

Pablo Furtado de Souza

Estudo Experimental Sobre o Comportamento de Dutos Metálicos com Geometria em Ziguezague

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil. Área de Concentração: Estruturas

> Orientadores: Giuseppe Barbosa Guimarães Deane de Mesquita Roehl

Rio de Janeiro janeiro de 2004.

Pablo Furtado de Souza

Estudo experimental sobre o comportamento de dutos metálicos com geometria em ziguezague

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Giuseppe Barbosa Guimarães Orientador Departamento de Engenharia Civil - PUC-Rio

> Profa. Deane de Mesquita Roehl Departamento de Engenharia Civil - PUC-Rio

> Prof. Raul Rosas e Silva Departamento de Engenharia Civil - PUC-Rio

> Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil - PUC-Rio

> > Prof. Ibrahim Abd El Malik Shehata COPPE/UFRJ

Profa. Lídia da Conceição Domingues Shehata UFRJ

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 30 de janeiro de 2004.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Pablo Furtado de Souza

Graduou-se em Engenharia Civil na PUC-Rio (Pontificia Universidade Católica do Rio de Janeiro) em 2001.

Ficha Catalográfica

Souza, Pablo Furtado

Estudo experimental sobre o comportamento de dutos metálicos com geometria em ziguezague / Pablo Furtado de Souza; orientador: Giuseppe Barbosa Guimarães - Rio de Janeiro: PUC, Departamento de Engenharia Civil,2004.

143 f. : il. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil - Teses, 2. Estudo experimental, 3. Dutos, 4. Modelo reduzido, 5. Ziguezague. I. Guimarães, Giuseppe Barbosa II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

Agradecimentos

Agradeço inicialmente a Deus, pela minha existência e por tudo que conquistei.

A minha família, pelo apoio, incentivo e carinho em todos os momentos da minha vida.

A minha esposa por todo carinho e dedicação ao longo deste período.

Ao professor Giuseppe Barbosa Guimarães, pela orientação e apoio recebidos, e também pela amizade demonstrada ao longo da realização deste trabalho, e professora Deane de Mesquita Roehl, pela orientação e material fornecido.

Aos funcionários do Laboratório de Estrutura e Materiais do Departamento de Engenharia Civil, onde foi realizada a maior parte do trabalho, a etapa experimental: José Nilson, Euclides, Evandro e Haroldo.

Aos colegas da Pós-Graduação, professores e funcionários do Departamento de Engenharia Civil, pelo apoio e colaboração.

Ao Engenheiro Edgar Poiate Junior (CENPES) pelo material fornecido, e pelas dicas durante a fase experimental.

A Capes pelo apoio financeiro.

Souza, Pablo Furtado; Guimarães, Giuseppe Barbosa. Estudo experimental sobre o comportamento de dutos metálicos com geometria em ziguezague. Rio de Janeiro, 2004. 143p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Um estudo experimental em modelos reduzidos do duto PE-3, construído na Baía de Guanabara em 2003, é descrito neste trabalho.

O duto PE-3 tem diâmetro externo de 457,2 mm e a sua principal característica é a sua geometria em ziguezague. Este duto transporta óleo combustível à temperatura de 80°C da Refinaria de Duque de Caxias aos terminais de navios na Ilha D'Água.

O presente estudo foi realizado em modelos reduzidos com semelhança física, e teve como objetivo avaliar experimentalmente o comportamento do modelo variando-se o ângulo de ziguezague e o comprimento do duto. Os modelos foram submetidos à variação de temperatura, pressão interna e condições de apoio lateral e longitudinal, simulando as condições reais de trabalho do protótipo.

Para cada comprimento (12, 16 e 18 metros) e ângulo de ziguezague (5°, 10° e 15°) foram realizados ensaios com o modelo sem reação lateral do solo, com reação lateral simulando 1 metro de enterramento no protótipo, com reação lateral simulando 1 metro de enterramento e vão central livre, e com imperfeição horizontal. Foram realizados ainda 2 ensaios com um duto reto para efeito de comparação com o modelo *zig-zag*.

Os resultados mostraram que a geometria em ziguezague minimiza os esforços gerados pela expansão térmica do duto.

Palavras-chave

estudo experimental; dutos; modelo reduzido; ziguezague.

Souza, Pablo Furtado; Guimarães, Giuseppe Barbosa (Advisor). Experimental study on the behavior of steel pipelines with zig-zag geometry. Rio de Janeiro, 2004. 143p. M.Sc. Dissertation - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

An experimental study on reduced scale models of the PE-3 pipeline, built in Guanabara Bay in 2003, is described in this work.

The main characteristic of the PE-3 pipeline is the *zig-zag* geometry. This pipeline has an external diameter of 18" and is used to transport heavy heated oil from the Duque de Caxias refinary to a shipping terminal.

The present study was carried out in reduced models with physic similitude, and the objective is to evaluate experimentally the behavior of the model, varying the *zig-zag* angle and the length of the pipeline. The models were submitted to temperature variation, internal pressure and different conditions of lateral and longitudinal support, simulating the real working conditions of the prototype.

For each length (12m, 16m and 18m) and *zig-zag* angle (5°, 10° and 15°) tests were carried out with the model without lateral reaction of the soil, with lateral reaction simulating 1 meter of buried prototype, with lateral reaction simulating 1 meter of buried prototype and central free span, and with horizontal imperfection. Two straight pipeline tests were carried out in order to compare with the *zig-zag* model.

The results showed that the *zig-zag* geometry minimizes the effects caused by the thermal expansion of the pipeline.

Keywords

experimental study; pipeline; reduced model; zig-zag.

Sumário

1 Introdução	20
1.1. Motivação	20
1.2. Conceito do Duto Zig-Zag	21
1.3. Objetivo do Trabalho	22
1.4. Organização do Trabalho	22
2 Falhas nos Dutos	24
2.1. Introdução	24
2.2. Classificação das Falhas	25
2.3. Mecanismos de Falha	25
2.3.1. Iniciação da Fissura	26
2.3.2. Crescimento da Fissura	26
2.3.3. Propagação da Fissura	27
2.4. Falhas em Serviço	27
2.4.1. Tensões Excessivas	28
2.4.2. Pressões Elevadas	28
2.4.3. Carregamentos Externos	29
2.4.4. Fadiga e Choque Mecânico	29
2.4.5. Fadiga e Choque Térmico	31
2.4.6. Temperaturas Elevadas	31
2.5. Flambagem	32
2.5.1. Flambagem Vertical	33
2.5.2. Flambagem Lateral	37
3 Análise Dimensional	45
3.1. Introdução	45
3.2. Semelhança Física e Modelos	46
3.3. Condições de Semelhança Física	46
4 Estudo Experimental	49
4.1. Características do PE-3	49
4.2. Características dos Modelos	50

4.2.1. Características dos Corpos de Prova	51
4.2.2. Coeficiente de Dilatação Térmica	58
4.2.3. Execução do Ziguezague	60
4.3. Características da Bancada de Ensaio	63
4.3.1. Descrição Geral	63
4.3.2. Detalhe dos Engastes	65
4.3.3. Detalhe das Peças	67
4.3.4. Instrumentação	75
4.3.4.1. Deformações	75
4.3.4.2. Deslocamentos	80
4.3.4.3. Reação de Apoio Longitudinal	82
4.3.4.4. Pressão Interna	82
4.3.4.5. Temperatura	83
4.3.5. Reação Lateral do Solo	83
4.4. Programa de Ensaio	90
4.4.1. Procedimento de Ensaio	91
4.5. Traçado Geométrico dos Modelos	94
4.5.1. Modelos L12A5, L12A5S90a, L12A5S90b, L12A5S90IH	94
4.5.2. Modelos L12A10, L12A10S90a, L12A10S90b, L12A10S90IH	96
4.5.3. Modelos L12A15, L12A15S90a, L12A15S90b, L12A15S90IH	97
4.5.4. Modelos L16A10, L16A10S20a, L16A10S20b, L16A10S90a,	
L16A10S90b e L16A10IH	99
4.5.5. Modelos L18A5, L18A5S90a, L18A5S90b, L18A5S90IH	100
4.5.6. Modelos L18A10, L18A10S90a, L18A10S90b, L18A10S90IH	102
4.5.7. Modelos L18A15, L18A15S90a, L18A15S90b, L18A15S90IH	103
4.5.8. Modelos L16A0 e L16A0S90a	105
5 Apresentação e Análise dos Resultados	107
5.1. Introdução	107
5.2. Modelo Reto x Modelo <i>Zig-Zag</i>	107
5.3. Influência do Enterramento no Modelo Zig-Zag	116
5.4. Influência do Ângulo de Dobramento no Modelo Zig-Zag	121
5.5. Influência do Comprimento no Modelo Zig-Zag	124
5.6. Resultados Gerais	127
6 Conclusões e Sugestões	136
6.1. Conclusões	136

6.2. S	ugestões
--------	----------

7 Referências Bibliográficas

140

137

Lista de figuras

Figura 1.1 – Linha de duto com trecho descoberto	21
Figura 1.1 – Representação da geometria em ziguezague	22
Figura 2.1 – Fissuras devido a sobrecargas (Ref. [7])	28
Figura 2.2 – Flambagem vertical de dutos enterrados	33
Figura 2.3 – Uso de pedras para aumentar a resistência (a); uso de manta	
geotêxtil (b)	34
Figura 2.4 – Resistência ao "levantamento" sem e com o uso de manta	
geotêxtil	35
Figura 2.5 – Força de resistência x deslocamento vertical	36
Figura 2.6 – Modos de flambagem lateral	38
Figura 2.7 – Modelo em elementos finitos de ¼ de onda do duto em	
ziguezague	41
Figura 2.8 – Deslocamento lateral ao longo do comprimento	42
Figura 2.9 – Deslocamento lateral do nó a esquerda em relação ao tempo	43
Figura 2.10 – Força axial x tempo para os nós da esquerda e da direita	44
Figura 2.11 – Fratura na parede do duto PE-2	44
Figura 4.1 – Caracerísticas geométricas do duto PE-3	49
Figura 4.2 – Localização das seções de solda	51
Figura 4.3 – Corpos de prova empregados no ensaio de tração e compressão)
axiais	52
Figura 4.4 – Curvas Tensão-Deformação obtidas no ensaio de tração axial	53
Figura 4.5 – Curvas Tensão-Deformação obtidas no ensaio de compressão	
axial	54
Figura 4.6 – Coeficiente de Poisson medido em dois pontos diametralmente	
opostos no ensaio de tração axial	56
Figura 4.7 – Coeficiente de Poisson medido em dois pontos diametralmente	
opostos no ensaio de compressão axial	57
Figura 4.8 – Variação de comprimento em função da variação da temperatura	59
Figura 4.9 – Sistema utilizado para a dobra do duto	60
Figura 4.10 – Hastes de alumínio para determinação do ângulo	61
Figura 4.11 – Enrugamento no duto	62
Figura 4.12 – Abraçadeiras na região da dobra	62
Figura 4.13 – Representação esquemática da bancada de ensaio	63

Figura 4.14 – Vista panorâmica da bancada de ensaios	64	
Figura 4.15 – Vista panorâmica dos engastes	65	
Figura 4.16 – Detalhes do Engaste 1	66	
Figura 4.17 – Detalhes do Engaste 2	67	
Figura 4.18 – Vista superior do engaste 1	68	
Figura 4.19 – Cortes A-A e B-B do engaste 1	69	
Figura 4.20 – Cortes C-C e D-D do engaste 1	70	
Figura 4.21 – Detalhes das chapas utilizadas no engaste 1	71	
Figura 4.22 – Vista superior do engaste 2	72	
Figura 4.23 – Cortes A-A e B-B do engaste 2	73	
Figura 4.24 – Detalhes das chapas utilizadas no engaste 2	74	
Figura 4.25 – Sistema de aquisição de dados	75	
Figura 4.26 – Roseta instalada	76	
Figura 4.27 – Posicionamento das rosetas nas seções – Observador no		
Engaste 2 visando o Engaste 1	76	
Figura 4.28 – Direção das deformações medidas	76	
Figura 4.29 – Numeração utilizada para o cálculo das tensões máxima e		
mínima na seção	78	
Figura 4.30 – Localização das seções onde foram medidas as deformações	79	
Figura 4.31 – Transdutor de deslocamento (LVDT)	80	
Figura 4.32 – Localização dos transdutores de deslocamento (LVDT)	81	
Figura 4.33 – Célula de carga no engaste 1	82	
Figura 4.34 – Bomba Amsler	82	
Figura 4.35 – Transdutor de pressão	83	
Figura 4.36 – Termopar	83	
Figura 4.37 – Representação esquemática da relação força-deslocamento		
para a reação lateral do solo	84	
Figura 4.38 – Dispositivo para simular a força lateral de 20 kgf/m	85	
Figura 4.39 – Dispositivo para simular a força lateral de 88 kgf/m	85	
Figura 4.40 – Detalhe da ligação da barra que transmite a carga ao modelo	86	
Figura 4.41 – Curvas de calibração dos dispositivos que simulam a condição		
de 50% de enterramento - Três dispositivos escolhidos		
aleatoriamente	87	
Figura 4.42 – Curvas de calibração dos dispositivos que simulam a condição		
de 1 metro de enterramento - Três dispositivos escolhidos		
aleatoriamente	88	

Figura 4.43 – Localização dos dispositivos que representam os apoios	
não-uniformes	89
Figura 4.44 – Alinhamento do modelo <i>zig-zag</i>	92
Figura 4.45 – Curva geral da variação de temperatura em função do tempo	93
Figura 4.46 – Curva geral da variação da pressão em função do tempo	94
Figura 4.47 – Vista superior do modelo	94
Figura 4.48 – Coordenada dos modelos L12A5, L12A5S90a, L12A5S90b	
L12A5S90IH como construídos	94
Figura 4.49 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L12A5, L12A5S90a,	
L12A5S90b, L12A5S90IH	95
Figura 4.50 – Vista superior do modelo	96
Figura 4.51 – Coordenada dos modelos L12A10, L12A10S90a, L12A10S90b	
L12A10S90IH como construídos	96
Figura 4.52 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L12A10, L12A10S90a,	
L12A10S90b, L12A10S90IH	96
Figura 4.53 – Vista superior do modelo	97
Figura 4.54 – Coordenada dos modelos L12A15, L12A15S90a, L12A15S90b	
L12A15S90IH como construídos	97
Figura 4.55 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L12A15, L12A15S90a,	
L12A15S90b, L12A15S90IH	98
Figura 4.56 – Vista superior do modelo	99
Figura 4.57 – Coordenada dos modelos L16A10, L16A10S20a, L16A10S20b	
L16A10S90a, L16A10S90b, L12A5S90IH como construídos	99
Figura 4.58 – Comparação entre os traçados projetado e real para os modelos	S
L16A10, L16A10S20a, L16A10S20b, L16A10S90a,	
L16A10S90b e L16A10IH	99
Figura 4.59 – Vista superior do modelo	100
Figura 4.60 – Coordenada dos modelos L18A5, L18A5S90a, L18A5S90b	
L18A5S90IH como construídos	100
Figura 4.61 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L18A5, L18A5S90a,	
L18A5S90b, L18A5S90IH	101
Figura 4.62 – Vista superior do modelo	102

Figura 4.63 – Coordenada dos modelos L18A10, L18A10S90a, L18A10S90b	
L18A10S90IH como construídos	102
Figura 4.64 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L18A10, L18A10S90a,	
L18A10S90b, L18A10S90IH	102
Figura 4.65 – Vista superior do modelo	103
Figura 4.66 – Coordenada dos modelos L18A15, L18A15S90a, L18A15S90b	
L18A15S90IH como construídos	103
Figura 4.67 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L18A15, L18A15S90a,	
L18A15S90b, L18A15S90IH	104
Figura 4.68 – Vista superior do modelo	105
Figura 4.69 – Comparação entre os traçados projetado e real (como	
construído) para os modelos L16A0, L16A0S90a	105
Figura 5.1 – Deslocamento do duto reto	108
Figura 5.2 – Deslocamento do duto <i>zig-zag</i>	109
Figura 5.3 – Força axial x Temperatura dos modelos L16A0 (reto) e	
L16A10 (<i>zig-zag</i>)	110
Figura 5.4 – Tensões principais máximas e mínimas ao longo do modelo	
L16A0 (reto)	111
Figura 5.5 – Tensões principais máximas e mínimas ao longo do modelo	
L16A10 (<i>zig-zag</i>)	112
Figura 5.6 – Tensão máxima medida na seção indicada	113
Figura 5.7 – Deslocamento lateral ao longo do modelo L16A10S90a	113
Figura 5.8 – Deslocamento vertical ao longo do modelo L16A0S90a	114
Figura 5.9 – Força axial x Temperatura dos modelos L16A0S90a e	
L16A10S90a	114
Figura 5.10 – Tensão longitudinal x Temperatura dos modelos L16A0S90a	
e L16A10S90a	115
Figura 5.11 – Posição onde ocorreu a tensão máxima de compressão na	
seção	117
Figura 5.12 – Funcionamento dos dispositivos que simulam o solo ao longo	
do modelo	118
Figura 5.13 – Força axial x Temperatura dos modelos L16A10, L16A10S20a,	
L16A10S90a	119

Figura 5.14 – Local onde são medidas as tensões longitudinal e transversal	
máximas	119
Figura 5.15 – Tensão longitudinal x Temperatura dos modelos L16A10,	
L16A10S20a e L16A10S90a	120
Figura 5.16 – Tensão transversal x Temperatura dos modelos L16A10,	
L16A10S20a e L16A10S90a	120
Figura 5.17 – Deslocamento ao longo dos modelos L12A5, L12A10 e	
L12A15	121
Figura 5.18 – Deslocamento ao longo dos modelos L18A5, L18A10 e	
L18A15	122
Figura 5.19 – Força axial x Temperatura para os modelos de 12 metros	
(L12A5S90b, L12A10S90b e L12A15S90b) e 18 metros	
(L18A5S90b, L18A10S90b e L18A15S90b)	122
Figura 5.20 – Local onde são medidas as tensões longitudinal e transversal	
máximas	123
Figura 5.21 – Tensão longitudinal x Temperatura dos modelos L18A5S90b,	
L18A10S90b e L18A15S90b	123
Figura 5.22 – Tensão transversal x Temperatura dos modelos L18A5S90b,	
L18A10S90b e L18A15S90b	124
Figura 5.23 – Deslocamento no centro dos modelos L12A5 e L18A5	125
Figura 5.24 – Força axial x Temperatura para os modelos L12A5 e L18A5	125
Figura 5.25 – Força axial x Temperatura para os modelos L12A15S90a e	
L18A15S90a	126
Figura 5.26 – Tensão mínima x Temperatura para os modelos L12A5 e	
L18A5	126
Figura 5.27 – Tensão Seções em que foram medidas as tensões máxima e	
mínima	127
Figura 5.28 – Força axial máxima nos modelos de 12 metros para diferentes	
ângulsos de ziguezague	129
Figura 5.29 – Força axial máxima nos modelos de 18 metros para diferentes	
ângulsos de ziguezague	129
Figura 5.30 – Deslocamento máximo no centro dos modelos de 12 metros	
para diferentes ângulos de ziguezague	130
Figura 5.31 – Deslocamento máximo no centro dos modelos de 18 metros	
para diferentes ângulos de ziguezague	130

Figura 5.32 - Tensões de compressão máxima no centro dos modelos de	
12 metros para diferentes ângulos de ziguezague	131
Figura 5.33 – Tensões de compressão máxima no centro dos modelos de	
18 metros para diferentes ângulos de ziguezague	131
Figura 5.34 – Força axial máxima nos modelos com ângulo de dobrament	0
de 5° para os comprimentos de 12 e 18 metros	132
Figura 5.35 – Força axial máxima nos modelos com ângulo de dobrament	0
de 10° para os comprimentos de 12 e 18 metros	132
Figura 5.36 – Força axial máxima nos modelos com ângulo de dobrament	0
de 15° para os comprimentos de 12 e 18 metros	132
Figura 5.37 – Deslocamento máximo no centro dos modelos com ângulo de	
dobramento de 5° para os comprimentos de 12 e 18 metros	133
Figura 5.38 – Deslocamento máximo no centro dos modelos com ângulo de	
dobramento de 10° para os comprimentos de 12 e 18 metro	s 133
Figura 5.39 – Deslocamento máximo no centro dos modelos com ângulo de	
dobramento de 15° para os comprimentos de 12 e 18 metro	s 133
Figura 5.40 – Tensão de compressão máxima no centro dos modelos com ângu	lo
de dobramento de 5° para os comprimentos de 12 e 18 me	tros 134
Figura 5.41 – Tensão de compressão máxima no centro dos modelos com ângu	lo
de dobramento de 10° para os comprimentos de 12 e 18 m	etros134
Figura 5.42 – Tensão de compressão máxima no centro dos modelos com ângu	lo
de dobramento de 15° para os comprimentos de 12 e 18 m	etros134
Figura 6.1 – Linha de duto com trecho descoberto	138
Figura 6.2 – Flambagem de linha	138
Figura 6.3 – Acréscimo de deslocamento devido a expansão térmica	138

Lista de tabelas

Tabela 2.1 – Constantes do modo de flambagem lateral	39
Tabela 3.1 – Fatores de escala	48
Tabela 4.1 – Características físicas e geométricas do duto PE-3	50
Tabela 4.2 – Características físicas e geométricas dos modelos	50
Tabela 4.3 – Propriedades mecânicas do material dos modelos sob tração	
axial	58
Tabela 4.4 – Propriedades mecânicas do material dos modelos sob	
compressão axial	58
Tabela 4.5 – Resultados do ensaio de determinação do coeficiente de	
dilatação térmica	59
Tabela 4.6 – Modelos da FASE 1 - L_D = 16 m, L =2 m, α = 10°	90
Tabela 4.7 – Modelos da FASE 2 - L_D = 12 m, L = 2 m	91
Tabela 4.8 – Modelos da FASE 2 - L_D = 18 m ; L = 4 m	91
Tabela 4.9 – Traçados projetado e real dos modelos L12A5, L12A5S90a	
L12A5S90b e L12A5S90IH	95
Tabela 4.10 – Traçados projetado e real dos modelos L12A10, L12A10S90,	
L12A10S90b e L12A10S90IH	97
Tabela 4.11 – Traçados projetado e real dos modelos L12A15, L12A15S90a	
L12A15S90b e L12A15S90IH	98
Tabela 4.12 – Traçados projetado e real dos modelos L16A10, L16A10S20a,	
L16A10S20b, L16A10S90a, L16A10S90b e L16A10IH	100
Tabela 4.13 – Traçados projetado e real dos modelos L18A5, L18A5S90a	
L18A5S90b e L18A5S90IH	101
Tabela 4.14 – Traçados projetado e real dos modelos L18A10, L18A10S90a	
L18A10S90b e L18A10S90IH	103
Tabela 4.15 – Traçados projetado e real dos modelos L18A15, L18A15S90a	
L18A15S90b e L18A15S90IH	104
Tabela 4.16 – Traçados projetado e real dos modelos L16A0, L16A0S90a	106
Tabela 5.1 – Quadro resumo dos resultados	128

Lista de símbolos

ALFABETO ROMANO

D _e	_	diâmetro externo;
Di	_	diâmetro interno;
Е	_	módulo de elasticidade;
$\mathbf{f}_{\mathbf{y}}$	_	tensão de escoamento correspondente a uma deformação residual de 0,2%;
\mathbf{f}_{max}	_	tensão máxima observada no ensaio;
Н	_	altura do cobrimento de solo acima do duto;
k	_	fator de escala;
L	_	comprimento do trecho linear;
L _D	_	Comprimento total entre os engastes;
Р	_	carga axial;
P _{cr}	_	carga crítica de colapso;
p_{cr}^{e}	_	pressão externa crítica de colapso;
p _{cr}	_	pressão crítica de flambagem;
p_i	_	pressão interna;
Po	_	carga de pré-flambagem;
q _o	_	resistência máxima do solo;
R _p	_	resistência a punção;
S_u	_	tensão principal máxima;
$S_{\rm v}$	_	tensão principal mínima;
t	_	espessura de parede do duto;
W	_	espessura do dente da escavadeira;
у	_	amplitude máxima de flambagem;
yo	_	imperfeição inicial;
y _{max}	_	deslocamento vertical no qual a resistência ao levantamento é máxima.

ALFABETO GREGO

α	—	ângulo de ziguezague;
α_{T}	_	coeficiente de dilatação térmica;
ΔL	_	variação de comprimento;
ΔΤ	_	variação de temperatura;
ε1	_	deformação longitudinal da roseta;
ε ₂	_	deformação diagonal da roseta;
E 3	_	deformação transversal da roseta;
ε _{cr}	_	deformação crítica de flambagem;
ε ₁₁	_	deformação longitudinal medida na roseta instalada no ponto 1;
ε _{l2}	_	deformação longitudinal medida na roseta instalada no ponto 2;
ε ₁₃	_	deformação longitudinal medida na roseta instalada no ponto 3;
ε _u	_	deformação correspondente a ruptura do corpo-de-prova;
ε _{max}		deformação correspondente a σ_{max} ;
φ	_	coeficiente de atrito entre o solo e o duto;
φ _{max}	_	ângulo que ocorre a tensão máxima na seção;
φ _{min}	_	ângulo que ocorre a tensão mínima na seção;
ρ	_	massa específica do solo;
τ_{max}	_	tensão cisalhante máxima;
σ_{adm}	_	tensão admissível;
$\sigma_{\rm h}$	_	tensão radial;
σ_l	_	tensão longitudinal;
$\sigma_{L,e}$	_	tensão longitudinal devido a expansão do fluido;
$\sigma_{L,f}$	_	tensão longitudinal devido ao atrito;
$\sigma_{L,pe}$	_	tensão longitudinal devido a pressão externa
$\sigma_{L,pi}$	_	tensão longitudinal devido a pressão interna;
$\sigma_{L,t}$	_	tensão longitudinal devido a variação de temperatura;
σ_{max}	_	tensão longitudinal máxima da seção;
σ_{\min}	_	tensão longitudinal mínima da seção;

σ_t	 tensão transversal;
σ_{u}	tensão última do material;
σ_y	- Resistência mínima ao escoamento;
ν	- Coeficiente de Poisson.