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Abstract

Bolonhez, Eduardo Mauro Baptista; Santos, Bruno Fanzeres
dos (Advisor); Silva, Thuener Armando da (Co-Advisor). A
Nucleolus-Based Quota Allocation Model for the Bitcoin-
Refunded Blockchain Network. Rio de Janeiro, 2020. 78p.
Dissertação de Mestrado – Departamento de Engenharia Indus-
trial, Pontifícia Universidade Católica do Rio de Janeiro.

Mining Bitcoins is an uncertain activity, and to perform it, players
must compete in a process known as Proof-Of-Work. A miner may spend
months or even years without positive cash flows on this process, while
still incurring in the associated costs. This outcome has the possibility to
drive them away from the technology, and the departure of members affects
the network itself, as it cannot survive without the presence of miners.
This work proposes to study the sharing of rewards in structures already
presented in the network: miners joining forces and taking place in mining
pools, sharing revenues and costs, thus having positive cash flows more
often, reducing variability in gains. The revenues and costs are modeled, and
a stochastic optimization model is proposed to find the optimal allocations
that guarantee that all members stay within the pool. This group of miners
is characterized by a coalition, studied through Game Theory. The behavior
of the players is also subject of this study, and a monetary risk measure,
by the form of CVaR (Conditional Value at Risk) is used to represent the
miner’s risk profile and consequences to the optimal allocations. While there
is no strict benefit from being part of a pool for a single block, there
is financial gain when looking at multi-period, and the average time to
correctly guess a hash decreases when players join forces in a pool. A gain
in mining probability by being in the pool would raise the average reward of
the coalition and allow for financial benefit even in single period. We observe
that intuitive sharing allocations such as through computational power and
equally dividing rewards may not guarantee the stability of the pool, mainly
when longer periods of time are considered. Said stability is possible in the
future without fixed incomes, but with changes to the variable rewards and
the costs of mining. Lastly, three different objective functions representing
three ideas to share the rewards within the nucleolus are compared and a
method is proposed to collectively use at least two of them, aiming increased
“fairness” in the sharing of rewards.
Keywords

Blockchain Network; Bitcoin; Cooperative Game Theory; Stochastic
Programming; Conditional Value-at-Risk.
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Resumo

Bolonhez, Eduardo Mauro Baptista; Santos, Bruno Fanzeres dos;
Silva, Thuener Armando da. Um Modelo para Alocação de
Quotas baseado em Nucelolus para a Rede Blockchain Re-
munerada por Bitcoin. Rio de Janeiro, 2020. 78p. Dissertação
de Mestrado – Departamento de Engenharia Industrial, Pontifícia
Universidade Católica do Rio de Janeiro.

Minerar bitcoins é uma atividade incerta, e para realizá-la, os partici-
pantes competem em um processo chamado Proof-Of-Work. Cada partici-
pante pode passar meses ou até anos sem fluxos positivos de caixa, enquanto
os custos se mantém. Isto pode afastá-los da tecnologia e a saída de membros
afeta a própria rede, que não sobrevive sem a presença de mineradores. Este
trabalho propõe estudar o compartilhamento de recompensas em estrutu-
ras já existentes na rede: mineradores se juntando em pools de mineração
e dividindo receitas e custos, assim diminuindo a variabilidade e gerando
fluxos positivos de caixa mais constantes. A receita e custos são modela-
dos, e um modelo de programação estocástica é proposto para encontrar as
alocações ótimas que garantem a permanência dos membros no pool. Este
grupo de é caracterizado por uma coalizão, estudado através de Teoria dos
Jogos. O comportamento dos jogadores também é de estudo neste trabalho,
e uma medida monetária de risco, na forma de CVaR (Conditional Value
at Risk) é usada para representar o perfil de risco do minerador e as con-
sequências para as alocações ótimas. Embora não haja benefício estrito em
fazer parte do pool para um único período de análise, há ganho financeiro
quando se analisa em múltiplos períodos, e o tempo médio para se acer-
tar um hash diminui quando os participantes se juntam em um pool. Um
ganho na probabilidade de mineração ao fazer parte de um pool aumen-
taria a receita média da coalizão, trazendo ganhos financeiros mesmo em
um único período de análise. Divisões intuitivas de recursos, como por po-
der computacional ou igualitária podem não garantir estabilidade do pool,
principalmente considerando períodos longos de tempo. Tal estabilidade é
possível em um futuro sem receitas fixas de mineração, se ocorrerem também
mudanças nas receitas variáveis e custos. Três funções objetivo diferentes
representando três idéias de partilha de recompensa são comparadas e uma
metodologia é proposta para uso conjunto de pelo menos duas destas, com
objetivo de aumentar a “justiça” na divisão das recompensas.
Palavras-chave

Rede Blockchain; Bitcoin; Teoria dos Jogos Cooperativos; Progra-
mação estocástica; Conditional Value-at-Risk.
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1
Introduction

Like any other tool or technology, what is currently used as money
(or monetary value for trading) has had many representations throughout
history. Gold, Silver, Copper, metal coins, paper currency, debit cards, etc.
(Eichengreen, 2019). The monetary system the world currently uses is the
fiduciary one, in which there is no financial coverage (like there used to be
with gold/dollar). This system is based on the trust that the ones owing the
money will pay their debts. Also, money exchanges are the responsibility of
governments and banks, the first being able to print new money at will.

These aspects generate criticism from different economists. They say that
being a very centralized model, together with the fiduciary aspect, benefits
inflation and at long-term, creates unemployment (Friedman, 1977). Also,
individuals have no real knowledge of the amount of money available being
transferred through the system, but the institutions that they use have full
knowledge of their monetary activity. With more and more scandals arising
from the lack of digital privacy, leaking of personal data (Newman, 2015) and
misuse of client’s money (Naheem, 2015), an increasing number of people want
control to be, at least partially, back in their hands.

There is a technology with the potential to mitigate these problems.
That technology is the bitcoin, backed by its own Blockchain network. bit-
coin is a cryptocurrency proposed in a 2008 article by Satoshi Nakamoto
(Nakamoto, 2008), a pseudonym of unknown origin. It does not have financial
physical coverage nor works by the currently used fiduciary system. It uses real
people to verify each transaction in its blockchain network, called the miners.
Each transaction needs to be verified and registered (within chained blocks),
and thus the blockchain works as a “ledger”. The network is maintained, secured
and expanded by the process known as Proof-Of-Work (Nakamoto, 2008) in
a decentralized environment run by a network of computers (Muftic, 2016),
in which the miners take part. In this process, every mining participant takes
part in a “guessing game” of information presented in the new block, using
computational power. The network is not hosted in any specific server in the
world, but is present in every computer that uses it, making it more difficult
to be attacked, since a malicious agent would have to attack all computers to
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Chapter 1. Introduction 13

succeed. Each specific blockchain “ledger” has its own types of validation and
consolidation, but in principle they do it via distributed voting (Mattila, 2016),
(Naucler, 1950) through a consensus on the state of the ledger.

The miners are the ones that maintain the network operational and vote
(with their computational power) for changes. Without them, people would
retain their bitcoins in their private wallets, but would not be able to negotiate
them. In the absence of miners, no bitcoins can be traded, and the network
stops.

Taking part in the Proof of Work demands high computational power as
the bitcoin network adjusts the difficulty of the information to be “guessed”
so that the time of completion of each block remais approximately 10 min-
utes (Dwyer, 2015). Therefore, miners with higher computational power (in
the world of bitcoin, translated as “hashpower”) are more likely to succeed.
Participating in this game without having a fixed income creates great uncer-
tainty as the participant could spend months, or even years, without positive
cash flows. One solution is to be a part of a mining pool (Dev, 2014). A mining
pool constitutes a coalition (Lewenberg, 2015), a particular case of a cooper-
ative game. By joining with other miners, players share revenues and costs
while also raising their chances of successfully mining. The revenue could be
lower in value than mining a block alone, but it is a trade-off. The miner re-
ceives lower revenues more frequently rather than receiving a larger revenue
occasionally. Players remain honest in the network due to incentives provided
by game theory (Back, 2016). Studying the interactions between players in
this competitive environment is of interest so that there are incentives for the
players to remain in the network, and thus maintaining Bitcoin itself alive
(Kiayias, 2016), (Eval, 2013). Game theory is in the core of bitcoin since its
birth, when Nakamoto analyzed incentives in a simple revenue distribution
model.

Even though bitcoin was born to decentralize the payment environ-
ment, dangers are presented at each extreme scenario. A “51 percent attack”
(Kiayias, 2016), (Eval, 2013), where a pool retains a majority of the network
and therefore controls it, is possible, but not desirable. Many sharing methods
are available throughout game theory (Proportional, Sharpley Value, Nucle-
olus etc.), and this work proposes to analyze a sharing method that brings
more value to each miner when participating in a pool, giving him incen-
tives to remain operating in the network. As the European Commission states
(Muftic, 2016), ‘the major contribution of Bitcoin is the solution of how to
establish trust between two mutually unknown and unrelated parties to such
extent that sensitive and secure transactions can be performed with full con-
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Chapter 1. Introduction 14

fidence over an open environment, such as the Internet’. The “fairness” within
the sharing of revenues is also at the center of this study.

In this work, we analyze the sharing of rewards in the bitcoin-refunded
blockchain network through Cooperative Game Theory. The allocation of
rewards is based on the nucleolus approach for a group of miners forming a
coalition. That coalition is represented by a pool in the network. The nucleolus
is the set of all allocations where players in the pool have a higher value
remaining together than mining alone, and such preference is measured by
a value (or characteristic) function. Players in a pool might reduce their
amplitude in gains, but receive rewards more often, reducing variability in
gains. An optimization model is proposed to obtain the optimal allocations,
using the probability to mine the next t ∈ {1, . . . , T} blocks, as well as the
profit to mine and the risk profile (in the form of the Conditional Value-At
Risk) in the context of the network.

An illustrative example is studied, and the optimal allocations for 3
(three) different number of blocks ahead are obtained. The existence of the
nucleolus for each case is shown and justified, and an extra gain in probability
to mine in the form of a function (dependent on the number of players in the
coalition) is proposed and the new optimal allocations obtained. The stability
of the pool for intuitive allocations is also tested, and compared for the different
number of blocks. Lastly for the illustrative example, a visual representation
of the core is obtained, showcasing the value in mining with the pool.

The model is then tested with a real setup of the Network from 2019,
showing results that corroborate with the findings in the illustrative example.
The future without fixed incomes and the stability of the pool are analyzed,
indicating alternatives for the nucleolus to be maintained in that scenario. As
a last study, we propose 3 (three) separate objective functions to be used in
the optimization model, aiming to treat the “fairness” of the rewards sharing.
A methodology is proposed to “fairly” allocate the rewards while maximizing
the value in the pool.

This work is laid out as follows. Section 2 describes the bitcoin and
Blockchain network and how mining pools bring more value to players. Section
3 describes the mathematical models used in this work, such as the main
assumptions, results for profit, revenue and costs of mining and the probability
to mine and the monetary risk measures. In Section 4, game theory used
is explained and the optimization model is presented. Section 5 shows the
results of this study, detailing the base case chosen and the differences for
the sensibility analysis, as well as the real case application. Finally, Section 6
concludes the work and discusses extensions and future research.
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2
Bitcoin and Mining

The present chapter aims to introduce the basic concepts behind Bitcoin
and Blockchain as well as mining pools and how they operate and some reward
sharing methods for said pools.

2.1
The history of Bitcoin

A Blockchain is a digital distributed ledger that contains a log of
information in chronological order that increases with time. The information
is gathered into structures called blocks, each one containing transactions and
fees. Blocks are added to the Blockchain by miners, responsible for verifying
and adding data to the chain. Each block has a timestamp and is linked to the
previous one, thus forming a chain that is validated by the network.

The concept of a digital ledger was born concomitantly to Bitcoin with
Satoshi Nakamoto’s article (Nakamoto, 2008), but indeed they are different
technologies. Bitcoin is a DApp (decentralized application operating in peer
to peer), a solution that runs on a Blockchain to serve different purposes.
Nakamoto’s article proposes a “peer-to-peer version of electronic cash”, that
would allow online payments without the need for a financial institution, while
preventing double-spending (spending the same Bitcoin twice). Nakamoto
solves the issue of double-spending by proposing consensus and a universal
ledger. Figure 2.1 shows the difference between centralized (current model)
and decentralized models, using Bitcoin and Blockchain. The term "B" stands
for blockchain, and "SC" stands for "Smart Contract". A Smart Contract
contains lines of code that execute predetermined actions when certain terms
and conditions are met.
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Chapter 2. Bitcoin and Mining 16

Figure 2.1: Centralized versus decentralized system (PwC, 2015).

To be able to perform as designed, the Bitcoin network relies on the
miners operating in the Proof-Of-Work method. In this method, participants
use computational power to guess the correct hash of the subsequent block. A
hash algorithm turns an arbitrary amount of data into a fixed-length hash.
Each block contains a hash on its header which serves for identification.
Miners participate in the Proof-Of-Work with cutting-edge hardware that can
perform several hash calculations per second, the hashrate. The percentage of
computational power a player owns divided by the total power in the network
is called hashpower (hp).

As the total hash of players in the network fluctuates over time, the
Bitcoin network adjusts the difficulty (or the amount of hash generated by the
miners to guess a block’s header) to have a new block mined on average every
10 minutes. The miner that correctly guesses the hash claims the rewards.
Once a miner declares having successfully mined a block, the other players can
verify if that block is valid, and if so, the block is added in a chronological
chain subsequent to the previous block mined. Figure 2.2 shows the difficulty,
in hashes, to mine a block since the beginning of the network.
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Figure 2.2: Bitcoin’s Blockchain difficulty to mine.

Miners create new blocks that contain transactions from users throughout
the world, but for a user to be able to trade Bitcoin for goods, he needs to
have a wallet that “holds” their Bitcoins. A wallet is a user’s private key, and a
public key is used to identify the user transactions. The concept of public-key
cryptography is widely used to certify that only the owner of a private key
can access his data. Also, the use of public and private keys mathematically
related ensures authentication (Diffie, 1976), (Merlinda, 2019), and guarantees
that an action is performed by a player with the right to do it, or the real owner
of the currency to be traded.

To illustrate the evolution in the use of the technology, figure 2.3 shows
that Bitcoin’s market value has greatly changed ever since its debut, while
figure 2.4 shows the numbers of transactions in the network, per day, since
2009.
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Figure 2.3: Bitcoin’s worth in dollars, since its beginning.
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Figure 2.4: Number of daily transactions at the Bitcoin Network, since its
beginning.
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Bitcoin has been going through ups and downs, with the coin’s value
reaching its highest value (almost U$D 19,000) in late 2017. When the price
of Bitcoin reached its lowest in 2019, there was also a drop in the network
difficulty. These changes might indicate that miners were turning off their
equipment or not using them 24 hours per day (in direct relation to a drop
in the market price) or not even mining in the Bitcoin Network, using their
computers on other networks, like BitcoinCash. Even with the drop in the
network difficulty, the confirmed transactions per day were rising, showing that
there was a demand by the users of Bitcoin. The Bitcoin market is relatively
new, and it may be seeing its first steps towards an equilibrium. For that reason
and to keep the network running, it is crucial to study and generate ways in
which the miners do not turn off their equipment or change networks even at
times of adversity. Also important is to assure to those miners that the act of
mining is still profitable for them, since they are the ones that register new
transactions in the network. In order to reduce the uncertainty in mining, one
such way might be joining forces in a pool.

2.2
Mining pools

Miners use their computers to keep the network functioning. Without
them, Bitcoin owners would retain their money in their private wallets and
would not be able to commercialize it. The act of mining Bitcoin is risky and
uncertain. Guessing the correct hash of a block, while competing against many
other participants, produces constant costs and has a high uncertainty about
the profits.

The miner that finds the specific hash earns a fixed and a variable revenue
in Bitcoins. The former is currently 12,5 Bitcoins (in March 2020), and this
value is halved every 210.000 new blocks created 1. The latter is composed by
the sum of taxes from the transactions of a mined block. Once the halving
process reduces the fixed income to almost zero, the miners will earn only the
variable revenue.

When Bitcoin started, there were fewer miners, and the difficulty was
lower (as shown in figure 2.2). At those times, miners had more humble
equipment to mine in the network, and likely did it from their homes. As
time passed and the technology attracted more supporters, the network rose
the mining difficulty, demanding more powerful computers. Those lone miners
saw their hash power dilute to minimal values, and with a lower hash power,

1https://qz.com/681996/everything-you-need-to-know-about-the-bitcoin-halving-
event/, accessed november 26th, 2019
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the volatility in profit rises. That means: with greater difficulties to mine,
players with lower hashpower have almost no chances of mining a block, with
the possibility of spending months or even years without a positive cash flow.
Miners with higher hashpower are more likely to succeed.

One alternative to ensure more constant returns (Kroll, 2013) is to
participate in a mining pool, where a group of miners share their revenues
and costs, increasing their chances of positive cash flows. When mining within
a pool, a miner’s reward will be lower for a block than if done by himself,
but even when he does not mine (but someone else in the pool does), he
will also have a profit. Lone miner exchanges fewer full block rewards for
more constant, although lower, rewards. As these complete rewards tend to
be widely spaced in time, it is a good trade, which enables a miner to remain
in the network and users of Bitcoin to continue to transaction their currency.
The choice to be part of a bitcoin mining pool implies a diversification scheme.
As (Chatzigiannis, 2019) states, if a miner has the chance to select between
various cryptocurrencies to lend his computational power, he is diversifying
his potfolio in a similar way as proposed by the Markowitz Modern portfolio
theory (Markowitz, 1952). There are some known methods of sharing rewards
between members of a pool in Bitcoin, illustrated in the next section.

2.3
Reward sharing

The concepts of “difficulty” and “shares” must be explained before listing
the rewarding methods most commonly used in Bitcoin. The Bitcoin network
has a difficulty (hereby denoted D) to mine a block at any given time, which
translates to how much hash power has been deployed by the miners in the
network at a given time. Now, a share is an accounting method to keep the
miners honest and to be used as a tool for the sharing of rewards in a pool, and
has no actual “value”. The number of shares found by a miner is proportional
to the amount of hashes the miner calculated in an attempt to find a block
for the pool (Rosenfeld, 2011), Lastly, “rounds” is the time between one block
found by the pool, to the next.

On the topic of how to share the rewards, each mining pool is free to
choose the method it desires and pleases its players the most. Also, to be
able to mine for a pool, a player must register an account within the pool,
download a software (like CGminer or BFGminer) and configure it with the
hardware used. Lastly, the player has to indicate its wallet adress to receive any
payout. One example of sharing in bitcoin mining pools is the Pay-Per-Share
method. In this method, an operator absorbs all the variance from mining and

DBD
PUC-Rio - Certificação Digital Nº 1721344/CA



Chapter 2. Bitcoin and Mining 21

rewards immediately each player according to the shares contributed to the
pool. However, once the next block is successfully mined, the operator keeps
all the rewards for himself. It is the reward system with the highest risk for the
operator, with a high chance of the pool going bankrupt, since the operator is
always paying miners, even if they fail to mine the next block.

Another well-known method is the proportional, where an operator
centralizes decisions in the pool and receives a fee, which is based on the
total reward earned in mining the block. This operator then divides the rest
of the amount according to the number of shares each player contributed. The
operator and participants only receive their money when the pool mines a
block.

A miner can choose when to mine for a pool, deciding where he con-
tributes with his hash rate. This can lead to pool hopping and effectively bene-
fits dishonest players and is inherent to proportional share. Pool hopping comes
from the change in value of shares with time. Those submitted early in a round
are more worthy than those submitted later, and if a pool takes too long to
mine a block, there will be more shares to be rewarded.

The Slush method was designed to combat pool hopping and is a score-
based method. It is based on the proportional approach, but here, each share
credits a player with a score that depends on the time spent by a given player
in a round, and the rewards are later distributed according to this score. The
more time has passed, the higher the score.

A more modern method that proposes to solve pool hopping is the Pay-
Per-Last-N-shares. Here, the rewards are distributed not according to the
shares submitted by players right after the previous block was found, but
only for those who did it recently (in the last N shares), and thus not allowing
players to benefit from being “early in the round” and leaving the pool only
to collect the rewards if a block is mined. In reality, with this behavior , the
pool is no longer applying the concept of “rounds”.
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3
Miners Net Revenue Modelling and Measure of Value

With the ideas behind Bitcoin, Blockchain and Mining Pools presented,
we now discuss some of the concepts used to propose our model. The probabil-
ity to mine is defined, and the Binomial and Bernoulli Probability models asso-
ciated with the nature of mining and their influence are discussed. We also show
the Bitcoin reward system and revenue, costs and profit of mining. The risk
measure tool of choice is the Conditional Value-at-Risk (Rockafellar, 2002),
which is also discussed. Lastly, the definitions of a coalition are presented, and
we propose, gathering all that concept, a Measure of Value for our work.

This work studies a bitcoin network with N total players of interest
participating in the Proof-of-Work, with n being a player within N =
{1, 2, . . . , N}. A coalition S is a subgroup of those N players, i.e., S ⊆ N .
For nomenclature purpose, hereinafter, we refer to N as the grand coalition
and the set of all coalitions by ρ(N ) =

{
{1}, {2}, ..., {N}, {1, 2}, ...,N

}
, i.e.,

the powerset of N . We call NT the total of players and NR the “rival players”,
or players in the Bitcoin network that are not mining in the coalition, such that
NT = N + NR. For simplicity, they are represented by a single player called
“rivals” for representation in modelling the problem. The number of blocks
considered in the analysis are represented by T .

The network difficulty (D) is adjusted according to the computational
power (hp) of each player. A player that has a set of machines working in the
Proof-of-Work that produces 100 hashes per second, with the network total
being 1000 hashes per second, has 10% of the hashpower in the network.

3.1
The probability to mine

According to (Rosenfeld, 2011), a miner with hashrate h, mining for
a period of time τ will calculate a total of hτ hashes, and so will guess on
average nheaders headers of a block, being D the difficulty of the network at
any given time and for a block t:

nheader = hτ

232D
. (3-1)
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The hashrate h is the number of hashes calculated per second by the
machine used by the player. It is, therefore, different than hp, hereby proposed
as the percentage of computational power a player owns in relation to the
grand total of hashrate in the bitcoin network: h = hpn ×H, where H is the
sum of hashrates for all players in the Bitcoin network: H = ∑

n∈N hn. It can
be said that the probability qS that a coalition S ∈ ρ(N ) successfully mines
the next block is directly related to the hashpower of each player n ∈ S:

qS =
∑
n∈S

hpn + f(S), ∀ S ∈ ρ(N ), (3-2)

where f(S) is a function that maps the increase in the mining likelihood of
coalition S ∈ ρ(N ) by playing as a group. In other terms, it shows how much
working together raises the probability to mine a block. If f(S) is equal to
zero, then the probability to mine is the sum of the hashpowers (hp) of each
player in S. The rate of success in mining the next block can be adequately
characterized by the result of a Bernoulli trial with probability qS, since each
new block has a result independent from the previous one, with the same
probability qS. In this work, we denote γ̃S ∈ {0, 1} as a binary random variable
indicating the success (returning value of 1) or the failure (returning value of
0) in mining a block, modelled by a Bernoulli distribution with probability qS,
i.e., γ̃S ∼ Bernoulli(qS).

In fact, note that in the context of a set of T blocks ahead, the joint
probability representation becomes a Binomial distribution, based on a series
of independent Bernoulli trials. For nomenclature purposes, hereinafter, we
refer to γ̃t,S as the probability that a coalition S ∈ ρ(N ) mines a block
t ∈ {1, . . . , T}, and Γ̃S ∈ {1, . . . , T} a random variable indicating the number
of blocks mined by coalition S ∈ ρ(N ) within the next T blocks, i.e.,

Γ̃S =
T∑
t=1

γ̃t,S ∼ Binomial(T, qS), ∀ S ∈ ρ(N ). (3-3)

3.2
Revenue, Costs and Profit on Mining

Reflecting the dynamics of payment per miner in a block (fixed +
variable), the revenue from mining a block t ∈ {1. . . . , T} is:

π̃t = πf + π̃vt , ∀ t ∈ {1. . . . , T}. (3-4)
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In Equation (3-4), π̃t is the revenue from mining the block t ∈ {1. . . . , T},
πf is the deterministic income per block, which, in this work, without loss
of generality, is assumed fixed within the maturity of analysis, since the
length of steps ahead is assumed sufficiently small for the halving process
does not takes place, and π̃vt is the variable income per successfully mining
block t ∈ {1. . . . , T}.

Currently, a miner that successfully mines a block receives a fixed reward
(countdown) of 12.5 BTC (Bitcoins) as already stated in Section 2.2. Bitcoin’s
network adjusts the difficulty of the Proof of Work so that each block takes 10
minutes on average for the header to be guessed. In this work it is assumed,
for simplification, that each block takes exactly 10 minutes to be mined. For
periods of time small enough to maintain πf unchanged by the halving process
or the adjusted network difficulty to express any considerable changes, it is
acceptable to consider that a block is mined every 10 minutes. The variable
income per block is a random variable, and works as the sum of all the fees
paid by each individual that has a transaction added to the block mined.

Costs of mining are represented by operational costs (for example, costs
of electrical energy consumption) and capital costs (computers and peripherals
to make up the mining machines). For the purpose of this work, it is considered
that all players use their machines uninterruptible within the maturity of
analysis. In this context, let CS to denote the cost a coalition S ∈ ρ(N ) incur
in trying to guess the next block t ∈ {1, . . . , T}.

The profit of a coalition S ∈ ρ(N ) in the next t ∈ {1, . . . , T} blocks can
be written as the difference between π̃t (when coalition S successfully mines a
block) and the respective costs CS as follows:

RS(π̃t, γ̃t,S) =
T∑
t=1

(
π̃t γ̃t,S − CS

)
, ∀ S ∈ ρ(N ). (3-5)

Equation (3-5) shows that, whenever the result of γ̃t,S is zero for some
t ∈ {1, . . . , T}, the coalition S does not mine the block t and, hence, it has
negative cash flow.

3.3
Measure of Value

The “gain” a player obtains from joining a pool is measured by a
Measure of Value (Φ), here proposed as a convex combination between the
expected return and a risk measure tool, named the Conditional Value-at-Risk
(CV aRα) (Fanzeres, 2015):
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Φ(A) = λCV aRα(A) + (1− λ)E[A]. (3-6)

where λ is the deterministic weight associated with the risk aversion of a player,
and A the return of the player at any given scenario. The higher λ is, the more
risk averse the player is. When mining alone, a player is likely to have positive
cash flows spread over time with long periods between them (depending on
his hahspower, though it also not likely that a single player owns enough
computational power in the network to mine successfully over short periods of
time). The influence of these payments must be considered and CVaR acts in
this way.

Conditional Value at Risk (CV aRα) is a coherent risk measure
(Artzner, 1998) (a risk measure that satisfies four axioms: translation invari-
ance, subadditivity, positive homogeneity and monotonicity) that assess the
expected loss in the worst (1− α)-fraction of cases. Essentially, this is the ex-
pected value in the area to the tail of the density up to the (1−α)-quantile (as
seen in figure 3.1). Monetary risk measures are important tools to simulate the
game with the risk profile of each player, when investors try to design port-
folios on the basis of a comfortable trade-off between the risk of loss and the
possibility of profit. The four axioms that CV aRα, as a coherent risk measure
(Street, 2009), follows are:

– Monotonicity: A portfolio A2 that has always better returns than another
portfolio A1, should always have less risk as well.
If A1, A2 ∈ L and A1 ≤ A2, then CV aRα(A1) ≤ CV aRα(A2)

– Superadditivity: The diversification principle. The combination of two
portfolios cannot be worse than the sum of them separately.
If A1, A2 ∈ L, then CV aRα(A1 + A2) ≥ CV aRα(A1) + CV aRα(A2)

– Positive Homogeneity: The risk of a position is proportional to its size.
If δ ≥ 0 and A ∈ L, then CV aRα(δ A) = δ CV aRα(A)

– Translation Invariance: Adding a fixed amount “a” of capital reduces risk
by the same amount “a”.
CV aRα(A + a) = CV aRα(A) + a
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Figure 3.1: Visual representation of VAR and CVaR for a probability distri-
bution.

CV aRα can be obtained in many ways. The more often used is repre-
sented by equation (3-7):

CV aRα(A) = max
z∈R

z − E[z − A]+
(1− α)

. (3-7)

It can also be interpreted as the average of all values between the
a random variable A and the Value-at-Risk (VaR) of the distribution, as
(Street, 2009) states:

CV aRα(A) = E[A | A ≤ V aRα(A)]. (3-8)

And as stated in (Rockafellar, 2002), the CVaRα of a discrete random
variable Ã ∼ {Aω}ω∈Ω can be obtained as the result of the following optimiza-
tion problem:
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CV aRα(Ã) = max
z,δω

z − 1
(1− α)

∑
ω∈Ω

pωδω (3-9)

subject to:

δω ≥ 0, ∀ ω ∈ Ω (3-10)

δω ≥ z − Aω, ∀ ω ∈ Ω. (3-11)

with pω the probability of scenario ω ∈ Ω. Combining equations (3-5) and
(3-6), we obtain the complete representation of Φ and the associated value
function v of a coalition S ∈ ρ(N ):

v(S) = Φ(RS(π̃t, γ̃t,S))

= λ CV aRα

(
RS

(
π̃t, γ̃t,S

))
+ (1− λ) E

[
RS

(
π̃t, γ̃t,S

)]
, ∀ S ∈ ρ(N )

(3-12)

Equation (3-12) denotes that, the higher λ, more CV aR is influencing
the value of Φ. The choice behind this convex combination of risk and return
is done exactly to allow us to measure how the value of a player in the pool
might differentiate depending on various risk profiles.
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4
Cooperative Game Model

This chapter elaborates on the main definitions of cooperative Game
Theory, justifying its use in this work, as well as showing a number of allocation
methods in Game Theory and the formation of the nucleolus of the game. On
this topic, a mathematical definition of the nucleolus is proposed and applied
to the measure of value Φ, and the optimization model is established with the
theory discussed so far.

4.1
Game Theory

The study of interactions choices between economic agents with different
preferences and the outcomes of those interactions is called Game Theory.
The outcomes can be produced by a cooperative game (where players interact
directly towards common goals) or a non cooperative game (where players
dispute towards the best outcome for each individually).

The formalization of Game Theory dates back to 1928, with the publica-
tion of On The Theory of Games of Strategy, by John von Neumann 1. There,
von Neumann tried to answer how, in a set of N players, one of them could
play in order to achieve the most advantageous result. This paper pushed for-
ward the field, stating that in a two-person game, it is always possible to find
an equilibrium from which neither player should deviate unilaterally.

As Princeton University Press described in 2004, The Theory of Games
and Economic Behavior, published in 1944 by the same John von Neumann
with the economist Oskar Morgenstern, is “the classic work upon which
modern-day Game Theory is based” 2 and advances in the work of the previous
book.

Later, John Nash further expanded von Neumann’s contribution with
his work The Theory of Games of Strategy with the Nash equilibrium,
that states that every finite N -player in a non-zero-sum game has a
clearly-defined strategy (equilibrium points in N -person games). In pa-

1https://towardsdatascience.com/game-theory-history-overview-
5475e527cb82?gi=5f8d9c5f30ae, accessed february 11th, 2020

2https://press.princeton.edu/books/paperback/9780691130613/theory-of-games-and-
economic-behavior, accessed february 11th, 2020
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pers (Equilibrium points in n-person games, 1950), (The Bargaining, 1950),
(Non-cooperative Games, 1951), (Two-person, 1953) he helped to define mod-
ern Game Theory, where for instance John Nash helped formulate solutions to
cooperative games (Non-cooperative Games, 1951), (Two-person, 1953).

When two or more players interact aiming for better results in any
situation, this is called a cooperative game (Jezic, 2016). A cooperative game
is a pair (N,v) where v is commonly referred as the characteristic, or value
function (Jezic, 2016). In the context of this work, v has already been defined
in equation (3-12). As stated in chapter 3, a coalition S ∈ ρ(N ) is a subgroup
of N total players participating in a pool. A fair distribution of the resources
obtained by a coalition is one of the major fields of study in Game Theory,
in particular, how to precisely define the meaning of fair. A characteristic, or
value function is needed, and it must satisfy:

v(∅) = 0, (4-1)

v(N ) ≥
N∑
i=1

v(i). (4-2)

Which means that the benefit of an empty coalition must be zero and
that of N players must be at least the sum of the benefits of the individual
players if no coalitions is formed (Barron, 2008). In other words, all the players
must perform better when they are joining forces, than if they are playing on
their own. That is represented by superadditivity (discussed in section 3.3).

4.2
Allocation Methods

There are several works in technical literature proposing how to share the
rewards between participants of a coalition. The proportional sharing method
is the most widely known and also most intuitive: each player is rewarded
by their contribution to the coalition, thus being independent of coalitional
synergic effects (Freire, 2017). For instance, in the context of this work, for a
given coalition S ∈ ρ(N ), the proportional share xn of a given player n ∈ S can
be defined as: xn = hpn∑

n∈S
hpn

. Some results in this work are obtained by testing
this allocation policy. Hereinafter, we refer to it as the “relative hashpower".

An alternative allocation method that takes into account the coalitional
synergic effects is called the Sharpley Value. It was proposed by Lloyd Shapley
in 1953 (Shapley, 1953) and aims to “allocate an amount proportional to the
benefit each coalition derives from having a specific player as a member”
(Barron, 2008). For a given coalition S ∈ ρ(N ), it states that the allocation
(xn) of a player n ∈ S is a Shapley value if:
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xn =
∑

S⊆N\{n}

|S|!(N − |S| − 1)!
N !

(
v
(
S ∪ {n}

)
− v(S)

)
, (4-3)

The Shapley Value satisfies the axioms of Symmetry, Dummy Player and
Additivity (Manea, 2017). Dummy player happens when for any coalition S in
which a player n is not part: v(S∪{n}) = v(S). In other words, a dummy player
does not contribute to the coalition. The additivity axiom states that, if v1 and
v2 are two different games players participate, then: x(v1 + v2) = x(v1) +x(v2)
(here, x is the Shapley-Value). Or, the Shapley Value (or reward a player has
as a result of the sum of two games), is equal to the sum of Shapley Values
for those two games. Finally, With symmetry, if two players provide the same
benefit to S, than they should have the same worth. Shapley Value tends to
increase its complexity as the number of players grows due to its combinatory
nature, being this a drawback (Freire, 2017). Also, there is a lack of isonomy
(Junqueira, 2007), (Freire, 2017); players with same hashpower might have
different costs, and allocation process is affected by players aggregation.This
might occur due to players with higher hahspowers being less sensible in the
input order in equation (4-3), used to obtain the allocations.

Aiming to minimize the lack of isonomy cited above, Aumann-Shapley
is a method that proposes to split the resources into smaller agents in the
coalition after just a fraction of the larger players had their allocations
optimized (Faria, 2009). In other words, to apply Shapley’s Value method after
the smaller agents have been served, all players hashpower and costs would be
divided in infinitesimal ones, and the Shapley Value would be applied as if
each of those divisions were a player itself.

The method used in this work is that of the Nucleolus of a game,
described in the following subsection.

4.2.1
Nucleolus of a Game

The nucleolus of a game (Kohlberg, 1971) is the set of all allocations
in which the income of a sub coalition in S is higher when joining forces,
than alone, meaning that the nucleolus has actions that benefits all players
in the coalition. For example, if a coalition has three members, the nucleolus
is stable (or exists), if there is an allocation between all members that will
always benefit all its participants, bringing a higher value than if they worked
alone (or in any sub coalition). When a coalition includes an action that all
its members prefer, other than the grand coalition, it is said that the former
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blocks the latter, breaking the concept of the nucleolus. To propose allocations
that keep the nucleolus stable is a problem on how to divide resources, or
proposing the optimal sharing of them. The sharing problem is an instance
of the general problem of allocating costs (or benefits) among a coalition of
players that cooperate on the construction of a shared resource (Freire, 2015).

The sharing of resources obtained through the methodology proposed in
this work is represented by the variable xn, or the allocation of a player n ∈ N .
The allocation of wealth for each player is defined as to not allow short-sale
and also that all the players belong to the same pool:

∑
n∈N

xn = 1, (4-4)

xn ≥ 0, n ∈ N . (4-5)
Now, the nucleolus of a cooperative game is hereby defined as the set

X =
{

x ∈ [0, 1]N
∣∣∣∣∣ ∑
n∈S

xnRN (π̃t, γ̃t,N ) �Φ RS(π̃t, γ̃t,S), ∀ S ∈ ρ(N ).
}

(4-6)

Equation (4-6) represents the set of allocation shares (X ) where a player
has a higher value (measured by Φ) sharing the rewards obtained by N , than
out of the great coalition, for any sub coalition of players. Using the measure
of value Φ from equation (3-12) together with (4-6), the nucleolus is:

Φ
∑
n∈S

xnRN (π̃t, γ̃t,N )
 ≥ Φ

(
RS(π̃t, γ̃t,S)

)
. (4-7)

Since RS(π̃t, γ̃t,S) and xn are independent and because of the positive
homogeneity nature of CVaRα discussed in subsection 3.3, equation (4-7) can
be written as:

∑
n∈S

xnΦ
(
RN (π̃t, γ̃t,N )

)
≥ Φ

(
RS(π̃t, γ̃t,S)

)
. (4-8)

With the concept of xn discussed, let λ be zero (risk neutrality) and µ

the expected value of the variable income distribution. In this context, since
the random variables π̃vt and ˜γt,S are independent for all t ∈ {1, . . . , T}, the
profit value of a coalition S ∈ ρ(N ), along with the T blocks ahead resumes
to:
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E[RS(π̃t, γ̃t,S)] =
T∑
t=1

[
(πf + µ)qS − CS

]
=
(

(πf + µ)qS − CS
)
T. (4-9)

Agents usually take risk-neutral decisions, that is, based only on the
expected value of the revenue (in our model, with λ = 0). However, in this
case, we argue that the nucleolus set defined in (4-6) become independent of
the number of blocks ahead, hence equivalent to looking only at the next one
(as shows Proposition 1, below). In this case, it would ignore the profit of a
sufficient revenue stream for the coalition to remain viable and stable.

Proposition 1: For λ = 0, the nucleolus set (X ) defined in (4-6) become
independent of the number of blocks ahead T .

Proof : For λ is zero, the profit value defined in subsection 3.3 is given
by Equation (4-9). Therefore, for each S ∈ ρ(N ), the main constraint in the
nucleolus set (X ) defined in (4-6) resumes to:

∑
n∈S

xnE[RN (π̃t, γ̃t,N )] ≥ E[RS(π̃t, γ̃t,S)] ⇐⇒
∑
n∈S

xn ≥
E[RS(π̃t, γ̃t,S)]
E[RN (π̃t, γ̃t,N )] ,

⇐⇒
∑
n∈S

xn ≥

(
(πf + µ)qS − CS

)
(

(πf + µ)qN − CN
) .

Therefore, for a risk neutral game (λ = 0), the the nucleolus set (X )
becomes:

X =

x ∈ [0, 1]N

∣∣∣∣∣∣∣∣
∑
n∈S

xn ≥

(
(πf + µ)qS − CS

)
(

(πf + µ)qN − CN
) , ∀ S ∈ ρ(N )

 . (4-10)

4.3
The Optimization Model

Now that the profit for a miner (equation (4-9)), the probability to
mine (equation (3-2)), CV aRα (equation (3-11)) and the measure of value
Φ (equations (3-12) and (4-8)) are defined, we propose the use of a tool that
can help obtain the optimal allocations for a player n, in the form of xn.

We need a tool to measure the difference between being in the pool and
not in the pool, and make sure it returns, at least, zero (meaning that par-
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ticipating in the pool brings, at least, the same value as mining out of the
pool). Here, for each S ∈ ρ(N ), we introduce the variable εS, translating ex-
actly the numerical difference described, becoming ∑n∈S xnΦ(RN (π̃t, γ̃t,N )) ≥
Φ(RS(π̃t, γ̃t,S))− εS

We want the vector {εS}S∈ρ(N ) to be as low as possible. If εS is lower than
zero for all S ∈ ρ(N ), it means that the left-hand side of the equation is higher
than the right-hand side, and thus, there is value to participating in the pool.
More precisely, the grand coalition brings more profit to the participants than
mining outside of the pool. In this context, what we want then is to minimize
the maximum difference between the value of the coalition and the players out
of the coalition, as:

min
x∈X

 max
S∈ρ(N )\N

{
Φ
(
RS(π̃t, γ̃t,S)

)
−
∑
n∈S

xnΦ
(
RN (π̃t, γ̃t,N )

)}. (4-11)

From a computationally perspective, equation (4-11) can be conveniently
re-written as follows:

min
xn,ε

ε (4-12)

Subject to:

xn ≥ 0, ∀ n ∈ N ; (4-13)∑
n∈N

xn = 1; (4-14)

ε ≥ Φ
(
RS(π̃t, γ̃t,S)

)
−
∑
n∈S

xnΦ
(
RN (π̃t, γ̃t,N )

)
, ∀ S ∈ ρ(N ) \ N . (4-15)

As each coalition is represented in the last restriction of model (4-12)–
(4-15), there will always be a difference between each sides of that equation,
as already stated. For example: for 3 players, there will be 7 combinations of
them, meaning that there will be 7 equations for each of those sub coalitions,
and consequentially 7 values for such difference.

There is only one value of ε for each analysis, but since every coalition
has a numerical difference between being in or out of the pool, we name such
difference as εS. For a given allocation to be in the nucleolus of the game, every
εS must have a value of, at maximum, zero.

Restrictions (4-13) and (4-14) guarantee that the players in the pool
do not participate in short-sale and that they make up for all the pool.
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We highlight that, in (4-15)–(4-12), ε recovers the coalition with the highest
difference between being in and out of the grand coalition, thus recovering
the most critical coalition with respect to core stability. Furthermore, if it is
negative, than the optimal solution identified (x∗) belongs to the core, i.e.,
x∗ ∈ X . Otherwise, the core is empty, thus no allocation can be found such
that being in the pool is advantageous with respect to every possible coalition
S ∈ ρ(N ) \ N .

Aiming to analyze the influences of optimal allocations in this work, both
sides of this restriction are going to be calculated separately, and hereby be
called P(Φ) and O(Φ). Their difference is equal to εS. O(Φ) measures the value
a coalition S has when it is not mining in the pool, while P(Φ) measures the
value S has when joining the pool.

O(Φ) = Φ
(
RS(π̃t, γ̃t,S)

)
. (4-16)

P(Φ) = Φ
∑
n∈S

xnRN (π̃t, γ̃t,N )
. (4-17)

With all optimal allocations xn obtained by the results of the optimiza-
tion model, those can be used to indicate the incomes for every player in the
pool:

R
(
xn, RN (π̃t, γ̃t,N )

)
= xn ×RN (π̃t, γ̃t,N ), ∀ n ∈ N . (4-18)

.
Note that R

(
xn, RN (π̃t, γ̃t,N )

)
is the income that a given player n ∈ N

obtains by participating in the pool, with a quota of xn.
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5
Results and Discussions

Since the theory behind Bitcoin mining through its blockchain networks is
discussed, and the mathematical models, as well as the concept of the nucleolus
in game theory are already presented in previous chapters, we now study the
applications of such knowledge. First, we analyse an illustrative example with
3 players, for 3 different time periods (or number of blocks ahead in the ledger),
obtaining the optimal allocations for a range of λ from 0.0 to 1.0. The periods
chosen for analysis are T=1, 6 and 144 (representing the next 10 minutes, 1
hour and 24 hours). The results are analyzed from a cumulative perspective,
and a visual representation of the core is obtained. An analysis of the value of
each side of equation (4-8) on the optimization model (4-12)–(4-15) indicates
the reason that, for some values of λ, there is no nucleolus.

With the model validated for the base case, a real case analysis is
conducted based on real data from pool miners and bitcoin from January,
2019. The model is tested for a higher number of players, where it is shown
that for some coalitions in a pool, joining forces for the next T blocks brings
monetary value to the pool.

In both cases (illustrative example and real case), a hypothetical gain
in probability when mining in the coalition is proposed and the results are
discussed.

5.1
Illustrative Example

The first studied case consists of a pool with 3 miners, and all the players
outside the pool are considered as one player (hereby called “Rival”) with the
aggregated sum of their hashpowers (which equals the complementary value to
the pool’s total hashpower). This case is used to test the model and validate
its settings. The profit from mining is obtained following equation (3-5). Also,
π̃vt is considered to be zero for simplicity, since the fixed reward for mining a
block is significantly higher then the average of the variable reward (12.5 BTC
against 0.99 BTC), and T to be 1 (single period). Further analysis of T = 6
and 144 are conducted in section 5.1.3.

With that, let us consider a bitcoin network where the pool members are
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the only participants. We initially assume that they have no mining costs, the
probability of a coalition S ∈ ρ(N ) to mine a block is additive on the players
hashpower (i.e., f(S) = 0, ∀ S ∈ ρ(N )) and the agents are risk neutral (λ =
0.0). Table 5.1 summarizes the case.

Player Hashpower (%) Cost to Mine (BTC)
#1 25 0.0
#2 15 0.0
#3 60 0.0
Rival 0 0.0

Table 5.1: Hashpower of players with no risk measure, no costs and mining
alone.

The optimal allocation in this case is described by x1 = 0.25, x2 = 0.15,
x3 = 0.60 and ε = 0.0, equal to each player hashpower, in line with
Proposition 1. More precisely, this intuitive result shows a solution to the
reward problem by allocating the pool revenues according to the computational
power, or the “relative hashpower” (which, in this case, is the very hashpower
of each player, since there is no rival at this point). That solution comes from
the setup where the players in the pool are the only ones in the network trying
to mine the next block. Also, there is no strict benefit from being part of the
pool, since ε = 0.0. That means that both O(Φ) and P(Φ) have the same
value.

Now, let us analyse a similar setup, but considering individual costs to
mine different from zero and the total cost within a coalition to be additive
in the individual costs. Here, we consider such costs to be in a direct relation
to the hashpower of each player (higher hashpowers are likely to pay more
for energy since it means a more robust computer setup), as it is expected in
reality. Though differences in the cost of energy itself (for instance, for different
countries) is not yet considered. Table 5.2 summarize the case.

Player Hashpower (%) Cost to Mine (BTC)
#1 25 1.5
#2 15 0.2
#3 60 2.5
Rival 0 0.0

Table 5.2: Hashpower of players with no risk measure, with costs to mine, and
mining alone.
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The optimal allocations in this case are x1 = 0.196, x2 = 0.202 and
x3 = 0.602. Once more, the optimization model returns ε = 0.0. This result
shows that adding costs to the players shifts the solution from the intuitive
allocation (rewarding through the relative power without any rival). Player
1, for instance, goes from an allocation of 0.25 to 0.196. When analysing the
value of O(Φ) for Player 1, without costs it is 3.125, whereas with costs, it
is 1.625. For Players 2 and 3, that value is respectively 1.875 and 1.675, and
7.5 and 5.0. This shows that, even alone, a player has his value in mining
lowered by adding costs (as expected). Also, since λ is zero, O(Φ) and P(Φ)
are only being influenced by the expected value (no risk profile has being
taken into account for this value of λ). Since costs are presented, the average
revenue for each player is lowered, and player 1 is “being punished” by the
pool for having a high cost. Player 3, although with the highest cost to mine
has also the highest hashpower, thus bringing a greater value to the pool,
and maintaining his reward. The nucleolus of the game is deviated from the
hashpower distribution by the presence of the mining costs.

The next case includes risk aversion profile and also the rivals. The case
setup is presented in Table 5.3:

Player Hashpower (%) Cost to Mine (BTC)
#1 25 1.5
#2 15 0.2
#3 35 2.5
Rival 25 2.0

Table 5.3: Hashpower and cost of players in illustrative example.

For the setting above, the optimization model (4-12)–(4-15) returns the
following allocation results for different levels of risk aversion:

Player
λ

0.0 0.25 0.50 0.75 1.0
#1 0.314 0.298 0.000 0.388 0.357
#2 0.324 0.426 1.000 0.000 0.047
#3 0.363 0.276 0.000 0.612 0.595
ε 0.000 0.000 0.309 0.269 0.00

Table 5.4: Optimal allocations for the illustrative example, T = 1, α=75% and
different levels of risk aversion (λ).

Results in Table 5.4 differ from the hashpower distribution, showing
that the presence of the risk measure and costs associated with mining
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drive the solution away from an intuitive allocation. We highlight that, for
λ ∈ {0.50, 0.75}, the optimization model did not identify an allocation with
ε ≤ 0.0. That means that mining in the pool is actually financially worst for
those two risk profiles.

Figure 5.1: Column bars chart for the optimal allocations for the illustrative
example, T = 1, α=75% and different levels of risk aversion (λ).

Figure 5.1 shows the same result as table 5.4, but represented visually in
a series of column charts. For each player, the evolution in the allocation xn is
represented for λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. In the last column, the evolution
of ε is presented.

In Table 5.5, values of O(Φ), P(Φ) and {εS}S∈ρ(N ) obtained for λ ∈
{0.50, 0.75} are shown.
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Player λ O(Φ) P(Φ) εS λ O(Φ) P(Φ) εS

1 0.50 0.062 0.000 0.062 0.75 -0.719 -0.720 0.001
2 0.50 0.738 0.489 0.249 0.75 0.269 0.000 0.269

1, 2 0.50 0.799 0.489 0.309 0.75 -0.451 -0.720 0.269
3 0.50 -0.312 0.000 -0.312 0.75 -1.406 -1.314 -0.272

1, 3 0.50 -0.249 0.000 -0.249 0.75 -2.125 -1.854 -0.271
2, 3 0.50 0.422 0.489 0.067 0.75 -1.139 -1.134 -0.005

1,2 and 3 0.50 0.489 0.489 0.000 0.75 -1.854 -1.854 0.000

Table 5.5: O(Φ), P(Φ) and εs for the illustrative example, λ 0.5, 0.75 and 1.0.

Table 5.5 shows the reason why the optimization model indicates a result
that is not in the nucleolus of the game for λ ∈ {0.50, 0.75}: the highest value
of εs is not zero for each of those cases. It shows that for all coalitions in such
λ’s, there is at least a subgroup of players where the value of mining outside the
pool is higher than mining in the pool. Also, the risk aversion is at a high level
such that P(Φ) for pool ( coalition representing all the 3 players) is negative
for λ = 0.75. If playing together makes players #1, #2 and #3 lose money,
there is no sharing method that will make it worth (unless O(Φ) was even
worse). We highlight that λ = 1.0 is an extreme case. All values of {εS}S∈ρ(N )

are equal to zero, as both O(Φ) and P(Φ) are negative for all coalitions and the
same. More precisely, here, the risk profile reaches a point where no monetary
gain is computed by the measure of value. For every other λ, ε is zero, and so
all {εS}S∈ρ(N ).

Not all allocation sharing belongs to the nucleolus of the game for our
model. Based on the setup from table 5.3, a common and intuitive type of
sharing in which all players equally receive the same allocation (xn = 33.33%)
is analyzed, with an ε value of 0.575. This shows that, for this allocation policy,
splitting the rewards equally for all three players is not inside the nucleolus of
the game. Again for based on the setup from table 5.3, another type of sharing
not in the nucleolus of the game is the one where players are rewarded by their
relative hashpower, or: xn = hpn∑

n∈N hpn
. The value of ε for this case is of 0.64,

showing that players are rewarded more if they are not mining together in the
pool, for this allocation.

5.1.1
Single Period Analysis

The allocations for T = 1 in the illustrative example have been obtained
for the different setups proposed, and it is of interest to analyze the inverse
accumulated probability for each player within the pool and by its own.
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Based on the setup from table 5.3, and using a Monte Carlo simulation with
100,000,00 scenarios (only to be able to obtain the cumulative distribution),
we obtain the next results:

Figure 5.2: Accumulated Probability for Player 1, illustrative example, T = 1,
α = 75% and λ = 0.0.

Figure 5.2 shows an expected result: player 1 mines by itself 25% of the
time (as shown with this player having negative cash flows up to 75% of the
time). When he mines, his amplitude of gain is 11 BTC, which is equal to 12.5
BTC, the fixed revenue from mining a block, minus 1.5 BTC, the cost he has
to mine (and also his value of CV aRα). Player 1 mines alone 25% of the time
because that is his probability to mine. Here, with T=1 only, the probability
to mine is the expected value of a Bernoulli distribution with probability qS,
which is exactly the probability the player has to mine. During the time he
spends not mining a block, his constant negative cash flow has an amplitude
of -1.5 BTC.

On the other hand, when mining in the pool, player 1 spends 75% of the
time with positive cash flows. This result matches the probability the coalition
has to mine. Now, amplitude of player 1 is x1(12.5−4.2) = 2.60 BTC, in which,
-4.2 BTC is due to the CV aRα term. His revenue is lower than that when he
succeeds mining alone, but his cash flow is positive most of the time. When
having negative cash flows in the coalition, his amplitude is of −4.2x1 = −1.32
BTC. In practice, we argue that a player will likely prefer to have positive cash
flows more often, than to receive a higher value rarely.

The behavior observed above can be summarized describing the analyt-
ical form for the Inverse Accumulated Probability (IAP):
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F−1(A) =

−Cn A < 1− qn = 1− hpn
πf − Cn A ≥ 1− qn = 1− hpn

F−1(P ) =

−xn ∗ (CN ) P < 1− qN = 1−∑n∈N hpn

xn ∗ (πf − CN ) P ≥ 1− qN = 1−∑n∈N hpn

The same behavior in the IAP can be observed for players 2 and 3:

Figure 5.3: Accumulated Probability for Player 2, illustrative example, T = 1
and λ = 0.0.
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Figure 5.4: Accumulated Probability for Player 3, illustrative example, T = 1
and λ = 0.0.

The differences of player 2 (Figure 5.3) and player 3 (Figure 5.4) with
respect to player 1 lie in the amplitude of gains (when in the pool). They share
the rewards according to the allocations obtained in the optimization model,
but start shifting the signal in the cash flow at the same time (having positive
gains roughly 75% of the time). The amplitude of gains for mining alone are
similar, though the mining costs differ for each player, and their time without
positive cash flows are different from one another, since their hashpower are
different.

The optimization model is now adapted to force allocations to be between
0.0 and 1.0, with steps of 0.001 for each player (x1, x2 and x3), and the value
of ε is collected as the result of the optimization model. For players 1 and 3,
Figure 5.5 shows the results where ε ≤ 0:
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Figure 5.5: Allocations inside the core for players 1 and 3, illustrative example,
T = 1 and λ = 0.0.

The result above shows that, for the base case with T = 1 and λ = 0,
the allocations that maintain stability of the pool are the ones found by the
optimization model, and there is only a single allocation that returns ε ≤ 0.
Worth noting that the relative hashpower allocation is shown in the Figure
5.5, but does not represent an allocation in the nucleolus. Figure 5.5 is the
visual representation of the core, or nucleolus of the game, as the allocations
in the figure are the ones that maintain the pool stable. The “Relative hp”
point is shown just as a comparison of this sharing method. The same result
is obtained for λ ∈ {0.25, 0.5, 0.75, 0.99} and presented next.
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Figure 5.6: Allocations inside the core for players 1 and 3, illustrative example,
T = 1, α = 0.25 and different λ ∈ {0, 0.25, 0.50, 0.75, 1.0}.

Figure 5.6 shows that λ = 0.5 and 0.75 do not return solutions with
ε equal or lower than zero (as expected by the results shown in table 5.4),
but also shows that the ones that return (λ ∈ {0.0, 0.25, 0.99}) show a single
allocation as the core. More specifically, taking part in the pool for T = 1 (or
the next 10 minutes) returns the same values for O(Φ) and P(Φ). The total
reward obtained by the pool is the same of the sum of the player’s individual
reward if mining alone, just distributed according to the allocations proposed
by the optimization model and distributed at different time.

The results above validate our model for T = 1 and λ ∈
{0.0, 0.25, 0.5, 0.75, 0.99}, with the expected value from revenues and costs
obtained, along with the probabilities matching analytically with the sum of
hashpower for any given S. Now, we propose an analysis for T > 1.

5.1.2
Gain in Probability

Equation (3-2) proposed in Section 3.1 of this work, indicates that the
probability of a coalition S ∈ ρ(N ) to mine might not be only the sum of
the computational power of each player, but also a result of a function f(S)
that may increase this probability due to the gathering of players in the pool.
Considering said increase occurring in the form of:

qS =
∑
n∈S

hpn + (|S| − 1)× β, (5-1)
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The term |S| refers to the number of players in the coalition S ∈ ρ(N ).
For example, if there is only one player, there is no gain in the probability to
mine, which becomes the hashpower of that player. If there are 2 (two) players
in the coalition, there is a term β added to qS. If there are 3 (three) players
in the coalition, there is a term 2 × β added to qS, and so on. A beta of 0.01
indicates an increase of 1% per player in the pool. For different increments
on mining probability β ∈ {0.01, 0.02, 0.05, 0.07, 0.1} and a risk-profile level
λ = 0.25 and based on the setup from table 5.3, the obtained allocations are
presented in Table 5.6:

β

Player 0.00 0.02 0.05 0.07 0.10
x1 0.298 0.306 0.313 0.316 0.319
x2 0.426 0.404 0.386 0.378 0.370
x3 0.276 0.289 0.301 0.306 0.311
ε 0.0 -0.289 -0.729 -1.02 -1.46

Table 5.6: Optimal allocations for the illustrative example for λ = 0.25,
T = 1, α = 75% and different increments on mining probability β ∈
{0.01, 0.02, 0.05, 0.07, 0.1}.

The main result from this setup is the value of ε being negative as β
increases. Since it becomes each time more negative, it shows that raising the
probability to more than the sum of hashpowers induces value for the pool that
was not present before. For all coalitions, P(Φ) is higher than O(Φ). Another
approach to measure such influence is to obtain the average revenue (as shown
in equation (4-9)):

β 0.0 0.02 0.05 0.07 0.1
E[RS(π̃St , γ̃t,S)] 5.17 5.42 5.67 6.42 7.67

Table 5.7: Average Income of S, per different β.

Table 5.7 shows that E[RS(π̃St , γ̃t,S)] raises with β. This is likely a result
of the raise in qs caused by adding β. So, the coalition S mines more blocks
on average, thus receiving higher rewards.

5.1.3
Multi period analysis

With the illustrative case considering T=1, we now impose that T is 6
(and β = 0.0), which means the next 6 blocks (or 1 hour) are considered in the
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analysis, transforming the probability to mine from a Bernoulli to a Binomial
distribution, as discussed in section 3.1. The optimal allocations obtained from
the model, based on the setup from table 5.3 are now shown in table 5.8 and
figure 5.7:

λ

0.0 0.25 0.5 0.75 1.0
#1 0.314 0.291 0.260 0.214 0.141
#2 0.324 0.331 0.340 0.355 0.377
#3 0.363 0.378 0.400 0.431 0.482
ε 0.000 -1.64 -3.28 -4.92 -6.56

Table 5.8: Optimal allocations for the illustrative example, T = 6, α=75% and
different λ.

Figure 5.7: Column bars chart for the optimal allocations for the illustrative
example, T = 6, α=75% and different levels of risk aversion (λ).

For λ = 0, in line with Proposition 1, the optimal allocations are the
same as for T=1. Any λ different from 0.0 now differs from the same case
as for T=1. This shows that, other than the introduction of risk measure
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tools, the multi period analysis also has great influence over the results of
the optimization model. Aside from λ = 0.0, all the others show ε lower than
zero, and raising in value with higher risk profiles. That result differs from the
one in Table 5.4, showing that a multi-period setup changes the pool rewards,
bringing value to the players who are part of the coalition, what did not happen
for T=1 (in fact, for 2 values of λ, the pool had lower value than mining alone).

The inverse accumulated probability, with the same setup as T=1 and λ
0.0, for player 1, is presented in Figure 5.8.

Figure 5.8: Accumulated Probability for Player 1, illustrative example, T = 6,
α = 0.25 and λ = 0.0.

Note the existence of a set of 6 “jumps” in the graph for each series.
Those correspond to probabilities that player 1 has to mine once in the 6 next
blocks, to mine twice in the next 6 blocks up to mine all next 6 blocks. The
probabilities for each “jump” are defined by a Binomial distribution with qS.
For example, the chance to mine at least once (alone) is 82.20%, which matches
with what is seen in the graph (the cash flow becomes positive at 1-82.20, or
17.80%). The rationale is analog to mining twice and up to six times. The
probability to mine at least once in the 6 next blocks in a coalition is 99.98%
(the cash flow becomes positive at 1-99.98, or 0.02%). The results are similar
for players 2 (Figure 5.9) and 3 (Figure 5.10).
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Figure 5.9: Accumulated Probability for Player 2, illustrative example, T = 6,
α = 0.25 and λ = 0.0.

Figure 5.10: Accumulated Probability for Player 3, illustrative example, T =
6, α = 0.25 and λ = 0.0.

The results show that, when considering the next T=6 blocks, instead
of the next T=1 block, a player has a higher chance to mine at least once
when considering more than a block ahead. This means a gain is obtained
when looking at the multi-period case. There is another gain that can be
visually observable when analysing the results for different λ in the visual
representation of the core:
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:Core

Figure 5.11: Allocations inside the core for players 1 and 3, illustrative example,
T = 6, α = 75% and different λ.

Raising λ brings more different allocations to the nucleolus of the game.
When raising λ, the tail of the (1-α) worst cases also increases, and that puts
more weight to the risk measure tool CV aRα, producing results where players
tend to aggregate towards a common objective to avoid losing their money.
This was not presented in T=1, since now the analysis indicates that the
combinatorial nature of the multi period game brings more value to the pool
so that, for the next T blocks, it is better for the players to join forces in a pool.
Also, a λ close to 1.0 means a risk profile that only takes into consideration
the losses. Nevertheless, economic agents usually mix both parameters (return
and risk) in a close to 50% weight for each. Also worth noting that the point
of Relative hp is not in the nucleolus of the game for λ 0.0 and 0.25, further
reinforcing the need of this study, since sharing by computation power, which
would be intuitive to do, does not always keep the coalition stable.

The same results can be seen for combinations of players 1 & 2 and 2 &
3:
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Figure 5.12: Allocations inside the core for players 1 and 2, illustrative example,
T = 6, α = 75% and different λ.

Figure 5.13: Allocations inside the core for players 2 and 3, base case, T = 6,
α = 75% and different λ.

The cloud presented in the figures above does not differentiate εS in terms
of its value. For instance, if we want to highlight the allocations that contain
the minimal value of ε for λ = 0.5, the result is:
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Figure 5.14: Allocations inside the core for players 1 and 3, illustrative example,
T = 6, α = 75%, λ = 0.5 and allocations with minimal ε.

Figure 5.14 indicates that the allocations with lower value of ε lie at the
center of the polygon for λ = 0.5. For the other values of λ studied in this
work, the results are:

Figure 5.15: Allocations inside the core for players 1 and 3, illustrative example,
T = 6, α = 75%, different λ and allocations with minimal ε.
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For each of the cases above, figure 5.15 shows that the allocations with
the lowest ε are contained at the center of the cloud of allocations for each λ..

We now analyse how the same figures of the nucleolus behave for β
different of zero (β = 0.1):

Figure 5.16: Allocations inside the core for players 1 and 3, illustrative example,
T = 6, α = 75%, different λ and β=0.1.

Figure 5.16 shows that raising β shrinks the area of the nucleolus for
higher λ, and the opposite for lower λ. This is likely due to the adjustment
that β provides; it is now not necessary to go through higher risks to obtain
higher values from joining the pool.

For T = 144 (24 hours, or a day), results are similar to T = 6, also
indicating the gain when joining a pool looking at multi period mining. For
the sake of simplicity, only the inverse accumulated probabilities figure for
player 1 and the nucleolus set representation for players 1 and 2 are presented,
as well as the allocations identified by the optimization model and the results
shown in table 5.9 and figure 5.17:

λ

0.0 0.25 0.5 0.75 1.0
#1 0.314 0.314 0.314 0.314 0.313
#2 0.323 0.323 0.323 0.323 0.322
#3 0.362 0.363 0.363 0.363 0.365
ε 0.00 -9.58 -19.2 -28.7 -38.3

Table 5.9: Optimal allocations for the illustrative example, T = 144, α=75%
and different λ.
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Figure 5.17: Column bars chart for the optimal allocations for the illustrative
example, T = 144, α=75% and different levels of risk aversion (λ).

What is interesting to note is, when a larger period of time is taken
into consideration, allocations do not change with the raise in risk profile, but
ε does. Taking higher risks still benefits more the coalition, but the sharing
quota of each player is unchanged.
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Figure 5.18: Allocations inside the core for players 1 and 3, illustrative example,
T = 144, α = 0.25 and different λ.

An important result arises from Figure 5.18: with the increase in T, the
“cloud” of allocations belonging to the nucleolus of each λ decreases, which
means that the model may converge to a set of single allocations that keep
the players together in the pool (as seen in Table 5.9). The allocation sharing
by computational power (the “Relative hp” dot in Figure 5.18) is not in the
nucleolus of the game for any λ. It can be concluded that, for a high enough
number of blocks ahead, there is no risk profile that embraces the sharing of
rewards via intuitive computational sharing as a method in the core of the
pool, like it was presented with T up to 6. Greater T brings value to the
players due to the combinatorial characteristic of the multi-period setup, but
tends to a single reward quota for the players.

5.2
Definitions and motivation: Real Case

Now that the method for obtaining optimal allocations for a pool in the
Bitcoin network has been proposed and tested at a small scale, we expand
the analysis to consider a more realistic context. Figure 5.19 depicts the pool
distribution of the bitcoin network from January 29th, 2019:
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Figure 5.19: Hashpower distribution in the bitcoin network, January 29th, 2019
(BitcoinMiningPools).

KanoPool is a player with 0.2% of the hashrate in the network. On the
same day, according to blockchain.info 1, the difficult D of the network was
D = 5,814,661,935,891.00, and the total hashrate of the network was h =
39,310,594.00. Using equation (3-1), the time that KanoPool would take to
correctly guess a hash is τ= 3.17 ∗ 1015s, or approximately 4 days.

That result does not consider the fact that KanoPool races against other
players in the network. Before he guesses his first header’ hash, 576 other
blocks had been mined during those 4 days, and there is a good chance that
someone else finds the correct hash before he mines his expected block. Taking,
in theory, another 4 days for him to have another shot with a correct hash.

If KanoPool join forces with all the other players up to BItClub Network,
the total hashpower of the group would be of 12,2%, bringing τ to 87 minutes,
or approximately 1,45 hours to correctly guess the next hash. This new pool
would be much more likely to mine a new block, or at least, would take less
time to guess the hash correctly, thus being able to compete with the larger
pools.

1https://www.blockchain.com/charts/difficulty, accessed may 5th, 2020
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5.3
Real case study proposed

This section analyzes the behavior of a pool that KanoPool partic-
ipates, using the optimization model proposed in this work. A coalition
with all the players up to F2Pool is proposed (containing 13 players),
and the 14th player, or the rival, being a “fictional” player that contains
the cumulative hashpower from all the other players in Figure 5.19. Data
obtained from (CryptoCompare), (Wheretomine) (BitcoinMiningPools) and
(MiningCostsbyCountry), together with the Dollars to Bitcoin price in Jan-
uary 29th, 2019 (3452,00) help build the case and are demonstrated in Table
5.10:

Player Country
Hashpower

(%)
Cost to

mine (U$S)
Cost to

Mine (BTC)

KanoPool United States 0,2 10720,40 0.00621
ConnectBTC China 0,2 3644,93 0.00211
Solo CKPOOL Iceland* 0,2 16857,09 0.00977
Bitcoin Russia Russia 0,3 7032,58 0.00611

58COIN China 1,2 3644,93 0.00127
HaoPool China 1,3 3644,93 0.00137
BW.com Finland** 1,3 16677.76 0.0628

Bitcoin.com United States 1,5 10720.40 0.0466
Bitfury Georgia 1,8 6861.05 0.0358

BTCC Pool Finland 2,0 16677.76 0.096
Bitclub Network Iceland 2,2 16857.09 0.107

BTC.TOP China 7,1 3644.93 0.0750
F2Pool United States 7,6 10720.40 0.236
Rivals *** 73,1 - -

Table 5.10: Real case parameters.

– * - (CryptoCompare) indicates this player operating in Asia and Europe.
Iceland has been chosen to represent it;

– ** - Player with no information available of country of operation. Finland
choosen as a representation;

– *** - Rivals costs are not necessary, since we use only his hashpower in
the model.

The setup of the network is better observed visually, showing the dif-
ference between the hashpower of players and their cost to mine, in figure
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5.20. For instance, F2Pool has the highest hashpower of the pool, but also the
highest cost to mine (in BTC):

Figure 5.20: Setup of the bitcoin network for the real case. The blue bars are
the hashpower of each player, and the orange line is the cost to mine (in BTC).

Reference (MiningCostsbyCountry) indicates costs to mine that are
not related to the computational power each player has, or the “amount of
machines” one player owns. In order to normalize this, the cost that is given
by the study is multiplied by the hashpower of the player in said country, thus
producing a result that takes into account his computational power.

It is worth noting that due to computational limitations, a model with all
14 players exceeds the memory needed to obtain results. As a solution to this,
players 1 - 4 (KanoPool, ConnectBTC, Solo CKPOOL and Bitcoin Russia) are
considered as one, with their hashpowers and costs summed (since they own
almost identical hashpower (%) and cost to mine (BTC)).

The optimization model returns the results in Table 5.11 for this setup
and T=6. The results are similar in structure to those obtained in Section
5.1.3, now with more players to be observed. This time, since we already start
with T greater than 1, all different λ (except 1.0) produce results that return
ε zero or lower, which means that there is a nucleolus in the game set for each
case, as expected after the illustrative example analysis.
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λ

Pool 0.0 0.25 0.5 0.75 1.0
#1 * Pools 1-4 0.005 0.000 0.000 0.000 0.000
#2 58COIN 0.053 0.064 0.052 0.183 1.000
#3 HaoPool 0.058 0.060 0.103 0.199 0.000
#4 BW.com 0.039 0.044 0.065 0.000 0.000
#5 Bitcoin.com 0.055 0.053 0.096 0.158 0.000
#6 Bitfury 0.073 0.090 0.063 0.032 0.000
#7 BTCC Pool 0.060 0.051 0.104 0.200 0.000
#8 Bitclub Network 0.065 0.056 0.043 0.000 0.000
#9 BTC.TOP 0.315 0.331 0.287 0.223 0.000
#10 F2Pool 0.277 0.250 0.188 0.004 0.000
ε – 0.000 -0.053 -0.030 -0.006 0.017

Table 5.11: Optimal allocations for the real case, T = 6, α=75% and different
λ.

– * Pools 1-4 reference the aggregated players KanoPool, ConnectBTC,
Solo CKPOOl and Bitcoin Russia.

Figure 5.21 shows the evolution of the allocations shown in table 5.11.
It can be seen that, the more risk averse the profile, the less allocation is
reserved for player #10 (since that player has the highest cost to mine). Also,
the results for λ = 1.0 are not shown since for that risk profile there is no
nucleolus (ε ≥ 0.0).
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Figure 5.21: Column bars chart for the optimal allocations for the real case, T
= 6, α=75% and different levels of risk aversion (λ).

Let us now analyse λ 0.75 in regards to O(Φ) and P(Φ). Table 5.12 shows
that players #1, #4, #7 and #8 lose money when mining outside the pool
(represented by their negative sign). While in the pool, their value is greater
than out of the pool, indicating that there is value in being part of pool, created
by the combinatorial characteristic of the Binomial distribution in the multi-
period analysis. Player #7 goes from a negative to a positive value. Also, all
εS are strictly lower than zero (P(Φ) strictly higher than O(Φ)).
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Player O(Φ) P(Φ) εS

#1 -0.430 0.000 -0.430
#2 0.149 0.730 -0.581
#3 0.161 0.793 -0.632
#4 -0.133 0.000 -0.133
#5 0.002 0.629 -0.627
#6 0.123 0.129 -0.006
#7 -0.205 0.795 -1.000
#8 -0.232 0.000 -0.232
#9 0.881 0.888 -0.006
#10 0.009 0.015 -0.006

Table 5.12: O(Φ) and P(Φ), T = 6, α=75% and λ=0.75.

The illustrative example studied in 5.1.3, specifically in figures 5.11 and
5.18, shows that all allocations for the nucleolus within a λ are contained in
the area of λ above, with the addition of more points. For example: the area
that contains the allocations within the nucleolus for λ=0.25 all are with the
nucleolus for λ=0.5, 0.75 and 1.0. But allocations in the nucleolus for λ=0.5,
0.75 and 1.0 are not in the nucleolus for λ=0.25.

So, for this real case analysis, results in Table 5.11 are tested, trying
to obtain the same results. Table 5.13 shows that, for a given λ, the optimal
allocation returns ε ≤ 0 when tested for a higher λ. This shows the same
behavior of the illustrative example, except for λ=0.0 and 1.0 (where the result
is the same of Table 5.11, likely due to the solution to this risk profile not being
in the nucleolus). Also, there is no strict generation of value for the allocation of
λ = 0.0 when tested for other λ, with ε is close to zero for the results. Probably
the result is really 0.0, with the difference due to computational issues when
rounding numbers (including allocations, revenues and CV aRα).

λ

Obtained/Tested 0.0 0.25 0.5 0.75 1.0
0.0 0.000 0.005 0.009 0.001 0.017
0.25 0.787 -0.053 -0.0297 -0.006 0.017
0.5 2.42 1.04 -0.03 -0.006 0.017
0.75 7.97 5.13 2.37 -0.006 0.017
1.0 14.6 10.8 7.04 3.24 0.017

Table 5.13: ε obtained when testing xn from different λ.
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Now, we aim to test the results for the two intuitive sharing methods
already exemplified before in this work: relative hashpower and same allocation.
With a similar rationale than the one used in table 5.13, each allocation is
tested for a value of λ, and the results are as:

λ 0.0 0.25 0.5 0.75 1.0
ε (relative hp) 1.18 0.661 0.231 0.127 0.022

ε (same allocation) 6.07 4.08 2.09 0.484 0.032

Table 5.14: ε obtained when testing different λ with xn being the relative hp
of the pool and same allocation.

As Table 5.14 shows, both intuitive sharing methods are not in the
nucleolus of the game for any risk profile, which means that sharing the
revenues according to the computational power of each player directly does
not guarantee nucleolus to the coalition, as sharing rewards equally to every
player also does not guarantee nucleolus to the coalition.

5.3.1
Gain in Probability - Multiperiod

Similarly to the analysis in section 5.1.2, the same test is conducted to the
multi period analysis, aiming to observe the influence of a gain in probability
to the pool:

β

Player 0.00 0.01 0.02 0.05 0.07
#1 0.000 0.042 0.058 0.073 0.080
#2 0.064 0.059 0.074 0.080 0.085
#3 0.060 0.063 0.078 0.082 0.087
#4 0.044 0.041 0.063 0.075 0.081
#5 0.053 0.057 0.076 0.080 0.086
#6 0.090 0.074 0.092 0.087 0.091
#7 0.051 0.056 0.082 0.082 0.087
#8 0.055 0.060 0.086 0.084 0.088
#9 0.331 0.297 0.255 0.185 0.162
#10 0.250 0.251 0.136 0.172 0.153
ε -0.053 -0.325 -0.984 -1.390 -3.316

Table 5.15: Allocation results for different β, T=6 and λ = 0.25.

Table 5.15 indicates a shift in allocations when raising the probability of
a given coalition, to mine. For instance, Player 1 has no allocation when β is
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zero, but sees a share of 8% of the pool’s reward, when the probability to mine
is raised by β=7%. On the other hand, Player 10 sees a decrease in its share.
With higher probabilities to mine, the expected return is altered, so are O(Φ)
and P(Φ). Nonetheless, it is not only the players with lower hash power that
see an increase in their profits, since the average return of the pool is raised
with the pool mining more often, as table 5.16 shows:

β

Player 0.00 0.01 0.02 0.05 0.07
E[RS(π̃St , γ̃t,S)] 15.5 22.7 29.4 49.7 63.2

Table 5.16: Expected returns for different β, T=6 and λ = 0.25.

5.3.2
Future without fixed income

Bitcoin was proposed by Satochi Nakamoto to have a fixed amount of
currency being available for transaction. By the process of halving, already
discussed in this work, every 210.000 blocks added to the ledger, the fixed
income is split in half. In the long run, this means that there will be a moment
where players will only rely in the variable income from mining blocks.

With the data provided by Blockchain.info1 for the variable income
during the first semester of 2018, we used a log-normal distribution to model
this uncertain factor. The estimated parameters by the Maximum Likelyhood
method found were: µ = −0.048 and σ = 0.274, with an expected value for
the bitcoin of 0.98 BTC. This way, a context with computational powers and
costs to mine similar to table 5.10, with fixed income being zero, is tested. The
results are exhibited in table 5.17 and figure 5.22:

1https://www.blockchain.com/charts/transaction-fees, accessed may 5th, 2020
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λ

Player 0.0 0.25 0.5 0.75 1.0
#1 0.175 0.189 0.217 0.791 0.000
#2 0.002 0.000 0.000 0.000 1.000
#3 0.002 0.000 0.002 0.000 0.000
#4 0.096 0.056 0.000 0.000 0.000
#5 0.061 0.000 0.000 0.000 0.000
#6 0.035 0.049 0.081 0.000 0.000
#7 0.148 0.077 0.000 0.000 0.000
#8 0.165 0.228 0.000 0.000 0.000
#9 0.009 0.000 0.000 0.000 0.000
#10 0.309 0.401 0.700 0.209 0.000
ε 0.000 -0.023 -0.040 -0.058 0.017

Table 5.17: Optimal allocations for the real case, T = 6, α=75% and different
λ, without the fixed income.

Figure 5.22: Column bars chart for the optimal allocations for the real case, T
= 6, α=75% and different λ, without the fixed income.
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Table 5.17 and figure 5.22 show that there is no strict generation of value
in being in the pool, considering the presented situation (no fixed incomes and
variable incomes only, and costs as in table 5.10) for λ = 0.0 and λ = 1.0. For
the other values of λ, there is a small benefit to being in the pool, but the
optimal allocations do not match the pattern seen so far, with many players
having zero gains or cases with only two players having allocations greater
than zero. That is not a desired result, since most of the pool does not have
any financial gain to mine, thus being likely to leave the network.

Now, we propose a different approach to analyse this context. Let us
consider that, until the fixed revenues become zero, computers advance in the
natural way of decreasing prices for better performance and that the costs of
energy tend to go down, with new setups for mining bitcoin becoming more
efficient. This way, lowering the overall costs to mine by an extreme approach,
until zero. For zero fixed income and the variable income as expressed in this
section, we now obtain:

λ

Player 0.0 0.25 0.5 0.75 1.0
#1 0.033 0.047 0.053 0.057 0.060
#2 0.045 0.073 0.056 0.058 0.101
#3 0.048 0.082 0.057 0.059 0.115
#4 0.048 0.054 0.057 0.059 0.060
#5 0.056 0.070 0.059 0.059 0.060
#6 0.067 0.127 0.061 0.116 0.060
#7 0.074 0.146 0.063 0.202 0.216
#8 0.082 0.071 0.065 0.229 0.210
#9 0.264 0.161 0.110 0.080 0.060
#10 0.283 0.170 0.418 0.082 0.060
ε 0.000 -0.073 -0.145 -0.218 -0.291

Table 5.18: Optimal allocations for the real case, T = 6, α=75% and different
λ, without the fixed income and with negligible costs.
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Figure 5.23: Column bars chart for the optimal allocations for the real case,
T = 6, α=75% and different λ, without the fixed income and with negligible
costs.

Table 5.18 and figure 5.23 show a reward sharing more akin to the pattern
seen in this work, unlike table 5.17. All players have gains, and ε is even lower,
showing that there is more value to being part of the pool. This is a behavior
explained by the absence of significant mining costs. Even for λ = 1.0, there
is a substantial value in being part of the pool.

Besides lowering the costs, another likely prediction with the end of fixed
incomes, is that miners will ask for higher taxes to add transactions to new
blocks. Our next analysis brings the costs back to mining, while considering the
expected value of the Log-normal distribution to be the same as today’s fixed
income (12.5 BTC), changing the variable income distribution parameters to:
µ = 2.488 and σ = 0.274. The results are then presented in table 5.19 and
figure 5.24:
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λ

Player 0.0 0.25 0.5 0.75 1.0
#1 0.005 0.000 0.000 0.000 0.000
#2 0.053 0.056 0.051 0.185 1.000
#3 0.058 0.060 0.055 0.201 0.000
#4 0.039 0.045 0.041 0.000 0.000
#5 0.055 0.066 0.097 0.157 0.000
#6 0.074 0.090 0.062 0.032 0.000
#7 0.059 0.051 0.105 0.202 0.000
#8 0.065 0.074 0.115 0.000 0.000
#9 0.316 0.309 0.287 0.222 0.000
#10 0.277 0.250 0.186 0.000 0.000
ε 0.000 -0.049 -0.027 -0.005 0.017

Table 5.19: Optimal allocations for the real case, T = 6, α=75% and different
λ, without the fixed income and with higher variable incomes.

Figure 5.24: Column bars chart for the optimal allocations for the real case, T
= 6, α=75% and different λ, without the fixed income and with higher variable
incomes.

Table 5.19 and figure 5.24 show a result similar to table 5.11 in terms

DBD
PUC-Rio - Certificação Digital Nº 1721344/CA



Chapter 5. Results and Discussions 67

of allocations and ε. Since the variable income has an expected value close to
that of the fixed revenue per block, but being stochastic, it is, on average, the
same. This is an important result: even when, in the future, the fixed income
for mining bitcoins lowers to zero, it will still be possible to share rewards in a
pool in the same way as today, by having an increase in the variable incomes.
This result also shows that our model shares the reward accordingly to the
profits of the pool, not changing it with the source of income.

Lastly, we study a case in the future where the variable income has
reached a similar magnitude to today’s fixed income, and the variance of the
log-normal distribution is the triple of today’s. With this setup, we propose a
market where this fee to add a transaction to the next block is strongly volatile.
The expected value of a reward is still 12.5 BTC for the variable income. The
results are:

λ

Player 0.0 0.25 0.5 0.75 1.0
#1 0.014 0.009 0.000 0.000 0.000
#2 0.051 0.054 0.069 0.132 1.000
#3 0.055 0.062 0.064 0.054 0.000
#4 0.042 0.044 0.037 0.002 0.000
#5 0.055 0.061 0.055 0.028 0.000
#6 0.071 0.074 0.102 0.053 0.000
#7 0.064 0.060 0.085 0.152 0.000
#8 0.070 0.078 0.071 0.169 0.000
#9 0.300 0.297 0.290 0.245 0.000
#10 0.279 0.261 0.227 0.165 0.000
ε 0.000 -0.073 -0.144 -0.063 0.017

Table 5.20: Optimal allocations for the real case, T = 6, α=75% and different
λ, without the fixed income, with higher variable incomes and higher variance.
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Figure 5.25: Column bars chart for the optimal allocations for the real case,
T = 6, α=75% and different λ, without the fixed income, with higher variable
incomes and higher variance.

Table 5.20 and figure 5.25 show values of ε lower than the other setups
in this section, but different allocation rewards between players. When raising
the variance, coalitions out of the pool are more affected by lower rewards than
the ones in the pool, since those have the pool to support them. So, ε is higher
then in the Real Case example because O(Φ) is lower, and not because P(Φ)
is raising. In fact, there is no negative value for all P(Φ).

5.3.3
Optimal allocations behavior with different objective functions

Through this work, we aim to obtain the optimal allocations for a pool
of miners in a Bitcoin network with an optimization model that minimizes the
difference between being in and out of the pool, or as Equation (4-11) states,
to minimize the maximum difference between the value of being in the pool
and out of the pool.

However, there are more possible goals miners might want to reach when
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trying to obtain a “fair” allocation of mining rewards other than measuring
the difference said above. Specifically, a pool might want to reward its players
by their weighted average (hpn

Cn
, or the percentage of hashpower a player in the

pool has in relation to his cost to mine) or by their contribution to the pool.
For instance, in the real case analyzed, BTC.TOP & F2Poll have 222.72%
and 245.45% more hashpower than Bitclub Network, the “best” miner besides
them. The pool might want to maximize the rewards given to those two players,
in order to maintain them in the pool and help others sustain a more frequent
gain in the network.

With this mindset, we propose an analysis of the behavior of allocations
for each alternative objective functions (OF):

1. OF 1 - Infinite norm - Equation (4-11)

2. OF 2 - Average weighting - max∑n∈N
hpn

Cn

3. OF 3 -Thankful contributors - max x9 + x10

Table 5.21 shows the optimal allocations for each objective function
proposed and the higher difference of O(Φ) and P(Φ). Additionally, in column
3 we set for OF1 ε = 0.0 and present the respected optimal allocations.

Player OF 1* OF 1 OF 2* OF 3*
#1 0.000 0.00 0.00 0.00
#2 0.052 0.047 0.098 0.047
#3 0.103 0.051 0.106 0.051
#4 0.065 0.014 0.014 0.014
#5 0.096 0.036 0.036 0.036
#6 0.063 0.058 0.058 0.058
#7 0.104 0.021 0.021 0.021
#8 0.043 0.023 0.023 0.023
#9 0.287 0.283 0.457 0.562
#10 0.188 0.462 0.183 0.183
O(Φ) - P(Φ) -0.03 0.00 0.00 0.00

Table 5.21: Optimal allocations for the real case, T = 6, α=75%, λ = 0.5 and
different OFs.

– OF1* refers to the optimal result the model returns for OF 1, already
presented at the beginning of this subsection.

Firstly, we highlight that by using the objective functions 2 & 3, the
respective ε is zero. Also, it can be noted that OF 3 aims to maximize the
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allocation of players #9 and #10, that are the ones in the pool with the
highest hashpower. Thus, the result of such optimization translates to the
“power” such players have in the pool (74.5%). Interestingly enough, that is
the same sum obtained by those players in OF 1 when ε is set at zero (column
3). Because allocations for players #1 to #8 are the same for OFs 1 and 3,
minimizing the maximum difference between O(Φ) and P(Φ) and maximizing
players with maximum hashpower produce a similar result, only that player
#9 obtains a higher share in OF 3, likely due to him having lower costs than
player #10. OF 2 shows interesting results. Some players produce the same
results as OFs 1 and 3 (players #4 to #8), but players #2 and #3 now have
a higher share. Since those players have lower costs to mine, maximizing the
average between hashpower and costs make them more valuable, and thus they
bring more to the pool.

Now, we let ε vary from 0 (zero) to the result of ε in Table 5.11 for λ=0.5.
In other words, we define the limits: the lowest value of ε that the optimization
model returns for OF 1, and zero. If, lets say, ε is -0.5, the optimization model
is forced for ε to be between -0.5 and 0.0, with steps of 0.005 (with the grand
total of 100 steps). Those are forced into the optimization model for each OF,
and the allocations obtained are plotted in a accumulated bar style in figures
5.26, 5.27 and 5.28.

Figure 5.26: Allocations for Objective Function (OF) 1.
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Figure 5.27: Allocations for Objective Function (OF) 2.

Figure 5.28: Allocations for Objective Function (OF) 3.

The analysis of Figures 5.26, 5.27 and 5.28 shows variations in allocations
for all 3 OFs, but consistent with results in table 5.21. For instance, despite
raising with the increase of ε, player #10 has a higher share than player #9 for
OF 1, whilst having the opposite for OFs 2 & 3. Players with lower hashrates
have variations so small, that they are not perceivable in the figures.
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Recall from table 5.21, the optimal allocations for OF 2 & OF 3 recovers
an ε equal to zero. This result indicates that this allocation is, although
theoretically in the nucleolus, is fragile as there is no strict benefit. Therefore,
the last analysis of objective functions consists in comparing the allocations
with ε being forced to zero, and ε being forced to be the same as OF 1*, but
for OF 2 and OF 3:

OF1* OF 2 OF 3
Player ε min ε ε min ε ε min
#1 0.00 0.00 0.00 0.00 0.00
#2 0.052 0.098 0.094 0.047 0.051
#3 0.103 0.106 0.102 0.051 0.055
#4 0.065 0.014 0.017 0.014 0.017
#5 0.096 0.036 0.040 0.036 0.040
#6 0.063 0.058 0.062 0.058 0.062
#7 0.104 0.021 0.025 0.021 0.025
#8 0.043 0.023 0.026 0.023 0.026
#9 0.287 0.457 0.442 0.562 0.531
#10 0.188 0.183 0.187 0.183 0.187
ε -0.030 0.00 -0.030 0.00 -0.030

Table 5.22: Optimal allocations for the real case, T = 6, α=75%, ε 0.0, λ =
0.5 and min, and OFs 2 and 3.

Table 5.22 shows that the allocations obtained by the optimization model
return similar results with ε being forced to 0.0 or to the minimum value
obtained by OF 1, for each of the other objective functions proposed. Still,
those are different than the optimal allocations for OF 1.

A case here can be made: when trying to obtain the optimal allocations
directly through OF 2 and OF 3, ε is not < 0.0. But after forcing it to the
lowest ε obtained by OF 1, it does return allocations that combine both goals:
to minimize ε (and thus, generating the highest value to the pool) and to share
the rewards accordingly to a more “fair” method. That is a suggestion that
this work proposes; to obtain the optimal allocations in 2 steps:

1. minimize ε through OF 1;

2. find new allocations forcing this ε with a new OF.

That way, a pool is trying to generate as much value as possible, while
being able to share the rewards by the most appropriate ensuring “fairness” in
the sharing of rewards.
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6
Conclusion and future work

In this work, we construct models for the revenue and profit of a miner
in the bitcoin network, whether alone or in a coalition. In addition, an
optimization model to find the allocations of the players using a nucleolus-
based quota allocation model has also been devised and implemented.

The profit model we propose takes into account the success a miner has
in mining the next blocks, with the probability to mine being represented by
a Bernoulli (for the next block) distribution, or a Binomial (for any number
of blocks greater than 1) distribution. An allocation sharing method based
on Cooperative Game Theory is used (nucleolus-based), and a characteristic
(or value) function is proposed, combining the expected return in mining for
bitcoin, and the risk associated with such activity, in the form of a Coherent
Risk Measure (the Conditional Value at Risk).

The analysis of the illustrative example with 3 players shows that there
is no strict benefit for them to be part of the pool for a single block. Also, the
presence of costs to mine and the inclusion of a risk aversion profile deviates
the solution from the intuitive allocation (sharing by computational power
or equally sharing). There is strict benefit for the next block only if a gain
in probability by being in the pool, is considered. Said gain is represented
by a function proportional to the number of players in a coalition (when the
coalition has more than 1 member).

While mining alone can provide higher incomes for a player, accumulated
probabilities result indicates that said player is likely to spend most of its
mining work with negative cash-flows, since his costs are always present. On
the other hand, mining in a pool assures him positive cash flows more often,
offering a less risky way to operate. When mining in a pool, the coalition has a
higher hashpower than each player alone, and so the average time to correctly
guess the hash of a new block becomes lower, raising the chances to mine the
next block.

When looking at a multi-period setup, the combinatorial nature of mining
brings value to the coalition more than working out of the pool, providing
incomes that not only make players want to remain together, but gives them
higher expected rewards in total. Also, the introduction of a risk measure is
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shown to change the optimal allocations of a pool, depending on the weight
that it receives.

A visual representation of the core of the game was presented, showing
all the possible allocations with 3 players. For the single period analysis,
the core set is a singleton, while for the multi-period analysis there is a
cloud representing many allocations in the nucleolus of the game. The longer
the period considered, smaller the “area” representing the core of the game.
Interesting to note, that the nucleolus raises from a single point, and then
condensates again, as allocations converge. By increasing the number of blocks
analyzed, we observed that intuitive sharing is not in the nucleolus of the game
for any risk profile considered.

The real case analysis further stresses the optimization model and
presents results that are in line with those of the illustrative example. We
considered a future without the fixed income from mining and alternatives to
maintain players with positive cash flows in this scenario. It can be shown that
it is possible for the bitcoin network to remain operational with the miners
still working mainly by raising the variable income and lowering mining costs.

Lastly, as each pool might consider sharing its rewards differently, a
study with 3 proposed different object functions is conducted. Those objective
functions contain the method in which each group of players might prefer
to share the rewards, and so treats the “fairness” in quota allocations in
Cooperative Game Theory for this work. We propose a strategy to allocate
the rewards in 2 steps: first, minimize the difference between being in an out
of the pool, and then use this difference to find the optimal allocations with a
different objective function.

Suggestions for further works aims to raise the number of players included
in the pool, as well as obtaining more robust representations of the variable
incomes and the costs associated with mining Bitcoin. A time-dependent
representation of the mining probability for each block is also to be considered.
Also it is important to analyze the reason for the behavior of the allocations
with different representations of risk profile.
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