+ikjzz + R̃j,j−1e

−ikjz(z+2z+)
)
, (5-54)

and, as consequence, in results from (5-50) to (5-53), we should change the
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sign of ke,hjz , substitute in the generalized reflection coefficient j + 1 by j − 1,
and zj by zj−1 from (3-42).

The solutions to (5-27) and (5-28) are given by (3-39). The unknown
vectors ā and b̄ will be determined by the jump and continuity conditions of the
Sturm-Liouville theory of third kind [58] together with the boundary conditions
of electromagnetism [2] using the source-free fields derived in Subsection 3.4
and Subsection 3.5. In a compact matrix form, we obtain:ez,np(ρ)

hz,np(ρ)

 ∣∣∣∣∣∣
ρ+

T

−

ez,np(ρ)
hz,np(ρ)

 ∣∣∣∣∣∣
ρ−T

= −C̃TE(ρ, n, kz)
0

1

 (5-55)

eφ,np(ρ)
hφ,np(ρ)

 ∣∣∣∣∣∣
ρ+

T

−

eφ,np(ρ)
hφ,np(ρ)

 ∣∣∣∣∣∣
ρ−T

= −C̃TM(ρ, n, kz)
0

1

 (5-56)

Finally, the solution will have the form
ez,np(ρ)
hz,np(ρ)

 =


¯̄Jzn(kρρ)b̄ ρ ≤ ρT (5-57a)
¯̄H(1)
zn (kρρ)ā ρ > ρT (5-57b)

eφ,np(ρ)
hφ,np(ρ)

 =


¯̄Jφn(kρρ)b̄ ρ ≤ ρT (5-58a)
¯̄H(1)
φn (kρρ)ā ρ > ρT (5-58b)

The boundary conditions (5-55) and (5-56) lead to

¯̄Jzn(kρρ)b̄− ¯̄H(1)
zn (kρρ)ā = C̃TE(ρ, n, kz)

0
1

 (5-59)

¯̄Jφn(kρρ)b̄− ¯̄H(1)
φn (kρρ)ā = C̃TM(ρ, n, kz)

0
1

 (5-60)

These equations were solved for C̃TE = 0 and for C̃TM = 0 in order to simplify
the algebra. Thus, the vectors ā and b̄ are given by

ā = āhnp + āenp (5-61)

b̄ = b̄hnp + b̄enp. (5-62)

With the aim to simplify the notation, the argument of the Bessel functions
will be omitted in the terms of the vectors ā and b̄ given by

āhnp =
[ ¯̄Jφn ¯̄J−1

zn
¯̄H(1)
zn −

¯̄H(1)
φn

]−1 [
− ¯̄Jφn ¯̄J−1

zn
˜̄CTE

]
(5-63)

āenp =
[ ¯̄Jφn ¯̄J−1

zn
¯̄H(1)
zn −

¯̄H(1)
φn

]−1 ˜̄CTM (5-64)

b̄hnp = ¯̄J−1
zn

[ ¯̄H(1)
zn a

h
np + ˜̄CTE

]
(5-65)

b̄enp = ¯̄J−1
zn

¯̄H(1)
zn a

e
np (5-66)
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where
˜̄CTM = C̃TM

0
1

 and ˜̄CTE = C̃TE

0
1

 . (5-67)

After some manipulations, we obtain

āenp =


C̃TM

k2
ρρTJn(kρρT )

iωεskρρT [J ′n(kρρT )H(1)
n (kρρT )− Jn(kρρT )H

′(1)
n (kρρT )]

0

 (5-68)

b̄enp =


C̃TM

k2
ρρTH

(1)
n (kρρT )

iωεskρρT [J ′n(kρρT )H(1)
n (kρρT )− Jn(kρρT )H

′(1)
n (kρρT )]

0

 (5-69)

for C̃TE = 0, and

āhnp =


C̃TE

nkezJn(kρρT )
iωεskρρT [J ′n(kρρT )H(1)

n (kρρT )− Jn(kρρT )H
′(1)
n (kρρT )]

C̃TE
− J ′n(kρρT )

[J ′n(kρρT )H(1)
n (kρρT )− Jn(kρρT )H

′(1)
n (kρρT )]

 (5-70)

b̄hnp =


C̃TE

nkezH
(1)
n (kρρT )

iωεskρρT [J ′n(kρρT )H(1)
n (kρρT )− Jn(kρρT )H

′(1)
n (kρρT )]

C̃TE
−H ′(1)

n (kρρT )
[J ′n(kρρT )H(1)

n (kρρT )− Jn(kρρT )H
′(1)
n (kρρT )]

 (5-71)

for C̃TM = 0.

By summing the terms (5-68)-(5-71) and using the Wronskian of Bessel’s
equation [59]

J
′

n(kρρT )H(1)
n (kρρT )− Jn(kρρT )H ′(1)

n (kρρT ) = − 2i
πkρρT

, (5-72)

we can find the amplitudes (5-61) and (5-62) for anisotropic media in a compact
form:

c̄±np = −
i π

2


(
n kez C̃TE + k2

ρ ρT C̃TM
) i

ω εs
Bn (kρρT )

C̃TE kρ ρT B
′
n (kρρT )

 . (5-73)

In the particular case of an isotropic media, we have

Jn(κhT ) = Jn(κeT ) = Jn(κT ), (5-74)

and the equation (5-73) can be transformed to the solution presented in
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[49], i.e.,

c̄±np = −
i π

2 C̃TE


i ω µs n

kez
Bn (kρρT )

kρ ρT B
′
n (kρρT )

 (5-75)

where Bn = Jn for c̄+
np = ā and Bn = H(1)

n for c̄−np = b̄.
Finally, the fields can be determined by the inverse transform given in

(5-21).

5.5
Numerical Implementation and Analysis

In order to validate the mathematical formulation presented along this
chapter, in this section we present the results of a simple example to verify the
contribution of an electric current source and its influence on electromagnetic
fields.

For the implementation of the coil source, we model a suitable horizontal
antenna for solving TE fields, in which n = 0 and φT = 0. The propagation
direction of the transmitted waves is towards negative axial domain with a
position of the source at z = −0.85m and a constant electric current of 1 A.
The medium approached is similar to that of Section 4.5.1.1 for a homogeneous
medium into a parallel plate waveguide as shown in Fig. 4.3. The operation
frequency in this example is 200 kHz frequency. We assume values of electrical
permittivity and magnetic permeability equal to those of vacuum (ε0 and µ0).
Therefore, the relative dielectric and magnetic constants (εr and µr) are unity.
We consider the lossy medium described by its electrical conductivity with
value 0.1 S/m.

In Fig. 5.3 and Fig. 5.4 the absolute values of the azimuthal component
amplitude of the electric field due to a unit electric current excitation are
plotted. In Fig. 5.3 three cases are presented for 10, 20 and 30 modes. We can
appreciate the field convergence as the number of assessed modes increases. In
order to corroborate the convergence, Fig. 5.4 shows the results for a greater
number of modes. In both figures we can also notice the source position at
z = −0.85 m as we simulate with more modes. Moreover, a greater field
intensity around this point can be easily recognized.
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Figure 5.3: Absolute values for 10, 20 and 30 modes of the azimuthal component
of the electric field (Eφ) for TE mode in a lossy homogeneous and isotropic
medium confined by a parallel plate waveguide.
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Figure 5.4: Absolute values Amplitude for 30, 40 and 50 modes of the azimuthal
component of the electric field (Eφ) for TE mode in a lossy homogeneous and
isotropic medium confined by a parallel plate waveguide.
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6
Conclusions and Suggestions for Future Research

Electromagnetic wireless telemetry systems play an important role in
geophysical exploration. These systems require increasingly faster and more
accurate solutions to obtain a suitable formation evaluation. Numerical
methods based on spatial discretization demand a high cost in terms of
computational time and RAM usage for analyzing the electromagnetic wave
propagation in complex environments. In order to avoid the traditional high-
cost analysis, this work presents an accurate semi-analytical model to analyze
the electromagnetic fields propagation in planarly-layered anisotropic media
conforming to the cylindrical coordinate system. This approach allows a
robust and numerically efficient computational method for modeling complex
geophysical sensors.

We have introduced a mathematical formalism in Chapter 3 for solv-
ing the electric and magnetic fields in form of a sum of discrete fields
through modal eigenfunction series. Our approach allows us to computing
the field solutions once for any position of source or receptor. Alternative
semi-analytical solutions studied before required the entire computation of
associated Sommerfeld’s integral at each new observation point, cp. the works
in [2, 60]. In addition, our solutions does not rely on the spacial discretization
if the longitudinal domain, requiring a large number of modal eigenvalues until
convergence be evidenced, cp. the works in [11, 31]. The modal fields are
represented by a linear combination of decoupled TE and TM modes (with
respect to the longitudinal direction) due to axially-stratified media. This
representation is more is less cumbersome compared to the works presented
in [1, 53], where hybrid modes are required. Also, numerical issues associated
to large-argument Bessel functions [61] are also mitigated when the presented
formalism is used as a basis for a mode-matching enforcement.

The effects of the axial stratifications in the formation are analyzed
in the Chapter 4, where the boundary-value problem is described by us-
ing a computationally-efficient recursive formulation via generalized Fresnel
coefficients for accounting multiple reflections in anisotropic media. Such
coefficients allowed is to incorporate multiple layers along the axial domain,
and generalized the former ones used for isotropic backgrounds presented in
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[2]. A series of numerical simulations where presented to validate our method
by an exhaustive verification of the boundary-conditions enforcement.

In Chapter 5, a mathematical formulation for expanding an electrical
coil-source and to find its contribution to the modal fields derived in Chapter
4 was presented. The modal amplitudes due to the source were computed via
the Sturm-Liouville theory. Some results were presented in order to validate
our method as well as the field convergence as verified.

In this dissertation we have explored some new semi-analytical ap-
proaches for the modeling of electromagnetic propagation in axially-stratified
geophysical scenarios analogous to those of the Brazilian Pre-Salt. Another
potential application of this study is in the so-called IOUT, especially for
precision agriculture where the methods showed here can be employed in soil
characterization via electromagnetic sensing. As future works, we suggest the
extension of the proposed solution into mode-matching-based approaches for
accounting the effects of radial stratifications.
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