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Abstract

Barreiros Cosenza, Vivian; Simon da Rosa, Guilherme (Advisor).
Electromagnetic Characterization of Inhomogeneous
Cylindrical Waveguides Using Mode-Matching-Based
Methods. Rio de Janeiro, 2020. 110p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Many devices and structures used to guide electromagnetic waves are
conformal with the cylindrical coordinates. Sensitive applications of microwave
engineering and integrated optical devices often use non-homogeneous,
anisotropic and dissipative materials, so that the research for robust
and accurate computational models is a topic of remarkable interest for
Electrical Engineering. This work presents a semi-analytical technique for
solving boundary-value problems associated with cylindrical, anisotropic,
and non-homogeneous waveguides. Our methodology allows us to model
structures with radial layers, with uniaxial anisotropy, and with losses.
The proposed solution starts from Maxwell’s equations for time-harmonic
electromagnetic fields and employs a modal expansion in terms of the
Bessel-Fourier series. The eigenvalues associated with the problem are
obtained using the winding number method, in which several approaches for
calculating complex-plane contour integrals are explored in detail. In order
to properly analyze the junctions between sections of stratified waveguides,
we employ a mode-matching technique based on the conservation of the
Reaction of the fields. Our formulation can handle the effects of excitation
and coupling between pure modes (TM, TE, and TEM) in homogeneous
waveguides, as well as hybrid modes in complex structures. A series of
numerical results are presented and show the capacity of the methodology
developed here to correctly characterize cylindrical structures composed of
complex media (inhomogeneous, anisotropic, and dissipative) in a robust
and computationally-efficient fashion if compared to other conventional
computational electromagnetic techniques.

Keywords
Anisotropic media; Multilayered media; Inhomogeneous cylindrical

waveguide; Mode-matching technique.
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Resumo

Barreiros Cosenza, Vivian; Simon da Rosa, Guilherme.
Caracterização Eletromagnética de Guias de Onda
Cilíndricos Não Homogêneos usando o Método do
Casamento de Modos. Rio de Janeiro, 2020. 110p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Muitos dispositivos e estruturas empregados para guiar ondas
eletromagnéticas apresentam conformidade cilíndrica. Aplicações sensíveis
de engenharia de micro-ondas e de dispositivos ópticos integrados empregam,
muitas vezes, materiais não homogêneos, anisotrópicos e dissipativos, de modo
que a pesquisa por modelos computacionais robustos e acurados é um tópico
de notável interesse para a Engenharia Elétrica. Este trabalho apresenta uma
técnica semianalítica para resolver problemas de valor de contorno associados a
guias de onda cilíndricos, anisotrópicos e não homogêneos. Nossa metodologia
permite modelar estruturas com camadas radiais, com anisotropia uniaxial, e
com perdas. A solução proposta parte das equações de Maxwell para campos
harmônicos no tempo, e emprega uma expansão modal em termos da série de
Bessel-Fourier. Os autovalores associados ao problema são obtidos por meio
do método do winding number, em que diversas abordagens para o cálculo das
integrais de caminho no plano complexo são exploradas. Para analisar junções
entre guias de ondas estratificados, empregamos a técnica de casamento de
modos baseada na conservação da Reação dos campos. Nossa formulação é
capaz de avaliar os efeitos da excitação e do acoplamento entre modos puros
(TM, TE, e TEM) em guias de ondas homogêneos, bem como dos modos
híbridos em estruturas complexas. Uma série de resultados numéricos são
apresentados e mostram a capacidade da metodologia desenvolvida nesta
pesquisa para caracterizar corretamente estruturas cilíndricas compostas por
meios complexos (não homogêneos, anisotrópicos e dissipativos) de forma
robusta e computacionalmente eficiente se comparado com outras técnicas
convencionais de eletromagnetismo computacional.

Palavras-chave
Meio anisotrópico; Meio estratificado; Guia de ondas cilíndrico não

homogêneo; Método de casamento de modos.
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1
Introduction

1.1
General Introduction

The study of inhomogeneous and anisotropic materials has become
extremely important over the past years due to its uses on novel microwave and
optical devices. It is essential to comprehend the propagation characteristics
of the field in these complex media in order to develop more robust and
reliable electromagnetic devices. Theoretical analysis and simulation models
are essentials today for supporting telecommunication projects on initial stages,
before its effective implementation.

Several different approaches can be used for addressing the electro-
magnetic field propagation on non-homogeneous materials, including field
experiments and mainly supported with numerical models. The analysis of
a multilayered media is a topic of interest of many recent researches [2–9]
that investigate artificially engineered materials. Scattering and propagating
electromagnetic models are popular in many applications such as: non-
destructive testing [10, 11], structural monitoring of components [12], design
and evaluation of well-logging sensors in the oil and gas industry [13–16]
underwater electromagnetic communication [17], among others.

Another relevant point of study is related to anisotropic media that
become widely used in microwave engineering and integrated optics [18]. There
are many technological advancements that were achieved by the employment
of specialized anisotropic materials, e.g., optical fibers with preferred optical-
axis orientation, quasi-transparent antenna radomes, anisotropic films and
substrates for microstrip antennas [19].

There is today an emergent effort for developing novel characterization
methodologies for inhomogeneous and anisotropic media. Electromagnetic
models for simulating anisotropy materials are used today for solving com-
plex cutting-edge issues in geophysical exploration [12, 20–22], optical fiber
communication, integrated optics [23] and wave absorbents design [24]. Field
solutions for Maxwell’s equations in uniaxial and biaxial anisotropic media
were explored in the works in [25–31] using analytic, semi-analytic and pure-
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Chapter 1. Introduction 13

numerical (brute-force) techniques.
Propagation of electromagnetic waves along cylindrical waveguides filled

with anisotropic and inhomogeneous material is also recurrent topic of research.
This class of structure, composed in general by radial and longitudinal
(axial) layers is used in the microwave guided devices. For example, such
cylindrically conforming structures have applications for the analysis and
design of coaxial horn antennas [32, 33] as well as the modeling of measurement
cell for the characterization of complex-valued tensor constitutive parameters
(permeability ¯̄µ and permittivity ¯̄ε) [34–40].

Coaxial measurement cells are comprised by the junctions of sections of
coaxial waveguides holding a sample under analysis. This device can be used
for finding the permeability and the permittivity of a given material by using
direct measurements of the scattering (S) parameters on the input and output
ports. The simplicity of the geometry and the wide-frequency range of the
TEM (or quasi-TEM) fields confer to this structure a excellent method for
characterizing the samples. The methodology consists on an inversion problem
with two steps: 1) measuring the S-parameters over the frequency, and 2)
an optimization algorithm where the direct problem (with assumed values of
permeability and the permittivity) is solved until the simulation scattering
characteristics fits to the measured ones. The main concern of this research
is on modeling the direct problem in a robust and computationally-efficient
fashion.

The problem at hand can be solved by standard computational electro-
magnetic techniques based on brute-force numerical discretization of Maxwell’s
equations. However, low-cost algorithms are demanded if we want to proceed
to an inverse problem. In the frequency domain, numerical solvers based
on the finite-element method (FEM) [41, 42] or on the frequency-domain
transmission line matrix (FDTLM) [36] are popular choices. In time domain,
the finite-difference time-domain (FDTD) [43, 44] as well others transient-
based solutions for Maxwell’s equations can be effectively used for modeling a
measuring cell [45].

Although the time-domain-based techniques can be used in a broad
frequency band, such solutions suffer from poor accuracy [46]. If it is desired
more resolution in the measurements, the frequency domain methods are more
appropriated.

A popular semi-analytic approach for modeling simple waveguided struc-
tures is the mode-matching technique (MMT). Recently, this classic method
was revisited and generalized for modeling fields along waveguide filled with
non-homogeneous materials [14, 15, 47, 48]. As the geometry of the coaxial
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Chapter 1. Introduction 14

cells we are interested presents only simple cylindrical-conforming boundaries,
we will employ a MMT-based methodology in this works.

The mode-matching is a semi-analytical method, thereby, it requires
lower computational resources than other numerical methods as FEM and
FDTD. In the MMT, electromagnetic fields are expanded into a modal series
to represent each sector of a waveguide, and coupling integrals are established
to match the boundary conditions between each waveguide discontinuity. These
coupling integrals can be arranged as a generalized scattering matrix (GSM) for
each discontinuity. By the proper cascading of the GSMs, we can characterize
an entire longitudinal guided structure. This method requires knowledge of
modal eigenfunctions and the associated eigenvalues that satisfy the boundary-
value problem on a uniform-cross-section waveguide. In our approach, the
employment of a judicious Bessel-Fourier series will result in a characteristic
equation for each region of the structure. In the treatment of complex lossy
media, complex-valued eigenvalues will arise; they can be solved via some the
Cauchy integral formula [28, 49] and root-finding [50] algorithms.

In this work, we will present a comprehensive mathematical formula-
tion for the electromagnetic characterization of coaxial and circular guided-
structures. These structures are comprised of junctions of waveguides, where
each one can be filled by inhomogeneous, anisotropic, and lossy materials. To
put it into context, consider the simplified geometry depicted in Fig. 1.1. Our
strategy is to employ the MMT for coupling each sub-domain comprising a
uniform waveguide; in this example, only three waveguide regions are needed.
The mode-matching enforcement will be over the cross-sectional aperture
between a waveguide its adjacent ones. The radial profile of the anisotropic
constitutive parameters will be approximated by layered media, and the
number of radial layers is arbitrary in each waveguide sub-domain. In general,
recursive applications of the MMT will allow us to handle an arbitrary number
of longitudinal waveguide junctions.

The fields inside each sub-domain (waveguide region) of the structures
will be derived through Maxwell’s equations via the linear combination of
pure transverse magnetic (TM), transverse electric (TE), and transverse
electromagnetic (TEM) fields (to the longitudinal directions) in homogeneous-
filled waveguides. In the case of non-homogeneous media, a set of hybrid fields
will be employed for completeness. The radial boundary conditions will be
enforced via compact reflection and transmission matrices. Next, appropriated
eigenvalues will be found by using the winding number method associated
with the Muller’s root-finding. Finally, in view of the MMT, a set of coupling
integrals will be presented with the corresponding scattering parameters of
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z
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�

Figure 1.1: Example of a structure for our problem. The radial domain is
truncated by a perfect electric conductor (PEC).

each waveguide junction. We were able to found closed-form solutions for all
of the associated coupling integrals.

1.2
Scientific Contributions

In this work, we purpose a mode-matching-based methodology for the
electromagnetic analysis of inhomogeneous cylindrical-conforming waveguides
filled with an generic uniaxial and layered lossy media. In other words, our
solution is able to model lossy or lossless, anisotropic or isotropic, and layered
or homogeneous media. The waveguides considered can be coaxial (with a
inner concentric conductor) or circular, supporting as many radial layers as
needed. In the works [18, 33] mode-matching formulations were presented but
restricted to only two radial isotropic layers. We introduced here a formulation
able to describe fields in multi-layered waveguides in complex scenarios.

To acquire the eigenvalues, the winding number method was applied to
determine the number of zeros of our characteristic equation, and Muller’s
method is used to obtain it, as mentioned above. In this work, two approaches
for computing the winding number were explored, generalizing the formulation
in [51].

Additionally, specialized coupling integrals where analytically solved here
for the coupling between homogeneous and non-homogeneous waveguides. Such

DBD
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results are particular forms of Lommel integrals associated with the TEM
modal field inherent of homogeneous coaxial waveguides. To the best of our
knowledge, this is the first time that such kind of problem is properly solved
in a closed-form.

The scientific contributions of this work are summarized below:

− The use of a semi-analytical method (MMT) to evaluate multiple layers
junctions, which not necessarily have the same number of layers in each
region;

− The composition of the dielectric materials that fill these layers may be
lossy and/or anisotropic;

− The presentation of two new ways to calculate the winding number and
determine the number of zeros of a characteristic equation;

− The introduction of new closed-form equations for considering the
coupling of a TEM with TM or hybrid modes in the MMT.

1.3
Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2,
a derivation of fields inside homogeneous and inhomogeneous cylindrical
waveguides are presented. The derivations of the characteristic equation of
circular and coaxial waveguides are then demonstrated. The methods used
to determine the modal propagating constants in the coaxial and circular
waveguides for radially homogeneous and inhomogeneous scenarios are derived
and a series of numerical results are also presented.

In Chapter 3, the mode-matching formulation is established via the con-
servation of the reactions of the fields. Closed-form results are presented for the
coupling integrals associated to generic hybrid modes. Specialized results are
also presented for the coupling between a TEM with TEMmodes, as well as if a
TEM with TM or hybrid modes. The details of the computation of generalizes
scattering matrices are also presented. Simulation results comparing the S-
parameters predicted by our method versus FDTD-based and FEM-based
ones testify that our formalism can correctly characterize cylindrical structures
composed by complex media.

Finally, Chapter 4 compiles the most important results obtained in this
work and suggests future research directions.
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2
Electromagnetic Fields in Cylindrical Waveguides

Coaxial and circular transmission lines and cavities are popular con-
figurations for telecommunications systems. Circular waveguides are easy to
produce and have gained attention for long distances propagation for TE0n

modes, especially at millimeter-wave range, because its attenuation coefficient
decreasing with frequency [1]. Homogeneous coaxial waveguides support in
addition to TE and TM modes the transmission-line TEM mode.

In a typical single-mode waveguide, the entire field propagation can be
characterized by one propagating mode; called fundamental mode. In such
configuration, all the other modes are evanescent and could be neglected.
However, when we are close to a waveguide discontinuity or near the source
region, these high-order modes become significant to correctly describe the
fields even in a single-propagating-mode frequency range. It is necessary to
consider, then, an infinity set of non-propagating modes for completeness [52].
For practical applications, as far as we are way from critical regions (near
the sources or waveguide junctions) the fundamental mode becomes dominant
again.

In this chapter, we will present a mathematical formalism for representing
electromagnetic fields in an inhomogeneous anisotropic cylindrical structure.
The cylindrical coordinates are used to solve problems with cylindrical-
conforming boundaries. The problem at hand uses coaxial and circular
waveguides, and then, it will be necessary to express the fields in a cylindrical
coordinate system, as depicted in Fig. 2.1.

Non-homogeneous circular and coaxial waveguides have been studied
over the years because its importance in microwave and antenna engineering.
Different techniques are used to solve this boundary-value problem. In [53] and
[54], a direct numerical integration is employed to solve electromagnetic dis-
persion in a coaxial cable. It also uses a shooting method to the solve Maxwell’s
equations. A perturbation method was used in [55] to approximate a solution
to the wave equation. These methods however, suffer with numerical problems
and/or inaccuracy in the modeling of large-contrast layered waveguides.

We will employ here a semi-analytic technique to solve our problem
by avoiding discretization of the spatial domain via a mode-matching-based
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Chapter 2. Electromagnetic Fields in Cylindrical Waveguides 18
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Figure 2.1: Cylindrical coordinate system.

solution. A complete eigenfunction expansion and a numerically efficient
solution for the associated eigenvalues will be presented on the grounds of
the winding number method.

From Maxwell’s equations, we will derive full-wave closed-form field
solutions for modeling a radially-layered circular waveguide. This waveguide
can be filled with lossy and uniaxially anisotropic media. As a special case,
if the innermost radial layer becomes a PEC, our solution will reproduce a
radially layered coaxial waveguide.

First, we present the field solution in a homogeneous uniaxially
anisotropic media. A computationally efficient method is used to the treatment
of a stratified waveguide by using the homogeneous field solutions as a basis.
Our approach is a generalization of that presented in [51, 56]. The time-
harmonic dependence in the form e−iωt is assumed and omitted.

2.1
Homogeneous Waveguide

Maxwell’s equations for a homogeneous and anisotropic medium are as
follows:

∇× E = iω ¯̄µ ·H, (2-1)

∇×H = −iω¯̄ε · E + J, (2-2)

∇ · (¯̄ε · E) = %, (2-3)

∇ · (¯̄µ ·H) = 0, (2-4)
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Chapter 2. Electromagnetic Fields in Cylindrical Waveguides 19

where E and H are the electric and magnetic fields, respectively, produced by
the volumetric current density J. The permeability and permittivity tensors
in cylindrical coordinates (ρ, φ, z) are given by

¯̄ε =


εs 0 0
0 εs 0
0 0 εz

 and ¯̄µ =


µs 0 0
0 µs 0
0 0 µz

 (2-5)

where the subscript s is used here to indicate the coordinates transversal to z,
ε{s,z} = ε0εr{s,z}+iσ{s,z}ω, µ{s,z} = µ0µr{s,z}, and σ is the electrical conductivity
of the medium. Decomposing the vector fields in transversal and axial (or
longitudinal to z) components, we can write

G = Gs + ẑGz (2-6)

where G = {E,H} and
∇ = ∇s + ẑ

∂

∂z
. (2-7)

The transverse differential operator ∇s is expressed in the form

∇s = ρ̂
∂

∂ρ
+ φ̂

1
ρ

∂

∂φ
. (2-8)

By taking the curl operator of equation (2-1) and projecting its result in
ẑ, we can obtain

ẑ · [∇× (∇× E)] = iωẑ · [∇× (¯̄µ ·H)]. (2-9)

The right-hand side of the above expression might be rewritten as

iωẑ · [∇× (¯̄µ ·H)] = iωµsẑ · (∇×H). (2-10)

By using equation (2-2), it is possible to write

iωẑ · [∇× (¯̄µ ·H)] = iωµs(−iωεzEz) (2-11)

and therefore, equation (2-9) becomes

ẑ · [∇× (∇× E)] = ω2µsεzEz. (2-12)

We can simplify the left-hand side of the above equation by using the
vector identity

∇×∇× E = ∇(∇ · E)− (∇ ·∇) E. (2-13)
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From (2-4), we can derive

∇ · (¯̄µ ·H) = 0(
∇s + ẑ

∂

∂z

)
· (µsHs + ẑµzHz) = 0

∇s (µs ·Hs) + µz
∂Hz

∂z
= 0

µs∇ ·H− µs
(

1− µz
µs

)
∂Hz

∂z
= 0

∴ ∇ ·H =
(

1− µz
µs

)
∂Hz

∂z
. (2-14)

A dual equation can be obtained for the electric field, that is,

∇ · E =
(

1− εz
εs

)
∂Ez
∂z

. (2-15)

By using (2-13) and (2-15), we can obtain

ẑ · [∇× (∇× E)] =ẑ ·∇(∇ · E)− ẑ · ∇2E

=
(

1− εz
εs

)
∂2Ez
∂z2 −∇

2Ez (2-16)

where ∇2 is the scalar Laplacian operator. In cylindrical coordinates, it is
expressed by

∇2 = 1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ

∂2

∂φ2 + ∂2

∂z2 . (2-17)

Substituting (2-16) in (2-12) results in

(
1− εz

εs

)
∂2Ez
∂z2 −∇

2Ez = ω2µsεzEz

∴

(
∇2
s + εz

εs

∂2

∂z2 + ω2µsεz

)
Ez = 0. (2-18)

By using duality, the above allows us to obtain a wave equation for the axial
magnetic field according to:(

∇2
s + µz

µs

∂2

∂z2 + ω2µzεs

)
Hz = 0. (2-19)

Equations (2-18) and (2-19) are wave functions, or Helmholtz wave
equations for the axial electric and magnetic fields, respectively. They can
be rewritten in the following compact way:[

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂φ2 + pz
ps

∂2

∂z2 + ω2pzp̃s

]
ψ = 0 (2-20)
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where ψ = {Ez, Hz}, p = {ε, µ} and p̃ = {µ, ε}. On the grounds of the
separation of variables method [51, 56, 57], we can show that the elementary
solution assumes the form

Rn

(√
pz
ps
kρρ

)
Φ (nφ)Z (kzz) , (2-21)

where Rn(·) is a solution to the Bessel differential equation of order n, and
Φ(nφ) and Z(kzz) are harmonic functions that satisfy the Laplace equation.
The parameters n, kρ and kz will be determined by the boundary conditions
enforcement.

The general solution for ψ may be written as a linear combination of the
elementary solution [57], that is,

ψ =
∑
n

∑
kz

Cn,kzRn

(√
pz
ps
kρρ

)
Φ (nφ)Z (kzz) , (2-22)

where Cn,kz is a constant that will be determined by the boundary conditions
enforcement. The separation constant n assumes the discrete values n =
{0, 1, 2, 3, ...}.

We will now consider the parcel of the fields associated with a wave
propagating in the positive z-direction by selecting solutions to Rn(·), Φ(nφ)
and Z(kzz) as

Rn

(
ke,hρ ρ

)
= ae,hHn

(1)(ke,hρ ρ) + be,hJn(ke,hρ ρ), (2-23)

Φ(nφ) = einφ, for n = 0,±1,±2, . . . , (2-24)

Z(kzz) = eikzz, (2-25)

where where Jn(·) and H(1)
n (·) are first kind Bessel and Hankel functions of

integer order n, ae,h and be,h are modal amplitudes, and√
pz
ps
kρ = αe,hkρ = ke,hρ . (2-26)

The superscripts e, h indicate the correspondence for the axial electric and
magnetic fields, respectively. Radial and longitudinal wavenumbers kρ and kz,
respectively, are related by k2

ρ = ks
2 − k2

z , with k2
s = ω2µsεs.

2.1.1
Axial Fields

Adopting the compact matrix notation introduced in [51, 56], the
longitudinal fields can be written as
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 Ez

Hz

 =
∞∑

n=−∞

∞∑
p=1

 ez,np(ρ)
hz,np(ρ)

 einφeikzz (2-27)

where p is related to kz and kρ. For simplicity, we will suppress the subscript
np, restoring it later as needed. The ρ-dependent parcel of the fields can be
expressed as  ez(ρ)

hz(ρ)

 = ¯̄H(1)
zn (kρρ)ā+ ¯̄Jzn(kρρ)b̄, (2-28)

where
¯̄Gzn(kρρ) =

 Gn(keρρ) 0
0 Gn(khρρ)

 , (2-29)

and Gn = {H(1)
n , Jn}. The column-vectors ā and b̄ combine the modal

amplitudes arranged as

ā =
 aenp

ahnp

 and b̄ =
 benp

bhnp

 . (2-30)

2.1.2
Transversal Fields

The transversal fields Es and Hs can be expressed as a function of Ez
and Hz counterparts [51]:

Es = 1
k2
ρ

[ikz∇sEz + iωµs∇s × (ẑHz)] , (2-31)

Hs = 1
k2
ρ

[ikz∇sHz − iωεs∇s × (ẑEz)] . (2-32)

By suppressing the exponential harmonic functions, the ρ-dependent
parcel of the fields can be written as eφ,np(ρ)

hφ,np(ρ)

 = ¯̄H(1)
φn (kρρ)ā+ ¯̄Jφn(kρρ)b̄, (2-33)

 eρ,np(ρ)
hρ,np(ρ)

 = ¯̄H(1)
ρn (kρρ)ā+ ¯̄Jρn(kρρ)b̄, (2-34)

where

¯̄Gφn(kρρ) = 1
k2
ρρ

 −nkzGn

(
keρρ

)
−iωµskhρρG′n(khρρ)

iωεsk
e
ρρG

′
n(keρρ) −nkzGn

(
khρρ

)  , (2-35)

¯̄Gρn(kρρ) = 1
k2
ρρ

ikzkeρρG′n (keρρ) −nωµsGn(khρρ)
nωεsGn(keρρ) ikzk

h
ρρG

′
n

(
khρρ

) . (2-36)

In the above, G′n(·) is denoting the derivative of Gn(·) with respect to its
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argument.

2.1.3
Circular and Coaxial Waveguides

Consider now a circular waveguide with radius ρ1 truncated by a perfect
electric conductor (PEC) wall. The boundary conditions enforcement requires
that tangential fields must vanish at ρ = ρ1. Then, the fields Eφ and Ez should
be equal to zero in ρ = ρ1. Also, the fields must be finite everywhere inside the
waveguide. For this reason, the Hankel functions should not be used because
its singular behavior at ρ = 0.

Using (2-28) and (2-33), the transversal (to ρ̂) fields at ρ = ρ1 are given
by

ez(ρ1) = Jn(keρρ1)benp, (2-37)

eφ(ρ1) = 1
k2
ρρ1

[
−nkzJn

(
keρρ1

)
benp − iωµskhρρ1J

′
n

(
khρρ1

)
bhnp
]
. (2-38)

From the above, we can obtain the following characteristic equations:

Jn(keρρ1) = 0, for TMz, (2-39)

J ′n(khρρ1) = 0, for TEz. (2-40)

For a coaxial waveguide with inner radius ρ0 and outer radius ρ1, as
depicted in Fig 2.2, the tangential fields Eφ and Ez must be equal to zero at
the radial-domain borders, i.e., at ρ = ρ0 and ρ = ρ1. For TMz waves, the cited
fields become

ez(ρ) = H(1)
n (keρρ)aenp + Jn(keρρ)benp, (2-41)

eφ(ρ) = −nkz
k2
ρρ

[
H(1)
n

(
keρρ

)
aenp + Jn

(
keρρ

)
benp
]
. (2-42)

At the boundaries, we obtain

H(1)
n (keρρ0)aenp + Jn(keρρ0)benp = 0 in ρ = ρ0, (2-43)

H(1)
n (keρρ1)aenp + Jn(keρρ1)benp = 0 in ρ = ρ1. (2-44)

To fulfill the first condition in (2-43) we will consider

aenp = Jn(keρρ0) and benp = −H(1)
n (keρρ0). (2-45)

A similar procedure can be done for TEz modes. This allows us to derive
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Figure 2.2: Coaxial waveguide. The shaded areas represent a perfect electric
conductor (PEC) or a perfect magnetic conductor (PMC).

the following characteristic equations for a coaxial waveguide:

H(1)
n (keρρ1)Jn(keρρ0)− Jn(keρρ1)H(1)

n (keρρ0) = 0, for TMz, (2-46)

H ′(1)
n (khρρ1)J ′n(khρρ0)− J ′n(khρρ1)H ′(1)

n (khρρ0) = 0, for TEz. (2-47)

Notice that fields can be decomposed into TE and TM parcels only when
the waveguide is homogeneous. For a lossless media, the eigenvalues kρ will be
always real and they are numerically found, within a root-finding algorithm in
the kρ plane. With them, we determine the values of kz and the corresponding
modal amplitudes.

2.1.4
Root-finding in the kρ plane

For the homogeneous case, the characteristic equation for TMz modes is
given by (2-39) and (2-46) for circular and coaxial waveguides, respectively.
The values of kρ that satisfies them are the zeros of such function, and each
one will contribute to a modal field.

We will start defining points in the kz complex plane that will delimit
the maximum value of kz in the form

kz,max = x+ iy. (2-48)

Considering first a lossless media, we predict that the values of kz will be
exclusively pure real or pure imaginary numbers. From the separation equation
k2
s = k2

z + k2
ρ, the maximum value in the real kz axis will be limited by

x = Re{ks} × 1.01, where the multiplication factor 1.01 were employed to
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guarantee that all roots will be included in the search region. The maximum
imaginary part can be approximated by the relation

y = Im{kz} = mπ

ρ1
× 1.01, (2-49)

where m is an estimated number of modes and ρ1 is the outermost radius that
truncates the waveguide.

For a lossy media, the limiting value of x will remain the same, but the
maximum point in the imaginary axis should be corrected. That can be done
based on a value of attenuation in decibel (AdB) that the wave will suffer and
in an axial distance (∆z) that the associated wave will travel. Namely:

y = − ln(10)× AdB
20×∆z × 1.01 . (2-50)

Knowing an approximated value for kz,max, it is possible to define the
maximum counterpart in the kρ-plane using

kρ,max =
√
k2
s − k2

z,max. (2-51)

The region of search will be delimited from −x to x in the real axis and
from 0 to y in the imaginary one, as depicted in Fig 2.3.

kz

kz''

-x x0

y

'

Figure 2.3: Region of search on the kz-complex plane, where k′z is the real and
k′′z is the imaginary part of kz, respectively.

The zeros of the Bessel function are proportional to pπ as its arguments
is large, with p = {1, 2, ...}. Therefore, we can estimate that the number of
modes will be

Nmodes = Re{kρ,max} × p
π

+ 2, (2-52)
where the factor two was added to guarantee that all the desired roots are
included. For the circular waveguide case, the bisection method is used to find
the roots of the characteristic equation (2-39). The modal amplitudes are then
defined as
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ae,h = 0 and be,h = 1. (2-53)
For the coaxial waveguide, a different approach has to be used. To avoid

numerical issues, it is necessary to make two considerations. First, instead of
use the product Jn(·)H(1)

n (·), we will use the first and second Hankel functions,
H(1)
n (·) and H(2)

n (·), since every pair of Bessel functions shares the same set of
eigenvalues for the problem at hand. Then, for TMz fields, we can rewrite the
characteristic equation (2-46) as

H(1)
n (keρρ1)H(2)

n (keρρ0)−H(2)
n (keρρ1)H(1)

n (keρρ0) = 0. (2-54)

Secondly, we will introduce conditioned functions, also to avoid numerical
issues. The scaled Hankel functions, for example, can be defined as

H(1)
n (x) = Ĥ(1)

n (x)e+ix, (2-55)

H(2)
n (x) = Ĥ(2)

n (x)e−ix. (2-56)

In addition, using a similar approach as in [58], the inner and outer
radii can be written in terms of the scale factor (λ = ρ1/ρ0). Rewriting the
arguments of Hankel function, we obtain

keρρ0 = y and keρρ1 = λy. (2-57)

The characteristic equation is now in the form

Ĥ(1)
n (λy)e+iλyĤ(2)

n (y)e−iy − Ĥ(2)
n (λy)e−iλyĤ(1)

n (y)e+iy = 0, (2-58)

and after a few manipulations, we obtain

Ĥ(2)
n (y)Ĥ(1)

n (λy)e2iy(λ−1) − Ĥ(1)
n (y)Ĥ(2)

n (λy) = 0, (2-59)

which is the characteristic equation of the coaxial waveguide to be solved.
The values of y may be complex even though kρ is real, due to the media
losses. In this case, the bisection method does not guarantee that all complex-
values roots are obtained. By that reason, the Muller method is used instead.
The same considerations about the region of search of the circular waveguide
problem were used here.

Finally, after solving y, it is possible to convert them to kρ and define
the modal amplitudes as

ae = Jn(keρρ0), be = −H(1)
n (keρρ0),

ah = J ′n(khρρ0), bh = −H ′(1)
n (khρρ0).

(2-60)

In a homogeneous waveguide, TE and TM modes are decoupled, and we
have different characteristic equations for each mode. As will be seen in the
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next section, this does not occur for inhomogeneous media, where the field
solutions are a hybrid combination of TE and TM parcels.

The coaxial homogeneous waveguide can also include the TEM mode
when the order n is zero. In this scenario, kρ = 0 is a solution and the modal
amplitudes will all be null, except for ae, which will be equal to one. Despite
that, the fields non-null Eρ and Hφ may exist.

2.2
Inhomogeneous Waveguide

Consider a waveguide with N radial layers and defined by the radii
{ρ0, ρ1, ..., ρN}, as shown in Fig. 2.4. By omitting the np subscript, the ρ-
dependent parcel of the fields in the layer j can be written in the form

�
���

�
�

�

0

1

N

Figure 2.4: Inhomogeneous coaxial waveguide with N different layers.

 ejα(ρ)
hjα(ρ)

 = ¯̄H(1)
αn (kjρρ)āj + ¯̄Jαn(kjρρ)b̄j , (2-61)

where α = {ρ, φ, z} and j is the waveguide layer, with j = {1, 2, ...N}. The
ejα(ρ) and hjα(ρ) functions are the only one that vary along the radial layers.
By enforcing the continuity of the z and φ field components at the interfaces
between layer j and its adjacent, we can obtainejα(ρ)

hjα(ρ)

 =
[

¯̄H(1)
αn (kjρρ) + ¯̄Jαn(kjρρ) ˜̄̄

R
(ρ)
j,j+1

]
āj, or (2-62)

ejα(ρ)
hjα(ρ)

 =
[

¯̄H(1)
αn (kjρρ) ˜̄̄

R
(ρ)
j,j−1 + ¯̄Jαn(kjρρ)

]
b̄j, (2-63)
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In the above, (2-62) is relating a wave propagating to +ρ̂ that experienced a
reflection, and (2-63) propagating in the opposite direction, i.e., −ρ̂.

The generalized reflection matrix ˜̄̄
R

(ρ)
j,j+1 is a 2-by-2 matrix given by [51,

56]

˜̄̄
R

(ρ)
j,j±1 = ¯̄R(ρ)

j,j±1 + ¯̄T (ρ)
j±1,j

˜̄̄
R

(ρ)
j±1,j±2

(
¯̄I − ˜̄̄

R
(ρ)
j±1,j

˜̄̄
R

(ρ)
j±1,j±2

)−1 ¯̄T (ρ)
j,j+1 (2-64)

where ¯̄I is the identity matrix. The local transmission and reflection matrices
are defined according to

¯̄R(ρ)
j,j+1 = D̄−1

ja

[ ¯̄Hφj+1,j
¯̄Hzj,j − ¯̄Hφj+1,j

¯̄Hzj+1,j
¯̄H−1
φj+1,j

¯̄Hφj,j

]
(2-65)

¯̄R(ρ)
j+1,j = D̄−1

jb

[ ¯̄Jφj,j ¯̄Jzj,j ¯̄J−1
φj,j −

¯̄Jφj,j ¯̄Jzj+1,j
]

(2-66)
¯̄T (ρ)
j,j+1 = D̄−1

jb

[ ¯̄Jφj,j ¯̄Hzj,j − ¯̄Jφj,j ¯̄Jzj,j ¯̄J−1
φj,j

¯̄Hφj,j

]
(2-67)

¯̄T (ρ)
j+1,j = D̄−1

ja

[ ¯̄Hφj+1,j
¯̄Hzj+1,j

¯̄Hφj+1,j
¯̄Jφj+1,j − ¯̄Hφj+1,j

¯̄Jzj+1,j
]

(2-68)

D̄ja = ¯̄Hφj+1,j
¯̄Hzj+1,j

¯̄H−1
φj+1,j

¯̄Jφj,j − ¯̄Hφj+1,j
¯̄Jzj,j (2-69)

D̄jb = ¯̄Jφj,j ¯̄Hzj+1,j − ¯̄Jφj,j ¯̄Jzj,j ¯̄J−1
φj,j

¯̄Hφj+1,j (2-70)

where the following compact notation was adopted:

¯̄Hαi,j = ¯̄Hαn (kiρρj) and ¯̄Jαi,j = ¯̄Jαn (kiρρj) (2-71)

with α = {φ, z}. From (2-62) and (2-63), we have the following relation between
the vector amplitudes:

āj = ˜̄̄
R

(ρ)
j,j−1b̄j and b̄j = ˜̄̄

R
(ρ)
j,j+1āj. (2-72)

Replacing āj in the b̄j expression, we obtain

b̄j = ˜̄̄
R

(ρ)
j,j+1

˜̄̄
R

(ρ)
j,j−1b̄j[

¯̄I − ˜̄̄
R

(ρ)
j,j+1

˜̄̄
R

(ρ)
j,j−1

]
b̄j = 0̄. (2-73)

Then, the non-trivial solution is given by

det
(

¯̄I − ˜̄̄
R

(ρ)
j,j+1

˜̄̄
R

(ρ)
j,j−1

)
= 0. (2-74)

Therefore, any kz that satisfy the characteristic equation (2-74) is a
proper solution the problem at hand. By selecting j = N , we obtain

f(kz) = det
(

¯̄I − ¯̄R
(ρ)
N,N+1

˜̄̄
R

(ρ)
N,N−1

)
= 0. (2-75)

Notice that when j = N , we have ˜̄̄
R

(ρ)
N,N+1 = ¯̄R(ρ)

N,N+1. The values of kz
will be the same, independent of the layer. In order to find the eigenvalue
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solutions in (2-75), it is appropriated to remove the singularities of this
characteristic equation. By using a procedure similar to that in [51, 59], a
pole-free characteristic equation can be obtained:

fpf (kz) =
j=N+1∏
j=1

det
[(
k2
j − k2

z

)m(j)/2 ¯̄Dj−1

(
¯̄I − ¯̄R(ρ)

j−1,j
˜̄̄
R

(ρ)
j−1,j−2

)]
(2-76)

where
¯̄Dj =


¯̄Dja, if j = N

¯̄Djb, if j < N
(2-77)

and

m(j) =



3
2 − δ1,N

[
1
2 + δ0,n − u(0)

2

]
−δ0,ρ0

[
1
2 + n+ δ0,n (1− δ1,N)

]
+ u(0)

2 , if j = 1
3
2 + u(N)

2 , if j = N andN > 1

0, if j = N + 1

2, otherwise.
(2-78)

In the above, δi,j is the Kronecker delta (which is 1 if i = j and zero
otherwise), and the function u(j) indicates an impedance boundary condition
for a truncating the waveguide at ρj. In case of perfect electric conductor (PEC)
or perfect magnetic conductor (PMC), we have u(j) = 0. For the impedance
wall case, boundaries conditions used to solve the characteristic equation are
slightly different from those showed here. Further details can be found in [51].

2.2.1
Root-finding in the kz plane

The majority of propagation problems in inhomogeneous, anisotropic,
ans lossy media requires to find the complex-valued roots of the character-
istic equations. However, they cannot be found analytically and root-finding
algorithms are used to solve this drawback.

The eigenvalues that are inside a region of interest in the complex plane
can be found by several numerical methods, for example, the Muller method,
2D bisection method [50], the Cauchy method [28, 49], among others. In [60],
a global algorithm was developed to accomplish that. Here, the Cauchy’s
Argument Principle [61], also known as the winding number, will be employed
to calculate the number of zeros of our characteristic function. The winding
number of a complex function in a closed contour C is given by [51, 59, 62–64]

N0 −Np = 1
2πi

∮
C

f ′pf (kz)
fpf (kz)

dkz, (2-79)

where Np is the number of poles and N0 the number of zeros. As we have a
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pole-free characteristic equation, the above integral will gives us the number of
zeros N0. We exploited here four different methods for calculating N0. The first
method is a direct application of equation (2-79) in which the region of search
is defined in the same manner as in the homogeneous case, with a limiting
contour oriented in the Cauchy’s counterclockwise sense. As mentioned in [65],
it is convenient due to numerical reasons to divide the contour into segments.

The second method is the one applied in [51], where the region of search
is depicted in Fig 2.5. The contour integral C is split and reduced into three
line integrals on over C1, C2 and C3 (please, see [51] for further details). Then
(2-79) reduces to

N0 = 1
2πi

[∫
C1

f ′pf (kz)
fpf (kz)

dkz +
∫
C2

f ′pf (kz)
fpf (kz)

dkz +
∫
C3

f ′pf (kz)
fpf (kz)

dkz

]
. (2-80)

The function fpf (kz) is a product of functions, as seen in (2-76), and
then, it is possible to consider writing it as

fpf (kz) =
j=N+1∏
j=1

fj (2-81)

where
fj = det

[(
k2
j − k2

z

)m(j)/2 ¯̄Dj−1

(
¯̄I − ¯̄R(ρ)

j−1,j
˜̄̄
R

(ρ)
j−1,j−2

)]
. (2-82)

The derivative of this product might be expanded as a sum of derivatives,
using the logarithmic differentiation [66]. This method is usually employed in
cases where the function is composed by a product of other functions. The
logarithmic will then transform the original function in a sum of separate
parts, rendering this approach a clever to compute derivatives.

kz

kz

C1

C2

C3

''

'

-x x0

y

Figure 2.5: Region of search on the kz-complex plane, and the contours C1, C2
and C3 used in the calculation of the winding number.
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By taking the logarithmic on both sides of (2-81), we obtain [67]

ln (fpf (kz)) = ln
j=N+1∏

j=1
fj

 (2-83)

=
j=N+1∑
j=1

ln (fj) , (2-84)

and, by taking then the derivative, we can obtain

f ′pf (kz)
fpf (kz)

=
j=N+1∑
j=1

f ′j
fj
. (2-85)

The third method is then given by a combination of the above results
with the initial equation (2-79) transformed into

N0 = 1
2πi

j=N+1∑
j=1

∮
C

f ′j(kz)
fj(kz)

dkz. (2-86)

Finally, by combining (2-85) and (2-80), we can formulate our fourth
method, namely:

N0 = 1
2πi

j=N+1∑
j=1

3∑
q=1

∮
Cq

f ′j(kz)
fj(kz)

dkz. (2-87)

It should be observed that the format above is a parallel-friendly version of the
original winding number defined in (2-79). In addition, the derivative f ′j(kz)
can be calculated analytically in view of (2-82).

After finding N0, a root finding algorithm based on Muller’s method can
be used to determine the eigenvalues kz of our characteristic equation. Having
the values of kz, it is then possible to find the modal amplitudes āj and b̄j for all
layers. Consequently, we have all ingredients for computing the electromagnetic
field solution.

The modal amplitude b̄j was defined in [51, 63] as

b̄j−1 =
(

¯̄I − ¯̄R(ρ)
j−1,j

˜̄̄
R

(ρ)
j−1,j−2

)−1 ¯̄T (ρ)
j,j−1b̄j. (2-88)

The value of b̄j in the last layer is the null space of matrix ¯̄MN , which is
given by ¯̄MN =

(
¯̄I − ¯̄R(ρ)

N,N+1
˜̄̄
R

(ρ)
N,N−1

)
, (2-89)

b̄N = null
( ¯̄MN

)
. (2-90)

The amplitudes b̄j for the remaining layers j = {1, 2, ...N − 1} can then
be obtained recursively using (2-88), āj, and (2-72).
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2.3
Validation

In this section, we present simulation results obtained from a numerical
algorithm implemented in the Matlab platform [68]. A series of representative
examples of waveguide scenarios will be evaluated in order to validate or
mathematical formulation and the corresponding numerical algorithm.

Comparison between the Winding Number Methods

Before introducing the main simulations, we will expose the difference
found among the four methods used to calculate the number of zeros inside
a waveguide discussed in Section 2.2.1. It was considered a two layers coaxial
waveguide with parameters listed in Table 2.1. Simulations were performed at
10 GHz.

The number of zeros found in each mode can be seen in Table 2.2. As we
employed a numerical differentiation, the results obtained can be approximated
to a real integer, as expected. We have employed the adaptive integration
function integral(·) provided in Matlab [68] using the relative and absolute
errors of 10−8 and 10−13, respectively. The region of search was delimited by
x = −368.15 and x = 368.15 in the real axis, and by y = 0 and y = 6346
in the imaginary one. As it was a lossless media, we used equation (2-49) to
determine the value of y, considering m as 10. The values are close to each
other and the major difference is in the imaginary part when using Methods 3
and 4. Despite that, all of the winding numbers approach are able to effectively
found 13 eigenvalues.

Table 2.3 shows a comparative between computational time spent in
each method. Some simulations were performed and the average time was
considered in this comparison. We observe that Methods 1 and 2 are faster
and Methods 3 and 4 are slower, showing that replace the product of functions
to a sum increased the time spent on this operation. Even though Method
4 has the highest computational time, it is possible to parallelize its integral
calculations, specially for waveguides with a large number of radial layers. And

Parameters Layers
ρ (mm) 1.84 2 5
εr 2.55 1 -

σ = 10−6

Table 2.1: Dimensions and parameters of the reference waveguide. Other
constitutive parameters are equal to those of vacuum.
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as said before, the derivative f ′j(kz) can be calculated analytically in view of
(2-82); this was done here, but is a important investigation topic for future
research.

To explore the fields behavior, some waveguides were selected to be
analyzed in the following sections.

Waveguide 1 – A four-layer coaxial waveguide

The first waveguide analyzed is a four-layer coaxial waveguide, radially
truncated by PEC, with the parameters listed in Table 2.4. The electrical
conductivity in all of the layers is very small, with σ = 10−6 S/m. This will
result in an almost lossless media. The first nine kz for the frequencies of 20,
40, 60 and 80 GHz are presented in Fig 2.6. Fig 2.7 shows the normalized field
components Ez and Eρ for the first propagating mode (defined by the one with
the smallest Im(kz)). We are presenting fields associated with the azimuthal
index n = 0.

As expected, the Ez field vanishes at the PEC. Even changing its behavior
as it crosses the layers, this field component is continuous along the radial
direction. The ρ-component (normal to the radial interfaces) of the electric
field, however, is discontinuous at the interfaces at 3, 5, and 10 mm.

Fig. 2.8 presents the fields for the first three TE (Ez) and TM (Eφ) modes
for the waveguide 1 for the same operating frequencies used above. Again, we
can observe that our field solutions fulfill all the boundary conditions, i.e., the
tangential fields are continuous for all values of ρ, and vanish at the PEC.

It is important to observe that, as the frequency increases, the Eρ

discontinuities becomes smaller, as noted in Fig 2.7. It is because the surface
charge density %s at the interface between layer become vanishing as the
wavelength decreases. For supporting such point, consider the results shown in
Fig 2.9, for the same field but at 160 GHz: at ρ = 5 mm the Eρ field component
is virtually continuous. At at ρ = 10 mm, due to the relatively more large
permittivity contrast of the layers (see Table 2.5) the step discontinuous is
more prominent.

Method Reference Equation N0
1 (2-79) 12.999999999996220 + 0.000001429609161i
2 (2-80) 12.999999999899739 + 0.000001429416197i
3 (2-86) 12.999999999581870 + 0.000012527010247i
4 (2-87) 12.999999999927436 + 0.000012527046568i

Table 2.2: Number of zeros of reference waveguide for the different methods
presented.
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Method Average time (s)
1 3.8517624
2 3.6335266
3 6.2435971
4 6.9485663

Table 2.3: Average time spent on each method.

Parameters Layers
εr 2.5 3 3.5 1 -

ρ (mm) 1 3 5 10 15
σ = 10−6 (S/m)

Table 2.4: Dimensions and parameters of waveguide 1. Other constitutive
parameters are equal to those of vacuum.
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2.6(a): 20 GHz
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2.6(d): 80 GHz

Figure 2.6: First nine wavenumbers kz for waveguide 1 at different operating
frequencies.
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Figure 2.7: Normalized Ez and Eρ fields of the first propagating mode in
waveguide 1 at different operating frequencies.
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2.8(a): First three propagating modes of Ez

at 20 GHz
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2.8(b): First three propagating modes of Eφ

in 20GHz
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2.8(c): First three propagating modes of Ez

at 40 GHz
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2.8(e): First three propagating modes of Ez
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2.8(f): First three propagating modes of Eφ

in 60GHz
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2.8(g): First three propagating modes of Ez

at 80 GHz
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2.8(h): First three propagating modes of Eφ

in 80GHz

Figure 2.8: Normalized Ez and Eφ fields of the first propagating modes in
waveguide 1 at different operating frequencies.
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Figure 2.9: Normalized Ez and Eρ fields of the first propagating mode
in waveguide 1 in 160 GHz. Discontinuities of Eρ are smaller for higher
frequencies.
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Waveguide 2 – A three-layer anisotropic circular waveguide

The second waveguide presented here is a three layers circular anisotropic
waveguide defined by parameters in Table 2.5. The first nine wavenumbers
for the frequencies 20, 40, 60 and 80 GHz are in Fig 2.10. Fig 2.11 shows
the normalized Ez and Eρ field components of the fundamental mode. As
occurred in the coaxial guide, the ρ component of the field is discontinuous at
the interfaces while the Ez components are continuous.

Fig. 2.12 presents the fields for the first three TE (Ez) and TM (Eφ)
modes for the waveguide 2. Again, we can verify that the boundary conditions
enforcement are correct.

The observation made before about the diminishing step discontinuity

Parameters Layers
εrs 1 2 3 -
εrz 1.5 2.55 4 -

ρ (mm) 0 2 3.5 5
σ = 10−6 (S/m)

Table 2.5: Dimensions and parameters of waveguide 2. Other constitutive
parameters are equal to those of vacuum.
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Figure 2.10: First nine wavenumbers kz for waveguide 2 at different operating
frequencies.
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Figure 2.11: Normalized Ez and Eρ fields of the first propagating mode in
waveguide 2 at different operating frequencies.

on the ρ component of the electric field, apply, again, for this scenario, as seen
in the field results at 160 GHz shown in Fig 2.13.
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2.12(a): First three propagating modes of Ez

at 20 GHz
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2.12(b): First three propagating modes of
Eφ at 20 GHz
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2.12(c): First three propagating modes of Ez

at 40 GHz
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2.12(d): First three propagating modes of
Eφ at 40 GHz
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2.12(e): First three propagating modes of Ez
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2.12(f): First three propagating modes of Eφ

at 60 GHz
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2.12(g): First three propagating modes of Ez

at 80 GHz
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2.12(h): First three propagating modes of
Eφ at 80 GHz

Figure 2.12: Normalized Ez and Eφ fields of the first propagating modes in
waveguide 2 at different operating frequencies.
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Figure 2.13: Normalized Ez and Eρ fields of the first propagating mode
in waveguide 2 at 160 GHz. Discontinuities of Eρ are smaller for higher
frequencies.

Field behavior inside dielectric layers

The three-layer circular waveguide is now evaluated in three different
scenarios, where only one layer is filled with a dielectric material (with εr = 3)
and the other ones are vacuum. Fig. 2.14 shows the normalized Eφ field
component of the main propagating mode at 100 GHz. We can observe that
this field clearly concentrates on the layer filled by the dielectric material.

Also, to explore large dielectric contrast layers, consider the last waveg-
uide has an isotropic dielectric material with εr = {2, 3, 6, 12} filling only the
outermost radial layer; the remaining are filled with vacuum. From Fig 2.15,
we can observe that as the electric permittivity increases, the field become
more concentrated in the dielectric layer, which is in accordance with results
from [69].
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2.14(a): Dielectric in the first layer.
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2.14(b): Dielectric in the second layer.
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2.14(c): Dielectric in third layer.

Figure 2.14: Normalized Eφ fields of the main propagating mode in a three-
layer circular waveguide at 100 GHz. A dielectric media (with εr = 3) is placed
in the innermost, middle, and outermost radial layers.
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Figure 2.15: Normalized Eφ field component of the main propagating mode in
a (virtual) three-layer circular waveguide at 100 GHz. The outermost radial
layer is filled with a material characterized by the electric permittivity εr.
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Waveguide 3 – A five-layer coaxial waveguide

Consider now the case Waveguide 3. This is a five-layer coaxial waveguide
with parameters shown in Table 2.6. In this case, we have an isotropic and lossy
media, since σ is non-null. As a consequence, the modal propagation constants
kz will present both real and imaginary part. The corresponding eigenvalues kz
were plotted in Fig 2.16. Fields Ez and Eρ are in Fig 2.17, and the three first
TE and TM modes of z and φ components of the electric field are presented
in Fig 2.18.

Observing Eρ and Ez in Fig 2.17, we can see that the fields have a
peculiar behavior: In each layer they have different oscillatory patterns. Also,
as expected, all results are satisfying the interface boundary conditions.

Parameters Layers
εr 3 5 2 3 2 -

ρ (mm) 1 5 10 15 20 30
σ (S/m) 1 1.5 0.5 1 0.5 -

Table 2.6: Dimensions and parameters of waveguide 3.

400 500 600 700 800 900

80

100

120

140

2.16(a): 20 GHz

900 1000 1100 1200 1300 1400
70

80

90

100

110

2.16(b): 40 GHz

1600 1800 2000 2200

120

140

160

180

2.16(c): 60 GHz

2150 2200 2250 2300 2350 2400
65

70

75

80

85

90

95

2.16(d): 80 GHz

Figure 2.16: First nine wavenumbers kz for waveguide 3 at different operating
frequencies.
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2.17(d): 80 GHz

Figure 2.17: Normalized Ez and Eρ fields of the first propagating mode in
waveguide 3 at different operating frequencies.

DBD
PUC-Rio - Certificação Digital Nº 1821444/CA



Chapter 2. Electromagnetic Fields in Cylindrical Waveguides 46

0 10 20 30
0

0.2

0.4

0.6

0.8

1

2.18(a): First three propagating modes of Ez

at 20 GHz
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2.18(b): First three propagating modes of
Eφ at 20 GHz
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2.18(c): First three propagating modes of Ez

at 40 GHz
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2.18(d): First three propagating modes of
Eφ at 40 GHz
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2.18(e): First three propagating modes of Ez
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2.18(f): First three propagating modes of Eφ

at 60 GHz
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2.18(g): First three propagating modes of Ez

at 80 GHz
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2.18(h): First three propagating modes of
Eφ at 80 GHz

Figure 2.18: Normalized Ez and Eφ fields of the first propagating modes in
waveguide 3 at different operating frequencies.
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Waveguide 4 – A six-layer circular waveguide

Consider now the scenario of waveguide 4, formed by a six-layer circular
waveguide with variations on the electrical conductivity along de radial layers,
according to the parameters shown in Table 2.7. Fig 2.19 shows the eigenvalues
we have found. The first mode of normalized Ez and Eρ fields are in Fig 2.20
and results are in accordance with the previous cases.

Fig. 2.21 presents the z and φ electric field components for the first TE
and TM modes for the same frequencies as in the other examples. As expected,
all the boundary conditions are continuous across the radial interfaces.

Parameters Layers
εr 2.55 4 2.55 4 2.55 4 -

ρ (mm) 0 5 10 15 20 25 30
σ = 1 (S/m)

Table 2.7: Dimensions and parameters of waveguide 4.
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Figure 2.19: First nine wavenumbers kz for waveguide 4 at different operating
frequencies.
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Figure 2.20: Normalized Ez and Eρ fields of the first propagating mode in
waveguide 4 at different operating frequencies.
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2.21(a): First three propagating modes of Ez

at 20 GHz
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2.21(b): First three propagating modes of
Eφ at 20 GHz
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2.21(c): First three propagating modes of Ez

at 40 GHz
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2.21(d): First three propagating modes of
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2.21(e): First three propagating modes of Ez
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2.21(f): First three propagating modes of Eφ

at 60 GHz
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2.21(g): First three propagating modes of Ez

at 80 GHz
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2.21(h): First three propagating modes of
Eφ at 80 GHz

Figure 2.21: Normalized Ez and Eφ fields of the first propagating modes in
waveguide 4 at different operating frequencies.
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Modal field concentration on the waveguide layers

It is possible to observe from examples of waveguides 1, 2 and 4, that,
as the frequency increases, the fields associated to the fundamental modes
becomes concentrated in the layer with the highest dielectric permittivity. This
is on the field component Eφ. Also, the second mode concentrates on the layer
with the second highest permittivity, and third mode in the layer with third
highest one. As critical case, for waveguide 4, we can notice that the fields at
80 GHz, for the first three propagation modes, become almost orthogonal to
each other. In other words, there is a very small overlapping between the fields
along rho.

For a waveguide with the same value of σ in all the layers, we can predict
the following: at lower frequencies, the power associated to a modal field will
be diffuse along the radial domain, but at higher frequencies, the power will
concentrate in the layer with the higher dense media. In order to verify this, an
additional example is evaluated. Waveguide 4 is now modified according to the
parameters listed in Table 2.8. Notice here we are considering some anisotropic
layers.

Fig. 2.22 presents the Ez fields for 12 TM modes, and the Eφ fields for 10
TE modes at different operating frequencies. We can observe the behavior we
have predicted previously for the high-order modal fields. By examining Eφ, we
notice that a large number of TE modes concentrates the power into two more
dense layers at 80 GHz. Such are the anisotropic layers. By examining Ez field
component, we can observe that TM modes presents an opposite behavior: the
layer with higher anisotropic permittivity (with εrs = 4 and εrz = 6) is the
one where fields are less concentrated. It is important to mention such results
are for the normalized fields with respect to its maximum values. The source
boundary conditions were not yet imposed.

In the case of waveguide 3, the layers had different values of σ, and
consequently, different attenuations are experienced along the radial domain.
As the frequency increases, the fields intensity concentrates in the layers with
the lowest electrical conductivity (where σ = 0.5, i.e., 10 mm ≤ ρ ≤ 15 mm

Parameters Layers
εrs 2.55 4 2.55 4 2.55 4 -
εrz 2.55 6 2.55 5 2.55 4 -

ρ (mm) 0 5 10 15 20 25 30
σ = 1 (S/m)

Table 2.8: Dimensions and parameters of waveguide 4 with anisotropic layers.
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2.22(a): TM modes of Ez at 20 GHz
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2.22(b): TE modes of Eφ at 20 GHz
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2.22(c): TM modes of Ez at 40 GHz
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2.22(d): TE modes of Eφ at 40 GHz
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2.22(e): TM modes of Ez at 60 GHz
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2.22(f): TE modes of Eφ at 60 GHz
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2.22(g): TM modes of Ez at 80 GHz
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2.22(h): TE modes of Eφ at 80 GHz

Figure 2.22: Normalized Ez and Eφ fields in an anisotropic waveguide 4 at
different operating frequencies.

and 20 mm ≤ ρ ≤ 30 mm). It is expected that in regions with lower losses the
field pattern becomes concentrated.

Consider now a problem similar to waveguide 3, but with the updated
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parameters listed in Table 2.9.
Figure 2.23 shows the computed fields for simulations 1 and 2 at 80 GHz.

We are presenting 9 TE and 9 TM modes. In simulation 1, the layer with the
highest value for εr had the lowest σ. In this case, both TE and TM fields are
concentrated the in the layers with the highest εr. This behavior was expected,
since these layers present low-loss characteristic.

In simulation 2 (see Fig. 2.24), the layers with higher εr had also higher
σ. We can observe that for Ez fields, a slight concentration of modes in
layers with high dielectric values occur, although the high losses. For the
TE modes (characterized by the Eφ field), we cannot distinguish any clear
pattern of concentration of the field. In a nutshell, for the TM modes, the
radial concentration of the fields at high-frequencies are mainly due to the
values of εr in a given layer, with a small correlation with σ. This could be
explained because the conduction current is dominated by the displaced one
at high-frequencies of operation.

Simulation Parameter Layers

1
εr 4 2 4 2 4 -

σ (S/m) 0.1 1 0.1 1 0.1 -
ρ (mm) 1 5 10 15 20 30

2
εr 4 2 4 2 4 -

σ (S/m) 1 0.1 1 0.1 1 -
ρ (mm) 1 5 10 15 20 30

Table 2.9: Dimensions and parameters of waveguides used in simulation 1 and
2.
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2.23(a): TM modes of Ez
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2.23(b): TE modes of Eφ

Figure 2.23: Normalized Ez and Eφ fields of simulation 1 at 80 GHz.
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2.24(a): TM modes of Ez
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2.24(b): TE modes of Eφ

Figure 2.24: Normalized Ez and Eφ fields of simulation 2 at 80 GHz.

Influence of anisotropy in field discontinuity

In interfaces where exist a variation in the electric parameters of the
media, we have discontinuous distributions of charges and currents [1]. The
discontinuities in the Eρ field component observed in the previous examples
are proportional to the permittivity contrast between adjacent layers.

To become possible to analyze the influence of the anisotropy in these dis-
continuities, a simulation was made considering Waveguide 5 (with parameters
in Table 2.10), in 20 GHz. The values of εrz were varied according to Table 2.11
and the difference observed in the ρ component is shown in Fig 2.25. Simulation
1 is equivalent to the isotropic case, while others have an increasing step of
0.5.

After the first discontinuity at 2 mm, the amplitude of the field becomes
greater for higher values of εrz. Also, we can observe that as the anisotropy
becomes larger, the size of the discontinuity also grows. The step present at
ρ = 3.5 mm has size equal to 0.0964 V/m in simulation 1, 0.1049 V/m in
simulation 2, 0.1143 V/m in simulation 3 and 0.1246 V/m in simulation 4. At
the interface between layers 1 and 2, the difference is not very clear, but from
layer 2 to 3, this becomes more evident. From these simulations, it is possible
to confirm that the size of the discontinuities in the Eρ field is related to the
permittivity value and the degree of anisotropy of the material.

Parameters Layers
εrs 1 2 3 -
εrz 1.5 2.5 3.5 -

ρ (mm) 1.5 2 3.5 5
σ = 10−6 (S/m)

Table 2.10: Dimensions and parameters of waveguide 5 with anisotropic layers.
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Simulation εrz
1 1 2 3
2 1.5 2.5 3.5
3 2 3 4
4 2.5 3.5 4.5

Table 2.11: Values of εrz for Waveguide 5.
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0

0.2

0.4

0.6

0.8

1

Figure 2.25: Normalized Eρ field component of the main propagating mode in
waveguide 5 at 20 GHz. The value of εr were varied according to Table 2.11,
to simulate different levels of anisotropy.
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3
Mode-Matching Method for Cylindrically-Layered
Waveguides

The study of waveguide discontinuities is a relevant topic in microwave
engineering. Some uses of these discontinuities are in broad-band measurement
cells for the complex permittivity and permeability of a sample material [35, 39,
47, 48]. In addition, the junctions of waveguides can also be used for the design
of transformers, filters, couplers, among other guided devices. Waveguide
junctions are widely explored and several works have studied discontinuities
over the years using different techniques. The majority of then are limited to
the modeling hollow homogeneous waveguides.

Transmission lines, and therefore waveguides, discontinuities are voltage-
current discontinuities. Then, an equivalent circuit network of the junction
may be applied to solve it. Equivalent lumped circuit elements can represent
a discontinuity by the admittances (or impedances) matching.

Other specialized approaches, however, are needed for dealing with multi-
mode problems. In [70], a periodic axially symmetrical structure made by
junctions of waveguides was studied using FEM. The analysis of axi-symmetric
body-of-revolution (BOR) is used to simplify the study of guided structures.
The FEM is also a popular method for modeling connectors and two-port
junctions [41, 42].

A hybrid numerical method was developed in [71] to study a discontinuity
in coaxial cable partially filled by a dielectric layer. Expressions for the volume
integral equations associated with the Moment Method were developed in
[21] to model the scattering problem of generalized anisotropic materials and
in [72], the integral equation method is used in a rectangular-cross-section
structure. The projection method was exploited in [30, 31] to compute the
propagation characteristics inside a cylindrical anisotropic metal-dielectric
waveguide, and the FDTD was a modeling technique for waveguide problems
with complex media in [4, 26].

These numerical techniques are widely used and can deal with complex
geometries, however, a high-cost in terms of computational resources is
demanded. As an alternative, more reliable approaches based on semi-analytic
methods should be explored if computational efficiency is desired.
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In the mode-matching method (MMT), the eigenmodes of each region are
matched to each other at the junction discontinuity to satisfy the boundary
conditions [56]. This method can be used to analyze structures with simple
geometry and, many times, closed-form solutions can be derived. Another
very popular MMT-based approach used to analyze inhomogeneous guided
structures is the numerical mode-matching (NMM) [22, 23, 63, 64, 73–75].
In the NMM, the eigenfield solutions are calculated via a numerical FD
or FE approach, and they are combined with a closed-form mode-matching
boundary enforcement. In addition, it is also worth mentioning the recently
introduced spectral numeric mode-matching (SNMM) technique [9], specialized
for planarly-layered media. In [18], a full-wave equivalent circuit was used to
model a multilayered structure with uniaxial anisotropy, and a discrete mode-
matching (DMM) approach was then applied to solve a large system of linear
equations.

In this chapter, we will use an MMT-based solution using the closed-
form eigenfields obtained in Chapter 2. Our approach will generalize the
methodology introduced in [25, 32, 33, 51].

In order to analyze waveguide discontinuities, the generalized scattering
matrix (GSM) representation will be employed for capturing the coupling
between the sections of waveguides. This sub-domain decomposition allows
us to obtain a low-cost computational method via a robust fashion. This
robustness is explained because the associated GSM matrices are inherently
stable. Other types of matrices coupling approaches, such as admittance,
impedance, and transmission ones, might be unstable in some situations [76].

The MMT will enable us to determine the GSM of an entire structure
by cascading the GSM matrices of each junction. We will employ here the
conservation of reaction of the fields in the mode-matching enforcing, and after
a series of mathematical simplifications, we will be able to present closed-form
coupling coefficients in terms of Lommel integrals.

Typical applications of the MMT include analysis of waveguide circuits,
microstrip circuits in conjunction with the microstrip waveguide model and
integrated-circuit horn-antennas [77]. In this chapter, our MMT method will
be used to analyze a series of waveguide junction problems, including a)
the coupling between two homogeneous coaxial waveguides, b) the coupling
between two homogeneous circular waveguides, c) the coupling between a
homogeneous coaxial and a homogeneous circular waveguides, d) the coupling
between an inhomogeneous coaxial and an inhomogeneous circular waveguides,
among others. Also, we present numerical results of inhomogeneous and lossy
guided structures.
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3.1
Formulation

We will consider first a homogeneous coaxial junction, as depicted in
Fig 3.1. The common aperture between the two waveguides is denoted Sa, the
cross-section of the waveguide in region 1 is S1 and in the region 2 is S2. Also,
S1 = Sa, S2 = Sa+Sw and Sw is the surface of an impedance wall characterized
by Z2w. For the case in which all the walls are PEC, Z2w will be zero.

The formulation developed here requires that the area of waveguide 1 be
completely contained inside waveguide 2 (S1 ∈ S2), as seen in Fig 3.1. If the
structure has S2 ∈ S1, an inversion of the S-matrix will be necessary, as will be
detailed in the following. The cases where one region is not entirely contained
inside the other will not be addressed here, but procedures for remedy the
MMT in such scenarios can be found in [33, 51].

The transversal fields from equation (2-61) can be rewritten as

Ejs =
∞∑

n=−∞

∞∑
p=1

(
a+
j,npe

+ikjz,npz + a−j,npe
−ikjz,npz

)
ejs,np(ρ)einφ and (3-1)

Hjs =
∞∑

n′=−∞

∞∑
p′=1

(
a+
j,n′p′e+ikjz,n′p′z − a−j,n′p′e−ikjz,n′p′z

)
hjs,n′p′(ρ)einφ (3-2)

where j indicates the longitudinal region (j = 1 or 2). It is possible to express

Z

Region 1 Region 2

z = z1

Sw

Sa

Sw

A1
+

S1
S2

A1
-

A2
+

A2
-

Figure 3.1: Junction of two homogeneous coaxial waveguides.

DBD
PUC-Rio - Certificação Digital Nº 1821444/CA



Chapter 3. Mode-Matching Method for Cylindrically-Layered Waveguides 58

these double sum as a simple one by means of

Ejs =
∞∑
m

(
A+
j,m + A−j,m

)
Ejs,m and (3-3)

Hjs =
∞∑
m′

(
A+
j,m′ − A−j,m′

)
Hjs,m′ (3-4)

where A+
j,m and A−j,m are the forward and backward modal amplitudes at the

interface in z = z1. These amplitudes are given by

A±j,m = a±j,me
±ikjz,mz1 . (3-5)

At the plane z = z1, we should impose the following boundary conditions:

ẑ × E2s =

 ẑ × E1s, in Sa
Z2wẑ × (ẑ ×H2s) , in Sw

(3-6)

ẑ ×H2s = ẑ ×H1s, in Sa. (3-7)

The waveguides support an infinite number of modes, but for numerical
computation, we will truncate the summation to M modes for region 1 and N
modes for region 2. The convergence of the modal expansion can be achieved
even with small values for M and N as long as the truncation error caused by
the high-order modes are negligible [78].

By using the vector identity

−H2s = ẑ × (ẑ ×H2s) , (3-8)

and substituting equation (3-3) in (3-6), we can obtain

N∑
n=1

(
A+

2,n + A−2,n
)
ẑ × E2s,n =

M∑
m=1

(
A+

1,m + A−1,m
)
ẑ × E1s,m, in Sa, (3-9)

N∑
n=1

(
A+

2,n + A−2,n
)
ẑ × E2s,n = −Z2w

N∑
n=1

(
A+

2,n − A−2,n
)

H2s,n, in Sw. (3-10)

Taking the dot product of the above equations with H2s,n′ , for n′ =

DBD
PUC-Rio - Certificação Digital Nº 1821444/CA



Chapter 3. Mode-Matching Method for Cylindrically-Layered Waveguides 59

1, 2, ...N , and integrating the result over S2, we obtain

N∑
n=1

(
A+

2,n + A−2,n
) ∫∫

S2
(ẑ × E2s,n) ·H2s,n′dS

=
M∑
m=1

(
A+

1,m + A−1,m
) ∫∫

S2
(ẑ × E1s,m) ·H2s,n′dS, in Sa (3-11)

N∑
n=1

(
A+

2,n + A−2,n
) ∫∫

S2
(ẑ × E2s,n) ·H2s,n′dS

= −Z2w

N∑
n=1

(
A+

2,n − A−2,n
) ∫∫

S2
H2s,n ·H2s,n′dS, in Sw. (3-12)

Using the identity (ẑ × E) ·H = (E×H) · ẑ, we obtain

N∑
n=1

(
A+

2,n + A−2,n
) ∫∫

S2
(E2s,n ×H2s,n′) · ẑ dS

=
M∑
m=1

(
A+

1,m + A−1,m
) ∫∫

Sa
(E1s,m ×H2s,n′) · ẑ dS

− Z2w

N∑
n=1

(
A+

2,n − A−2,n
) ∫∫

Sw
H2s,n ·H2s,n′ dS. (3-13)

In the above, the second and third integrals were simplified to over Sa
and Sw because there are no E1s on S2 (only in Sa) and the surface impedance
Z2w exists only in Sw.

These equations can be written in the following matrix form:

¯̄Q2
(
Ā+

2 + Ā−2
)

= ¯̄X12
(
Ā+

1 + Ā−1
)

+ ¯̄L2
(
Ā+

2 − Ā−2
)

(3-14)

where

Ā±j =


A±j,1

A±j,2
...

 , (3-15)

¯̄Xij|n,m = Xim,jn, (3-16)

¯̄Qi|n,m = Xim,in, (3-17)

¯̄Li|n,m = Lim,in. (3-18)
The coupling coefficient Xim,jn can be physically interpreted as the

reaction of the mth modal field in region i with respect to nth modal field
in region j [51, 78]. This coefficient is given by

Xim,jn = 〈Eis,m,Hjs,n〉 =
∫∫

Si
(Eis,m ×Hjs,n) · ẑ ρ dρdφ. (3-19)

In addition, Lim,in is given by

DBD
PUC-Rio - Certificação Digital Nº 1821444/CA



Chapter 3. Mode-Matching Method for Cylindrically-Layered Waveguides 60

Lim,in = −Zjw
∫∫

Sjw
(Hjs,m ·Hjs,n) ρ dρdφ. (3-20)

Using equation (3-7) and repeating the same procedure as above, its
possible to derive a integral equation for the magnetic field coupling:

N∑
n=1

(
A+

2,n − A−2,n
)
ẑ ×H2s,n =

M∑
m=1

(
A+

1,m − A−1,m
)
ẑ ×H1s,m, in Sa. (3-21)

Taking the dot product with E1s,m′ , for m′ = 1, 2, ...,M and integrating
over S1, we obtain

N∑
n=1

(
A+

2,n − A−2,n
) ∫∫

S1
(E1s,m′ ×H2s,n) · ẑ dS =

M∑
m=1

(
A+

1,m − A−1,m
) ∫∫

S1
(E1s,m′ ×H2s,m) · ẑ dS. (3-22)

In a matrix form, we can write

¯̄X t
12

(
Ā+

2 − Ā−2
)

= ¯̄Q1
(
Ā+

1 − Ā−1
)
, (3-23)

in which the superscript t indicates the transpose. We can relate the forward
and backward amplitudes combining equations (3-14) and (3-23) via a GSM
matrix  Ā−1

Ā+
2

 =
 ¯̄S11

¯̄S12
¯̄S21

¯̄S22

 Ā+
1

Ā−2

 (3-24)

where the scattering sub-matrices are

¯̄S11 =
[

¯̄Q1 + ¯̄X t
12

( ¯̄Q2 − ¯̄L2
)−1 ¯̄X12

]−1 [ ¯̄Q1 − ¯̄X t
12

( ¯̄Q2 − ¯̄L2
)−1 ¯̄X12

]
, (3-25)

¯̄S12 = 2
[

¯̄Q1 + ¯̄X t
12

( ¯̄Q2 − ¯̄L2
)−1 ¯̄X12

]−1 ¯̄X t
12

[
¯̄I +

( ¯̄Q2 − ¯̄L2
)−1 ¯̄L2

]
, (3-26)

¯̄S21 = 2
( ¯̄Q2 − ¯̄L2 + ¯̄X12

¯̄Q−1
1

¯̄X t
12

)−1 ¯̄X12, (3-27)
¯̄S22 = −

( ¯̄Q2 − ¯̄L2 + ¯̄X12
¯̄Q−1

1
¯̄X t

12

)−1 ( ¯̄Q2 + ¯̄L2 − ¯̄X12
¯̄Q−1

1
¯̄X t

12

)
. (3-28)

The ¯̄Sii matrix, for i = {1, 2}, relates the reflected amplitudes from region
i due to incident fields in this region, while matrix ¯̄Sij, for j = {2, 1}, relates
reflected amplitudes from region i, due to incident fields from region j.

3.2
Reaction Integrals

The electromagnetic reaction concept [57, 79] can be employed to
simplify the formulation and the resolution of boundary-value problems. In
our formulation, reaction integrals have appeared in (3-19). The quantity
〈Eis,m,Hjs,n〉 is the the reaction between Eis,m and Hjs,n, and this can be
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understood as a physical measurable capacity of coupling between such fields.
This concept can be extended to anisotropic media by using a more general
form of the reciprocity theorem, as have been demonstrated in [80]. When
the both permittivity and permeability tensors are transpose symmetric (as
in uniaxial and biaxial anisotropic media), the conventional forms of the
reciprocity theorem still apply.

Rewriting (3-19) with the modal double-index form, we have

Xinp,jn′p′ =
∫∫

Si
(Eis,np ×Hjs,n′p′) · ẑ ρ dρdφ, (3-29)

which can be manipulated, and reduced to [51]

X1,2 = − (−1)n π
[
−snωε2sk1zα

e
1α

e
2L̂+

n

(
Be1
n , B

e2
n

)
+ ωµ1sk2zα

h
1α

h
2L̂+

n

(
Bh1
n , B

h2
n

)
−ik1zk2zα

e
1α

h
2L̂−n

(
Be1
n , B

h2
n

)
− iω2ε2sµ1sα

e
2α

h
1L̂−n

(
Bh1
n , B

e2
n

)]
.

(3-30)

In the above, subscripts np were omitted for shorting our notation, sn =
1 − 2δ0,n, Be,hj

n are combinations of cylindrical functions (j = 1 or 2), L̂±n
are the coupling integrals

L̂±n
(
B1
n, B

2
n

)
= 1
k1ρk2ρ

L±n
(
B1
n, B

2
n

)
, (3-31)

with

L±n
(
B1
n, B

2
n

)
=
[
Ln−1

(
B1
n−1, B

2
n−1

)
± Ln+1

(
B1
n+1, B

2
n+1

)]
, (3-32)

where the Lommel integrals are given by

Lm
(
B1
m, B

2
m

)
=
∫ ρmax

ρmin
B1
m (α1k1ρρ)B2

m (α2k2ρρ) ρ dρ. (3-33)

A detailed analytical formulations of the above Lommel integrals were
presented in [51, 63]. Some important results are summarized here. Expression
in (3-30) can be separated in four parts:

X1,2 = Xee
1,2 +Xhh

1,2 +Xeh
1,2 +Xhe

1,2. (3-34)

where superscripts e and h are associated to the axial Ez and Hz field
components.

For the case in which α1k1ρ 6= α2k2ρ, the Lommel integral becomes

∫ ρmax

ρmin
B1
m (α1k1ρρ)B2

m (α2k2ρρ) ρdρ =
[

ρ

(α1k1ρ)2 − (α2k2ρ)2

×
(
α1k1ρB

1
m+1B

2
m − α2k2ρB

1
mB

2
m+1

) ]ρmax

ρmin

, (3-35)
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which can be further simplified to

L±m
(
B1
m, B

2
m

)
=
[
∓ 2m
α1k1ρα2k2ρ

B1
mB

2
m

+ (1± 1) ρ
(α1k1ρ)2 − (α2k2ρ)2

(
α1k1ρB

1
mB

2
m−1 − α2k2ρB

1
m−1B

2
m

)]ρmax

ρmin

. (3-36)

In the case where α1k1ρ ≈ α2k2ρ, the expression for L±m (B1
m, B

2
m) can be

reduced to

L±m
(
B1
m, B

2
m

)
=
{
ρ2

4
[
2B1

m−1B
2
m−1 ± 2B1

m+1B
2
m+1 −B1

m

(
B2
m−2 ±B2

m+2

)
−B2

m

(
B1
m−2 ±B1

m+2

)] }ρmax

ρmin

.

(3-37)

Also, when α1k1ρ = α2k2ρ, the expression in (3-33) allows us to obtain

L±m
(
B1
m, B

1
m

)
=
{
ρ2

2

[(
B1
m−1

)2
±
(
B1
m+1

)2
−
(
B1
m−2B

1
m ±B1

mB
1
m+2

)]}ρmax

ρmin

.

(3-38)

3.2.1
Solutions for the TEM-mode

We will discuss now a particular case that may occur when analyzing
waveguide at junctions, where the TEM mode is supported. This propagating
mode will exist only in homogeneous coaxial waveguides for the azimuthal
symmetric harmonic n = 0. The TEM is characterized by kρ = 0, which may
lead to a numerical issues when using the closed-form solutions of the Lommel
integrals or when using (3-30). However, as the cylindrical functions Be,hj

n

presents kρ in its arguments, it becomes possible use a limiting evaluations on
the expressions (3-36) to (3-38) to avoid singularities.

The functions Be,hj
n are combinations of Bessel functions of integer order

n, in the form
Bn(x) = aHn(x) + bJn(x), (3-39)

Using small argument approximations for the cylindrical functions [1, 67],
we obtain

B0(αjkjρρ) ' a i
( 2
π

)
ln (αjkjρρ) (3-40)

for n = 0, and

Bn(αjkjρρ) ' a (−i) (n− 1)!
π

(
2

αjkjρρ

)n
(3-41)

and for n > 0.
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As Hn(·) dominates Jn(·) when kρ −→ 0, we only need to evaluate the
Hankel functions in this limiting form. The amplitude a is obtained from the
field equations. In TEM mode, will exist only eρ and hφ components, then, by
using the set of equations (2-33)–(2-36), we obtain

ejρ = 1
k2
jρρ

(
ikjzα

e
jkjρρB

′ej
n − nωµjsBhj

n

)
, (3-42)

hjφ = 1
k2
jρρ

(
iωεjsα

e
jkjρρB

′ej
n − nkjzBhj

n

)
(3-43)

with j = 1 or 2. For n = 0, the ejρ component becomes

ejρ = 1
k2
jρρ

(
ikjzα

e
jkjρρB

′ej
0 (αejkjρρ)

)
(3-44)

By using the identity H ′0(x) = −H1(x) [67]

ejρ = 1
k2
jρρ

[
ikjzα

e
jkjρρ

(
−Hej

1 (αejkjρρ)
)]

(3-45)

using (3-41) in (3-45)

ejρ = 1
k2
jρρ

[
ikjzα

e
jkjρρ

(
2ia

παejkjρρ

)]

= −2kjza
k2
jρπρ

. (3-46)

As the field of a TEM mode must be finite, the amplitude a has to be
proportional to k2

jρ. The same result is obtained using the expression for hjφ.
As a result, the closed-form solutions for the Lommel integrals should employ
the limiting forms listed bellow:

Bj
0 −→ k2

jρ

2i
π

ln (αjkjρρ) , (3-47)

Bj
1 −→ −kjρ

2i
παjρ

, (3-48)

Bj
2 −→

−4i
πα2

jρ
2 . (3-49)

When the order n is an integer, we can use B−n(x) = (−1)nBn(x) [1].
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Then, it is useful to write

Bj
0 −→ k2

jρ

2i
π

ln (αjkjρρ) , (3-50)

Bj
±1 −→ ∓kjρ

2i
παjρ

, (3-51)

Bj
±2 −→

−4i
πα2

jρ
2 . (3-52)

The TEM mode will occur in a inhomogeneous to homogeneous (and
vice-versa) or in a homogeneous to homogeneous junction, as shown in Fig 3.2.

For the homogeneous to inhomogeneus case (Fig 3.2a), where the TEM
mode exists only in region 1 (k1ρ = 0) and therefore, α1k1ρ 6= α2k2ρ, the

Z

Region 1
Homogeneous

Region 2
Inhomogeneous

Z

Region 1
Inhomogeneous

Region 2
Homogeneous

Z

Region 1
Homogeneous

Region 2
Homogeneous

(a) (b)

(c)

Figure 3.2: Waveguide discontinuity cases where the TEM mode occur: (a)
homogeneous to inhomogeneous junction, (b) inhomogeneous to homogeneous
junction and (c) homogeneous to homogeneous junction.
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expression in (3-36) will become to

L+
0

(
B1

0 , B
2
0

)
=
[

2ρ
(α1k1ρ)2 − (α2k2ρ)2

(
α1k1ρB

1
0B

2
−1 − α2k2ρB

1
−1B

2
0

)]ρmax

ρmin

(3-53)

L−0
(
B1

0 , B
2
0

)
= 0. (3-54)

Using the approximations in the L̂+
0 expression

lim
k1ρ−→0

L̂+
0 = 1

k1ρk2ρ

2ρ
(α1k1ρ)2 − (α2k2ρ)2

(
α1k1ρk

2
1ρ

2i
π

ln (α1k1ρρ)B2
−1

−α2k2ρk1ρ
2i

πα1ρ
B2

0

)
, (3-55)

which can be simplified to

lim
k1ρ−→0

L̂+
0 =

[
4i

k2
2ρα1α2π

B2
0

]ρmax

ρmin

, lim
k1ρ−→0

L̂−0 = 0. (3-56)

In the inverse case (Fig. 3.2b), with k2ρ = 0, the result would be

lim
k2ρ−→0

L̂+
0 =

[
4i

k2
1ρα1α2π

B1
0

]ρmax

ρmin

, lim
k2ρ−→0

L̂−0 = 0. (3-57)

For a two homogeneous waveguide junction (Fig. 3.2c), where k1ρ = k2ρ =
0 and α1k1ρ = α2k2ρ, the L±0 coupling integrals will be

L+
0

(
B1

0 , B
1
0

)
=
{
ρ2

2

[(
B1
−1

)2
+
(
B1

1

)2
−
(
B1
−2B

1
0 +B1

0B
1
2

)]}ρmax

ρmin

, (3-58)

L−0
(
B1

0 , B
1
0

)
=
{
ρ2

2

[(
B1
−1

)2
−
(
B1

1

)2
−
(
B1
−2B

1
0 −B1

0B
1
2

)]}ρmax

ρmin

. (3-59)

It is easy to notice that as B−1 = −B1 and B−2 = B2 the result of
L−0 (B1

0 , B
1
0) will be zero. Then, applying the approximations in equation (3-58),

L̂+
0 will be

lim
k1ρ−→0

L̂+
0 = 1

k2
1ρ

ρ2

2

2
(
k1ρ

2i
πα1ρ

)2

− 2
(
−4i
πα2

1ρ
2k

2
1ρ

2i
π

ln(α1k1ρρ)
) (3-60)

and after a few simplifications

lim
k1ρ−→0

L̂+
0 = 4

π2α2
1

[−1 + 2 ln(α1k1ρρ)]ρmax
ρmin

. (3-61)

Evaluating the integral limits, we notice that the first term of the
sum will not contribute. Using the log properties, the (α1k1ρ) argument,
which could create numerical problems, can be also eliminated. Therefore,
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the approximations arrive to

lim
k1ρ−→0

L̂+
0 = 8

π2α2
1

ln
(
ρmax

ρmin

)
, lim

k1ρ−→0
L̂−0 = 0. (3-62)

It is possible to observe that when we have the TEMmode, the expression
(3-34) will reduce to X1,2 = Xee

1,2, since Xeh
1,2 = Xhe

1,2 = 0, as all L̂−0 = 0, and
Xhh

1,2 will also be zero because there are only the e1ρ and h2φ components of the
fields.

3.2.2
Regions with Arbitrary Layers

If our junction is formed by regions with non-homogeneous media,
we should generalize the above-mentioned MMT formulations. Consider the
coupling between a waveguide with N1 layers in region 1 and N2 layers in
region 2. The set of radius of region 2 that intercept the coupling aperture Sa,
shown in Fig 3.3, will be called r12.

Let ri be the set of radius of region i, for i = 1 or 2. The set ra is the
sorted union between r12 and r1. In summary:

r1 = {ρ0, ρ1, ..., ρN1} , (3-63)

r2 = {ρ0, ρ1, ..., ρN2} , (3-64)

ra = sort (r1 ∪ r12) . (3-65)

Region 1 Region 2

Layer 1

Layer 2

...

Layer N1

Layer 1

Layer 2

Layer N2

...
...

��

��

��

��

��
��

��

���
������� ��

���
�������

�

Z

Sa r12

�����

Figure 3.3: Junction between waveguides with non-homogeneous media.
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Then, the reaction integral for the inhomogeneous problem can employ
our results for homogeneous coupling, resulting in [51]

X1(np),2(np′) = −2π(−1)n
dim(ra)∑
j=0

∫ ra,j+1

ra,j
[sne1ρ,np(ρ)h2φ,np′(ρ)

+ e1φ,np(ρ)h2ρ,np′(ρ)] ρdρ, (3-66)

and

Qi,np = −2π(−1)n
dim(ri)∑
j=0

∫ ri,j+1

ri,j
[sneiρ,np(ρ)hiφ,np(ρ)

+ eiφ,np(ρ)hiρ,np(ρ)] ρdρ, (3-67)

for j = 1, 2. As in the homogeneous scenarios, close-form expressions can
trivially obtained for X1(np),2(np′) and Qi,np.

3.3
Cascading Generalized Scattering Matrices

If our problem has more than one junction, as in Fig 3.4, the GSM is
obtained by cascading the S-matrix of each discontinuity.

Region 1 Region 2 Region 3

Z

�

Sa Sb

L

Figure 3.4: Structure with three regions.
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If the first junction is characterized by the matrix ¯̄Sa and the second
junction by ¯̄Sb, the GSM of the complete problem can be written as [51, 63, 64]

¯̄S =
 ¯̄Sc11

¯̄Sc12
¯̄Sc21

¯̄Sc22

 , (3-68)

where

¯̄Sc11 = ¯̄Sa12

( ¯̄I − ¯̄Sb11
¯̄Sa22

)−1 ¯̄Sb11
¯̄Sa21 + ¯̄Sa11, (3-69)

¯̄Sc12 = ¯̄Sa12

( ¯̄I − ¯̄Sb11
¯̄Sa22

)−1 ¯̄Sb12, (3-70)
¯̄Sc21 = ¯̄Sb21

( ¯̄I − ¯̄Sa22
¯̄Sb11

)−1 ¯̄Sa21, (3-71)
¯̄Sc22 = ¯̄Sb21

( ¯̄I − ¯̄Sa22
¯̄Sb11

)−1 ¯̄Sa22
¯̄Sb12 + ¯̄Sb22. (3-72)

For intermediary waveguide sections, as is the case of region 2 in Fig.
3.4, the scattering matrix is associated to the length of the guide and to the
eigenvalues kz of that regions. The S-matrix of this type of junction is defined
as [33]

¯̄Sg =
 0 ¯̄Sg12

¯̄Sg12 0

 , (3-73)

where
¯̄Sg12 =

 eikz,nL 0
0 eikz,nL

 , (3-74)

for the nth propagating mode and a guide with length L. Here, the exponential
is positive, while in [33] is negative. This is due to the fact that in this work
we adopt the time-harmonic dependence in the form e−iωt while the reference
used e+

√
−1ωt.

In the example of Fig 3.4, the area of region 1 is completely contained in
region 2, however, region 2 is not contained in region 3. As mentioned before at
the beginning of this chapter, an inversion of the scattering matrix associated to
this junction (given by (3-24)) will be necessary before the cascading procedure.

A normalization of the GSM will be used to make it independent of the
fields amplitudes. The normalized matrix is given by [78, 81]

ˆ̄̄
Sc11 = abs

( ¯̄Q1
)1/2 ¯̄Sc11 abs

( ¯̄Q1
)−1/2

(3-75)
ˆ̄̄
Sc12 = abs

( ¯̄Q1
)1/2 ¯̄Sc12 abs

( ¯̄Q2
)−1/2

(3-76)
ˆ̄̄
Sc21 = abs

( ¯̄Q2
)1/2 ¯̄Sc21 abs

( ¯̄Q1
)−1/2

(3-77)
ˆ̄̄
Sc22 = abs

( ¯̄Q2
)1/2 ¯̄Sc22 abs

( ¯̄Q2
)−1/2

. (3-78)

This normalization provides the property ˆ̄̄
S

ˆ̄̄
S = ¯̄I, which allows an
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easy way to verify if the scattering matrix was correctly implemented. The
mathematical formulation presented in Chapters 2 and 3 were numerically
implemented via the Matlab platform [68]. A simplified flowchart of the
developed algorithms is presented in Fig. 3.5. The procedure described is
repeated for all of the frequencies we wish to evaluate.

3.4
Validation

In this section we will present results in order to validate the algorithm
developed for the mode-matching method for cylindrical waveguide junctions.
Comparisons with some results from [33] are made to verify our mathematical
methodology and numerical algorithm. In addition, the Computer Simulation
Technology Microwave Studio software (CST) [82] was used to validate some of
the case studies. We will present first simple junctions with only two regions,
composed of coaxial to coaxial, coaxial to circular, and circular to circular
junctions. Later, structures with more regions will be evaluated.

3.4.1
Coaxial Junctions

Junction 1

The first example is a junction of two heterogeneous waveguides with
two radial layers each, as depicted in Fig 3.6, and with the parameters given in
Table 3.1. In this simulation, we want to show that our algorithm can provide
accurate results and analyze the modal convergence.

It is possible to observe from Fig 3.7 that our result of the reflection
coefficient in decibel, i.e., 20 log10( ¯̄S11|1,1), as a function of the frequency for the
first mode in region 1 agrees with the reference one (obtained with the author
of [33]). The convergence is achieved when using 5 modes in each waveguide.
We can notice that as the number of modes considered increases, the curve
has better results. As mentioned in Chapter 2, the evanescent modes becomes
important next to junctions, then, it is necessary to include more than one
mode to secure the correctness of our analyzes. Considering five modes or
more, we can guarantee that our results are accurate.

In addition, we can observe that the S11 curve had an almost-flat behavior
up to about 35 GHz. This is due to the cutoff frequency of the TM01 mode in
waveguide 2, that is 35.64 GHz. Above this frequency, the TM01 modal field
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 Region = last 
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Figure 3.5: Flowchart of the developed algorithm.

becomes a propagating one, and couple with the fundamental TM00 mode of
region 1.

In order to facilitate the identification of the frequency where a mode
becomes propagating, we will indicate that in our figures. For example, the
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label TM2
01 in Fig 3.7 indicates the mode TM01 in region 2 becomes propagating

at about 35 GHz.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2

1 1.84 2.00 5.00 2.55 1
2 1.84 2.00 6.00 2.55 1

σ = 10−6 (S/m)

Table 3.1: Dimensions and parameters of junction 1.

Region 1 Region 2

z

Figure 3.6: Geometry of junction 1. The darker region represents the inner
layers with εr = 2.55.
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Figure 3.7: Reflection coefficient of junction 1 from 0.5 to 45 GHz.

Junction 2

The second example analyzed is a homogeneous to homogeneous junc-
tion. Considering a waveguide with two layers and sharing the same values of
εr, we will have a waveguide that is equivalent to a homogeneous one, with
only one radial layer. In this case, the kρ = 0 will be an eigenvalue solution of
our characteristic equation. This will cause numerical issues in the calculation
of the reaction integrals. For this reason, we will show that we can simulate
such kind of homogeneous junction using waveguides with two radial layers if
numerically-similar values of ε are employed.

Junction 2 (see the geometry in Fig. 3.8) is defined with the parameters
shown in Table 3.2. Fig 3.9 present results for the reflection coefficient obtained
when εr1 vary between {1.1, 1.01, 1.001} in comparison with the reference value
obtained for the same structure. It was considered 20 modes in all of the
simulations. As the value of the permittivity tends to 1, our results approximate
the reference curve, which means that using layers with similar εr1, our problem
becomes numerically-equivalent to the one of a homogeneous junction.

As we are evaluating a homogeneous coaxial waveguide, the TEM mode
propagates in both regions. Above 42.57 GHz, the TM01 mode in waveguide 2
starts to propagate, and at 47 GHz the TM01 mode in waveguide 1 also becomes
a propagating field. This multi-mode characteristic causes perturbations on
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values of the reflection coefficient versus the operating frequency, as evidenced
in Fig. 3.10.

A modified version of the junction-2-problem was considered. In this
case, we used waveguides with three, and with four layers in each region, as
listed in Table 3.3. The corresponding reflection coefficient we obtained with
our method is shown in Fig 3.10, again, we have an excellent agreement with
reference solution. Independently of the number of layers, if they have a small
media difference between each other, we expect this behaves as a homogeneous
waveguide.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2

1 1.84 2.00 5.00 1.1 1
2 1.5 2.00 5.00 1.1 1

σ = 10−6 (S/m)

Table 3.2: Dimensions and parameters of junction 2.

Region 1 Region 2

z

Figure 3.8: Geometry of junction 2.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) ρ4 (mm) εr1 εr2 εr3 εr4

1 1.84 2.00 3.00 5.00 - 1.1 1 1 -
2 1.5 2.00 3.00 4.00 5.00 1.1 1 1 1

σ = 10−6 (S/m)

Table 3.3: Dimensions and parameters of modified junction 2.
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Figure 3.9: Reflection coefficient of junction 2 from 0.5 to 50 GHz with two
layers in each region.
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r1 = 1.001

Reference

Figure 3.10: Reflection coefficient of modified junction 2 from 0.5 to 50 GHz
with three layers in region 1 and four layers in region 2.

Junction 3

To confirm that the statement made in previous section applies to every
case scenario, a homogeneous to heterogeneous junction is now considered. The

DBD
PUC-Rio - Certificação Digital Nº 1821444/CA



Chapter 3. Mode-Matching Method for Cylindrically-Layered Waveguides 75

almost-homogeneous waveguide has three layers, with a slightly difference in
the value of εr in the innermost layer.

Table 3.4 presents the parameters of junction 3 (see the geometry in
Fig 3.11). The reflection coefficient as a function of the frequency for this
case is presented in Fig 3.12. As εr1 become closer to 1, region 1 tends to
a homogeneous waveguide and our results approximates to the reference one.
Notice that the TM01 modes have cutoff frequency at 47 GHz and 26.73 GHz in
regions 1 and 2, respectively. Near these frequencies, we observe a disturbance
in the S11 behavior caused by the propagation of such high-order modes.

We can also prove that our numerical algorithm works for regions with
different number of layers, as region 1 has three layers while regions 2 has only
two. Other examples about this topic will be given in the next sections.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) εr1 εr2 εr3

1 1.84 2.00 3.00 5.00 1.1 1 1
2 1.5 4.84 5.00 - 2.55 1 -

σ = 10−6 (S/m)

Table 3.4: Dimensions and parameters of junction 3.

Region 1 Region 2

z

Figure 3.11: Geometry of junction 3.
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Figure 3.12: Reflection coefficient of junction 3 from 0.5 to 50 GHz.

Junction 4

Now, an inverse case is evaluated. A simulation of heterogeneous to
homogeneous junction is proposed. Junction 4 consider the coupling of a 2-
layer heterogeneous waveguide with a 4-layer guide, as depicted in Fig 3.13, and
with the parameters listed in Table 3.5. Fig 3.14 presents results for different
values of εr1. As the waveguide in region 2 has same parameters as waveguides
from region 1 in the above-analyzed junctions 2 and 3, we can observe the same
cutoff frequency at 47 GHz for the mode TM01. The TM01 has its cutoff at
26.73 GHz in region 1. As the operating frequency increases, such multi-mode
coupling causes the disturbances observed in Fig. 3.14.

Also, the same observations made before can be repeated here: as the
inner layer has its permittivity approaching to 1, the reflection coefficient
becomes near to the reference one. This confirms that our algorithm is able to
modeling homogeneous waveguides.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) ρ4 (mm) εr1 εr2 εr3 εr4

1 1.5 4.84 5.00 - - 2.55 1 - -
2 1.84 2.00 3.00 4.00 5.00 1.1 1 1 1

σ = 10−6 (S/m)

Table 3.5: Dimensions and parameters of junction 4.
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Region 1 Region 2

z

Figure 3.13: Geometry of junction 4.
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Figure 3.14: Reflection coefficient of junction 4 from 0.5 to 50 GHz.

Junction 5

The next junctions examined uses heterogeneous waveguides, and the FD
results from CST were used as reference. We have considered 10 modes in each
waveguide region for the MMT analysis of the next three junction problems.
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In Table 3.6 we shown the parameters of junction 5, which geometry
is similar to that in Fig 3.6. The comparison between the S11 results for the
fundamental mode in region 1 obtained with our MMT-based method and
with FD from CST are depicted as a function of the frequency in Fig 3.15.
The curves are almost identical, with a small discrepancy noted for the higher
frequencies (above 40 GHz). Such small differences does not disappear when
the number of modes used in our solution was increased. We believe the FD
discretization errors are undermining the accuracy of the solutions from CST.

For this junction, the TM01 modes starts to propagate at 38.62 GHz and
at 31.87 GHz in region 1 and 2, respectively, causing the variations with the
frequency in the reflection coefficient curve observed in Fig 3.15.

The FD method from CST demanded 40 minutes and 14 seconds, using
5.807 GB of RAM memory, for simulating 50 frequency points of the reflection
coefficient for mode 1 in region 1. We have used a dedicated Workstation
with a 2.10-GHz Intel Xeon E5-2620 v2 12-core processor. We have employed
two symmetry planes for reducing the simulations domain size, and saving
about 1/4 of RAM memory. This problem needed 110850 tetrahedrons for
the discretization of the spacial domain. We used 4 and 3 modes in regions 1
and 2, respectively, for obtaining convergence. Only the excitation of the first
modal field was considered. Notice that this not allowed us to obtain an entire
GSM matrix, but only the modal reflection and transmission coefficients of
the fundamental mode, from region 1 to 2. The counterpart coefficients from
regions 2 to 1 can not be obtained unless additional simulations for each input
and output excitation mode be performed.

In contrast, our method can compute the complete GSM matrix for
10 input (region 1) and 10 output (region 2) modes simultaneously. The
CPU time required by our method was about 5 minutes and 40 seconds for
computing 50 frequency points using a double-precision Matlab code running
on a conventional laptop with an Intel core i7 processor. The memory required
was less than 35 MB.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2

1 1.84 3.00 5.00 2.55 1
2 1.84 3.00 6.00 2.55 1

σ = 10−6 (S/m)

Table 3.6: Dimensions and parameters of junction 5.
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Figure 3.15: Reflection coefficient of junction 5 from 0.5 to 50 GHz.

Junction 6

We consider now the junction 6, whose parameters of the structure are
detailed in Fig 3.16 and in Table 3.7. The reflection coefficient obtained via
our approach and via FD are depicted in Fig 3.17. The curves are practically
identical. The TM01 mode of region 2 becomes propagating at 32.18 GHz. At
this frequency, the TM00 mode from regions 1 and 2 couples with the TM01

mode of region 2, causing the disturbance observed in Fig 3.17. At 36.14 GHz,
the TM01 mode of region 1 becomes propagating and causes an additional
disturbance.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) εr1 εr2 εr3

1 1.84 3.00 4.00 5.00 2.55 1 2.55
2 1.84 3.00 6.00 - 2.55 1 -

σ = 10−6 (S/m)

Table 3.7: Dimensions and parameters of junction 6.
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Figure 3.16: Geometry of junction 6.
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Figure 3.17: Reflection coefficient of junction 6 from 0.5 to 50 GHz.

Junction 7

Our junction 7 is depicted in Fig 3.18, and has the parameters described
in Table 3.8. The results we have obtained via the implemented MMT-based
algorithm are, again, in accordance with the FD results. A difference of 2.18

DBD
PUC-Rio - Certificação Digital Nº 1821444/CA



Chapter 3. Mode-Matching Method for Cylindrically-Layered Waveguides 81

dB can be seen at about 30.5 GHz, but this is due to the the small number of
frequency points used in the FD simulation.

For this case, the cutoff frequency of TM01 in waveguide 1 is the same as
previous junction, since both region 1 are identical. In waveguide 2, however,
TM01 mode changes from evanescent to propagating at 30.5 GHz. We can
expect then, that for a more dense guide, the lower the cutoff frequency. Some
simulations will be presented in the following to verify this.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) εr1 εr2 εr3

1 1.84 3.00 4.00 5.00 2.55 1 2.55
2 1.84 3.00 5.00 6.00 2.55 1 2.55

σ = 10−6 (S/m)

Table 3.8: Dimensions and parameters of junction 7.

Region 1 Region 2

z

Figure 3.18: Geometry of junction 7.
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Figure 3.19: Reflection coefficient of junction 7 from 0.5 to 50 GHz.

Junction 8

The following structure (see the geometry in Fig 3.20) will be used in
the next simulations to compare the reflection coefficient curves for materials
with different values of permittivity. We will consider εr of distinct materials,
obtained from [1], as shown in Table 3.10.

In all simulations, it was consider 10 modes. Comparison between the
results found for each εr are in Fig 3.21. The curves found have similar shapes,
but some observations can be made. As lower is the value of εr, lower is the
average value of the reflection coefficient. As the relative permittivity increases,
more power will be reflected.

Another observation that can be done is that with higher εr, we have a
more dense material and the cutoff frequency will reduces. For region 1, these
frequencies will be the same, independent of the permittivity. The TM01 mode
starts propagating at 47 GHz, while the TM02 mode starts at 49.50 GHz. The
cutoff frequencies in the waveguide 2 are presented in Table 3.11 for each of the
materials investigated. As εr increases, more modes starts propagating inside
the structure and they switch from evanescent to propagating early (in terms
of the operating frequency). The peaks on the S-parameters observed in the
curves are caused by the propagation of these modes, as indicated in figure
Fig. 3.21.
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A junction of coaxial waveguides can be used as a measurement cell
to determine the value of complex constitutive parameters via reflection or
transmission methods [35–39]. Experimental values of S11 and S12 are obtained
with the material under test inside the waveguide. An inversion process is then
performed to obtain from these values the corresponding εr and µr. Several
different methods to calculate these complex parameters are discussed in
details in [83], which also include the characterization of anisotropic materials.
Results as the ones shown here can be used to evaluate the characteristics of
the material under test, according to its S11 curves.

Region 1 Region 2

z

Figure 3.20: Geometry of junction 8. The filled area in region 2 represents the
outermost radial layer with εr2 = 3.8.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2

1 1.84 2.00 5.00 2.55 1
2 1.84 2.00 5.00 1 3.8

σ = 10−6 (S/m)

Table 3.9: Dimensions and parameters of junction 8.

Material εr

Quartz 3.8
Mica 6
Marble 8

Table 3.10: Values of εr for different materials [1].
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Figure 3.21: Reflection coefficient of junction 8, for different materials.

Mode εr = 3.8 εr = 6 εr = 8
TM01 18.32 14.85 12.38
TM02 37.13 29.70 25.74
TM03 - 44.5 38.61

Table 3.11: Cutoff frequencies (in GHz) in region 2 for junction 8, with different
values of εr.

3.4.2
Coaxial to Circular Junctions

Junction 9

A coaxial to circular junction with parameters given in Table 3.12 is
analyzed in this section. This problem will be identified as junction 9. This
structure comprises a homogeneous junction, as seen in Fig 3.22, considering
the inner layer of both waveguides very similar to the outer one. For junction
2, we noticed that only a two-digit difference was necessary to emulate a
homogeneous waveguide. Then, the same criteria was considered in the next
case studies. Results shown in Fig. 3.23 agree with those of reference from [33].

By examining the computed reflection coefficient, notice that below about
19 GHz, all the power is reflected. In region 1 we have a homogeneous coaxial
waveguide, where the TEM mode propagates without cutoff. In region 2, we
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have a circular guide, which does not supports a TEM mode. At about 19 GHz,
the TM01 mode becomes propagating in region 2 and we have the coupling
between TEM (from region 1) and TM01 (from region 2), allowing to a coupling
of power along the junction. As observed in the figure, the peak in the S11 is
due to the presence of TM02 mode in region 2, whose cutoff is at 30.69 GHz.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2

1 1.84 2.00 5.00 1.01 1
2 0 2.00 6.00 1.01 1

σ = 10−6 (S/m)

Table 3.12: Dimensions and parameters of junction 9.

Region 1 Region 2

z

Figure 3.22: Geometry of junction 9.
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Figure 3.23: Reflection coefficient of junction 9.

Junction 10

Junction 10 (detailed in Table 3.13 and in Fig 3.24) is a junction of a
homogeneous coaxial waveguide with a heterogeneous circular output guide.
Again, total reflection (S11 = 1) can be observed below the cutoff frequency
of the first TM propagating mode in region 2. In Fig 3.25, we can see that
the power coupling only starts over 15 GHz. Above the said frequency, the
reflection coefficient reduces significantly. The disturbance observed in this
case is caused by the TM03 mode, that becomes propagating in region 2 at
36.35 GHz.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2

1 1.84 2.00 5.00 1.01 1
2 0 2.00 6.00 2.55 1

σ = 10−6 (S/m)

Table 3.13: Dimensions and parameters of junction 10.
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Figure 3.24: Geometry of junction 10.
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Figure 3.25: Reflection coefficient of junction 10.
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3.4.3
Circular to Circular Junctions

Junction 11

The next two structures are junctions of circular homogeneous waveg-
uides. Junction 11 has the parameters listed in Table 3.14. The two waveguides
have only one layer and are filled with air. The FD solver of CST was used
again for comparison versus the presented approach. Good agreements between
FD and our approach can be seen in Fig. 3.26.

As the two waveguides are circular, the TM00 or TEM modes are
not supported, as in the previous cases. The first propagating field will be
associated with the TM01 mode, whose cutoff frequency is 23.17 GHz in region
1, and 19.29 GHz in region 2. Consequently, the power coupling from one region
to the other starts close to 23 GHz, as seen in Fig 3.26.

Region ρ0 (mm) ρ1 (mm) εr1

1 0 5.00 1
2 0 6.00 1

σ = 10−6 (S/m)

Table 3.14: Dimensions and parameters of junction 11.
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Figure 3.26: Reflection coefficient of junction 11.
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Junction 12

The second circular-to-circular junction we will investigate has param-
eters given in Table 3.15. It has the same structure of junction 11, but now,
uniformly filled with a dielectric medium. In this scenario, the first propagating
mode in regions 1 and 2 are TM01. The cutoff frequencies are at 14.68 GHz
and 12.18 GHz, respectively, in regions 1 and 2. For this reason, the power
conversion is only possible for operating frequencies above 14.68 GHz. The
reflection coefficient calculated by our method versus the FD results are
presented in Fig. 3.27. The peaks observed in the figure are caused by the
emergence of the high-order propagating modes. In region 1, the TM02 mode
becomes propagating at 33.1 GHz, and in region 2, the TM02 and TM03 start
at 27.73 GHz and 43 GHz, respectively.

In comparison with junction 11, it is possible to observe that the cutoff
frequencies from waveguide 1 and 2 have reduced in the dielectric-filled
waveguide. As a consequence, it have allowed more modes to be propagating.

Region ρ0 (mm) ρ1 (mm) εr1

1 0 5.00 2.55
2 0 6.00 2.55

σ = 10−6 (S/m)

Table 3.15: Dimensions and parameters of junction 12.
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Figure 3.27: Reflection coefficient of junction 12.
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3.4.4
Structures with Multiple Junctions

Structure 1

The following examples consider structures composed by three-waveguide
junctions. The first structure is depicted in Fig 3.28, with the parameters given
in Table 3.16. It was considered 10 modes in each region. This structure was
analyzed before [33], and will be used here as a reference. Fig. 3.29 shows the
results for the reflection coefficient of the first propagating mode in regions
1 obtained using our MMT-based solution as the frequency evolves. We can
observe an excellent agreement of our solutions when compared to the MMT
used in reference work [33].

This structure is a longitudinal-symmetric version of the junction 1. For
this reason, region 1 (and consequently region 3, since they are equal) will
share the same cutoff frequencies of the waveguide 1 used in junction 1. The
same applies to region 2. The waveguides 1 and 3 of the present case study
support TEM modes. In waveguide 2, however, the non-homogeneous radial
profile preclude the existence of a transmission-line TEM mode, but, instead,
a TM00 mode will be supported. Notice that when the homogeneity vanishes
the TM00 mode degenerates to a TEM one. Further details can be obtained
in [33].

Although we have equal cutoffs, this will not cause the same disturbances
in the reflection coefficient. The appearance of these modes will not lead to the
same peaks observed in previous cases. As can be seen in the result obtained
here, there are more oscillations than before and not necessarily they occur
at cutoff frequencies. This can be explained due to internal reflections of the
power in region 2, that acts as a cavity of length L2.

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) εr1 εr2 L (mm)
1 1.84 2.00 5.00 1.01 1 ∞
2 1.84 2.00 6.00 2.55 1 10
3 1.84 2.00 5.00 1.01 1 ∞

σ = 10−6 (S/m)

Table 3.16: Dimensions and parameters of structure 1.
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Figure 3.28: Geometry of structure 1.
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Figure 3.29: Reflection coefficient of structure 1.

Structure 2

Now, we consider a structure comprising the junction of three coaxial
waveguides. The middle waveguide has three radial layers, while the other
ones presents only two layers, as depicted in Fig. 3.30. The parameters of
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this structure are listed in Table 3.17. Fig. 3.31 shows a comparison of result
obtained via our approach versus the FD ones. We have employed 20 modes
for each waveguide region in our simulation. Despite some small differences,
results are in good agreement.

The cutoff frequencies and the corresponding propagating TM modes are
as follows: 14.85 GHz for TM01 and 32.18 GHz for TM02 in region 2 and 47.03
GHz for TM01 in region 1. Again, the appearance of these modes does not
necessarily imply in a peak in the reflection coefficient, the oscillations seen
are the result of multiple internal reflections caused in the waveguide of region
2.

The structure 2 can be used as a measurement cell for complex per-
mittivity and permeability characterization. For that, the sample should
first be shaped as a cylinder with an inner role, forming a coaxial ring. In
[84] it is explained that in coaxial cell measurements, the samples must be
machined precisely to fit inside the structure and avoid air gaps. These gaps
between the waveguide conductor and the sample may cause measurement
errors and uncertainties. In [85], this problem is analyzed and some numerical
approximations are given to consider it. The gap between the sample and
the inner conductor of a coaxial guide can lead to large measurement error.
Authors in [85] commented that such errors can be minimized by installing
the around the outer conductor. One configuration that avoids this problem is
the coaxial-circular-coaxial junction (that kind of structure will be analyzed in
the following) since the segment of circular waveguide filled with the sample
will not have any gaps in the middle of the cell. Since our formulation allows
us to use a different number of layers in each region, these problem associated
to imprecise samples can be overcomed by including these air gaps as very
small layers in the coaxial cell. This will allow us to guarantee the accuracy
of the results. In short, we are proposing that the sample under analyzes does
not completely fill the measurement cell cross-section, intentionally. Standard
modeling methods, however, does not apply for that scenarios and formalism
as we presented in this work is paramount.

In order to verify the reflection coefficient for anisotropic materials,

Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) εr1 εr2 εr3 L (mm)
1 1.84 2.00 5.00 - 2.55 1 - ∞
2 1.50 3.00 5.00 7.00 2.55 3.8 2.55 10
3 1.84 2.00 5.00 - 2.55 1 - ∞

σ = 10−6 (S/m)

Table 3.17: Dimensions and parameters of structure 2.
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Figure 3.30: Geometry of structure 2.
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Figure 3.31: Reflection coefficient of structure 2.

structure 2 will be evaluated considering variations in the z component of
the permittivity tensor. The sample present in layer 2 of region 2 (colored
layer in Fig 3.30) will have εrs = 3.8 and εrz = {3.8, 4.8, 5.8}. A comparison of
the results obtained can be observed in Fig 3.32. Until the 10 GHz frequency,
there are no variations, but as the frequency increases, a discrepancy on the
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curves is noticed. Although the values of the S11(dB) are different, we can
not confirm any type of pattern as we increase the anisotropy value with this
simulation.
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Figure 3.32: Reflection coefficient of structure 2 considering different levels of
anisotropy.

Structure 3

A structure composed of two coaxial waveguides with a circular one in
the middle is considered now. The intermediate waveguide (in region 2) has
three radial layers, as depicted in Fig. 3.33 and with the parameters detailed
in Table 3.18.

Fig. 3.34 shows a comparison of our results with the ones obtained
numerically via FD approach. We noticed some discrepancies in amplitude
of the reflection coefficient of the first mode TM in region 1. This happen
near some resonances or near the cutoff frequencies were the deficiencies of
FD-based solutions are well-know.

In this example, the reflection coefficient observed in Fig 3.34 is null
(i.e., there is total reflection condition) below the cutoff frequency of the first
propagating mode in region 2. This occurs at about 9.4 GHz, with the TM01

mode. Other two TM modes starts propagating inside waveguide 2: TM02 at
21.78 GHz and TM03 at 37.62 GHz. The TM01 of region 1 has cutoff at 47.03
GHz.
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Region ρ0 (mm) ρ1 (mm) ρ2 (mm) ρ3 (mm) εr1 εr2 εr3 L (mm)
1 1.84 2.00 5.00 - 2.55 1 - ∞
2 0 2.00 4.00 6.00 2.55 6 2.55 10
3 1.84 2.00 5.00 - 2.55 1 - ∞

σ = 10−6 (S/m)

Table 3.18: Dimensions and parameters of structure 3.
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z

Figure 3.33: Geometry of structure 3.

A comparison on the reflection coefficient for different values of εrz is also
done for structure 3. The middle layer in region 2 (colored layer in Fig 3.33) has
εrs = 6 and εrz = {5, 6, 7}. Fig 3.35 shows the S11(dB) curve for this example.
The same observation made for structure 2 apply here, it is not possible observe
a clear relation between the reflection coefficient and the anisotropy of the
material.
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Figure 3.34: Reflection coefficient of structure 3.
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Figure 3.35: Reflection coefficient of structure 3 considering different levels of
anisotropy.

Structure 4

In order to test the versatility and robustness of the presented mathe-
matical formulation and the associated numerical algorithm, we finally consider
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a structure formed by the three circular waveguides. All the waveguides are
homogeneous, with only a single radial layer, and 20 modes were considered.
Notice that only a couple of modes are necessary for convergence, but we
have employed a large number of then to test the stability and convergence
of the semi-analytical MMT-based approach we wave introduce in this work.
The numerical results are shown in Fig 3.37. In this case, we observed more
discrepancies with the curve obtained via FD, mainly in the higher frequencies.
To reduce the computational time spent in the numerical method, a small
number of frequencies were used to calculate the reflection coefficient in
comparison with the number used in Matlab. This may have caused the
observed differences. Despite that, the solutions agree very well.

This structure is an extension of junction 12. The two waveguides of
this junction were coupled with another waveguide equal to the guide from
region 1. Then, the same cutoffs detailed for junction 12 will be found here.
At 23.17 GHz, the TM01 mode becomes propagating inside region 1, and as
a consequence, the power transmission along this structure is only possible
above the said frequency.

Region ρ0 (mm) ρ1 (mm) εr1 L (mm)
1 0 5.00 1 ∞
2 0 6.00 1 10
3 0 5.00 1 ∞

σ = 10−6 (S/m)

Table 3.19: Dimensions and parameters of structure 4.

Region 1 Region 2 Region 3

L2

z

Figure 3.36: Geometry of structure 4.
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Figure 3.37: Reflection coefficient of structure 4.
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4
Conclusion

In this final chapter, we will review and resume the topics addressed in
this work tracing a parallel with the main results presented previously.

We started discussing in Chapter 1 the relevance of inhomogeneous,
anisotropic, and lossy materials to applied electromagnetism and microwave
system applications. As the interest and the use of such complex materials
increase, more studies had to be carried out about computational electro-
magnetic models and its potential applications to the development of novel
technologies. The object of study of this dissertation was about semi-analytical
methodologies for modeling structures composed by junctions of waveguides
filled with complex media. Specifically, our main focus was on coaxial and
circular radially-layered waveguides excited by azimuthally-symmetric fields.

The mode-matching technique was suggested to deal with the structure
of interest due to its low-cost computational resources if compared to other
methodologies. Numerical methods for the discretization of Maxwell’s equa-
tions based on finite-difference or finite-elements allow us to analyze complex-
shaped geometries, but accurate solutions generally demand a large amount of
CPU time and RAM memory that can become prohibitive in an optimization
process.

The MMT-based solution we have proposed in this work employs a sub-
domain decomposition of the original multi-waveguide problem. This allowed
us to calculate the generalized scattering matrix of each junction via closed-
form equations, and then, the entire structure composed of several junctions
could be characterized by a simple cascading procedure.

The derivation of the electromagnetic fields and its characteristic equa-
tions was done in Chapter 2. We presented expressions for modeling radially-
layered waveguides, including the special cases of homogeneous circular and
coaxial waveguides. For the homogeneous guides, a root-finding procedure in
the kρ complex-plane was introduced. In the case of inhomogeneous media,
the winding number method was applied for determining the number of modal
eigenvalues that are inside a region on the complex plane. Our region of the
search was defined differently for two cases: a) when the media is lossy, we
consider an attenuation factor, and b) when is lossless, we use alternative
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estimator for the number of modes to delimit the region of search. Finally,
in order to effectively determine the eigenvalues, the Muller method was
employed. This elaborated procedure ensures that all modal fields of interest
will be included in the solutions, conferring robustness to our method.

The MMT was presented in Chapter 3, where the development of the
reaction integrals for dealing the coupling between hybrid, TE, and TM modal
fields was shown. In addition, we have presented a novel set of coupling integrals
associated to the TEM mode.

A numerical algorithm was implemented in the Matlab platform in order
to validate the capacities of the presented mathematical model. The simulation
results obtained with our approach were compared versus those from the MMT
in [33], and the FE and FD obtained using the CST Studio Suite.

Firstly, coaxial and circular waveguides were studied with different filling
profiles to corroborate our algorithm. Excellent agreement was observed in all
availed problems. It was possible to verify that fields concentrate in the layers
with higher electric permittivity. Two factors contribute to a higher intensity
of the field in these layers, the value of ε and the frequency. As one of these
aspects increased, the concentration of the fields becomes more pronounced as
well.

We also presented a comparison between the four described methods to
calculate the winding number. In practical terms, they all conferred similar
results, but some differences in the required CPU time was noticed. Although,
the parallelization on computing the integrals can be explored in order to
improve the proposed modified method.

Subsequently, numerical results on the applications of our mode-matching
solution were presented. Simple junctions of two coaxial waveguides were
exposed to ensure the convergence of our method. We showed that the
numerical algorithm developed allowed us to numerically approximate a
heterogeneous waveguide to a homogeneous one, proving that our procedure
was robust enough to represent different scenarios.

Several examples of simple junctions of coaxial, circular, and radially-
stratified waveguide structures were explored. To the best of our knowledge,
this was the first time that the mode coupling between arbitrary radially-
multilayered waveguides was analyzed via a closed-form GSM formalism. The
numerical results obtained using the proposed methodology were with good
agreement when compared with reference solutions. It should be observed that
junctions of coaxial to circular and circular to circular waveguides are special
cases that were also examined by our algorithm. It was possible to observe the
influence and importance of the higher-order modes for the solutions and how
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their cutoff frequencies change with the characteristics of the material filling
the waveguides. The curves of the reflection coefficient (S11) in decibel of the
dominant mode versus the frequency are widely used to determine the complex
parameters of materials in measurement cells, and for this reason, this type of
characterization is a relevant engineering application for the presented model.

The scientific contribution of this work relays on the application of the
MMT to junctions of waveguides with a different number of radial layers, that
may be composed of inhomogeneous, anisotropic, and lossy materials. The re-
sults presented here for the fields inside generic circular and coaxial waveguide
and junctions with different number of layers via a closed-form MMT-based
method was not found before in the literature. Also, the modifications on
the calculation of the winding number described in Chapter 2 introduce novel
aspects to find the number of eigenmodes in cylindrically-stratified waveguides.
In addition, we found expressions for calculating the coupling integrals for
homogeneous coaxial waveguides, which includes the interactions of TE, TM,
and hybrid modes with the transmission-line TEM mode.

For future works, we recommend the implementation of the equations
developed for the reaction integrals in the homogeneous cases, present in
Chapter 2. These expressions will enables us to uses as input data a one
layer coaxial waveguide, overcoming the numerical issues caused by the
Hankel function when its argument vanishes. The approximations made in
the validation of the mode-matching method for guides with similar layers
to simulate a homogeneous one will no more be necessary and will reduce
computational time.

It is also of interest to future researches of the methodology presented
here for determining the parameters of sample materials through an inverse
process, as done similarly in [35, 36, 39]. A coaxial or circular characterization
cell filled with the sample under test can be used to obtain reflection and
transmission S parameters. Using these data obtained experimentally, an
inversion technique can be used for obtaining the complex-valued constitutive
parameters ε and µ of the sample.
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