Rubens Oliveira de Araújo

Avaliação de Opções Reais Através do Método dos Mínimos Quadrados de Monte Carlo

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Industrial da PUC-Rio.

Orientador: Tara Keshar Nanda Baidya

DEI PUC-Rio, março de 2004

Avaliação de Opções Reais Através do Método dos Mínimos Quadrados de Monte Carlo

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Industrial da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Tara Keshar Nanda Baidya Orientador DEI PUC-Rio

> José Paulo Teixeira DEI PUC-Rio

Carlos Patrício Samanez DEI PUC-Rio

José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

DEI PUC-Rio, 25 de março de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rubens Oliveira de Araújo

Graduou-se em Engenharia Civil pela Universidade Federal do Ceará em 2002, onde foi bolsista do Programa Especial de Treinamento (PET-CAPES) por mais de 2 anos e teve a oportunidade de estagiar em empresas de engenharia. No mestrado, devido ao seu rendimento acadêmico, foi beneficiado com bolsas de desempenho da PUC e da FAPERJ. Atualmente, é engenheiro de pesquisa da PUC e participa de um projeto envolvendo o Departamento de Engenharia Industrial e a Petrobrás.

Ficha Catalográfica

Araújo, Rubens Oliveira de

Avaliação de opções reais através do método dos mínimos quadrados de Monte Carlo / Rubens Oliveira de Araújo ; orientador: Tara Keshar Nanda Baidya. – Rio de Janeiro : PUC-Rio, Departamento de Engenharia Industrial, 2004.

137 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Industrial.

Inclui referências bibliográficas

1. Engenharia industrial – Teses. 2. Opções reais. 3. Simulação de Monte Carlo. 4. Regressão. I.Baidya, Tara Keshar Nanda. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

CDD: 658.5

Aos meus queridos pais, João e Eunice, minha eterna gratidão. Que algum dia eu seja e faça pelos meus filhos o que vocês são e fazem por mim. Amo vocês.

Agradecimentos

A Deus, por sempre me conduzir em bons caminhos.

A minha maravilhosa família, pela torcida e pelo carinho que sempre tiveram por mim.

Ao professor Tara, pela amizade e orientação que me ofereceu, sempre priorizando, acima de tudo, o meu aprendizado.

A Alinne, pelo apoio e compreensão nos momentos finais da dissertação.

A todos os amigos da turma de mestrado, pela forma que me receberam e pelos momentos de descontração e confraternização que tivemos ao longo do mestrado.

A todos do Departamento de Engenharia Industrial (professores e funcionários), pelos ensinamentos que me foram transmitidos e pela atenção que sempre tiveram por mim.

A FAPERJ e CAPES, pela ajuda financeira para a realização deste trabalho.

Resumo

Oliveira de Araújo, Rubens. **Avaliação de Opções Reais Através do Método dos Mínimos Quadrados de Monte Carlo.** DEI PUC-Rio, 2004. xxxp. Dissertação de Mestrado - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho tem como objetivo testar empiricamente a eficiência e a aplicabilidade do método dos mínimos quadrados de Monte Carlo (LSM) na avaliação de projetos envolvendo opções reais. Inicialmente, o método passou por uma série de testes de sensibilidade para validação do mesmo. Em seguida, alguns exemplos de projetos de exploração e produção (E&P) de petróleo com opções reais foram elaborados, e seus valores determinados através do LSM. Estes resultados foram comparados aos resultados obtidos com o modelo binomial que, devido a sua simplicidade e ampla utilização, foi escolhido como benchmark para analisar a eficiência do método LSM.

Devido às semelhanças entre oportunidades de investimento em ativos financeiros e reais, muitos estudos são realizados no sentido de adaptar instrumentos financeiros para a avaliação econômica de projetos. Muitas pesquisas sobre opções reais foram desenvolvidas em exploração de recursos naturais, em especial de E&P de petróleo. Isso ocorre devido ao porte dos investimentos que são realizados neste setor e as suas características peculiares: o mercado de petróleo é bem desenvolvido (presença de mercado futuro, instrumentos de proteção financeira, derivativos etc); os investimentos ocorrem num ambiente de incertezas econômicas e / ou técnicas; os projetos demandam uma série de flexibilidades gerenciais (prazos alternativos para execução dos investimentos, possibilidade de mudanças na escala do projeto, entre outras). Tais características fazem com que seja necessária uma avaliação mais cautelosa e criteriosa destes ativos reais. Uma nova ferramenta desenvolvida neste sentido é o método LSM, que consiste na avaliação de opções americanas através de simulações e de regressões simples.

Palavras-chave

Opções Reais, Simulação de Monte Carlo, Regressão.

Abstract

Oliveira de Araújo, Rubens. Valuation of Real Options Through The Least Square Monte Carlo Approach. DEI PUC-Rio, 2004. xxxp. MSc. Dissertation - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

The main objective of this work is to test empirically the efficiency and the accuracy of the Least Squares Monte Carlo Approach (LSM) in the valuation of projects involving real options. Initially, a series of sensibility tests will be used for its validation. After this, some examples of projects of petroleum exploration and production (E&P) with real options will be elaborated, and their values determined by LSM. The results will be compared with those obtained using the binomial model. It was chosen as benchmark to analyze the efficiency of the LSM due to its simplicity and wide use.

Due to similarities between investments in financial and real assets, many studies made with financial instruments have been adapted for economic valuation of projects. Many researches about real options were developed in exploration of natural resources, especially in petroleum E&P. This happens due to the volume of the investments involved and to its peculiar characteristics: the petroleum market is quite developed (presence of future market, financial instruments of protection, derivatives etc); the investments happen to be in an atmosphere of economical and/or technical uncertainties; the projects demand a series of managerial flexibilities (alternative periods for execution of the investments, possibility of changes in the scale of the project etc). Such characteristics require a more careful evaluation of these real assets. A new tool developed in this sense is the LSM. The method consists of the valuation of american options through simulations and simple regressions.

Palavras-chave

Real Options, Monte Carlo Simulation, Regression.

Sumário

1 Introdução	16
2 Tipos de Opções Reais	20
2.1. Opção de Adiar um investimento (opção de espera)	20
2.2. Opção de Expansão	23
2.3. Opção de Redução	25
2.4. Opção de Paralisação Temporária das Operações	26
2.5. Opção de Abandono	27
2.6. Opção de Troca de Uso	29
2.7. Opção de Investimento em Informação	30
3 Definições e Conceitos Básicos para a Teoria de Opções Reais	31
3.1. Técnicas de Otimização Dinâmica sob Incerteza	31
3.1.1. Programação Dinâmica	31
3.1.2. Ativos Contingentes (Contingent Claims)	32
3.2. Processos Estocásticos	34
3.2.1. Processo de Wiener	34
3.2.2. Processo de Ito	35
3.2.3. Movimento Geométrico Browniano (MGB)	35
3.2.4. Processo de Reversão à Média	36
3.2.5. Processo de Poisson	37
3.3. Métodos Numéricos de Avaliação	39
3.3.1. Modelo Binomial	39
3.3.2. Método das Diferenças Finitas	42
3.3.3. Simulação de Monte Carlo	46
4 Opções Reais em Projetos de E&P de Petróleo: Alguns Modelos Deser	างดไงเ่ดือร
	49
4.1. Modelo de Paddock, Siegel & Smith	49
4.2. Modelo de Cortazar, Schwartz e Casassus	53
4.2.1. O modelo	53

5 Método dos Mínimos Quadrados de Monte Carlo (LSM)	57
5.1. Exemplo Numérico	58
5.2. Estrutura do Método	64
5.3. Abordagem de Gamba para a Avaliação de Opções Reais	67
5.3.1. Opções Independentes	67
5.3.2. Opções Compostas	68
5.3.3. Opções Mutuamente Exclusivas	69
5.3.4. Aplicação do método LSM para avaliação de opções reais	69
6 Análise de Sensibilidade do Método LSM	72
6.1. Número de simulações (m)	74
6.2. Número de intervalos de tempo (n)	79
6.3. Grau do Polinômio na Regressão	84
7 Avaliação de Opções Reais Através do Método LSM	88
7.1. Descrição dos Projetos	88
7.1.1. Projeto A	88
7.1.2. Projeto B	90
7.2. Descrição dos Cenários	93
7.2.1. Cenário 1	93
7.2.2. Cenário 2	93
7.2.3. Cenário 3	94
7.3. Resultados obtidos	96
7.3.1. Cenário 1	96
7.3.2. Cenário 2	97
7.3.3. Cenário 3	98
7.3.4. Comparação entre cenários	100
8 Conclusões e Recomendações	103
Referências Bibliográficas	105
Apêndice A: Técnicas de Redução de Variância	107

Apêndice B: Formulação Matemática do Modelo de Paddock, Siegel & Smith 111

Apêndice C: Descrição Matemática do Modelo de Cortazar, Schwartz &	Casassus
	115
Apêndice D: Algoritmos Para Avaliação de Opções	120
D.1. Avaliação de Call Americana Através do Método Binomial	120
D.2. Avaliação de Call Americana Através do Método LSM	121
D.3. Avaliação de Put Americana Através do Método Binomial	123
D.4. Avaliação de Put Americana Através do Método LSM	124
D.5. Avaliação do Projeto A Através do Método Binomial	127
D.6. Avaliação do Projeto A Através do Método LSM	128
D.7. Avaliação do Projeto B Através do Método Binomial	131
D.8. Avaliação do Projeto B Através do Método LSM	133

Lista de figuras

rigura 1. 1 ayons de uma opção de espera.	ا ک
Figura 2: Payoffs de uma opção de expansão.	23
Figura 3: Payoffs de uma opção de abandono.	27
Figura 4: Representação gráfica de um MGB com drift positivo.	36
Figura 5: Representação gráfica de um processo de reversão à média,	com
tendência de queda de preços.	37
Figura 6: Árvore binomial de três passos.	39
Figura 7: Convergência do modelo binomial para exemplos de call do	tipo
européia.	41
Figura 8: Convergência do modelo binomial para exemplos de put do	tipo
européia.	42
Figura 9: Representação gráfica do <i>grid</i> do método das diferenças finitas.	43
Figura 10: Simulações de trajetórias de preços (MGB). <u>Dados:</u> P_0 = \$ 720,00); r =
10 % aa; q = 5% aa; T = 6 anos; n = 60; σ = 20% aa.	48
Figura 11: Representação gráfica de um projeto com n estágios de explora	ação
(Fonte: Cortazar <i>et al</i> , 2001).	54
Figura 12: Estrutura do método LSM.	66
Figura 13: Erro relativo da análise de sensibilidade do método LSM _I	para
exemplos de call americana. <u>Variável de análise:</u> número de simulações	. 75
Figura 14: Desvio padrão da análise de sensibilidade do método LSM	para
exemplos de call americana. <u>Variável de análise:</u> número de simulações	. 76
Figura 15: Erro relativo da análise de sensibilidade do método LSM	-
exemplos de put americana. <u>Variável de análise:</u> número de simulações.	. 77
Figura 16: Desvio padrão da análise de sensibilidade do método LSM	para
exemplos de put americana. <u>Variável de análise:</u> número de simulações.	. 78
Figura 17: Erro relativo da análise de sensibilidade do método LSM	para
exemplos de call americana. Variável de análise: discretização do tempo). 80
Figura 18: Desvio padrão da análise de sensibilidade do método LSM p	para
exemplos de call americana. <u>Variável de análise:</u> discretização do tempo	
Figura 19: Erro relativo da análise de sensibilidade do método LSM	-
exemplos de put americana. <u>Variável de análise:</u> discretização do tempo	
Figura 20: Desvio padrão da análise de sensibilidade do método LSM	para

exemplos de put americana. Variável de análise: discretização do tempo. 83 Figura 21: Erro relativo da análise de sensibilidade do método LSM para exemplos de call americana. Variável de análise: grau do polinômio da regressão. 85 Figura 22: Desvio padrão da análise de sensibilidade do método LSM para exemplos de call americana. Variável de análise: grau do polinômio da regressão. Figura 23: Erro relativo da análise de sensibilidade do método LSM para exemplos de put americana. Variável de análise: grau do polinômio da regressão. 86 Figura 24: Desvio padrão da análise de sensibilidade do método LSM para exemplos de put americana. Variável de análise: grau do polinômio da regressão. 87 Figura 25: Representação gráfica da árvore de decisão do projeto A. 89 91 Figura 26: Representação gráfica do projeto B. Figura 27: Desvio padrão dos resultados obtidos na avaliação do projeto A em 102 todos os cenários.

Figura 28: Desvio padrão dos resultados obtidos na avaliação do projeto B em

102

todos os cenários.

Lista de tabelas

Tabela 1: Trajetórias de preços da ação.	58
Tabela 2: Matriz de fluxos de caixa em t = 3.	59
Tabela 3: Dados para a regressão em t = 2.	59
Tabela 4: Valores de exercício e de continuação para a decisão para t = 2.	60
Tabela 5: Matriz de fluxos de caixa em t = 2.	61
Tabela 6: Dados para a regressão em t = 1.	61
Tabela 7: Valores de exercício e de continuação para a decisão para t = 1.	62
Tabela 8: Matriz de exercício ótimo da opção em cada trajetória de preços.	62
Tabela 9: Matriz de fluxos de caixa resultantes do exercício ótimo da opção.	63
Tabela 10: Análise de sensibilidade do método LSM para exemplos de	call
americana. Variável de análise: número de simulações.	74
Tabela 11: Análise de sensibilidade do método LSM para exemplos de	put
americana. Variável de análise: número de simulações.	76
Tabela 12: Análise de sensibilidade do método LSM para exemplos de	call
americana. Variável de análise: discretização do tempo.	79
Tabela 13: Análise de sensibilidade do método LSM para exemplos de	put
americana. Variável de análise: discretização do tempo.	81
Tabela 14: Análise de sensibilidade do método LSM para exemplos de	call
americana. Variável de análise: grau do polinômio da regressão.	84
Tabela 15: Análise de sensibilidade do método LSM para exemplos de	put
americana. Variável de análise: grau do polinômio da regressão.	86
Tabela 16: Resultados da avaliação do projeto A, cenário 1.	96
Tabela 17: Resultados da avaliação do projeto B, cenário 1.	97
Tabela 18: Resultados da avaliação do projeto A, cenário 2.	97
Tabela 19: Resultados da avaliação do projeto B, cenário 2.	98
Tabela 20: Resultados da avaliação do projeto A, cenário 3.	99
Tabela 21: Resultados da avaliação do projeto B, cenário 3.	99
Tabela 22: Valores médios obtidos na avaliação do projeto A em todos	os
cenários.	100
Tabela 23: Valores médios obtidos na avaliação do projeto B em todos	os
cenários.	100
Tabela 24: Desvio padrão dos resultados obtidos na avaliação do projeto A	em

todos os cenários. 101

Tabela 25: Desvio padrão dos resultados obtidos na avaliação do projeto B em todos os cenários.

Lista de quadros

Quadro 1: Equivalência entre os parâmetros necessários para avaliar opções financeiras e reservas não-desenvolvidas, segundo a abordagem de Paddock et al.