
João Antonio Dutra Marcondes Bastos

Promoting Conversational APIs: A Conceptual
Framework and a Method for API Design

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
August 2020

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

João Antonio Dutra Marcondes Bastos

Promoting Conversational APIs: A Conceptual
Framework and a Method for API Design

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática. Approved by the
Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Renato Fontoura de Gusmão Cerqueira
IBM Research Brazil – IBM

Prof. Gleison dos Santos Souza
Departamento de Informática Aplicada – UNIRIO

Prof. Rafael Maiani de Mello
Escola de Informática & Computação – CEFET-RJ

Rio de Janeiro, August 27th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

All rights reserved.

João Antonio Dutra Marcondes Bastos

Graduated in computer science at Universidade Federal de
Viçosa and Master in Informatics at Pontifícia Universidade
Católica do Rio de Janeiro.

Bibliographic data
Bastos, João Antonio Dutra Marcondes

Promoting Conversational APIs: A Conceptual Fra-
mework and a Method for API Design / João Antonio Dutra
Marcondes Bastos; advisor: Alessandro Fabricio Garcia. – Rio
de janeiro: PUC-Rio, Departamento de Informática, 2020.

v., 149 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Engenharia de software – Teses.
3. Interfaces de Programação de Aplicações;. 4. Método de
Design;. 5. API Conversacional;. 6. Engenharia Semiótica..
I. Fabricio Garcia, Alessandro. II. Pontifícia Universidade Ca-
tólica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

To my wife and mother for their unconditional support

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Acknowledgments

To my advisor Professor Alessandro Garcia for the stimulus and partnership for
this work. Thank you for believing in my work and for accepting the difficult
mission of concluding a doctoral work that was already underway.

To my first teacher counselor Clarisse de Souza and to my co-coordinator
Luiz Afonso for all the help and guidance in the initial part of the Doctorate.
By chance of fate we ended up not concluding the doctorate together, but
your help was fundamental for my success. Thanks also to Professor Renato
Cerqueira for the opportunity to carry out part of the research in the IBM
Research Brazil laboratory.

To all friends and research partners of OPUS and SERG groups. Thank you for
all your support throughout my Doctorate. Counting on such well aligned and
tuned groups helped a lot on the path to individual success. Thank you very
much to all of you who in various ways contributed to my work. In particular,
my thanks to Daniel Tenorio and Rafael Maiani who participated in an active
way dedicating much time to my Doctoral research. Thank you very much for
your valuable comments, suggestions and reviews.

To my mother, Miriam, and to my wife Erica, without whom I would not have
achieved success in this thesis. Thank you for all your support throughout this
journey. To my in-laws, Alcemir and Dione for their support and affection over
the past few years. To my brother Ernesto and his family. To my grandmother
Zica and my aunts Marlene and Neuza. To all my friends and family who have
supported me in this journey in various ways, thank you very much.

To CNPq (Process number 142344/2016-8) and PUC-Rio, for the grants
without which this work could not have been carried out.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Abstract

Bastos, João Antonio Dutra Marcondes; Fabricio Garcia, Alessan-
dro. Promoting Conversational APIs: A Conceptual Fra-
mework and a Method for API Design. Rio de Janeiro, 2020.
149p. Tese de doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

APIs (application programming interfaces) play a crucial role in software
development. Almost any programmer is often at the position of using third-
party APIs. Currently, we find several researches that seek to explore and
understand users’ interactions with the API from an usability point of view.
However, such studies leave out an important aspect of an API quality of use,
the communicability. Unlike usability, whose definition is associated with ease
of use and learning, communicability is associated with an artifact’s ability
to communicate its design logic. An API that lacks communicability can lead
users to misuse and produce bugs in their code. This doctoral thesis addresses
this problem from a Semiotic Engineering perspective. By characterizing an
API as a mediating artifact for communicability, we started our thesis with
the proposal that APIs should be conversational. We diagnosed in our first
study that users, in certain cases, have difficulty in understanding the internal
operating logic of an API just by looking at its interfaces. In this study, we
found that APIs often lack in communicability. While usability is about the
user’s ability to learn and use an API, communicability is about the API’s
ability to transfer the designer communication to the user, thus exposing its
design rationale. A conversational API is the one that can expose its internal
logic through its interfaces, attending the pragmatic contexts of its users.
From this study, we then set out to define what a conversational API is in
practice and to investigate what methods or technologies would be needed to
assist designers in creating such APIs. In this thesis, we propose a conceptual
framework and a method to support the design of conversational APIs. When
designing an API, the designer has in hands three different ways to send his
message to his user: the source code, the documentation, and the behavior
of the API. Our conceptual framework explores how to characterize and
classify a conversational API according to the three types of messages from the
designer’s perspective. Our method of supporting conversational API design,
which was inspired by the results and lessons learned from an action-research
we conducted, consists of three steps. The first step is to help the designer
on identifying who the API users are and their specific conversational needs.
In the second step, the method helps the designer on modeling possible API
conversations with the different mapped users to achieve their goals. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

the method provides a set of guidelines to guide the designer in defining the API
interfaces, including their parameterization. Using this method, we perform a
case study with an API design, which aims at supporting the refactoring of
Java programs. From the API designer’s point of view, the method helped him
on creating empathy with his users and better deriving and reflecting upon the
requirements and conversations that the API should provide to the different
user profiles.

Keywords
Application Programming Interfaces; Design Method; Conversational

API; Semiotic Engineering.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Resumo

Bastos, João Antonio Dutra Marcondes; Fabricio Garcia, Alessan-
dro. Promovendo APIs Conversacionais: Um Framework
Conceitual e um Método para o Design de APIs. Rio de
Janeiro, 2020. 149p. Tese de Doutorado – Departamento de Infor-
mática, Pontifícia Universidade Católica do Rio de Janeiro.

APIs (do inglês - application programming interfaces) desempenham um
papel crucial no desenvolvimento de software. Quase todos os programadores
estão frequentemente na posição de utilizar APIs de terceiros. Atualmente,
encontramos várias pesquisas que procuram explorar e compreender as inte-
rações dos usuários com a API do ponto de vista da usabilidade. No entanto,
tais estudos deixam de fora um aspecto importante da qualidade de uso de
uma API, a comunicabilidade. Ao contrário da usabilidade, cuja definição está
associada à facilidade de uso e aprendizagem, a comunicabilidade está asso-
ciada à capacidade de um artefato de comunicar sua lógica de projeto. Uma
API que carece de comunicabilidade pode levar os usuários ao uso indevido e
produzir bugs em seu código. Esta tese de doutorado aborda este problema a
partir de uma perspectiva de Engenharia Semiótica. Ao caracterizar uma API
como um artefato mediador da comunicabilidade, começamos nossa tese com
a proposta de que as APIs deveriam ser coloquiais. Diagnosticamos em nosso
primeiro estudo que os usuários, em certos casos, têm dificuldade em compre-
ender a lógica interna de funcionamento de um API apenas olhando para suas
interfaces. Neste estudo, descobrimos que as APIs muitas vezes carecem de
comunicabilidade. Enquanto a usabilidade é sobre a capacidade do usuário de
aprender e usar uma API, a comunicabilidade é sobre a capacidade da API
de transferir a comunicação do projetista para o usuário, expondo assim sua
lógica de projeto. Uma API conversacional é aquela que pode expor sua lógica
interna através de suas interfaces, atendendo aos contextos pragmáticos de seus
usuários. A partir deste estudo, nós nos propusemos então a definir o que é
uma API conversacional na prática e a investigar quais métodos ou tecnologias
seriam necessários para auxiliar os projetistas na criação de tais APIs. Nesta
tese, propomos uma estrutura conceitual e um método para apoiar o projeto
de APIs de conversação. Ao projetar uma API, o projetista tem em mãos três
maneiras diferentes de enviar sua mensagem ao seu usuário: o código fonte,
a documentação e o comportamento da API. Nossa estrutura conceitual ex-
plora como caracterizar e classificar uma API de conversação de acordo com os
três tipos de mensagens da perspectiva do projetista. Nosso método de apoio
ao projeto da API de conversação, que foi inspirado nos resultados e lições
aprendidas de uma pesquisa-ação que realizamos, consiste em três etapas. O

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

primeiro passo é ajudar o projetista a identificar quem são os usuários da API
e suas necessidades de conversação específicas. Na segunda etapa, o método
ajuda o projetista na modelagem de possíveis conversas de API com os dife-
rentes usuários mapeados para atingir seus objetivos. Finalmente, o método
fornece um conjunto de diretrizes para guiar o projetista na definição das in-
terfaces API, incluindo sua parametrização. Usando este método, realizamos
um estudo de caso com um projeto de API, que visa apoiar a refatoração de
programas Java. Do ponto de vista do projetista da API, o método o ajudou a
criar empatia com seus usuários e a melhor derivar e refletir sobre os requisitos
e conversas que a API deve fornecer aos diferentes perfis de usuários.

Palavras-chave
Interfaces de Programação de Aplicações; Método de Design; API

Conversacional; Engenharia Semiótica.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Table of contents

1 Introduction 16
1.1 Problem Statement and Related Work Limitations 20
1.2 Main Contributions 23
1.3 Thesis Outline 25

2 API as Conversation Mediator Artifact 27
2.1 Introduction 28
2.2 Related Work 31
2.3 A Semiotically-Based Research Study 32
2.3.1 Semiotic Engineering and SigniFYIng APIs 32
2.3.2 Methodology 35
2.4 Results 37
2.4.1 Interview 38
2.4.2 SigniFYIng APIs 40
2.5 Discussion 42
2.5.1 SigniFYIng APIs and Interview Data 42
2.5.2 Evolution of the API, from Java 7 to Java 8 44
2.5.3 Implications 45
2.5.4 Threats to Validity 45
2.6 Conclusion and Future Work 46
2.7 Summary of Chapter 2 46

3 A Conceptual Framework for Conversational APIs 48
3.1 Introduction 50
3.2 Theoretical Basis 51
3.2.1 Semiotic Engineering 52
3.2.2 Abductive Reasoning and Semiosis 54
3.2.3 Conversational Interface 56
3.3 Introducing Conversations in APIs 56
3.3.1 Syntax, Semantics and Pragmatics 57
3.3.2 Conversational API 59
3.3.2.1 Principle of Cooperation 59
3.3.2.2 Customization 60
3.4 Conceptual Framework 61
3.4.1 API Signs 61
3.4.2 Conversational API Levels 63
3.4.2.1 Rudimentary Conversational APIs 63
3.4.2.2 Metalinguistic Conversational APIs 64
3.4.2.3 Fully Conversational APIs 64
3.5 Evaluation of the conceptual framework 65
3.5.1 Date and Time APIs Classification 65
3.5.1.1 API Calendar - Java 7 - Rudimentary Conversational API 66
3.5.1.2 API DateTime - Java 8 - Metalinguistic Conversational API 67
3.5.1.3 Fully Conversational APIs 68

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

3.5.2 Refactoring API Classification 70
3.5.2.1 Refactoring API - Metalinguistic Conversational API 71
3.5.2.2 Refactoring API - Fully Conversational API 71
3.5.3 Machine Learning API Classification 72
3.5.3.1 Machine Learning API - Metalinguistic Conversational API 72
3.5.3.2 Machine Learning API - Fully Conversational API 73
3.6 Discussion 74
3.7 Related Work 75
3.8 Conclusion and Future Work 75
3.9 Summary of Chapter 3 76

4 On the Support for Designing a Conversational Software API: An Action
Research Study 77

4.1 Introduction 78
4.2 Theoretical Background 80
4.3 The Action Research 82
4.3.1 Research Objectives 82
4.3.2 Research Context 83
4.3.3 Execution 84
4.3.4 The Action Research Cycles 84
4.3.4.1 First Cycle 85
4.3.4.2 Second Cycle 86
4.3.4.3 Third Cycle 87
4.4 Lessons Learnt 88
4.4.1 Who are the Users 88
4.4.1.1 Challenge: Making Designers Aware of the Users’ Needs 88
4.4.1.2 Solution: to Adopt Consolidated HCI Techniques 88
4.4.1.3 Lesson Learnt: API Designers Have Difficulties on Establishing

Personas and Scenarios 89
4.4.2 How to Model the API Conversations 92
4.4.2.1 Challenge: to Help Designers to Model API Conversations 92
4.4.2.2 Solution: Use MoLIC to Think About API Dialogues 92
4.4.2.3 Lesson Learnt: MoLIC Should be Adapted 92
4.4.3 How to Implement the API Interfaces 95
4.4.3.1 Challenge: to Help Designers on Choosing the Appropriate Signs

for API Interfaces 95
4.4.3.2 Solution: A Set of Guidelines to Structuring the API Interfaces 95
4.4.3.3 Lesson Learnt: We Need More than Just Guidelines 97
4.5 Follow-up and Discussion 97
4.6 Related Work 99
4.7 Limitations and Threats to Validity 100
4.8 Conclusion and Future Work 100
4.9 Summary of Chapter 4 101

5 Colloquy: A Method for Conversational API Design 102
5.1 Introduction 103
5.2 Theoretical Background 106
5.2.1 Semiotic Engineering 107
5.2.2 Conversational API 108

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

5.3 Related Work 109
5.4 Colloquy 110
5.4.1 Personas and Interaction Scenarios 111
5.4.1.1 Personas 112
5.4.1.2 Interaction Scenarios 112
5.4.1.3 Guidelines for the Characterization of APIs Personas and Interaction

Scenarios 112
5.4.2 Conversation Modeling 113
5.4.2.1 MoLIC4API 114
5.4.3 Interfaces Implementation 115
5.4.3.1 Recommendations for Composing Source Code from MoLIC4API

Diagrams 116
5.4.3.2 Naming and Structuring Guidelines 117
5.5 Study Design 118
5.5.1 Goal and Research Questions 118
5.5.2 API Context 119
5.5.3 Data Sources 119
5.5.4 Data Analysis Procedures 120
5.5.5 Phases of the Study Execution 120
5.5.5.1 Phase 1 - API Design Following Another Method 120
5.5.5.2 Phase 2 - API Design Following Colloquy 121
5.6 Results 122
5.6.1 Personas and Interaction Scenarios Created 122
5.6.1.1 Persona 1: John - Expert Software Engineer 122
5.6.1.2 Persona 2: Philip - Experienced Freelance Programmer 122
5.6.1.3 Persona 3: Katarina - Inexperienced Programmer 123
5.6.1.4 Discussion about Personas and Interaction Scenarios 123
5.6.2 Diagrams 124
5.6.3 API Interfaces 124
5.6.4 Improvements After Using Colloquy 126
5.6.5 Interface Conversations Aspects 127
5.7 Discussion 128
5.7.1 Colloquy Method Benefits 129
5.7.2 Colloquy Drawbacks 130
5.7.3 Threats to Validity 131
5.7.4 Colloquy and the Software Development Process 132
5.8 Conclusion 133
5.9 Summary of Chapter 5 133

6 Conclusion 135
6.1 Overall Studies Reflection and Threats to Validity 137
6.2 Future Work 138

A Colloquy Execution Example 140
A.1 Personas and Interaction Scenarios 140
A.2 Conversation Modeling 141
A.3 Interfaces Implementation 142

Bibliography 144

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

List of figures

Figure 1.1 API with Insufficient Conversations - Java 7 Calendar API 19
Figure 1.2 API with Insufficient Conversations - Google Maps API 20

Figure 2.1 Cognitive View vs Communicative View 33
Figure 2.2 SigniFYIng APIs Steps 34
Figure 2.3 Metodology 35

Figure 3.1 Semiotic Engineering and Metacommunication 53
Figure 3.2 Abdutive Reasoning and Semiosis - Example with Java

7 Calendar API 55

Figure 4.1 Semiotic Engineering and Metacommunication 81
Figure 4.2 The Action Research Cycles 84
Figure 4.3 MoLIC and Adaptations - DL API Modelling 94

Figure 5.1 Two Alternatives to Extract Method Refactoring 105
Figure 5.2 Metacommunication Process 107
Figure 5.3 Colloquy Steps 111
Figure 5.4 Example of MoLIC4API modeling 115
Figure 5.5 Modeling the Refactoring API Interaction 124

Figure A.1 Modeling the Date and Time API Conversations 142

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

List of tables

Table 2.1 Part of Table Presented to Participants 36
Table 2.2 Participants Results 38

Table 4.1 API Metacommunication Template 90
Table 4.2 Persona 1 - Machine Learning Expert 91
Table 4.3 Persona 2 - Geologist 91

Table 5.1 API Metacommunication Template 113

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

The task must be made difficult, for only the
difficult inspires the noble-hearted.

Søren Kierkegaard, The essential Kierkegaard.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

1
Introduction

With increasingly complex and extensive software, several techniques had
to be deployed over time. Among them, code modularization and reuse (39).
Most programming languages have a wide variety of code packages ready to
be used for various purposes. Other programmers can reuse these code packs
through interfaces that display what operations are available. These types of
interfaces, which encapsulate and abstract the internal content of a reusable
code package, are called APIs (Application Programming Interfaces).

An API can be defined as a contract, with documentation representing
an agreement between the interested parties. If one of these parties sends a
remote request structured in a specific way, this will determine how the other
party’s software will respond, e.g., Web Services APIs. Moreover, an API can
also be seen as a layer of abstraction and definition about a code package’s
internal behavior, such as APIs that define interface standards for different
implementations, for example, Java and Android standard APIs. However, the
research we developed in this Ph.D. thesis is agnostic to these definitions. For
whatever it is, from the point of view we study here, an API will be a layer of
abstraction and encapsulation of an internal behavior of a particular block of
code that other programmers will use.

APIs play a vital role in improving software productivity and quality. For
example, if a programmer needs to perform common operations on date and
time objects, he can use some well-established API to perform such operations.
The cost and time of software development are positively impacted by using
APIs, as it prevents programmers from having to recreate programming
routines that are already well defined and tested (16). The use of APIs also
enhances software reliability as they are often code packages widely tested by a
large community of programmers. These characteristics make the use of APIs
common in the life of every programmer.

There is a wide variety of APIs for several purposes across various
programming environments. Despite their relevance to software development,
using and learning APIs still represent significant challenges. As a result, there
is a growing number of forums and websites to discuss and ask questions
about APIs. Usually, programmers can find on the internet numerous examples

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 17

and explanations about usage scenarios of popular APIs. In many of these
discussions and examples, we can find a fair amount of misinterpretation about
what an API does and how it should be used1,2. When some of these issues
become recurrent, it usually indicates that the API’s design was inappropriate.
Moreover, these designs should have been better guided along its early design.
The lack for proper support for API design requires additional designers’ effort
later in order to make the API use and learning by programmers more effective.
Therefore, investigating the phenomena involving the interaction between
programmers and APIs is relevant in the context of software development
(21).

Recently, we have noticed an increasing demand for API development,
especially when it comes to supporting the execution of complex activities
(9). Consequently, the need to properly design APIs increases. Due to the
complexity of the tasks they perform, we have observed an increasing use of
APIs to support artificial intelligence. There are various complicating factors
on the design of such APIs. Although API designers can expect professionals
in the field of artificial intelligence to have some computer skills, they cannot
expect from these professionals extensive knowledge and experience in software
development. Therefore, the APIs used by these professionals should provide
adequate interfaces to abstract the complexity of their programming tasks
(8). Besides, API users should be able to understand the design rationale
behind API interfaces in order to use them correctly. For instance, an Artificial
Intelligence API sometimes omits the design rationale on some aspects of model
training, such as why some hyper-parameters are set by default.

However, designing an API that explains the design rationale of who
created it is not a trivial task. One way to accomplish this task is through
the creation of conversational APIs (3). The notion of conversational APIs,
characterized in this thesis, contains potential pre-established dialogues for
the API to have with its users. The lack of explicitly defined conversational
resources hinders the API users in understanding how to properly use their
interfaces (3). In chapter 2, we demonstrated through a study with date and
time APIs in Java how harmful it could be the use of an API that lacks in
conversations. Although "conversational" is a widely used characteristic in the
field of artificial intelligence to address chatbots and other types of interfaces.
In this thesis, we treat "conversational" as a characteristic of interaction based
on conversation, which was not necessarily created by artificial intelligence but
pre-established by the artifact’s designer.

1http://stackoverflow.com/questions/1755199
2http://stackoverflow.com/questions/14618608/

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 18

When creating an API, the designer sets in the code his beliefs and values
regarding the operation that the API will perform. His design rationale is then
established and needs to be made explicit through the API interfaces. In cases
where this design rationale can be controversial, it is even more critical the
conversational nature of an API. Whenever a design decision on a particular
operation may be in disagreement with the users’ understanding, the API needs
to use conversational means to explain the design rationale and, consequently,
the decision made for that operation. These issues are important for both
simple and complex APIs. Even simple APIs such as those operating on date
and time can have many controversial operations. Complex APIs, such as
refactoring APIs present in many IDEs, can also benefit from conversationality
to improve user understanding (38).

A example of lack of conversation extracted from this link3 can be seen
on the figure 1.1. In this example, a user reports an issue addressing the result
of the operation of adding a month to January 31 (see Figure 1.1 - area 1 in
red). Among the several answers provided by the other users, we observed that
several users misinterpreted the API’s logic. For instance, one of the answers
to this issue argue that adding one-month is the same that adding add 30 days
in the API, which would explain the unexpected result (see Figure 1.1 - area
2 in red).

The case reported above does not address difficulties for using the
interface, but it exemplifies the poor communication between the API designer
and the APIs user on how to properly using the interface to support the users’
needs. The users know how to call the API operation, set parameters, and
which data should be passed. However, it is noted that users do not understand
the API’s internal operating logic, based on inappropriate assumptions about
its use. Once they are convinced that they know how to use the interface, they
will not resort to its original documentation. For them, they will consider the
interface has some bug as it did not work as they expected. Although the design
rationale is present in the documentation, the lack of an explicit conversation
in the interface leads to the misunderstanding.

In figure 1.2, we can see another real example of an API with insufficient
conversational capabilities extracted from this link4. In this example, a user of
the Google Maps Geolocation API reports a failure to calculate the distance
between two locations. The user of the API claims that he is requesting the
result of the distance calculation in miles (see Figure 1.2 - area 1 in red).
However, the answer provided by the API is always with the distance calculated

3https://stackoverflow.com/questions/14618608
4https://issuetracker.google.com/issues/35829619

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 19

Figure 1.1: API with Insufficient Conversations - Java 7 Calendar API

in meters. Surprisingly, the API designer has re-classified this bug to expected
behavior by transcribing the following excerpt from the API documentation:
"Note: this unit system setting only affects the text displayed within distance
fields. The distance fields also contain values which are always expressed in
meters" (see Figure 1.2 - area 2 in red).

Misunderstandings between API designers and users are common. The
example described above illustrates how the geolocation API is unable to get
users to understand its design rationale. Unfortunately, the documentation is
often perceived by designers as sufficient and mandatory to support the proper
use of API interfaces. However, issues like this can be avoided by improving
the APIs conversational capabilities. For instance, if the API designer added
an extra field in the response with an explanation or a warning about this
behavior, the user would pay attention to this fact, and the problem might
not occur. As we saw in the examples above, sometimes it is not possible to
make users and designers understand each other about the expected results of
some operations. However, we can make the API interface, through pre-made
conversations, expose the design logic and what result is expected from each
operation.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 20

Figure 1.2: API with Insufficient Conversations - Google Maps API

1.1
Problem Statement and Related Work Limitations

As we saw in the previous section, a lot still needs to be studied about
the APIs quality of use. In this section, we discuss the studies we found in
the literature and show the problems that are still open in this area. Since
the 1980s, researchers have been discussing the best ways to design APIs (30).
The work of McLellan et al. (26), in 1998, is one of the first studies to gain
importance in addressing APIs’ usability, that is, the simplicity and ease of
use of an API. The study relied on techniques commonly adopted in Human-
Computer Interaction (HCI), such as interviews, usage scenarios, recordings,
and others. The results of this study describe how code snippets can influence
programmers when using software interfaces, making programmers rely on code
snippets that contain errors and leading to misunderstandings on how to use
an API effectively. This work has influenced many researchers to investigate
APIs’ use and design in a more human-centered way.

Several of these researchers have successfully tested HCI theories in
APIs usability, where the programmer assumes the role of the software user.
Studies carried out so far have used cognition-based theories, heuristic analysis,
interviews, and questionnaires typically aimed at evaluating the usability
of APIs (10, 41, 50). Farooq and Zirkler describe a group-based usability

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 21

inspection method to evaluate the usability of APIs, the API Peer Reviews
(17). They contrast their method with usability tests, arguing that they can be
used together and complement each other. According to the authors, despite
identifying less usability defects than a usability testing, API Peer Reviews
has a lower cost and execution time, thus making it useful for early usability
assessment of APIs. In all of these initiatives, the focus of interest is what
happens to the user-programmer interaction trough the API. They do not
address the problem of misunderstandings between users and designers.

In this thesis, we look at the quality of use of an API through another
aspect, the communicability. Unlike usability, whose definition is centered
almost exclusively on users, communicability is defined as the ability of an
interactive digital artifact to communicate to users, effectively and efficiently,
the intention of its designers. Previous researches are concerned with the API’s
usability, and they lack in investigating communicability aspects, including
pragmatic issues as promoting the understanding between users and designers.

Afonso et al. (1) is the first work on this topic. In this work, the
authors propose investigating the quality of use of an API under the lens
of communicability. The authors use the theory of Semiotic Engineering to
explore how communicability (or the lack of it) can affect the final use of an
API. Although Afonso and colleagues have investigated the communicability
of APIs, they did not focus on the API design. Instead, they focused on API
evaluation, and did not address the design process or provide tools to help the
designer to communicate his design decisions. This thesis research positions
itself as a complementary work that Afonso carried out, taking the principles
proposed by him to create the concept of conversational API. Moreover,
we propose a design method for conversational APIs based on the Semiotic
Engineering theory. Here we have our first research problem that was treated
by this thesis.

Problem 1: How to Communicate Design Decisions to API Users?
In other words, how to make users and designers understand each other
when pragmatic conflicts of interest occur?

This problem emerged after the understanding that APIs, which the use
may modify according to its context, should have enhanced communicability
for better pragmatic adequacy. From this conclusion, we have created the
concept of conversational API. So, with the definition established, we needed
to offer tools or technologies to assist the designer in creating such APIs.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 22

Searching for solutions that support API design, we found some ap-
proaches for improving the API design process. Watson (54) and Mindermann
(27) introduced approaches focused on the API’ easiness of use, grounded on
consolidated usability concepts and techniques from HCI. Eduardo Mosqueira-
Reya et al. (28) generate a compilation of guidelines and heuristics that should
be applied along the design process to achieve adequate usability in APIs. Al-
though these approaches are concerned with the API’s quality of use, they do
not address communicability aspects, including pragmatic issues as promoting
the understanding between users and designers.

The lack of conversational APIs lead users to face difficulties on applying
APIs in their projects. Alternatively, technical literature presents tools for
assisting developers in properly using APIs. Yessenov et al. (56) propose
DemoMatch, a tool to support programmers in discovering how to use an
API based on interactions with software already using it. Ichinco et al. (22)
propose Example Guru, a tool for recommending APIs based on the context
of the programmer’s code. Addressing code verification, Nguyen et al. (32)
present a tool for scanning the source code of Android applications to find
possible security flaws resulting from the inappropriate use of APIs.

More recently, some studies investigated the pragmatic issue of APIs
misunderstandings (34). Although they did not propose methods or techniques
for improving the API communication, these studies may represent resources
for supporting understanding the limitations of the communication among
designers and users. Nielebock et al. investigated the misunderstandings on
using APIs, leading to their misuse and even to the incidence of bugs. To
mitigate this risk, the authors introduce a tool for identifying API misuses and
offering rules for fixing those misuses. The work of Lamothe and Shang aims at
understanding the appropriations made by API users. The work of Lamothe
and Shang aims to understand the appropriations made by API users, i.e.,
ways of using the API other than the one originally proposed. The authors
found three appropriations patterns followed by the API users. These patterns
can help API designers to understand the possible derivations made by API
users and adapt them to these realities in new versions (24).

Although some of the papers discussed offer design solutions for APIs,
they do not focus on our thesis’s central problem, which is the support
to the designer to expose his design rationale in order to reduce the users
misunderstandings. On the other hand, the more recent studies (34, 24) that
deal with this issue do not offer a method to support the API design. Such
studies focus on providing tools to mitigate the user’s difficulty, but they offer
none to support the one who is creating the API. Thus, this is another research

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 23

problem we are covering with in this thesis.

Problem 2: How to Support the API Design with Focus on
Conversation?

1.2
Main Contributions

To address both problems raised in the previous section, this research has
investigated the phenomenon of communicability in software APIs. Through
qualitative studies, having Semiotic Engineering as the supporting theory, this
research started with a study on the interpretation and inspection of mean-
ing in date and time APIs available in the Java development toolkit. In this
study, we had two main conclusions. The first is that programmers are not
used to routinely consult the documentation of an API. They prefer uncom-
plicated APIs that share their values and do not need much configuration or
parametrization to perform operations. The second conclusion was that de-
signers usually believe that the documentation is part of the API interface
and is practically mandatory to be consulted. As a conclusion to this study,
we characterize an API as a conversation mediator artifact. Consequently, we
established that an API should be conversational.

Contribution 1: Characterization of an API as a Mediating
Artifact of Conversation Between Users and Designers

From this study, we went in search to establish a conceptual framework
that could help designers to improve conversation of their APIs, thus promot-
ing better communicability and understanding of design decisions. We propose
our conceptual framework for the characterization and classification of conver-
sational APIs through theoretical inferences when transporting the concepts
of Semiotic Engineering to the context of software APIs. In this framework,
we list how to classify the signs of an API and explain how the designer can
use them in pursuit of a fully conversational API. We consider a fully conver-
sational API when it support all the necessary conversations between user and
design in the API interfaces. For example, suppose an API has some internal
decision made that can be controversial, such as the "add" operation in a date
and time API. In that case, the designer should indicate this on the interface,
even if a more in-depth explanation of his decision is in the documentation.

To characterize and classify the possible levels of conversation that
an API can have, we define a conceptual framework. Based on Semiotic

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 24

Engineering, our conceptual framework appropriates the concepts of signs
proposed by the theory to characterize the presence of conversation at three
different levels: rudimentary, metalinguistic, and fully. So, our second scientific
contribution of this thesis is our conceptual framework.

Contribution 2: A Conceptual Framework for Characterizing and
Classifying Conversational APIs

As much as our conceptual framework offers theoretical support for
conversational API, it does not fulfill the methodological support needed for a
API design process. Thus, seeking to understand how to design an API within
a professional software programming environment, we conducted a technical
action research to experiment techniques and tools that could improve the
conversation in the created API. In this action research, which lasted about
six months, we had the opportunity to carry out three complete cycles of an
action research, from the identification of one problem to the evaluation of the
proposed solution to this problem. At the end of the research, we had a set
of lessons learnt that could be used in building a step-wise method to support
the design of conversational APIs.

Based on this results, we propose our method. Colloquy, as we call, helps
designers on introducing conversations into their APIs. Basically, Colloquy
consists of three steps. The first step is to help designers on identifying who
are the users of the API and their specific conversation needs. In the second
step, the method helps the designer to model the possible API conversations
with the different mapped users so that they achieve their goals. Finally, the
method provides a set of guidelines to guide the designer in the declaration and
parameterization of API interfaces. Therefore, we have as our third scientific
contribution, the proposal of a method to support the design of conversational
APIs.

Contribution 3: AMethod to Support Conversational API Design

With our proposed conversational API design method, we now need to
perform a feasibility assessment and the positive and negative results it could
bring to API design. To do this, we planned a case study with the design of
a code refactoring API. In this API, whose primary focus was to explore the
customizations users could do with refactoring, the conversation was something
critical, and that should be significantly explored.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 25

By using our method, the designer was able to create an API with
interfaces that were able to negotiate the meanings of refactoring with its
users. As the main results of this study, we pointed out the creation of
the conversational API for refactoring Java programs and a set of potential
improvements that we could promote in our method. Therefore, adding the
case study findings to the action research results that inspired the method, we
have our last scientific contribution.

Contribution 4: Report of Two Empirical Studies Conducted in
Supporting the Design of Two Different Conversational APIs

1.3
Thesis Outline

The remainder of this thesis, which is a compilation of technical papers
(accepted or under submission), is organized as follows.

Chapter 2 presents a Semiotic Engineering (13) study on the communi-
cability of date and time APIs. In this study, we analyzed metacommunication
– a central concept of the theory we use - between designers and users of date
APIs, specifically, using the “SigniFYIng APIs” method (15). We relate the re-
sults of the analysis with the testimony of professional programmers collected
during an interview concerning their experience with APIs and programming.
Chapter 2 presents, illustrates and discusses the value of the results achieved
with an API communicability analysis that, in our view, is a promising addition
to research initiatives that have been exploring API usability.

Chapter 3 presents the conceptual basis of the doctoral thesis we are
defending. We define what a conversational API is according to the Semiotic
Engineering view and demonstrate how the classification of signs proposed
by Semiotic Engineering can be applied to the context of software APIs.
Furthermore, we demonstrate how our conceptual framework can be applied to
assist designers in defining conversations in their APIs. Finally, we also present
and discuss an evaluation of the framework on top of three date and time APIs.

Chapter 4 presents a technical action-research as a key study performed
during this Doctoral research. In this research, which lasted about six months,
we had the opportunity to apply the concept of conversational API to develop
a real API, within the context of deep learning in a professional software
development environment. To apply the concept, we followed the API redesign
and searched for techniques and tools that could help the design team to create
a conversational API. The chapter presents as main contribution a set of lessons
learnt that can improve an API design process.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 1. Introduction 26

Chapter 5 presents a design method for conversational APIs. This
method guides the designer through the implementation process of the API
conversations. In the three-step method, we use HCI tools and techniques
adapted to the context of API to help the designer reflect on their interfaces.
These steps help the designer to think about the best conversation paths his
API should offer users. Moreover, this chapter also brings the results of a case
study of API design. In this study, we use the method with a participating
designer to create a conversational API within the context of customizing
source code refactorings.

Chapter 6 summarizes the conclusions of our work, presenting the main
contributions to the state-of-art and future work.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

2
API as Conversation Mediator Artifact

When programmers use an API, they play the role of "software user".
Since the quality of program and system usage affects user productivity, more
attention has been paid to API usability issues (21, 31, 49). In this thesis,
however, we focus on another dimension of quality of use, "communicability",
which is a characteristic of a semiotic engineering approach (13). We also dis-
cuss how communicability plays a different role as compared to usability, and
how communicability based methods can offer different, sometimes comple-
mentary, results from usability based methods. In addition, we discuss how
Semiotic Engineering concepts can be smoothly incorporated into the context
of software APIs to create the concept of conversational APIs (section 1.2).

In this chapter, we discuss the understanding that APIs should have
adequate communicability for better pragmatic adequacy (section 2.5). We
show that putting all design rationale only into the API documentation can
cause serious misunderstandings by the user. We conduct a empirical study
with seven experienced programmers in order to understand how they use and
infer meaning in APIs (section 2.3). Through an analysis of date and time
APIs, we show that programmers usually infer meaning by looking just at the
interfaces and sometimes do it incorrectly (section 2.4).

We also analyzed two date and time APIs using the “SigniFYIng APIs”
(15), a method developed for the analysis of API communicability, taking
advantage of concepts proposed by Semiotic Engineering, but adding facets
that are specifically relevant in the context of APIs (section 2.3.1). The results
of the analysis were related to the evidences collected in the empirical study
with professional programmers. This chapter presents, illustrates and discusses
the value of the results achieved with an API communicability analysis that
can help the designer in reflecting on his API conversations.

This chapter presents a paper that was published in the Symposium
on Visual Languages and Human-Centric Computing (VL/HCC) under the
name "Metacommunication Between Programmers Through an Application
Programming Interface: A Semiotic Analysis of Date and Time APIs" (3).
This paper is presented as the first contribution from the work we developed
in this thesis: the creation of the concept of conversational APIs (section 1.2).

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 28

2.1
Introduction

Application Programming Interfaces (APIs) are everyday tools to any
software developer. In most programming languages, there is a wide variety
of APIs for a number of purposes. In spite of their relevance to software
development, APIs still represent a great challenge of use and learning for
programmers. As a result, there is a growing number of forums and websites
to discuss and ask questions about the use of APIs. Usually, programmers can
find on the internet numerous examples and explanations about usage scenarios
of popular APIs. In many of these discussion and examples, we can find a fair
amount of misinterpretation about what an API does and how it should be
used1,2. When some of these issues become recurrent, it usually indicates that
the API’s design may be improved in order to make its learning and use by
programmers more effective.

Since the 1980s, researchers have been discussing the best ways to do
the design and evaluation of APIs (30). Several of these researchers have
successfully tested Human Computer Interaction (HCI) theories in the context
of APIs usability, where the programmer assumes the role of software user.
Studies carried out so far have used cognition-based theories, heuristic analysis,
interviews and questionnaires typically aimed at evaluating the usability
of APIs (10, 41, 50). In this work, we focus on the communicability of
APIs, from a Semiotic Engineering (13) perspective. Unlike usability, whose
definition is centered almost exclusively on users, communicability is defined
as an interactive digital artifact’s ability to communicate to users, in an
effective and efficient way, its designers’ intent. We look at both, designers’
and users’ aims, while evaluating the quality of communication through the
artifact’s interface. In this context, we sometimes refer to these interlocutors as

1http://stackoverflow.com/questions/1755199
2http://stackoverflow.com/questions/14618608/

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 29

“designer-programmer” and “user-programmer”, to emphasize their dual role
in the production and consumption of reusable software packages, respectively.

The main motivation for our approach is the fact that communicability
addresses different aspects, sometimes complementary, to those addressed by
usability approaches. Cultural aspects for example, may play a different role
in communication than in cognition. Consider, for instance, the case of an API
in PHP that uses the “needle in the haystack” metaphor to communicate how
a string search function works:

strpos(string $haystack, mixed $needle [, int $ offset])3

For the programmer who is not familiar with this metaphor, this method
signature would not make any sense4. The API designer, in turn, does not
have a cognitive problem with the metaphor, but probably a communicative
problem to solve.

Another example can be found in Google’s Issue Tracker tool5. A user-
programmer says that the Directions API is wrong because although his
program specifies that an operation should represent the result in imperial
units, the API insists on returning the result in meters. The user-programmer
does specify “units = imperial” in his program, however the API returns the
“distance.value” field in meters. If we look at the API documentation, we can
understand his confusion. In fact, the API returns the value in the requested
unit, but it does so in a different field (“distance.text”), which is not what
the user-programmer is used to seeing. Thus, communicability is not good in
this case. The intent of the designer-programmer, although expressed in the
documentation, is not well communicated in the signature of the method.

Once again, usability-based investigations might identify issues that are
similar or related to the one above. However, a communication perspec-
tive addresses aspects involving both interlocutors, and not only the user-
programmer. This shift in perspective has implications to the design of APIs,
since it is generally the API designer’s wish to communicate his design vision
for the software artifact in an effective way. Bringing the designer as sender
of this communication process into the scope of analysis potentially promotes
a stronger commitment of the designer with the quality of use of the API’s
artifacts.

To support the detection of problems such as those described above,
there is a methodological tool based on Semiotic Engineering theory (13) called

3http://php.net/manual/en/function.strpos.php
4http://stackoverflow.com/questions/4808758
5https://issuetracker.google.com/issues/35829619

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 30

SigniFYIng APIs (15). The study presented in this article is one of the first
practical illustrations of how this method works, and it focuses on a very
common domain in the daily routine of programmers: operations with dates.
We used the SigniFYIng APIs method to perform the inspection of two date-
related APIs, Java7 (Calendar) and Java8 (LocalDate).

In an attempt to support our analytical results with evidence provided
by practitioners, we also carried out an interview with seven participants, all
of them experienced programmers. In addition to the Calendar and LocalDate
APIs, we discussed other APIs in the same domain but from different pro-
gramming languages. Part of the interview was a kind of quiz about two types
of commands involving Date and Time in APIs for these languages.

The results of this study point out at how a combined semiotic-cognitive
approach can: i) shed new light on what happens when a programmer uses an
API from another programmer in the development of his or her own software;
ii) analyze the quality of the APIs in relation to its designer’s values and
intentions, as well as to its user’s; iii) inform the redesign or correction of APIs
with communicability problems, as well as the design of new APIs, about issues
directly related to social communication experiences which are familiar to their
creators (designer-programmers).

We believe that item (iii) above may directly benefit user-programmers,
once designer-programmers perceive what good communication of their own
interests and intentions is about, and begin to explore the means of achieving
it. In this context, user-programmers will probably be better equipped to
understand what APIs are, what purposes they serve and how they should
be used. Good communicability may also support user-programmers’ decision
about whether an API is the best for them or not, and why. However, at the
current stage of our research, these benefits are still only a likely possibility,
which we should investigate in the next stages of our project.

This article is divided into 5 more sections. In section 2.2, we discuss
how selected studies relate to our research. In section 2.3, we provide a
theoretical basis on Semiotic Engineering along with a brief description of the
SigniFYIng APIs method, as well as a detailed description of how the studies
were conducted. Section 2.4 presents the results and in section 2.5, we discuss
our findings. Finally, in section 2.6 we conclude with a summary of the results
and future work that we wish to accomplish.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 31

2.2
Related Work

The phenomenon of interaction between programmers and APIs is not a
field of study restricted to the area of Human Computer Interaction. Several
studies in Software Engineering and Programming Languages have their way
of approaching this problem. However, our report of related work focuses on
studies that concentrate on the programmer, his activities, interpretation or
experience with APIs.

Early research focused on this theme appeared already in the 1970s and
1980s. However, it was not until the late 1990s and early 2000s that such
work became more prominent. The study by McLellan et al. (26), in 1998,
is one of the first studies to gain importance in addressing the usability of
APIs. It used techniques commonly adopted in HCI studies of use experience,
such as interviews, usage scenarios, recordings and others. In their results,
the authors describe how code samples can influence programmers when using
software interfaces, making programmers rely on code samples that contain
errors, leading to misunderstandings on how to use an API effectively. This
work has influenced many researchers to investigate the use and design of APIs
in a more human-centered way.

In the last decade, the interest in the quality of use of APIs has increased
and several researchers have been studying their usability. Some work focuses
on strategies to improve the API design: we can highlight Henning and Michi
(21), Watson (54), and Mindermann and Kai (27). They all try to define ways
of designing APIs that are easier to use by the programmer. In addition, we
also have work focused on usability evaluation. Farooq and Zirkler (17), for
instance, describe a group-based usability inspection method to evaluate the
usability of APIs, the API Peer Reviews. They contrast their method with
usability tests, arguing that they can be used together and complement each
other. According to the authors, in spite of identifying less usability defects
than a usability testing, API Peer Reviews has a lower cost and execution time,
thus making it useful for usability assessment of APIs. In all of these initiatives,
the focus of interest is what happens to the user-programmer during interaction
with the API.

Recent work by Myers and Stylos, 2016 (31) has brought more people to
the problem space of API usability studies. They define other stakeholders
besides user-programmer, who may play a role in the context of an API
usage, from API designers (programmers, documentation writers), concerned
with making more efficient APIs at the lowest possible cost, to final product
consumers, who may be indirectly affected by the code produced using an

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 32

API. Since an API has to satisfy the needs of different stakeholders, its
design becomes more complex. The authors argue that there are a variety
of “human centered” methods that can help design more usable APIs. Among
such methods, we highlight two that are widely applied in the classic view
of HCI: Nielsen’s heuristic evaluation (35) and the cognitive dimensions of
notations framework (CDNs) (19).

Like Myers and Stylos, we also think of different stakeholders when ad-
dressing the quality of API use. However, in our perspective, the API designer
is not only a stakeholder, but truly a participant of the interaction process
that takes place through the protocols defined for the API interface. Tradi-
tional methods of usability evaluation, such as those described by the authors,
frame API usage as a matter of computer-mediated human communication,
that is, as communication between API producer and API consumer through
the programming protocols that constitute the API interface. In our work, we
explore this complex social communication process based on Semiotic Engi-
neering.

2.3
A Semiotically-Based Research Study

The study presented in this article was divided in two blocks: an interview
with experienced professionals and a semiotic analysis of two Date & Time
APIs. Both were conducted in parallel and guided by intentionally problematic
computations, such as: “Add a month to January 31, 2016” and “Create the
date February 31, 2016.” The analysis of such computations is important
because they may silently emerge in corner cases reached during iterations, for
instance, leading to faulty program behavior. In this section, we will present in
detail the methodology of the study, but first we present a very brief overview
of the semiotic theory that we adopt.

2.3.1
Semiotic Engineering and SigniFYIng APIs

Semiotic Engineering is originally an HCI theory that characterizes
human-computer interaction as a process of metacommunication between
digital technology users and designers, mediated by the technology’s interface.
That is, when designing a product, the designer inscribes in it his or her vision
of how, where, when, why, and to what effects the user can communicate with
the product. The user, in turn, can only interact with the product through
communication means, modes and codes or languages that have been pre-
defined by the designer. We then say that the interaction process has three

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 33

interlocutors. The designers who encode their intentions into software (and
other features of the technology), the users who, when interacting with the
product, express their own intent and interpretations, and the technology itself,
which represents the designer at interaction time.

In figure 2.1, we sketch a comparison between the more widespread user-
centered view of HCI and the view proposed by Semiotic Engineering. The
user-centered view is concerned with mental and physical workloads associated
with a user’s interaction with software. Norman’s well-known 7 Step Theory of
Action, for example, supports a conceptual model of human-computer interac-
tion where the users’ cognitive activities are so important that HCI design is
framed as a matter of cognitive engineering, the construction of artifacts to be
known, understood, memorized and controlled (37). The Semiotic Engineering
view conceptualizes HCI as a computer-mediated conversation between soft-
ware producers and software users. The language of such conversation is the
interface language, in which a system’s interface – representing its designers
at interaction time – communicates to users, as the conversation unfolds, the
designers’ intent and design rationale. By comparison, in this alternative view
HCI is framed as a matter of communication engineering, or more precisely,
Semiotic Engineering (13). The designers necessarily “participate” in interac-
tion and are just as entitled to having intentions and communicative needs as
users do.

Figure 2.1: Cognitive View vs Communicative View

The Semiotic Engineering view can be smoothly carried over to a pro-
grammer’s interaction with APIs created by another programmer. There is
metacommunication in place between the user-programmer and the designer-
programmer. The API designer communicates his intentions by means of ex-
pression defined in method signatures and protocols. The user-programmer,
while developing his software and using the API, expresses his own interpre-

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 34

tation of designer-programmer’s intent. Therefore, we may have cases of good
and bad communicability in APIs, just as with digital technology user inter-
faces.

SigniFYIng APIs is a method developed for the analysis of API com-
municability, taking advantage of concepts and methods already proposed by
Semiotic Engineering for HCI, but adding facets that are specifically relevant
in the context of APIs. Since the interaction between designer-programmer
and user-programmer involves the use of a programming language, SigniFY-
Ing APIs also incorporates a cognitive analysis of programming notations using
the CDN framework (19). However, by focusing on human communication me-
diated by a “programmed” interface, SigniFYIng APIs strongly emphasizes the
“communicative intent” of the parties involved (API producer and consumer),
whose analysis is best evidenced in cases of communication failures. For this
reason, as in the communicability evaluation method (CEM) (14), communi-
cation failures and breakdowns are the starting points to the analysis of API
communicability.

SigniFYIng APIs consists of three steps (see figure 2.2) that can be per-
formed in successive iterations. The first is the reconstruction of metacommu-
nication, where the researcher characterizes the presumed intent of the API
designer and creates scenarios of use that focus on relevant aspects of the API
under investigation. From these scenarios, the expressions and semantics of
the API language are analyzed in the second step. The researcher identifies
their presumed effect, where expressions and semantics can cause the user-
programmer to misunderstand or even miss the designer’s intent. Finally, the
researcher places himself in the position of a user-programmer and executes
the selected scenarios. Each identified communication failure is then classified
in accordance with a set of categories provided by the method.

Figure 2.2: SigniFYIng APIs Steps

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 35

2.3.2
Methodology

The goal of our study was to verify the correspondence between what a
semiotic analysis of widely used APIs diagnoses as “communicability issues”
in their design, and the perception of experienced programmers about their
practice and use of APIs. Therefore, we elaborated a study that was carried out
in two parallel blocks, one was analytical and the other consisted of interviews
with programmers. We selected a set of APIs from a very common domain
in software development: date and time. Nine APIs of various programming
languages were used in the interview block, and two of them were used in the
analytical block, along with the SigniFYIng APIs method. Figure 2.3 provides
a general illustration of our methodology.

Figure 2.3: Metodology

In the interview, we had the contribution of seven participants, all
programmers with five to fifteen years of professional experience in software
development. With each participant individually, we conducted an interview
that lasted about 45 minutes regarding their preferences and tastes in the use
of APIs in their work in general. The first part of the interview asked open
questions meant to let the participants speak freely about their preferences.
We encouraged them to talk about situations they had experienced themselves
to illustrate what they were saying.

After this initial part of the interview, we presented them a small quiz
about the expected behavior of date and time APIs in seven programming

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 36

languages. For this, we elaborated a scenario with two very simple operations
involving date manipulation. The first one was adding a month to a certain
date. We purposely determined that the date to be incremented was January
31, 2016. The other operation was the creation of a date. Also purposely, the
parameters for the new date creation were: 31 as day; February as month;
and 2016 as year. Since we wanted to collect the participants’ impressions and
interpretations about the different API protocols and behavior, we provided
them with syntactically correct code snippets that attempted to perform the
above-mentioned operations. Then we asked the participants to analyze and
comment on each one of them.

The programming languages and APIs chosen for the study were Java 7
(Calendar), Java 8 (LocalDate), JavaScript (Date and Moment), Lua (time),
SQL-PostgreSQL (date), C# (DateTime), Python (datetime) and PHP (Date-
Time). The choice of these languages was such as to promote some variety
among them. There were object-oriented languages, such as Java and C#,
scripting languages such as Lua and JavaScript, and declarative languages such
as SQL. We chose APIs that are standard in the corresponding language, that
is, those that are distributed with the base language package (as in Java, C#,
SQL and Lua), or that are indicated as standard in official language websites
(as in Python and PHP). In particular, in the case of JavaScript, we used two
APIs, the language’s native API (Date) and a second API called Moment.js,
which is the most used by the JavaScript programming community. This was
necessary because the JavaScript Date API does not have suitable commands
for all the operations described in our scenario.

During the interview, we introduced the participants to the languages
and related APIs, and their respective code snippet to perform the operations
proposed in the scenario. Participants were then invited to fill in a table where
they described their expected outcome for each of the operations performed
by the APIs. In addition, they should also fill in their experience on a scale
of one to five, where one would be “I know very little or I do not know
the API” and five would be “I have full knowledge of the API” on each of
the APIs investigated. Table 2.1 illustrates the headers and two of the eight
programming language rows of the table that was handed to participants.

Table 2.1: Part of Table Presented to Participants
Add a month
to date Jan-
uary 31, 2016

Create the
date February
31, 2016

Indicate Your
familiarity with
PL (1 to 5)

Indicate Your
familiarity with
API (1 to 5)

Java 7 «code» «code»
Java 8 «code» «code»

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 37

After the tables were filled out, we conducted a second phase of interview
with questions concerning the participants’ thoughts about how the code
snippets would execute, in order to get their perceptions, anticipations and
understanding of the APIs behavior. At this stage, we wanted to find out the
possible aspects that led them to expect this or that outcome. We asked if
previous knowledge of the programming language and the APIs themselves
had any influence on the results. Then, in order to instigate them into deeper
reflection, we showed other possible answers and asked them to think of reasons
for such answers. In the end, we showed them a third version of the table with
the actual computed results in each case, and asked them to comment on what
could be the API designers’ intent for such API behaviors.

In the analytical block, we selected a subset of the APIs used in the
interview block, namely the Java 7 and Java 8 APIs. We reduced our scope to
only these two APIs because our method requires much deeper analysis of the
APIs, and our main goal was not to compare the APIs. We just wanted to verify
the kind of correspondences that might be found between communicability
issues raised by the inspection method and the participants’ perceptions of
their practice and contact with APIs. Therefore, we believed the inspection of
a smaller number of APIs would provide sufficiently relevant results.

While executing the SigniFYIng APIs method, we first reconstructed the
metacommunication template according to the method proposed in order to
capture the overall logic of the API. By so doing, we characterized how the API
presents itself, and how it relates to the programming language. Then various
iterations were performed in the cycle comprehending the communicative
dimensions “intent, effect and failure”, where we analyzed scenarios in which
potential communicability breakdowns could affect the use (or misuse) of the
API. In the end, we classified these communicability breakdowns using the
method’s tags (or categories). The following section presents the results from
both the analytical and the interview parts of the study.

2.4
Results

This section begins with the interview block, where we describe the
outcome of the activity and provide a categorized set of interview statements
that have been selected for relevance and illustrative power. We then proceed
to the communicability issues identified during the inspection with SigniFYIng
APIs.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 38

2.4.1
Interview

Table 2.2 presents a compilation of the data filled out by the participants
regarding the expected result for each operation in the different APIs. For lack
of space in this paper, the table includes only the Java 7 and Java 8 APIs,
the same ones that were used in the analysis with SigniFYIng APIs. The first
column contains the names of the languages and APIs. The second column
summarizes all the answers proposed by participants for the operation “add
a month to date January 31, 2016”, with the number of coincidental answers
in parentheses. The third column, following the same notation, presents the
results for the operation “create the date February 31, 2016”. The first value
of each cell, in boldface, is the value actually produced by the corresponding
API.

Table 2.2: Participants Results
API Add a month to date

January 31, 2016
Create the date Febru-
ary 31, 2016

Java 7 (Calendar) Feb. 29, 2016 (2)
Feb. 31, 2016 (1)
Mar. 01, 2016 (1)
Mar. 02, 2016 (1)
Mar. 03, 2016 (1)
Error (1)

Mar. 02, 2016 (1)
Mar. 03, 2016 (1)
Error (5)

Java 8 (LocalDate) Feb. 29, 2016 (2)
Mar. 01, 2016 (2)
Mar. 02, 2016 (1)
Mar. 03, 2016 (1)
Error (1)

Error (7)

With the other APIs used in the interviews, we get different results
than those presented by Java 7 and Java 8. In Lua, PHP and JavaScript,
for example, the operation of adding a month to the date January 31, 2016
results in the date March 2, 2016. Including the APIs not shown in table
2.2, no more than two participants (per API) matched their expected result
with the actual API output for the operation. This is a clear indication that
there are issues related to this interaction. The APIs do not follow the same
pattern, and the participants do not understand what is going on behind the
interface. Even experienced programmers fail to make a correct anticipation of
API behavior. It seems that the notion of “counted month” is less dependent on
formal convention than contextual interpretation. In this corner case context,
it is clear that there are variant interpretations, with no consensus about the
outcome due to the inherent ambiguity in this case. The point of interest here

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 39

is that each API “implements” its designer’s interpretation, which matches
some user-programmers’ own interpretation, but not of all of them.

In the operation to create the invalid date “February 31, 2016”, we may
notice less confusion among the participants. However, the APIs still do not
agree with each other. Some APIs accuse error, with messages saying that it is
impossible to create the requested date, while others, as seen in Java, adjust
the value for the following month, producing the date “March 2, 2016”. In Java
8, all participants hit the result, while in Java 7, only one did. The relevant fact
here is that most of the participants anticipated an “error” outcome for this
operation. We suspect that this is due to the participants’ reliance on common
sense knowledge about dates. An explicit command to create an impossible
date can naturally be expected to fail.

Considering that this test puts the “user-programmer” in a (pragmati-
cally or semantically) faulty situation, which is not the case with the other
operation, what is surprising is that, in spite of much narrower distribution
than with the other command, there is still no consensus among programmers.
Two of them consider that the API response will not be an error. This is prob-
ably due to the lenient behavior of the Java 7 API. One of the respondents
precisely anticipated the leniency and the result, while the other only correctly
anticipated the leniency, but missed the result. We have associated this with
the professional programming experience of both.

The most important point in the above is the leniency of the program-
ming language. What reasons may have led the API designer to opt for leniency
in a command explicitly inconsistent with the API domain? Although we can-
not know for sure, what matters is that most programmers did not understand
this behavior or anticipate the outcome correctly. Failure to communicate frus-
trates both users and designers, and is more detrimental to users. The theory
used in our study emphasizes that the designers’ intent is also thwarted. There-
fore, the ultimate goal of this type of research is to help designers learn what
they need in order to formulate and achieve their intent more effectively.

During the interview, we noticed a common point raised by all the
participants, the need for examples or tutorials to perform tasks using an
API. We have selected two testimonies that highlight this point. Participant
4 said, “When I get third-party software, the first things I look for are small,
ready-made examples of how the API is used”. Participant 2 reinforces the same
need in his testimony, “The first step I take when I study an API is to look
at some Wiki or blog that explains the general steps of what it is and [gives]
quick examples I can use.” Participants also expressed a preference for simpler
APIs where they do not need to configure or parameterize an initial state. For

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 40

participant 1, “The less I need to set up, the better the environment is.” This
is similar to what, in other words, participant 6 said: “what helps is to be less
bureaucratic.”

Participants want the API (proxy of its designer) to communicate seam-
lessly with them, unambiguously, sharing assumptions, and performing what
in pragmatics we could characterize as adopting Grice’s “cooperative princi-
ple” (20). This principle is divided into four maxims: i) give all and only the
necessary information, ii) give only true information (not false or doubtful), iii)
maintain focus and relevance, and iv) do not use obscure or ambiguous expres-
sions . The problem is that this principle is “pragmatic” and not “semantic”,
that is: it totally depends on the context, purpose and participants in the con-
versation. The principle is general, but the result of its application is always
contingent. Therefore, these expectations of participants point to the impor-
tance of API design being as HCI design has already learned to be: sensitive
to many usage context variations. However, this requires that the communi-
cation protocol between the user and the designer’s “proxy” be enriched to a
level in which it would be possible to infer or express the specific context of
conversation. In the case of our participants, as some of them do not want to
configure / parameterize the API, they clearly expect that the API will “infer”
the context of use. However, to support this inference, we need to have clues,
and thus to be more conversational.

2.4.2
SigniFYIng APIs

The inspection with the SigniFYIng APIs method is based on the selec-
tion of scenarios with potential communicability failures, which support the
analyst’s reflection throughout the method’s steps. Since the Java 7 and 8
APIs were analyzed individually, we describe these scenarios separately.

1) Java 7 (Calendar)
In the Calendar API, we found four scenarios of communicability failure

regarding the operations with dates already mentioned. In this article, we focus
on two scenarios that we find most relevant, which have the potential to cause
the most serious communicability failures.

The first scenario is related to the expected result when adding a month
to a certain date. In the Java 7 Calendar API, the intended method for this
operation is the “public final void add (int field, int amount).” The presumed
intent of the designer is to provide a single method capable of performing
arithmetic sum operations on the various fields of a date object. That is, we

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 41

see here an option for a homogeneous arithmetic treatment of Date and Time
objects, which clearly disregards pragmatic aspects, agreed by local cultures.
For example, in the banking field the deadline for payment of bills due on
weekends can be conventionally postponed to the first working day after the
date. Therefore, monthly installments will have deadlines that do not result
from an arithmetic about day, month and year, but rather a contextualized
interpretation of the meaning of monthly payment. If the API designer’s
intent is for the user-programmer to understand it, he must “communicate”
that his decision should be supplemented by extra programming every time
an arithmetic interpretation of the operation over dates is pragmatically
inadequate. Pragmatically, SigniFYIng APIs points to the risk of “Unconscious
task failure” if the user-programmer does not make by his own initiative an
appropriate corner case test, which is equivalent to a pragmatic resiliency test
of his use of the API.

The other scenario, which is closely linked to the previous one, is based
on the difference in behavior of API methods for the same ambiguous sit-
uation. In addition to the “add” method, another method that can cause
ambiguous situations is the “public final void set (int year, int month, int
date).” Imagine that the parameters values are year = 2016, month = 1 (in
the Calendar API, month value is zero-based, so February is represented by
integer 1) and date = 31. In this case, the API could trigger an error. However,
the Java 7 Calendar API is lenient and attempts to fix certain “invalid” dates
automatically. The user-programmer, already accustomed to how the “add”
method handles ambiguity, might expect as a result the date February 29,
2016. The API, however, returns the date March 2, 2016. Once again, we have
a potential case of “Unconscious task failure.”

2) Java 8 (LocalDate)
In LocalDate API, we find two relevant scenarios of communicability

failure regarding the operations with dates previously mentioned. The first
one is similar to the first item reported from Java 7, the expected result when
adding a month to a certain date. In Java 8, the method responsible for this
operation is “public LocalDate plusMonths(long monthsToAdd).” Although it
is much more communicable than in Java 7, cases of ambiguity still persist.
Arithmetic metaphor is still in place. Therefor, corner cases will generate the
same kind of communicability failure, which we classify as “Unconscious task
failure”.

Another scenario of communicability failure occurs due to a feature
added to the Java 8 LocalDate API, immutability. Let us make it clear that

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 42

immutability by itself is not a problem, on the contrary, it is something
desirable in many situations. What we will point out in this scenario is the
potential failure of the API to communicate to the user-programmer that
this behavior is in place. When we examine the method “public LocalDate
plusMonths (long monthsToAdd)”, we can assume that the API designer
expects the user will correctly interpret the existence of immutability when
he realizes that there is a return value of the LocalDate type in the function
(the same class that owns the method). However, this kind of return value is
also used for other common purposes like, for instance, to allow the chaining of
consecutive method calls. We can then imagine that the user-programmer does
not understand that the object is immutable, at first. After all, the previous
version of the date-related API was not immutable, and the vast majority of
the APIs present in the standard language pack are not, either. Thus, when
calling the method, the programmer could expect that the object itself would
be changed “in-place”, which would not happen. For this kind of failure, we
can again assign the “Unconscious task failure” tag as a classification.

2.5
Discussion

2.5.1
SigniFYIng APIs and Interview Data

When we contrast the results found in the two stages of the study, we
can observe that some of the results of one phase reinforce those of the other,
that is, they say the same in different ways. The communicability problems
identified through the SigniFYIng APIs method, somehow, also appeared in
the participants’ statements. For example, the ambiguity in add operations
was diagnosed with a communicability failure in the analytic part. This failure
is corroborated by the results of the quiz carried out during the interview, since
only one or two (maximum) of the seven participants were able to anticipate
the correct value returned by the operation of adding one month to January
31, 2016. This contrast shows the potential of the SigniFYIng APIs as a tool to
guide the analyst’s reflection in order to anticipate relevant and real problems.

The study also showed aspects that SigniFYIng APIs could anticipate
to API designers. An example is the communicative cost of implementing a
more formal and algorithmically efficient semantics if it somehow contradicts
the signs of the user-programmer’s programming culture. In such cases, the
chances that the designer’s communication with the user through his/her proxy
(API protocols) will go awry are very high. Consequently, there is a great risk

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 43

that the API as a software development tool will not be secure or adequate.
Analytically, we realize that a detailed reading of the API documentation

is required for the programmer to presume the designer’s intentions in a
satisfactory and effective way. Contradictorily, during interviews, participants
were averse to large readings and extensive documentation. Simplicity was
pointed out as desirable. We believe that a more dynamic interaction, as in
the traditional interaction with software, is the solution to this problem. We
need to make programming interfaces that can develop dynamic dialogues with
their programmers.

While recent work based on cognitive theory (CDN) or heuristic rules
(Nielsen’s Heuristics) focuses on the problems of user-programmers and /
or APIs, our semiotic analysis with SigniFYIng APIs brings together user-
programmers, APIs, and designer-programmers. Moreover, through a software-
mediated human-communication logic created by one party, our approach
points to pragmatic conditions of reciprocal understanding between human
parties when mediated by the software artifact. We explicitly address design
issues that must be raised during the process of creating the API, in which the
designer is asked to think about the conditions that he offers through his proxy,
so that his human interlocutor solves ambiguities, understands design decisions
and, ultimately, benefits from the contributions that the API is offering for the
user-programmer’s work as a developer.

As discussed in the results section, the main conclusion of the study
is the fact that APIs with some degree of comprehensiveness (like the ones
we analyzed) should be more “conversational” in order to achieve pragmatic
adequacy. The claim of today’s programmers about documentation load and
parameterization makes us assume they are referring to the “interaction” style
required for dealing with these today (which is roughly equivalent to the style
that early system users had available in the early days of HCI studies in the
1970s and 1980s). Therefore, the semiotic approach is not strictly looking at
the usability of the APIs, but rather to how communication with the APIs
can or should unfold. That is, we are looking at another aspect of HCI, which
complements that of the studies done so far.

A more conversational API would be an API that can communicate
with its interlocutor in a more interactive way, giving more feedback as the
interaction occurs. Currently, the interaction between programmers and APIs
happens at two different times. First, in a static way, with little feedback
from the API, when the programmer encodes his or her program. At this
point, the programmer interacts only with the interfaces and documentation,
and it is only possible to infer the internal behavior of the API from these

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 44

elements. Second, the programmer can test his code, and consequently the
API. In this more dynamic phase, the API manages to give more feedback to
the user-programmer. With a set of input and output data, or through error
messages, the programmer can more effectively infer the internal behavior of
the API. However, we believe that if there were a more dynamic interaction at
coding time, the user-programmer would be able to presume the intentions of
the designer in a faster and more accurate way. No doubt, creating dynamic
interactive APIs is a big challenge, but it is probably the best way to handle
those aspects of communicability. We suspect that, in order to implement
these features, changes go beyond APIs. Development environments and
programming languages play a key role in this issue.

2.5.2
Evolution of the API, from Java 7 to Java 8

Through the inspection with SigniFYIng APIs, we could observe the
evolution between the two Java APIs for date and time. Although in this
study we did not inspect the entire Java date and time APIs, we noticed that
some communication failures were corrected in-between versions (and which
ones) while others identified with SigniFYIng APIs persist in the new version
of the API. We notice that problems of inconsistency have been solved. In
Java 8, when you try to create an invalid date, the API reports an error. In
Java 7, in addition to not accusing the error and being lenient, the associated
ambiguity produced different results than when using the “add” method.

Despite great and remarkable advances, we still identified a serious com-
municability issue in the new API. The operations on dates continued to use
metaphors based on the addition and subtraction arithmetic. The API still
communicates poorly its behavior in cases of ambiguity. The API documen-
tation explains, in its way, how it behaves in such cases. However, there are
no good examples of corner cases and we believe that an arithmetic metaphor
with date operations may still not be the best approach to communication.
Think of a sequential metaphor, for contrast, using “next” rather than “add”.

Based on the method, we have two implications in this comparison: i)
Some problems that we have detected, and which have remained (at least until
now), even with the evolution of language, leads us to think that there is a class
of problems that cannot be solved without considering pragmatic aspects that
permeate communicability between users and designers; ii) Problems that we
detected with the method and that were solved suggest that the method can
be used as a tool to anticipate and understand problems, providing favorable
conditions for better API design. Therefore, we believe that with this study,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 45

we show the value of the SigniFYIng APIs method.

2.5.3
Implications

We believe that our work has the potential to influence in some aspects.
For Software Engineering, for example, diagnosing communicability problems
in APIs can have a major impact on the quality, cost and efficiency of building
software that uses that API. Even simpler problems of communicability, which
in theory, would be easily circumvented, can at least bring inefficiency to the
process. More severe communicability failures, such as those pointed out by the
method in the previous section, can affect software reliability. If a programmer
does not notice the failure at coding time, surely at some point this will appear
in the final product.

The results from our study, similarly to other researchers’ results, indicate
that APIs have a lot to evolve, which motivates further research on API
design and use. However, there is also room for improvement in programming
languages and tools, in order to provide better support for APIs. To make
APIs more conversational, for example, we may need tools that allow dynamic
interactions between user-programmers and the software artifacts.

2.5.4
Threats to Validity

Because this is not a predictive study about correspondences that should
be always found between SigniFYIng APIs results and programmers’ percep-
tions and understanding, the small domain scope of analysis and the small
number of interviewees does not seem to be a great threat to validity. How-
ever, the fact that our two main study blocks occurred in parallel can threat
validity. Although we have been cautious to control rigor, we know that there
is the possibility of contamination of the results. A problem of communica-
bility found in the interviews stage may have biased the analysis with the
SigniFYIng APIs method. However, since SigniFYIng APIs is based on a solid
theoretical background that supports an analyst’s deeper reflection during the
inspection (meaning that a good analyst might anticipate many, although not
all, of the issues brought about in the interviews), we believe that our findings
are still sufficiently valid. However, in order to evaluate and, if needed, remedy
a validity problem with this study, we intend to carry out new research with
some methodological adjustments. In next and final section, we describe such
adjustments and the work we wish to accomplish in the future.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 46

2.6
Conclusion and Future Work

This is the first of a series of studies that we wish to undertake regarding
the use of the SigniFYIng APIs method. We know this study was limited
by methodological and domain issues. Thus, in the future we intend to carry
out new work in different domains of APIs and programming languages. A
methodological evolution, as seen previously, is also necessary. For further
studies, we will adopt new strategies to eliminate possible interferences between
analytical and interview parts.

Other studies that we find relevant are the ones that guide us to the final
software generated from APIs. We believe that identifying communicability
failures in an API can be a way to improve the quality of a software artifact,
for example, by generating fewer bugs in the final product. Therefore, we
intend to carry out exploratory studies in an attempt to relate failures of
communicability with the final quality of the software product.

In this article, we show that it is possible, from an analytical method, to
identify communicability failures in a software API that may have undesirable
effects on the user-programmer’s coding activity. In addition, we collected
evidence through interviews with experienced programmers, which supported
our analytical results. This leads us to believe that the method used is an
effective tool to support this kind of investigation and provide relevant findings.
The results of this article demonstrate that a semiotic view of API design and
use may also be valuable to the software development community. Although
we acknowledge the value of HCI usability methods used in this new context,
we believe that our approach has the potential to demonstrate problems that
go beyond those of cognitive nature and which are not currently captured by
other methods.

2.7
Summary of Chapter 2

This chapter shows a study made with professional programmers regard-
ing the inscription of meaning in date API interfaces (section 2.3). Crossing
with empirical data, we demonstrate how a method of analysis, based on Semi-
otic Engineering (13), can benefit the inspection of software APIs in the search
for problems that may compromise their use. This type of inspection evalua-
tion can support API design by pointing out problems that could be corrected
before the API be offered to a third party. Through this study, we also demon-
strate that an API with more interaction, or as we define it, conversation, can
benefit its users (section 2.5). We were able to identify communicability prob-

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 2. API as Conversation Mediator Artifact 47

lems in APIs that directly impact their use, and consequently, the final quality
of the generated software.

This study was the first carried out in the context of this Ph.D. thesis
and served as motivation and guide for the following activities. This first study
inspired us to establish the concept of conversational API. Although the study
demonstrates the need for API conversations, it does not discuss in depth how
these conversations would take place and what levels of conversation an API
could offer. Therefore, we needed a better characterization, not only in the
concept but also in the levels of conversations that an API could offer (section
2.5). Thus, we base our research into the theory of Semiotic Engineering and
use the concepts of signs established by the theory to define our conceptual
framework for characterization and classification of conversational APIs. This
conceptual framework is demonstrate in detail in the chapter 3. This study
also does not offer any tools or techniques to support API design process.
Although we have used an inspection method (section 2.3.1), it cannot be
directly transported to the API design process. So, this study also served
as a motivation to seek and develop a method to support the design of
conversational APIs, which we show and discuss in chapter 5.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

3
A Conceptual Framework for Conversational APIs

A conceptual framework is a set of concepts, tasks and techniques, used
to characterize and classify a problem in a specific domain. In this chapter,
we present a conceptual framework to characterize and classify conversational
APIs. A conversational API is one that is able to communicate to its users
its form of use and its internal logic of operation, making clear the design
rationale when abstracting concepts and tasks (3). As we saw in the chapter
2, the lack of conversation on an API can lead users to not understand how to
use it properly. So, we needed a conceptual and theoretical definition on how
to build a conversational API, which we discuss in this chapter. As we will
discuss in this chapter, every API has some level of conversation. However, in
this thesis, we aim to support the design of what we call as fully conversational
API.

When creating an API, the designer has three different ways to send
his message to his user: the source code, documentation, and API behavior.
This chapter discusses how to classify a conversational API according to
the three types of signs proposed by Semiotic Engineering (13). This is a
conceptual work that aims to provide theoretical and conceptual support in
the characterization and classification of conversational APIs (section 3.4).
We also present and discuss an evaluation of the framework on top of APIs
from different domains (section 3.5). Such a conceptual framework can be
useful for API designers to understand the concept of signs and the possible
distributions of the conversation through them. So, the API designer can decide
whether or not to adopt the conversation at different levels when designing
their interfaces. For example, in the APIs discussed in chapter 2 (section 2.4),
a designer informed by our conceptual framework would realize that putting
the meaning of an operation only in the API documentation could cause user
misunderstandings.

This chapter presents an extended version of a paper accepted at Brazil-
ian Symposium on Software Engineering (Qualis A3), entitled "A Conceptual
Framework for Conversational APIs" (4). The theoretical basis presented (sec-
tion 3.2) is the same as in the previous chapter (section 2.3), but it covered
additional details focused on the context of software APIs. The reader may

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 49

want to skip the introduction since it is almost the same as the already pre-
sented in chapter 1.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 50

3.1
Introduction

Application Programming Interfaces (APIs) are software components
designed to ensure the portability and reuse of a source code. APIs can be
developed in several programming languages, offering functions to support the
execution of activities in specific domains. Recently, we have seen a growing
demand for API development, especially in terms of supporting the execution
of complex activities. Consequently, we can also see the increasing use of APIs
by non-programmers. These professionals, experts in various areas such as
medicine, pharmacy, geology, and others, are usually involved in projects to
create predictive models for the most different contexts (9).

Although API designers can expect artificial intelligence professionals
to have some computing skills, they cannot expect from these professionals
extensive knowledge and experience in software development. Therefore, the
APIs used by these professionals should provide adequate interfaces to abstract
the complexity of their programming (8). Besides, API users must be able
to perceive the design rationale behind API interfaces in order to use them
correctly.

However, designing an API that explains the design rationale of who
designed it is not a trivial task. One way to accomplish this task is by creating
conversational interfaces (2). Such interfaces, which we will address in detail
in this article, are those which promote pre-established potential dialogues for
the API to have with its users. The lack of explicitly defined conversational
capabilities hinders API users in understanding how to properly use their
interfaces (section 2.5).

In this link1, we can see a real example of an API with insufficient con-
versational capabilities. In this example, a user of the Google Maps geolocation
API reports a failure to calculate the distance between two locations. The user
of the API claims that he is requesting the result of the distance calculation
in miles. However, the answer provided by the API is always with the distance
calculated in meters. Surprisingly, the API designer has re-classified this bug
to an expected behavior by transcribing the following excerpt from the API

1https://issuetracker.google.com/issues/35829619

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 51

documentation: "Note: this unit system setting affects only the text displayed
on the distance object (distance.text). The distance object also contains values
that are always expressed in meters (distance.value)".

Misunderstandings between designers and API users are common. The
report described in the preceding paragraph exemplifies how the geolocation
API is incapable of getting users to understand its design rationale. Unfor-
tunately, the documentation is often perceived by designers as sufficient and
mandatory to support the proper use of API interfaces. However, issues like
this can be avoided by improving API conversational capabilities. Therefore,
we believe that developing APIs for different domains would benefit from a
design process aimed at specifying and improving conversation capabilities.

Problems caused by the lack of conversation of an API often occur in
other contexts than the example mentioned above. Previous studies report
similar problems with the design of APIs for reflection in the Java program-
ming language and with the design of APIs for IDEs refactoring (38). These
studies have detected problems caused by the lack of API conversation. How-
ever, as far as we know, there is no proposal in the literature on how to treat
this problem. Our approach uses semiotic-based theories to provide tools that
are able to promote software APIs conversation.

In this work, we present a conceptual framework to define and to classify
conversational APIs. As we present in detail in this paper, a conversational API
is the one capable of communicating to its users its form of use and its internal
logic of operation (2). After a detailed description of the theoretical basis, we
list the different levels of conversation and ways to send the communication
that a software API can present. This is a conceptual work that aims to provide
theoretical and methodological support in the definition and classification of
conversational APIs. We also present a study where we make the analysis
of three APIs regarding the levels of conversation that we propose in the
conceptual framework. This result can help API designers understand the
proposed concept and apply it in the process of developing their APIs

In the following sections, we will describe the theoretical basis of our
research (3.2); present how to introduce conversation into APIs (3.3); show
our conceptual framework with the signs and levels that an API can present
(3.4); represent, through real cases, APIs at different levels of conversation
(3.5); discuss the impacts of the concepts presented here (3.6); briefly discuss
the related work (3.7) and finish with the conclusion and future work (3.8).

3.2
Theoretical Basis

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 52

3.2.1
Semiotic Engineering

Semiotic Engineering is a theory of Human-Computer Interaction (HCI)
built based on semiotics (13), a field of linguistics focused on the study of signs,
meanings, and processes of meaning. In particular, Semiotic Engineering is
strongly guided by the theories of Charles Sanders Peirce, one of the founders
of Semiotics as a field of study. The sign, central element in semiotics, is defined
by Peirce as anything (for example, the source code or the documentation of
an API), that in a certain aspect or way, means something to someone (40).
For Peirce, the existence of a sign is necessarily associated with the existence of
an interpreter. That is, the meaning of the sign only exists through someone’s
interpretation.

Signs: Semiotic Engineering classifies signs into three different cate-
gories: Statics, dynamics and metalinguistics. Static signs are signs that are
interpreted independently of temporal relations and user interactions with the
system. They are signs that must be interpreted without the user having to
interact with the system, such as buttons, menus and toolbars. Dynamic signs
are those in which the temporal relations are fundamental for the correct in-
terpretation by users. The interpretation of a dynamic sign is necessarily as-
sociated with a process of user interaction with the system. We can cite as an
example, the interaction process of saving a new file.

Thus, we can say that static and dynamic signs are part of the same
whole. While the static invites the user to perform an interaction based on
his current interpretation, the dynamic is the result of that interaction, which
can confirm the user’s current interpretation or revoke it. Finally, we still have
the class of metalinguistic signs. These are signs that speak about other signs.
This category has the purpose of explaining, through a metalanguage (natural
language, for example), the meaning of static and dynamic signs (e.g.: help
menus, documentation, tooltips).

Semiotic Engineering and Software Engineering: Semiotic Engi-
neering has expanded to support studies and reflections beyond the classic
Human-Computer Interaction. In this sense, the expansion towards software
engineering is due to the increasing need to go beyond the end-user interface of
software when evaluating the human-computer interaction. Several problems
found in the end-user interface of software can be identified and remedied dur-
ing the development process. Problems that appear to the end-user are often
problems that should have been identified during various phases of the project,
such as the specification, modeling or coding of software. Semiotic Engineering
has tools and methods that allow us to look at various artifacts used in the

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 53

process to understand the communication problems that can occur. For exam-
ple, an API uses misinterpretation may have caused an error that appears to
the end-user.

The process of developing software can be seen as a process that, besides
being logical and specified, is also temporal. The ways of users and designers to
think and rationalize about a given computing artifact change with time and
new information. Thus, in order to investigate a phenomenon of this nature,
we need theories that support these temporal changes in the behavior of users
and designers. Semiotic Engineering, for being based on semiotic theory and
has as basis the abductive process of reasoning, has the necessary to offer tools
to investigate these phenomena.

Metacommunication: Semiotic Engineering (13) characterizes the in-
teractive process as a particular case of human communication mediated by
computers. In this vision, communication occurs between users and designers
through a computer artifact. The designer can then perform his communica-
tion through the interfaces designed by him, which are named designer proxy.
It is then up to the user to interact and communicate with this interface in
order to achieve his goals.

Therefore, the process involved in the communication between designers
and users is the central point of investigation of the Semiotic Engineering the-
ory. We say that during this process, a phenomenon called metacommunication
occurs, in other words, the communication about the communication. While
communication deals with the message sent from the designer to the user,
metacommunication deals with the message sent to the user about how he
should interpret the original designer message. According to the theory, when
creating a software artifact, the designer defines a complete and unchanging
message, which will be transmitted to the user through the designed interfaces.

Figure 3.1: Semiotic Engineering and Metacommunication

Figure 3.1 represents the message exchanges between metacommunica-

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 54

tions participants, that is, the designer and the user. In interaction time, the
designer is virtually present, being represented by the interfaces he created. On
the other hand, the user can use a set of commands and interfaces designed
to send his message. When performing this process, we say that a metacom-
munication message is being exchanged between users and designers of the
computational artifact.

Communicability: the central quality of metacommunication is the
communicability, which may or may not be present in a computer artifact.
We can say that an artifact has good communicability when it is able to
communicate to its users the design logic of its designer. In practice, the
presence of communicability allows the user to have a more complete set of
information to help them decide which is the best way to use the artifact.

For communicability to be effective, it is up to the designer of a techno-
logical artifact to establish and define the signs that will be used during user
interaction with the artifact. When we talk about APIs and programming lan-
guages in general, we are certainly limiting the scope of signs we have at our
disposal when creating our artifacts. When designing an API, the designer
does not rely on icons, sounds, and images in a general way. Therefore, it is up
to him to pass his message effectively using only texts, patterns, and reserved
words of the programming language used.

3.2.2
Abductive Reasoning and Semiosis

At the moment when communication is taking place between designer
and user, an exchange of signs is happening. When a user perceives a sign
and tries to interpret it, he generates his own understanding of what that sign
means to him. This process meaning creation is called semiosis (45), and is
totally influenced by our context, world knowledge, culture, and experience.
As an immediate consequence of this characteristic, we realize that the same
sign can awaken different interpretations, depending on the users and contexts
of use involved.

Moreover, the theory also defends that the context, knowledge and
experience of the user can modify over time, making it also modify its current
interpretation on that sign. This temporal process of modifying the current
interpretation of meaning is called unlimited semiosis and is built upon the idea
of abductive reasoning (45). In abductive reasoning, a current interpretation
is not an absolute truth, but a causal relationship, which can be modified from
the moment new information about that interpretation emerges with time. In
the figure 3.2, we can see how a possible abductive process of a date API users

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 55

works. We use the "add" function of the Java 7 Calendar API to illustrate.
We can imagine the following scenario (see figure 3.2): (i) the first user

interpretation is the simplest. If the user asks to add a month to the "Aug-
15-2020" date, the API will return "Sep-15-2020". At this point, the user is
satisfied with its rationalization on the internal behavior of the API - The API
only changes the field "month" by adding the value in the parameter. At a given
time, the user wants to add a month to "Aug-31-2020", and the API returns
"Sep-30-2020" as a result. With this, (ii) the user redoes his rationalization on
the API’s internal behavior - The API does not just change the month field; it
adds 30 days to the date. So, possibly, the user can perform another operation.
Now, when adding a month to the date Jan-31-2021, the API returns the
date Feb-28-2021. Thus, (iii) the user redoes its rationalization on the internal
operation of the API - The API changes the month field and "rounds" the
day to the end of the month when it exceeds it. This abductive process can
be repeated indefinitely, causing the user to redo its rationalization on the
internal behavior of the API.

Figure 3.2: Abdutive Reasoning and Semiosis - Example with Java 7 Calendar
API

By analyzing the situation illustrated above, we can say that due to a
communicability failure, the user is led to create a new interpretation about
the meaning inscribed in the "add" sign. This process can be infinite, leading us
to the concept of unlimited semiosis. Thus, with each communicability failure

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 56

that occurs, an opportunity for an abduction process is opened, make the user
go into semiosis, and start to understand better what message the designer
was trying to send when creating that interface.

3.2.3
Conversational Interface

An interface is conversational when it has the ability to develop a
conversation with its interlocutor in a particular language. In this sense, we
can classify a software as conversational when it offers interaction resources
that can be represented as an exchange of dialogues between its designers and
its users. Within the context of human-computer interaction, we have some
decades of research that seek to understand the best way to design software,
so it offers the most effective and efficient conversations for its users. Among
these theories, we highlight Semiotic Engineering (13), which we described
in the previous subsection as a semiotic based theory. This theory sees the
interaction process as a communication between designer and users, using the
software as the means to enable this message exchanges.

During the interaction, the designer, represented by the interface, is
talking to the user through the signs that he thought most appropriate.
This conversation evolves with each new interaction, and the user has the
opportunity to reinterpret when he thinks it is necessary, the speech sent by
the designer. This conversation between user and designer is the predominant
factor so that a semiosis process can occur. As the user receives a new message
from the designer and uses this message to re-evaluate his or her current
interpretation of a particular aspect, he or she is performing a semiosis process.

3.3
Introducing Conversations in APIs

An API can be seen as a mediator of the conversation between two
programmers. On one side, we have the designer programmer, a term we will
use from now on to refer to the creators of the API. On the other side of the
conversation, we have the user programmer, which we will also use to refer to
the users of the API. In this conversation, the metacommunication that occurs
between programmers must be effective and efficient to make clear the designer
intentions, so the user does not misinterpret and misuse the programming
interface.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 57

3.3.1
Syntax, Semantics and Pragmatics

The user’s understanding of a given API can be analyzed through three
layers of abstraction referring to the interfaces of this API: the syntax, the se-
mantics and the pragmatics. The first level is the syntax of the interface, where
the programmer needs to understand the syntactic ways of the programming
language in which that API was developed. This includes understanding its
formation rules, reserved words used, among others. In this first layer, the user
can identify the API vocabulary and the types of data used as parameters
and feedback, and understand if they are in accordance with the programming
language used.

After that, the user passes to the semantics of the interfaces. Through
a careful reading of the documentation, an analysis of the names, returns
and parameters of the API methods, the user can infer what meaning and
behavior is expected by that API. A good API, with extensive documentation
and with method names and parameters rich in meaning, should allow a good
understanding of its use by the user.

The last layer is the pragmatic. This layer is directly associated with
contexts and with the concrete use of those meanings that had been previously
inferred in the semantic stage. It is at this stage that the user will realize if
that semantic meaning previously made is really adequate to his context of
use, his culture and his way of acting and thinking about that domain in
which the API is inserted. That is, semantics is the meaning inferred, while
pragmatics is the use of that meaning in practical and concrete situations,
where besides semantics, we also have to take into account the interlocutors
(users and designers) and the context of use.

Let us take as an example the two methods below, taken from the API
Calendar, from the programming language Java 7, and the API DateTime
from the programming language Java 8 :

public abstract void add(int field , int amount)

Listing 3.1: Java 7 Calendar API

public LocalDate plusMonths (long monthsToAdd)

Listing 3.2: Java 8 DateTime API

We believe that this API illustrates in a simple way the concepts that
we are presenting and defending in this article. We know that manipulating
dates is a challenging activity for software developers. The concept of date is

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 58

something abstract, invented by humankind, and not part of nature. Thus, date
is something that varies significantly among different cultures and contexts,
with different calendars and ways of representing them. Even in cultures that
follow the same calendar, as in the case of the Gregorian calendar in western
Christian countries, we have a wealth of details that usually make the task of
programmers difficult. For example, time zone, daylight savings time, date and
time representation format, are some examples of features that vary within the
same calendar.

When we manipulate date, even in our own culture and calendar, we can
have contexts of use that make a certain operation possible in many different
ways. Returning to the code snippets above, how can we interpret what the
operation of "add a month to a certain date" consists? The choice of appropriate
syntax will vary according to the programming language and the programming
environment that the API is associated. While the first API chooses the syntax
"add", the second one presents the syntax "plusMonths".

In the semantic layer, the user tries to understand the meaning of the
interface. The interface of the API DateTime from Java 8 certainly presents
a more informative semantics than the API from Calendar from Java 7. In
the first, we have the term "plusMonths" which carries with it the semantics
that a number of months will be added to the date on the object on which it
is being operated. Clearly there is a leap in quality from its predecessor. In
the API Calendar, we have the method "add", which alone, without a careful
reading of the documentation, does not have an adequate semantics about
which operation will be performed when calling the method. Even so, the
user, when appealing to the documentation, will be able to understand the
semantics of the method.

It is on the third layer, the pragmatics, that the problems appear, and
for both APIs. The operation of "add a month to a certain date" (add or
plusMonths) is not like a mathematical operation, where regardless of the
context of use, the result is absolute. In most cases, where the API does not
have to face any decision making, the operation is basically mathematical. For
example, if we add a month to January 15, 2020, it is clear and well established
that the expected result is February 15, 2020. However, it is in special cases
that pragmatics comes into play. For example, what would be the expected
result when adding a month to the date January 31, 2020?

Answering the above question is a difficult task and we will certainly
not find a single answer that is acceptable to everyone. To get around such
a question and clarify possible doubts, we can use the conversational API
concept.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 59

3.3.2
Conversational API

Conversational API, in the most general and abstract sense, is that API
that can expose its internal logic and provide the possibility to modify its
behavior through dialogues with its user. The internal logic of an API is
its designer’s view of existing functionality, including how the API should
or can be used. Thus, it is expected that the user, when interacting with a
conversational API, will be able to perceive its functionalities and understand
how it should be used. In addition, the user will be able to change the API’s
internal behavior and its way of use. In a maximum degree of conversation,
the user can be considered as a co-designer of the API.

A conversational API must be able to meet the different users and their
contexts. The API can have a standard behavior on how to react in a decision
situation like the one presented above. In such cases, this internal logic has to
be quite explicit through the dialogues that the user will have with the API
during use. In the last case, the conversational API must be flexible enough
for the user himself to express his logic for the decision making represented
above.

Thus, we can derive the two main concrete characteristics that a con-
versational API should have. The first is the ability to explore the principle
of cooperation between users and designers. This means that an API must go
beyond semantics, also acting in pragmatics. The second characteristic of a
conversational API is its customization capability. Basically, this means that
the user can adapt its API when the usage scenarios offered by the designer
do not cover a specific need. In the following subsections, we describe in more
detail the concepts related to the main features of a conversational API.

3.3.2.1
Principle of Cooperation

The principle of cooperation is a concept proposed by Grice (20),
where the information sender must take care to interact with the information
receiver in the most complete and explicit way so that all messages being
correctly interpreted. According to Grice, this principle is achieved from
the four conversational maxims: the maximum of quality, the maximum of
quantity, the maximum of relevance, and the maximum of mode. Themaximum
of quality says that the interlocutors must present only true information,
avoiding false or doubtful statements. The maximum of quantity says that
interlocutors must present all necessary information, but without exaggerating
with information irrelevant to the context of the conversation. Themaximum of

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 60

relevance says that interlocutors should maintain focus and relevance, i.e. only
present information focused on the context of the conversation. And finally,
the maximum of mode text says that interlocutors should avoid the use of
ambiguous expressions when transmitting the information.

Respecting the principle of cooperation reveals that the speaker has suf-
ficient conversational competence to interact according to the requirements of
successful conversational exchange. It is the respect for the principle of coop-
eration that makes it possible the development of the discursive interaction,
in which the speakers participate to proceed in accordance with the specific
purpose and direction of the statements. For Grice, irony, the ambiguity of dis-
course and metaphor, by violating certain conversational maxims, also violates
the principle of cooperation.

Such conversational maxims should be used as a guideline during the
design process of a conversational API. Avoiding ambiguous language and the
use of metaphors is fundamental for the designer and user to understand each
other during the process of using an API. Furthermore, providing all and only
the necessary and relevant information for the emission of the desired message
through the API interfaces is fundamental for the conversation to take place
effectively and efficiently. For this, it is necessary that the designer, when
designing and implementing his API, can create as many usage scenarios as
possible. Thus, he will have enough information to implement the necessary
conversations, respecting the principles of cooperation described above.

In this sense, the programmer designer can make use of the scenario-based
technique. Scenario is a computer-human interaction technique widely used in
the traditional software design process (43). This technique involves imagining
and describing the possible interaction scenarios that a potential user needs
to perform in the system. These scenarios are a narrative, textual or pictorial,
concrete, rich in contextual details, of a situation of application use, involving
users, processes, and actual or potential data (43). A scenario must contain
the environment or context of application use, the definition of who the users
are (their characteristics, motivations, objectives), and the sequence of actions
and events that take place in the unfolding of the narrative, which must be
concluded with the user’s perception about the success or not in achieving its
objective.

3.3.2.2
Customization

The other key feature in a conversational API is the customization. As
significant as the semantics of an API may be, it is not possible to meet

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 61

all the pragmatic contexts (scenarios) of use. Therefore, even if the designer
has detailed several scenarios during the API design process, it is virtually
impossible to meet all users’ needs without customizing the internal behavior
of an API. The customization can be on several levels, from the simplest,
such as changing a configuration parameter about a certain behavior, to the
most sophisticated, such as the complete modification of a certain method by
another created by the user.

Thus, we can use customization to modify the internal behavior of an
API, using dialogues with the user in order to modify the internal logic. For
example, in the Calendar API example, we could add a new parameter to
the "add" method with the name "roundType". This parameter would give the
user the opportunity to communicate what type of rounding he would like
to perform, within his context of use, when the operation of adding a month
would result in an invalid date. However, a single type of adaptation may not
solve all cases. A user of an API might, for example, want the result to ignore
working days or weekends. Several other adaptations may be needed to the
method, which would imply that the API provides a way to customize its
internal behavior.

3.4
Conceptual Framework

In the previous section, we present the concept of a conversational API.
We established that every user interaction with the API could be considered
a communication process. Its efficiency is measured by the satisfaction of the
parties involved in the process (designer and user). Thus, the key to designing
a good interface is in the conversation. In this section, we will present our
conceptual framework for defining and classifying the conversation levels that
an API can achieve. For that, we will explore the concept of sign defined by
semiotics and its separation in three classes as Semiotic Engineering defends
it.

3.4.1
API Signs

Unlike the traditional human-computer interaction process, where we
have several types of signs (graphic, textual, sound, engines, etc.), in APIs and
programming languages interaction process, we are limited to textual signs
(function signatures, documentation, error messages, etc.). In this section, we
will unravel these different types of textual signs according to the time the user
interacts with them. We will classify them according to the original logic of

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 62

Semiotic Engineering: Static, Dynamic, and Metalinguistic. After that, we will
describe the conversation levels that an API can reach from each signs types.

Static signs: according to the Semiotic Engineering definition, a static
sign is one that the user can infer meaning without needing an interaction. In
the case of software APIs, we can consider static signs the vocabularies used
in method signatures (name of a function and the parameters), the types of
data (types of parameters and return types), and the structure (packages and
classes). These are elements which the user does not need to interact in order
to infer any meaning. When faced with the method signature below, a Java
experienced user would be able to infer that this function serves to add the
amount of months passed by the parameter "monthsToAdd" to the date object
used as a reference in the function call.

public LocalDate plusMonths (long monthsToAdd)

Listing 3.3: Java 8 DateTime API

Dynamic signs: the dynamic signs are those where the user can only
infer meaning after some interaction with the object, in our case, the API.
This category includes the signs related to the internal behavior of the API
(the result generated at each execution) and the return messages (messages
indicating success or error in the call execution). The dynamic signs can be in
accordance with the meaning inferred by the static sign, indicating to the user
that he is in the correct path. Alternatively, the dynamic signs can go against
the meaning inferred by the static sign, opening the user’s way to enter a
semiosis process and create a new understanding of how to use the API. In the
same example listed above, we can imagine the API user creating the following
code snippet.

/* Jan -01 -2020 */

LocalDate myDate = LocalDate .now ();

/* Add 1 month */

myDate . plusMonths (1);

/* Print Jan -01 -2020 */

System .out. println (myDate);

Listing 3.4: Java 8 DateTime API

Notably, the result represented above is not what the user expected.
Thus, the interpretation of the dynamic sign goes against what had been
interpreted in the static sign. The API user can then make a new inference
and realize that when executing a method on the date object, a new object is
created, and the previous object can be discarded. The user can then create

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 63

the following code below, and go through a new semiosis process to confirm or
not his hypothesis.

/* Jan -01 -2020 */

LocalDate myDate = LocalDate .now ();

/* Add 1 month */

myDate = myDate . plusMonths (1);

/* Print Feb -01 -2020 */

System .out. println (myDate);

Listing 3.5: Java 8 DateTime API

Metalinguistic signs: in the previous example, the user’s interpretation
is more easily inferred from an analysis of the third class of signs, the
metalinguistics. Metalinguistic signs are the one which speak about other signs.
That is, through them, the user can be explicitly communicated the meanings
coded in the system. In the case of APIs, metalinguistic signs can present
themselves in various ways, most commonly found in the form of official API
documentation, or bug report tools and official API forums.

3.4.2
Conversational API Levels

Now that we have established the three types of signs that an API
designer can use to pass their communication through an efficient conversation,
we will present a classification of conversational APIs from the efficient or non-
efficient presence of those signs in the APIs. In the next section, we will make
a classification of a set of date and time APIs according to the levels proposed
here.

3.4.2.1
Rudimentary Conversational APIs

From a Semiotic Engineering view, every interaction can be seen as an
exchange of messages between designer and user. Thus, every computational
artifact has some level of conversation. We will start our classification by a
more basic level, which we call rudimentary conversational API. A rudimentary
conversational API is one where the user and the designer cannot establish
complex and continuous conversations. Communication failures frequently
occur, either due to poor API design or inefficiency of the signs used in
communication. As we will discuss in the next section, there are many APIs
that fall into this category.

Another characteristic of an API with rudimentary conversation is the
inability to provide complete dialogs with the user to perform core tasks in

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 64

the API’s context. It is common to find APIs that transfer responsibility for
performing a particular task to the user. For example, in the context of a date,
it would be reasonable for the API to provide interaction dialogs where the
user can convert a text to date (or vice versa). As we will see in the illustrative
example in the next section, the absence of such functionality (or dialogue)
impacts the quality of use and interrupts the flow of conversation between
user and API.

3.4.2.2
Metalinguistic Conversational APIs

The second level in our conversational API classification is metalinguis-
tics. At this level, we say that the interfaces and behaviors of the API are not
enough to pass the designer’s entire metacommunication message, and that for
the user to make good use of and properly understand the design rationale and
the internal behavior of an API, he necessarily needs to consult metalinguistic
signs.

In this type of interaction, the user’s speeches are sent through interaction
with static and dynamic signs. However, the designer is only able to pass his
message effectively through metalinguistic signs. As we will discuss in the next
section, most of the existing APIs fall into this category. They are APIs that,
although well designed, cannot establish a conversation with the user using
only static and dynamic signs. The user always needs an extra explanation
from the designer to understand how to use the API fully. This explanation is
found in the form of documentation or through help forums.

3.4.2.3
Fully Conversational APIs

A fully conversational API is an API that can bring dynamic signs to
encoding time. Static and dynamic signs, in general, are already enough for the
designer to send his message. This is the level of conversation best suited for
several types of APIs, especially those where cultural and contextual aspects
can profoundly influence the abductive process and consequently, the user
rationalization of the API.

This full conversation needs to be achieved whenever the API designer
is in a decision-making situation that may be controversial. If a decision
can be misinterpreted, then the designer must choose to add some signs in
the interaction (be it static or dynamic). Dynamically, the designer can, for
example, add some warning messages to the function call back. Alternatively,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 65

in a static way, the designer can work with more meaningful vocabularies, even
if this implies a more verbose API.

However, by adding much information in static and dynamic signs, the
API may end up becoming very verbose and not very efficient during execution.
Improving the API’s quality of use can have a negative impact on other quality
aspects of software, which should be properly negotiated. Alternatively, we
believe the designer could think of two modes of operation for the API. One
operation mode for when the users are building their code and another mode
for executing a production code. Having two different source codes, one for
encoding and one for executing, may seem strange, but it is already something
widely used in software development. An excellent example is the CSS and
JavaScript minify mechanisms (47).

3.5
Evaluation of the conceptual framework

3.5.1
Date and Time APIs Classification

This section describes an evaluation of our conceptual framework per-
formed with date and time APIs from Java programming language. This eval-
uation demonstrates how our conceptual framework can be used and how dif-
ferent categories of conversational APIs can affect the quality of use and, con-
sequently, the final quality of the software, with fewer API-related failures.
We will use for this illustration two APIs known from the Java programming
language. The API Calendar from Java 7 and the API DateTime from Java
8. We chose to work with these 2 APIs because they are both from the same
programming language and widely used by the Java programming community.
Also, they are APIs with recurring problems reported on popular sites, such
as stackoverflow and github. So we want to demonstrate that, although there
is a clear evolution between the two versions of the API, there is still a gap of
understanding when pragmatic issues arise.

As defined in our conceptual framework, we cannot fit any date and time
API from Java programming language into the full conversational API cate-
gory. So, at the end of this section, we will exemplify how a full conversational
API can be instantiated for the context of dates. We will show only a small
piece of a proposed API that can support a dialogue committed to meeting the
user’s needs of the example usage scenario. To simplify and focus on just one
aspect of the API conversation, we will define a specific scenario to perform
our classification. Thus, we define a real usage scenario for an API and then

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 66

present a possible conversation that represents the user interaction with the
API to achieve the objective of the scenario described.

Scenario: an experienced programmer, who knows the Java program-
ming language and is accustomed to using APIs, wants to use a library that
helps him in some operations involving date type objects. One task he will
need to perform is to calculate the due date of billing bills. To do this, he will
receive a textual value representing a date, convert it to the date object of
the API used, and perform the sum operation according to the business rule
(1-month term). After the operation, he converts the date object back into a
text and returns the value. This scenario is recurrently found in APIs with the
following dialog exchange (U represents the user’s speeches and API(D) the
designer’s speeches):
1: U: Convert this text "Jun-15-2020" into a date object.
2: API(D): Object successfully created.
3: U: Now, I wish to add a month to the date object.
4: API(D): OK, I made the calculation here is the result.
5: U: Now, convert this object into a text.
6: API(D): OK, successfully converted -> "Jul-15-2020".

The proposed scenario and the dialogues described above were intention-
ally designed to create a pragmatic situation that may conflict between the
user’s and the designer’s understanding of the desired functionality. After all,
we may ask ourselves, what is "add a month". Some might say it is add a unit
to the month field of the date object. However, this can generate temporarily
invalid situations. When doing this operation on the date "Jan-31-2020" for
instance, we come across the non-existent date "Feb-31-2020". How should the
API react in that situation? That is what we will see in the following three
subsections: how the APIs Calendar and DateTime behave, and how we think
a full conversational API should behave.

3.5.1.1
API Calendar - Java 7 - Rudimentary Conversational API

We look for the Java 7 Calendar API the signs that somehow refer to
the proposed scenario. We can divide the scenario into two core activities: (1)
convert date into text (and vice versa) and (2) add some period to a date
object. These two core activities apply to the three APIs we are classifying
here. In the first activity, the Calendar API does not offer any support, or,
in words we are using in our work, the API does not provide a conversation
on this matter. Converting date to text, an activity that is considered central
given the context, is totally out of API scope, forcing the user to use code from

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 67

other APIs (SimpleDateFormat API) to assist him in his task. Regarding the
add period activity, the API offers the following method:

/** Adds or subtracts the specified amount of time to

the given calendar field , based on the calendar ’s

rules. For example , to subtract 5 days from the

current time of the calendar , you can achieve it

by calling :

add(Calendar . DAY_OF_MONTH , -5).

Parameters :

field - the calendar field.

amount - the amount of date or time to be added to

the field.*/

public abstract void add(int field , int amount)

Listing 3.6: Java 7 Calendar API - Static and Metalinguistic Signs

Analyzing the signs presented within the classifications of the section
3.4, we classified this API as rudimentary conversational within the proposed
scenario for two reasons. First, the API is not able to support all the
conversations required to run the scenario. The user needs to use another
API to convert text to date and vice versa. The second reason is the inability
of static and dynamic signs to establish a coherent conversation with the user.
It is not clear what the rationalization of the proposed ADD operation is. In
fact, use a mathematical metaphor for date operations is pragmatically wrong.
It may still be effective semantically, but when conflict situations occur, the
metaphor is not an appropriate choice for the conversation.

3.5.1.2
API DateTime - Java 8 - Metalinguistic Conversational API

The second API we use as an example falls into the category of metalin-
guistic conversational API. In the first task, to convert date into text, the API
presents simple methods and can establish a fluid and effective conversation
with the user. However, here we want to focus on the second scenario task,
the addition of a period to the date object. For the user to be able to achieve
productive dialogs with the API in this task, it is essential that he reads the
documentation carefully. There are no static or dynamic signs that indicate
the rationalization of the API over conflicting situations. Let us see below the
static and metalinguistic elements present in the API that can be useful for
the proposed scenario:

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 68

/** Returns a copy of this LocalDate with the specified

number of months added.

This method adds the specified amount to the months field

in three steps:

Add the input months to the month field

Check if the resulting date would be invalid

Adjust the day -of -month to the last valid day if

necessary

For example , 2007 -03 -31 plus one month would result in

the invalid date 2007 -04 -31. Instead of returning an

invalid result , the last valid day of the month ,

2007 -04 -30 , is selected instead .

This instance is immutable and unaffected by this method

call. */

public LocalDate plusMonths (long monthsToAdd)

Listing 3.7: Java 8 DateTime API - Static and Metalinguistic Signs

Although it manages to expose all the internal logic through the metalin-
guistic signs, the API does not reach the maximum level of conversation in our
classification. Previous work indicates that programmers have a hostile view
of API documentation. Thus, the API designer should bring core issues, which
may impact usage, to static and dynamic signs. Although the metalinguistic
sign is well established in the API behavior, there is no guarantee that (1) the
user will read the documentation and, even worse, (2) the user will agree with
the design decision adopted. This takes us to the last level of conversation,
which we will see next.

3.5.1.3
Fully Conversational APIs

As we cannot find a date API that meets the full conversation require-
ments we propose in this work, we will present a plausible API with modifi-
cations on top of the Java 8 DateTime API in the method that composes the
scenario we are discussing. This hypothetical API will show how it is possible
to go beyond the dialogs commonly offered by existing APIs. The following is
an example of possible dialogs in this hypothetical API:
1: U: Convert this text "31-jan-2020" into a date object.
2: API(D): Object successfully created.
3: U: Now, I wish to add a month to the date object.
4: API(D): An error occurred while performing the operation. The result

was an invalid date "Feb-31-2020". You need to explain what decision the

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 69

API must to make.
5: U: Understood. Perform the operation again, now with the behavior of

adding the remaining days by pushing the date to the next month.
6: API(D): OK, operation successfully performed.
7: U: Now, convert this object into a text.
8: API(D): OK, successfully converted -> "Mar-03-2020"

To meet the above dialogs, in coding time, the API needs to present a
conversational behavior. One way to do this is to add an additional message to
the return object of the API with useful information for the user to understand
the internal logic of operation. For example, if the called method is making
some internal decision that could be controversial, the designer could add a field
in the return object as: "warningMsg: Caution, adding periods operation may
cause invalid dates. In this case, the API will behave in a rounding manner...".
Such a message would already add a portion of the desired full conversation.
Another alternative is to trigger an exception, forcing and offering the user the
customization of the behavior.

Let us take as an example of the usage scenario involving the billing
date. In practice, the calculation of a due payment bill may not obey the
logic imposed by the API of rounding to the previous valid date. The user
may want the API to round to the next valid date, for example. Thus, it may
be consistent for the API to present static signs that indicate the possibility
of customizing such behavior. A signature suggestion for the method follows
below:

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 70

/** Returns a copy of this LocalDate with the specified

number of months added.

This method adds the specified amount to the months field

in three steps:

(1) Add the input months to the month field

(2) Check if the resulting date would be invalid

(3) adjusts if necessary as indicated in the parameter

roundType .

*** Use value 0 to throw an exception in case of invalid

date result

*** Use value 1 to indicate roll previous valid date

*** Use value 2 to indicate roll next valid date

May trigger an exception if you don ’t set roundtype

Be aware of the information messages on the return object

This instance is immutable and unaffected by this method

call. */

public LocalDate plusMonths (long monthsToAdd , int

roundType)

Listing 3.8: Fully Conversational APIs - Static and Metalinguistic Signs

A warning message, the triggering of an exception, and the possibility of
customization can elevate the API to the fully conversational category. With
these three new items in the API, the user can understand the internal logic
without consulting the documentation, which is often a laborious and tiring
task. Thus, we bring much of the designer’s communication, which was only
in the documentation, to the real user interaction with the API.

3.5.2
Refactoring API Classification

This section describes an evaluation of our conceptual framework per-
formed with two versions of an refactoring API. The two versions we are going
to present here are not yet for use in the public domain and are not yet in
production. They are part of an ongoing Doctoral research on the subject of
customization of program refactorings. Unlike the previous evaluation, we do
not have a rudimentary conversational version of the API, since the designer
was already concerned about offering an API with good quality of use. How-
ever, the fully conversational version is presented as a solution to improve the
original version. As in the previous evaluation, we will show only part of the
API contextualized within a usage scenario.

Scenario: An inexperienced Java programmer wants to improve the
structural quality of his source code. He does not understand much about

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 71

code-smells and refactoring, only what he learned during his college course.
He knows some types of refactoring available in a widely-popular refactoring
catalog (18), but he cannot always understand the need for refactoring. So he
would like to use an API to help him on refactoring his code. He will trust the
tool but would like to fully understand what is happening.

3.5.2.1
Refactoring API - Metalinguistic Conversational API

A snippet code from the first version of the API classified as metalinguis-
tic can be seen below. We highlight the method responsible for performing the
refactoring operation. In this method, the user gives a list of files for the API
to scan and search for refactoring opportunities. At the end of the operation,
a list of refactored files is returned to the user.

In this version of the API, the designer had put in the documentation an
explanation about the refactorings his API supported, and how the operations
were performed. Thus, this conversation, which may be necessary for the full
understanding of some users, was left out of the interface and appeared only in
the metalinguistic signs. The source code below was created for this operation:

/** Search for problems and apply refactorings in the

list of files. **/

public List <File > scanAndApplyRefactoring (List <File >

files)

Listing 3.9: Refactoring API - Metalinguistic Conversational API - Static and
Metalinguistic Signs

3.5.2.2
Refactoring API - Fully Conversational API

In order to give more conversation than the previous version, the designer
brought the API interface an explanation about the problems encountered
and refactoring needs. In this version, we have two important features of
a conversational API. First, we have a conversation flow that determines
the user interaction with the API. The designer decomposed the search and
refactoring operation in two different operations by realizing the need for more
conversation. First, the user searches for problems, and then he can refactor
a certain code location containing each problem. Thus, a conversation flow is
established between user and API.

Besides, the second feature that makes this case a fully conversational
API is the presence of static and dynamic signs that explain the refactoring

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 72

decisions. The "applyRefactoring" operation returns, besides a list of refactored
files, a list of explanations associated with each refactoring performed. Thus,
an inexperienced API user, such as the one in our analyzed scenario, will
understand the reason for each of the refactoring operations performed.

/** Searches the list of files for existing codesmells

and returns a list with an explanation and the

location of each problem . **/

public List <String > scanFiles (List <File > files)

/** Applies refactorings to the list of files according

to the code - smells found. Returns the list of

refactored files and a list of explanations justifying

the need for each refactoring . **/

public Map <String , File > applyRefactoring (List <File >

files)

Listing 3.10: Refactoring API - Fully Conversational API - Static and
Metalinguistic Signs

3.5.3
Machine Learning API Classification

This section describes an evaluation of our conceptual framework per-
formed with two versions of a Machine Learning API. The two APIs we are
going to present here are not in the public domain. Similar to the last evalua-
tion, we do not have a rudimentary conversational version of the API. However,
the fully conversational version is presented with a solution to improve the orig-
inal metalinguistics version. As in the previous evaluation, we will show only
a piece of the API contextualized within a usage scenario.

Scenario: A geologist wants to create predictive models for image
research based on geological data. However, they have no interest in learning a
programming language for this. They are looking for an API that can abstract
Deep Learning concepts, and that can provide a set of ready-made models. He
would like to take an existing model and then run his training and prediction
on top of his database.

3.5.3.1
Machine Learning API - Metalinguistic Conversational API

A snippet code from the first version of the API classified as metalin-
guistic can be seen below. We highlight the "train_model" and "run_model"

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 73

operations used by the geologist in his goals. In these two operations, it is nec-
essary to inform which model is desired in the training and execution. However,
such information is only present in the API documentation. Thus, either the
user knows the type of model in advance, or necessarily the conversation is
transferred to the API metalinguistic signs.

/** Train the model using the defined data and

hyperparameters . To see the list of available models ,

check the API documentation . **/

void train_model (data , model , hparams)

/** Executes the model trained to perform predictions **/

void run_model (model , hparams)

Listing 3.11: Machine Learning API - Metalinguistic Conversational API -
Static and Metalinguistic Signs

3.5.3.2
Machine Learning API - Fully Conversational API

In order to give more conversation than the previous version, the designer
brought the API interface an list of available models. In this way, the user
would not need to examine the documentation every time he wants to use
another existing model. Besides, to further promote conversation, the operation
of listing models can be triggered with a filter via the "model_type" parameter.
Below, a snippet of API code representing this conversation flow.

/** Train the model using the defined data and

hyperparameters . To see the list of available models ,

use the " available_models " available operation . **/

void train_model (data , model , hparams)

/** Executes the model trained to perform predictions **/

void run_model (model , hparams)

/** Lists the available models according to the type. To

list all models , pass null value to the type. **/

List <Model > available_models (type)

Listing 3.12: Machine Learning API - Fully Conversational API - Static and
Metalinguistic Signs

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 74

3.6
Discussion

Using concepts of communicability and Semiotic Engineering in API in-
teraction has been discussed in the community for some years (1). We believe
that this approach has a lot to contribute to the traditional software engineer-
ing process. This view on the API design goes beyond non-functional require-
ments commonly related to designers’ concerns, such as robustness, modular-
ity, and security. In this sense, the proposal of using Semiotic Engineering as
a background theory is to put communicability as the center of the develop-
ment process, always thinking about offering the best interaction, using the
metaphor of conversation, to the end-user.

Through the examples listed in the previous sections, we realize how
urgent the need to have an API design method that takes into account the
aspects we are discussing in this work. The absence of conversation in an
API leads users to its usage misinterpretations that can cause damage to the
software being produced. The quality of use of an API unquestionably improves
the resulting software quality. However, what we discuss here goes beyond that.
We argue that conversation is a way to help API users recover from an API
usage error, even if the user does not notice the existence of such an error.

By classifying the APIs used as examples, we realize some limitations in
our conceptual framework. For example, could there be other types of signs
that the API designer can use to pass on their communication? Or, would it
be possible to divide the conversation levels into more than 3? And would this
bring any advantage? As far as we investigate, these questions are open and
can be addressed in future studies with different types of APIs.

The proposed conceptual framework can also be extended to other API
domains and contexts. An API will always have the same sign structure that we
list in this work. Our classification in different levels of conversation, relating
the classes of signs proposed by Semiotic Engineering, has the robustness to
help the API designer to think which sign is more appropriate to pass the
desired message to the user. By establishing that a fully conversational API can
pass all communication and internal logic using only the static and dynamic
signs, we help the designer realize the need to give autonomy to the user to
interact with his API without consulting the documentation at all times.

Finally, we point out that a study found in the literature indicates
that API users tend to not consult the official documentation frequently
(3). Consequently, it is relevant to call attention to the Software Engineering
community that we need to better think about our API designs and how to
interact with such APIs, taking into account the practical reality of software

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 75

development.

3.7
Related Work

In recent years, several researchers have investigated API usability. Some
papers focus on strategies to improve the design process of an API, such as
Watson (54) and Mindermann (27). These studies propose approaches to design
with a focus on ease of use, using consolidated usability techniques in the HCI
area. Eduardo Mosqueira-Reya et al. (28) have compiled a set of guidelines and
heuristics to introduce usability in APIs during their project. Yessenov et al.
(56) propose DemoMatch, a tool to support programmers in discovering how
to use an API based on interactions with software that already uses it. Nguyen
et al. (32) present a tool to scan the source code of an Android application
in order to find possible security flaws caused by inappropriate APIs usage.
Ichinco et al. (22) propose Example Guru, a tool for recommending APIs based
on the context of the programmer’s code.

The work that comes closest to our study is that of Santos and Myers
(46). The study is based on the creation of annotations so that the API
designer has one more tool to explain his design decisions. These annotations
are attributes of a Java class whose goal is to make possible the declaration of
metadata on objects. In this work, they made a small proof of concept to test
this form of interaction between designers and users through annotations.

As we saw in this section, there are few studies that bring the API
designer to the center of the phenomenon. Also, communicability as a desired
quality in a programming interface does not appear in any of the studies found.
Compared with the related work, our perspective is remarkably different from
the approaches found in the literature. Our focus is on conversation and the
two groups of humans involved with it, users and API designers.

3.8
Conclusion and Future Work

In this work, we present and discuss a conceptual framework for the defi-
nition and classification of conversational APIs. We present the conversation as
a new perspective to capture the interaction between programmers and APIs.
Based on the Semiotic Engineering theory, we describe the different classes of
signs and how we can adapt them to the context of the communicability of
software APIs.

Besides the proposed conceptual framework, we also present and discuss
an evaluation of the framework on top of APIs from different domains. We

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 3. A Conceptual Framework for Conversational APIs 76

classify the APIs according to the conversational levels that were proposed,
showing an example of how our framework can be used. These examples
can guide a designer through the levels of conversation during the process
of creating his API. Furthermore, we realized that possibly our conceptual
framework needs to be improved in order to address some limitations. We
need to investigate whether it is possible to cover more than three categories
of conversation and whether there are different types of ways for the designer
to send his communication that was not addressed in our framework.

Currently, our research goals are to create a method to assist designers
in creating conversational APIs. Such design method can benefit from the
conceptual framework we propose and describe in this article. In the long term,
we hope to realize our method and be able to test how APIs conceived from
the concepts defended here can have a better quality of interaction, resulting
in fewer problems of misuse and failures resulting from misinterpretations.

3.9
Summary of Chapter 3

In this chapter, we present the conceptual basis of this doctoral thesis. We
define what a conversational API is according to the Semiotic Engineering view
(section 3.3). We also demonstrate how the classification of signs proposed by
Semiotic Engineering can be applied to the context of software APIs (section
3.4). Furthermore, we demonstrate how our conceptual framework can be
applied to assist designers in defining conversations in their APIs. An API
designer who has the knowledge proposed by our framework will be better able
to decide on the distribution of the conversation between the three different
types of signs present in an API.

This chapter and its conceptual definitions serve as a theoretical and
methodological guide for the following two chapters. Guided by the concepts
proposed in this chapter, we present in the next chapter, a technical action-
research study conducted in support of an API design. Chapter 5 presents the
method based on the concepts defined in our conceptual framework and on the
results that have emerged from the action-research described in chapter 4.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

4
On the Support for Designing a Conversational Software API:
An Action Research Study

Based on a perspective anchored in Semiotic Engineering theory (13), we
consider an API as an artifact mediating the communication process between
designers and users (chapter 2). During the development of an API, the
designer needs to create dialogues with which the user will participate. In
interaction time, the user and designer alternate conversation turns through
these pre-created dialogues. As discussed in chapter 3, an API capable of
offering effective dialogues to its users is called a conversational API. Thus, a
conversational API is the one that communicates to its users its form of use
and its internal logic of operation, making it clear the design rationale when
abstracting concepts and tasks.

Unfortunately, there is limited empirical knowledge about the challenges
designers face when creating a conversational API (section 1.1). Thus, in this
chapter, we describe an technical action research study that we carried out
in an R&D laboratory of a large IT company. Over several months of action
research, we followed the design process of a machine learning API. We run
three cycles of action research exploring and reveling the advantages and
limitations of a set of techniques to support the design of a conversational
API (section 4.3). The design of such conversational API was based on an
existing API with poor conversationality. The main scientific contribution in
this chapter is a set of challenges on the use of techniques to support API design
(section 4.4). For each technique used, we also compiled a set of important
lessons learnt that can improve the design process of an API.

The study reported in this chapter was submitted to a high reputation
conference (Qualis A3). The paper is entitled On the Support for Designing
Conversational Software APIs: An Action Research Study (5). As we discuss
in section 4.8, the lessons learnt and the results of the action research were
fundamental to the conception of the method to support conversational APIs
design, which is presented as the main scientific contribution of this thesis,
in chapter 5. The reader may want to skip section 4.2 since the theoretical
basis presented is very similar to the section 3.2. The reader may also skip the
beginning of section 4.1 since the motivation is the same in chapter 1.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 78

4.1
Introduction

Application Programming Interfaces (APIs) are everyday tools in soft-
ware companies. APIs are software components designed for providing spe-
cialized resources for supporting the development of software systems. These
components can be developed in several programming languages, offering func-
tions to support the execution of activities in particular domains. However,
designing APIs for users’ needs is far from trivial (29). In this way, one can
see that the difficulties on proper understanding and using APIs interfaces is a
recurrent claim (34, 57). These difficulties address the need of providing APIs
communicability and usability since the early development stages (21).

Existing work to support API design often focuses on supporting design-
ers in providing APIs’ usability (31, 49, 50). However, these approaches lack
on addressing communicability aspects (13), which is essential to assure that
API users will properly understand the API interfaces. Usability focuses al-
most exclusively on users, with aspects such as their ability to learn how to use
an artifact and what level of ease and efficiency of use (36). On the other hand,
communicability is defined as an interactive digital artifact’s ability to com-
municate to users, in an effective and efficient way, its designers’ intent (which
facilitates users’ understanding and decisions about how to use the API) (13).
Communicability addresses different, sometimes complementary, aspects ad-
dressed by usability approaches. Communicability goes beyond usability when
pragmatic conflicts of interest between designer and user occur. When de-
signer and user do not have the same understanding of a particular operation,
an API with low communicability will not be able to pass its design rationale
to the user. As consequence, it is very common reports of bugs coming from
poor communicability in many popular APIs, such as Java Reflection (42) and
automated refactoring APIs (38). For instance, let us consider the following
interface offered by the Calendar API of the Java programming language:

public abstract void add (int field, int amount)

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 79

At stackoverflow.com, one of the most popular discussion forums for
programmers, it is not hard to find postings with wrong explanations about the
operation and behavior of the API above. In general, these posts are associated
with bugs caused by misuse of the API. An example is a post which can be
found at this link1. In this example, a user reports an issue addressing the
result of the operation of adding a month to January 31 by using the "add"
operation. Among the several answers provided by the other users, we observed
that several users also misinterpreted the logic of the API. For instance, one of
the answers to this issue argue that adding one-month is the same that adding
add 30 days in the API, which would explain the unexpected result.

The case reported above does not address difficulties for using the
interface, but it addresses the poor communication between the API designer
and the APIs user on how to properly using the interface to support the users’
needs. The users know how to call the API operation, set parameters, and
which data should be passed. However, it is noted that users do not understand
the API’s internal operating logic, based on inappropriate assumptions about
its use. Once they are convinced that they know how to use the interface, they
will not resort to its original documentation. For them, they will consider the
interface has some bug as it did not work as they expected.

Thus, we say that the conversation between designers and users was
not well established in this API. Problems like this could be solved by
implementing conversational APIs. A conversational API is an API capable
of indicating the appropriate use to its users, solving pragmatic conflicts
during the API use. The lack of the conversational characteristics hampers
API users on understanding how to properly use the API’s interfaces (3). The
concept of conversational API is anchored in the Semiotic Engineering (13), a
theory of human-computer interaction. Semiotic Engineering establishes that
a computational artifact can be seen as a mediator of communication between
two interlocutors: the one who created the artifact, that is, its designer, and
the one using the artifact, that is, its user (13).

Although the potential benefits of establishing a proper conversation be-
tween API designers and users (15), we could not find in the technical literature
approaches for supporting API designers on identifying and parameterizing
the necessary conversations between APIs and users. In particular, methods
focused on usability (28, 27, 31, 54) do not cover communicability issues. These
methods focus exclusively on user interests, leaving out an in-depth analysis
of the design logic used by the one who created the API.

In this paper, we report the challenges and lessons learnt from a tech-
1http://stackoverflow.com/questions/14618608

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 80

nical action research (52) conducted for redesigning an API in order to make
it conversational. This API was designed to be widely used in a large scale
industrial settings. The redesign of the API was required due to the consid-
erable challenges perceived on its use. The action research was conducted in
the context of a project in a research and development lab at IBM. During six
months, one researcher worked with the development team for redesigning a
machine learning API for seismic imaging. During the action research, we pro-
posed and assessed interventions for redesigning the API based on theories of
human-computer interaction, especially Semiotic Engineering. The conduction
of the action research allowed us to be continuously using the lessons learnt
for emerging innovative solutions while solving a real problem from industry.

In the following sections we summarize our theoretical background (sec-
tion 4.2); describe the action research performed and its main challenges (sec-
tion 4.3); report the results of the action research and the lessons learnt (section
4.4) discuss the contributions of the new API from the perspective of the de-
velopers involved in the action research (section 4.5); present and discuss some
related work (section 4.6); discuss the limitations and threats to validity (sec-
tion 4.7) and present our conclusions and perspectives of future work (section
4.8).

4.2
Theoretical Background

Our research aims at supporting API designers in designing conversa-
tional APIs. From a practical perspective, we expect that this support would
lead to the development of APIs easier to understand and manipulate, inde-
pendent from the programming experience of their users. For reaching this
objective, we should go beyond traditional usability concerns, typically insuf-
ficient to establish an effective communication between users and designers. In
this way, we opted by grounding our research in the Theory of Semiotic Engi-
neering. This theory understands the process of Human Computer Interaction
(HCI) as a particular case of metacommunication between humans mediated
by computers (13). In this view, metacommunication is the communication
taken between users and designers through a software artifact (see Fig. 4.1).
Thus, the metacommunication process has three interlocutors: the designers
who encode their intentions into software; the users, who express their own in-
tent and interpretations by interacting with the software, and the technology
itself, which represents the designer at interaction time.

For the Theory of Semiotic Engineering, software is a tool used to
exchange messages between two groups of individuals: users and designers. One

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 81

Figure 4.1: Semiotic Engineering and Metacommunication

of the main principles of Semiotic Engineering is the communicability. Unlike
usability, which definition is strongly centered in the users, communicability
is defined as the ability of an interactive artifact to effectively communicate
its designers’ intent to their users. Therefore, it is important to have in mind
both designers’ and users’ aims when setting and evaluating the quality of the
communication provided by the API’s interfaces.

In regular software interaction, interfaces with inadequate communicabil-
ity may lead the user to mistakes during the interaction. Semiotic Engineering
calls those mistakes as communicability failures. A conversational software in-
terface is one that can mitigate the occurrence of communicability failures,
through error recovery dialogues designed by developers. For instance, if the
user of text editor accidentally clicks in the "close button", the designer had
already prepared a conversation with the user to find out whether he actually
intends to close the application. Therefore, although the communicability fail-
ure happened, a conversational interface was able to bring the user back to a
fruitful interaction. In this sense, we understand that a similar concern should
be applied to the design of conversational APIs.

Based on a Semiotic Engineering perspective, we may define an API as a
particular type of software designed for mediating the communication between
two groups of programmers: the API designers and the API users. API design-
ers communicate their intentions using expressions defined through method
signatures, protocols, return values, and textual description (documentation).
API users express their interpretation of the designers’ intent while using APIs
in their software systems. If the communication is not adequate, issues related
to the incorrect use of APIs may arise, resulting in bugs (34).

Thus, we can apply the principles of Semiotic Engineering to identify
opportunities for improving the metacommunication of APIs. In our research,
this application is represented by the concept of conversational APIs. A

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 82

conversational API is an API designed to offer mechanisms for improving the
effectiveness of the conversation between its designers and users. API designers
should predict the different types of communicability failures that can occur,
preparing the API to bring the user back to a fruitful interaction. For this
purpose, the API interface should carry out its internal logic of operation to the
API users. These users should be able to identify all the API’s functionalities,
understanding how to properly use them. Besides, the users should be able
to adapt API internal behavior selecting through different pre-programmed
design choices.

From a pragmatic perspective, conversational APIs should attend the
four principles (maxims) of cooperation proposed by Grice (20): maximum of
quality, maximum of quantity, maximum of relevance, and maximum of mode.
The maximum of quality requires that the interlocutors provide only correct
information. The maximum of quantity refers to the interlocutors present all
the necessary information objectively, avoiding unnecessary information. The
maximum of relevance requires that the interlocutors must stay focused on
providing only relevant information for the conversation. Finally, the maximum
of mode requires that the interlocutors should avoid the use of ambiguous
expressions when transmitting the information.

4.3
The Action Research

In this section, we present the settings of the action research conducted at
IBM. We present the goals of our study. Then, we describe the research context,
characterizing the study participants, and the project involved. Finally, we
report how we collected data during the cycles of the action research.

4.3.1
Research Objectives

We opted by conducting a technical action research due to our intention of
developing a feasible approach for supporting API designers emerged from their
practice. In this way, we planned to not only observing but also collaborating
with a development team on redesigning a real API. From this, we expect
to get an in-depth view of the challenges involved in the development of a
conversational API, while proposing and validating innovative interventions to
solve the problem of the practice during the development process.

Goals. the main goal of our research is to support designers on
conceiving and implementing conversationality in new or already existing
APIs. For this purpose, we want to identify effective strategies for improving

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 83

API’s interfaces, once they are responsible for establishing the conversations
between designers and users. Thus, our first goal with this action research is to
redesign the interface of a real API, making it conversational. In this way, we
intend to cover from the early development steps until the implementation
of the API interfaces. Our second goal with this study is to use the rich
experience obtained in the action research to compile the lessons learnt for
supporting the development of a future method for supporting the introduction
of conversationality in APIs.

The goals of our study do not include the implementation of the API’s
internal source code. We also do not intend to review the architectural aspects
of the original project.

4.3.2
Research Context

The action research was carried out in the context of an industrial project
for redesigning a Machine Learning API for supporting systems for seismic
image investigation. We choose this project due to the valuable opportunity of
performing our investigation in a challenging context, which includes the high
complexity of its domain and the high levels of quality expected from the API
by the stakeholders.

Team. The project was conducted by a development team from a re-
search and development (R&D) department of IBM. This department devel-
ops software solutions for supporting research and practice on using natural
resources. More specifically, this R&D department has been investing effort
in developing software solutions supported by machine learning, such as web
services and APIs, to assist decision making in areas such as agriculture and
geology. For this purpose, the department’s professionals have an outstanding
theoretical and practical background in developing software solutions based in
machine learning. Besides, most of them also have a extensive research back-
ground in Computer Science.

The development team of this project was composed of three API
designers, including the technical leader. Among others, the technical leader
was responsible for defining the API design and its interfaces. Besides being
experienced programmers, all team members are also researchers, including a
Ph.D. in Engineering and two Ph.D. candidates in computer science. They also
have a considerable background on using the technologies used in the project,
which includes the programming language (Pyton) and deep learning.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 84

Figure 4.2: The Action Research Cycles

4.3.3
Execution

Action research usually requires long-term execution. In general, an
action research study involves the execution of several interaction cycles along
weeks or months. The central idea is to use the lessons learnt in the previous
cycle to plan the subsequent action that will be performed in the following
cycle, evaluating its results. Each cycle of an action research is commonly
composed of five steps. They are [1] diagnosis [2] planning; [3] action; [4]
evaluation of the intervention performed; and [5] learning (52).

Three complete action research cycles.The main author of this
paper carried out the action research with the development team by six months.
During this period, he performed three complete action research cycles. During
each cycle, the author could perceive a receptive environment for research.
At the end of the third cycle, the action research team concluded that the
appropriate resources and settings to redesign the API were reached out. In
other words, they concluded that the design of the API reached the desired level
of conversation needed. Besides, we also concluded that there was sufficient
knowledge to report practical lessons learnt on designing the conversational
API. In the next subsection, we report the research procedures carried out
throughout each cycle and how data collections were made.

4.3.4
The Action Research Cycles

Action research is characterized by its iterative nature, having complete
cycles that start from the identification of a problem to the evaluation of
a proposed solution (52). As already mentioned, our action research involved
three complete cycles. Figure 4.2 presents an overview of the three cycles of our
action research. Each cycle started with a problem to be solved addressing the
API design, which can be seen in the lower-left box. After planning, executing,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 85

and evaluating a solution, we close a cycle with a learning process. In this
subsection, we describe in detail how the five steps were performed in each cycle
from the perspective of the individual that played the role of the researcher,
i.e., the main author of this paper.

4.3.4.1
First Cycle

At the beginning of the project, our goal was to design the conversational
API. Since the early stages, we realized that the API design team was not
sufficiently aware of the API users. At the same time, we also perceived that
the application domain of the API addresses different user profiles. Thus,
characterizing these profiles would not be a trivial task. This challenge led
us to raise the following questions: what are these users? What are their goals
and needs? To answer these questions, we carried out the first cycle of the
action research (see figure 4.2, first box). The first cycle lasted around six
weeks.

First, we explored the technical literature to better understand the
problem and look for solutions. We search for existing tools and techniques to
support the identification of the API users’ profiles and their needs (planning
step). We finished this step concluding that characterizing the API users
through personas (11) combined with the description of interaction scenarios
(7) would be a feasible alternative to define the users’ needs. Both techniques
have been shown useful in the field, especially in the interaction design of
software interfaces. (43).

In the third step, we conducted daily meetings with the development
team to characterize the personas and interaction scenarios. In these meetings,
which lasted about one hour, all team members actively participated in
the discussion for characterizing the API’s personas and their corresponding
interaction scenarios. AAfter concluding the characterization tasks, the team
participated in a meeting for interactively evaluating the correctness, the
comprehensiveness, and the usefulness of the artifacts generated. After the
meeting, the development team concluded that the API should attend two
personas in two scenarios composed of four sub-scenarios. Besides, the team
also concluded that the characterization of personas and interaction scenarios
was a very positive experience. They found that these techniques allowed them
to identify new user’s profiles and alternative ways for using the API not
identified in the API’s original design.

Finally, we conducted a meeting for compiling the lessons learnt in the
first cycle of the action research. In this meeting, we reflected on which extent

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 86

the action performed helped us in reaching the goals of the action research, as
well as on which extent this action could be improved. After this reflection, we
found that the team had considerable difficulty in identifying the API personas
and interaction scenarios. This finding led us to compile a checklist for guiding
API designers on performing these activities (subsection 4.4.1).

4.3.4.2
Second Cycle

We started the second cycle by assuming that the whole set of API’s
user profiles and their corresponding needs of use were properly characterized.
However, we diagnosed that the characterization of personas and scenarios
are too informal and subjective for supporting the future implementation of
the API. Thus, we concluded that we should model the conversations and the
interaction paths corresponding to the scenarios established to each persona.
Therefore, we started our second cycle motivated by the following question
(figure 4.2): How to model the desired conversations?

The second cycle lasted around ten weeks. We searched by the technical
literature aiming to find the most appropriate technique to assist us in
modeling the API conversations. Once we did not find a proper technique
to support our needs, we found some closer and adaptable alternatives, such
as MoLIC (12), UML Interaction Diagram (48) and AlaDIM (33). While UML
Interaction Diagram and AlaDIM are specific to software interface interaction
design, MoLIC is more agnostic to the artifact type being designed. In addition,
we can highlight that MoLIC has the characteristic of modeling interaction
as a metaphor of the conversation established between designers and users
(12). Besides, one can see that MoLIC has been frequently used in software
projects to design human-computer interaction (44). Thus, we opted by using
this MoLIC to redesign the API.

After selecting MoLIC, the team started to perform the action, i.e., to
model the interaction scenarios. We originally planned to build one model for
each interaction scenario obtained (first cycle). However, we realized during
the action that certain scenarios are very similar. It allowed us to cluster some
scenarios, reducing the number of models built. As a result, we created different
models for representing completely distinct conversations.

Our evaluation of the action stated by discussing the main challenges
faced by the team on using MoLIC. Due to its flexible nature to model
conversations in general, MoLIC did not support the type of modeling they
considered suitable for APIs. Thus, the developed team missed a more formal
definition of the API dialogues. While conventional software dialogues with

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 87

the users may occur in several ways (images, links, text, menus, and others),
user-API dialogues are necessarily performed by the exchanging of restricted
messages through parameters and returns of operations. For this, MoLIC could
not meet this need of designers of formal definition. Besides, MoLIC allows
verbose and subjective dialogues, which is frequently undesirable in the context
of software APIs. Thus, the development team learnt that some adaptations
should be made to MoLIC better serving the propose of the project. These
adaptations are described in subsection 4.4.2.

4.3.4.3
Third Cycle

After designing the whole interactions and modeling the API conversa-
tions, the development team faced the need to convert these models into source
code by implementing the API interfaces. Thus, our challenge in this cycle was
to implementing the API’s operations signatures, return values, and function
parameters. The third and last cycle of the action research lasted around ten
weeks.

For overcoming this challenge, we provided the design team with a set
of best practices and guidelines for building and structuring the API’s source
code. Those guidelines and practices focused on realizing the conversations
designed in the previous modeling cycle. However, we could not find in the
technical literature guidelines to support the API implementation based on
MoLIC models. Thus, the development promoted discussions for depicting
their own guidelines for converting each element of the MoLIC models to the
API’s interface elements. Our goal here was to emerge mapping rules in such
a level that the interface elements could systematically be extracted from the
content of the MoLIC models. These guidelines are described in subsection
4.4.3.

In the third step of this cycle, we implemented the API interfaces by
following the proposed guidelines. The implementation was all carried out by
the API development team, including the researcher. At the end of this step,
all the API interfaces were successfully implemented. Then, the researcher
conducted a structured interview with the team’s technical leader. We use the
interview to gather the feedback of the technical leader regarding not only the
current cycle but also regarding the previous cycles of the action research. The
findings of this interview is discussed in section 4.5.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 88

4.4
Lessons Learnt

During the execution of the action research, We learnt a set of valu-
able lessons for designing conversational APIs. In this section, we present and
discuss these lessons, distributed in three different subsections. The first sub-
section addresses the characterization of the API users. The second subsection
addresses modeling the possible conversations between the API and its users.
The third subsection addresses the definition of the API interfaces.

4.4.1
Who are the Users

4.4.1.1
Challenge: Making Designers Aware of the Users’ Needs

API designers should be aware of its users for properly identifying the
API’s functionalities and interfaces. For introducing conversationality, this
knowledge is also required. However, in this case, we need to reach a deeper
level of knowledge regarding the whole set of the API users’ profiles for properly
identifying the set of conversations that could be established between the API
and its users.

For example, let us consider the design of an API for deep learning.
Its users range from experts in deep learning to novice programmers. For the
experts, the API designer would feel comfortable on specifying interfaces using
more specific terms addressing deep learning, such as "back-propagation" or
"convex optimization." On the other hand, the API designer should abstract
these concepts from professionals, such as medical doctors and geologists,
which would use the API in their programs.

4.4.1.2
Solution: to Adopt Consolidated HCI Techniques

In our action research, the first step we identify as necessary to answer
is how to properly identify which user profiles the API should support. As
described in the previous section, we have used traditional HCI artifacts -
personas and interaction scenarios - to try to map these users and their needs.

Personas: The concept of persona was first used by Alan Cooper (11)
in the context of software design interaction. Personas are fictional charac-
ters used to characterize and combine the different roles played by software
users. The characterization of each persona involves characterizing its domain
knowledge, its motivation for adopting the developed technology, and its tech-

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 89

nological background. Besides, it also involves characterizing the beliefs, values,
and behaviors surrounding this character.

Scenarios: After establishing the personas, the next task consists of
composing the interaction scenarios. An interaction scenario (43) aims at
specifying in detail the user’s actions and the corresponding system responses.
In our understanding, the system is the API under development. Interaction
scenarios are composed of textual and concrete narrative, rich in contextual
details. This narrative reports API’s situations of use by characterizing the
corresponding users, processes, and (potentially) real data. We use interaction
scenarios for describing all the possibilities of interaction that a persona may
have with the API.

4.4.1.3
Lesson Learnt: API Designers Have Difficulties on Establishing Personas
and Scenarios

During the personas’ identification and creation phases, the API design-
ers reported difficulties on identifying and properly characterizing the API
users. Truthfully, personas and interactions scenarios are not a method of re-
quirements gathering, but a method of requirements registering. The lesson
learnt at this stage was the need to give additional support to the designers on
how to identify the API’ personas. In this sense, we had to investigate what
would be the important aspects to consider when describing the personas for
an API.

API metacommunication template: The Semiotic Engineering (13), as a
theory to support HCI, offers a technique that can help in the identification
of users, the metacommunication template (13). Based on this template,
Afonso (1) proposes the API metacommunication template. This template is
composed of generic questions that may be used for characterizing users in the
context of any software. Table 4.1 presents the template questions adapted for
characterizing API users. It is important to note that some aspects addressed
by the template may not be applicable in all contexts. For example, in the
development of a general-purpose API – such as date APIs, or database access
APIs – certain aspects such as "academic background" may be irrelevant.
However, in developing an API to support scientific research, such information
becomes eminent. It is part of the designer’s work to identify which aspects
are relevant in its API domain.

Personas were crucial to create empathy with users and to start develop-
ing their API thinking about another person’s existence on the other side. By
using the adapted metacommunication template, the API designers were able

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 90

Table 4.1: API Metacommunication Template
Question Aspects to be covered in the answers

Who are the API users?

Culture / Language
Professional or End-User Programmer
Ursers’ values
Relevant demographic data
Programming Experience
Academic background
Knowledge of programming languages and paradigms
Types of API interaction patterns
API domain knowledge

What do they need or
want to do?

Intended use cases for the API
Use case preconditions and restrictions
User needs

What are their API
preferences?

Programming conventions and culture
Language specific conventions and culture
Parameter styles and return types
Appointment styles
Productivity
Accuracy in activity
Use of auto-complete and other shortcuts
Consult documentation or learn by doing

Why do they have these
preferences?

Lack of experience or professionalism
Personal values
Naming preferences
Programming culture
Knowledge of other languages and APIs
Academic training
Programming environment requirements

to define two different personas (table 4.2 and table 4.3): a machine learning
expert and a geologist having little background in programming and machine
learning algorithms. We observed the template was useful for supporting the
identification of the personas‘ needs.

The description of these personas were fundamental to support the
creation of the conversations. When modelling the API interfaces, the designer
needs to take into account the characteristics of each persona. This empathy
created will generate new and adequate functionalities for the API, as we will
see in the next subsection.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 91

Table 4.2: Persona 1 - Machine Learning Expert

Who are the user?

They are professional programmers, with experience in the
Python programming language, with academic backgound
in the area of artificial intelligence, who know the terms and
notations used in the area of DL. They are accustomed to
python language patterns and object oriented. Intermediate
knowledge of the API domain. They can "read" geological
data, but have difficulty interpreting them.

What do they need or
want to do?

They would like an API that offers an abstraction on
geological data. They want to build the neural networks
of their DL model. They don’t have much knowledge about
geological data, and would like the API to support them in
reading and standardizing that data.

What are their API
preferences?

Like most of professional programmers, they value produc-
tivity when creating their programs. They want an API that
follows the Python conventions and has the object- orien-
tation as a paradigm. An organized API with clear and
objective documentation is what they expect from third-
party software. They also want an API that abstracts the
input data.

Why do they have these
preferences?

Once they are professional programmers, they focus on
the creation of the machine learning model. For them, the
input data is not something to worry about. Therefore,
they expect the API should give them maximum support
on abstracting such input data, allowing them to focus on
creating predictive models.

Table 4.3: Persona 2 - Geologist

Who are the user?

They are professionals in geology. Their main skill is to in-
terpret geological data. They have no academic background
in programming or computing. They are used to follow end-
user programming paradigms.

What do they need or
want to do?

They need to train predictive models based on geological
data. However, they have no interest in learning a program-
ming language for this. They are looking for an API that
can abstract DL concepts and that can provide even a set
of ready-made models.

What are their API
preferences?

They prefer simplified APIs that are easy to use, having
few configuration options. They also prefer APIs that fol-
low the basic style of scripting with direct and simplified
function calls. Although the are not used with program-
ming, they understand the basics of the Python program-
ming language.

Why do they have these
preferences?

Since they are not professional programmers, they don’t
understand some aspects of programming and DL, such as
how to build a neural network or how to convert data into
tensor. Therefore, they need the API to be able to abstract
these concepts, providing methods for data conversion as
well as ready-made models.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 92

4.4.2
How to Model the API Conversations

4.4.2.1
Challenge: to Help Designers to Model API Conversations

The API designer should model the different conversations that may be
established between the API and its users. However, we observed the API de-
signers were not used to build models during the API design process. On the
other hand, it allowed us to propose and to assess the use of MoLIC (Mod-
eling Language for Interaction as Conversation) (12), a traditional modeling
language form the HCI field focused on the creation of interaction models.

4.4.2.2
Solution: Use MoLIC to Think About API Dialogues

MoLIC is a popular resource for HCI modeling, especially in the context
of projects following the principles of Semiotic Engineering. MoLIC was created
for modeling system interactions as conversations between the system and its
users. In these conversations, the user and the designer (represented by his
proxy) alternate turns of speeches and dialogues within scenes of interaction.
MoLIC has two main elements: conversation scenes and conversation flows.
Conversation scenes are represented through rectangular labeled boxes. The
title (label) indicates what the scene is about. The box is composed of the
set of speeches exchanged between designer and user. Conversation flows are
represented by directed lines. These lines may be continuous for indicating a
progressive flow in the conversation or dotted for indicating a regressive flow
in the conversation. Regressive flows usually happen due to communication
failure.

4.4.2.3
Lesson Learnt: MoLIC Should be Adapted

Although we observed that MoLIC is potentially useful to model conver-
sations of an API, we also observed the opportunity to perform the following
adaptations in its original composition, aiming at better supporting the mod-
eling of the API designed during the action research. As future work, we will
conduct new investigations to establish a comprehensive modeling language
for supporting the design of conversational APIs in general.

Asynchronous flow: The first adaptation in MoLIC was the addition of
the resource of asynchronous flow for modeling the conversations between APIs
and their users. Asynchronous flow may be needed, especially when the API

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 93

requires long data processing to answer users, as was the case with the API we
were modeling. In this case, the conversation flow is temporarily interrupted,
returning to where it left off after receiving a proper signal from the API. It
applies when the API call takes too long. For instance, in deep learning, the
training of models and predictions may take a long time, leading to a temporary
suspension of the conversation. The conversation is then only returned when
the API emits a signal if the API user had programmed the source code to
understand it.

Formalization of the dialogues: The flexibility of representation in MoLIC
may be a problem for API modeling. Unlike traditional software interfaces,
APIs are formal and rigid interfaces. The API interfaces need to be defined
with parameters, data types and returns. Thus, other necessary adaptation
in MoLIC was the formalization of the dialogues that take place within
the modeled scenes. To this end, we used OpenAPI, a modeling language
designed for specifying RESTFul services (23). OpenAPI offers a powerful
tool for specifying the data flow of each method call. It is composed of two
main features: a tool to support formal API specification tool and a tool for
automatically generating source code.

In our adapted version of MoLIC, we used the OpenAPI resources to
represent the alternation of dialogues between API users and API designers.
The input attributes describe the user’s speeches, and the return attributes
describe the designer’s speeches. Through using a set of reserved words and
structure rules, the API designers were able to describe API interfaces, input
data, output data, and documentation.

Figure 4.3 shows a model designed by using our adapted version of
MoLIC. This model was build in the context of the API designed during
the action research. This figure shows a conversation performed between the
user and the API about the user’s goal of build and training a particular
model. When the user goes to the model training scene, he can go straight
to talking about model training. Or, alternatively, the user can pass before
for a scene to discover the available models. During the model training scene,
the conversation between user and API is suspended by an asynchronous flow,
returning only after the user gets a positive response from the API indicating
the model’s end-of-training. If the user wants to train another model type, the
conversation with the API may continue by releasing a new training set or
returning to the scene addressing the discovery of the available models.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter4.
O

n
the

SupportforD
esigning

a
ConversationalSoftware

API:An
Action

Research
Study

94Figure 4.3: MoLIC and Adaptations - DL API Modelling

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 95

The exemplified conversation from the MoLIC diagram can be seen
from two different points of view, depending on the persona involved in the
conversation. The geologist, who does not have much programming knowledge
and will not create own models, may opt by going through the scene of
discovering the available models and identify which of them would fit the user
need. On the other hand, for the DL expert persona, going through this scene
is optional, once he may be training his own model. Thus and so he already
knows which model he has chosen and what parameters and settings he has.
This kind of conversation is modeled in the figure with the scenes of "Train
Model", "Available Models" and "Run Model".

From this modeling presented, the API development team was able to
think about new implementation needs in the API. The API has a dynamic
set of ready-made models. However, the developers had not thought of a way
to expose to users which models would be available. By creating a method
for this, the conversation is improved, and there is a more fruitful interaction.
Moreover, once the user already knows the model he wants to train, he does
not need to go through the model selection dialog, which is optional. So, the
API offers two conversational paths.

4.4.3
How to Implement the API Interfaces

4.4.3.1
Challenge: to Help Designers on Choosing the Appropriate Signs for API
Interfaces

Unlike the traditional computer human interaction process, in which sev-
eral types of signs (graphic, textual, sound, engines, etc.) may be used, the in-
teraction with APIs and programming languages are limited to textual signs.
These signs include function signatures, documentation, error messages, among
others. MoLIC offers a set of guidelines to convert the model into user inter-
faces (graphic, textual, sound, engines, etc.). However, these guidelines are
insufficient to model the communication between APIs and their users. There-
fore, one challenge was to propose guidelines for supporting API designers on
creating API interfaces based in MoLIC diagrams, which include identifying
the appropriate signs.

4.4.3.2
Solution: A Set of Guidelines to Structuring the API Interfaces

Based on the results of our action research, we propose a set of guide-
lines to support the designer when naming and structuring API interfaces.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 96

These guidelines are grounded in the Grice’s principles of cooperation (20).
Following, we list the guidelines with their corresponding principles.

API interfaces must focus on relevant information
The design of an API should be accurate in characterizing the expected
conversations between API designers and API users. In the same way, an API
design should also let clear which conversations are not allowed. That is, the
API designer may choose to abstract some concepts as well as prioritizing
others. This guideline addresses the Grice’s principle of maximum relevance.
For instance, considering the example of the API designed during the action
research, one can see the conversation sometimes abstracted DL concepts. In
other cases concepts from Geology were abstracted.

API documentation must be simple and concise
API documentation is a key opportunity for API designers to improve the con-
versation level with the API users. However, this relationship cannot become
abusive. Once API interfaces frequently have a weak conversation, API design-
ers are prone to embed most of the conversation in the API documentation.
Consequently, it is not rare to find APIs composed of few methods but with
extensive documentation. As previous work has already discussed (3), API
users are not encouraged to search for the API documentation to solve their
problems. Instead, they prefer to find examples in forums, which go straight to
the point. Based on the principle of maximum quantity, we recommend that
API designers should avoid establishing a tiring and laborious communication
when documenting APIs. In other words, the API designer should be careful
about introducing an overhead of information for the API users. In this sense,
the API designer may compose more detailed and more synthesized versions
of the API documentation for attending different types of users.

API interfaces must be cautious with metaphors and idiomatic
expressions
The appropriate choice of names for the interfaces’ identifiers is decisive for
the quality of the API conversation. As stated by the principle of maximum
mode, if the API designer adopts ambiguous expressions, they may hamper
users’ understanding of how to use the API. In particular, we recommend that
metaphors and idiomatic expressions should be avoided. For instance, during
the action research, we found that a metaphoric function name - "ZooModel"
- was confusing for non-DL professionals. In this way, we suggested renaming
the function to "AvailableModels."

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 97

API internal behavior must not contradict API interfaces or docu-
mentation
The API must be consistent between the different user interactions, assuring
an efficient conversation flow. Based on the principle of the maximum quality,
API designers should assure the consistency between the API documentation,
interfaces, and internal behavior. Consequently, all the possible conversations
should be correct and true. This correctness includes avoiding tricking the
API user. In this way, it is considered a severe failure when the conversation
results in a wrong understanding of the API internal behavior.

4.4.3.3
Lesson Learnt: We Need More than Just Guidelines

As a lesson learnt at this stage of our action research, we realized that
we would need more than guidelines to support the designer in choosing the
appropriate signs and establishing an effective conversation. In this way, we
propose a conceptual framework to support the construction of conversational
APIs. Due to its complexity and broad theoretical foundation in Semiotic En-
gineering, this framework is presented in another paper (4). In this conceptual
framework, we borrow Semiotic Engineering concepts to establish different
conversation levels according to the signs used by the API: static, dynamic,
and metalinguistic. We discuss how the API designers may use each sign to
reach better conversation levels with the API users.

4.5
Follow-up and Discussion

Researching in the context of real projects is frequently claimed as a
challenge to the field. It could be even more challenging whether the research
requires taking part in a long term project. Therefore, opportunities for
conducting action research in industrial settings are not common in software
engineering. Besides, recording and reporting data gathered in long term
studies also prove to be quite complex activities. The work presented in this
paper reports the results of an action research that required the collaboration
of a researcher in an industrial project for six months. The action research was
carried out aiming at investigating the API design process from the perspective
of the API designers. As far as we are aware, this is the first study in the field
with this purpose. Thus, despite the strict context involved, we believe that
the lessons learnt and the proposed guidelines for designing conversational

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 98

APIs represents an important scientific contribution. This study also led us to
apply the concept of conversational APIs for the first time. Another important
contribution of the action research is the conversational API developed. The
cycles of the action research covered the API development, from its conception
until the implementation of its interfaces.

After concluding the action research, the development team finished the
implementation of the API. In the sequence, we interviewed the technical
leader of the API project, actively involved in all the development steps. The
main goal of the interview was to characterize the perceived contributions of
the interventions made during the action research to the API development,
evolved to the guidelines presented in section 4.4. The feedback provided by
the technical leader suggests that our approach brought practical benefits to
the development process, positively influencing the designers’ attitudes and
decisions. The technical leader stated that "the study was essential," followed
by his positive opinion about the modeling solution: "I would say that the
part of analyzing how users receive messages is very important to know which
message the API should send. It adds a new point of view for the API
developer". Besides, he also claimed that "...as much as the API developer
knows requirements, thinking about communication with the user is very
important."

The technical leader also perceived our results as an important resource
to support API designers on thinking about the different levels of conversation
that should be offered by an API according to the user experience. For him,
they were useful to realize whether an API should provide a verbose and
explanatory behavior, or a practical and objective one. Regarding the perceived
importance of providing conversation, the technical leader used another API
as an example: "The Python {anonymous}2API, for example, is fantastic.
However, the use of the API is awful. The designer did fantastic work, but
it was based on an unusual way of use. The way to call the functions is similar
to {anonymous}2. It maybe makes sense for someone. For the vast majority
of people, it does not. The order in which you implement the functions or how
you have access to them hinders or helps a lot its use."

Despite the positive feedback, it is important to also consider possible
limitations of our study. One can see that the proposed solutions can be
challenging for designers unaware of HCI theories. Thus, the presence of an
HCI specialist may be required. Indeed, the researcher that conducted the
study is an HCI specialist. He used his background to give to support the
other team members. Regarding this issue, the technical leader interviewed

2The participant cited a third-party API. We think it is better not to expose which API

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 99

pointed out that "the benefits certainly outweigh the costs. In a company with
several development teams, this cost would be even lower, diluting the presence
of a single specialist in more than one project." In this sense, we see it as an
open research question that we intend to address in future work in order to
create a method suitable for API designers without HCI expertise.

The research on conversational APIs still has a long way to go. We believe
the presented work is an important step towards a solid design method for
supporting the software industry. In this sense, we intend to assess the resulting
guidelines in the development of APIs from other domains.

4.6
Related Work

The reader may want to skip the first paragraph since the papers have
already been presented in section 3.7.

Different studies have investigated the usability of APIs. Some inves-
tigations focus on approaches for improving the API design process, such as
Watson (54), Mindermann (27), and (28). Watson and Mindermann introduced
approaches focused on the API’ easiness of use, grounded on consolidated us-
ability concepts and techniques from HCI. Eduardo Mosqueira-Reya et al. gen-
erates a compilation of guidelines and heuristics that should be applied along
the design process to achieve good usability in APIs. Although these studies
are concerned with the API’s quality of use, they lack addressing communi-
cability aspects, including pragmatic issues and promoting the understanding
between users and designers.

The lack of conversational APIs lead API users to have more difficult for
applying them in their projects. Thus, one of the main goals of our research is
to support the redesigning of already existing APIs to conversational ones.
Alternatively, technical literature presents tools for assisting developers in
properly using APIs. Yessenov et al. (56) propose DemoMatch, a tool to
support programmers in discovering how to use an API based on interactions
with software already using it. Ichinco et al. (22) propose Example Guru, a
tool for recommending APIs based on the context of the programmer’s code.
Addressing code verification, Nguyen et al. (32), present a tool for scanning
the source code of Android applications to find possible security flaws resulting
from the inappropriate use of APIs.

More recently, some studies investigated the pragmatic issue of APIs
misunderstanding (34). Although they did not propose methods or techniques
for improving the API communication, these studies may represent resources
for supporting understanding the limitations of the communication among

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 100

designers and users. Nielebock et al. investigated the misunderstandings on
using APIs, leading to their misuse and even to the incidence of bugs. To
mitigate this risk, the authors introduce a tool for identifying API misuses,
offering rules for fixing its use. The work of Lamothe and Shang aims at
understanding the appropriations made by API users. The authors found three
workaround patterns followed by API users. These patterns can help API
designers to understand the possible bypasses made by the API users (24).

4.7
Limitations and Threats to Validity

A limitation of our study is related to the lack of large-scale empirical
evidence regarding our solution and guidelines for introducing conversation
in APIs. However, it is important to note that we opted by first obtaining
solid knowledge of the research object to then propose a mature technology
promptly do be empirically evaluated in industrial settings. In this sense, we
invested months of research effort for emerging a feasible technology from the
perspective of experienced API designers. One can see this is a key benefit
of conducting studies based on action research. This method has unique
characteristics that facilitate cover the bridge gaps between academy and
industry.

As threats to validity, we have the fact that the researcher has actively
contributed to the API discussion. However, the development team members
did not have the required skills for the interaction design of the API conversa-
tion. In theses cases, the researcher had to often interference along the creation
of the API dialogues and conversation flows. One can note that the researcher
was part of the development team given the nature of action research. Thus,
despite this decision was a threat to validity, we believe that it was treated
within our cycles of action research, where we had the constant validation of
the designer team on the decisions made.

4.8
Conclusion and Future Work

In this article, we present the lessons learnt from a technical action re-
search conducted to explore techniques to support the design of conversational
APIs. At each cycle of our study, we used and adapted techniques aiming
at prioritizing the user-API interaction in the API design for empowering its
capacity of conversation. We believe that these techniques can be applied in
other contexts, including for redesigning popular APIs from other domains

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 4. On the Support for Designing a Conversational Software API: An
Action Research Study 101

whose conversation is problematic, such as Java Reflection (42) and APIs for
refactoring (38).

In order to mitigate the limitations and threats to the validity of this
paper, we plan to carry out some future work with the design of different APIs
with different characteristics and contexts. In the short term, we have already
planned a case study for evaluating the API design method resulting from the
lessons learnt in this study. This case study involves the design of an API for
performing customized refactoring activities in the source code. In this study,
we intend to evaluate in the practice whether our findings are adaptable to
other contexts. Besides, we also expect to characterize the main difficulties the
programming team will have when working with our approach. After the case
study, we expect to acquire sufficient knowledge to report the first version of
a method to support conversational API design.

4.9
Summary of Chapter 4

In this chapter, we present the technical action research performed during
this Doctoral research (section 4.3). In this research, which lasted about six
months, we had the opportunity to apply the concept of conversational API
to develop a real API, within the context of deep learning in a professional
software development use. To apply the concept, we followed the API design
and searched for techniques and tools that could help the design team to create
a conversational API.

From this study, we generated a set of lessons learnt (section 4.4). At
each cycle of our study, we used and adapted techniques aiming at prioritizing
the user-API interaction in the API design for empowering its capacity of
conversation. With this result, we were able to propose a method to assist the
design of conversational APIs. The method, detailed in the following chapter,
defines a set of steps and techniques that must be followed by the designer to
achieve the creation of a conversational API. 7

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

5
Colloquy: A Method for Conversational API Design

As discussed in chapter 1, we characterize an API as a mediating artifact
of a conversation between two parts involved: the designer, and the user.
Therefore, for the conversation to occur effectively and efficiently, the designer
must be able to think about the necessary dialogues that his API needs to have
with the user. So that way, in interaction time, user and designer alternate
conversation turns through these pre-created dialogues.

Therefore, as we discussed in section 3.8, the API designer needs method-
ological support to create his APIs with these conversations. Different works
proposed approaches for improving the design of APIs, but only from the per-
spective of usability. Watson (54) and Mindermann (27) introduced approaches
focused on the API’ easiness of use, grounded on consolidated usability con-
cepts and techniques from human-computer interaction (HCI). Mosqueira et
al. (28) compiled a set of guidelines and heuristics for enhancing usability on
designing APIs. However, none of these methods help the designer to reflect
on the dialogues he should create for API to have with his users.

In this chapter, we present a method to assist the designer in this
task. The method, called Colloquy, is composed in 3 steps and aims to help
the designer explore his epistemic power and think about his users needs,
and, consequently, the conversations that the API should offer (section 5.4).
This chapter presents an extended version of a paper accepted at Brazilian
Symposium on Software Engineering (Qualis A3) in the innovative ideas and
emerging results track, entitled "Colloquy - A Method for Conversational API
Design". Besides presenting the method, in this chapter, we present a case
study where we put the method in a real scenario of API development. We
present the results of this study and discuss potential improvements needed
in our method. The reader may want to skip section 5.2 since the theoretical
basis presented is very similar to the previous section 3.2. The reader may
also skip the section 5.3 since the related work is very similar to the previous
section 4.6.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 103

5.1
Introduction

The reader may want to skip the first seven paragraphs since this
introduction has already been presented in chapter 1.

APIs are programming interfaces created to define the rules for using
software components. These software artifacts are commonly implemented
using modern programming languages. They are composed of rules establishing
the set of operations available and the corresponding inputs and outputs
required. Besides, an API should also guide the use of its operations. Recent
work states that API interfaces play an important role in the communication
between two types of programmers: the API user and the API designer (3).
An API developed for supporting a particular domain reflects the designers’
beliefs and understandings about this domain. On the other hand, the API
user needs to interpret the designer messages as best as possible for achieving
his goals.

When observing APIs as artifacts for mediating communication, we
should have in mind an important aspect: the communication mediated
by a computational artifact does not have the same dynamics of human
communication. When creating the API interfaces, its designer should fix his
communication in the source code and its documentation. Thus, if the designer
assumes that the user already knows a specific concept, it may end up sending
a message that has no meaning for the user. The user, in turn, will not have
the opportunity to be promptly clarified.

The concept of conversational API is anchored in the theory of Semiotic
Engineering (13), a theory of human-computer interaction. Semiotic Engineer-
ing establishes that a computational artifact can be seen as a mediator of
communication between two interlocutors: the one who created the artifact,
that is, its designer, and the one who is using the artifact, that is, its user
(13). The communicability, central characteristic of quality for the Semiotic
Engineering, concerns the designer’s ability to expose the logic of the use of
the artifact created.

Here, it is important to differentiate the concept of communicability from
the concept of usability, widely explored in the modeling of software artifacts,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 104

such as APIs (28). (17) (54). While usability focuses on ease of use and learning,
communicability focuses on the ability to send the right information to the user
about the best and most efficient ways to use the artifact created. For example,
let us consider the Calendar API of the Java programming language:

public abstract void add(int field,int amount)

At stackoverflow.com, one of the most popular discussion forums for
programmers, it is not hard to find postings with wrong explanations about the
operation and behavior of the API above. In general, these posts are associated
with bugs caused by API misuse. An example is a post that can be found at
1. In it, a user questions the result of the operation of adding a month to
January 31 using the "add" operation of the Calendar API. The user asking
the question clearly did not understand the API’s internal operating logic.
When we checked several answers to the question, we noticed that several
users also misinterpreted the API logic of operation. For example, one of the
answers suggests that the "add one-month" operation is the same as "add 30
days", which would explain the unexpected result.

Clearly, in the example above, the problem is not the difficulty of using
the interface, but poor communication. Users know how to execute the call,
how to set parameters, and what data should be passed. However, it is noted
that users do not understand the API’s internal operating logic, based on
inappropriate assumptions about the correct way to use it. Once they are
convinced that they know how to use the interface, they will not resort the
API original documentation. For them, if the interface did not work as they
expected, it is probably due some bug. So, we say that the conversation between
designer and user cannot be properly established in this API.

Problems such as the one described above could be solved by adding
conversational features to the API. However, we did not find approaches for
supporting the API designer to perform this activity. In particular, methods
focused on usability, such as those composed of heuristics and guidelines, are
not able to identify capture communicability problems during the design of
the API. These methods are focused in the user interests, leaving out an in-
depth analysis of the design logic used by the API designers. Thus, pragmatic
conflicts related to the understanding the behavior of the API functionalities
are not captured by approaches focused only on usability.

In this scenario, popular APIs for supporting software engineering activ-
ities, such as those available at IDEs for automating code refactorings, also

1http://stackoverflow.com/questions/14618608

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 105

lack establishing proper conversations with its users (38). Even simple refac-
torings, such as an Extract Method 5.1, may be performed in several ways.
When developing APIs for supporting refactorings, the designer influences the
API behavior based on his particular beliefs and understandings of the oper-
ations. Thus, the users may meet or not the implicit expectations of the API
designers.

Figure 5.1 exemplifies the misuse of a refactoring API. The left side
of the picture presents the original source code. The right side presents two
alternatives for refactoring this code through extracting methods. Thus, when
creating a refactoring API, the designer will choose the best alternatives from
his point of view. However, the API user may not understand or even may
not agree with the designer. To avoid situations such this, the designer should
design a conversational API. Through pre-established dialogues, the user may
interact with the API and understand its design rationale, or even modify its
internal behavior, indicating his personal strategy for refactoring.

Figure 5.1: Two Alternatives to Extract Method Refactoring

As we saw in the examples above, sometimes it is not possible to make
users and designers understand each other about the expected results of some
operations. Moreover, when we look at the literature, we do not find studies
that point to API design solutions that address such a problem. Thus, we

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 106

believe that a design process that has as central objective the development of
the conversation in APIs can help in solving this problem.

In this paper, we present Colloquy, a method for supporting designers on
introducing conversations in their APIs. This method is inspired by the lessons
learnt on a recent technical action research (5). During six months, we worked
with a research and development team from IBM Brazil for redesigning an
API from a complex domain. Colloquy consists of three steps. The first step
assists designers in identifying the API users and their conversation needs. The
second step assists the designer in modeling the set of possible conversations
with the different mapped users so that they achieve their goals. The third
step provides a set of guidelines implementing the API interfaces.

The use of Colloquy was submitted to an in-depth case study, also pre-
sented in this paper. In this case study, Colloquy was applied for conceiving
and designing a API for refactoring source code written in the Java program-
ming language. As discussed in the above example about refactoring, conflicts
between users and designers of such APIs are frequent since they do not always
have the same understanding about how to perform an operation. Thus, an
API that will deal with source code refactoring can significantly benefit from
the concept of conversational API, and the method we propose for the design
process. In this case study, we follow the design process of an API using our
method. We then compare the API generated with the support of our method
to a version previously created using guidance available in the literature. The
findings of the case study indicate that Colloquy was essential for identifying
several API properties.

Section 5.2 presents the theoretical background to our research. Section
5.3 discusses the main related work. Section 5.4 describes the proposed method.
Section 5.5 describes the methodology of the case study conducted. Section 5.6
shows the study results and the differences in the API created with our method.
Section 5.7 discusses our findings and threats to validity. Section 5.8 presents
our conclusion and future work.

5.2
Theoretical Background

In this section, we introduce the theoretical background of the proposed
method to support the introduction of conversation in the design of APIs.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 107

5.2.1
Semiotic Engineering

Semiotic Engineering understands the process of human-computer inter-
action as a particular case of metacommunication between humans mediated
by computers (13). From this perspective, metacommunication consists of com-
munication established between users and designers through a software artifact
(see Figure 5.2). We can identify three distinct interlocutors in the process of
metacommunication: the designers, who encode their intentions in software;
the users, who express their own intentions and interpretations through inter-
action with the software, and the technology itself (called proxy or designer’s
deputy), which represents the designer at interaction time.

Figure 5.2: Metacommunication Process

For Semiotic Engineering, the software is a resource used to exchange
messages between two groups of individuals: their users and their designers
(13). The principles of Semiotic Engineering can be used to identify oppor-
tunities to improve the communicability of APIs (15). Unlike usability, whose
definition is strongly user-centered (31), communicability is defined as the abil-
ity of an interactive artifact to effectively communicate the intent of its design-
ers to their users (13). Thus, it is important to consider both designers’ and
users’ objectives when defining and evaluating the quality of communication
provided by API interfaces.

In the interaction performed on a software potentially provided with
usability, but scarce in communicability, the interfaces can lead the user to
make mistakes during the interaction, resulting in communication failures
(14). On the other hand, a conversational software interface can mitigate the
occurrence of communicability failures through dialogues that help users notice
errors and correct them. In this research, we understand that this capability
should be explored and applied to the context of API design, resulting in the
development of conversational APIs (2).

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 108

5.2.2
Conversational API

Based on the Semiotic Engineering perspective, we can define an API as
a particular type of software designed for intermediate communication between
API designers and users. Designers communicate their intentions through
expressions found in the signatures of operations, protocols, return values,
and API documentation. In turn, users express their particular interpretation
of designers’ intentions throughout the use of APIs to achieve the goals of their
software systems. If this communication is not appropriate, problems may arise
related to incorrect use of the APIs, resulting, for example, in the incidence of
bugs (3).

Thus, we can apply the principles of semiotic engineering to identify
opportunities to improve the metacommunication of APIs (15). In this sense,
the concept of conversational APIs was defined. A conversational API is an API
designed to provide mechanisms to improve the effectiveness of conversation
between designers and users (4), given the pragmatic contexts of use of its
users.

Besides, a conversational API must meet the Grice’s principles of co-
operation in its four conversational maxims (20): the maxim of quality, the
maxim of quantity, the maxim of relevance, and the maxim of mode. The maxi-
mum of quality says that the interlocutors must present only true information,
avoiding false or doubtful statements. The maximum quantity says that in-
terlocutors must present all necessary information, but without exaggerating
with information irrelevant to the context of the conversation. The maximum
of relevance says that interlocutors must maintain focus and relevance, that
is, present only information focused on the context of the conversation. And
finally, the maximum of the mode text says that interlocutors should avoid the
use of ambiguous expressions when transmitting the information.

In the development of a Conversational API, the creation of scenarios is
adopted as a design principle, which allows the designer to predict the most
varied cases of use of an API and its pragmatic contexts of use. It is up to
the designer to prepare the API to maintain a productive interaction with the
different types of users. In turn, users should be able to identify all the func-
tionalities of the API, understanding how to use them properly. Additionally,
the API designer must predict the different types of communication failures
that can occur, leaving pre-created dialogues for users to recover from these
possible failures.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 109

5.3
Related Work

The reader may want to skip the first, third and fourth paragraph since
the papers have already been presented in section 4.6.

Different studies proposed approaches for improving the design of APIs,
especially from the perspective of usability. However, they lack on address-
ing the communicability perspective, including pragmatic issues as promoting
the understanding between users and designers. Watson (54) and Mindermann
(27) introduced approaches focused on the API’ easiness of use, grounded on
consolidated usability concepts and techniques from human-computer interac-
tion (HCI). Mosqueira et al. (28) compiled a set of guidelines and heuristics
for enhancing usability on designing APIs.

Some other studies also offer API design methods. Each of these methods
aims to improve different characteristics of an API. Watson’s work presents
a case study where a text analysis technique was applied to improve APIs’
usability (53). The author presents a method to analyze the API interfaces
to identify inconsistencies that could reduce usability. In this method, he
decomposes the elements and analyzes whether the name is compatible with
the type of data, analyzes if the name of the methods is compatible with what
the method does, and finally analyzes the methods composed of get and set.
The work of Stylos et al. formalizes a method for the process of API redesign
(51). The method is composed of steps involving the presence of potential
users. First, the participants go through interviews to get requirements and
create personas. Then, the participants are called again to perform tests on
top of pseudocodes. Thus, after these steps, a user-centric API is designed.
Both studies, although they formalize a method, do not touch on the central
issue of conversation, which is the lack of understanding between designers and
users regarding controversial decision-making.

The lack of conversation in existing APIs lead API users to have more
difficult for applying them in their projects. Thus, one of the main goals of our
research is to support the redesigning of already existing APIs to conversational
ones. Some studies investigated the pragmatic issue of APIs’ misunderstanding
addressing the motivation of our research by revealing several limitations of
the communication among designers and users. However, different from us,
they do not propose alternatives for redesigning the APIs. Nielebock et al.
investigated the misunderstandings on using APIs, leading to their misuse and
even to the incidence of bugs (34). To mitigate this risk, the authors introduce
a tool for identifying API misuses, offering rules for fixing its use. Lamothe
and Shang (24) aims at understanding the appropriations made by API users.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 110

The authors found three workaround patterns followed by API users. These
patterns can help API designers to understand the possible bypasses made by
the API users.

Technical literature also presents studies introducing tools for assisting
developers in properly selecting and using already existing APIs despite
eventual communication issues. Yessenov et al. (56) proposeDemoMatch, a tool
to support programmers in discovering how to use an API based on interactions
with software already using it. Ichinco et al. (22) propose Example Guru, a
tool for recommending APIs based on the context of the programmer’s code.
Addressing code verification, Nguyen et al. (32), present a tool for scanning
the source code of Android applications to find possible security flaws resulting
from the inappropriate use of APIs.

5.4
Colloquy

In this work, we propose Colloquy, a method to establish conversation in
APIs. Our method consists of a set of iterative steps. Each step consists of a set
of guidelines that will support the API designer to reflect on the conversations
that the API should make possible with its users.

Figure 5.3 illustrates the Colloquy steps, including its main techniques
and the resulting artifacts. In the following subsections, we introduce in
detail these steps. The first step of Colloquy requires the identification and
characterization of the API users and their requirements. The second step
consists of modeling the possible conversations between the API and its users,
including error recovery conversations. The third step consists of defining the
API interfaces. For this purpose, the third step consists of guidelines for naming
functions, establishing parameters and their names, and defining appropriate
return messages. Appendix A illustrates the step-by-step execution of Colloquy
for the design of a date and time API.

Colloquy’s main objective is to guide the designer through the process
of developing his API, offering techniques and tools for exploring and creating
user-API conversations. Thus, Colloquy does not predict the participation of
real users in the development process. However, Colloquy does not prohibit
such participation, and it is up to the designer the option to adopt or not
users in the evaluations of the artifacts created.

Thus, we consider that a designer who has the availability to include
real users in the API’s development process can perform studies with these
users in three specific Colloquy points. First, after creating the personas and
interaction scenarios, the designer could validate the created documents by

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 111

performing workshops with real users of his APIs. With this kind of empirical
study, the designer could identify the need or not create new personas or
interaction scenarios.

Another point that can be useful to employ real users is after modeling
the interaction with MoLIC4APIs. A designer could benefit from asking users
to navigate through the created diagram, using simulation and making the user
exchange dialogues with the API through the model. This type of study would
be useful to verify if the modeling really meets the objectives and needs of real
users. Such objectives would already be outlined and validated in the previous
step with personas and scenarios. With this empirical study, the designer would
only validate if the conversation flow is adequate.

Finally, the study with real users could come on top of the final API
interface. The designer could design mock behaviors in his API and perform
empirical studies to identify if his interfaces fulfill the previous steps’ con-
versation. By doing this study before the final implementation, the designer
could identify new requirements and eventual communication failures, correct-
ing them before the final release of his API.

Figure 5.3: Colloquy Steps

5.4.1
Personas and Interaction Scenarios

The first step of Colloquy is aimed at discovering of the API’s potential
users and their corresponding requirements. This step is critical for identifying
who are the API users, what they need, and what level of detail should the API
conversation have for them. For this propose, Colloquy recommends adopting
two technologies often adopted by human-computer interaction professionals:
personas and interaction scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 112

5.4.1.1
Personas

Alan Cooper (11) first used the concept of personas in the context of soft-
ware interaction design. Personas are fictional characters used to characterize
and combine the different roles played by the software user. The characteriza-
tion of each persona involves establishing their domain knowledge, motivation
to adopt the developed technology, and their academic and professional train-
ing. Furthermore, characterizing a persona also involves characterizing their
beliefs, values, and behaviors. Thus, the characterization of characters will
give the API’s designer the knowledge to enable the most appropriate conver-
sations for API users. For example, an experienced programmer may require a
more detailed interface, while an occasional programmer may require a more
simplified interface.

5.4.1.2
Interaction Scenarios

After establishing the personas, the next task is to compose the inter-
action scenarios of these personas with the API. An interaction scenario aims
to specify in detail the actions of the user and the corresponding system re-
sponses (43), in this case, the API in development. The interaction scenarios
are composed of a textual and concrete narrative, rich in contextual details.
This narrative reports situation of use of the API, describing the processes in-
volved, and (potentially) real data. Thus, we use interaction scenarios at this
stage to describe all possibilities of interaction that a user may have with the
API.

5.4.1.3
Guidelines for the Characterization of APIs Personas and Interaction
Scenarios

To create a conversational API, it is especially critical that the designer
can think of the full set of possible personas and interaction scenarios for its
API. It is not uncommon for users of an API to make different appropriations
than those they are designed. However, creating personas and interaction sce-
narios may not be a simple task. When we put conversation as a central element
in the design process, we need to emphasize a set of special characteristics of
the personas. In this way, our method offers a set of guiding questions (Table
5.1) to help the designer to make this reflection. These questions are inspired
by the API metacommunication model proposed by Afonso (1).

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 113

Table 5.1: API Metacommunication Template
Question Aspects to be covered in the answers

Who are the API users?

Culture / Language
Professional or End-User Programmer
Users’ values
Relevant demographic data
Programming Experience
Academic background
Knowledge of programming languages and paradigms
Types of API interaction patterns
API domain knowledge

What do they need or
want to do?

Intended use cases for the API
Use case preconditions and restrictions
User needs

What are their API
preferences?

Programming conventions and culture
Language specific conventions and culture
Parameter styles and return types
Appointment styles
Productivity
Accuracy in activity
Use of auto-complete and other shortcuts
Consult documentation or learn by doing

Why do they have these
preferences?

Lack of experience or professionalism
Personal values
Naming preferences
Programming culture
Knowledge of other languages and APIs
Academic training
Programming environment requirements

To answer each question, the designer should have in mind the set of
aspects presented in the right column. For example, when answering "Who are
the API users?", the designer must consider the user experience and culture,
among others. For example, in the design of a date and time API, culture can
impact the API’s conversation about the time zone and the date input and
display format.

5.4.2
Conversation Modeling

Once the personas and the corresponding interaction scenarios are de-
fined, the API designer needs to model the different conversations that the
user can establish with the API. For this purpose, we designed MoLIC4API
(MoLIC for APIs), a language resulting from the adaptation and combina-
tion of two modeling languages often used in HCI and Software Engineering:
MoLIC (12) and OpenAPI (23).

MoLIC (Modeling Language for Interaction as Conversation) (12) is
a popular resource for human-computer interaction modeling, especially in

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 114

the context of projects having communicability as a key factor. MoLIC
was created to allow the designers of systems to model the interactions as
conversations between user and system. In these conversations, dialogues
between users and designers are represented through scenes of interaction.
The other language we use as a basis is OpenAPI (23), which is a modeling
language originally designed for RESTFul service specification. OpenAPI has
a formal API specification language and an automatic source code generation
feature from this language. Through a set of reserved words and structure
rules, the designer can describe API interfaces, input data, return data, and
documentation.

5.4.2.1
MoLIC4API

MoLIC4API is composed of two main elements of MoLIC: conversation
scenes and conversation flows. A conversation scene is represented by a
rectangular box, with a title describing the scene and a set of designer
and user speeches. The conversation flows are represented by directed lines,
which can be continuous, indicating a progressive flow in the conversation or
dotted, indicating a regressive flow in the conversation, usually due to some
communicability failure. Besides, MoLIC4API also includes a new element:
the representation of asynchronous flows, which serves to signal possible
operations that may take time and need some return function to have the result
achieved. Also, MoLIC4API uses the formalities already existing in OpenAPI
for a detailed description of the user and API conversation. Through this
description, the designer will explain what the user’s speeches will look like
and what the API (your proxy) will look like, in terms of parameters, data
types and structures, and object names.

Thus, MoLIC4API combines the flexibility of MoLIC to represent conver-
sation flows and the formality of OpenAPI to represent data exchange during
conversations. The application of MoLIC4API is independent of programming
language. The designer should use MoLIC4API to model all interaction scenar-
ios that were thought of in the previous phase. When modeling these scenarios,
the designer must reflect on the conversation flow and call the API operations’
sequencing to achieve the users’ goals. It is essential that the designer can
also model the backward flow at this stage, predicting possible communication
failures and offering fruitful dialogues for the user to recover from.

Figure 5.4 presents, through an illustrative example, the elements of the
proposed language. In the figure, we model a possible conversation between a
user and a Deep Learning API. In this model, we illustrate a conversation where

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 115

Figure 5.4: Example of MoLIC4API modeling

the user wants to create, train, and execute a machine learning model. The API
must support these dialogues and guide the user through the call flow needed to
achieve the proposed goal. The main elements of MoLIC4API can be seen in the
picture. The conversation scenes are represented by the rectangular box, with
the title above and the user and designer speeches below, represented through
OpenAPI syntax. The arrows indicate the possible flows of the conversation
followed by messages from the designer or the user indicating the conclusion
of the scene it is leaving. The flows can be progressive (continuous arrows) or
regressive (dotted arrows).

5.4.3
Interfaces Implementation

The primary goal of Colloquy is to help designers on modeling the con-
versations that can be established between the API and the user. In this sense,
our method also aims to promote traceability between the mapped conversa-
tions and the API interfaces. To this end, we have developed recommendations
for designers to convert MoLIC4API diagrams into source code. We describe
this recommendations in subsection 5.4.3.1. Besides, the method also offers a
set of guidelines to support the designer when naming and structuring API
interfaces. These guidelines are grounded in the Grice’s principles of coopera-

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 116

tion (20). In subsection 5.4.3.2, we list the guidelines with their corresponding
principles.

5.4.3.1
Recommendations for Composing Source Code from MoLIC4API Dia-
grams

R01. Represent each scene through an API operation: Each scene in a
MoLIC4API diagram describes an exchange of messages between the designer
and the user. Although the designer has different mechanisms to send his
message to the user, the API user can only send his message in one way: by
executing API operations. Therefore, we recommend that an API operation
should mediate each scene.

R02. Represent each attribute of the user’s speech in a scene as an
operation parameter: Within the conversation scenes, the user’s speech,
represented by the OpenAPI syntax, should become parameters in the call
of the operation that originated from the scene.

R03. Represent each attribute of the designer’s speech as a return of the
operation: The same goes for the designer’s lines, which must be converted
into variables of the return object of the operation that originated from the
scene.

R04. Include messages to the user in the call back operations: The
main message following the conversation flow should appear in the return of
each operation. If the flow is regressive, the operation return must contain be
represented as an error message. In this way, the API designer should be careful
on writing these messages. An error message must be comprehensive enough
for the user recovering from the error and shift to a productive interaction.
If the flow is progressive, the return of the operation may report a message
indicating the success of the operation. Besides, messages indicating the next
step the user should take in the interaction may be beneficial in this case.

It is important to note that the recommendations presented here for
implementing interfaces should not be followed as a mandatory rule. This
mapping can be adapted to suit other API requirements that consider features
such as efficiency or safety. We intend to refine these recommendations in future
studies. Another future improvement is the development of automated tools
for this step.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 117

5.4.3.2
Naming and Structuring Guidelines

G01. API interfaces must focus on relevant information: The design
of an API should be accurate in characterizing the expected conversations
between API designers and API users. In the same way, an API design should
also let clear which conversations are not allowed. That is, the API designer
may choose to abstract some concepts as well as prioritizing others. This
guideline addresses the Grice’s principle of maximum relevance.

G02. The API documentation must be simple and concise: The API doc-
umentation is a key opportunity for API designers improving the conversation
with the API users. However, this relationship cannot become abusive. Once
API interfaces frequently have a weak conversation, API designers are prone to
embed most of the conversation in the API documentation. Consequently, it is
not rare to find APIs composed of few methods but with extensive documen-
tation. API users are not encouraged to search for the API documentation to
solve their problems. Instead, they prefer to find examples in forums, which go
straight to the point (3, 24). Based on the principle of maximum quantity, we
recommend that API designers should avoid establishing a tiring and labori-
ous communication when documenting APIs. In other words, the API designer
should be careful about introducing an overhead of information for the API
users. Alternatively, the API designer may compose more detailed and more
synthesized versions of the API documentation for attending different types of
users

G03. Avoid metaphors and idiomatic expressions when naming inter-
faces: The appropriate choice of names for the interfaces’ identifiers is de-
cisive for the quality of the API conversation. As stated by the principle of
maximum mode, if the API designer adopts ambiguous expressions, they may
hamper users’ understanding of how to use the API. In particular, we recom-
mend that metaphors and idiomatic expressions should be avoided.

G04. The API internal behavior must not contradict the API interfaces
and the API documentation: The API must be consistent between the different
user interactions, assuring efficient conversation flows. Based on the principle
of the maximum quality, API designers should assure the consistency between
the API documentation, interfaces, and its internal behavior. Consequently,
all the possible flows should result in correct conversations. This correctness
includes avoiding tricking the API user, resulting in a wrong understanding of
the API internal behavior.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 118

5.5
Study Design

5.5.1
Goal and Research Questions

The case study presented in this chapter aims to test the advantages that
Colloquy brings when used in developing a real API. To do this, we establish
a context in which we could get a API designer interested in participating in
our study. We defined that we would use Colloquy to design an API aimed
at refactoring source code in the Java programming language. This API was
designed by a Doctoral researcher focused on refactoring and code smells. By
relying on the guidelines provided by Wohlin et al. (55), we proposed the
following study goal.

• Analyze an API design process supported by Colloquy,
• For the purpose of characterizing the Colloquy advantages,
• With respect to the capability to generate a conversational API,
• From the viewpoint of API designers,
• In the context of real API design for program refactoring.

The study goal led us to design our research question a follow.

RQ1. By using Colloquy, an API designer will be able to design
APIs with proper conversations?

The first research question aims to understand whether Colloquy will
really deliver a conversational API as we planned. Thus, to address RQ1, we
established that the API generated needed to contain an effective and efficient
conversation flow that the user could navigate to complete their API usage
goals. Thus, the API designer should be able to model and define its interfaces.
We discuss about this in the results (section 5.6).

RQ2. What other advantages could Colloquy bring to the de-
signer?

RQ2 aims to understand whether, in addition to the conversational API,
Colloquy could bring more advantages to the design process from the designer’s
point of view. Therefore, we conducted a set of interviews with our participant
to collect his opinion about each Colloquy phase. In these interviews, we
addressed questions such as ease or difficulty of executing the Colloquy, effects
on API design, and need for additional support.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 119

5.5.2
API Context

As we discussed in the introduction, conflicts between users and designers
of refactoring APIs are frequent since they do not always have the same
understanding about how to perform the operation. Thus, an API that will
deal with source code refactoring can significantly benefit from the concept
of conversational API, and the method we propose for the design process.
This study was conducted in the context of a project for building an API for
refactoring source code written in the Java programming language. The API
was designed by experienced Java programmer who has developed software in
both academic and industrial environments. The API designer, whom we will
refer to as a participant from now on, has extensive experience developing and
designing reusable APIs and software. Besides, the participant has extensive
experience in developing refactoring and code smells analysis tools.

Reported work investigating APIs for refactoring in software IDEs faces a
recurrent problem of misuse. There are well-defined and widely studied catalogs
on how to perform various refactoring types in source code (18). Still, we
find cases where users disagree about the operations performed by APIs (38).
Even simple refactoring as an Extract Method (18) can find several ways to
be performed among API users (38). Thus, we believe that a conversational
API may be the appropriate approach to decrease misuse recurrence for the
refactoring context.

5.5.3
Data Sources

To conduct our data analysis, we collected experimental data from
different data sources: interviews with the participant, and the generated
artifacts for the API design. We combined the data obtained via these data
sources to compensate their strengths and limitations. We describe each data
source as follows.

• Interviews with the participant:We conducted a total of 4 interviews
with the participant of our study. They were all scripted interviews,
intending to understand the participant’s opinions and perceptions about
that phase of the study. Each interview lasted about 20 minutes. In
these interviews, the participant was asked about the utility, and the
ease and difficulty of using the Colloquy method. He was also asked how
his previous skills might have influenced certain design decisions. Each
interview was contextualized with the phase that had just happened.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 120

• Generated artifacts: At each stage of our study, a set of specific
artifacts were created, including personas, scenarios, models and API
interfaces. These data were collected so that they could later be analyzed
and discussed with the participant. We required the participant about
each artifact to discover how Colloquy might have helped him in the
creation.

5.5.4
Data Analysis Procedures

Qualitative Data Analysis: Our study was qualitative as our analysis was
very based on the interviews we conducted. We tried to cross the data from
the interviews with the artifacts generated to understand if the participant
was making proper use of the method. All the interviews were transcribed for
an in-depth analysis of the participant’s statements.

After the transcription, we attempted to find and group statements into
the following categories: advantages, disadvantages, and improvements related
to Colloquy. Our objective was to see what the participant could point out as
positive and negative points of our method, showing how useful it is and also
opening ways for future improvements. The results of this in-depth analysis of
the participant’s statements are present in section 5.7.

5.5.5
Phases of the Study Execution

5.5.5.1
Phase 1 - API Design Following Another Method

In the first stage of the case study, we searched in the technical literature
for methods and guidelines for supporting the API design process. Among the
papers found, we selected the approach proposed by Henning (21) due to the
fact that it was one of the few that offered a sequence of steps and guidelines for
API design. Moreover, this work was the one with highest number of citations.
The approach is composed of a set of guidelines and steps for successful API
design. Besides, the approach also lists problems of a poorly designed API and
the advantages of relying on the guidelines he has established. Below, the set
of guidelines proposed by Henning:

• An API must provide sufficient functionality for the caller to achieve its
task.

• An API should be minimal.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 121

• APIs cannot be designed without an understanding of their context.

• General-purpose APIs should be policy-free, special-purpose APIs should
be policy-rich.

• APIs should be designed from the perspective of the caller.

• Good APIs don’t pass the buck.

• APIs should be documented before they are implemented.

• Good APIs are ergonomic.

Before executing the first step, we performed a quick training on the
Henning’s method with the API designer. In this training, he was guided
to use his skills and follow Henning’s work for creating the API. After two
months, the participant delivered the class diagram of the API, and a set of
sequence diagrams representing the user interaction with the API. It is worth
noting here that the participant was not exclusively working on our study.
Then, we conducted a second meeting with the API designer for collecting the
participant’s opinions on the method used in the first step and on the quality
of the API generated. This phase took the participant six weeks.

5.5.5.2
Phase 2 - API Design Following Colloquy

At the last hour of the second meeting, the participant was introduced to
the concept of conversational API and Colloquy. In this meeting the participant
was trained to perform the first phase of our method. More specifically, we
introduced the participant to the concept of personas and scenarios, giving
examples based on API for other contexts. We also have shown him the table
with the guiding questions to assist him in the task.

After the first meeting, the participant was guided to create the per-
sonas and interaction scenarios for his API. After four weeks, the participant
delivered the personas and scenarios created. We then interviewed the API
designer to collect the his experience regarding the use of Colloquy. The same
happened for the next two phases. First, we would have a meeting with the
training and presentation of examples of how to use the method in that phase.
Then, the participant carried out the method execution, and later we would
have another meeting to collect the participant’s opinions and experiences. In
phase 2, it took the participant four weeks to perform the modeling, and in
phase 3, it took the participant two weeks.

After all three phases of the method, the participant delivered a re-
designed API, with significant differences from the original version. In the
following section, we will show the API’s snippets pointing to the main features

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 122

that were modified or created. We will highlight those features that prompted
the API conversation, establishing a more fruitful interaction between user and
API. In section 5.7.3 we discuss about how the execution of Colloquy after a
previous API design may have impacted the validity of the study, and how we
face this threat.

5.6
Results

In this section, we will show the results achieved from our case study. We
will show the artifacts generated by the participant, step by step, while he or
she performed the three steps proposed by Colloquy.

5.6.1
Personas and Interaction Scenarios Created

In the first stage of the method, the participant conceived three different
personas who would use his API. For each persona, the participant was able
to reflect on two different interaction scenarios.

5.6.1.1
Persona 1: John - Expert Software Engineer

The first person created was John, an expert software engineer with
several years of programming experience. John, who leads a development
team, is very skilled with the Java programming language and in using IDE
for refactoring source code. However, he leads a team composed of novice
developers. In this way, he needs a tool for assuring the quality of the code
generated by his team. To do so, this tool should provide an API where John
can define his quality criteria through custom code refactoring. The participant
thought of two scenarios to assist this persona.

• Refactoring in the code review process

• Recommend refactoring for your team

5.6.1.2
Persona 2: Philip - Experienced Freelance Programmer

Philip has a degree in computer science and is an experienced freelance
programmer. During his five years working as a freelancer, Philip has accumu-
lated code elements to be reused. However, Philip increased his concern with
quality in his last project, in which he was required to follow design patterns.
This way, to reuse his old work, Philip will need to refactor it to suit his new

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 123

way of programming. Thus, Philip needs a tool that can support him on refac-
toring programs in his old code bases. The participant thought of two scenarios
to assist this persona.

• Automating refactoring

• Refactor old source code

5.6.1.3
Persona 3: Katarina - Inexperienced Programmer

Katarina is an inexperienced young programmer studying systems analy-
sis. Katarina is not yet familiar with design standards and has great difficulty
for improving the structural quality of her code. Therefore, Katarina needs a
tool for helping her to overcome this challenge. As Katarina is still studying
software design, she wants a tool that would work as tutor, explaining the need
for each suggested code modification. The participant thought of two scenarios
to assist this persona.

• Refactoring recommendation

• Learn refactoring-driven programming

5.6.1.4
Discussion about Personas and Interaction Scenarios

One can see the participant was able to think of different personas
and different interaction scenarios. Experienced and novice programmers were
described. Consequently, the API designer need to design different dialogues to
support the needs of these personas. For example, Philip, the more experienced
persona will need a more efficient and direct API. The persona who is
learning how to program, Katarina, will need a more verbose API, with more
explanations and more sophisticated dialogues. These needs will be reflected
in the final interfaces, as we will see in the following subsections.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 124

Figure 5.5: Modeling the Refactoring API Interaction

5.6.2
Diagrams

After creating the personas and defining the interaction scenarios, the
participant proceeded to Colloquy’s next stage. Following the method’s proce-
dures, the participant modeled the interaction defined in the previous scenarios
using the MoLIC4APIs modeling language. The final model generated is shown
in figure 5.5 below.

During the API modeling, the participant was able to think in detail
about the interaction flows (or conversations as we call) that the user should
perform with its API. In the participant’s own words, modeling helped him
think about the regressive flows, that is, the possible problems the user would
face and how they could be solved. In Figure 5.5, we see the conversation
scenes, conversation flows, and the dialogues exchanged between designers and
users, represented in the OpenAPI language (section 5.4.2).

5.6.3
API Interfaces

The last stage of Colloquy is the definition of the API interfaces. It is
important to note that we will not show the complete API. Instead, we focus on
presenting and discussing the API parts that show how Colloquy was relevant
in this stage. The listing 5.1 shows the source code of the interface and a short

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 125

documentation above them. This documentations aims to explain what each
operation does. Besides, the documentation also explains about the parameters
and return values. In the following subsection, we will discuss how the method
has impacted the creation of these interfaces from the designer’s point of view.

Note that four different operations were generated in the proposed API.
Each operation was the result of an interaction scene from the modeling
of the previous step. Thus, for each operation, the user speeches became
parameters, and the designer speeches were grouped into return objects,
including the transition speeches between scenes. Below, we present the four
public methods created in the final stage of Colloquy. In section 5.6.4, we
discuss which of these elements represent improvements concerning the API
generated using Henning’s guidelines (21). In section 5.6.5, we discuss which
aspects of conversation are present in the API and its distribution among
static, dynamic, and metalinguistic signs.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 126

/** Generate a refactoring scenario by defining a set of

metrics and selecting a set of files to be analyzed .

Return the generated scenario . */

public Scenario generateScenario (List <Metric > metrics ,

List <File > files)

/** List the suggested refactorings and the

justifications . The result of the list comes in the

format : Map < Refactoring , String > */

public ListRefactoringObject listRefactoring (Scenario

scenario)

/** Add a set of refactoring customizations to the

scenario . Returns a message with the result of the

operation . This message can indicate the operation ’s

success , indicating the user which next operation he

should perform . Alternatively , it can indicate an

error message explaining to the user how to recover

from the error and restart the operation .*/

public String customizeRefactoring (Scenario scenario ,

List < Customization > customizations)

/** Execute the refactoring in the scenario , following

the defined metrics . Return a set of newly modified

files and an explanation of the modification made. The

return has the following format : Map <File , String > */

public ExecuteRefactoringObject executeRefactoring (

Scenario scenario)

Listing 5.1: Generated API for Refactoring Java Programs Language

5.6.4
Improvements After Using Colloquy

When the participant started development using our method, he already
had an original version of his API, based on the use of Hening’s guidelines (21).
In this section, we highlight the improvements that came with the method and
their respective reasons.

The first improvement was the reflection the participant made about the

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 127

need to give his user a reason for each refactoring his API was suggesting.
Inspired by the persona Katarina (section 5.6.1.3), which only emerged after
using Colloquy, the participant realized the need for a better explanation of this
feature. In the original version of the API, the return of the "listRefactoring"
operation was just a set of "Refactoring" objects that listed the changes
required to be applied in the program. However, after considering the scenarios
provided for persona Katarina, and its primary purpose of learning about
refactoring, the participant modified the return to add a "justification" field
for each refactoring offered by the API.

The second significant modification that came up with Colloquy was
the "Refactoring Scenario" concept incorporated into the API. According to
the participant, this idea arose during modeling using MoLIC4APIs. When
realizing the interaction flow created, the participant identified the need to
create an object that was a connecting factor between the parts of the API.
Consequently, the concept of refactoring scenario emerged, with which the user
would interact throughout the navigation until the completion of its goal. One
can see that a "Scenario" object is present in all API methods.

The last significant change we highlight here is the creation of operations
"listRefactoring" and "executeRefactoring" as a result of the split of the
previous method "doRefactoring". This division was a consequence of modeling
using MoLIC4APIs. When invited to think of modeling as a conversation, the
participant could realize that the original method should be split in two to
improve the API conversations. Moreover, by analyzing the current interfaces,
we can realize that, in fact, the conversation flow has become more natural
between users and designers. Moreover, this spliting of the original method
into two methods brought a new feature that the participant had not thought
of before: the possibility of one user just wanting to discover the refactorings
offered without necessarily performing them. A user with a learning interest
in refactoring could benefit from such a feature.

5.6.5
Interface Conversations Aspects

This subsection highlights the conversational elements of the generated
API and how they enhance the communication of the design rationale to the
users. In the previous subsection, we have already discussed some new API
elements that emerged from Colloquy’s execution. Now we will talk again about
these elements but from the perspective of the contribution to the conversation
improvements.

Detecting structural problems in software may be not a cut-and-dried

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 128

task. Even with some ascertained metrics, there will always be margins for
interpretation of the possibility of a code smell existence. Thus, in cases like
these, the creation of resources in the interface that captures the user’s at-
tention to possible disagreements about an operation is fundamental. There-
fore, our approach made the participant realize this need and added a field
of "justification" to the return of the "listRefactoring" operation. By adding
this feature, the designer is exposing his rationale to the user. Thus, the user
can understand the application of the metrics that have been selected, and the
refactorings offered by the API as a consequence. This feature represents an
advance in API conversation over the first version.

Another important conversation characteristic that we highlight in the
API is the creation of the "generateScenario" method and the detachment of
two methods that were previously grouped into a single operation, "listRefac-
toring" and "executeRefactoring". In the previous API version, the user did
not have the option to view all the refactorings that would be executed before
actually executing them. Using Colloquy, the participant realized that split-
ting this operation in two could enhance the conversation with the user. Thus,
the API exposes the user to its internal behavior, i.e., which refactorings were
selected, so the user can execute them if he desired. Besides, it is important
to note that all this conversation happens in the interface, even if a more de-
tailed description of each operation ends up happening in the complete API
documentation.

Finally, we highlight the flow of conversation that the API began to
promote with the user. The API users will be able to interact with the API in
continuous dialogues until they achieve their goals. This API global feature is
also a characteristic that defines it as a conversational API. For instance, if an
experienced user already familiar with the API wants to perform a refactoring,
he can follow an efficient conversation flow. He can create a refactoring scenario
and then go straight to the refactoring execution, without going through the list
of selected refactorings. On the other hand, an inexperienced user who wants
to understand the refactoring applied can follow the whole flow of operations
step by step, through the dialogues pre-made by the designer.

5.7
Discussion

In this section, we discuss the results found from the participant’s point
of view, i.e., the designer of the API generated in our case study. We show the
benefits of using Colloquy listed by the participant during the interviews we
conducted. Besides, we also discuss some opportunities to improve Colloquy

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 129

that has emerged from participant opinions and experiences. Finally, we discuss
some threats to validity of our case study.

5.7.1
Colloquy Method Benefits

Developing Empathy with Users: throughout the interview, the designer
emphasized that he developed his empathy for the possible users of the API.
His report indicates that such improvement is mainly a reflection of the exe-
cution of the first stage of the method. When asked about the main influences
of creating personas and scenarios, the designer stated that "When you are
building an API, you have the concept to you. What the API offers to you.
When you start creating characters, you will think about what my API will
offer that persona, in that situation, in that specific scenario. Then you start
to expand the API to serve a larger set of people". So, we may notice that
the participant put the user in the foreground, emphasizing the quality of
use of the API interfaces. This is a consequence of creating empathy for the
user, i.e., trying to understand the needs and how to help the user on solving
problems. This consequence did not arise when using the Henning approach
since its guidelines are not directly related to the users’ profile and needs.

Modeling Conversation with Users: The designer founds advantage on
modeling the API interaction as a conversation. The MoLIC4API language
helped him thinking of the API operations: "By using the modeling language,
you can have the vision of the whole interaction. That kind of vision I don’t
think I would have if I didn’t make the models. Modeling is related to what the
user will ask for API and how it will answer. And you can associate that to
method calling, parameter passing, values and so on". This report also indi-
cates that Colloquy influenced the designer to think about the conversational
capabilities that should be offered by the refactoring API. Since Henning does
not offer an API modeling step in his approach, it was not possible for the
participant to reflect on the conversations and the interaction flow of his API.

Identification of New Requirements: Another point that the design high-
lighted as relevant when using Colloquy was developing the ability to extend
the requirements met by the API. According to him, thinking about the
conversations that the API should provide to the users allowed perceiving that
different users might need different conversations, leading to identifying new
requirements for the API: "It was noticeable that what I was offering in the
API was something limited and focused on a type of persona. By making more

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 130

personas, I could realize that I can provide more details and more requirements
for users. Thinking about the personas made me expand what the API could
offer. It made me think things that I had not thought about at first."

Created Models as API Documentation: Another significant contribution
of Colloquy was using the generated models as part of the API documentation.
It was the participant who pointed to this possibility in the last the interview.
Asked about the advantages and disadvantages of using the modeling language
to design the API interaction flow, the participant replied: "Let us say I have
a development team, and we are in the modeling phase of this API. If I showed
a UML diagram, the team might not be able to see an interaction flow. So
what I think would be more practical is that the moment I was presenting
my functionalities, I would show this interaction through MoLIC4APIs. Even
for the API user. If I show UML the user may not understand quickly, but
it is much more practical and clear to understand all the flow if I show the
MoLIC4APIs diagram". Thus, we believe that the generated models also
contributed for increasing the quality of the API documentation.

These aforementioned benefits indicate that Colloquy is feasible, bringing
effective contributions for designers developing better APIs. Such contributions
perceived by the designer encompass the three steps of the method, resulting
into improvements in the designer’s conversation with the API users. It
enhances the quality of the API from the standpoint of its completeness and
structural quality. At the moment, the API is in the implementation phase
of the internal functionalities. After the conclusion of this stage, we intend to
conduct experiments with different API users. In these studies, we will also
seek to analyze the perception of the API’s quality of use from the users point
of view.

5.7.2
Colloquy Drawbacks

The execution of Colloquy was more complex and time-consuming:
as Colloquy consists of 3 laborious steps, the time taken to execute the
method was considerably higher than the time spent on the previous design.
Furthermore, for a designer who lacks knowledge of the HCI techniques we
use, the method can be even more costly as it will have a disadvantageous
learning curve in the short term. However, we believe that Colloquy can bring
superior advantages that would pay off in cost benefit after learning, since the
API generated after the execution of the method had a great gain in quality

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 131

and conversation, as discussed in the section 5.6.4.

Prioritize which guidelines are most important: During the interviews,
we noticed that the API designer faced some difficulties in applying Colloquy.
The first major difficulty for the participant was in creating the API personas
and scenarios. Although he reported that the guiding questions significantly
helped him to think and write about personas and scenarios, the participant
pointed out that there are too many aspects that should be considered in
each question. Several aspects that were listed in the guiding questions did
not make sense for the participant API’s context. For example, for the par-
ticipant, questions about "culture" or "demographic data" are not relevant for
characterizing the set of API personas. In contrast, questions such as academic
background are extremely important, once he believe that academics are more
prone to better understand code refactoring than practitioners. Thus, possible
opportunities of improving Colloquy addresses reducing the number of guide-
lines or even the prioritization of which aspects should be more relevant.

Colloquy needs computational support to be more viable: Another
great difficulty was the creation of the MoLIC4APIs models. The participant
complained that the method does not offer a tool to support the creation of
the models. Additionally, memorizing exactly how to design each element of
the model was considered inefficient by the participant. In his words, he would
have significantly benefited from a tool to assist him in the construction of
the models. Besides accelerating the modeling process, this tool would reduce
the cognitive load of who is modeling the API. The participant reported
much difficulty in creating the models since there was no tool that offered
the elements ready for him just to drag and drop. Other approaches, such as
UML-based modeling, already have such computational support. However, we
will address this challenge in future work.

5.7.3
Threats to Validity

We planned first to perform the API design with an existing approach
(21) and then redesigning the API with our approach. Our intention was to
see what new improvements our approach could bring to the design process.
However, we are aware that this methodology has a learning bias as the
designer have already acquired previous knowledge with the use of other
approach. In this way, we have instructed the designer to throw away the API

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 132

design produced in the first phase and redesign the API with Colloquy from
the scratch. Moreover, we plan conducting new studies following alternative
designs. Besides, we intend to evaluate our method without a comparison
with existing methods, ensuring that all API design emerged from the use
of Colloquy.

Another threat to validity of this study addresses its restricted context:
a single API designed by a single professional. We know that more studies
are needed so that we can generalize our approach to be applicable on a
large scale industrial setting. However, case studies such as the one we design
and performed are very complex and require a lot of research effort. We are
reporting this our first result and will continue to conduct more studies on
evaluating and improving our proposed method.

Our study participant had a well-defined research goal and precise ideas
about the API needs. We believe this is another threat to the validity of
our study. It brings a positive bias on our method, since the participant may
already have a vision about which API he wanted to build. However, we seek
to reduce this threat by always making it clear to the participant that he
should make transparent his perceptions about Colloquy. Moreover, he always
explains what the method helped him think and improve in the API design,
highlighting what would not have been possible without the method.

5.7.4
Colloquy and the Software Development Process

We believe that our method can be applied to any software development
process. In an agile method, our method could be used, at each sprint, to
generate a desired piece of API. The MOLIC4API model itself is flexible
to accommodate and evolve with each sprint as new API requirements are
implemented. As with any other process of documentation of requirements
and functionalities, if the whole team is in tune and able to execute the
method, the discussions about personas and modeling can be carried out as
a team without problems. Diagrams like MOLIC4API are excellent tools for
collaborative discussions in software development processes. Thus, we believe
that Colloquy can be inserted in a development process under any kind of
methodology. However, we highlight here that no study has been conducted
within a more extensive software development context. Our study focused on
qualitative analysis and could not detect our method’s entry restrictions in a
software development team.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 133

5.8
Conclusion

In this paper, we present a method to support the design of conversational
APIs. Our method places user interaction with the API as a priority in the
process of designing and modeling an API. In this sense, it is important to
highlight that the evidence from our case study points out that our method’s
benefits extrapolate the conversational aspect. However, we understand that
other quality aspects of APIs are also important and should be appropriately
balanced and prioritized by their designers. In this sense, we understand
that our method can be combined with software engineering efforts that
traditionally focus on other quality aspects, such as structural quality and
performance.

The evidence from our case study suggests that the method has the
potential to contribute to improving user interaction with the API. As future
work, in the short term, we plan to verify that the API created with our
method actually has a better quality of use from the users’ point of view
by conducting observations studies and interviews with potential users of the
generated API. Next, we plan to conduct case studies with API projects in
other domains. Throughout these studies, we intend to refine the method,
developing a methodology that is instantiable through a computational tool.
Thus, we aim to disseminate and evaluate its use on a large scale.

5.9
Summary of Chapter 5

In this chapter, we present Colloquy, a method to support the design of
conversational APIs (section 5.4). In addition to the method, we also present
a case study that we performed, applying the method to a real case of API
development (section 5.5). In this case study, we worked with an API for
code refactoring in Java. One participant applied our method and obtained
satisfactory results in designing his API.

In this chapter, we discussed the method usefulness and innovation in
comparison with state of the art (section 5.3). Given the need for an API to
be conversational, the designer of such API can benefit from the method to
enhance his API conversation. Thus, improving its quality of use and reducing
the problems of misunderstanding by the user. We also show how Colloquy can
positively impact the designer himself, making him reflect on his users and their
needs better (section 5.7). Another point that we listed in this chapter was the
need for further application studies of the method, as well as the necessary
improvements that have already emerged from the case study results. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 5. Colloquy: A Method for Conversational API Design 134

we point out as future work the need for computational support to the designer
in applying the method (section 5.8).

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

6
Conclusion

As we have seen in this thesis, there is an urgent need to address the
problem of lack of API conversation (3). Despite their relevance to software
development, APIs still represent a significant challenge of use and learning
for programmers. Pragmatic conflicts between users and designers require APIs
designers to explain their design rationale beyond documentation to properly
help users learn how to use their APIs effectively and efficiently (4). For that,
the definition of API conversations is a promising approach in dealing with the
problem.

We believe that through the work done in the context of the doctorate
defended here, we were able to provide a systematic way for conversational
software APIs design. We show that putting all design rationale only into
the API documentation can cause serious misunderstandings by the user (3).
Furthermore, our conceptual framework provides the appropriate theoretical
support (4), while our design method provides the necessary technical and
methodological support (6). Moreover, we conducted two major empirical
studies indicating that our proposed solutions can help the designer in the
design process (6, 5).

Using a semiotic approach, and focusing on communicability (13), our
work went beyond those anchored in usability (49, 31, 28), in two-points.
First, we take a different look to a case that usability does not properly
address: the problems of disagreement in pragmatic usage situations. Second,
we offer support for API design, in opposition to studies that offer alternative
proposals to help the use of poorly designed APIs (24). We believe that the
high differential of our thesis, in opposition to the existing literature, is to have
focused on the root of the problem, i.e., the API design process.

The main contributions and their possible impact on the state-of-art and
the state-of-practice are described as follows.

• Characterization of an API as a mediating artifact of conversation
between users and designers

In this thesis, we discussed the fact that an API plays a role in the
mediation of conversation between users and designers. We also discuss

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 6. Conclusion 136

the understanding that APIs should have adequate communicability
for better pragmatic adequacy (section 2.5). We show that putting all
design rationale only into the API documentation can cause serious
misunderstandings by the user. From these understandings, we define
that an API needs to be conversational to be adequate in different
contexts of use.

• Characterization and classification of conversational APIs

We present and discuss in this thesis a conceptual framework for the
characterization and classification of conversational APIs. We present
the conversation as a new perspective to see the interaction between
programmers and APIs. Based on the Semiotic Engineering theory (13),
we describe the different classes of signs and how we can adapt them
to the context of the communicability of software APIs. Furthermore,
we demonstrate how our conceptual framework can be applied to assist
designers in defining conversations in their APIs. An API designer who
has the knowledge proposed by our framework will be better able to
decide on the distribution of the conversation between the three different
types of signs present in an API.

• A method for conversational APIs Design

We also present in this thesis a method for designing conversational APIs.
We demonstrate in detail how this method should be used in practice
and how it can positively impact API design processes in industry and
academia. Moreover, we exhibit and discuss the results of a case study
conducted with our method on designing a source code refactoring API.
Although we have no results from the API users’ point of view, we have
satisfactory results from the designer’s point of view. These results reveal
to us that this is a promising method that can benefit the software
engineering community in creating better and more usable APIs.

• Report of two empirical studies conducted in supporting the design of two
different conversational APIs

We have reported two long-term empirical studies in the conversational
API design process. These studies are innovative because technical
literature lacks in these types of work. The results and discussions
presented in these studies may inspire other researchers and practitioners’
decisions about software APIs design processes.s

Despite the contributions cited above, our work has some limitations that
need to be addressed in future work:

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 6. Conclusion 137

• Our approach can be complex and costly for some API designers profiles

Our entire approach is anchored in Semiotic Engineering. We dedicated
to building a method and a conceptual framework that would abstract
much of the theory’s concepts. Still, we consider it necessary that
a designer interested in using Colloquy has the basic knowledge of
Semiotic Engineering. Therefore, a designer without any knowledge of
HCI and Semiotic Engineering may have a disadvantageous learning
curve. However, we believe that with adequate computational support,
this limitation can be smoothed.

• Our approach lacks computational support

As mentioned in the previous item, adequate computational support
can help an inexperienced designer with the difficulties he would face.
However, in the current state of our research, we do not have any tools
that can fulfill this role. In the paragraphs below, we will discuss this
need as future work.

6.1
Overall Studies Reflection and Threats to Validity

This thesis presents four studies, where three are empirical studies, and
one is an analytical study. All studies converged to the conclusion we need
to prioritize the conversation as an essential quality in designing an API. In
chapters 2 and 3, the first two studies point to problems that would be a
consequence of inappropriate conversation. APIs with low conversations cause
misunderstandings in their users and, consequently, bugs in the final software.
Through these studies, we show how a process of API development based on
the concepts that we defend here could improve the quality of use.

In chapters 4 and 5, the studies were searching for design solutions for the
problems we identified. We chose to perform two qualitative empirical studies,
with different natures and domains, to explore in-depth possible solutions
to support designers in creating conversational APIs. Besides the method
evaluation, which we discussed in section 5.6, these studies also showed us
how urgent it is to offer techniques and tools to support the API designer. In
both studies, we realized that API designers do not usually follow traditional
Software Engineering methods to improve their APIs’ quality. Thus, APIs are
usually produced with low quality and do not meet the needs of conversation
with their users. As a consequence, this can lead to misuse and even disuse of
the API.

Regarding the general threats to validity of this thesis, we can list two
that are considered more important: the absence of an empirical study with

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 6. Conclusion 138

the Colloquy method being performed within a broader context of Software
Engineering, and the lack of quantitative studies.

The two studies carried out with Colloquy, the one on conception
(chapter 4), and the one on evaluation (chapter 5) were not in a software
development scenario that already had some Software Engineering method or
process in the development team. However, according to what we discussed in
section 5.7.4, we defend that Colloquy can be added in an organic way to any
software development process. We also state that Colloquy’s techniques are
already often used in other stages of software development. For example, the
modeling language as a conversation (MoLIC) is already employed in Human-
Computer Interaction processes. So, we know that more studies need to be
done with Colloquy in an environment with well-defined Software Engineering
methods and processes. However, this does not disqualify all the contributions
that Colloquy brings to the conversational API design process.

The lack of quantitative and large-scale studies in the industry is also a
threat to validity. However, we argued that in this doctoral thesis, the focus
was on understanding how to help the software API designer on improving the
conversation of his interfaces. Therefore, we designed only qualitative studies,
which give us better in-depth results about the designer’s views and perceptions
when using our method. As discussed in section 5.7, we believe that to test
Colloquy on a large scale will require some computational support. In the
following section, we will discuss this computational support as future work.

6.2
Future Work

As future work, we divide our research interests in three terms: short-
term, mid-term, and long-term.

In the short-term, we want to explore the reception of potential users of
the APIs created using our approach. We have the Java code refactoring API
that was designed following the conversational API concept proposed in this
thesis. The designer followed step by step our proposed method during the API
design process. Currently, the API is in the final phase of implementation, and
soon we will be able to conduct studies with users. In these studies, we intend to
compare the API generated with those already available to users. We believe
that with our conversational API approach, where the user will be able to
understand and even act on the refactoring performed, we will achieve greater
success in the appropriate use and the user satisfaction with the operations
performed.

In the mid-term, we intend to develop a computational tool to support

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Chapter 6. Conclusion 139

the method execution. To do this, we need to define which tasks of the method
need more support and would benefit from a computational tool. We believe
that the modeling step is the one that most needs this help nowadays. We
intend to go in search of tools that can help the designer in the construction of
models using the language proposed by Colloquy. We will need to adapt some
existing tool or create our own.

Another future work that we plan on this same topic is the availability of
the models created in phase 2 of Colloquy as a sort of documentation add-
on. The same tool that will help the designer could provide a navigation
functionality on the model created. This would help the user on discovering
the conversation flows that he must follow to achieve the desired results. Thus,
the modeling would serve as an interactive API documentation.

In the long-term, we believe that the concepts and tools we use in
our thesis can be explored in the context of artificial intelligence algorithms.
Recently, a new field of research has emerged in this area, the explainable
artificial intelligence (XAI). Some artificial intelligence techniques, such as
machine learning (ML) models, for example, are usually seen as "black boxes"
by their users (25). They are essentially mathematical models, operating
through a pattern search on a vast amount of data, which does not necessarily
have a human-relevant relationship. Consequently, understanding the internal
logic of these models is a complex task, both for designers and users.

With APIs playing a central role in the creation of ML models, we want
to investigate how communication takes place between designers and users of
ML APIs. As the main result of this future work, we hope to offer, through our
method (with adaptations), a methodological tool that allows API designers
to explore and understand the true meaning of explainability from the user’s
point of view. Therefore, we can offer a way to ML API designers to expose
their design rationale about the explainability of ML models.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

A
Colloquy Execution Example

In this appendix, we illustrates the step-by-step execution of Colloquy
for the design of a date and time API. First, we start by creating personas and
interaction scenarios. We describe one persona and two possible interaction
scenarios. Second, we present a conversation model using the MoLIC4APIs
language proposed by Colloquy. Finally, we show an interface proposal for the
API designed.

A.1
Personas and Interaction Scenarios

Persona: Daniel (Java programmer)
Daniel is a systems analyst and an experienced computer programmer. Daniel
is Brazilian but is used to programming in APIs and languages written in
English, even though he is not fluent. Daniel needs an API to work with
"date" type objects. For Daniel, the date is synonymous with the Gregorian
Calendar, those whose months go from January to December, divided in weeks
of 7 days. Daniel hopes that the API can help him calculate the differences
between dates and perform operations such as adding dates and periods. Since
the system will be used in various parts of the world, Daniel hopes that the
API can help him with time zone calculations. Daniel loves programming in
Java, a language he has over ten years of professional experience. Besides Java,
Daniel is also as experienced as in SQL for database queries and JavaScript
scripting language. He has worked with other scripting and object-oriented
languages and has also contacted other date APIs such as JavaScript, MySQL,
and Java7.

Interaction Scenario 1: Bill of Exchange Registration
Daniel needs to implement new functionality for generating billing tickets
in his company’s new sales system development. A client can pay up to 3
installments of their purchase amount in the company’s sales policy without
interest by generating three billing tickets. Daniel then needs to calculate the
date generated on the bills at the time of the purchase’s finalization. To do

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Appendix A. Colloquy Execution Example 141

this, Daniel will rely on the date API of his preferred programming language.
Daniel’s input data is the purchase date, and he needs to calculate the billing
deadlines, the first being one month after the purchase date, the second two
months after the purchase date, and the third three months after the purchase
date. When interacting with the API, it can create a date object and use a
method to calculate the expected date adding the necessary months. After
operating, he generates the bills and saves the due date in the database.

Interaction Scenario 2: Calculating the product delivery time
Now, Daniel needs to implement the delivery time calculation in the system.
According to the company’s business rules, Daniel should perform the delivery
time calculation counting seven working days after the purchase date. Besides,
a special rule must be applied if the purchase was made by noon, the day of
purchase counts as the first working day. Otherwise, the account should start
only on the next working day. Daniel will use a date API from his programming
language to perform the calculations. Daniel will create a date object with the
help of the API. Then he will check if the time of purchase was before noon or
after, to apply the correct sum of days on time. As the company Daniel works
for is a multinational, he needs the API to deal with the time zone issue. The
database time zone is not the same as the customer time zone. The API he will
use needs to understand these differences when performing the calculation. In
the end, Daniel will ask the API to add 6 or 7 working days to the purchase
date and will save the result to the database.

A.2
Conversation Modeling

In the diagram below, there are the main elements of the modeling lan-
guage we propose. The conversation scenes are represented by the rectan-
gles, where we have the title of the scene, the dialogues, and the arrows indi-
cating the conversation flow. Straight arrows are indicating progressive flow,
and dotted arrows are indicating regressive flow. Within each scene, the di-
alogues are represented following the OpenAPI syntax: [name_parameter] :
[type_parameter].

In this diagram, we propose a conversation modeling that covers the
proposed scenarios for the persona Daniel. Certainly, date and time API
can and should have many other conversations. However, the purpose of this
appendix is to illustrate and exemplify how Colloquy can be used to improve
the API conversation during the design process.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Appendix A. Colloquy Execution Example 142

Figure A.1: Modeling the Date and Time API Conversations

A.3
Interfaces Implementation

In this section, we present a proposal for a possible interface for the
generated API. Each API method is derived from a scene modeled in the
previous step, following Colloquy’s recommended. Each conversation has been
converted to parameters or method returns. Below are the proposed interfaces:

// Creating a New Date Scene

DateObject createNewDate (int day , int month , int year)

// Calculate a New Date Scene

DateObject calculateNewDate (DateObject currentDate ,

Period period)

// Define Exception Rule Scene

Void defineExceptionRule (int ruleType)

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Appendix A. Colloquy Execution Example 143

// Print Date Scene

String printData (DateObject date , string format)

Listing A.1: Generated API for Date and Time Operations

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Bibliography

[1] AFONSO, L. M.. Communicative dimensions of application pro-
gramming interfaces (APIs). PhD Thesis, Programa de Pós-Graduaçao
em Informática of the Departamento de Informática . . . , 2015.

[2] AFONSO, L. M.; BASTOS, J. A. M. D.; SOUZA, C. S. D. ; CERQUEIRA, R.
F. D. G.. The Case for API Communicability Evaluation: Intro-
ducing API-SI with Examples from Keras. CoRR, abs/1808.05891,
2018. _eprint: 1808.05891.

[3] BASTOS, J. A.; AFONSO, L. M. ; DE SOUZA, C. S.. Metacommuni-
cation between programmers through an application program-
ming interface: A semiotic analysis of date and time APIs. In:
2017 IEEE Symposium ON Visual Languages AND Human-Centric Comput-
ing (VL/HCC), p. 213–221, Oct. 2017. ISSN: 1943-6106.

[4] BASTOS, J. A.; MELLO, R. M. ; GARCIA, A. F.. A conceptual frame-
work for conversational apis. 2020.

[5] BASTOS, J. A.; MELLO, R. M.; GARCIA, A. F. ; CERQUEIRA, R. F. G..
On the support for (re)designing conversational software apis:
An action research study. 2020.

[6] BASTOS, J. A.; MELLO, R. M. ; GARCIA, A. F.. A method for
conversational api design. 2020.

[7] CARROLL, J. M.. Making use: scenario-based design of human-
computer interactions. MIT press, 2000.

[8] CETINSOY, A.; MARTIN, F. J.; ORTEGA, J. A. ; PETERSEN, P.. The
past, present, and future of machine learning APIs. In: CONFER-
ENCE ON Predictive APIs AND Apps, p. 43–49, 2016.

[9] CHING, T.; HIMMELSTEIN, D. S.; BEAULIEU-JONES, B. K.; KALININ,
A. A.; DO, B. T.; WAY, G. P.; FERRERO, E.; AGAPOW, P.-M.; ZIETZ,
M.; HOFFMAN, M. M.; XIE, W.; ROSEN, G. L.; LENGERICH, B. J.;
ISRAELI, J.; LANCHANTIN, J.; WOLOSZYNEK, S.; CARPENTER, A. E.;
SHRIKUMAR, A.; XU, J.; COFER, E. M.; LAVENDER, C. A.; TURAGA,

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Bibliography 145

S. C.; ALEXANDARI, A. M.; LU, Z.; HARRIS, D. J.; DECAPRIO, D.; QI,
Y.; KUNDAJE, A.; PENG, Y.; WILEY, L. K.; SEGLER, M. H. S.; BOCA,
S. M.; SWAMIDASS, S. J.; HUANG, A.; GITTER, A. ; GREENE, C. S..
Opportunities and obstacles for deep learning in biology and
medicine. Journal of The Royal Society Interface, 15(141):20170387, Apr.
2018.

[10] CLARKE, S.; BECKER, C.. Using the Cognitive Dimensions Frame-
work to evaluate the usability of a class library. In: IN Proceedings
OF THE 15HWorkshop OF THE Psychology OF Programming Interest Group
(PPIG 2003, 2003.

[11] COOPER, A.. The inmates are running the asylum:[Why high-tech
products drive us crazy and how to restore the sanity], volumen 2.
Sams Indianapolis, 2004.

[12] DE PAULA, M. G.; BARBOSA, S. D. J.. Designing and Evaluating
Interaction as Conversation: A Modeling Language Based on
Semiotic Engineering. In: Jorge, J. A.; Jardim Nunes, N. ; Falcão e Cunha,
J., editors, INTERACTIVE Systems. Design, Specification, AND Verification,
Lecture Notes in Computer Science, p. 16–33, Berlin, Heidelberg, 2003.
Springer.

[13] DE SOUZA, C. S.. The semiotic engineering of human-computer
interaction. MIT press, 2005.

[14] DE SOUZA, C. S.; LEITÃO, C. F.. Semiotic Engineering Methods for
Scientific Research in HCI. Morgan & Claypool Publishers, 2009.

[15] DE SOUZA, C. S.; CERQUEIRA, R. F. D. G.; AFONSO, L. M.; BRANDÃO,
R. R. D. M. ; FERREIRA, J. S. J.. Software Developers as Users :
Semiotic Investigations in Human-Centered Software Develop-
ment. Springer International Publishing, 2016.

[16] DEHAGHANI, S. M. H.; HAJRAHIMI, N.. Which Factors Affect Soft-
ware Projects Maintenance Cost More? Acta Informatica Medica,
21(1):63–66, Mar. 2013.

[17] FAROOQ, U.; WELICKI, L. ; ZIRKLER, D.. API usability peer re-
views: a method for evaluating the usability of application pro-
gramming interfaces. In: PROCEEDINGS OF THE SIGCHI Conference
ON Human Factors IN Computing Systems, CHI ’10, p. 2327–2336, Atlanta,
Georgia, USA, Apr. 2010. Association for Computing Machinery.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Bibliography 146

[18] FOWLER, M.. Refatoração: Aperfeiçoamento e Projeto. Bookman,
2004. Google-Books-ID: xV2_wAEACAAJ.

[19] GREEN, T. R.. Cognitive dimensions of notations. People and
computers V, p. 443–460, 1989.

[20] GRICE, H. P.. Logic and Conversation. In: SPEECH ACTS, p. 41–58.
Brill, 1975.

[21] HENNING, M.. API Design Matters. Queue, 5(4):24–36, May 2007.

[22] ICHINCO, M.; HNIN, W. Y. ; KELLEHER, C. L.. Suggesting API
Usage to Novice Programmers with the Example Guru. In:
PROCEEDINGS OF THE 2017 CHI Conference ON Human Factors IN
Computing Systems, CHI ’17, p. 1105–1117, Denver, Colorado, USA, May
2017. Association for Computing Machinery.

[23] INITIATIVE, O. A.. OpenAPI Specification, May 2020.

[24] LAMOTHE, M.; SHANG, W.. When APIs are Intentionally By-
passed: An Exploratory Study of API Workarounds. p. 13, 2020.

[25] LECUN, Y.; BENGIO, Y. ; HINTON, G.. Deep learning. nature,
521(7553):436–444, 2015. Publisher: Nature Publishing Group.

[26] MCLELLAN, S.; ROESLER, A.; TEMPEST, J. ; SPINUZZI, C.. Building
more usable APIs. IEEE Software, 15(3):78–86, May 1998. Conference
Name: IEEE Software.

[27] MINDERMANN, K.. Are easily usable security libraries possible
and how should experts work together to create them? In:
PROCEEDINGS OF THE 9TH International Workshop ON Cooperative AND
Human Aspects OF Software Engineering, CHASE ’16, p. 62–63, Austin,
Texas, May 2016. Association for Computing Machinery.

[28] MOSQUEIRA-REY, E.; ALONSO-RÍOS, D.; MORET-BONILLO, V.;
FERNÁNDEZ-VARELA, I. ; ÁLVAREZ ESTÉVEZ, D.. A systematic ap-
proach to API usability: Taxonomy-derived criteria and a case
study. Information and Software Technology, 97:46–63, May 2018.

[29] MURPHY, L.; KERY, M. B.; ALLIYU, O.; MACVEAN, A. ; MYERS, B. A..
API Designers in the Field: Design Practices and Challenges for
Creating Usable APIs. In: 2018 IEEE Symposium ON Visual Languages
AND Human-Centric Computing (VL/HCC), p. 249–258, Oct. 2018. ISSN:
1943-6106.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Bibliography 147

[30] MYERS, B. A.; KO, A. J.. The Past, Present and Future of Pro-
gramming in HCI. p. 2, 2009.

[31] MYERS, B. A.; STYLOS, J.. Improving API usability. Communications
of the ACM, 59(6):62–69, 2016. Publisher: ACM New York, NY, USA.

[32] NGUYEN, D. C.; WERMKE, D.; ACAR, Y.; BACKES, M.; WEIR, C. ;
FAHL, S.. A Stitch in Time: Supporting Android Developers in
WritingSecure Code. In: PROCEEDINGS OF THE 2017 ACM SIGSAC
Conference ON Computer AND Communications Security, CCS ’17, p. 1065–
1077, Dallas, Texas, USA, Oct. 2017. Association for Computing Machinery.

[33] NETO, M. A. C.. Uma linguagem de modelagem da interação para
auxiliar a comunicação designer-usuário. p. 134.

[34] NIELEBOCK, S.; HEUMÜLLER, R.; KRÜGER, J. ; ORTMEIER, F.. Co-
operative API Misuse Detection Using Correction Rules. p. 4,
2020.

[35] NIELSEN, J.; MOLICH, R.. Heuristic evaluation of user interfaces.
In: PROCEEDINGS OF THE SIGCHI CONFERENCE ON Human FACTORS
IN COMPUTING SYSTEMS, p. 249–256, 1990.

[36] NIELSEN, J.. Usability Engineering. Morgan Kaufmann, Oct. 1994.
Google-Books-ID: 95As2OF67f0C.

[37] NORMAN, D. A.; DRAPER, S. W.. User centered system design; new
perspectives on human-computer interaction. L. Erlbaum Associates
Inc., 1986.

[38] OLIVEIRA, J.; GHEYI, R.; MONGIOVI, M.; SOARES, G.; RIBEIRO, M. ;
GARCIA, A.. Revisiting the refactoring mechanics. Information and
Software Technology, 110:136–138, June 2019.

[39] PARNAS, D. L.. A technique for software module specification with
examples. Communications of the ACM, 15(5):330–336, May 1972.

[40] PEIRCE, C. S.. Reasoning and the logic of things: The Cambridge
conferences lectures of 1898. Harvard University Press, 1992.

[41] PICCIONI, M.; FURIA, C. A. ; MEYER, B.. An Empirical Study of API
Usability. In: 2013 ACM / IEEE International Symposium ON Empirical
Software Engineering AND Measurement, p. 5–14, Oct. 2013. ISSN: 1949-
3789.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Bibliography 148

[42] PONTES, F.; GHEYI, R.; SOUTO, S.; GARCIA, A. ; RIBEIRO, M.. Java
Reflection API: Revealing the Dark Side of the Mirror. In:
PROCEEDINGS OF THE 2019 27TH ACM Joint Meeting ON European
Software Engineering Conference AND Symposium ON THE Foundations OF
Software Engineering, ESEC/FSE 2019, p. 636–646, New York, NY, USA,
2019. Association for Computing Machinery. event-place: Tallinn, Estonia.

[43] ROSSON, M. B.; CARROLL, J. M.. Usability Engineering: Scenario-
Based Development of Human-Computer Interaction. Morgan
Kaufmann, 2002. Google-Books-ID: sRPg0IYhYFYC.

[44] SANGIORGI, U. B.; BARBOSA, S. D.. MoLIC designer: towards com-
putational support to hci design with MoLIC. In: PROCEEDINGS
OF THE 1ST ACM SIGCHI SYMPOSIUM ON Engineering INTERACTIVE
COMPUTING SYSTEMS, EICS ’09, p. 303–308, Pittsburgh, PA, USA, July
2009. Association for Computing Machinery.

[45] SANTAELLA, L.. O método anticartesiano de C. S. Peirce.

[46] SANTOS, A. L.; MYERS, B. A.. Design annotations to improve
API discoverability. Journal of Systems and Software, 126:17–33, 2017.
Publisher: Elsevier.

[47] SOUDERS, S.. High Performance Web Sites: Essential Knowledge
for Front-End Engineers. sl. O’Reilly Media, 2007.

[48] SPECIFICATION, U.. About the Unified Modeling Language Spec-
ification Version 2.5.1.

[49] STYLOS, J.; CLARKE, S.. Usability Implications of Requiring
Parameters in Objects’ Constructors. In: PROCEEDINGS OF THE
29TH INTERNATIONAL CONFERENCE ON Software Engineering, ICSE
’07, p. 529–539, USA, May 2007. IEEE Computer Society.

[50] STYLOS, J.; MYERS, B. A.. The implications of method placement
on API learnability. In: PROCEEDINGS OF THE 16TH ACM SIGSOFT
International Symposium ON Foundations OF SOFTWARE ENGINEERING,
SIGSOFT ’08/FSE-16, p. 105–112, Atlanta, Georgia, Nov. 2008. Association
for Computing Machinery.

[51] STYLOS, J.; GRAF, B.; BUSSE, D. K.; ZIEGLER, C.; EHRET, R. ;
KARSTENS, J.. A case study of API redesign for improved usabil-
ity. In: 2008 IEEE Symposium ON Visual Languages AND Human-Centric
Computing, p. 189–192, Sept. 2008. ISSN: 1943-6106.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

Bibliography 149

[52] THIOLLENT, M.. Metodologia da pesquisa–ação (7ª edição). São
Paulo-SP, 1996.

[53] WATSON, R. B.. Improving software API usability through text
analysis: A case study. In: 2009 IEEE International Professional Com-
munication Conference, p. 1–7, July 2009. ISSN: 2158-1002.

[54] WATSON, R.. Applying the Cognitive Dimensions of API Usabil-
ity to Improve API Documentation Planning. In: PROCEEDINGS
OF THE 32ND ACM International Conference ON The Design OF Commu-
nication CD-ROM, SIGDOC ’14, p. 1–2, Colorado Springs, CO, USA, Sept.
2014. Association for Computing Machinery.

[55] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B. ;
WESSLÉN, A.. Experimentation in Software Engineering. Springer-
Verlag, Berlin Heidelberg, 2012.

[56] YESSENOV, K.; KURAJ, I. ; SOLAR-LEZAMA, A.. DemoMatch: API
discovery from demonstrations. ACM SIGPLAN Notices, 52(6):64–78,
June 2017.

[57] ZHANG, J.; JIANG, H.; REN, Z.; ZHANG, T. ; HUANG, Z.. Enriching
API Documentation with Code Samples and Usage Scenarios
from Crowd Knowledge. IEEE Transactions on Software Engineering, p.
1–1, 2019. Conference Name: IEEE Transactions on Software Engineering.

DBD
PUC-Rio - Certificação Digital Nº 1621799/CA

	Promoting Conversational APIs: A Conceptual Framework and a Method for API Design
	Resumo
	Table of contents
	Introduction
	Problem Statement and Related Work Limitations
	Main Contributions
	Thesis Outline

	API as Conversation Mediator Artifact
	Introduction
	Related Work
	A Semiotically-Based Research Study
	Semiotic Engineering and SigniFYIng APIs
	Methodology

	Results
	Interview
	SigniFYIng APIs

	Discussion
	SigniFYIng APIs and Interview Data
	Evolution of the API, from Java 7 to Java 8
	Implications
	Threats to Validity

	Conclusion and Future Work
	Summary of Chapter 2

	A Conceptual Framework for Conversational APIs
	Introduction
	Theoretical Basis
	Semiotic Engineering
	Abductive Reasoning and Semiosis
	Conversational Interface

	Introducing Conversations in APIs
	Syntax, Semantics and Pragmatics
	Conversational API
	Principle of Cooperation
	Customization

	Conceptual Framework
	API Signs
	Conversational API Levels
	Rudimentary Conversational APIs
	Metalinguistic Conversational APIs
	Fully Conversational APIs

	Evaluation of the conceptual framework
	Date and Time APIs Classification
	API Calendar - Java 7 - Rudimentary Conversational API
	API DateTime - Java 8 - Metalinguistic Conversational API
	Fully Conversational APIs

	Refactoring API Classification
	Refactoring API - Metalinguistic Conversational API
	Refactoring API - Fully Conversational API

	Machine Learning API Classification
	Machine Learning API - Metalinguistic Conversational API
	Machine Learning API - Fully Conversational API

	Discussion
	Related Work
	Conclusion and Future Work
	Summary of Chapter 3

	On the Support for Designing a Conversational Software API: An Action Research Study
	Introduction
	Theoretical Background
	The Action Research
	Research Objectives
	Research Context
	Execution
	The Action Research Cycles
	First Cycle
	Second Cycle
	Third Cycle

	Lessons Learnt
	Who are the Users
	Challenge: Making Designers Aware of the Users' Needs
	Solution: to Adopt Consolidated HCI Techniques
	Lesson Learnt: API Designers Have Difficulties on Establishing Personas and Scenarios

	How to Model the API Conversations
	Challenge: to Help Designers to Model API Conversations
	Solution: Use MoLIC to Think About API Dialogues
	Lesson Learnt: MoLIC Should be Adapted

	How to Implement the API Interfaces
	Challenge: to Help Designers on Choosing the Appropriate Signs for API Interfaces
	Solution: A Set of Guidelines to Structuring the API Interfaces
	Lesson Learnt: We Need More than Just Guidelines

	Follow-up and Discussion
	Related Work
	Limitations and Threats to Validity
	Conclusion and Future Work
	Summary of Chapter 4

	Colloquy: A Method for Conversational API Design
	Introduction
	Theoretical Background
	Semiotic Engineering
	Conversational API

	Related Work
	Colloquy
	Personas and Interaction Scenarios
	Personas
	Interaction Scenarios
	Guidelines for the Characterization of APIs Personas and Interaction Scenarios

	Conversation Modeling
	MoLIC4API

	Interfaces Implementation
	Recommendations for Composing Source Code from MoLIC4API Diagrams
	Naming and Structuring Guidelines

	Study Design
	Goal and Research Questions
	API Context
	Data Sources
	Data Analysis Procedures
	Phases of the Study Execution
	Phase 1 - API Design Following Another Method
	Phase 2 - API Design Following Colloquy

	Results
	Personas and Interaction Scenarios Created
	Persona 1: John - Expert Software Engineer
	Persona 2: Philip - Experienced Freelance Programmer
	Persona 3: Katarina - Inexperienced Programmer
	Discussion about Personas and Interaction Scenarios

	Diagrams
	API Interfaces
	Improvements After Using Colloquy
	Interface Conversations Aspects

	Discussion
	Colloquy Method Benefits
	Colloquy Drawbacks
	Threats to Validity
	Colloquy and the Software Development Process

	Conclusion
	Summary of Chapter 5

	Conclusion
	Overall Studies Reflection and Threats to Validity
	Future Work

	Colloquy Execution Example
	Personas and Interaction Scenarios
	Conversation Modeling
	Interfaces Implementation

	Bibliography

