4 Desenvolvimento

4.1. Função densidade de espectro de potência (FDEP) de entrada

A Figura 10 mostra a FDEP (igual à FDEPo, da USNRC [1], normalizada para 0,4g) utilizada como base à geração dos ERUP, obtidos estatisticamente, e à geração dos ERUP*, utilizando o método de Diniz [2].

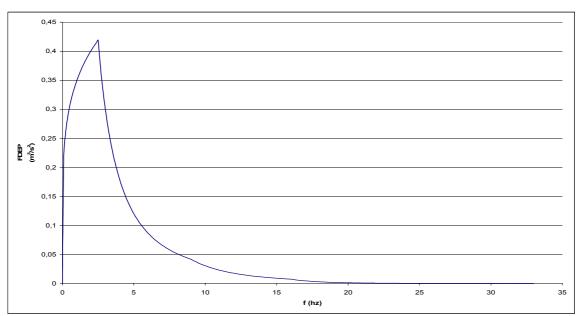


Figura 10 – Função densidade de espectro de potência utilizada.

4.2. Geração da família de sismos artificiais

Nesta etapa é gerada uma família de sismos pertencente a um processo aleatório estacionário de segunda ordem definido pela FDEP, com número crescente de elementos. O número mínimo de elementos é definido após a avaliação dos valores dos ER obtidos, levando em conta que tal número seja suficiente para levar a uma regularidade estatística dos valores de PSV para cada uma das freqüências de referência.

Para a geração destes sismos é desenvolvido um programa de computador, SISMOSINV, capaz de gerar acelerogramas a partir de uma FDEP qualquer, utilizando o método da superposição de oscilações (de acordo com o item 3.4.1.).

4.2.1. Programa para geração de sismos artificiais - SISMOSINV.

A partir da teoria apresentada no capítulo 3, é desenvolvido um programa, em FORTRAN, para gerar acelerogramas com base em uma FDEP qualquer.

4.2.1.1. Organização do programa

O programa é constituído de uma rotina principal, SISMOSINV, onde a grande maioria do processamento ocorre, e uma sub-rotina, chamada TRF, utilizada para calcular a Transformada Rápida de Fourier.

A rotina principal utiliza os seguintes parâmetros de entrada:

- NSIS número do sismo, utilizado para controle;
- T duração do sismo, em segundos;
- FMIN mínima frequência de referência, em Hz;
- FMAX máxima frequência de referência, em Hz;
- FDEP = 1, FDEP qualquer, fornecida por pontos;
- FDEP = 2, FDEP da USNRC [1];
- ACN valor da aceleração máxima para normalização, em g, e;

A partir de tais parâmetros, o programa calcula automaticamente as durações das principais fases do sismo. O incremento de tempo, "*DeltaT*", é fixado em 0,01s de acordo com Clough & Penzien [5].

Se a FDEP utilizada for a definida pela USNRC [1] o cálculo dos valores da função é automático, se não, os dados são lidos de acordo com o arquivo de entrada.

Como os dados da FDEP são os correspondentes das freqüências em Hz é efetuada a transformação da FDEP de Hz para rad/s, utilizando a seguinte relação:

$$S(f)\Delta f = S(w)\Delta\omega \tag{4.1}$$

onde:

S(f) - FDEP em função da frequência em Hz;

 Δf - Incremento de frequência, em Hz;

S(w) - FDEP em função da frequência em rad/s;

 $\Delta \omega$ - Incremento de frequência, em rad/s.

As amplitudes dos harmônicos são, então, calculadas, de acordo com o apresentado em 3.4.1.1..

Procede-se ao cálculo das frequências correspondentes a cada harmônico i.

O caráter aleatório do acelerograma é garantido pela definição de um vetor de ângulos de fase randômicos utilizando duas funções internas do FORTRAN. Uma delas salva a semente (valor utilizado para iniciar o cálculo do número randômico) com base no relógio do computador no momento em que o programa está sendo rodado e a outra é um gerador de números randômicos que utiliza a semente como entrada.

As oscilações são então calculadas de acordo com 3.4.1.1 e, em seguida, superpostas.

Neste momento, está pronto o processo aleatório que, com o devido tratamento, é utilizado como acelerograma.

Para que este processo seja utilizado como acelerograma artificial ficam faltando três passos:

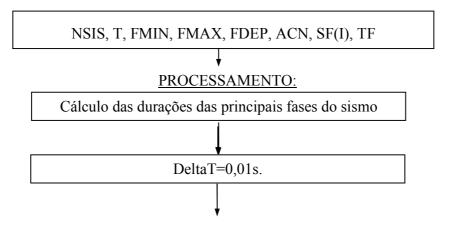
- Determinação e aplicação da função intensidade, de acordo com 3.4.1.2.;
- Cálculo da velocidade final, por integração do acelerograma, para utilização na correção da linha base;
- Correção da linha base, de acordo com 3.4.1.3..

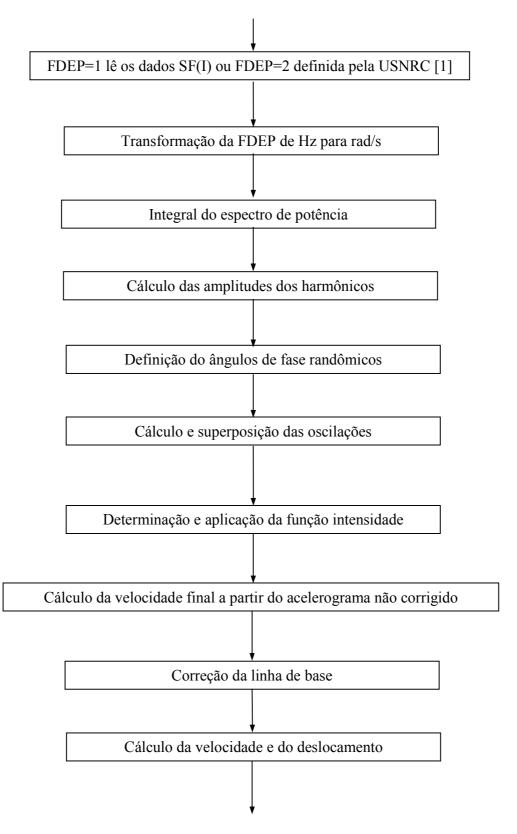
Em seguida, para possibilitar a visualização das principais características do acelerograma gerado, é feita a integração deste, de modo a se obter a velocidade e o deslocamento provocados pelo movimento do terreno.

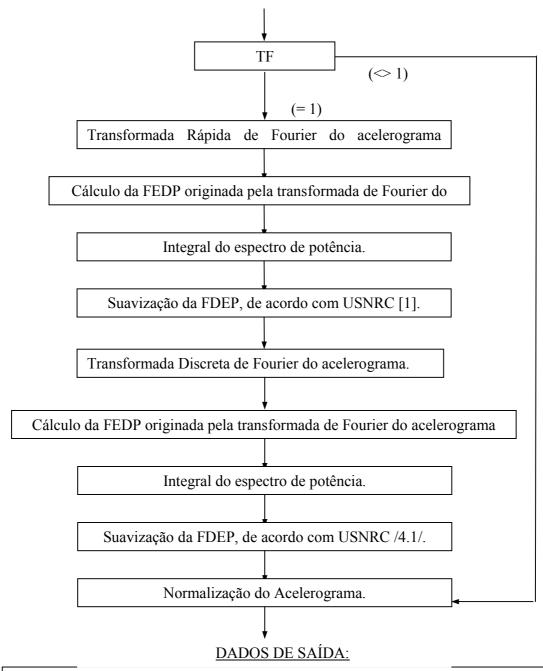
Neste momento é utilizada a sub-rotina TRF para obtenção da FDEP correspondente à aceleração na fase intensa do sismo. Esta sub-rotina visa efetuar a Transformada Rápida de Fourier do acelerograma gerado, em sua fase estacionária, que coincide com a fase intensa do sismo. Esta rotina consiste em uma otimização da transformada discreta de Fourier.

Com os resultados da TRF é obtida a FDEP, feita sua suavização, de acordo com [1] e prossegue-se com uma avaliação de sua integral de forma a ser confrontada com o valor da integral de FDEP de entrada.

Também é calculada a Transformada Discreta de Fourier (TDF) e feita sua suavização para efetuar a comparação com a FDEP de entrada.


Então, é processada a normalização da acelerograma de acordo com o valor de entrada, ACN.


Por fim, os resultados obtidos são salvos em oito arquivos de saída diferentes, a saber: sismo-fdepf.out, sismo-fdepw.out, sismo-linbase.out, sismo-acel.out, sismo-norm.out, sismo-integra.out, sismo-fdeptrf.out, sismo-SAP.out.


Estes arquivos, entre outras informações, fornecem os valores dos acelerogramas normalizados e um arquivo já compatível com a formatação necessária para entrada de dados do programa SAP2000. (Ver Apêndice II).

Fluxograma do programa:

ENTRADA DE DADOS:

Arquivos de saída: sismo-fdepf.out, sismo-fdepw.out, sismo-linbase.out, sismo-acel.out, sismo-norm.out, sismo-integra.out, sismo-fdeptrf.out e sismo-SAP.out

Mais detalhes no Apêndice II.

4.2.2. Família de sismos artificiais gerada

São gerados 75 sismos, pois este número de elementos mostra-se suficiente para que o espaço amostral S_{Ii} , composto por todos estes elementos, tenha regularidade estatística (ver Tabelas 1 a 15 no item 4.3).

Características dos sismos gerados:

- Todos estes sismos utilizam a FDEP como densidade espectral de entrada;
- A FDEP é considerada na faixa de freqüência de 0,25 a 33Hz;
- O tempo de duração do sismo é de 15 segundos, sendo que dez segundos correspondem à fase mais intensa;

4.2.3. Exemplo de sismos gerados

A seguir, são mostrados exemplos de funções temporais (aceleração, velocidade, deslocamento) dos Sismos nº 13 e 25, gerados artificialmente, com base na metodologia descrita em 3.4.1.1..

Os gráficos a seguir, Figuras 12, 13 e 14, mostram as funções temporais da aceleração, velocidade e deslocamento, correspondentes ao sismo nº 13.

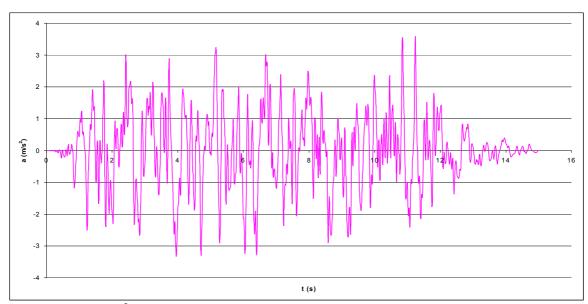


Figura 11 – Sismo nº 13 – Aceleração X Tempo.

Este sismo apresenta aceleração máxima igual a $3,59 \text{m/s}^2$ no instante de tempo igual a 11,24 s.

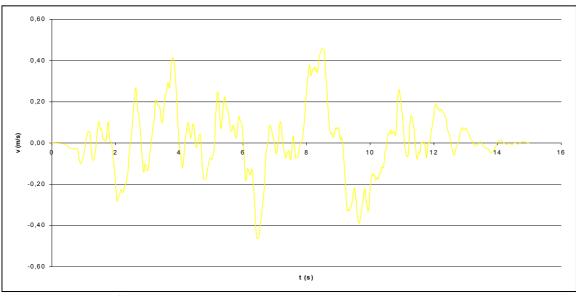


Figura 12 – Sismo nº 13 – Velocidade X Tempo.

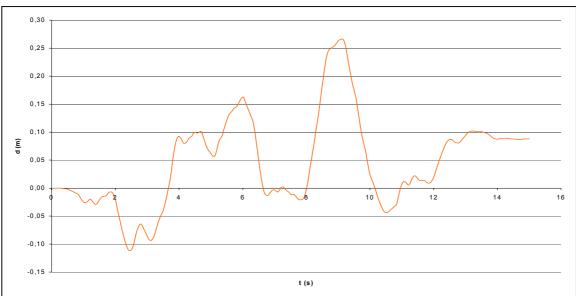


Figura 13 – Sismo nº 13 – Deslocamento X Tempo.

Este sismo apresenta deslocamento máximo igual a 0,26m no instante de tempo igual a 9,18s.

Os gráficos das Figuras 14, 15 e 16, por sua vez, mostram as funções temporais da aceleração, velocidade e deslocamento, correspondentes ao sismo nº. 25.

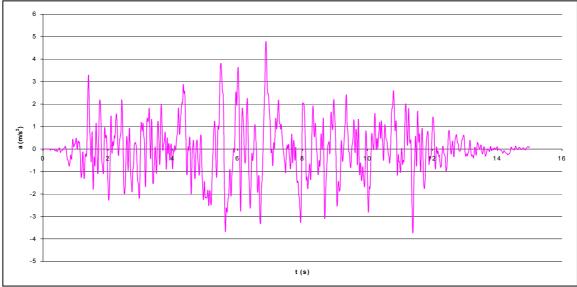


Figura 14 – Sismo no 25 – Aceleração X Tempo.

Este sismo apresenta aceleração máxima igual a $4,79 \text{m/s}^2$ no instante de tempo igual a 6,87 s.

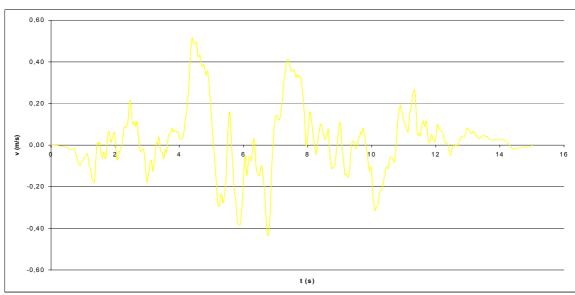


Figura 15 – Sismo nº 25 – Velocidade X Tempo.

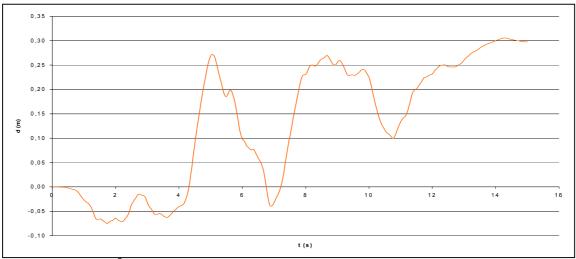


Figura 16 – Sismo nº 25 – Deslocamento.

Este sismo apresenta deslocamento máximo igual a 0,31m no instante de tempo igual a 14,29s.

4.3. Geração dos Espectros de Resposta

Para cada um dos sismos gerados é determinado o Espectro de Resposta, com ξ =0,02, utilizando o programa SAP2000.

Os ER, como é usual, são obtidos em Pseudovelocidade (PSV), para os valores correspondentes às freqüências de 0,05, 0,1, 0,25, 0,5, 1,0, 2,5, 5, 9 e 33Hz, respectivamente.

São calculados ER para cada um dos sismos de um subconjunto de cinco dos 75 gerados. Ver Tabela 1.

SISMO			PSV (m/s))		MÉDIA	σ/ υ	MÁXIMO	MÍNIMO	
FREQÜÊNCIA	1	2	3	4	5	(μ)	(o)	σ/μ	IVIAXIIVIO	IVIIIVIIVIO
0,05 Hz	0,283	0,093	0,151	0,063	0,081	0,134	0,089	66,73%	0,283	0,063
0,1 Hz	0,281	0,199	0,230	0,139	0,139	0,198	0,061	30,86%	0,281	0,139
0,25 Hz	1,363	1,015	1,114	1,069	1,195	1,151	0,136	11,77%	1,363	1,015
0,5 Hz	1,040	1,180	1,522	0,875	1,313	1,186	0,249	20,96%	1,522	0,875
1 Hz	1,056	1,256	1,162	1,228	1,039	1,148	0,098	8,57%	1,256	1,039
2,5 Hz	0,714	1,083	1,141	0,981	0,895	0,963	0,168	17,46%	1,141	0,714
5 Hz	0,446	0,476	0,391	0,440	0,518	0,454	0,047	10,31%	0,518	0,391
9 Hz	0,216	0,225	0,199	0,197	0,226	0,213	0,014	6,53%	0,226	0,197
33 Hz	0,024	0,023	0,023	0,020	0,019	0,022	0,002	10,15%	0,024	0,019

Tabela 1 – ER dos cinco primeiros sismos gerados e a distribuição de probabilidade para o conjunto de valores do 1°. ao 5°. ER.

Este procedimento é repetido para os outros subconjuntos compostos de cinco elementos cada até que fique explícita a regularidade estatística desejada. Ver tabelas 2 a 15

SISMO			PSV (m/s))		MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	6	7	8	9	10	(µ)	(o)	σ/μ	IVIZXIIVIO	IVIIIVIIVIO
0,05 Hz	0,125	0,104	0,085	0,137	0,126	0,125	0,062	49,71%	0,283	0,063
0,1 Hz	0,206	0,136	0,142	0,226	0,196	0,190	0,049	26,05%	0,281	0,136
0,25 Hz	1,131	1,102	0,971	1,200	1,155	1,132	0,109	9,65%	1,363	0,971
0,5 Hz	0,876	1,202	1,194	1,505	0,980	1,169	0,232	19,87%	1,522	0,875
1 Hz	1,171	1,177	1,004	1,054	1,120	1,127	0,086	7,59%	1,256	1,004
2,5 Hz	0,902	1,157	0,870	1,061	1,015	0,982	0,138	14,08%	1,157	0,714
5 Hz	0,388	0,390	0,474	0,443	0,510	0,448	0,048	10,67%	0,518	0,388
9 Hz	0,252	0,252	0,191	0,199	0,238	0,220	0,023	10,38%	0,252	0,191
33 Hz	0,023	0,020	0,019	0,022	0,023	0,022	0,002	8,62%	0,024	0,019

Tabela 2 – ER do 6°. ao 10°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 10°. ER.

SISMO			PSV (m/s))		MÉDIA	DESVIO	σ/ υ	MÁXIMO	MÍNIMO
FREQÜÊNCIA	11	12	13	14	15	(μ)	(o)	σ/μ	IVIZXIIVIO	IVIIIVIIVIO
0,05 Hz	0,156	0,052	0,068	0,134	0,098	0,117	0,056	47,94%	0,283	0,052
0,1 Hz	0,210	0,102	0,155	0,246	0,185	0,186	0,049	26,55%	0,281	0,102
0,25 Hz	1,114	1,120	1,019	1,254	1,064	1,126	0,100	8,87%	1,363	0,971
0,5 Hz	1,155	0,980	1,036	1,223	1,183	1,151	0,196	17,02%	1,522	0,875
1 Hz	1,327	1,271	1,107	0,954	1,261	1,146	0,110	9,60%	1,327	0,954
2,5 Hz	1,128	1,027	1,017	0,879	0,900	0,985	0,124	12,55%	1,157	0,714
5 Hz	0,523	0,367	0,451	0,449	0,423	0,446	0,049	10,92%	0,523	0,367
9 Hz	0,227	0,222	0,210	0,205	0,192	0,217	0,020	9,30%	0,252	0,191
33 Hz	0,023	0,027	0,018	0,022	0,020	0,022	0,002	10,79%	0,027	0,018

Tabela 3 – ER do 11°. ao 15°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 15°. ER.

SISMO			PSV (m/s))		MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	16	17	18	19	20	(μ)	(o)	σ/μ	IVIZVIIVIO	IVIIIVIIIVIO
0,05 Hz	0,127	0,075	0,086	0,097	0,102	0,112	0,050	44,40%	0,283	0,052
0,1 Hz	0,186	0,131	0,194	0,188	0,186	0,184	0,044	24,06%	0,281	0,102
0,25 Hz	1,125	0,944	1,147	0,930	1,170	1,110	0,105	9,44%	1,363	0,930
0,5 Hz	0,731	1,352	1,238	1,386	0,865	1,142	0,217	19,03%	1,522	0,731
1 Hz	0,790	1,214	1,181	1,354	0,836	1,128	0,151	13,41%	1,354	0,790
2,5 Hz	0,995	0,938	0,912	0,919	1,086	0,981	0,111	11,35%	1,157	0,714
5 Hz	0,427	0,405	0,416	0,422	0,373	0,437	0,046	10,55%	0,523	0,367
9 Hz	0,250	0,194	0,249	0,242	0,243	0,221	0,022	9,93%	0,252	0,191
33 Hz	0,022	0,020	0,018	0,024	0,021	0,022	0,002	10,52%	0,027	0,018

Tabela 4 – ER do 16°. ao 20°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 20°. ER.

SISMO		PSV					DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	21	22	23	24	25	(μ)	(o)	σ/μ	IVIAXIIVIO	IVIIIVIIVIO
0,05 Hz	0,176	0,074	0,100	0,095	0,096	0,111	0,047	42,32%	0,283	0,052
0,1 Hz	0,258	0,174	0,211	0,242	0,215	0,191	0,044	23,05%	0,281	0,102
0,25 Hz	1,125	1,049	1,229	1,183	1,003	1,112	0,101	9,06%	1,363	0,930
0,5 Hz	0,769	1,398	1,593	1,105	1,088	1,152	0,233	20,26%	1,593	0,731
1 Hz	1,097	1,275	1,226	0,872	1,121	1,126	0,149	13,23%	1,354	0,790
2,5 Hz	0,977	0,854	0,834	1,014	0,814	0,964	0,111	11,51%	1,157	0,714
5 Hz	0,480	0,416	0,450	0,465	0,400	0,438	0,043	9,88%	0,523	0,367
9 Hz	0,197	0,240	0,229	0,191	0,175	0,218	0,023	10,68%	0,252	0,175
33 Hz	0,023	0,024	0,021	0,021	0,024	0,022	0,002	9,84%	0,027	0,018

Tabela 5 – ER do 21°. ao 25° sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 25°. ER.

SISMO			PSV			MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	26	27	28	29	30	(µ)	(σ)	σ/μ	IVIZATIVIO	IVIIIVIIVIO
0,05 Hz	0,105	0,074	0,084	0,177	0,097	0,111	0,045	41,08%	0,283	0,052
0,1 Hz	0,172	0,170	0,189	0,221	0,150	0,189	0,041	21,90%	0,281	0,102
0,25 Hz	1,037	1,054	1,091	1,270	1,032	1,109	0,099	8,92%	1,363	0,930
0,5 Hz	1,500	1,503	1,274	1,702	1,110	1,196	0,250	20,90%	1,702	0,731
1 Hz	1,166	1,048	1,345	1,241	1,071	1,134	0,144	12,71%	1,354	0,790
2,5 Hz	0,911	1,084	0,879	0,910	1,002	0,963	0,106	10,98%	1,157	0,714
5 Hz	0,418	0,405	0,396	0,410	0,500	0,436	0,043	9,77%	0,523	0,367
9 Hz	0,213	0,212	0,219	0,189	0,229	0,217	0,022	10,14%	0,252	0,175
33 Hz	0,022	0,024	0,022	0,024	0,020	0,022	0,002	9,43%	0,027	0,018

Tabela 6 – ER do 26°. ao 30°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 30°. ER.

SISMO		PSV MÉDIA DESVIO σ/μ						MÁXIMO	MÍNIMO	
FREQÜÊNCIA	31	32	33	34	35	(μ)	(o)	0/μ	IVI-VIIVO	IVIII VIIIVIO
0,05 Hz	0,092	0,160	0,092	0,060	0,077	0,109	0,044	40,76%	0,283	0,052
0,1 Hz	0,198	0,230	0,170	0,155	0,152	0,188	0,040	21,26%	0,281	0,102
0,25 Hz	0,948	0,986	1,105	1,027	1,038	1,096	0,099	9,01%	1,363	0,930
0,5 Hz	1,093	1,217	1,034	1,135	1,113	1,185	0,234	19,72%	1,702	0,731
1Hz	0,786	1,439	0,891	1,338	1,177	1,133	0,164	14,51%	1,439	0,786
2,5 Hz	0,949	0,986	0,865	1,036	0,877	0,960	0,101	10,52%	1,157	0,714
5 Hz	0,429	0,427	0,452	0,429	0,445	0,436	0,040	9,06%	0,523	0,367
9 Hz	0,235	0,260	0,198	0,197	0,217	0,218	0,022	10,26%	0,260	0,175
33 Hz	0,018	0,022	0,020	0,025	0,022	0,022	0,002	9,61%	0,027	0,018

Tabela 7 – ER do 31°. ao 35°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 35°. ER

SISMO		PSV					DESVIO	6/II	MÁXIMO	MÍNIMO
FREQÜÊNCIA	36	37	38	39	40	(μ)	(o)	σ/μ	IVIZXIIVIO	IVIIIVIIVIO
0,05 Hz	0,219	0,065	0,071	0,119	0,093	0,109	0,046	42,09%	0,283	0,052
0,1 Hz	0,231	0,144	0,168	0,170	0,148	0,186	0,039	21,13%	0,281	0,102
0,25 Hz	1,217	0,978	1,077	1,100	1,040	1,095	0,097	8,82%	1,363	0,930
0,5 Hz	0,847	1,432	1,340	1,233	1,249	1,189	0,230	19,33%	1,702	0,731
1 Hz	0,996	1,320	0,927	1,097	1,255	1,131	0,163	14,37%	1,439	0,786
2,5 Hz	0,785	1,238	0,999	1,012	1,035	0,967	0,109	11,27%	1,238	0,714
5 Hz	0,367	0,425	0,384	0,646	0,448	0,438	0,052	11,82%	0,646	0,367
9 Hz	0,201	0,216	0,240	0,199	0,223	0,218	0,022	9,91%	0,260	0,175
33 Hz	0,020	0,021	0,018	0,018	0,021	0,022	0,002	9,82%	0,027	0,018

Tabela 8 – ER do 36°. ao 40°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 40°. ER.

SISMO	PSV					MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	41	42	43	44	45	(µ)	(o)	σ/μ	IVIAXIIVIO	IVIIIVIIVIO
0,05 Hz	0,077	0,074	0,055	0,098	0,103	0,106	0,045	42,02%	0,283	0,052
0,1 Hz	0,122	0,248	0,120	0,219	0,179	0,185	0,041	22,12%	0,281	0,102
0,25 Hz	1,063	1,232	1,082	1,072	1,113	1,097	0,093	8,52%	1,363	0,930
0,5 Hz	1,370	1,222	0,894	0,894	1,074	1,178	0,228	19,31%	1,702	0,731
1 Hz	1,153	0,907	1,057	0,974	1,387	1,127	0,164	14,51%	1,439	0,786
2,5 Hz	1,104	1,080	0,828	0,866	0,990	0,968	0,109	11,28%	1,238	0,714
5 Hz	0,368	0,490	0,427	0,394	0,405	0,436	0,051	11,74%	0,646	0,367
9 Hz	0,228	0,171	0,218	0,202	0,202	0,216	0,022	10,07%	0,260	0,171
33 Hz	0,022	0,022	0,021	0,022	0,019	0,022	0,002	9,48%	0,027	0,018

Tabela 9 – ER do 41°. ao 45°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 45°. ER.

SISMO			PSV	σ/μ				σ/u	MÁXIMO	MÍNIMO
FREQÜÊNCIA	46	47	48	49	50	(μ)	(o)	0/μ	IVIPORIVIO	IVIIIVIO
0,05 Hz	0,094	0,167	0,116	0,065	0,131	0,107	0,044	40,90%	0,283	0,052
0,1 Hz	0,190	0,199	0,185	0,131	0,187	0,185	0,040	21,48%	0,281	0,102
0,25 Hz	1,002	1,224	1,105	1,056	1,239	1,100	0,094	8,53%	1,363	0,930
0,5 Hz	1,142	1,057	1,218	0,897	0,631	1,159	0,233	20,08%	1,702	0,631
1Hz	1,071	1,260	1,207	1,318	1,391	1,139	0,163	14,31%	1,439	0,786
2,5 Hz	0,912	0,932	1,118	0,768	1,020	0,966	0,110	11,40%	1,238	0,714
5Hz	0,481	0,471	0,420	0,413	0,414	0,436	0,049	11,33%	0,646	0,367
9Hz	0,190	0,228	0,206	0,170	0,199	0,214	0,022	10,35%	0,260	0,170
33 Hz	0,021	0,023	0,017	0,021	0,022	0,021	0,002	9,69%	0,027	0,017

Tabela 10 – ER do 46°. ao 50°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 50°. ER.

SISMO		PSV				MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	51	52	53	54	55	(μ)	(o)	σ/μ	IVIAXIIVIO	IVIIIVIIVIO
0,05 Hz	0,059	0,079	0,172	0,077	0,202	0,108	0,045	42,00%	0,283	0,052
0,1 Hz	0,119	0,161	0,232	0,224	0,208	0,185	0,040	21,60%	0,281	0,102
0,25 Hz	1,036	1,025	1,261	1,053	1,198	1,101	0,094	8,55%	1,363	0,930
0,5 Hz	0,986	0,819	1,228	0,911	0,768	1,140	0,236	20,68%	1,702	0,631
1 Hz	0,894	1,433	0,931	1,154	0,834	1,131	0,171	15,13%	1,439	0,786
2,5 Hz	0,945	1,126	0,849	0,909	1,151	0,969	0,111	11,51%	1,238	0,714
5 Hz	0,435	0,512	0,503	0,477	0,502	0,441	0,050	11,34%	0,646	0,367
9 Hz	0,213	0,197	0,225	0,215	0,191	0,214	0,022	10,08%	0,260	0,170
33 Hz	0,019	0,020	0,021	0,022	0,020	0,021	0,002	9,52%	0,027	0,017

Tabela 11 – ER do 51°. ao 55°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 55°. ER.

SISMO			PSV MÉDIA DESVIO σ/μ				6 /11	MÁXIMO	MÍNIMO	
FREQÜÊNCIA	56	57	58	59	60	(μ)	(o)	Ο/μ	IVIZVIIVIO	IVIIIVIIIVIO
0,05 Hz	0,161	0,101	0,083	0,089	0,076	0,107	0,044	41,23%	0,283	0,052
0,1 Hz	0,213	0,164	0,240	0,187	0,198	0,186	0,039	21,03%	0,281	0,102
0,25 Hz	1,277	1,174	1,148	1,065	1,188	1,107	0,094	8,52%	1,363	0,930
0,5 Hz	1,255	1,016	1,458	1,224	1,215	1,147	0,231	20,10%	1,702	0,631
1 Hz	0,980	0,935	1,533	1,320	0,876	1,131	0,180	15,89%	1,533	0,786
2,5 Hz	0,872	0,724	1,008	1,241	1,198	0,972	0,121	12,48%	1,241	0,714
5 Hz	0,485	0,470	0,369	0,492	0,517	0,443	0,051	11,42%	0,646	0,367
9 Hz	0,200	0,198	0,201	0,203	0,258	0,214	0,022	10,15%	0,260	0,170
33 Hz	0,023	0,022	0,022	0,023	0,018	0,021	0,002	9,54%	0,027	0,017

Tabela 12 – ER do 56°. ao 60°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1° ao 60° ER.

SISMO			PSV			MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	61	62	63	64	65	(μ)	(σ)	σ/μ	IVIZATIVIO	IVIIIVIIVIO
0,05 Hz	0,068	0,089	0,106	0,105	0,065	0,106	0,043	40,80%	0,283	0,052
0,1 Hz	0,172	0,175	0,210	0,226	0,190	0,187	0,038	20,40%	0,281	0,102
0,25 Hz	1,224	0,965	0,984	1,218	1,081	1,106	0,096	8,65%	1,363	0,930
0,5 Hz	0,885	1,086	1,355	1,165	1,190	1,147	0,226	19,68%	1,702	0,631
1 Hz	1,089	1,395	1,031	1,477	1,146	1,138	0,181	15,92%	1,533	0,786
2,5 Hz	0,983	0,940	0,722	0,933	0,750	0,964	0,124	12,83%	1,241	0,714
5 Hz	0,399	0,415	0,449	0,482	0,414	0,442	0,049	11,16%	0,646	0,367
9 Hz	0,205	0,220	0,251	0,284	0,203	0,215	0,023	10,74%	0,284	0,170
33 Hz	0,021	0,017	0,021	0,024	0,020	0,021	0,002	9,69%	0,027	0,017

Tabela 13 – ER do 61°. ao 65°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 65°. ER.

SISMO			PSV			MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	66	67	68	69	70	(µ)	(σ)	σ/μ	IVIZVIIVIO	IVIIIVIIVIO
0,05 Hz	0,077	0,072	0,078	0,090	0,094	0,104	0,042	40,42%	0,283	0,052
0,1 Hz	0,121	0,185	0,158	0,224	0,219	0,186	0,038	20,47%	0,281	0,102
0,25 Hz	1,104	1,208	1,017	1,294	1,142	1,109	0,096	8,68%	1,363	0,930
0,5 Hz	1,157	1,328	1,386	1,083	1,284	1,154	0,221	19,14%	1,702	0,631
1 Hz	0,873	1,354	1,273	1,000	1,155	1,138	0,181	15,90%	1,533	0,786
2,5 Hz	0,693	1,020	0,836	1,060	0,997	0,961	0,125	13,03%	1,241	0,693
5 Hz	0,461	0,417	0,514	0,463	0,472	0,444	0,049	10,96%	0,646	0,367
9 Hz	0,231	0,216	0,201	0,187	0,207	0,215	0,023	10,56%	0,284	0,170
33 Hz	0,022	0,021	0,023	0,026	0,022	0,021	0,002	9,70%	0,027	0,017

Tabela 14 – ER do 66°. ao 70°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 70°. ER.

SISMO			PSV			MÉDIA	DESVIO		MÁXIMO	MÍNIMO
FREQÜÊNCIA	71	72	73	74	75	(μ)	(o)	σ/μ	IVIAXIIVIO	IVIIIVIIVIO
0,05 Hz	0,123	0,063	0,134	0,068	0,068	0,103	0,042	40,25%	0,283	0,052
0,1 Hz	0,256	0,156	0,218	0,182	0,174	0,187	0,038	20,35%	0,281	0,102
0,25 Hz	1,028	1,076	1,079	1,054	1,116	1,107	0,094	8,48%	1,363	0,930
0,5 Hz	1,135	1,283	1,416	1,048	0,907	1,154	0,218	18,91%	1,702	0,631
1 Hz	1,097	0,888	1,418	0,901	1,099	1,134	0,182	16,07%	1,533	0,786
2,5 Hz	1,073	0,992	0,852	1,051	0,882	0,961	0,123	12,80%	1,241	0,693
5 Hz	0,477	0,449	0,417	0,464	0,380	0,443	0,048	10,79%	0,646	0,367
9 Hz	0,188	0,211	0,244	0,242	0,210	0,215	0,023	10,52%	0,284	0,170
33 Hz	0,024	0,024	0,021	0,024	0,028	0,022	0,002	10,16%	0,028	0,017

Tabela 15 – ER do 71°. ao 75°. sismo gerado e a distribuição de probabilidade para o conjunto de valores do 1°. ao 75°. ER.

Pode-se observar pelas Tabelas 1 a 15 que a regularidade estatística desejada (\pm 1,0% de variação na relação σ/μ , para as freqüências de interesse) é atingida com 60 sismos. O espaço amostral formado pelos primeiros 60 sismos, S_1 , é, então, utilizado nas etapas seguintes.

4.3.1. Exemplos de espectros de resposta gerados

A seguir, são mostrados os ER gerados, utilizando a função temporal de aceleração do solo, correspondente aos sismos de nº 13 e 25.

O Sismo nº 13, apresenta aceleração máxima igual a 3,59m/s² no instante de tempo igual a 11,24s e deslocamento máximo igual a 0,26m no instante de tempo igual a 9,18s. Na Figura 17 é apresentado o gráfico de ER correspondente a este sismo.

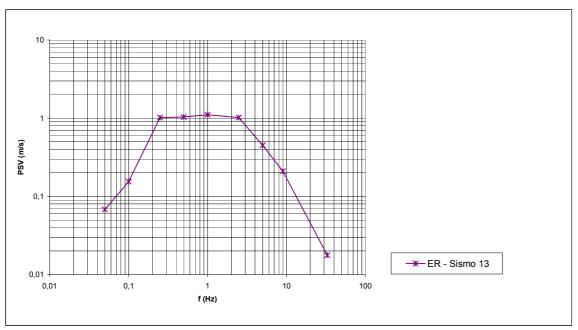


Figura 17 – ER do Sismo nº 13.

O Sismo nº 25, apresenta aceleração máxima igual a 4,79m/s² no instante de tempo igual a 6,87s e deslocamento máximo igual a 0,31m no instante de tempo igual a 14,29s. Na Figura 18 é apresentado o gráfico de ER correspondente a este sismo.

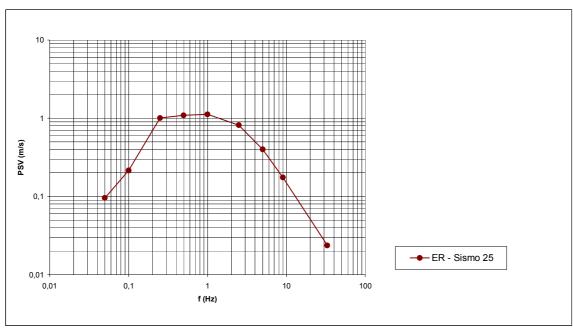


Figura 18 - ER do Sismo no. 25.

De acordo com os resultados observados no item 5.2.3. e nas Figuras 18 e 19, pode-se observar que os resultados estão em conformidade com o apresentado no item 4.1..

4.3.2. Envoltória de Espectros de Resposta

Os valores máximos e mínimos de PSV, para cada frequência de referência, dos 60 ER dos 60 sismos artificiais gerados representam as envoltórias máxima e mínima, respectivamente. Na Figura 20 são mostradas estas envoltórias (ENV-MIN-2% e ENV-MAX-2%) bem como os ER dos Sismos nº 13 e nº 25, para efeito de comparação.

Na Tabela 16 são mostrados os valores de PSV nas frequências de referência das envoltórias máxima e mínima (ENV-MAX-2% e ENV-MIN-2%) e dos ER dos Sismos nº 13 e nº 25 (ER – Sismo 13 e ER-Sismo 25).

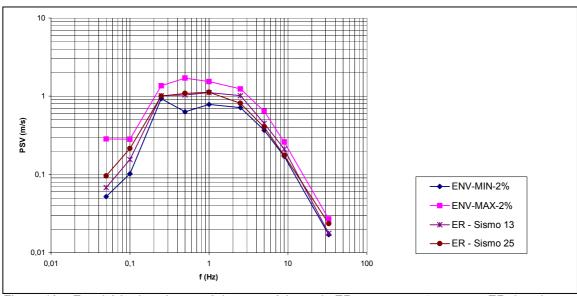


Figura 19 – Envoltória de valores máximos e mínimos de ER e comparação com os ER dos sismos 13 e 25.

FREQÜÊNCIA	ENV-MIN-2%	ER - Sismo 13	ER - Sismo 25	ENV-MAX-2%
0,05	0,052	0,068	0,096	0,283
0,1	0,102	0,155	0,215	0,281
0,25	0,930	1,019	1,003	1,363
0,5	0,631	1,036	1,088	1,702
1	0,786	1,107	1,121	1,533
2,5	0,714	1,017	0,814	1,241
5	0,367	0,451	0,400	0,646
9	0,170	0,210	0,175	0,260
33	0,017	0,018	0,0236	0,027

Tabela 16 – Valores de PSV correspondentes a cada frequência de referência.

4.4. Determinação dos Espectros de Resposta Uniformemente Prováveis

Ao espaço amostral **S**, representado pelos ER dos 60 sismos gerados dá-se um tratamento estatístico e obtêm-se ERUP para as probabilidades de 50 e 84%.

Para cada valor de freqüência de referência, é obtida uma distribuição de probabilidades acumuladas. Então, com base nestes valores, são levantadas as PSV com probabilidades menores ou iguais a 50 e 84% respectivamente.

Com tais valores são gerados os ERUP cujas ordenadas têm probabilidade de 50 e 84% de não serem ultrapassadas pelo valor do espectro de resposta de qualquer sismo correspondente ao espaço amostral.

4.4.1. Determinação da distribuição de probabilidade da PSV para as freqüências de referência

Com as respostas de cada ER, avaliam-se estatisticamente, em termos de uma função de distribuição de probabilidade, qual a probabilidade de ocorrência dos valores máximos de resposta ou qual o valor de PSV correspondente a um certo nível de probabilidade de não ser ultrapassado.

4.4.1.1. Programa para determinação da distribuição de probabilidades acumuladas - PROB.

Neste momento, faz-se necessário encontrar uma maneira de obterem-se as distribuições de probabilidade acumulada (DPA) para cada freqüência. Então, é desenvolvido um programa, chamado PROB, que, utilizando o vetor das pseudovelocidades (PSV), fornece a DPA de cada freqüência. A saída deste programa também apresenta os valores de PSV, com probabilidade de ocorrência menor que 50 e 84%.

Utilizam-se como entrada os vetores de valores de PSV, para cada freqüência de interesse, dos 60 ER gerados.

Então, o programa realiza uma análise deste vetor de forma a fornecer, como saída, a distribuição das probabilidades acumuladas e os valores de pseudovelocidade, correspondentes às probabilidades de 50 e 84% de não serem ultrapassados.

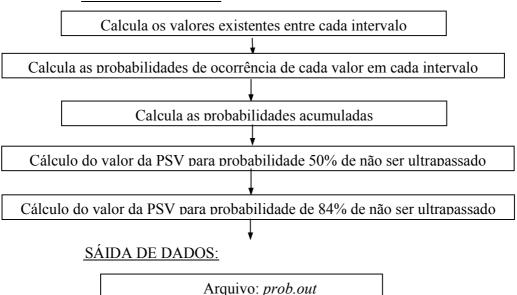
O programa PROB possui somente um módulo que executa todas as funções. Este módulo utiliza como entrada os seguintes valores:

- amortecimento (AMORTECIMENTO);
- frequência (FREQUENCIA);
- o número de valores do vetor (NVALOR);

- o valor mínimo do vetor (VALORMIN);
- o valor máximo do vetor (VALORMAX);
- e, por fim, os valores do vetor V(I).

Todos estes dados devem ser colocados, na ordem apresentada acima, em um arquivo de entrada, chamado "prob.inp".

O programa processa estes dados de forma a ser obtida a distribuição de probabilidade acumulada para os valores de entrada.


O arquivo de saída, "prob.out", então, fornece a distribuição de probabilidade acumulada e os valores de pseudovelocidade correspondentes às probabilidades iguais a 50 e 84% de não serem ultrapassados.

A seguir, é apresentado o fluxograma do programa.

ENTRADA DE DADOS:

<u>Prob.inp</u>: AMORTECIMENTO, FREQUENCIA, NVALOR, VALORMIN, VALORMAX, V(I)

PROCESSAMENTO:

Mais detalhes ver Apêndice III.

4.4.1.2. Distribuição de probabilidades de PSV obtidas para as freqüências de referência

A seguir são apresentadas as distribuições de probabilidade acumulada para algumas freqüências de referência (0,25, 2,5, 5 e 9Hz) com relação aos níveis 50 e 84%.

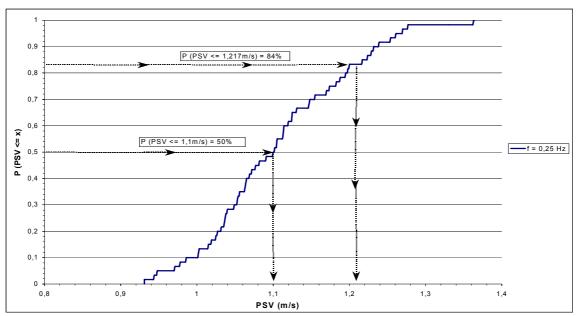


Figura 20 – Distribuição de probabilidade acumulada da PSV para f = 0,25Hz.

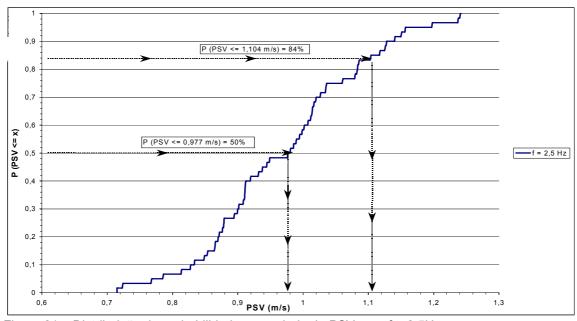


Figura 21 – Distribuição de probabilidade acumulada da PSV para f = 2,5Hz.

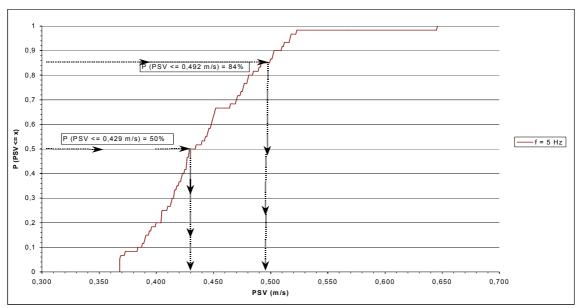


Figura 22 – Distribuição de probabilidade acumulada da PSV para f = 5Hz.

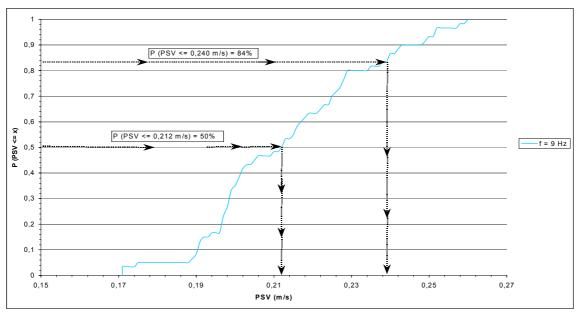


Figura 23 – Distribuição de probabilidade acumulada da PSV para f = 9Hz.

Os valores das PSV correspondentes às probabilidades de 50 e 84% de não serem ultrapassados, para cada freqüência de referência, representam os ERUP-50% e ERUP-84%, respectivamente.

4.4.2. Espectro de Resposta Uniformemente Provável - 50% (ERUP-50%)

Com base nos resultados obtidos utilizando o procedimento descrito no item 4.4.1, é gerado o espectro de resposta uniformemente provável com probabilidade de 50% de não ser ultrapassado (ERUP-50%), Figura 24.

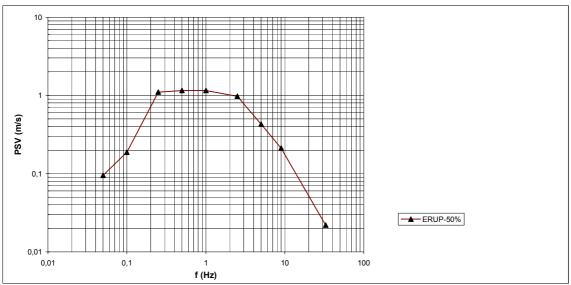


Figura 24 – ERUP-50%.

Na Tabela 17 são mostrados os valores de PSV das freqüências de referência do ERUP-50%.

FREQÜÊNCIA	ERUP-50%
0,05	0,095
0,1	0,187
0,25	1,100
0,5	1,155
1	1,153
2,5	0,977
5	0,429
9	0,212
33	0,022

Tabela 17 - Valores de PSV das freqüências de referência do ERUP-50%.

4.4.3. Espectro de Resposta Uniformemente Provável - 84% (ERUP-84%)

Da mesma forma que o item anterior, é gerado o espectro de resposta uniformemente provável com probabilidade de 84% de não ser ultrapassado (ERUP-84%), Figura 25.

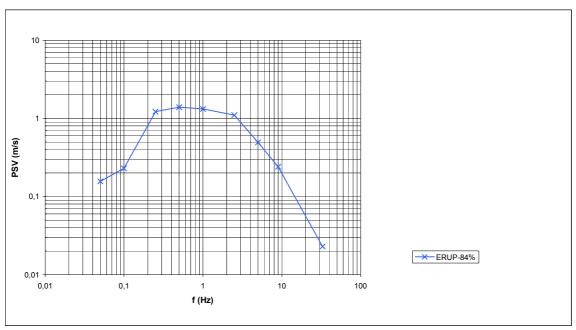


Figura 25 – ERUP-84%

Na Tabela 18 são mostrados os valores de PSV das frequências de referência do ERUP-84%.

FREQÜÊNCIA	ERUP-84%
0,05	0,156
0,1	0,230
0,25	1,217
0,5	1,386
1	1,320
2,5	1,104
5	0,492
9	0,240
33	0,023

Tabela 18 - Valores de PSV das freqüências de referência do ERUP-84%.

4.5. ERUP* gerados com base probabilística pelo procedimento de Diniz [2]

Geram-se ERUP com 50 e 84% de probabilidade de não terem os valores de PSV ultrapassados (ERUP*-50% e ERUP*-84%, respectivamente) utilizando como base a FDEP e o procedimento de Diniz [2] que está sendo avaliado.

4.5.1. Espectro de Resposta Uniformemente Provável - 50% (ERUP*-50%)

Com base na metodologia proposta por Diniz [2] é obtido o espectro de resposta uniformemente provável com probabilidade de 50% de não ser ultrapassado (ERUP*-50%), Figura 26.

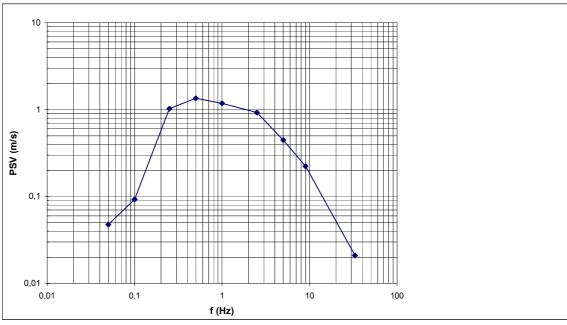


Figura 26 - ERUP*-50%

Na tabela a seguir, Tabela 19, são apresentados os valores de PSV para cada frequência de interesse do ERUP*-50%.

FREQÜÊNCIA	ERUP*-50%
0,05	0,048
0,1	0,093
0,25	1,024
0,5	1,346
1	1,181
2,5	0,926
5	0,447
9	0,222
33	0,021

Tabela 19 – Valores de PSV das freqüências de referência do ERUP*-50%.

4.5.2. Espectro de Resposta Uniformemente Provável - 84% (ERUP*-84%)

Semelhantemente ao item anterior, é obtido o espectro de resposta uniformemente provável com probabilidade de 84% de não ser ultrapassado (ERUP*-84%), Figura 27.

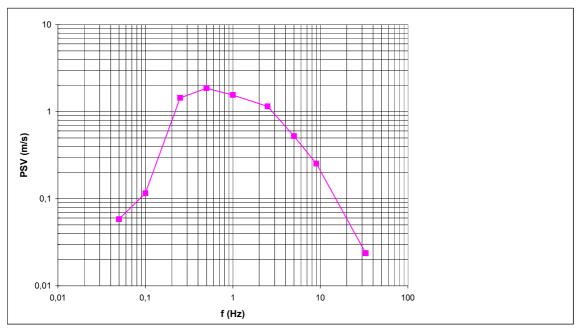


Figura 27 – ERUP*-84%.

Na tabela 20 são apresentados os valores de PSV para cada frequência de interesse do ERUP*-84%.

FREQÜÊNCIA	ERUP*-84%
0,05	0,058
0,1	0,116
0,25	1,444
0,5	1,866
1	1,552
2,5	1,151
5	0,525
9	0,254
33	0,024

Tabela 20 - Valores de PSV das frequências de referência do ERUP*-84%

4.6. Comparação e análise dos resultados

A seguir são comparados os resultados mostrados em 4. 4. 1. e 4. 5. 1.

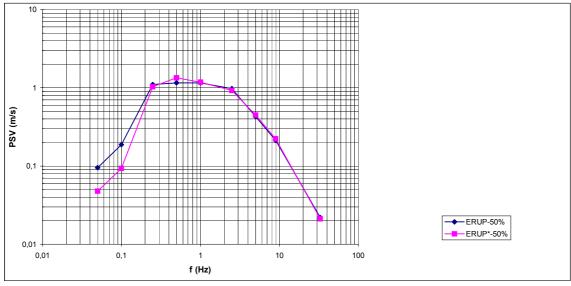


Figura 28 – Comparação do ERUP*-50% com o ERUP-50%.

Na Figura 28, pode-se observar que os valores de PSV contidos na faixa de freqüências de 1 a 33Hz apresentam valores praticamente iguais. Enquanto isso, na região que corresponde a freqüências menores que 1Hz, surgem diferenças entres os valores de PSV do ERUP-50% e do ERUP*-50%, conforme fica evidente tanto pela figura quanto pela Tabela 21.

FREQÜÊNCIA	ERUP-50%	ERUP*-50%	Fator = ERUP/ERUP*
0,05	0,095	0,048	1,99
0,1	0,187	0,093	2,01
0,25	1,100	1,029	1,07
0,5	1,155	1,344	0,86
1	1,153	1,181	0,98
2,5	0,977	0,926	1,06
5	0,429	0,447	0,96
9	0,212	0,222	0,95
33	0,022	0,021	1,05

Tabela 21 - Comparação das PSV do ERUP*-50% e ERUP-50%.

As mesmas afirmativas descritas acima podem ser aplicadas quando da comparação entre o ERUP-84% e ERUP*-84%. A Figura 29 e a Tabela 22 evidenciam tal fato.

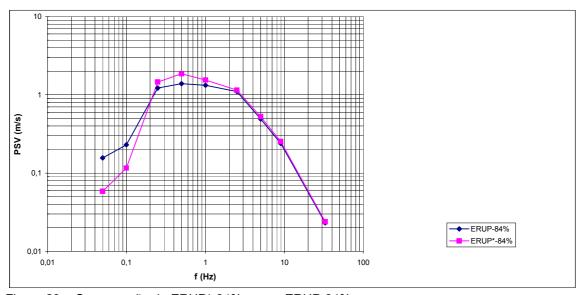


Figura 29 – Comparação do ERUP*-84% com o ERUP-84%.

FREQÜÊNCIA	ERUP-84%	ERUP*-84%	Fator = ERUP/ERUP*
0,05	0,156	0,058	2,68
0,1	0,230	0,116	1,98
0,25	1,217	1,452	0,84
0,5	1,386	1,863	0,74
1	1,320	1,552	0,85
2,5	1,104	1,151	0,96
5	0,492	0,525	0,94
9	0,240	0,254	0,95
33	0,023	0,024	0,97

Tabela 22 - Comparação das PSV do ERUP-84% e ERUP*-84%.

As diferenças de resultado observadas são devidas às seguintes razões:

À medida que a frequência natural, f_o , do S1GL, decresce, o sistema torna-se mais flexível e o seu período natural aproxima-se da duração do sismo, ou mesmo ultrapassa este valor de t* = 15s. Em tais circunstâncias, o deslocamento relativo máximo tende para o valor do deslocamento máximo do terreno ocorrendo este cedo na resposta quando a influência da solução homogênea ainda está presente.

A solução ERUP* obtém a densidade de espectro de potência da resposta do S1GL utilizando a função de transferência que considera somente a solução permanente da resposta (solução particular) o que implica a não limitar a duração da excitação ao tempo de duração do sismo, t*. Desta sorte, a solução do ERUP* afasta-se da obtida excitando o S1GL diretamente com as funções do espaço amostral, ERUP, que utiliza uma análise temporal, com as soluções homogênea e particular, e limitada a duração dos sismos a 15s.

Outro fato que se tem que considerar é como a faixa de frequências de interesse adotada influencia os resultados.

No caso, é considerada uma faixa de freqüência de interesse com limite inferior (L. I.) igual a 0,25Hz e limite superior (L. S.) igual a 33Hz, tanto para obtenção do ERUP-50% e do ERUP-84% quanto para a obtenção do ERUP*-50% e do ERUP*-84%, para que a comparação possa ser feita adequadamente.

Quando da obtenção dos ERUP utilizando procedimento estatístico, o que acontece é que os harmônicos considerados estão dentro da faixa de fregüência adotada.

Já no caso dos ERUP* o domínio de integração é a faixa de freqüência adotada. Na região das baixas freqüências, mudanças no limite inferior do intervalo considerado, mesmo quando pequenas, afetam bastante os resultados, pois a função de transferência nesta região é bastante estreita e implica na redução da potência a ser transferida à estrutura, por não levar em consideração metade da potência, no caso da f_o =0,25Hz, levando a valores de PSV menores, conforme pode ser observado pelas Figuras 30 e 31 e pelas Tabelas 23 e 24, que mostram como se comportam os ERUP* quando aplicados limites inferiores de freqüências de interesse iguais a 0,25Hz, 0,20Hz e 0,15Hz, respectivamente.

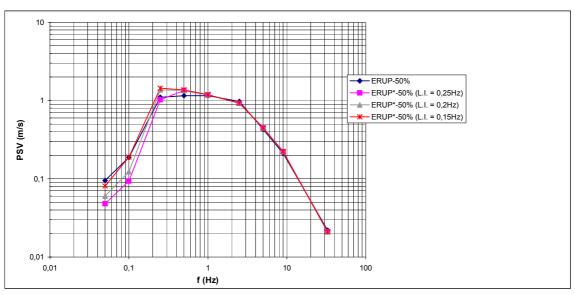


Figura 30 – ERUP-50% e ERUP*-50% com L. I. igual a 0,25, 0,2 e 0,15Hz.

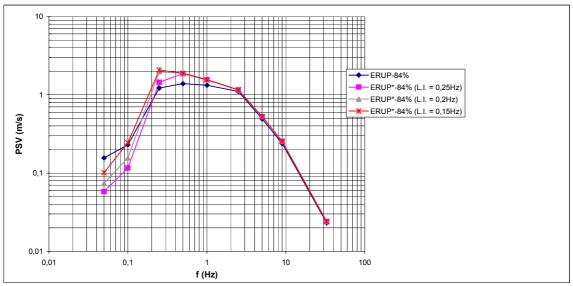


Figura 31 – ERUP-84% e ERUP*-84% com L. I. igual a 0,25, 0,2 e 0,15Hz.

FREQÜÊNCIA	ERUP-50%	ERUP*-50% (L.I. = 0,25Hz)	ERUP*-50% (L.I. = 0,20Hz)	ERUP*-50% (L.I. = 0,15Hz)
0,05	0,095	0,048	0,060	0,081
0,1	0,187	0,093	0,123	0,189
0,25	1,100	1,029	1,367	1,435
0,5	1,155	1,344	1,353	1,365
1	1,153	1,181	1,186	1,189
2,5	0,977	0,926	0,927	0,929
5	0,429	0,447	0,448	0,448
9	0,212	0,222	0,222	0,223
33	0,022	0,021	0,021	0,021

Tabela 23 – Valores de PSV do ERUP-50% e dos ERUP*-50% com L. I. igual a 0,25, 0,2 e 0,15Hz.

FREQÜÊNCIA	ERUP-84%	ERUP*-84% (L.I. = 0,25Hz)	ERUP*-84% (L.I. = 0,20Hz)	ERUP*-84% (L.I. = 0,15Hz)
0,05	0,156	0,058	0,074	0,101
0,1	0,230	0,116	0,156	0,244
0,25	1,217	1,452	1,974	2,074
0,5	1,386	1,863	1,872	1,885
1	1,320	1,552	1,556	1,559
2,5	1,104	1,151	1,152	1,153
5	0,492	0,525	0,526	0,526
9	0,240	0,254	0,254	0,254
33	0,023	0,024	0,024	0,024

Tabela 24 – Valores de PSV do ERUP-84% e dos ERUP*-84% com L. I. igual a 0,25, 0,2 e 0,15Hz.

Para refinar o procedimento de obtenção do ERUP*, tendo em vista as informações recém feitas, sugere-se:

- utilizar o limite inferior de integração igual a 0,25Hz;
- aplicar aos valores das pseudovelocidades dos ERUP* correspondentes às freqüências 0,05 e 0,1Hz fatores corretivos como os constantes das Tabelas 21 e 22.