4 Laser a Fibra com Cavidades Acopladas

Nas três seções seguintes apresentamos um tratamento teórico para descrever o sistema, baseado na abordagem encontrada na referência [7].

4.1 As Equações do Campo Eletromagnético

Descreveremos a radiação dentro de uma cavidade a partir das equações de Maxwell (no sistema MKSA):

$$\vec{\nabla} \cdot \vec{D} = 0 \tag{4.1}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{4.2}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{4.3}$$

$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t},\tag{4.4}$$

onde

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}, \qquad \vec{B} = \mu_0 \vec{H} \qquad e \qquad \vec{J} = \sigma \vec{E}.$$
 (4.5)

Aplicando o rotacional pela esquerda na equação (4.3) e substituindo a expressão de \vec{B} dada pela segunda das equações (4.5), temos que

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\mu_0 \frac{\partial}{\partial t} (\vec{\nabla} \times \vec{H}).$$
(4.6)

Substituindo, agora, a primeira e a terceira das equações (4.5) na equação (4.4) e, em seguida, substituindo o resultado na equação (4.6), obtemos

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\mu_0 \frac{\partial}{\partial t} \left(\sigma \vec{E} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \frac{\partial \vec{P}}{\partial t} \right)$$
$$= -\mu_0 \sigma \frac{\partial \vec{E}}{\partial t} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} - \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}.$$

Ou ainda:

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) + \mu_0 \sigma \, \frac{\partial \vec{E}}{\partial t} + \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = -\mu_0 \frac{\partial^2 \vec{P}}{\partial t^2}.\tag{4.7}$$

Usando a identidade vetorial $\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\nabla^2 \vec{E} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) = -\nabla^2 \vec{E}$ (assumindo que $\vec{\nabla} \cdot \vec{P} \approx 0$), podemos simplificar o primeiro termo à esquerda da igualdade na equação (4.7).

A equação (4.7) é obtida com a aproximação de onda plana, de forma que $\vec{E} = \vec{E}(z,t)$, juntamente com a suposição de que o campo está linearmente polarizado no plano xOy.

A dependência temporal da equação de onda pode ser separada da dependência espacial pela expansão do campo em modos normais da cavidade. Isto é, $\vec{E}(z,t) = -E(z,t)\hat{e}$, onde \hat{e} define a direção de polarização. Então:

$$E(z,t) = \frac{1}{2} \sum_{n} A_n(t) U(z) + c.c.$$

onde

$$A_n(t) = E_n(t) \exp\left(-i[\nu_n t + \phi_n(t)]\right)$$

$$U_n(z) = sen(k_n z), \qquad \text{com } k_n = \frac{n\pi}{c}.$$
 (4.8)

Como a cavidade laser (de comprimento L) que estamos considerando é do tipo Fabry-Perot, a onda que se estabelecerá em seu interior será estacionária. Logo, a dependência espacial dos modos normais da cavidade será senoidal, dada por $U_n(z)$. A expansão do campo fica, portanto:

$$E(z,t) = \frac{1}{2} \sum_{n} E_n(t) \exp\left(-i[\nu_n t + \phi_n]\right) U_n(z) + c.c.,$$
(4.9)

enquanto a polarização induzida do meio é dada por

$$P(z,t) = \frac{1}{2} \sum_{n} P_n(t) \exp\left(-i[\nu_n t + \phi_n]\right) U_n(z) + c.c..$$
(4.10)

Na expressão (4.9), toda a fase do modo n está contida em ϕ_n , de forma que E_n é real. O que já não vale para a equação (4.10) e, portanto, P_n é complexo.

Substituiremos agora as equações (4.9) e (4.10) na equação (4.7) e aplicaremos o operador

$$\frac{\exp\left[i(\nu_n t + \phi_n)\right]}{\mathcal{N}} \int_0^L dz \, U_n^*(z), \tag{4.11}$$

onde $\mathcal{N} = \int_0^L dz |U_n(z)|^2$ é a constante de normalização.

Analisando cada termo separadamente, vemos que o primeiro fica

$$ec{
abla} imes ec{
abla} imes ec{E}) = -
abla^2 ec{E} = - rac{\partial^2 ec{E}}{\partial z^2},$$

pois E = E(z, t). Logo:

$$-\nabla^{2}E = -\frac{\partial^{2}}{\partial z^{2}} \left\{ \frac{1}{2} \sum_{n} E_{n}(t) \exp\left[-i(\nu_{n}t + \phi_{n})\right] U_{n}(z) \right\}$$
$$= -\frac{1}{2} \sum_{n} E_{n}(t) \exp\left[-i(\nu_{n}t + \phi_{n})\right] \frac{\partial^{2}U_{n}(z)}{\partial z^{2}}$$
$$= -\frac{1}{2} \sum_{n} E_{n}(t) \exp\left[-i(\nu_{n}t + \phi_{n})\right] \left[-k_{n}^{2} \operatorname{sen}(k_{n}z)\right]$$
$$= \frac{1}{2} \sum_{n} E_{n}k_{n}^{2} \exp\left[-i(\nu_{n}t + \phi_{n})\right] U_{n}(z)$$

Aplicando o operador (4.11) à equação anterior:

$$\frac{\exp\left[i(\nu_n t + \phi_n)\right]}{\mathcal{N}} \int_0^L dz \, U_n^*(z) \underbrace{\vec{\nabla} \times (\vec{\nabla} \times \vec{E})}_{-\nabla^2 E} = \frac{1}{2} \sum_n E_n k_n^2 \tag{4.12}$$

A primeira derivada de E em relação
até

$$\frac{\partial E}{\partial t} = \frac{1}{2} \frac{\partial}{\partial t} \sum_{n} E_{n}(t) \exp\left[-i(\nu_{n}t + \phi_{n})\right] U_{n}(z)$$

$$= \frac{1}{2} \sum_{n} U_{n}(z) \left\{ \frac{\partial E_{n}(t)}{\partial t} \exp\left[-i(\nu_{n}t + \phi_{n})\right] + E_{n}(t) \frac{\partial}{\partial t} \exp\left[-i(\nu_{n}t + \phi_{n})\right] \right\}$$

$$= \frac{1}{2} \sum_{n} U_{n}(z) \left\{ \dot{E}_{n}(t) \exp\left[-i(\nu_{n}t + \phi_{n})\right] - iE_{n}(t)(\nu_{n} + \dot{\phi}_{n}) \exp\left[-i(\nu_{n}t + \phi_{n})\right] \right\}.$$
(4.13)

Aplicando o operador (4.11) à equação (4.13), ficamos com

$$\frac{\exp\left[i(\nu_n t + \phi_n)\right]}{\mathcal{N}} \int_0^L dz \, U_n^*(z) \, \frac{\partial E}{\partial t} = \frac{1}{2} \sum_n \left[\dot{E}_n(t) - i(\nu_n + \dot{\phi}_n) E_n(t)\right] \quad (4.14)$$

A derivada segunda de E em relação ao tempo é dada por

$$\frac{\partial^2 E}{\partial t^2} = \frac{1}{2} \sum_n U_n(z) \left\{ \ddot{E}_n(t) \exp\left[-i(\nu_n t + \phi_n)\right] - 2i(\nu_n + \dot{\phi}_n)\dot{E}_n(t) \exp\left[-i(\nu_n t + \phi_n)\right] - iE_n(t)\ddot{\phi}_n \exp\left[-i(\nu_n t + \phi_n)\right] - iE_n(t)\dot{\phi}_n \exp\left[-i(\nu_n t + \phi_n)\right]$$

$$-(\nu_n+\dot{\phi}_n)^2 E_n(t) \exp\left[-i(\nu_n t+\phi_n)\right]\Big\}$$

Aplicando o operador (4.11) à equação anterior:

$$\frac{\exp\left[i(\nu_n t + \phi_n)\right]}{\mathcal{N}} \int_0^L dz \, U_n^*(z) \, \frac{\partial^2 E}{\partial t^2} =$$

$$= \frac{1}{2} \sum_{n} \left\{ \ddot{E}_{n}(t) - 2i(\nu_{n} + \dot{\phi}_{n})\dot{E}_{n}(t) - i\ddot{\phi}_{n}E_{n}(t) - (\nu_{n} + \dot{\phi}_{n})^{2}E_{n}(t) \right\} \quad (4.15)$$

Finalmente, o termo dependente da polarização:

$$\frac{\partial^2 P}{\partial t^2} = \frac{1}{2} \sum_n U_n(z) \left\{ \ddot{P}_n(t) \exp\left[-i(\nu_n t + \phi_n)\right] - \right\}$$

$$-2i(\nu_n + \dot{\phi}_n)\dot{P}_n(t)\exp\left[-i(\nu_n t + \phi_n)\right] - iP_n(t)\ddot{\phi}_n\exp\left[-i(\nu_n t + \phi_n)\right] - iP_n(t)\dot{\phi}_n\exp\left[-i(\nu_n t + \phi_n)\right] - iP_n(t)\dot{\phi}_n\exp\left$$

$$-(\nu_n+\dot{\phi}_n)^2 P_n(t) \exp\left[-i(\nu_n t+\phi_n)\right]\Big\}$$

Aplicando o operador (4.11),

$$\frac{\exp\left[i(\nu_{n}t+\phi_{n})\right]}{\mathcal{N}}\int_{0}^{L}dz \,U_{n}^{*}(z)\,\frac{\partial^{2}P}{\partial t^{2}} = \\ = \frac{1}{2}\sum_{n}\left\{\ddot{P}_{n}(t) - 2i(\nu_{n}+\dot{\phi}_{n})\dot{P}_{n}(t) - i\ddot{\phi}_{n}P_{n}(t) - (\nu_{n}+\dot{\phi}_{n})^{2}P_{n}(t)\right\} \quad (4.16)$$

Colocando, agora, as equações
$$(4.12)$$
, (4.14) , (4.15) e (4.16) em ordem,

de acordo com a equação (4.7), temos

$$\frac{1}{2}\sum_{n}E_{n}k_{n}^{2}+\mu_{0}\sigma\frac{1}{2}\sum_{n}\left[\dot{E}_{n}(t)-i(\nu_{n}+\dot{\phi}_{n})E_{n}(t)\right]+$$

$$+\mu_0\varepsilon_0 \frac{1}{2}\sum_n \left\{ \ddot{E}_n(t) - 2i(\nu_n + \dot{\phi}_n)\dot{E}_n(t) - i\ddot{\phi}_n E_n(t) - (\nu_n + \dot{\phi}_n)^2 E_n(t) \right\} =$$

$$= -\mu_o \frac{1}{2} \sum_n \left\{ \ddot{P}_n(t) - 2i(\nu_n + \dot{\phi}_n)\dot{P}_n(t) - i\ddot{\phi}_n P_n(t) - (\nu_n + \dot{\phi}_n)^2 P_n(t) \right\}$$

Ou ainda

$$E_{n}k_{n}^{2} + \mu_{0}\sigma \left[\dot{E}_{n} - i(\nu_{n} + \dot{\phi}_{n})E_{n}\right] + \mu_{0}\varepsilon_{0} \left\{\ddot{E}_{n} - 2i(\nu_{n} + \dot{\phi}_{n})\dot{E}_{n} - i\ddot{\phi}_{n}E_{n} - (\nu_{n} + \dot{\phi}_{n})^{2}E_{n}\right\} = -\mu_{o} \left\{\ddot{P}_{n} - 2i(\nu_{n} + \dot{\phi}_{n})\dot{P}_{n} - i\ddot{\phi}_{n}P_{n} - (\nu_{n} + \dot{\phi}_{n})^{2}P_{n}\right\}$$
(4.17)

Como E_n , $\phi_n \in P_n$ variam pouco num período de oscilação do campo (considerando-se freqüências em torno da região visível) e as perdas são pequenas, podemos desprezar os termos \ddot{E}_n , $\ddot{\phi}_n$, \ddot{P}_n , $\ddot{E}_n\dot{\phi}_n$, $\sigma \dot{E}_n$, $\sigma \dot{\phi}_n$, $\dot{\phi}_n P_n$ e \dot{P}_n frente aos outros. Mais precisamente, estamos tomando

$$\left|\frac{\partial f}{\partial t}\right| \ll \nu f$$
 e $\left|\frac{\partial^2 f}{\partial t^2}\right| \ll \nu \left|\frac{\partial f}{\partial t}\right|,$

onde f pode ser E_n , ϕ_n ou P_n . Com isso, obtemos

$$E_n k_n^2 - i\mu_0 \sigma \nu_n E_n - 2i \frac{\nu_n}{c^2} \dot{E}_n - \frac{\nu_n^2}{c^2} E_n = \mu_0 \nu_n^2 P_n.$$
(4.18)

O fator de qualidade Q de uma cavidade para o modo n é definido como

$$Q = \frac{\nu_n}{\beta}$$
$$= \frac{\nu_n}{\frac{1}{E_n^2} \frac{dE_n^2}{dt^2}} = \frac{\nu_n}{\frac{1}{\tau_c}}$$
(4.19)

onde β é a fração da energia armazenada dissipada por unidade de tempo, e τ_c é o tempo de vida do modo n. Por outro lado, $\tau_c = \varepsilon_0/\sigma$, de modo que

$$\sigma = \frac{\varepsilon_0 \nu_n}{Q} \,. \tag{4.20}$$

Multiplicando a equação (4.18) por c^2 , ficamos com

$$c^{2}E_{n}k_{n}^{2} - i\mu_{0}c^{2}\sigma\nu_{n}E_{n} - 2i\nu_{n}\dot{E}_{n} - v_{n}^{2}E_{n} = \mu_{0}\nu_{n}^{2}c^{2}P_{n}$$

Lembrando que $\omega_n = k_n c$ e que $c = 1/\sqrt{\varepsilon_0 \mu_0}$, temos

$$E_n \omega_n^2 - \frac{i\sigma\nu_n E_n}{\varepsilon_0} - 2i\nu_n \dot{E}_n - v_n^2 E_n = \frac{v_n^2 P_n}{\varepsilon_0}.$$

Substituindo a equação (4.20):

$$\left(\omega_n^2 - \nu_n^2\right) E_n - \frac{i\nu_n^2 E_n}{Q} - 2i\nu_n \dot{E}_n = \frac{\nu_n^2 P_n}{\varepsilon_0}$$

Usando a aproximação $(\omega_n^2 - \nu_n^2) \approx 2\nu_n(\omega_n - \nu_n)$, chegamos a:

$$-\frac{i\nu_n}{Q}E_n - 2i\dot{E}_n + 2(\omega_n - \nu_n)E_n = \frac{\nu_n}{\epsilon_0}P_n, \qquad (4.21)$$

Tomando a parte imaginária da equação (4.21) e usando a equação (4.19), chegamos a uma equação para o campo

$$\dot{E}_n + \frac{1}{2}\gamma_c E_n = -\frac{\nu_n}{2\varepsilon_0} Im(P_n), \qquad (4.22)$$

onde $\gamma_c = (1/\tau_c)$ é a taxa de decaimento da radiação. A parte real da equação (4.21) contém a contribuição da parte real de P_n , a qual está em fase com o campo elétrico E_n e descreve os efeitos de dispersão devido ao meio.

4.2 Polarização do Meio Alargado Homogeneamente

Consideremos um meio formado por átomos de dois níveis, alargados homogeneamente, cuja freqüência de transição entre os níveis superior, $|a\rangle$, e inferior, $|b\rangle$, é dada por ω . Um átomo excitado para o estado $|i\rangle$ (i = a ou b), no instante t_0 , na posição z, será descrito pelo operador densidade

$$\rho(i, z, t_0, t).$$
(4.23)

O número de átomos excitados para o estado $|i\rangle$ por unidade de tempo e volume é dado por $\lambda_i(z, t_0)$. As taxas de decaimento dos níveis $|a\rangle \in |b\rangle$ são dadas pelas constantes $\gamma_a \in \gamma_b$. A taxa de decaimento do elemento de matriz ρ_{ab} é dada por γ_{\perp} .

Se tivéssemos uma amostra com N átomos idênticos por unidade de volume, a polarização macroscópica deste meio seria dada por

$$P = N \langle ex \rangle = N \operatorname{Tr}(\rho x) = N \operatorname{Tr}\left\{\rho \begin{pmatrix} 0 & \mu \\ \mu & 0 \end{pmatrix}\right\},$$

pois a representação de ex no espaço formado por $|a\rangle \in |b\rangle$ é

$$e\langle a|x|a\rangle = e\langle b|x|b\rangle = 0$$
 e $e\langle a|x|b\rangle = e\langle b|x|a\rangle = \mu$,

devido à paridade de $|a\rangle$, de $|b\rangle$ e do operador x. Segue, assim, que P seria dada por

$$P = N\mu\rho_{ab} + c.c.$$

No nosso caso, o meio não é formado por átomos idênticos (cf. (4.23)) e, portanto, a polarização macroscópica P(z,t), equação (4.10), é dada pela contribuição de todos os átomos em z e t independentemente de seus estados iniciais e momento de excitação, ou seja,

$$P(z,t) = \sum_{i} \int_{-\infty}^{t} dt_0 \,\lambda_i(z,t_0) \langle ex \rangle$$

= $\mu \sum_{i} \int_{-\infty}^{t} dt_0 \,\lambda_i(z,t_0) \rho_{ab}(i,z,t_0,t) + c.c..$ (4.24)

A polarização complexa P_n , que aparece na equação do modo n do campo, é dada, conforme a equação (4.10), por

$$P_n = \frac{2 \exp\left[i(\nu_n t + \phi_n)\right]}{\mathcal{N}} \int_0^L dz \, U_n^*(z) P(z, t).$$
(4.25)

Substituindo (4.24) em (4.25), ficamos com

Capítulo 4. Laser a Fibra com Cavidades Acopladas

$$P_{n} = 2\mu \exp\left[i(\nu_{n}t + \phi_{n})\right] \frac{1}{\mathcal{N}} \int_{0}^{L} dz \, U_{n}^{*}(z) \sum_{i} \int_{0}^{L} dt_{0} \,\lambda_{i}(z, t_{0}) \rho_{ab}(i, z, t_{0}, t).$$

$$(4.26)$$

As equações de movimento do operador densidade de um único átomo $\rho_{ab}(i, z, t_0, t)$ são bem conhecidas e dadas por

$$\dot{\rho}_{aa} = -\gamma_a \,\rho_{aa} - \frac{i}{\hbar} [\nu_{ab}\rho_{ba} - c.c.] \tag{4.27}$$

$$\dot{\rho}_{bb} = -\gamma_b \,\rho_{bb} + \frac{i}{\hbar} [\nu_{ab}\rho_{ba} - c.c.] \tag{4.28}$$

$$\dot{\rho}_{ab} = -\left(i\omega + \gamma_{\perp}\right)\rho_{ab} + \frac{i}{\hbar}\nu_{ab}(\rho_{aa} - \rho_{bb}),\tag{4.29}$$

onde

$$\nu_{ab} = -\frac{1}{2}\mu E_n(t) \exp\left[-i(\nu_n t + \phi_n)\right] U_n(z)$$
(4.30)

é a energia de perturbação para um campo de um único modo na aproximação de onda girante.

Para obtermos a polarização complexa P_n , vamos integrar a equação de movimento do operador população, definido como

$$\rho(z,t) = \sum_{i} \int_{-\infty}^{t} dt_0 \,\lambda_i(z,t_0) \rho(i,z,t_0,t).$$
(4.31)

Observamos que $\rho_{aa}(z,t)$ e $\rho_{bb}(z,t)$ fornecem as populações dos níveis a e b conforme as definições (4.23) e (4.31). A equação de movimento de $\rho(z,t)$ é obtida derivando-se a equação (4.31) em relação a t. Notamos que há duas dependências em t: a do limite superior da integral em t_0 e a do operador densidade. O resultado é

$$\frac{d}{dt}\rho(z,t) = \sum_{i} \lambda_{i}(z,t)\,\rho(i,z,t,t) + \sum_{i} \int_{-\infty}^{t} dt_{0}\,\lambda_{i}(z,t_{0})\,\dot{\rho}(i,z,t_{0},t). \quad (4.32)$$

Por definição, os elementos de matriz do operador densidade são

$$\rho_{km}(i,z,t,t) = \delta_{ik}\,\delta_{im},$$

e o primeiro termo da equação (4.32) pode ser substituído pelo seguinte operador (dado em representação matricial)

$$\left(\begin{array}{cc} \lambda_b & 0\\ 0 & \lambda_b \end{array}\right)$$

Os elementos de matriz do segundo termo do lado direito da equação (4.32)são dados por

$$\langle k | \sum_{i} \int_{-\infty}^{t} dt_0 \,\lambda_i \,\dot{\rho}(i, z, t_0, t) | m \rangle = \sum_{i} \int_{-\infty}^{t} dt_0 \,\lambda_i \,\dot{\rho}_{km}(i, z, t_0, t), \qquad (4.33)$$

onde $\dot{\rho}_{km}(i, z, t_0, t)$ corresponde às equações (4.27), (4.28) e (4.29). Como $\gamma_a, \gamma_b, \gamma_{\perp}, \omega \in \nu_{ab}$ independem do estado inicial $|i\rangle$, para o qual o átomo foi excitado, assim como do instante de excitação t_0 , temos que os elementos de matriz da equação (4.33) são regidos por equações de movimento idênticas às (4.27), (4.28) e (4.29). Assim, a equação (4.32) corresponde ao seguinte conjunto de equações para as correspondentes do operador população:

$$\dot{\rho}_{aa} = \lambda_a - \gamma_a \,\rho_{aa} - \frac{i}{\hbar} [\nu_{ab}\rho_{ba} - c.c.] \tag{4.34}$$

$$\dot{\rho}_{bb} = \lambda_b - \gamma_b \,\rho_{bb} + \frac{i}{\hbar} [\nu_{ab}\rho_{ba} - c.c.] \tag{4.35}$$

$$\dot{\rho}_{ab} = -\left(i\omega + \gamma_{\perp}\right)\rho_{ab} + \frac{i}{\hbar}\nu_{ab}(\rho_{aa} - \rho_{bb}). \tag{4.36}$$

Em termos de $\rho(z,t)$, a polarização complexa P_n (4.26) é dada por

$$P_n = 2 \exp\left[i(\nu_n t + \phi_n)\right] \frac{1}{N} \int_0^L dz \, U_n^*(z) \, \mu \, \rho_{ab}(z, t). \tag{4.37}$$

O elemento $\rho_{ab}(z,t)$ é obtido pela integral da equação (4.36):

$$\rho_{ab}(z,t) = \frac{i}{\hbar} \int_{-\infty}^{t} dt \, \exp\left[-(i\omega + \gamma_{\perp})(t-t')\right] \nu_{ab}(z,t') \left[\rho_{aa}(z,t') - \rho_{bb}(z,t')\right].$$

A integração acima pode ser facilmente realizada no limite em que a amplitude E_n (ver eq.(4.30)), a fase ϕ_n e a diferença de população $\rho_{aa} - \rho_{bb}$ não variem apreciavelmente num intervalo de tempo $1/\gamma_{\perp}$. Com isso, estes termos podem ser substituídos pelos seus valores em t e retirados da integral. Essa aproximação corresponde à eliminação adiabática de ρ_{ab} e leva às equações de taxa para as populações atômicas. Com estas aproximações, e substituindo a equação (4.30), chegamos a

$$\rho_{ab}(z,t) = -\frac{1}{2} \frac{i\mu}{\hbar} E_n \exp\left[-i(\nu_n t + \phi_n)\right] U_n(z) \left[\frac{\rho_{aa} - \rho_{bb}}{i(\omega - \nu_n) + \gamma_\perp}\right].$$
 (4.38)

Substituindo a equação (4.38) na (4.37) e recordando a definição da constante de normalização \mathcal{N} , obtemos

$$P_{n} = 2 \exp\left[i(\nu_{n}t + \phi_{n})\right] \frac{1}{\mathcal{N}} \int_{0}^{L} dz \, U_{n}^{*}(z) \, \mu \times \\ \times \left\{-\frac{1}{2} \frac{i\mu}{\hbar} E_{n} \exp\left[-i(\nu_{n}t + \phi_{n})\right] U_{n}(z) \left[\frac{\rho_{aa} - \rho_{bb}}{i(\omega - \nu_{n}) + \gamma_{\perp}}\right]\right\} \\ = -\frac{i\mu^{2} E_{n}}{\hbar \mathcal{N}} \left[\frac{\rho_{aa} - \rho_{bb}}{i(\omega - \nu_{n}) + \gamma_{\perp}}\right] \int_{0}^{L} dz \, U_{n}^{*}(z) U_{n}(z) \\ = -\frac{i\mu^{2} E_{n}}{\hbar} \left[\frac{\rho_{aa} - \rho_{bb}}{i(\omega - \nu_{n}) + \gamma_{\perp}}\right]$$

$$= -\frac{\mu^2 E_n}{\hbar} (\rho_{aa} - \rho_{bb}) \left[\frac{i}{i(\omega - \nu_n) + \gamma_\perp} \right]$$
$$= -\frac{\mu^2 E_n}{\hbar} (\rho_{aa} - \rho_{bb}) \left[\frac{1}{(\omega - \nu_n) + i\gamma_\perp} \right]$$

Logo, chegamos à seguinte expressão:

$$P_{n} = -\frac{\mu^{2} E_{n}}{\hbar} (\rho_{aa} - \rho_{bb}) \frac{(\omega - \nu_{n} + i \gamma_{\perp})}{\gamma_{\perp}^{2} + (\omega - \nu_{n})^{2}}.$$
(4.39)

Para simplificar a notação, eliminaremos o índice n das componentes de Fourier do campo e da polarização, E_n e P_n , respectivamente. Quando necessário, recorreremos ao índice n com a devida observação. A inversão de população $(\rho_{aa} - \rho_{bb})$ chamaremos de n, e a dessintonia átomo-campo $(\omega - \nu_n)$ de $\Delta \omega$.

Substituindo a equação (4.39) na equação (4.22), obtemos a contribuição deste meio ao campo

$$\dot{E} + \frac{1}{2} \gamma_c E = -\frac{\nu}{2\varepsilon_0} Im(P)$$

$$= -\frac{\nu}{2\varepsilon_0} \left(-\frac{\mu^2}{\hbar} nE \frac{\gamma_\perp}{\Delta\omega^2 + \gamma_\perp^2} \right)$$

$$= \frac{\nu\mu^2}{2\hbar\varepsilon_0} nE \frac{1}{\gamma_\perp} \left(\frac{\gamma_\perp^2}{\Delta\omega^2 + \gamma_\perp^2} \right)$$

$$\dot{E} + \frac{1}{2} \gamma_c E = \frac{\mu^2 \nu}{2\hbar \gamma_\perp \varepsilon_0} \mathcal{L}(\Delta \omega) \, n \, E, \qquad (4.40)$$

onde chamamos ν_n de ν e $\mathcal{L}(\Delta \omega)$ é a Lorentziana definida como

$$\frac{\gamma_{\perp}^2}{\gamma_{\perp}^2 + \Delta\omega^2}.\tag{4.41}$$

Lembrando que a densidade de energia elétrica é dada por $\varepsilon_0 E^2/2$, a equação (4.40) em termos da intensidade *I* é obtida multiplicando-a por $c \varepsilon_0 E$. Logo

$$\dot{I} + \gamma_c I = \frac{\mu^2 \nu}{\hbar \gamma_\perp \varepsilon_0} \mathcal{L}(\Delta \omega) n I$$
$$= \alpha(\nu) n I,$$

onde

$$\alpha(\nu) = \frac{\mu^2 \nu}{\hbar \gamma_\perp \varepsilon_0} \mathcal{L}(\Delta \omega). \tag{4.42}$$

Em termos da densidade de fótons, $S = I/\hbar\nu c$, temos

$$\dot{S} + \gamma_c S = \alpha(\nu) \, nS. \tag{4.43}$$

As equações de taxa para este meio são obtidas substituindo-se a expansão de $\rho_{ab}(z, t)$, dada pela equação (4.38), nas equações (4.34) e (4.35). Isto leva a

$$\dot{\rho}_{aa} = \lambda_a - \gamma_a \rho_{aa} - R(\rho_{aa} - \rho_{bb}) \tag{4.44}$$

$$\dot{\rho}_{bb} = \lambda_b - \gamma_b \rho_{bb} + R(\rho_{aa} - \rho_{bb}), \qquad (4.45)$$

onde a constante R é igual a

$$R = \frac{1}{2} \frac{\mu^2 E^2}{\hbar^2 \gamma_\perp} |U_n|^2 \mathcal{L}(\Delta \omega).$$

Supondo $\gamma_a = \gamma_b = \gamma_{\parallel}$ e subtraindo a equação (4.45) da (4.44),

$$\dot{\rho}_{aa} - \dot{\rho}_{bb} = (\lambda_a - \lambda_b) - \gamma_{\parallel}(\rho_{aa} - \rho_{bb}) - 2Rn$$
$$= \gamma_{\parallel}n_0 - \gamma_{\parallel}n - 2Rn$$
$$= -\gamma_{\parallel}(n - n_0) - 2Rn,$$

ficamos com a equação para a inversão n:

$$\dot{n} = -\gamma_{\parallel}(n - n_0) - 2Rn, \tag{4.46}$$

onde

$$n_0 = \frac{1}{\gamma_{\parallel}} \left(\lambda_a - \lambda_b \right).$$

Observamos que na expressão de R aparece $|U_n(z)|^2 = sen^2(k_n z)$, conforme a equação (4.8). Consideramos aqui que os átomos do meio experimentam um valor médio da intensidade, ou seja, o termo $|U_n|^2$ pode ser substituído por seu valor médio, 1/2.

A expressão de R em termos da densidade de fótons é dada por

$$R = \frac{\mu^2 \nu}{2\hbar \varepsilon_0 \gamma_\perp} \mathcal{L}(\Delta \omega) S = \frac{\alpha(\nu)}{2} S.$$
(4.47)

Portanto, a equação de movimento da inversão se escreve

$$\dot{n} = -\gamma_{\parallel}(n - n_0) - \alpha(\nu)nS. \tag{4.48}$$

Com as equações (4.22) e (4.48) podemos, então, montar o conjunto de equações de taxa que descrevem a nossa montagem experimental.

4.3 Equações de Taxa

Nossa montagem é composta de duas cavidades acopladas onde, para cada uma, podemos atribuir um par de equações de taxa, na forma das equações (4.22) e (4.48), descrevendo o meio, o campo, as perdas e o bombeio. Portanto, o sistema completo será dado pelas equações

$$\dot{n}_1 = -\gamma_{\parallel}(n_1 - n_{01}) - \alpha n_1 \rho_1 \tag{4.49}$$

$$\dot{n}_2 = -\gamma_{\parallel}(n_2 - n_{02}) - \alpha \, n_2 \rho_2 \tag{4.50}$$

$$\dot{\rho}_1 = -\gamma_C \rho_1 + \gamma_C \rho_2 + \alpha n_1 \rho_1 \tag{4.51}$$

$$\dot{\rho}_2 = -\gamma_D \rho_2 - \gamma_C \rho_2 + \gamma_C \rho_1 + \alpha n_2 \rho_2, \qquad (4.52)$$

onde os índices 1 e 2 referem-se as cavidades C_1 e C_2 , respectivamente, de acordo com o esquema a seguir. O α é dado pela equação (4.42).

Figura 4.1: Esquema das cavidades acopladas.

As equações (4.49) - (4.52) formam um conjunto de equações que pretendemos usar para descrever a dinâmica (evolução temporal) do sistema. Elas foram obtidas dentro da abordagem semiclássica, na qual o campo é tratado como uma variável contínua (e não em termos de operadores de criação e aniquilação de fótons), e o meio material é tratado em termos do operador densidade associado aos níveis atômicos envolvidos. Dentro desta abordagem, usamos o modelo do átomo de dois níveis para descrever o meio atômico. Embora esse modelo seja o mais simples que existe, acreditamos que seja suficiente para descrever satisfatoriamente o meio material dentro desta abordagem. Quanto ao campo, além de ser considerado uma variável (e não um operador), utilizamos a aproximação de campo médio ao fazermos $sen^2(kz) = \frac{1}{2}$, pois acreditamos que a modulação espacial da intensidade não deva interferir substancialmente na evolução temporal do sistema. Cabe notar que a presença da cavidade neste nosso tratamento é representada, na seção 4.2, pela presença de um meio condutor (fictício), com condutividade σ , responsável pelas perdas do campo.

No apêndice A, apresentamos o programa fonte, desenvolvido na linguagem FORTRAN 77, para simular a evolução temporal do sistema, baseado nas equações de taxa (4.49) - (4.52). Este programa é uma versão preliminar, onde foi usada uma rotina básica (Rk4) para calcular os valores das grandezas no instante seguinte t + dt, a partir dos valores conhecidos no instante t. Essa rotina é baseada no método de Runge-Kutta de 4^a ordem, e foi retirada da ref. [46]. Na figura 4.2 é apresentado o resultado de uma simulação.

Figura 4.2: Gráfico esperado da simulação com a rotina Rk4.

Como as variáveis associadas às inversões de população passam pelo valor zero, ou seja, inicialmente, são negativas e, devido ao bombeio, tornamse positivas, a rotina Rk4 não está resolvendo satisfatoriamente o problema, e estamos tendo problema de convergência de valores, à medida que utilizamos o mecanismo controle de que a intensidade no interior da cavidade deve ser ≥ 0 . De qulquer forma, a figura 4.2 é um exemplo daquilo que esperamos obter, inclusive prevendo os valores de intensidade e do tempo de estabilização do laser. Nessa figura, as duas grandezas são representadas em termos de unidades "fictícias", visto que, para ajustar a convergência, os valores encontrados não têm ligação com a realidade experimental.