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Abstract

Mecler, Davi Zerpini; Martinelli Pinto, Rafael (Advisor); Hoff, Ar-
ild (Co-Advisor). A Metaheuristic for the Pipe Laying Support
Vessels Scheduling Problem. Rio de Janeiro, 2020. 75p. Dissertação
de Mestrado – Departamento de Engenharia Industrial, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

This work objective is to propose an Iterated Local Search metaheuristic
to minimize the weighted completion time of jobs on identical parallel
machines scheduling problems. The secondary objective of this work is to
propose a practical solution to the real problem of the studied company.
The motivation of this work consists on a practical application in the Oil
& Gas industry, where the PLSV vessels perform ordered operations in
a set of wells aiming to maximize the oil production. The characteristics
of the problem such as: eligibility between vessels and operations, setup
times related to the family of activities, association between operations
and wells and setup times depending on the material arrival fit well the
identical parallel machine schedule modelling. In this work, an introduction
about the theme is presented, followed by a literature review on identical
parallel machine scheduling problems, the mathematical formulation with
the problem description is presented, the methodology, including the solution
representation, constructive heuristic, neighborhood structures, local search
and Iterated Local Search is exposed, at last, the method results and
conclusions of the work are summarized.

Keywords
Metaheuristic Parallel Machine Scheduling Oil & Gas PLSV

Iterated Local Search
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Resumo

Mecler, Davi Zerpini; Martinelli Pinto, Rafael; Hoff, Arild. Uma
Metaheuristica para o Problema de Escalonamento de Pipe
Laying Support Vessels. Rio de Janeiro, 2020. 75p. Dissertação
de Mestrado – Departamento de Engenharia Industrial, Pontifícia
Universidade Católica do Rio de Janeiro.

Este trabalho tem como objetivo propor uma metaheurística Iterated
Local Search para minimizar o tempo de término ponderado de jobs em
problemas de escalonamento de máquinas idênticas paralelas. O objetivo
secundário do trabalho é propor uma solução prática para um problema real
da companhia estudada em questão. A motivação para o trabalho consiste
em uma aplicação prática na indústria de óleo e gás, onde os navios PLSV
realizam operações em poços de forma ordenada e visando a antecipação dos
poços de petróleo mais produtivos. As características do problema, tais quais:
elegibilidade entre navio e operações, tempos de setup relativos à família de
atividades, associações entre operações e poços e setups que dependem da
chegada de material se adequam a modelagem baseada em escalonamento de
máquinas paralelas idênticas. No trabalho uma introdução à respeito do tema
é apresentada, em seguida é feita uma revisão da literatura sobre problemas
de máquinas paralelas idênticas, a formulação matemática com a descrição
do problema é apresentada, a metodologia contemplando representação da
solução, heuristica construtiva, vizinhanças exploradas, busca local e Iterated
Local Search é exposta, por fim são apresentados os resultados do método e
as conclusões sobre o trabalho.

Palavras-chave
Metaheurística Escalonamento de Máquinas Paralelas Óleo & Gás

PLSV Iterated Local Search
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1
Introduction

Pipe Laying Support Vessels (PLSV) are one of the most critical agents on the
oil offshore exploration and production (E&P). These vessels are responsible for
connecting sub-sea oil wells to the production platforms. Their high operational
cost is reflected in expensive daily fleet rates Bremenkamp (2017). Efficiently
planning these connections is a crucial step on the oil & gas supply chain
management, once this is the last stage before a well can start the oil production.
The exploration companies have an available fleet of these vessels to coordinate
and need to define a schedule for each PLSV to perform interconnection
operations at a set of oil wells located off-shore. Any improvement on this
schedule is reverted in a great amount of money saved, which can be measured
by oil production, fleet rental cost, tardiness in the whole operation and other
key factors. One or more of these objectives must be considered for the company
to optimize their schedule providing a relevant competitive advantage.

The PLSV operation starts at the port, with the loading of the necessary
equipment to perform the connection procedures. Once the vessel is loaded, it
navigates to reach the off-shore wells where the operations are performed. The
PLSV connects the lines between the platform and the wells and then returns
to the port to reload and repeat this process to perform more operations. This
whole cycle is planned for a one-year time horizon in most cases. An illustration
of the platform, lines and wells is shown in Figure 1.1

There are three main families of operations that the PLSV perform: wells
interconnections, which are the most relevant and common activities; manifold
installations, allowing a single production platform to be connected with many
oil wells; and scheduled vessel maintenance, which are related to the vessel and
not the wells but is considered as an operation in the schedule. An image of a
manifold installation is exposed in Figure 1.2.

Regarding the vessels, each one has a specific release date, due to contract
characteristics. PLSV vessels can be eligible or not to perform a specific
operation since their fleet is heterogeneous. Another aspect to be considered is
the occupancy capacity, rated on the vessel’s deck that will be used to store
the necessary equipment.
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Chapter 1. Introduction 12

Figure 1.1: The PLSV Connections Scheme

Source: CENPES/Petrobras

Figure 1.2: Manifold Connections

Source: CENPES/Petrobras

In Figure 1.3, a water injection well illustration is shown. The oil
production wells can be rising wells, that have enough pressure to elevate
the oil from the reservoir, and the non-rising wells, that need lifting methods
such as water and gas injection to pressurize the well and elevate the oil.
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Chapter 1. Introduction 13

Regarding the petroleum production, there are two types of wells that the
PLSV operate on: the oil production wells, which are responsible for the oil
elevation from the reservoir to the platform and the water/gas injection wells,
that energize the reservoir, guaranteeing a constant pressure after the oil
removal.

Figure 1.3: Water Injection Scheme

Source: Offshore Technology

For the wells to be considered complete, different kinds of operations need
to be performed. These operations have release dates, related to the arrival of
the necessary equipment, and estimated processing times. The production rates
in each well varies and there is dependence between them, where a well needs
others to be finished in order to start the oil production. The oil production
wells have three kinds of line that the PLSV will connect to the platform: the
production line, which will transport the petroleum from the reservoir to the
platform, the umbilical line that opens and shuts the wells valves, and the
annular lines that are used to pressurize the wells and elevate the oil. The water
and gas injection wells require two kinds of pipelines: the annular line and the
umbilical line. These lines are explained in Figure 1.4.

The PLSV is an extremely limited and expensive resource, influencing
decision makers to search for the available tools to optimize their activities.
The problem studied in this work consists on delivering a schedule plan that
determines: which operations will be performed by each vessel, the date and
order of these operations and how this schedule will be divided in PLSV voyages.
The structure of these voyages consists on a setup time, that considers the
loading time of the necessary equipment and navigation time to the wells,
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Figure 1.4: Production Wells and Water Injection Wells Pipelines

Source: The Author

followed by one or more operations of the same family to be performed. These
setup times are classified as non-anticipatory because they can only start when
all operations of the voyage are released (due to equipment availability). The
objective is finishing the most productive wells as soon as possible, maximizing
the oil production.

Due to the characteristics of the PLSV scheduling problem, we can
model it as an identical parallel machine scheduling problem. The vessels are
interpreted as machines that perform operations. Each operation is associated
to a well, which we will call a job, following the common parallel machine
scheduling problem notation. In that notation, the operations are the elements
that are processed by the machines, while the jobs are associated to a set of
operations. In that way, the jobs are not processed directly by machines, but
when all operations associated to a specific job are finished, it is considered
complete. The family of operations is related to their types and for each family
we have a different setup time associated. Another important aspect of the
machine scheduling problem is the association between the batches and PLSV
voyages. The batches are formed by one setup time followed by a sequence of
operations. In the PLSV problem any voyage starts with loading the vessels
and navigating to the wells (analogous to the machine scheduling setup times)
to perform a sequence of operations.

Identical parallel machine scheduling has been intensively studied in the
past 20 years, in many different applications and approaches. The objective of
this work is to develop efficient algorithms to minimize the weighted completion
time on identical parallel machine scheduling problems with non-anticipatory
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family setup times, eligibility between machines and operations, release dates
of operations and machines, job-operations associations and non-preemptive
operations. The secondary objective of this work is to solve the real-life
application that motivated this study which is the PLSV scheduling problem.

The main contributions of this work is providing a local search procedure
as well as a metaheuristic algorithm that reach high quality solutions for the
described problem in competitive time. Another important contribution is
running extent computational experiments in a large set of instances based in
real PLSV problem data.

The remainder of this work is divided as follows. In Chapter 2, a complete
literature review on identical machine scheduling problem is presented. In
Chapter 3, we describe the problem and present a mathematical formulation
in detail. In Chapter 4, the methodology of the work is introduced, including
the implemented constructive heuristic, explored neighborhood structures, the
local search procedure and the Iterated Local Search metaheuristic. In Chapter
5, computational experiments are shown with structured results and in Chapter
6, we present the conclusions of the thesis and recommended future work.
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2
Literature Review

The parallel machine scheduling problem with setup times has been intensively
studied in the literature for the past 20 years. In this study we focus only on the
identical parallel machine scheduling problem with setup times, but there are
several other considerations on non-identical parallel machine problems, with
and without setup times and other modelling approaches. Potts and Kovalyov
(2000) provided a extensive literature review on scheduling with batching,
not only in parallel machines, explaining the basic algorithms and focused on
dynamic programming methods to solve this kind of problems. These algorithms
consist in creating a forward recursion appending jobs in a specific schedule
and a backward recursion inserting jobs in the beginning of a schedule. We
suggest this article to understand problems that treat non-identical parallel
machine scheduling.

We selected 21 of the most relevant papers aimed to solve identical parallel
machine scheduling problems with family setup times. The solution approaches
presented vary from mixed-integer linear problem formulations to heuristics
and metaheuristics. Some of the articles are focused on real life problems
applications while most of them are based on theoretical problems. We limited
our research to articles published in the last twenty years, written in English,
related to identical parallel machine scheduling problems and published in
journals or book series. The search was performed on the Scopus platform and
the key words searched were: "identical parallel machine scheduling problem"
and "batch scheduling problem" A summary of all studied publications is shown
in Table 2.1.

Regarding exact methods, Webster and Azizoglu (2001) addresses the
problem on scheduling identical parallel machines with family setup times in
order to minimize total weighted flowtime. They also present two dynamic
programming algorithms, named backward and forwards procedures. They
show that when the number of machines and families are fixed, the backward
recursion is executed in polynomial time in the sum of the weights and the
forward recursion is executed in polynomial time in the sum of times (both setup
and processing). Comparing then the sum of weights and times will define which
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Chapter 2. Literature Review 17

method will be more effective for each problem. Chen and Powell (2003) propose
a column generation and branch-and-bound techniques to solve both sequence-
dependent and independent problems on identical parallel machines. These
techniques consist in solving linear relaxations of the problem by standard
column generation procedures. The focus of the method is based on node
selection and branching variable selection to effectively solve these relaxations.
They aim to solve both minimizing total weighted completion time problems
and minimizing tardiness. Azizoglu and Webster (2003) also propose branch-
and-bound algorithms to solve identical parallel machine scheduling problems
with family setup times, but the objective function is to minimize total weighted
flowtime. The authors take in consideration some dominance properties based
on the shortest weighted processing time (SWPT) order and lower bound
definitions to propose an efficient branch-and-bound method. Dunstall and
Wirth (2005b) improve the branch-and-bound methods aiming to minimize the
weighted completion time by proposing a different branching scheme able to
shorten the search tree size. They propose two branch-and-bound algorithms
that use different branching schemes. They also use techniques to eliminate
redundancies on solutions and consider upper bounds by scheduling entire
families into machines with a SWPT rule. Dunstall and Wirth (2005a) propose
a method to solve the problem with sequence-dependent setup times. They
develop a four stage algorithm by mustering all jobs of a family in a single
batch and allocating to machines, re-sequencing the batches at single machines,
splitting the batches and at last performing a single machine sequencing phase.
These steps are based on dominance rules between jobs and families. Omar and
Teo (2006) develop a mixed-integer programming approach to minimize both
earliness or tardiness on identical parallel machine scheduling with sequence-
dependent setup times. Basically, they improve a formulation by adding a
constraint ensuring that a job and its successor will be produced in the same
machine.

Regarding heuristics and metaheuristics applied to similar problems, Min
and Cheng (1999) propose a genetic algorithm based on machine code to
minimize the makespan in identical parallel machine scheduling problems. In
the coding phase the gene code is also the number of the machine which the
job is processed, reason why the method is named genetic algorithm based on
machine code. After the genetic algorithm, the authors develop a simulated
annealing metaheuristic. Mendes et al. (2002) compare the performance of two
different metaheuristic methods to minimize makespan in identical parallel
machine scheduling with family setup times. The first metaheuristic explored is
a tabu search with four different types of insertion/removal moves. The second
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is a memetic approach combining a population-based method with local search
procedures. Ruiz and Maroto (2005) work consists on reviewing and comparing
heuristics and metaheuristics for the permutation flowshop problem to minimize
makespan. In the paper, they approach 25 different methods, varying from the
most antique and classic heuristics to some recent metaheuristics, including
genetic algorithms, tabu searches, iterated local searches and hybrid techniques.
Liao et al. (2012) studied the identical parallel machine scheduling problem
with setup times focused on minimizing the weighted completion time. The
authors propose an heuristic that aims to decrease the setup times and balance
the weighted completion time on each machine. There are two steps involved:
the first is to use the a tabu search to schedule jobs in each machine. The
second contrasts the obtained schedule with another without setup times by
changing the assignment of jobs to machines. These exchanges are subject to
certain conditions based on dominance rules such as the SWPT Weighted Mean
Processing Time. Schaller (2014) presents a set of procedures for scheduling
identical parallel machines with family setup times focused on minimizing
total tardiness. They test these procedures in a large set of instances and
conclude that for this specific problem, the genetic algorithms are usually more
effective. Mehdizadeh et al. (2015) develop a metaheuristic algorithm called
vibration damping optimization (VDO), based on mechanical vibration, to solve
the identical parallel machine scheduling problem with sequence-independent
setup times. The VDO algorithm consists in iteratively and randomly changing
the current solution based on oscillating the solution around an amplitude
parameter. Van Der Zee (2015) proposes a simulation study on family-based
dispatching heuristics to identical machine scheduling. They test and compare
existing heuristics for the problem and create new heuristics by extending the
existing ones, simulating the results on a large set of instances. Wu et al. (2018)
introduced a modified Water Flow-Like Algorithm (WFA) to solve the identical
parallel machine scheduling problem with sequence-dependent setup times,
considering due dates, order profit and tardiness penalties. Their strategy was
to develop a procedure similar to the variable neighborhood search and mix it
with the WFA, by splitting and moving operations. Dipak and Gupta (2018)
presented an improved cuckoo search algorithm (ICSA) focused on minimizing
makespan on identical parallel machine scheduling. Their first step consists on
generating a set of initial population schedules, combining the longest processing
time rule with job-interchange procedures, and selecting the best schedule. The
authors then propose a heuristic approach to transform continuous positions in
the CSA into discrete job schedules. At last, an heuristic algorithm related to
pairwise exchange neighborhood is introduced to complete the ICSA procedure.
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Chapter 2. Literature Review 19

Nguyen et al. (2018) propose an heuristic of layering and adapting (HLA) to
minimize both energy consumption and makespan in identical parallel machine
scheduling problems. The algorithm strategy is to consider resource allocations
of jobs as flexible form articles to be packed in a strip with variant heights
throughout its length. Two local search procedures are used with the concepts
of adapting process and greedy repackage process.

Considering different real-life applications of the identical parallel machine
scheduling problem, Shin and Leon (2004) applies a scheduling approach to
module processing in thin film transistor liquid crystal display manufacturing.
The authors develop a multifit heuristic and a tabu search to solve the
problem focused on minimizing total tardiness and minimizing total family
setups. Ciavotta et al. (2016) propose dynamic heuristics and candidates
reduction strategies with the multiheuristic rollout procedures, applying them
in illustrative case studies. The case study was first proposed by Pacciarelli
et al. (2011) and is based on a pharmaceutical manufacturing plant. Kaplan
and Rabadi (2011) studies the aerial refuelling scheduling problem with release
dates, and due date deadline windows, focused on minimizing the total weighted
tardiness. A simulated annealing metaheuristic was proposed as well as a
metaheuristic with randomized priority search, using an apparent priceswise
tardiness cost with ready times as a dispatching rule. Lee (2017) studies a
real life production scheduling from a plant of Acrylonitrile-Butadiene-Styrene
plate products. The focus is to minimize tardiness and the strategy developed
proposes a dispatching rule to provide an initial solution and then applying
an iterated greedy search metaheuristic to improve the results. Abu-Marrul
et al. (2020a)studies the PLSV scheduling problem. Three mixed-integer linear
formulations are proposed to solve the problem aiming to minimize completion
time: the positional, the batch, and the time-index models. Abu-Marrul et al.
(2020b) also studies the PLSV scheduling problem. A constructive heuristic is
presented to minimize the weighted completion time.
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3
Mathematical Formulation

3.1
Problem Description

As mentioned in Section 1, the PLSV scheduling problem can be modeled
as an identical parallel machine scheduling problem, due to the similar
characteristics between them. The vessels are analogous to the machines, which
will process the operations in a specific well, which we call job. The operations
are processed by the machines and are associated to jobs, but the jobs are not
directly processed. When all operations associated to a job is finished, the job
is considered complete. In this work we will use machine scheduling notation
to describe the problem and the further mathematical formulation.

Let O be the set of operations, each one belonging to a family of the set
F . These operations are scheduled in a setM of machines, which will process
these operations in a particular order. Associated to each family, there is a
setup time sf , independent from the machine and considered whenever there is
a change on the family of operations or when the machine capacity qk is reached.
The setup time sf marks the beginning of a voyage, which in machine schedule
notation is called a batch. The problem studied is classified as non-preemptive,
meaning that operations must be processed at once and cannot be divided.
Regarding the operations i ∈ O, we consider their processing times pi and
release dates ri. All operations must be associated to at least one job, defined
in the set N , meaning that jobs are affected by this operation. One operation
can be related to more than one job, indicating the dependence between these
jobs. The subset of operations that compose a job j is defined as Oj . These jobs
have weights wj related to their production rate. To consider a job completed
all the associated operations must be finished. On the other way, the subset Ni
defines the jobs related to an operation i. Each machine has a release date rk
that means the date when it is available to operate. We also consider eligibility
between machines and operations, denoted by the subset Mi indicating which
machines can process each operation i.

The vessels voyages are considered as batches on the parallel machine
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scheduling problem. They consist on a sequence of operations of the same
family preceded by a setup time. This setup time represents the loading of
the necessary equipment on the origin port and the navigation time to reach
the wells. Due to that, the setup times can only start when all operations
of the same batch are released (meaning that all necessary equipment for
performing every operation of the voyage has arrived). This particularity is
called non-anticipatory setup time. These batches must respect the capacity of
the machine qk, by summing the load occupation li of the operations scheduled
on this batch.

The objective function of the problem is to minimize the weighted
completion time of all jobs, ∑j∈N wjCj, subject to all mentioned constraints.
The completion time of each job, Cj , is calculated by the maximum completion
time of all associated operations: maxi∈Oj Ci. The objective is to finish as soon
as possible the most productive jobs.

Regarding the complexity of the PLSV scheduling problem, Mokotoff
(2004) prove that the classical identical parallel machine scheduling problem
is NP-hard. By simplifying some parameters of the PLSV scheduling problem,
we can model it exactly as the classical identical parallel machine scheduling
problem. To do that we must set all operations to be eligible to all machines, all
operations being associated with a single job, set the families of all operations
as 1 and the correspondent setup times as zero and setting the release dates
of all operations and machines as the first day of the time horizon. Since we
can model the PLSV scheduling problem as the classical identical parallel
machine scheduling problem, which we know is NP-hard, and the complete
PLSV scheduling problem has even more constraints and parameters, we can
conclude that the PLSV scheduling problem is also NP-hard.
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3.2
Positional Scheduling Formulation

In this section we present a positional scheduling formulation described by
Unlu and Mason (2010) and extended by Abu-Marrul et al. (2020a) for the
PLSV problem. There are other possible formulations for this problem, such as
the Time-index, the Bucket-index and the Batch Scheduling formulation. We
introduce this positional schedule formulation because it fits well the solution
representation presented in this study methodology, presented in the next
chapter, where the machines are vectors that contains an element (setup or
operation) in each position. The positional formulation illustrates the problem’s
constraints and parameters and inspired the proposed metaheuristic presented
in this study.

The positional scheduling formulation consists on representing the
machines with a sequence of positions. The model then defines, for each position,
if it will allocate an operation or a setup time, respecting all constraints. In our
case, the resulting schedule aims to minimize the weighted completion time of
the jobs, but it can optimize a different objective function, such as minimize
tardiness, maximize production, minimize completion time, among others.

The set Pk indexes the positions of each machine. The decision of allocating
an operation or a family setup time is represented by two binary variables: Xp

ik

representing an operation i allocated at the p-th operation of the machine k,
and Y p

fk representing a setup time on the p-th position of machine k of the
family f .

To keep track of some critical information during the model’s decisions
the authors define three other continuous variables, Spk defines the start of each
position p in machine k and Ci and Cj, representing the completion time of
operations and jobs, respectively.

To deal with the occupation constraint, the continuous variables Lpk are
added representing the cumulative load occupancy in position p. To treat the
non-anticipatory setup times, the variables Rp

k represent the release time of
the position p, to guarantee that the start of positions which have setup times
allocated will respect the release dates of all operations on the batch.

The positional scheduling formulation is then described bellow:

min
∑
j∈N

wjCj (3-1)

subject to
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∑
k∈Mi

∑
p∈Pk

Xp
ik = 1 ∀i ∈ O (3-2)

∑
i∈N

Xp
ik +

∑
f∈F

Y p
fk ≤ 1 ∀k ∈M, p ∈ Pk (3-3)

Lpk ≥ L
(p−1)
k +

∑
i∈O

liX
p
ik −

∑
f∈F

qkY
p
fk ∀k ∈M, p ∈ Pk (3-4)

Lpk ≤ qk ∀k ∈M, p ∈ Pk (3-5)∑
i∈Nf

Xp
ik ≤

∑
i∈Nf

X
(p−1)
ik + Y

(p−1)
fk ∀k ∈M, p ∈ Pk, f ∈ F (3-6)

Rp
k ≥

∑
i∈O

riX
(p+1)
ik ∀k ∈M, p ∈ Pk (3-7)

Rp
k ≥ R

(p+1)
k −

∑
f∈F

rmaxY
(p+1)
fk ∀k ∈M, p ∈ Pk (3-8)

Spk ≥ S
(p−1)
k +

∑
i∈O

piX
(p−1)
ik +

∑
f∈F

sfY
(p−1)
fk ∀k ∈M, p ∈ Pk (3-9)

Spk ≥ rk ∀k ∈M, p ∈ Pk (3-10)

Spk ≥ Rp
k ∀k ∈M, p ∈ Pk (3-11)

Ci ≥ Spk + pi − (1−Xp
ik)M ∀i ∈ O, k ∈M, p ∈ Pk (3-12)

Cj ≥ Ci ∀j ∈ N , i ∈ Oj (3-13)

Xp
ik ∈ {0, 1} ∀i ∈ O, k ∈Mi, p ∈ Pk (3-14)

Y p
fk ∈ {0, 1} ∀k ∈M, p ∈ Pk, f ∈ F (3-15)

Ci ≥ 0 ∀i ∈ O (3-16)

Lpk, S
p
k , P

p
k ≥ 0 ∀k ∈M, p ∈ Pk (3-17)

The Objective Function (3-1) is to minimize the weighted completion
time of the jobs. Constraints (3-2) guarantee that every operation will be
allocated once in the schedule. Constraints (3-3) ensure that we schedule a
setup time or an operation in each position, not both. Constraints (3-4) keep
track of the occupation load in each position, summing the occupancy load
when an operation is allocated in the position and setting the variable to
zero when it is a setup. Constraints (3-5) ensure that the machine occupancy
capacity is respected. Constraints (3-6) forbid an operation of one family to be
scheduled after an operation or setup time of a different family. Constraints (3-7)
calculate the release of a position based on the release date of the next operation
allocated on that machine. Constraints (3-8) guarantee that the release of a
position is greater or equal than the release variable of the next position. These
constraints (3-7) and (3-8) together ensure that the non-anticipatory setup
times will be respected. Constraints (3-9) compute the start time of a position
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by summing the start time of the precedent position with the processing time
of the scheduled operation or setup time allocated. Constraints (3-10) forbid
the start time of a position in a machine to be lower than the release date of
the machine. Constraints (3-11) guarantee that a position can only start after
it is released. Constraints (3-12) compute the completion time of operations
by summing the start time of the position with the processing time of the
allocated operation. Constraints (3-13) force the completion time of a job to be
the last completion time of all operations associated to that job. Constraints
(3-14)-(3-17) are the non-negativity and domain constraints.
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4
Methodology

The first aspect of this work methodology is the solution representation.
Based on it, the methods are developed aiming to minimize the weighted
completion time of jobs. The next step of the methodology is obtaining an
initial solution for the identical parallel machine scheduling problem using a
constructive heuristic. After that, we define the neighborhoods that will be
explored in our search: Relocate, Swap, Setup Insertion and Setup Removal.
With these neighborhoods defined, we propose a Local Search procedure. At
last, we present the Iterated Local Search metaheuristic that looks for high
quality solutions for the PLSV Scheduling Problem. The next sections describe
in detail each one of these steps.

4.1
Solution Representation And Evaluation

The positional formulation introduced inspired our solution representation for
this work. In the mathematical formulation, the machines can be represented
as vectors. For each machine, there are n positions containing an operation or a
setup time. Representing the solutions as vectors of integers saves computational
time when performing movements within the solution, but neglects the starting
time information for each operation and setup time, which are used to calculate
our objective function of minimizing the weighted completion time. To deal
with this problem, we created an evaluation function that receives the vectors of
integers and calculates the minimum starting time for each position respecting
all mentioned constraints. The evaluation function runs in linear time in the
number of operations. In Figure 4.1, the solution representation is exposed and
then the solution representation indicating the starting times for each element.
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Figure 4.1: Solution Representation and Starting Times

4.2
Constructive Heuristic

In this section, we present the Schedule Construction Procedure, proposed by
Abu-Marrul et al. (2020b), to provide an initial solution for our problem. Since
it is an important part of this study methodology we will explain in detail the
approach.

The Schedule Construction Procedure decides at each iteration, for an
operation, in which machine it will be allocated and if it is allocated in an
existing batch or a new one. The authors define a set that at first contains
all operations. To define the order of operations to be allocated, a set of
dispatching rules to rank all operations is considered. These dispatching rules
will be explained further in subsection 4.2.1. If two operations are tied on the
dispatching rule criteria, the algorithm chooses the one with the lower index. To
decide in which machine the operation is allocated, the machines’ completion
times are evaluated. The operation will be performed by the machine that has
the lower machine completion time including the recently allocated operation,
respecting the eligibility constraints and the machines release dates. To decide
if the operation will enter in an existing batch or a new one, the family and
capacity constraints are checked. After the operation is allocated, the method
removes it from the set of unscheduled operations. The algorithm runs until all
operations are scheduled. It is summarized in Algorithm 1.
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Algorithm 1 Schedule Construction Procedure
1: Ck ← rk, Sk ← rk, Lk ← 0, Fk ← 0, Bk ← ∅, σk ← ∅ : ∀k ∈M
2: Ci ←∞ : ∀i ∈ O
3: U ← O
4: while there exists operations not assigned do
5: Select operation i∗ ∈ U and machine k∗ ∈Mi∗ according to a chosen heuristic, defining

same as true or false
6: if same = true then
7: Sk∗ ← max(ri∗ , Sk∗), Ck∗ ← Ck∗ + max(0, ri∗ − Sk∗) + pi∗

8: Lk∗ ← Lk∗ + li∗ , Bk∗ ← Bk∗ ∪ {i∗}
9: else
10: Sk∗ ← max(ri∗ , Ck∗), Ck∗ ← max(ri∗ , Ck∗) + sfi∗ + pi∗

11: Lk∗ ← li∗ , Bk∗ ← {i∗}
12: σk∗ ← σk∗ ∪ {fi∗}
13: end if
14: σk∗ ← σk∗ ∪ {i∗}, Fk∗ ← fi∗ , Ci∗ ← Ck∗ , U ← U \ {i∗}
15: end while
16: return σ

The Schedule Construction Procedure first sets the initial values for the
variables: completion time of each machine, Ck, and starting time for the
current batch for each machine, Sk, as the release date of that machine, rk.
The loading occupancy of the current batch for each machine, Lk, the family
of the current batch in the machine, Fk, the set of operations scheduled in the
current batch in the machine, Bk, and the list of schedules for each machine,
σk, are set as zero. While there are unscheduled operations, the method selects
one operation and machine, based on a specific dispatching rule. Then the
algorithm checks if it is feasible to schedule it in an existing batch. If it is, the
operation is inserted in this batch, the variables that control the starting time
of the batch in the machine, completion time of the machine, load occupancy
capacity of the machine, and operations scheduled in the batch in the machine
are updated. Otherwise, the operation is scheduled in a new batch, including
it’s respective setup time. The variables that control the starting time of the
batch in the machine, completion time of the machine, load occupancy of the
batch in the machine, operations scheduled in the batch in the machine and
list of schedules in the machine are updated. The algorithm stops when all
operations are scheduled.

An illustrative scheme of the Schedule Construction Procedure is exposed
in Figure 4.2. We will illustrate the Schedule Construction Procedure in a small
example, using the Earliest Release Date (ERD) dispatching rule to explain
how the method construct batches. The ERD rule consists on ordering all
operations by the release date criteria. The operations that have earlier release
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dates are scheduled first. The operations and machines data are presented in
Tables 4.1 and 4.2 ordered by their respective release dates.

Figure 4.2: Schedule Construction Procedure Scheme

Source: The Author

Table 4.1: Operations Data

O Family Release Date
i11 2 10
i3 3 12
i20 1 15
i4 2 18
i19 1 20

Table 4.2: Machines Data

M Release Date
k1 2
k3 12
k2 15

In this illustrative example, we have five operations, belonging to four
jobs and three different families. For example i4|jA means that operation i4
is associated to the job jA and the family of an operation is expressed as fi.
Each of these operations and machines have a specific release date. To simplify,
in this example we consider that all operations are eligible at all machines and
we do not consider occupation constraints, but in the real problem it is not
possible to allocate operations in machines that are not eligible to perform
them or create batches that surpasses the machine capacity. The algorithm
starts by selecting the first operation to be allocated. To do that the method
uses one of the dispatching rules proposed. In this illustrative example, we are
using the ERD dispatching rule to decide in each order the operations will be
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allocated. In spite of not being the best dispatching rule in terms of results,
we decided to use it in the example because it is intuitive to understand how
it ranks the operations, by simply selecting the operations with lower release
dates first. The Schedule Construction Procedure is exactly the same regardless
of the dispatching rule used to prioritize the operations, the only difference
between them is the order of allocation. Once the operation is chosen, the
algorithm allocates it in the machine that will give the minimum completion
time. The procedure selects the operation i11, which is the first to be released
at day 10 and allocate it at machine 1 because it is released on day 2, as the
other machines are not released yet in day 10. The first allocation is presented
in Figure 4.3.

Figure 4.3: First Allocation on Schedule Construction Procedure

Source: The Author

Following the ERD rule, the second operation to be scheduled is the
operation i3, which is released on day 12. It can be allocated in machine 1
creating a new batch after the end of operation i11, because it is from a different
family, in machine 2 starting on day 15, when the machine will be released, or
in machine 3 starting on day 12. As the algorithm aims to allocate it in the
machine that will have the lowest completion time, it is allocated in machine 3,
as illustrated in Figure 4.4.

The next operation to be allocated following the ERD rule is i20. It can
be scheduled in machine 1, but since it is from a different family than i11, it
will create a new batch after it. The same will happen in machine 3, where it
will create a new batch after operation i13. Since machine 2 is released on day
15 we can allocate operation i20 and have the minimum machine completion
time, as we can see in Figure 4.5.
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Figure 4.4: Second Allocation on Schedule Construction Procedure

Source: The Author

Figure 4.5: Third Allocation on Schedule Construction Procedure

Source: The Author

Observing the release date of the remaining operations, we notice that
the next one to be scheduled is operation i4. This operation is from family 2,
so it can be allocated in machine 2 or 3, creating new batches, or in machine 1
in the same batch of operation i11. One important characteristic of this step
is that by adding this operation to the same batch on machine 1 we need to
shift all batch forward due to the non-anticipatory setup times. Evaluating
the completion time of machines, we see that this is the best allocation in this
scenario, moving the setup of this batch from day 10 to day 18, as observed in
Figure 4.6.

To allocate the last operation, the same logic is applied. The operation i19

is from family 1, the same of operation i20. So it can be allocated in the same
batch on machine 2 or in new batches on machines 1 and 3. Scheduling it in
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Figure 4.6: Fourth Allocation on Schedule Construction Procedure

Source: The Author

machine 2 will shift the whole batch to start at the release date of operation i19,
day 20, because of the non-anticipatory setup times. Considering the machine
completion time, this is the best way to allocate operation i19, represented on
Figure 4.7. Since all operations are allocated, we can consider that we have
an initial solution for this illustrative problem. To evaluate this solution we
calculate the weighted completion time of jobs as described on Section 3.1. This
procedure is taken aiming to provide an initial solution as input to the local
search procedures and metaheuristic that will follow on the study.

Figure 4.7: Fifth Allocation on Schedule Construction Procedure

Source: The Author

4.2.1
Constructive Heuristic Decision

To decide in which order the operations will be allocated, Abu-Marrul
et al. (2020b) define a set of dispatching rules. For each instance, we run
the Constructive Heuristic with all dispatching rules and select the five with
the minimum weighted completion time. One important characteristic of our
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problem is that our instances only consider weights of jobs, but in the Weighted
Shortest Processing Time (WSPT) and Weighted Minimum Completion Time
(WMCT) dispatching rules the weights of operations are considered. In the
WSPT rule, the operations are ranked by their weight divided by their processing
times, while the WMCT rule ranks the operations by their minimum possible
completion time divided by their weights. To deal with that that the authors
propose five different techniques to estimate the weights of operations:

– MAX: Maximum weight among associated jobs, computed as wi =
maxj∈Ni wj

– SUM: Sum of the weights among associated jobs, computed as wi =∑
j∈Ni wj

– AVG: Average weight among associated jobs, computed as wi =∑
j∈Ni wj/|Ni|

– WAVG: Weighted average weight among associated jobs, computed as
wi = ∑

j∈Ni wj/|Oj|

– WAVGA: WAVG adjusted at each iteration by the set of non-scheduled
operations.

The Weighted Adaptive Average (WAVGA) strategy divides the weight of the
jobs for each associated operation. When one of these operations is scheduled,
its estimated weight is equally distributed by all unscheduled operations of
that job, raising their weight. That strategy manipulates the method to select
the unscheduled operations associated to a job when most of its associated
operations are already scheduled.

The authors tested six dispatching rules as candidates to rank the
operations in the Constructive Heuristic. The priority value πi is the comparison
criteria to decide the next operation to schedule. At each iteration, the operation
i with the largest πi is selected. Ti is defined as the minimum possible completion
time among the eligible machines for each operation i, and is computed as
Ti = mink∈Mi

Ck. The other parameters included in the dispatching rules
are defined in Chapter 3. As the original dispatching rules do not consider
family setup times or batches, the authors adapted the rules including these
parameters. The following dispatching rules are considered:

– ERD: Earliest Release Date πi = 1/ri.

– SPT: Shortest Processing Time πi = 1/pi.

– LPT: Longest Processing Time πi = pi.

– MCT: Minimum Completion Time πi = max(Ti, ri) + pi + sfi.
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– WSPT: Weighted Shortest Processing Time πi = wi/pi.

– WMCT: Weighted Minimum Completion Time πi = [max(Ti, ri) + pi +
sfi]/wi.

We run the Schedule Construction Procedure with all dispatching rules
and all weight estimators for each dispatching rule that consider operations
weights. After that, we store the five best different solutions. This solutions will
serve as input for the multi-start strategy in our further Iterated Local Search.

4.3
Neighborhoods

After finding an initial solution for the problem via the Schedule Construction
Procedure we need to define the Local Search neighborhood structures. These
procedures define how the algorithm will perform movements in the current
solution in order to improve it. The next subsections describe the four
neighborhoods that will guide our further Local Search. Before explaining
them, we will introduce the erase and insert functions that are the foundation
of the neighborhoods movements, since all of them consist on inserting and/or
erasing elements in the schedule. Both movements take constant time plus one
evaluation of the schedule, then we can conclude that they run in linear time.

4.3.1
Erase Function

The erase function defines the complete set of rules that must be respected
when erasing a position in the schedule. The function depends of the element
contained in the position that we want to erase. We use the index p to define
the position in the vector which is equivalent to a position in a machine
schedule (operation or setup). Here we will use the notation of operations
family Of , without indicating the job associated to the operation because in
the erase/insertion analysis it is not relevant and would pollute the illustrations.
We just present the family of each operation and setup time because that
is the main information to define how the insertion and removal of elements
will proceed. There are two possible cases where the erase function applies:
if p is an operation in a single-operation batch or if p is an operation in a
multiple-operations batch. If p is a setup time, the element is not erased.

Furthermore, if position p is an operation in a single-operation batch, the
function erases the operation in position p and also the setup in position p− 1.
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It occurs because it would generate a batch containing just a setup time, which
is not allowed in our problem. An illustration of this case is exposed in Figure
4.8.

Figure 4.8: Erase Function - Single Operation Batch

Source: The Author

If p is an operation in a multiple-operations batch the erase function just
delete this operation. It occurs because the removal of the operation does not
result in an invalid batch composition (when a batch does not contain a setup
preceding an operation). This behavior is explained in Figure 4.9.

Figure 4.9: Erase Function - Multiple Operation Batch

Source: The Author

4.3.2
Insert Function

The insert function defines the complete set of rules to insert one operation
in our schedule. Depending on the operation that will be inserted and its
target position, the function has different outcomes. The procedure consists
on inserting a predefined operation, from an specific family, in the schedule.
There are five possible cases depending on the position where the operation
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will be inserted. In the illustrative examples we assume that we are inserting
an operation from family 3 in a different position in the schedule, denoted O3.
We use the index p to define the position in the vector which is equivalent to a
position in a machine schedule (operation or setup).

– The first case is when the position p is the first position of the schedule
in the machine. In this case, we insert the setup time of the same family
as the operation that will be inserted in position p and the operation in
position p+ 1. An illustrative example is shown in Figure 4.10.

Figure 4.10: Insert Function - case 1

Source: The Author

– The second case is when position p − 1 is a setup of the same family
of the operation to be inserted. In this case, we insert the operation in
position p. An illustrative example is shown in Figure 4.11.

Figure 4.11: Insert Function - case 2

Source: The Author

– The third case is when position p− 1 is an operation of a family different
from the operation that will be inserted, and position p is a setup. In
this case, we insert the setup of the same family as the operation to be
inserted in position p and the operation in position p+ 1. An illustrative
example is shown in Figure 4.12.

– The forth case is when position p− 1 is an operation of a family different
from the operation that will be inserted and position p is also an operation.
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Figure 4.12: Insert Function - case 3

Source: The Author

In this case, we insert the setup of the same family as the operation to
be inserted in position p, the operation in position p+ 1 and the setup of
the family from the operation in p+ 2. An illustrative example is shown
in Figure 4.13.

Figure 4.13: Insert Function - case 4

Source: The Author

– The fifth case is when position p−1 is a setup from a family different from
the operation that will be inserted. In this case we insert the setup of the
same family as the operation that will be inserted in position p− 1 and
the operation in position p. An illustrative example is shown in Figure
4.14.

Figure 4.14: Insert Function - case 5

Source: The Author
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4.3.3
Relocate Neighborhood

Once initial solutions are obtained by the Schedule Construction Procedure, it
is possible to perform movements within these schedules to reach new solutions.
The first neighborhood that we explore is the Relocate. The procedure consists
on swiping the machine’s positions, selecting each operation (one per iteration),
and trying to insert it in a different position (in the same machine or in a
different one). Depending on which position the operation is moved to, we have
to insert one or more setup times in different positions to respect the family
constraints.

To explain this method, we describe two different steps of the algorithm:
the removal of setups/operations and the insertion of setups/operations using
the erase and insert functions explained in sections 4.3.1 and 4.3.2.

The Relocate neighborhood arguments are: the machine and position of
the operation to be relocated in the current schedule (m1, p1) and the machine
and position where this operation will be inserted (m2, p2). The procedure
consists in using the erase function in position p1 of machine m1, returning the
number of elements erased. Then it inserts the operation in machine m2 using
the insert function and evaluates: if machine m1 is different from machine m2

or position p1 is higher than position p2, the operation is inserted in position p2.
Otherwise, the operation is inserted in position p2 minus the number of elements
erased by the erase function. This happens because as we erase elements in our
schedule, the indexes change, moving the position p backwards. An illustrative
example of each case is exposed in Figures 4.15 and 4.16.

4.3.4
Swap Neighborhood

The other neighborhood proposed in this work is the Swap. It consists on
swiping the machines, selecting two operation per iteration, and changing their
positions. Depending on the families of the selected operations more than one
element (setup times or operations) need to be erased or inserted.

The Swap neighborhood arguments are: the machine and position of
the operation to be swapped (m1, p1), which we will call operation 1, and the
machine and position of the other operation to be swapped (m2, p2), which
we will call operation 2. The procedure starts by erasing these operations
using the erase function. Then it inserts operation 2 in the machine m1 at
position p1 minus (the number of elements erased when erasing operation 1)
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Figure 4.15: Relocate Neighborhood - case 1

Source: The Author

Figure 4.16: Relocate Neighborhood - case 2

Source: The Author

minus 1. Operation 1 is inserted in machine 2, but there are two possible
positions for it to be inserted: if machine m1 is different than machine m2,
this operation is inserted in position p2 minus (the number of elements erased
when erasing operation 2) plus 1. If machine m1 is the same as machine m2,
this operation is inserted in position p2 minus (the number of elements erased
when erasing operation 2) plus 1 plus (the number of elements inserted when
inserting operation 2 in machine m1) - (the number of elements erased when
erasing operation 1). Again, these particular cases are explained because when
erasing or inserting elements, we change the indexes, and the position p can
go backwards or forward. An illustrative example of each case is exposed in
Figures 4.17 and 4.18.
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Figure 4.17: Swap Neighborhood - case 1

Source: The Author

Figure 4.18: Swap Neighborhood - case 2

Source: The Author

4.3.5
Setup Insertion and Setup Removal Neighborhoods

Besides the two neighborhoods explained in the previous sections, we defined
new strategies to fully understand the effect of inserting and removing just
setups in our current schedule.

The first of these neighborhoods is the Setup Insertion. It works by swiping
the machines searching for two consecutive operations of the same family. Once
a pair of subsequent operations of the same family is found, we insert a setup
of the corresponding family between them. An illustrative example is show in
Figure 4.19.
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Figure 4.19: Setup Insertion

Source: The Author

The second neighborhood is the Setup Removal. It works by searching in
the machines a sequence of: operation - setup time - operation, all from the
same family. Then it removes this intermediate setup, transforming two batches
in a single one. An illustrative example is exposed in Figure 4.20.

Figure 4.20: Setup Removal

Source: The Author

These neighborhoods are especially important when combined to the
infeasibility strategy that will be explained in the next subsection. The
Setup Removal creates batches of multiple operations, that may disrespect
the occupation constraints, helping to reach infeasible solution space. The
Setup Insertion is crucial to return to the feasible solution space, by dividing
long batches that disrespect occupation constraints into feasible batches. It is
important to notice that these neighborhoods must be combined with the Swap
and Relocate neighborhoods, in order to avoid returning to the same initial
solution, since they have the exact opposite effect in the current schedule.

4.3.6
Infeasibility Strategy

One important consideration on the proposed neighborhood structures is that
we relax some constraints and keep some constraints hard. Basically, we relax
the occupation constraints, allowing batches to have operations that exceed
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the machine occupation limit. The reason to allow this violation on constraints
is to enlarge the solution space, going to infeasible space and returning to
feasible solutions that we could not reach if we did not pass by infeasible
solutions before. The family and eligibility constraints are kept hard because
the movements to reach feasible solutions would only go back to previously
evaluated solutions. The infeasible solutions are penalized by the formula:

p(s) = αc(s)

The penalized solution is denoted by p(s), the current solution, c(s), and
α is the penalty factor. The initial value of α is 100 and was obtained by testing
values from 10 to 200, with steps of size 10. The main idea is to increase the
penalty for infeasible solutions that are reached, avoiding the search to go far
from the feasible space. For that, α is enlarged in 10% at each step where an
infeasible solution is considered and reduced in 5% when a feasible solution is
reached. That way we can manipulate α to be in a reasonable value and not
diverge from the feasible solutions space.

4.4
Local Search

After defining the neighborhood structures and infeasibility strategy we
propose a local search that is used to recurrently find improved solutions for
the problem. There are two main characteristics of this Local Search, which
are described in the subsections that follow: the First Improvement rule and
the Random Variable Neighborhood Descent (RVND).

4.4.1
First Improvement

The proposed Local Search follows the First Improvement rule. This means
that the algorithm stops when it finds the first improved solution when searching
in a specific neighborhood. The other possible strategy is to implement a Best
Improvement rule, which evaluates all possible neighbors solutions and then
selects the best of them. We chose the First Improvement rule in order to save
time and computational effort while performing the Local Search.
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4.4.2
Random Variable Neighborhood Descent

The other important characteristic of our local search is the Random Variable
Neighborhood Descent (RVND). While performing the local search we list all
the neighborhood structures detailed in the previous subsections and randomly
select one of them. If the solution provided is better than the current solution,
we update the current solution and shuffle again the list with neighborhood
structures, including all four neighborhoods. If the solution provided is worse
than the current solution we remove the used neighborhood structure from the
list and randomly select the next. This algorithm goes on until all neighborhood
structures have been removed from the list or when a improved solution is
achieved. In Algorithm 2 the pseudocode for the RVND is described.

Algorithm 2 Random Variable Neighborhood Descent
1: sol ← const_sol
2: while Stop Criteria is not met do
3: Neighborhoods ← {Swap, Relocate, SetupInsertion, SetupRemoval}
4: while Neighborhoods not empty do
5: Randomly select an element n from Neighborhoods

6: Neighborhoods ← Neighborhoods− {n}
7: sol′ ← LocalSearch(sol, n)
8: if sol′.value < sol.value then
9: sol ← sol′

10: break
11: end if
12: end while
13: end while
14: return sol

4.5
Iterated Local Search

After we described the neighborhood structures and the local search
characteristics, we are able to introduce the proposed Iterated Local Search for
the identical parallel machine scheduling problem. This metaheuristic consists
on first running the Schedule Construction Procedure method explained in
subsection 4.2.1 and storing the five best different solutions, in decreasing
order. These solutions will be used as input in a multi-start strategy. In each
multi-start loop, we define the Schedule Construction Procedure solution and
set it as our initial solution. Then the method starts the Iterated Local Search
procedure by setting it as our best and current solution, and run the local
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search. After it, we use a random function to select two machines and positions
to perturb the current solution. Then we run the Local Search procedures
again and evaluate: if a better solution is found and it is feasible, it is stored
as the best solution and the current solution is updated; if we find a better
solution but it is infeasible then only the current solution is updated; if the
reached solution is worse than our best solution we use a simulated annealing
acceptance criteria that will be explained in section 4.5.2 to define if we update
our current solution or not. Another characteristic of the Iterated Local Search
is the starting point strategy. If we have λ iterations without improving our best
solution, we set the current solution as our best solution, avoiding solutions to
diverge from good solutions that already have been reached.

After that, the next round of the multi-start procedure is performed, by
setting the next best solution from the Constructive Decision as the current
solution and repeating the whole Iterated Local Search algorithm. This multi-
start is done with the five best solutions reached in the Constructive Decision,
and the best solution among all solutions achieved in the whole method is stored
as the final result. The pseudocode of the Iterated Local Search is presented in
Algorithm 3.

Algorithm 3 Iterated Local Search Procedure
1: best_sol ←∞
2: for i in # of Restarts do
3: no_improve ← 0
4: sol ← const_sol(i)
5: cur_sol ← LocalSearch(sol)
6: while T ≥ Tf do
7: no_improve ← no_improve + 1
8: sol ← perturb(cur_sol)
9: sol’ ← LocalSearch(sol)
10: if sol’.value < cur_sol.value || AcceptanceCriteria(sol’) then
11: cur_sol ← sol’
12: end if
13: if sol’.value < best_sol.value && FeasibleSolution(sol′) then
14: best_sol ← sol’
15: no_improve ← 0
16: end if
17: if no_improve = λ then
18: cur_sol ← best_sol
19: no_improve ← 0
20: end if
21: end while
22: end for
23: return best_sol
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4.5.1
Perturbation

We defined the number of elements that we will perturb in our current
solution, in each iteration, and how this perturbation will occur. To perturb the
solutions we randomly choose two positions and two machines and one of the
neighborhoods: Swap or Relocate. If the Swap structure is chosen, we change
these operations position. If the Relocate structure is chosen, we relocate the
operation from the first machine and position to the second.

4.5.2
Acceptance Criteria

In this work we used the simulated annealing acceptance criteria, proposed
by Kirkpatrick et al. (1983) to decide whether or not we accept worse solutions
in our iterated local search. This criteria is based on defining a probability
to decide if we accept a worse solution at each iteration. This probability is
defined by the formula:

p(T ) = exp(−dif
T

)

dif is defined as sol − cur_sol so worse solutions that are closer to
the current solution have better chances to be accepted. T is the current
temperature, that is updated at each iteration, being multiplied by the
decreasing factor δ. The initial temperature Ti usually starts with a large
value, in order to diversify the solution acceptance in the beginning of the
method and at each iteration it is decreased to have less chance of accepting
poorer solutions. Based on Pisinger and Røpke (2007), we defined the initial
temperature Ti and final temperature Tf . The initial temperature Ti is set
to accept with 0.5 probability solutions that are 40% worse than the current
solution provided by the constructive heuristic following the formula in equation
4-1.

Ti = −0.4× cur_sol
ln(0.5) (4-1)

We use the final temperature Tf to define the end of the iterated local search,
so we stop it when T is the temperature that accept with 0.5 probability
solutions that are 0.01% worse than the current solution, following the formula
in equation 4-2.

Tf = −0.0001× cur_sol
ln(0.5) (4-2)
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As we want our iterated local search to run η iterations, we define the
decreasing factor δ to decrease the initial temperature Ti to reach the stop
temperature value Tf in η iterations, following the formula in equation 4-3.

δ =
(Tf
Ti

)( 1
η

)
(4-3)
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5
Computational Experiments

In this section, we describe all computational experiments performed
and provide analysis. We tested our Iterated Local Search metaheuristic
with the whole method described in Section 4.5 and defined it as the
ILS - Complete (ils). We also ran tests for seven variations, changing the
neighborhoods by enabling just the swap neighborhood, which we call ILS -
OnlySwap (ils-os); enabling just the relocate neighborhood, which we call
ILS - OnlyRelocate (ils-or); disabling only the swap neighborhood, the
ILS - NoSwap (ils-ns); disabling only the relocate neighborhood, the ILS -
NoRelocate (ils-nr); disabling only the setup insertion neighborhood, the ILS
- NoSetupInsertion (ils-nsi); disabling only the setup removal neighborhood,
the ILS - NoSetupRemoval (ils-nsr); and the whole ILS method but disabling
the infeasibility strategy, the ILS - NoInfeasibility (ils-ni).

Since we have random methods on our perturbation procedures, simulated
annealing acceptance criteria and variable neighborhood descent, we defined
a set of ten different seeds that are used as inputs in our tests, running ten
times each method in each instance. We ran the experiments on a computer
with 64 GB of RAM and Intel Core i7-8700K CPU of 3.70GHz, using C++ for
developing the metaheuristic and running Linux.

5.1
Instances Description

All tests were performed on a set of 72 PLSV instances, proposed by
Abu-Marrul et al. (2020a), and available in Abu-Marrul et al. (2019), with
|M| = {4, 8}, and |O| = {15, 25, 50}. Each combination of the number of
Machines and Operations defines a group. Group 1 is defined as |O| = {15},
|M| = {4}. Group 2 as |O| = {15}, |M| = {8}. Group 3 as |O| = {25},
|M| = {4}. Group 4 as |O| = {25}, |M| = {8}. Group 5 as |O| = {50},
|M| = {4}. Group 6 as |O| = {50}, |M| = {8}.

Each group contains 12 instances, formed by the combination of 3 input
factors in the instance generation: the release date factor α = {0.25, 0.50, 0.75},
which for lower values sets the release dates closer to the beginning of the
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time horizon; the eligibility factor β = {0.7, 0.9}, which for values closer to one
generate more number of eligible operations to a machine; and the association
factor γ = {0.05, 0.15}, defining the probability of associating a specific job to
an operation.

5.2
Parameters

The Iterated Local Search algorithm has three important parameters that
are tuned by testing a set of values to these parameters. The first of them is
the number of iterations η. We tested the method running from 100 to 1000
iterations, with steps of size 100 and decided to stop the algorithm after 500
iterations, since the results rarely improved after it. Another parameter tuned
is the number of iterations without improvement, λ, to define the starting
point strategy. We tested λ from 5% to 50% of the number of iterations, with
steps of size 5% and the best outcomes for the method were achieved with λ
= 10%. The third parameter is the number of elements that we perturb in
each iteration. It is defined as 15% of the number of operations of the current
instance, rounding up this value if it is not an integer. This value was tuned
after a sensitivity analysis, testing all possible percentages going from 5% to
50% with steps of size 5%. Perturbing a small number of operations did not
diversify the solution space and a large number of operations set the current
solution too far from the best solution achieved.

5.3
Results

In this section, we present the final results of our tests. As mentioned earlier we
compare our complete method with variations that disable some neighborhoods
and the infeasibility strategy. The main criteria that we compare the methods
are the computational time and relative percentage deviation, computed as
RPD =

(
TWC−BKS

BKS

)
× 100. Where TWC is the total weighted completion

time obtained by the method in the specific instance and the BKS is the best
known solution. The BKS for our instances was obtained by the mathematical
formulations proposed by Abu-Marrul et al. (2020a), with computational time
of six hours.

Since we run ten times each instance for each method, we gathered the
minimum (RPD−), maximum (RPD+) and average (RPD) RPD. We present
the RPD standard deviation (σRPD), indicating the methods that have more
stable behaviour. The RPD−LB computed as RPD−LB =

(
LB−BKS
BKS

)
×100, where
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LB is the Lower Bound of the instance, indicating how far from the Lower
Bound the method is in an specific instance. We also defined the number of
improvements (#Imp) for each method, that consists on, for each method and
group, counting the number of solutions reached that are equal or better than
the BKS. As each group has twelve instances that we ran ten times each, the
maximum number of improvements for each method in each group is 120. The
%Imp is obtained by dividing #Imp by 120. Another relevant consideration
that is not described in the results tables is that the four methods, ILS
- Complete, ILS - NoInfeasibility, ILS - NoSetupInsertion and ILS -
NoSetupRemoval were able to find or improve the previous BKS, at least once,
in all 72 instances. The complete results for each instance is presented in this
thesis appendix A.

Table 5.1: Results for Group 1

Instance Method RPD− RPD RPD+ σRPD RPD−
LB #Imp %Imp T ime

|O| = {15}

ils 0.000 0.005 0.121 0.024 0 115 95.8% 0.658
ils-ni 0.000 0.003 0.121 0.019 0 117 97.5% 0.667
ils-nr 0.000 0.363 5.658 0.786 0 55 45.8% 0.270
ils-ns 0.000 3.602 6.236 2.198 0 10 8.3% 0.349

|M| = {4} ils-nsi 0.000 0.003 0.121 0.019 0 117 97.5% 0.686
ils-nsr 0.000 0.001 0.121 0.011 0 119 99.2% 0.690
ils-or 0.000 3.570 6.236 2.175 0 10 8.3% 0.352
ils-os 0.000 0.926 5.960 1.364 0 40 33.3% 0.226

In Table 5.1, we see how the different methods performance in the first
group of instances. Since Group 1 is formed by small instances, the BKS
in that group are the proved optimal solutions. We can see that the ILS
- Complete, ILS - NoInfeasibility, ILS - NoSetupInsertion and ILS -
NoSetupRemoval have good performances in this group of instances, reaching
the optimal solution in more than 95% of the tests and have very similar
computational time. The ILS - NoSetupRemoval has the best performance
among them all, reaching the optimal solution in 99% of the tests and having
the best average RPD and RPD standard deviation.

Table 5.2: Results for Group 2

Instance Method RPD− RPD RPD+ σRPD RPD−
LB #Imp %Imp T ime

|O| = {15}

ils 0.000 0.117 3.180 0.463 0 108 90.0% 0.741
ils-ni 0.000 0.061 1.196 0.197 0 105 87.5% 0.745
ils-nr 0.000 0.928 5.783 1.175 0 22 18.3% 0.298
ils-ns 0.000 2.561 8.234 2.423 0 10 8.3% 0.387

|M| = {8} ils-nsi 0.000 0.090 2.174 0.302 0 103 85.8% 0.746
ils-nsr 0.000 0.065 2.174 0.267 0 110 91.7% 0.747
ils-or 0.000 2.854 8.234 2.417 0 10 8.3% 0.381
ils-os 0.000 1.038 4.722 1.185 0 24 20.0% 0.252

In Table 5.2 we present the results related to the second group of instances,
which the BKS solutions are again the proved optimal solutions. In this group,
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the same four methods have good performance, reaching the optimal solutions
in more than 85% of the tests. In this group, it is not clear which is the best
method. Again the ILS - NoSetupRemoval reaches more optimal solutions
than the other methods, but if we look the RPD average and, especially, the
standard deviation indicating that the method is more stable and reaches
less often poorer solutions, the ILS - NoInfeasibility is the best method,
reaching, in average, better solutions and also in the worst case scenario.

Table 5.3: Results for Group 3

Instance Method RPD− RPD RPD+ σRPD RPD−
LB #Imp %Imp T ime

|O| = {25}

ils -2.084 -0.509 0.165 0.664 0 109 90.8% 2.902
ils-ni -2.084 -0.508 0.165 0.658 0 109 90.8% 2.839
ils-nr -2.084 0.240 2.883 0.920 0.704 33 27.5% 1.028
ils-ns 0.110 3.210 5.277 1.511 1.085 0 0.0% 1.119

|M| = {4} ils-nsi -2.084 -0.507 0.269 0.660 0 108 90.0% 3.041
ils-nsr -2.084 -0.523 0.269 0.667 0 107 89.2% 2.945
ils-or 0.110 2.845 5.159 1.530 1.085 0 0.0% 1.163
ils-os -1.679 0.405 2.555 0.918 0.704 27 22.5% 0.970

In Table 5.3 we present the results among the third group of instances.
From this group forward, since the instances are larger, the BKS target
solutions are not optimal, so we are able to find better solutions than the
previous BKS and consequently negative RPDs. The computational times
for that group are slightly higher. The same four methods have the best
performances, reaching BKS or better solutions in about 90% of the tests and
are almost tied in all RPD metrics, with a very small advantage to the ILS -
NoInfeasibility in the standard deviation and to the ILS - NoSetupRemoval
in the average. Regarding the worst case scenario the ILS - Complete and
ILS - NoInfeasibility are the best.

Table 5.4: Results for Group 4

Instance Method RPD− RPD RPD+ σRPD RPD−
LB #Imp %Imp T ime

|O| = {25}

ils -2.362 -0.473 0.946 0.693 0.002 104 86.7% 3.381
ils-ni -2.362 -0.409 0.678 0.668 0.002 98 81.7% 3.275
ils-nr -1.938 0.671 3.077 1.112 0.064 23 19.2% 1.153
ils-ns 2.151 4.197 6.520 1.390 3.314 0 0.0% 1.300

|M| = {8} ils-nsi -2.362 -0.477 0.783 0.709 0.002 100 83.3% 3.490
ils-nsr -2.362 -0.457 0.802 0.663 0.002 109 90.8% 3.401
ils-or 2.054 4.523 6.811 1.302 3.611 0 0.0% 1.300
ils-os -1.938 0.884 3.505 1.107 0.064 16 13.3% 1.072

In Table 5.4, the forth group of instances is exposed. Again the four meth-
ods have good performances, reaching or beating the target method in more than
80% of the tests. In terms of RPD average, the ILS - NoSetupInsertion has
the best performance, almost tied with the ILS - Complete. In terms of stan-
dard deviation, the ILS - NoInfeasibility and the ILS - NoSetupRemoval
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are the best, having a more predictable behavior. In terms of worst case scenario,
the ILS - NoInfeasibility leads.

Table 5.5: Results for Group 5

Instance Method RPD− RPD RPD+ σRPD RPD−
LB #Imp %Imp T ime

|O| = {50}

ils -7.918 -3.539 -0.650 1.948 3.553 120 100.0% 38.929
ils-ni -7.703 -3.431 -0.661 1.883 3.408 120 100.0% 30.582
ils-nr -6.895 -2.426 0.717 1.850 3.960 112 93.3% 11.853
ils-ns -2.976 1.047 4.561 2.213 8.954 40 33.3% 7.284

|M| = {4} ils-nsi -7.934 -3.500 -0.663 1.893 3.575 120 100.0% 40.645
ils-nsr -7.910 -3.544 -0.602 1.940 3.508 120 100.0% 40.808
ils-or -2.777 1.039 4.303 1.992 8.751 30 25.0% 7.719
ils-os -7.004 -2.262 0.711 1.857 4.422 107 89.2% 12.920

In Table 5.5, the fifth group of instances is presented. In groups 5 and 6, we
have 50 operations per instance, leading to considerably larger computational
times. In this group, besides the four methods with the presumably good
performances, the ILS - NoRelocate and ILS - OnlySwap also find equal or
better solutions than the BKS in about 90% of the tests. In larger instances, the
Iterated Local Search recurrently finds improved solutions, and the four leading
methods of the other groups find the previous BKS solutions or better in all
tests. In average, the ILS - Complete has the better results but the variance is
larger, while the ILS - NoInfeasibility has a more stable behavior. In terms
of best case scenario, the ILS - NoSetupInsertion has the best performance
and in the worst case scenario the ILS - NoSetupRemoval is the best.

Table 5.6: Results for Group 6

Instance Method RPD− RPD RPD+ σRPD RPD−
LB #Imp %Imp T ime

|O| = {50}

ils -11.021 -5.194 -1.586 2.638 3.081 120 100.0% 40.286
ils-ni -11.112 -5.039 -1.424 2.638 3.438 120 100.0% 31.035
ils-nr -10.287 -3.865 1.947 2.952 4.134 110 91.7% 11.702
ils-ns -5.829 -0.904 2.348 2.342 8.538 80 66.7% 7.586

|M| = {8} ils-nsi -10.809 -5.162 -1.365 2.659 3.693 120 100.0% 41.913
ils-nsr -11.429 -5.174 -1.554 2.691 3.318 120 100.0% 41.677
ils-or -5.101 -0.936 2.048 2.302 7.155 80 66.7% 7.922
ils-os -9.857 -3.656 2.044 2.919 3.979 110 91.7% 12.361

In Table 5.6, we observe that the results of Group 6 are similar to the
previous on Group 5. The computational time are slightly higher since we
have more machines. In terms of average, the ILS - Complete has the best
performance and in terms of standard deviation, it is almost tied with the ILS
- NoInfeasibilty. In terms of best case scenario, the ILS - NoSetupRemoval
reached the best solution and in terms of worst case scenario, the ILS -
NoSetupInsertion has the best result.

Another important way to analyse the described methods and solutions
achieved is by using boxplots of the RPD for each method. The graphic is
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exposed in Figure 5.1, where all methods are described and the database
contains all groups of instances. Analysing the graphic, we can see that the
ILS - NoSwap and the ILS - OnlyRelocate are the worst methods, finding
positive RPDs in average. This analysis indicates how important the swap
neighborhood is to the metaheuristic, where the methods that do not enable
this neighborhood have notably the worst performances.

The ILS - NoRelocate and the ILS - OnlySwap are considerably better
than the methods that do not consider the swap neighborhood, but still have
positive or null RPD averages. Indicating that not only the swap neighborhood
is crucial to the metaheuristic but also the combination of swap and relocate
neighborhoods.

As we saw in the first results tables, the methods ILS - Complete, ILS
- NoInfeasibility, ILS - NoSetupInsertion and ILS - NoSetupRemoval
have similar performances. In terms of RPD median the ILS -
NoSetupRemoval has a slight advantage among them all, while the ILS
- Complete has the lower fence. In terms of worst case scenario the ILS -
NoInfeasibility leads as the best method.

Figure 5.1: Boxplot - All Groups
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Another way to compare our methods is to compare the average RPD
and average computational time. If one method is faster than the other and
also have lower average RPD, we can affirm that this method is dominant.
In Figure 5.2, we can see that the method ILS - NoSwap is dominant when
compared to the ILS - OnlyRelocate, the ILS - NoRelocate is dominant
regarding the ILS - OnlySwap and the ILS - NoSetupRemoval dominates the
ILS - NoSetupInsertion. With that analysis it is notable that the dominated
methods can be discarded, since there are other faster methods that reach
better outcomes.

Figure 5.2: Dominance Among Methods

5.4
Statistical Tests

After analysing the results and graphics, we notice an advantage for four of
the proposed methods, they are: ILS - Complete, ILS - NoInfeasibility,
ILS - NoSetupInsertion and ILS - NoSetupRemoval. To define if we have
significant statistical differences between the methods, we ran the ANOVA
statistical test, using the software RStudio, within all pairs of methods. We
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defined a significance level or 5%, so to reject the null hypothesis that the
two methods do not have statistical significant differences the p-value obtained
must be equal or lower than 0.05. The results of the statistical tests are shown
in Table 5.7.

Table 5.7: ANOVA Tests Within All Pairs of Methods

Pair of Methods p_value Statistical Difference
ils-nr/ils 0.000 Yes
ils-ns/ils 0.000 Yes
ils-or/ils 0.000 Yes
ils-os/ils 0.000 Yes
ils-nr/ils-ni 0.000 Yes
ils-ns/ils-ni 0.000 Yes
ils-or/ils-ni 0.000 Yes
ils-os/ils-ni 0.000 Yes
ils-ns/ils-nr 0.000 Yes
ils-nsi/ils-nr 0.000 Yes
ils-nsr/ils-nr 0.000 Yes
ils-or/ils-nr 0.000 Yes
ils-nsi/ils-ns 0.000 Yes
ils-nsr/ils-ns 0.000 Yes
ils-os/ils-ns 0.000 Yes
ils-or/ils-nsi 0.000 Yes
ils-os/ils-nsi 0.000 Yes
ils-or/ils-nsr 0.000 Yes
ils-os/ils-nsr 0.000 Yes
ils-os/ils-or 0.000 Yes
ils-ni/ils 1.000 No
ils-nsi/ils 1.000 No
ils-nsr/ils 1.000 No
ils-nsi/ils-ni 1.000 No
ils-nsr/ils-ni 1.000 No
ils-os/ils-nr 0.624 No
ils-or/ils-ns 1.000 No
ils-nsr/ils-nsi 1.000 No

As we can expect based on the previous results and graphics, there are
significant statistical difference between all pairs formed by one of the four
worst methods (ILS - NoSwap, ILS - OnlySwap, ILS - NoRelocate and ILS
- OnlyRelocate) and one of the four best methods (ILS - Complete, ILS -
NoInfeasibility, ILS - NoSetupInsertion and ILS - NoSetupRemoval),
which we could observe in the boxplots graphics, where the outcomes of the
four best methods are considerably better than the four worst methods results.

Among the pairs formed by two of the four best methods, there are no
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significant statistical difference between them when analysing all groups of
instances. It is possible that in larger, more complex instances the differences
between these methods become more notable.

There is also no significant difference between the pair of methods ILS
- OnlySwap/ILS - NoRelocate and ILS - OnlyRelocate/ILS - NoSwap. It
is reasonable since these pairs of methods have the same main neighborhood
structures of our problem: the Swap or Relocate, but not both.

Among the four worst methods we can see that the ones that consider
the Swap neighborhood are notably better than the ones that consider the
Relocate neighborhood. We can observe that there are statistical differences
between these pairs of methods (ILS - NoSwap/ILS - NoRelocate, ILS -
OnlyRelocate/ ILS - NoRelocate, ILS - OnlySwap/ ILS - NoSwap and ILS
- OnlySwap/ILS - OnlyRelocate).
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6
Conclusions and Future Work

The objective of this work of proposing a metaheuristic to solve identical
parallel machine scheduling problems was achieved. The presented ILS have
found all the current Best Known Solutions in very competitive computational
times for all presented instances. The sensitivity analyses obtained by testing
the methods enabling and disabling neighborhoods and infeasibility strategies
also showed which ones contribute more to the whole method and in which
groups of instances they are more or less relevant.

As the results show, the infeasibility strategy does not seem to be very
effective in the smaller instances, in the first four groups. Also, these strategies
usually are more effective when the search goes on for a longer time. One
recommended future work for this problem is to run the methods in more
complex and larger instances, where probably the infeasible spaces will be
better utilized. Generating these more complex instances would be a good
contribution, since the PLSV instanes are limited to 50 operations so far.

Other neighborhoods could be implemented in our current Local Search
and even other local search based metaheuristics can be simply coded from the
presented work and to create a framework of metaheuristics for this problem is
the next goal. Also it is possible to improve the neighborhood’s efficiency by
using pre-processing techniques, which could be an interesting future work.

The secondary objective of this thesis was also fulfilled as the instances
were based on real-data from a studied company. The method was able to
reach high quality solutions for those instances, indicating that it can maximize
the company oil production. There are some limitations for this work, since
this real-data-based instances have simulated attributes, so one possible future
work is to test the method in the real-data and analyse the results to guide
decision-making for the company.

As the problem described in this study is very particular, we limited our
tests to the mentioned instances, but one possible future work is to test the
method in other identical parallel machine scheduling problems, with similar
but not equal problems characteristics. Probably some adaptations in the code
would be necessary to adapt to the different characteristics, but it is a possible
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extension for this work.
About the problem, there are some attributes that were simplified or

excluded from this thesis because they were not in the scope of our objectives.
In this problem, we are not considering due dates for the operations, jobs
and machines, but in the real-life problem application those are important
factors. Also, we were aiming only to minimize weighted completion time,
but the company is also interested in other objectives such as minimizing
tardiness, minimizing fleet and others. The extension of this work to achieve
these objectives would be a relevant possible future work.

At last, all of this thesis parameters were considered as deterministic. We
know that in real-life applications, most of these parameters include uncertainty,
specially in the operations processing times that depend on climate conditions,
the operations release dates that depend on equipment arrival and environmental
licenses, and the machines release dates depending on vessels contract features.
Knowing that, one very relevant future work is proposing a stochastic version
of this problem, including simulation methods to better estimate the mentioned
attributes.
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A
Detailed Results of the Methods for each Instance

In this appendix, we present the complete results of our tests, that were
summarized in Chapter 5. Table A.1 presents, for each instance and method,
the main metrics that we defined to evaluate the results.

Since we run each method ten times, with ten different seeds, we gathered
the minimum (RPD−), maximum (RPD+) and average (RPD) RPD. RPD
is computed as RPD =

(
TWC−BKS

BKS

)
× 100. Where TWC is the total weighted

completion time obtained by the method in the specific instance and the BKS
is the best known solution. We present the RPD standard deviation (σRPD)
and the RPD−LB computed as RPD−LB =

(
LB−BKS
BKS

)
× 100, where LB is the

Lower Bound of the instance, indicating how far from the Lower Bound the
method is in an specific instance. At last the Time is presented indicating the
average computational time to run the method in each instance.

Table A.1: Complete Results for each Method and Instance

Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o15_n5_q3_m4_111 ils 0.000 0.000 0.000 0.000 0.000 0.60
o15_n5_q3_m4_111 ils-ni 0.000 0.000 0.000 0.000 0.000 0.55
o15_n5_q3_m4_111 ils-ns 0.000 0.000 0.000 0.000 0.000 0.34
o15_n5_q3_m4_111 ils-nr 0.000 0.000 0.000 0.000 0.000 0.215
o15_n5_q3_m4_111 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.586
o15_n5_q3_m4_111 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.527
o15_n5_q3_m4_111 ils-os 0.000 0.000 0.000 0.000 0.000 0.173
o15_n5_q3_m4_111 ils-or 0.000 0.000 0.000 0.000 0.000 0.362
o15_n5_q3_m4_112 ils 0.000 0.000 0.000 0.000 0.000 0.83
o15_n5_q3_m4_112 ils-ni 0.000 0.000 0.000 0.000 0.000 0.80
o15_n5_q3_m4_112 ils-ns 0.583 0.583 0.583 0.000 0.583 0.33
o15_n5_q3_m4_112 ils-nr 0.000 0.238 0.596 23.754 0.000 0.281
o15_n5_q3_m4_112 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.752
o15_n5_q3_m4_112 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.767
o15_n5_q3_m4_112 ils-os 0.000 0.555 1.076 31.975 0.000 0.239
o15_n5_q3_m4_112 ils-or 0.583 0.583 0.583 0.000 0.583 0.359
o15_n5_q3_m4_121 ils 0.000 0.000 0.000 0.000 0.000 0.62
o15_n5_q3_m4_121 ils-ni 0.000 0.000 0.000 0.000 0.000 0.58

Continued on next page

DBD
PUC-Rio - Certificação Digital Nº 1812619/CA



Appendix A. Detailed Results of the Methods for each Instance 62

Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o15_n5_q3_m4_121 ils-ns 2.294 2.294 2.294 0.000 2.294 0.31
o15_n5_q3_m4_121 ils-nr 0.360 0.743 2.161 52.262 0.360 0.235
o15_n5_q3_m4_121 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.569
o15_n5_q3_m4_121 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.571
o15_n5_q3_m4_121 ils-os 0.360 2.082 3.241 87.708 0.360 0.199
o15_n5_q3_m4_121 ils-or 2.361 2.361 2.361 0.000 2.361 0.350
o15_n5_q3_m4_122 ils 0.000 0.000 0.000 0.000 0.000 0.68
o15_n5_q3_m4_122 ils-ni 0.000 0.000 0.000 0.000 0.000 0.70
o15_n5_q3_m4_122 ils-ns 5.797 5.797 5.797 0.000 5.797 0.31
o15_n5_q3_m4_122 ils-nr 0.836 2.104 5.658 141.002 0.836 0.244
o15_n5_q3_m4_122 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.655
o15_n5_q3_m4_122 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.645
o15_n5_q3_m4_122 ils-os 0.836 3.568 5.960 174.141 0.836 0.222
o15_n5_q3_m4_122 ils-or 5.797 5.797 5.797 0.000 5.797 0.372
o15_n5_q3_m4_131 ils 0.000 0.000 0.000 0.000 0.000 0.56
o15_n5_q3_m4_131 ils-ni 0.000 0.000 0.000 0.000 0.000 0.56
o15_n5_q3_m4_131 ils-ns 0.730 0.730 0.730 0.000 0.730 0.33
o15_n5_q3_m4_131 ils-nr 0.182 0.283 0.365 5.676 0.182 0.227
o15_n5_q3_m4_131 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.548
o15_n5_q3_m4_131 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.531
o15_n5_q3_m4_131 ils-os 0.365 0.520 1.186 35.917 0.365 0.163
o15_n5_q3_m4_131 ils-or 0.730 0.730 0.730 0.000 0.730 0.344
o15_n5_q3_m4_132 ils 0.000 0.000 0.000 0.000 0.000 0.76
o15_n5_q3_m4_132 ils-ni 0.000 0.000 0.000 0.000 0.000 0.66
o15_n5_q3_m4_132 ils-ns 5.793 5.793 5.793 0.000 5.793 0.41
o15_n5_q3_m4_132 ils-nr 0.000 0.000 0.000 0.000 0.000 0.273
o15_n5_q3_m4_132 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.654
o15_n5_q3_m4_132 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.658
o15_n5_q3_m4_132 ils-os 0.000 0.020 0.197 6.641 0.000 0.213
o15_n5_q3_m4_132 ils-or 4.689 4.689 4.689 0.000 4.689 0.343
o15_n5_q3_m4_211 ils 0.000 0.000 0.000 0.000 0.000 0.65
o15_n5_q3_m4_211 ils-ni 0.000 0.000 0.000 0.000 0.000 0.57
o15_n5_q3_m4_211 ils-ns 4.886 4.886 4.886 0.000 4.886 0.47
o15_n5_q3_m4_211 ils-nr 0.000 0.173 1.734 48.383 0.000 0.233
o15_n5_q3_m4_211 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.569
o15_n5_q3_m4_211 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.541
o15_n5_q3_m4_211 ils-os 1.032 2.489 3.117 68.950 1.032 0.178
o15_n5_q3_m4_211 ils-or 4.886 4.886 4.886 0.000 4.886 0.390
o15_n5_q3_m4_212 ils 0.000 0.000 0.000 0.000 0.000 0.92
o15_n5_q3_m4_212 ils-ni 0.000 0.000 0.000 0.000 0.000 0.81
o15_n5_q3_m4_212 ils-ns 4.651 4.651 4.651 0.000 4.651 0.31

Continued on next page
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o15_n5_q3_m4_212 ils-nr 0.106 0.106 0.106 0.000 0.106 0.315
o15_n5_q3_m4_212 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.822
o15_n5_q3_m4_212 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.823
o15_n5_q3_m4_212 ils-os 0.106 0.240 0.912 15.915 0.106 0.267
o15_n5_q3_m4_212 ils-or 4.651 4.651 4.651 0.000 4.651 0.337
o15_n5_q3_m4_221 ils 0.000 0.000 0.000 0.000 0.000 0.60
o15_n5_q3_m4_221 ils-ni 0.000 0.000 0.000 0.000 0.000 0.70
o15_n5_q3_m4_221 ils-ns 2.193 2.193 2.193 0.000 2.193 0.34
o15_n5_q3_m4_221 ils-nr 0.000 0.000 0.000 0.000 0.000 0.237
o15_n5_q3_m4_221 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.561
o15_n5_q3_m4_221 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.635
o15_n5_q3_m4_221 ils-os 0.000 0.000 0.000 0.000 0.000 0.208
o15_n5_q3_m4_221 ils-or 2.193 2.193 2.193 0.000 2.193 0.361
o15_n5_q3_m4_222 ils 0.000 0.000 0.000 0.000 0.000 0.69
o15_n5_q3_m4_222 ils-ni 0.000 0.000 0.000 0.000 0.000 0.71
o15_n5_q3_m4_222 ils-ns 4.806 4.806 4.806 0.000 4.806 0.32
o15_n5_q3_m4_222 ils-nr 0.000 0.096 0.193 14.757 0.000 0.239
o15_n5_q3_m4_222 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.592
o15_n5_q3_m4_222 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.646
o15_n5_q3_m4_222 ils-os 0.000 0.077 0.193 14.459 0.000 0.220
o15_n5_q3_m4_222 ils-or 4.806 4.806 4.806 0.000 4.806 0.341
o15_n5_q3_m4_231 ils 0.000 0.060 0.121 6.852 0.000 0.68
o15_n5_q3_m4_231 ils-ni 0.000 0.036 0.121 6.280 0.000 0.78
o15_n5_q3_m4_231 ils-ns 5.253 5.253 5.253 0.000 5.263 0.32
o15_n5_q3_m4_231 ils-nr 0.195 0.195 0.195 0.000 0.205 0.249
o15_n5_q3_m4_231 ils-nsi 0.000 0.036 0.121 6.280 0.009 0.585
o15_n5_q3_m4_231 ils-nsr 0.000 0.012 0.121 4.111 0.009 0.644
o15_n5_q3_m4_231 ils-os 0.195 0.322 1.460 43.007 0.205 0.212
o15_n5_q3_m4_231 ils-or 5.904 5.904 5.904 10754.000 5.914 0.357
o15_n5_q3_m4_232 ils 0.000 0.000 0.000 0.000 0.000 0.56
o15_n5_q3_m4_232 ils-ni 0.000 0.000 0.000 0.000 0.000 0.60
o15_n5_q3_m4_232 ils-ns 6.236 6.236 6.236 0.000 6.236 0.33
o15_n5_q3_m4_232 ils-nr 0.000 0.417 1.550 97.437 0.000 0.195
o15_n5_q3_m4_232 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.585
o15_n5_q3_m4_232 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.543
o15_n5_q3_m4_232 ils-os 0.000 1.243 2.737 162.076 0.000 0.175
o15_n5_q3_m4_232 ils-or 6.236 6.236 6.236 0.000 6.236 0.310
o15_n5_q3_m8_111 ils 0.000 0.000 0.000 0.000 0.000 0.79
o15_n5_q3_m8_111 ils-ni 0.000 0.000 0.000 0.000 0.000 0.71
o15_n5_q3_m8_111 ils-ns 2.369 2.369 2.369 0.000 2.369 0.49
o15_n5_q3_m8_111 ils-nr 0.813 0.813 0.813 0.000 0.813 0.263
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o15_n5_q3_m8_111 ils-nsi 0.000 0.007 0.070 0.949 0.000 0.681
o15_n5_q3_m8_111 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.698
o15_n5_q3_m8_111 ils-os 0.813 0.876 1.393 7.846 0.813 0.235
o15_n5_q3_m8_111 ils-or 2.508 2.508 2.508 0.000 2.508 0.392
o15_n5_q3_m8_112 ils 0.000 0.000 0.000 0.000 0.000 0.87
o15_n5_q3_m8_112 ils-ni 0.000 0.000 0.000 0.000 0.000 0.78
o15_n5_q3_m8_112 ils-ns 8.234 8.234 8.234 0.000 8.234 0.39
o15_n5_q3_m8_112 ils-nr 0.568 0.592 0.807 4.111 0.568 0.297
o15_n5_q3_m8_112 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.712
o15_n5_q3_m8_112 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.768
o15_n5_q3_m8_112 ils-os 1.064 1.097 1.284 3.706 1.064 0.246
o15_n5_q3_m8_112 ils-or 8.234 8.234 8.234 0.000 8.234 0.403
o15_n5_q3_m8_121 ils 0.000 0.000 0.000 0.000 0.000 0.65
o15_n5_q3_m8_121 ils-ni 0.000 0.000 0.000 0.000 0.000 0.63
o15_n5_q3_m8_121 ils-ns 0.000 0.000 0.000 0.000 0.000 0.46
o15_n5_q3_m8_121 ils-nr 0.000 0.000 0.000 0.000 0.000 0.258
o15_n5_q3_m8_121 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.625
o15_n5_q3_m8_121 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.537
o15_n5_q3_m8_121 ils-os 0.000 0.000 0.000 0.000 0.000 0.197
o15_n5_q3_m8_121 ils-or 0.000 0.000 0.000 0.000 0.000 0.379
o15_n5_q3_m8_122 ils 0.000 0.000 0.000 0.000 0.000 0.68
o15_n5_q3_m8_122 ils-ni 0.000 0.000 0.000 0.000 0.000 0.79
o15_n5_q3_m8_122 ils-ns 1.649 1.649 1.649 0.000 1.649 0.35
o15_n5_q3_m8_122 ils-nr 0.000 0.000 0.000 0.000 0.000 0.244
o15_n5_q3_m8_122 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.653
o15_n5_q3_m8_122 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.640
o15_n5_q3_m8_122 ils-os 0.000 0.000 0.000 0.000 0.000 0.233
o15_n5_q3_m8_122 ils-or 1.649 1.649 1.649 0.000 1.649 0.356
o15_n5_q3_m8_131 ils 0.000 0.318 3.180 43.639 0.000 0.71
o15_n5_q3_m8_131 ils-ni 0.000 0.028 0.138 2.530 0.000 0.69
o15_n5_q3_m8_131 ils-ns 3.042 3.042 3.042 0.000 3.042 0.35
o15_n5_q3_m8_131 ils-nr 1.659 2.461 3.180 20.357 1.659 0.255
o15_n5_q3_m8_131 ils-nsi 0.000 0.014 0.138 1.897 0.000 0.653
o15_n5_q3_m8_131 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.615
o15_n5_q3_m8_131 ils-os 2.627 2.627 2.627 0.000 2.627 0.205
o15_n5_q3_m8_131 ils-or 3.042 3.042 3.042 0.000 3.042 0.398
o15_n5_q3_m8_132 ils 0.000 0.015 0.149 3.479 0.000 0.73
o15_n5_q3_m8_132 ils-ni 0.000 0.000 0.000 0.000 0.000 0.87
o15_n5_q3_m8_132 ils-ns 1.465 1.465 1.465 0.000 1.465 0.41
o15_n5_q3_m8_132 ils-nr 0.109 0.396 0.760 20.060 0.109 0.245
o15_n5_q3_m8_132 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.667
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o15_n5_q3_m8_132 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.695
o15_n5_q3_m8_132 ils-os 0.109 0.355 0.760 21.994 0.109 0.216
o15_n5_q3_m8_132 ils-or 4.002 4.002 4.002 0.000 4.002 0.374
o15_n5_q3_m8_211 ils 0.000 0.000 0.000 0.000 0.000 0.79
o15_n5_q3_m8_211 ils-ni 0.000 0.000 0.000 0.000 0.000 0.83
o15_n5_q3_m8_211 ils-ns 1.631 1.631 1.631 0.000 1.631 0.35
o15_n5_q3_m8_211 ils-nr 0.533 0.561 0.564 0.316 0.533 0.293
o15_n5_q3_m8_211 ils-nsi 0.000 0.022 0.220 2.214 0.000 0.685
o15_n5_q3_m8_211 ils-nsr 0.000 0.022 0.220 2.214 0.000 0.735
o15_n5_q3_m8_211 ils-os 0.533 0.668 1.317 7.761 0.533 0.229
o15_n5_q3_m8_211 ils-or 1.380 1.380 1.380 0.000 1.380 0.372
o15_n5_q3_m8_212 ils 0.000 0.000 0.000 0.000 0.000 0.82
o15_n5_q3_m8_212 ils-ni 0.000 0.021 0.164 2.234 0.000 0.70
o15_n5_q3_m8_212 ils-ns 2.021 2.021 2.021 0.000 2.021 0.34
o15_n5_q3_m8_212 ils-nr 0.164 0.183 0.258 1.687 0.164 0.285
o15_n5_q3_m8_212 ils-nsi 0.000 0.049 0.164 3.381 0.000 0.701
o15_n5_q3_m8_212 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.705
o15_n5_q3_m8_212 ils-os 0.164 0.174 0.258 1.265 0.164 0.230
o15_n5_q3_m8_212 ils-or 2.021 2.021 2.021 0.000 2.021 0.359
o15_n5_q3_m8_221 ils 0.000 1.058 2.174 44.109 0.000 0.87
o15_n5_q3_m8_221 ils-ni 0.000 0.645 1.196 15.855 0.000 0.78
o15_n5_q3_m8_221 ils-ns 1.703 1.703 1.703 0.000 1.703 0.41
o15_n5_q3_m8_221 ils-nr 0.580 1.410 2.537 33.072 0.580 0.291
o15_n5_q3_m8_221 ils-nsi 0.652 0.975 2.174 27.088 0.652 0.755
o15_n5_q3_m8_221 ils-nsr 0.000 0.743 2.174 33.879 0.000 0.670
o15_n5_q3_m8_221 ils-os 1.268 2.044 2.645 31.073 1.268 0.240
o15_n5_q3_m8_221 ils-or 2.790 2.790 2.790 0.000 2.790 0.412
o15_n5_q3_m8_222 ils 0.000 0.000 0.000 0.000 0.000 0.78
o15_n5_q3_m8_222 ils-ni 0.000 0.000 0.000 0.000 0.000 0.79
o15_n5_q3_m8_222 ils-ns 7.055 7.055 7.055 0.000 7.055 0.37
o15_n5_q3_m8_222 ils-nr 3.785 3.985 5.783 66.092 3.785 0.271
o15_n5_q3_m8_222 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.607
o15_n5_q3_m8_222 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.635
o15_n5_q3_m8_222 ils-os 3.785 3.879 4.722 30.990 3.785 0.232
o15_n5_q3_m8_222 ils-or 7.055 7.055 7.055 0.000 7.055 0.411
o15_n5_q3_m8_231 ils 0.000 0.019 0.187 4.743 0.000 0.76
o15_n5_q3_m8_231 ils-ni 0.000 0.037 0.187 6.325 0.000 0.78
o15_n5_q3_m8_231 ils-ns 0.337 0.337 0.337 0.000 0.337 0.32
o15_n5_q3_m8_231 ils-nr 0.187 0.247 0.337 5.138 0.187 0.250
o15_n5_q3_m8_231 ils-nsi 0.000 0.019 0.187 4.743 0.000 0.651
o15_n5_q3_m8_231 ils-nsr 0.000 0.000 0.000 0.000 0.000 0.690
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o15_n5_q3_m8_231 ils-os 0.187 0.304 0.412 6.075 0.187 0.218
o15_n5_q3_m8_231 ils-or 0.337 0.337 0.337 0.000 0.337 0.346
o15_n5_q3_m8_232 ils 0.000 0.000 0.000 0.000 0.000 0.86
o15_n5_q3_m8_232 ils-ni 0.000 0.000 0.000 0.000 0.000 0.81
o15_n5_q3_m8_232 ils-ns 1.229 1.229 1.229 0.000 1.229 0.41
o15_n5_q3_m8_232 ils-nr 0.000 0.492 0.702 13.506 0.000 0.305
o15_n5_q3_m8_232 ils-nsi 0.000 0.000 0.000 0.000 0.000 0.753
o15_n5_q3_m8_232 ils-nsr 0.000 0.012 0.117 1.897 0.000 0.755
o15_n5_q3_m8_232 ils-os 0.000 0.427 0.819 19.081 0.000 0.265
o15_n5_q3_m8_232 ils-or 1.229 1.229 1.229 0.000 1.229 0.369
o25_n8_q3_m4_111 ils 0.000 0.000 0.000 0.000 2.566 2.85
o25_n8_q3_m4_111 ils-ni 0.000 0.000 0.000 0.000 2.566 2.78
o25_n8_q3_m4_111 ils-ns 2.874 2.874 2.874 0.000 5.513 1.07
o25_n8_q3_m4_111 ils-nr 0.579 0.766 1.038 12.758 3.160 0.845
o25_n8_q3_m4_111 ils-nsi 0.000 0.000 0.000 0.000 2.566 2.432
o25_n8_q3_m4_111 ils-nsr 0.000 0.000 0.000 0.000 2.566 2.354
o25_n8_q3_m4_111 ils-os 0.710 0.989 1.519 19.884 3.294 0.793
o25_n8_q3_m4_111 ils-or 2.907 2.907 2.907 0.000 5.547 1.103
o25_n8_q3_m4_112 ils -0.522 -0.344 -0.021 44.413 11.407 2.77
o25_n8_q3_m4_112 ils-ni -0.522 -0.402 0.149 45.012 11.407 2.78
o25_n8_q3_m4_112 ils-ns 2.184 2.184 2.184 0.000 14.437 1.05
o25_n8_q3_m4_112 ils-nr 0.202 0.398 0.996 51.998 12.219 1.055
o25_n8_q3_m4_112 ils-nsi -0.522 -0.454 -0.144 27.006 11.407 2.627
o25_n8_q3_m4_112 ils-nsr -0.522 -0.492 -0.224 17.709 11.407 2.608
o25_n8_q3_m4_112 ils-os 0.000 0.503 1.321 88.699 11.992 0.987
o25_n8_q3_m4_112 ils-or 1.912 1.912 1.912 0.000 14.133 1.104
o25_n8_q3_m4_121 ils -1.163 -1.098 -0.514 47.434 5.485 3.48
o25_n8_q3_m4_121 ils-ni -1.163 -1.043 -0.514 58.836 5.485 3.39
o25_n8_q3_m4_121 ils-ns 4.997 4.997 4.997 0.000 12.059 1.16
o25_n8_q3_m4_121 ils-nr -0.942 -0.077 0.437 97.497 5.720 1.097
o25_n8_q3_m4_121 ils-nsi -1.163 -1.012 -0.380 73.639 5.485 3.369
o25_n8_q3_m4_121 ils-nsr -1.163 -1.163 -1.163 0.000 5.485 3.265
o25_n8_q3_m4_121 ils-os -0.359 -0.020 0.367 49.054 6.343 1.045
o25_n8_q3_m4_121 ils-or 0.921 0.921 0.921 0.000 7.708 1.202
o25_n8_q3_m4_122 ils 0.000 0.000 0.000 0.000 3.640 3.03
o25_n8_q3_m4_122 ils-ni 0.000 0.000 0.000 0.000 3.640 2.67
o25_n8_q3_m4_122 ils-ns 2.803 2.803 2.803 0.000 6.545 1.07
o25_n8_q3_m4_122 ils-nr 0.081 0.371 1.804 67.899 3.723 0.870
o25_n8_q3_m4_122 ils-nsi 0.000 0.000 0.000 0.000 3.640 2.953
o25_n8_q3_m4_122 ils-nsr 0.000 0.000 0.000 0.000 3.640 2.634
o25_n8_q3_m4_122 ils-os 0.081 0.239 0.814 27.475 3.723 0.779
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o25_n8_q3_m4_122 ils-or 2.642 2.642 2.642 0.000 6.378 1.158
o25_n8_q3_m4_131 ils 0.061 0.149 0.165 11.474 4.402 3.19
o25_n8_q3_m4_131 ils-ni 0.165 0.165 0.165 0.000 4.510 3.21
o25_n8_q3_m4_131 ils-ns 3.171 3.171 3.171 0.000 7.647 1.22
o25_n8_q3_m4_131 ils-nr 0.317 0.571 0.841 50.213 4.669 1.000
o25_n8_q3_m4_131 ils-nsi 0.113 0.159 0.165 5.376 4.456 3.063
o25_n8_q3_m4_131 ils-nsr 0.061 0.149 0.165 11.474 4.402 3.054
o25_n8_q3_m4_131 ils-os 0.549 0.778 1.003 50.553 4.911 0.932
o25_n8_q3_m4_131 ils-or 3.171 3.171 3.171 0.000 7.647 1.214
o25_n8_q3_m4_132 ils 0.000 0.000 0.000 0.000 0.000 2.99
o25_n8_q3_m4_132 ils-ni 0.000 0.000 0.000 0.000 0.000 2.78
o25_n8_q3_m4_132 ils-ns 1.085 1.085 1.085 0.000 1.085 1.22
o25_n8_q3_m4_132 ils-nr 0.704 1.044 1.426 69.033 0.704 0.904
o25_n8_q3_m4_132 ils-nsi 0.000 0.054 0.269 31.201 0.000 2.988
o25_n8_q3_m4_132 ils-nsr 0.000 0.081 0.269 35.745 0.000 2.669
o25_n8_q3_m4_132 ils-os 0.704 1.259 1.764 117.384 0.704 0.815
o25_n8_q3_m4_132 ils-or 1.085 1.085 1.085 0.000 1.085 1.348
o25_n8_q3_m4_211 ils -1.392 -1.392 -1.392 0.000 9.972 2.58
o25_n8_q3_m4_211 ils-ni -1.392 -1.392 -1.392 0.000 9.972 2.59
o25_n8_q3_m4_211 ils-ns 3.698 3.698 3.698 0.000 15.649 1.02
o25_n8_q3_m4_211 ils-nr -1.392 -1.065 -0.206 141.346 9.972 0.985
o25_n8_q3_m4_211 ils-nsi -1.392 -1.392 -1.392 0.000 9.972 2.404
o25_n8_q3_m4_211 ils-nsr -1.392 -1.392 -1.392 0.000 9.972 2.437
o25_n8_q3_m4_211 ils-os -1.392 -0.981 -0.299 128.902 9.972 0.951
o25_n8_q3_m4_211 ils-or 3.698 3.698 3.698 0.000 15.649 1.017
o25_n8_q3_m4_212 ils -2.084 -2.084 -2.084 0.000 10.945 2.99
o25_n8_q3_m4_212 ils-ni -2.084 -2.074 -2.024 4.175 10.945 3.19
o25_n8_q3_m4_212 ils-ns 5.277 5.277 5.277 0.000 19.285 1.13
o25_n8_q3_m4_212 ils-nr -2.084 -1.622 -0.944 60.178 10.945 0.944
o25_n8_q3_m4_212 ils-nsi -2.084 -2.078 -2.024 3.795 10.945 2.822
o25_n8_q3_m4_212 ils-nsr -2.084 -2.084 -2.084 0.000 10.945 2.785
o25_n8_q3_m4_212 ils-os -1.679 -1.295 -0.515 78.266 11.404 0.903
o25_n8_q3_m4_212 ils-or 4.922 4.922 4.922 0.000 18.883 1.182
o25_n8_q3_m4_221 ils -0.557 -0.557 -0.557 0.000 4.360 2.81
o25_n8_q3_m4_221 ils-ni -0.557 -0.557 -0.557 0.000 4.360 2.73
o25_n8_q3_m4_221 ils-ns 4.954 4.954 4.954 0.000 10.143 1.06
o25_n8_q3_m4_221 ils-nr 0.481 0.656 0.847 25.963 5.449 0.920
o25_n8_q3_m4_221 ils-nsi -0.557 -0.557 -0.557 0.000 4.360 2.647
o25_n8_q3_m4_221 ils-nsr -0.557 -0.557 -0.557 0.000 4.360 2.660
o25_n8_q3_m4_221 ils-os 0.461 0.918 1.218 50.342 5.428 0.910
o25_n8_q3_m4_221 ils-or 5.159 5.159 5.159 0.000 10.359 1.198
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o25_n8_q3_m4_222 ils -0.462 -0.423 -0.326 12.186 10.799 2.51
o25_n8_q3_m4_222 ils-ni -0.462 -0.407 -0.396 6.332 10.799 2.36
o25_n8_q3_m4_222 ils-ns 0.110 0.110 0.110 0.000 11.436 1.11
o25_n8_q3_m4_222 ils-nr -0.326 0.085 0.480 63.699 10.950 0.759
o25_n8_q3_m4_222 ils-nsi -0.396 -0.396 -0.396 0.000 10.873 2.315
o25_n8_q3_m4_222 ils-nsr -0.462 -0.417 -0.396 7.843 10.799 2.215
o25_n8_q3_m4_222 ils-os -0.044 0.261 0.579 58.581 11.264 0.691
o25_n8_q3_m4_222 ils-or 0.110 0.110 0.110 0.000 11.436 1.163
o25_n8_q3_m4_231 ils 0.000 0.000 0.000 0.000 2.225 2.98
o25_n8_q3_m4_231 ils-ni 0.000 0.000 0.000 0.000 2.225 2.58
o25_n8_q3_m4_231 ils-ns 4.199 4.199 4.199 0.000 6.518 1.01
o25_n8_q3_m4_231 ils-nr 0.491 1.666 2.883 223.599 2.727 0.830
o25_n8_q3_m4_231 ils-nsi 0.000 0.000 0.000 0.000 2.225 2.582
o25_n8_q3_m4_231 ils-nsr 0.000 0.000 0.000 0.000 2.225 2.499
o25_n8_q3_m4_231 ils-os 1.282 1.932 2.555 119.380 3.536 0.792
o25_n8_q3_m4_231 ils-or 4.199 4.199 4.199 0.000 6.518 1.066
o25_n8_q3_m4_232 ils -0.403 -0.355 0.078 44.904 5.411 3.16
o25_n8_q3_m4_232 ils-ni -0.403 -0.385 -0.217 17.393 5.411 3.02
o25_n8_q3_m4_232 ils-ns 3.169 3.169 3.169 0.000 9.192 1.15
o25_n8_q3_m4_232 ils-nr -0.044 0.086 0.454 41.711 5.791 1.010
o25_n8_q3_m4_232 ils-nsi -0.403 -0.403 -0.403 0.000 5.411 2.969
o25_n8_q3_m4_232 ils-nsr -0.403 -0.403 -0.403 0.000 5.411 2.949
o25_n8_q3_m4_232 ils-os 0.075 0.273 1.112 90.068 5.917 0.985
o25_n8_q3_m4_232 ils-or 3.417 3.417 3.417 0.000 9.454 1.207
o25_n8_q3_m8_111 ils -1.133 -0.842 -0.260 33.116 4.021 3.36
o25_n8_q3_m8_111 ils-ni -0.926 -0.676 -0.398 26.104 4.239 3.30
o25_n8_q3_m8_111 ils-ns 2.457 2.457 2.457 0.000 7.799 1.26
o25_n8_q3_m8_111 ils-nr -0.813 0.139 0.986 62.310 4.358 1.019
o25_n8_q3_m8_111 ils-nsi -1.479 -0.928 -0.398 41.625 3.657 3.160
o25_n8_q3_m8_111 ils-nsr -0.986 -0.824 -0.424 22.394 4.176 3.006
o25_n8_q3_m8_111 ils-os 0.407 0.716 1.099 25.024 5.641 0.887
o25_n8_q3_m8_111 ils-or 3.971 3.971 3.971 0.000 9.392 1.231
o25_n8_q3_m8_112 ils -0.601 -0.539 -0.272 15.720 6.724 3.67
o25_n8_q3_m8_112 ils-ni -0.601 -0.394 -0.012 28.001 6.724 3.47
o25_n8_q3_m8_112 ils-ns 6.520 6.520 6.520 0.000 14.369 1.31
o25_n8_q3_m8_112 ils-nr 2.322 2.676 3.077 36.907 9.862 1.220
o25_n8_q3_m8_112 ils-nsi -0.570 -0.443 -0.272 20.951 6.757 3.554
o25_n8_q3_m8_112 ils-nsr -0.570 -0.430 -0.272 20.024 6.757 3.457
o25_n8_q3_m8_112 ils-os 2.050 2.731 3.505 63.757 9.569 1.129
o25_n8_q3_m8_112 ils-or 6.811 6.811 6.811 0.000 14.682 1.388
o25_n8_q3_m8_121 ils 0.000 0.408 0.697 31.590 0.593 3.30
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o25_n8_q3_m8_121 ils-ni 0.105 0.459 0.678 21.419 0.699 3.21
o25_n8_q3_m8_121 ils-ns 4.963 4.963 4.963 0.000 5.586 1.45
o25_n8_q3_m8_121 ils-nr 0.687 1.206 1.642 33.791 1.285 0.998
o25_n8_q3_m8_121 ils-nsi 0.000 0.453 0.783 29.224 0.593 3.055
o25_n8_q3_m8_121 ils-nsr 0.000 0.440 0.802 33.838 0.593 3.010
o25_n8_q3_m8_121 ils-os 1.012 1.219 1.727 22.804 1.611 0.933
o25_n8_q3_m8_121 ils-or 4.648 4.648 4.648 0.000 5.269 1.411
o25_n8_q3_m8_122 ils -0.385 -0.271 0.096 30.945 7.046 2.69
o25_n8_q3_m8_122 ils-ni -0.254 -0.038 0.223 42.053 7.188 2.54
o25_n8_q3_m8_122 ils-ns 3.443 3.443 3.443 0.000 11.160 1.30
o25_n8_q3_m8_122 ils-nr 0.482 1.206 1.795 71.879 7.978 0.882
o25_n8_q3_m8_122 ils-nsi -0.385 -0.161 0.304 49.313 7.046 2.505
o25_n8_q3_m8_122 ils-nsr -0.385 -0.257 -0.157 16.248 7.046 2.476
o25_n8_q3_m8_122 ils-os 1.197 1.692 2.287 78.940 8.746 0.770
o25_n8_q3_m8_122 ils-or 6.074 6.074 6.074 0.000 13.987 1.270
o25_n8_q3_m8_131 ils 0.000 0.000 0.000 0.000 0.002 2.89
o25_n8_q3_m8_131 ils-ni 0.000 0.029 0.165 5.266 0.002 2.87
o25_n8_q3_m8_131 ils-ns 3.691 3.691 3.691 0.000 3.693 1.25
o25_n8_q3_m8_131 ils-nr 0.062 0.300 0.619 16.374 0.064 0.940
o25_n8_q3_m8_131 ils-nsi 0.000 0.025 0.186 5.797 0.002 2.794
o25_n8_q3_m8_131 ils-nsr 0.000 0.000 0.000 0.000 0.002 2.676
o25_n8_q3_m8_131 ils-os 0.062 0.524 0.835 28.055 0.064 0.884
o25_n8_q3_m8_131 ils-or 3.691 3.691 3.691 0.000 3.693 1.338
o25_n8_q3_m8_132 ils -0.201 -0.098 0.234 27.097 1.687 3.26
o25_n8_q3_m8_132 ils-ni -0.201 -0.154 0.167 20.966 1.687 3.16
o25_n8_q3_m8_132 ils-ns 5.121 5.121 5.121 0.000 7.109 1.27
o25_n8_q3_m8_132 ils-nr 0.568 1.023 1.872 80.359 2.471 1.029
o25_n8_q3_m8_132 ils-nsi -0.201 -0.156 0.084 16.234 1.687 3.236
o25_n8_q3_m8_132 ils-nsr -0.201 -0.178 -0.095 7.505 1.687 2.997
o25_n8_q3_m8_132 ils-os 0.435 1.026 1.543 63.877 2.335 0.984
o25_n8_q3_m8_132 ils-or 5.121 5.121 5.121 0.000 7.109 1.238
o25_n8_q3_m8_211 ils -1.290 -1.057 -0.824 17.797 2.774 3.72
o25_n8_q3_m8_211 ils-ni -0.968 -0.780 -0.466 13.937 3.110 3.87
o25_n8_q3_m8_211 ils-ns 6.046 6.046 6.046 0.000 10.413 1.25
o25_n8_q3_m8_211 ils-nr -0.633 -0.179 0.167 24.345 3.459 1.109
o25_n8_q3_m8_211 ils-nsi -1.290 -1.036 -0.824 15.195 2.774 3.735
o25_n8_q3_m8_211 ils-nsr -1.290 -0.950 -0.824 10.947 2.774 3.613
o25_n8_q3_m8_211 ils-os -0.203 0.103 0.609 20.738 3.906 1.040
o25_n8_q3_m8_211 ils-or 6.022 6.022 6.022 0.000 10.388 1.181
o25_n8_q3_m8_212 ils -1.339 -0.854 -0.303 47.778 4.675 3.28
o25_n8_q3_m8_212 ils-ni -0.962 -0.765 -0.215 39.981 5.076 3.44
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o25_n8_q3_m8_212 ils-ns 3.632 3.632 3.632 0.000 9.950 1.21
o25_n8_q3_m8_212 ils-nr -0.503 0.139 0.481 45.672 5.562 1.123
o25_n8_q3_m8_212 ils-nsi -1.339 -0.862 0.222 54.801 4.675 3.197
o25_n8_q3_m8_212 ils-nsr -1.339 -0.754 -0.333 45.379 4.675 3.225
o25_n8_q3_m8_212 ils-os -0.311 0.432 1.280 76.757 5.766 1.052
o25_n8_q3_m8_212 ils-or 3.795 3.795 3.795 0.000 10.122 1.146
o25_n8_q3_m8_221 ils 0.000 0.135 0.946 31.815 0.180 3.08
o25_n8_q3_m8_221 ils-ni 0.000 0.030 0.100 5.314 0.180 2.89
o25_n8_q3_m8_221 ils-ns 3.129 3.129 3.129 0.000 3.314 1.22
o25_n8_q3_m8_221 ils-nr 1.992 2.284 2.984 33.238 2.175 0.910
o25_n8_q3_m8_221 ils-nsi 0.000 0.050 0.100 5.798 0.180 2.816
o25_n8_q3_m8_221 ils-nsr 0.000 0.040 0.100 5.680 0.180 2.745
o25_n8_q3_m8_221 ils-os 1.856 2.552 3.248 53.910 2.039 0.818
o25_n8_q3_m8_221 ils-or 3.921 3.921 3.921 0.000 4.107 1.379
o25_n8_q3_m8_222 ils -2.362 -2.176 -1.881 28.663 6.170 3.86
o25_n8_q3_m8_222 ils-ni -2.362 -2.207 -1.959 26.232 6.170 3.60
o25_n8_q3_m8_222 ils-ns 5.813 5.813 5.813 0.000 15.060 1.37
o25_n8_q3_m8_222 ils-nr -1.938 -1.491 -1.089 40.625 6.631 1.215
o25_n8_q3_m8_222 ils-nsi -2.362 -2.227 -1.669 35.716 6.170 3.567
o25_n8_q3_m8_222 ils-nsr -2.362 -2.171 -1.761 31.774 6.170 3.569
o25_n8_q3_m8_222 ils-os -1.938 -1.332 -0.806 53.877 6.631 1.167
o25_n8_q3_m8_222 ils-or 4.958 4.958 4.958 0.000 14.129 1.398
o25_n8_q3_m8_231 ils -0.227 -0.201 0.032 7.589 1.295 3.15
o25_n8_q3_m8_231 ils-ni -0.227 -0.227 -0.227 0.000 1.295 2.96
o25_n8_q3_m8_231 ils-ns 2.151 2.151 2.151 0.000 3.709 1.25
o25_n8_q3_m8_231 ils-nr 0.303 0.500 0.681 13.704 1.833 1.014
o25_n8_q3_m8_231 ils-nsi -0.227 -0.227 -0.227 0.000 1.295 3.003
o25_n8_q3_m8_231 ils-nsr -0.227 -0.227 -0.227 0.000 1.295 2.991
o25_n8_q3_m8_231 ils-os 0.540 0.715 0.940 11.070 2.074 0.965
o25_n8_q3_m8_231 ils-or 2.054 2.054 2.054 0.000 3.611 1.231
o25_n8_q3_m8_232 ils -0.366 -0.184 -0.059 15.526 2.657 3.64
o25_n8_q3_m8_232 ils-ni -0.289 -0.181 -0.065 12.240 2.736 3.50
o25_n8_q3_m8_232 ils-ns 3.402 3.402 3.402 0.000 6.540 1.32
o25_n8_q3_m8_232 ils-nr 0.053 0.245 0.396 19.783 3.089 1.124
o25_n8_q3_m8_232 ils-nsi -0.366 -0.208 -0.083 17.041 2.657 3.446
o25_n8_q3_m8_232 ils-nsr -0.390 -0.177 -0.083 16.234 2.633 3.337
o25_n8_q3_m8_232 ils-os 0.159 0.226 0.425 13.425 3.199 1.066
o25_n8_q3_m8_232 ils-or 3.208 3.208 3.208 0.000 6.339 1.387
o50_n16_q3_m4_111 ils -4.932 -4.656 -4.366 125.615 13.851 44.10
o50_n16_q3_m4_111 ils-ni -5.024 -4.597 -4.080 171.786 13.741 35.20
o50_n16_q3_m4_111 ils-ns 4.239 4.239 4.239 0.000 24.835 6.40
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o50_n16_q3_m4_111 ils-nr -3.877 -3.142 -2.284 389.740 15.115 11.535
o50_n16_q3_m4_111 ils-nsi -4.834 -4.585 -4.286 128.645 13.969 40.604
o50_n16_q3_m4_111 ils-nsr -5.012 -4.622 -4.414 106.700 13.756 42.881
o50_n16_q3_m4_111 ils-os -3.746 -3.130 -2.346 283.493 15.272 12.612
o50_n16_q3_m4_111 ils-or 4.303 4.303 4.303 0.000 24.911 7.127
o50_n16_q3_m4_112 ils -4.835 -4.394 -4.171 197.004 18.841 34.94
o50_n16_q3_m4_112 ils-ni -4.382 -4.078 -3.619 233.386 19.407 26.96
o50_n16_q3_m4_112 ils-ns 0.200 0.200 0.200 0.000 25.128 7.61
o50_n16_q3_m4_112 ils-nr -3.786 -2.720 -1.912 571.159 20.151 9.221
o50_n16_q3_m4_112 ils-nsi -4.473 -4.193 -3.874 161.492 19.294 33.063
o50_n16_q3_m4_112 ils-nsr -4.876 -4.398 -3.810 311.662 18.789 32.452
o50_n16_q3_m4_112 ils-os -3.877 -2.362 -1.727 589.493 20.038 10.045
o50_n16_q3_m4_112 ils-or 1.024 1.024 1.024 0.000 26.158 8.334
o50_n16_q3_m4_121 ils -2.727 -2.551 -2.364 78.245 6.735 37.53
o50_n16_q3_m4_121 ils-ni -2.692 -2.368 -2.028 165.385 6.774 30.25
o50_n16_q3_m4_121 ils-ns 2.421 2.421 2.421 0.000 12.384 7.29
o50_n16_q3_m4_121 ils-nr -1.881 -1.480 -1.153 173.145 7.664 11.050
o50_n16_q3_m4_121 ils-nsi -2.692 -2.421 -2.218 103.310 6.774 34.830
o50_n16_q3_m4_121 ils-nsr -2.785 -2.527 -2.188 114.464 6.671 34.658
o50_n16_q3_m4_121 ils-os -1.706 -1.424 -0.891 161.060 7.856 12.115
o50_n16_q3_m4_121 ils-or 1.809 1.809 1.809 0.000 11.713 7.147
o50_n16_q3_m4_122 ils -2.882 -2.575 -2.221 195.584 12.743 46.13
o50_n16_q3_m4_122 ils-ni -2.908 -2.533 -2.199 212.856 12.713 34.56
o50_n16_q3_m4_122 ils-ns 0.549 0.549 0.549 0.000 16.726 8.04
o50_n16_q3_m4_122 ils-nr -2.268 -1.848 -1.481 291.995 13.456 12.535
o50_n16_q3_m4_122 ils-nsi -2.842 -2.601 -2.275 188.916 12.789 44.082
o50_n16_q3_m4_122 ils-nsr -2.762 -2.586 -2.474 107.652 12.882 44.717
o50_n16_q3_m4_122 ils-os -2.607 -1.836 -1.458 369.968 13.062 13.624
o50_n16_q3_m4_122 ils-or 0.591 0.591 0.591 0.000 16.775 8.219
o50_n16_q3_m4_131 ils -1.640 -1.596 -1.414 64.291 5.490 40.48
o50_n16_q3_m4_131 ils-ni -1.633 -1.550 -1.358 80.424 5.497 33.13
o50_n16_q3_m4_131 ils-ns 4.561 4.561 4.561 0.000 12.141 7.03
o50_n16_q3_m4_131 ils-nr -1.300 -0.845 -0.332 293.344 5.854 11.393
o50_n16_q3_m4_131 ils-nsi -1.811 -1.660 -1.558 66.000 5.307 37.760
o50_n16_q3_m4_131 ils-nsr -1.740 -1.639 -1.516 61.654 5.383 38.415
o50_n16_q3_m4_131 ils-os -0.905 -0.567 -0.166 214.979 6.278 12.872
o50_n16_q3_m4_131 ils-or 2.068 2.068 2.068 0.000 9.467 7.470
o50_n16_q3_m4_132 ils -1.158 -0.889 -0.650 156.502 6.718 48.66
o50_n16_q3_m4_132 ils-ni -1.176 -0.839 -0.661 163.383 6.698 40.52
o50_n16_q3_m4_132 ils-ns 1.487 1.487 1.487 0.000 9.573 7.60
o50_n16_q3_m4_132 ils-nr -0.390 -0.164 0.133 168.434 7.547 13.114
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o50_n16_q3_m4_132 ils-nsi -1.085 -0.913 -0.663 125.675 6.796 45.335
o50_n16_q3_m4_132 ils-nsr -1.046 -0.828 -0.602 129.029 6.839 45.565
o50_n16_q3_m4_132 ils-os -0.297 0.008 0.320 228.688 7.648 14.435
o50_n16_q3_m4_132 ils-or 2.553 2.553 2.553 0.000 10.725 8.468
o50_n16_q3_m4_211 ils -6.248 -5.834 -5.454 244.691 9.214 35.26
o50_n16_q3_m4_211 ils-ni -5.851 -5.489 -5.179 202.163 9.676 24.62
o50_n16_q3_m4_211 ils-ns -2.243 -2.243 -2.243 0.000 13.878 6.57
o50_n16_q3_m4_211 ils-nr -5.370 -4.454 -3.727 423.200 10.236 9.127
o50_n16_q3_m4_211 ils-nsi -6.437 -5.793 -5.460 283.937 8.993 33.678
o50_n16_q3_m4_211 ils-nsr -6.183 -5.849 -5.329 216.258 9.289 32.621
o50_n16_q3_m4_211 ils-os -4.891 -4.405 -3.975 303.759 10.794 9.873
o50_n16_q3_m4_211 ils-or -2.207 -2.207 -2.207 0.000 13.921 7.276
o50_n16_q3_m4_212 ils -7.918 -7.668 -7.287 171.049 15.508 34.20
o50_n16_q3_m4_212 ils-ni -7.703 -7.404 -7.146 184.134 15.779 23.91
o50_n16_q3_m4_212 ils-ns -2.976 -2.976 -2.976 0.000 21.707 7.31
o50_n16_q3_m4_212 ils-nr -6.895 -6.383 -5.947 267.820 16.792 9.764
o50_n16_q3_m4_212 ils-nsi -7.934 -7.497 -7.183 216.401 15.488 32.247
o50_n16_q3_m4_212 ils-nsr -7.910 -7.615 -7.230 174.608 15.518 32.735
o50_n16_q3_m4_212 ils-os -7.004 -6.234 -5.679 363.633 16.655 10.777
o50_n16_q3_m4_212 ils-or -2.777 -2.777 -2.777 0.000 21.958 7.257
o50_n16_q3_m4_221 ils -2.899 -2.812 -2.571 112.682 9.361 41.81
o50_n16_q3_m4_221 ils-ni -2.835 -2.676 -2.239 235.512 9.433 33.69
o50_n16_q3_m4_221 ils-ns 2.361 2.361 2.361 0.000 15.285 7.47
o50_n16_q3_m4_221 ils-nr -2.159 -1.779 -1.501 226.160 10.194 11.085
o50_n16_q3_m4_221 ils-nsi -2.899 -2.791 -2.658 84.367 9.361 40.155
o50_n16_q3_m4_221 ils-nsr -2.899 -2.815 -2.461 144.565 9.361 40.003
o50_n16_q3_m4_221 ils-os -1.859 -1.569 -1.213 233.009 10.531 11.862
o50_n16_q3_m4_221 ils-or 0.304 0.304 0.304 0.000 12.968 7.519
o50_n16_q3_m4_222 ils -3.672 -3.344 -2.878 251.539 19.448 32.01
o50_n16_q3_m4_222 ils-ni -4.176 -3.435 -3.145 321.616 18.824 26.33
o50_n16_q3_m4_222 ils-ns 2.181 2.181 2.181 0.000 26.706 7.91
o50_n16_q3_m4_222 ils-nr -3.056 -2.169 -1.243 708.794 20.212 8.719
o50_n16_q3_m4_222 ils-nsi -3.703 -3.262 -2.890 263.043 19.410 31.229
o50_n16_q3_m4_222 ils-nsr -3.872 -3.389 -2.946 283.971 19.200 30.214
o50_n16_q3_m4_222 ils-os -2.491 -1.849 -1.282 457.119 20.913 9.230
o50_n16_q3_m4_222 ils-or 2.121 2.121 2.121 0.000 26.632 7.544
o50_n16_q3_m4_231 ils -5.078 -4.912 -4.616 142.526 3.553 43.74
o50_n16_q3_m4_231 ils-ni -5.211 -4.957 -4.706 162.716 3.408 37.34
o50_n16_q3_m4_231 ils-ns -0.127 -0.127 -0.127 0.000 8.954 7.34
o50_n16_q3_m4_231 ils-nr -4.705 -4.178 -3.854 202.720 3.960 13.033
o50_n16_q3_m4_231 ils-nsi -5.058 -4.944 -4.740 96.526 3.575 40.507
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o50_n16_q3_m4_231 ils-nsr -5.119 -4.974 -4.764 95.978 3.508 41.505
o50_n16_q3_m4_231 ils-os -4.281 -3.960 -3.650 185.122 4.422 14.263
o50_n16_q3_m4_231 ils-or -0.313 -0.313 -0.313 0.000 8.751 8.013
o50_n16_q3_m4_232 ils -1.468 -1.233 -0.862 263.335 13.337 31.36
o50_n16_q3_m4_232 ils-ni -1.542 -1.243 -1.030 242.128 13.253 21.43
o50_n16_q3_m4_232 ils-ns -0.092 -0.092 -0.092 0.000 14.921 7.24
o50_n16_q3_m4_232 ils-nr -0.975 0.047 0.717 558.439 13.904 8.730
o50_n16_q3_m4_232 ils-nsi -1.558 -1.345 -0.971 236.597 13.234 29.915
o50_n16_q3_m4_232 ils-nsr -1.499 -1.288 -1.001 218.837 13.302 29.412
o50_n16_q3_m4_232 ils-os -0.920 0.189 0.711 578.867 13.967 9.242
o50_n16_q3_m4_232 ils-or 2.989 2.989 2.989 0.000 18.464 8.272
o50_n16_q3_m8_111 ils -3.743 -3.454 -3.092 76.359 9.192 31.53
o50_n16_q3_m8_111 ils-ni -3.848 -3.214 -2.498 119.531 9.074 26.32
o50_n16_q3_m8_111 ils-ns 1.166 1.166 1.166 0.000 14.762 6.80
o50_n16_q3_m8_111 ils-nr -2.179 -1.513 -0.855 152.625 10.967 8.740
o50_n16_q3_m8_111 ils-nsi -3.615 -3.398 -3.211 52.243 9.337 30.892
o50_n16_q3_m8_111 ils-nsr -3.796 -3.353 -2.807 116.083 9.133 31.069
o50_n16_q3_m8_111 ils-os -2.277 -1.673 -1.035 145.861 10.855 9.085
o50_n16_q3_m8_111 ils-or 2.048 2.048 2.048 0.000 15.762 7.087
o50_n16_q3_m8_112 ils -11.021 -10.658 -10.097 126.120 20.828 40.14
o50_n16_q3_m8_112 ils-ni -11.112 -10.617 -10.216 153.189 20.705 31.70
o50_n16_q3_m8_112 ils-ns -5.829 -5.829 -5.829 0.000 27.879 8.32
o50_n16_q3_m8_112 ils-nr -10.287 -9.628 -8.974 216.999 21.826 10.348
o50_n16_q3_m8_112 ils-nsi -10.809 -10.601 -10.402 72.167 21.116 38.755
o50_n16_q3_m8_112 ils-nsr -11.429 -10.820 -10.362 162.580 20.275 38.522
o50_n16_q3_m8_112 ils-os -9.857 -9.322 -8.796 179.366 22.409 10.772
o50_n16_q3_m8_112 ils-or -5.101 -5.101 -5.101 0.000 28.868 9.051
o50_n16_q3_m8_121 ils -5.219 -5.098 -4.912 28.837 8.051 38.18
o50_n16_q3_m8_121 ils-ni -5.200 -4.971 -4.545 66.853 8.073 28.35
o50_n16_q3_m8_121 ils-ns -1.850 -1.850 -1.850 0.000 11.891 7.31
o50_n16_q3_m8_121 ils-nr -4.392 -4.036 -3.447 98.546 8.993 10.516
o50_n16_q3_m8_121 ils-nsi -5.291 -5.097 -4.921 43.001 7.969 36.568
o50_n16_q3_m8_121 ils-nsr -5.212 -5.033 -4.758 48.356 8.058 35.565
o50_n16_q3_m8_121 ils-os -4.145 -3.618 -2.893 125.012 9.275 11.096
o50_n16_q3_m8_121 ils-or -1.850 -1.850 -1.850 0.000 11.891 7.547
o50_n16_q3_m8_122 ils -5.766 -5.026 -4.597 163.812 15.060 41.48
o50_n16_q3_m8_122 ils-ni -5.151 -4.615 -4.336 127.789 15.811 30.73
o50_n16_q3_m8_122 ils-ns -0.957 -0.957 -0.957 0.000 20.932 8.08
o50_n16_q3_m8_122 ils-nr -4.350 -3.674 -3.317 171.749 16.788 9.962
o50_n16_q3_m8_122 ils-nsi -5.307 -4.956 -4.485 120.964 15.620 39.283
o50_n16_q3_m8_122 ils-nsr -5.407 -4.975 -4.611 114.504 15.498 38.406
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Appendix A. Detailed Results of the Methods for each Instance 74

Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o50_n16_q3_m8_122 ils-os -3.699 -3.306 -3.070 94.883 17.584 10.677
o50_n16_q3_m8_122 ils-or -1.473 -1.473 -1.473 0.000 20.301 8.311
o50_n16_q3_m8_131 ils -3.257 -3.008 -2.572 151.353 3.866 34.79
o50_n16_q3_m8_131 ils-ni -3.207 -2.738 -2.239 171.065 3.919 29.12
o50_n16_q3_m8_131 ils-ns 1.870 1.870 1.870 0.000 9.370 7.71
o50_n16_q3_m8_131 ils-nr -2.631 -1.983 -1.235 297.577 4.538 8.861
o50_n16_q3_m8_131 ils-nsi -3.459 -2.930 -2.214 209.763 3.648 33.622
o50_n16_q3_m8_131 ils-nsr -3.156 -2.823 -2.377 175.026 3.974 32.419
o50_n16_q3_m8_131 ils-os -1.995 -1.647 -1.197 172.068 5.220 9.117
o50_n16_q3_m8_131 ils-or 1.870 1.870 1.870 0.000 9.370 7.839
o50_n16_q3_m8_132 ils -5.318 -4.666 -4.230 218.757 15.355 39.37
o50_n16_q3_m8_132 ils-ni -4.829 -4.452 -4.054 163.768 15.950 29.51
o50_n16_q3_m8_132 ils-ns -1.407 -1.407 -1.407 0.000 20.119 7.66
o50_n16_q3_m8_132 ils-nr -4.376 -3.336 -2.831 306.542 16.502 11.271
o50_n16_q3_m8_132 ils-nsi -5.046 -4.599 -4.204 164.916 15.686 36.750
o50_n16_q3_m8_132 ils-nsr -4.822 -4.501 -4.070 151.585 15.959 37.188
o50_n16_q3_m8_132 ils-os -3.467 -3.130 -2.737 162.713 17.610 12.039
o50_n16_q3_m8_132 ils-or -0.396 -0.396 -0.396 0.000 21.351 8.466
o50_n16_q3_m8_211 ils -4.957 -4.566 -4.324 113.483 11.964 43.67
o50_n16_q3_m8_211 ils-ni -4.783 -4.393 -4.074 111.499 12.169 33.16
o50_n16_q3_m8_211 ils-ns -0.939 -0.939 -0.939 0.000 16.698 6.89
o50_n16_q3_m8_211 ils-nr -4.854 -3.779 -3.305 223.031 12.086 13.432
o50_n16_q3_m8_211 ils-nsi -4.668 -4.432 -4.219 72.437 12.305 41.121
o50_n16_q3_m8_211 ils-nsr -4.808 -4.412 -3.938 140.433 12.140 41.679
o50_n16_q3_m8_211 ils-os -3.710 -3.142 -2.573 202.526 13.433 14.374
o50_n16_q3_m8_211 ils-or -0.939 -0.939 -0.939 0.000 16.698 7.528
o50_n16_q3_m8_212 ils -9.940 -9.601 -9.287 129.294 19.713 49.55
o50_n16_q3_m8_212 ils-ni -9.781 -9.505 -9.295 114.855 19.924 40.55
o50_n16_q3_m8_212 ils-ns -3.914 -3.914 -3.914 0.000 27.722 8.25
o50_n16_q3_m8_212 ils-nr -9.119 -8.617 -7.855 254.471 20.804 12.662
o50_n16_q3_m8_212 ils-nsi -10.293 -9.718 -9.227 195.837 19.243 46.818
o50_n16_q3_m8_212 ils-nsr -9.967 -9.680 -9.421 94.826 19.677 46.563
o50_n16_q3_m8_212 ils-os -9.527 -8.689 -7.938 336.753 20.261 13.632
o50_n16_q3_m8_212 ils-or -3.914 -3.914 -3.914 0.000 27.722 7.972
o50_n16_q3_m8_221 ils -5.368 -4.980 -4.742 82.884 8.221 41.64
o50_n16_q3_m8_221 ils-ni -5.368 -4.878 -4.669 71.949 8.221 29.50
o50_n16_q3_m8_221 ils-ns -1.131 -1.131 -1.131 0.000 13.067 7.81
o50_n16_q3_m8_221 ils-nr -4.514 -4.033 -3.744 105.938 9.198 10.625
o50_n16_q3_m8_221 ils-nsi -5.303 -5.088 -4.852 53.957 8.295 39.345
o50_n16_q3_m8_221 ils-nsr -5.495 -5.146 -4.646 83.507 8.076 38.835
o50_n16_q3_m8_221 ils-os -4.170 -3.807 -3.425 79.192 9.592 11.177
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Instance Method RPD− RPD RPD+ σRP D RPD−LB Time

o50_n16_q3_m8_221 ils-or -1.181 -1.181 -1.181 0.000 13.009 7.587
o50_n16_q3_m8_222 ils -7.461 -7.219 -6.823 119.918 15.205 42.56
o50_n16_q3_m8_222 ils-ni -7.389 -6.958 -6.661 127.207 15.296 29.09
o50_n16_q3_m8_222 ils-ns -1.959 -1.959 -1.959 0.000 22.055 7.22
o50_n16_q3_m8_222 ils-nr -6.307 -5.661 -5.104 187.633 16.642 10.713
o50_n16_q3_m8_222 ils-nsi -7.578 -7.154 -6.147 227.699 15.060 40.133
o50_n16_q3_m8_222 ils-nsr -7.597 -7.201 -6.989 124.603 15.036 40.407
o50_n16_q3_m8_222 ils-os -6.276 -5.459 -5.018 197.692 16.681 11.245
o50_n16_q3_m8_222 ils-or -3.366 -3.366 -3.366 0.000 20.304 7.834
o50_n16_q3_m8_231 ils -2.798 -2.252 -1.818 154.825 3.081 48.65
o50_n16_q3_m8_231 ils-ni -2.461 -2.230 -1.930 83.476 3.438 41.48
o50_n16_q3_m8_231 ils-ns 2.348 2.348 2.348 0.000 8.538 7.61
o50_n16_q3_m8_231 ils-nr -1.805 -1.558 -1.291 94.792 4.134 13.125
o50_n16_q3_m8_231 ils-nsi -2.230 -2.138 -2.036 31.214 3.683 46.475
o50_n16_q3_m8_231 ils-nsr -2.574 -2.278 -2.126 83.361 3.318 47.264
o50_n16_q3_m8_231 ils-os -1.951 -1.533 -1.036 153.285 3.979 13.975
o50_n16_q3_m8_231 ils-or 1.045 1.045 1.045 0.000 7.155 7.453
o50_n16_q3_m8_232 ils -2.020 -1.799 -1.586 95.867 7.572 29.66
o50_n16_q3_m8_232 ils-ni -2.232 -1.892 -1.424 125.565 7.339 24.59
o50_n16_q3_m8_232 ils-ns 1.752 1.752 1.752 0.000 11.713 7.71
o50_n16_q3_m8_232 ils-nr 0.694 1.443 1.947 268.860 10.551 7.405
o50_n16_q3_m8_232 ils-nsi -2.102 -1.837 -1.365 149.459 7.483 27.476
o50_n16_q3_m8_232 ils-nsr -2.059 -1.866 -1.554 98.334 7.530 26.743
o50_n16_q3_m8_232 ils-os 1.058 1.458 2.044 226.008 10.951 7.655
o50_n16_q3_m8_232 ils-or 2.024 2.024 2.024 0.000 12.012 8.406
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