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Abstract

Shao, Zhichao; Lamare, Rodrigo Caiado de (Advisor); Landau,
Lukas T. N. (Co-Advisor). Signal Processing Techniques for
Large-scale Multiple-antenna Systems with 1-bit ADCs.
Rio de Janeiro, 2020. 111p. Tese de doutorado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.
Large-scale multiple-antenna systems are a key technique for future

wireless communications, which will serve tens of users per base station
(BS). In this scenario, one problem faced is the large energy consumption as
the number of receive antennas scales up. Recently, low-resolution analog-
to-digital converters (ADCs) have attracted much attention. Specifically,
1-bit ADCs in the front-end are suitable for such systems due to their low
cost and low energy consumption. In this thesis, 1-bit ADCs are applied in
three different system designs, which operate at the Nyquist rate and faster
than Nyquist rates along with uniform and dynamic strategies.
In the Nyquist-sampling system, low-resolution-aware channel estimation
algorithms and a novel iterative detection and decoding scheme are propo-
sed, where short block length low-density parity-check codes are considered
for avoiding high latency.
In the faster than Nyquist rates with uniform oversampling system, low-
resolution-aware channel estimation and sliding window based detection
algorithms are proposed due to their low computational cost and high
detection accuracy. Particularly, analytical expressions associated with the
Bayesian Cramér-Rao bounds for the oversampled systems are presented.
Numerical results are provided to illustrate the performance of the proposed
channel estimation algorithms and the derived theoretical bounds.
In the dynamic-oversampling system, two different system designs are
devised, namely, sum rate and mean square error based. Three different
dimension reduction algorithms are presented and thoroughly investigated.
Simulation results show that the systems with the proposed dynamic
oversampling outperform the uniformly oversampled system in terms of the
computational cost, achievable sum rate and symbol error rate performance.

Keywords
Large-scale MU-MIMO systems; 1-bit ADCs; channel estimation;

signal detection; oversampling.
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Resumo 
 

Shao, Zhichao; Lamare, Rodrigo Caiado de; Landau, Lukas T. N.. 

Técnicas  de  Processamento de  Sinais para  Sistemas de 

Múltiplas  Antenas  de Larga Escala com ADCs  de 1- bit. 

Rio de Janeiro, 2020. 111p. Tese  de Doutorado – Departamento 

de Engenharia  Elétrica, Pontifícia Universidade Católica do Rio de 

Janeiro. 
Sistemas de múltiplas antenas de larga escala são técnicas fundamen- 

tais para sistemas de comunicação sem fio do futuro, que deverão servir 

dezenas de usuários por estação rádio-base. Neste contexto, um problema 

chave  é o aumento do consumo de energia à medida que o número de an- 

tenas cresce. Recentemente,  CADs de baixa resolução têm atraído grande 

interesse de pesquisa. Em particular, CADs de 1 bit são adequados  para 

sistemas de larga escala devido ao seu baixo custo  e consumo  de energia. 

Nesta tese, CADs de 1 bit  são usados em três diferentes  abordagens de 

projeto, que operam a taxa de Nyquist e  a taxas superiores  a taxa de 

Nyquist com estratégias de amostragem uniforme  e dinâmica.  Nos sistemas 

operando a taxa de Nyquist, algoritmos  de estimação de canal que exploram 

o conhecimento  da baixa resolução   e  um novo esquema  de detecção   e 

decodificação iterativas  são propostos, em que códigos low-density parity- 

check de bloco curto são considerados  para evitar alta latência. 

Nos sistemas operando a taxas superiores a taxa de Nyquist com sobrea- 

mostragem uniforme,  algoritmos  eficientes de estimação de canal e de detec- 

ção com janela deslizante com exploração da baixa resolução são propostos. 

Além disso, são deduzidas expressões analíticas  associadas aos limitantes de 

Cramér-Rao para os sistemas com sobreamostragem. Resultados numéricos 

ilustram o desempenho dos algoritmos de estimação de canal propostos   e 

existentes  e os limitantes teóricos deduzidos. 

Nos sistemas operando com sobreamostragem dinâmica, duas abordagens 

de projeto são desenvolvidas: uma técnica baseada na maximização da soma 

das taxas  e uma técnica baseada na minimização do erro médio quadrático. 

Em seguida, três algoritmos  de redução de dimensão  são apresentados 

e investigados.   Resultados  de simulações  mostram que os  sistemas  com 

sobreamostragem  dinâmica têm melhor desempenho  do que os sistemas 

com sobreamostragem uniforme  em termos de soma das taxas alcançáveis e 

de taxa de erro de símbolos, enquanto o custo computacional  das técnicas 

examinadas  é comparável. 

Palavras-chave 

Sistemas de múltiplas antenas de larga escala; CADs de 1 bit;  esti- 

mação de canal; detecção de sinais; sobreamostragem. 
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1
Introduction

This chapter first presents the research background and the motivations
of this thesis. The main contributions and the structure of this thesis are then
provided to readers to access the current state of the art. Moreover, some basic
notations used throughout the thesis are introduced. The last section makes a
list of publications during the period of working on this thesis.

1.1
Motivation and Prior Works

Multiuser multiple-input multiple-output (MU-MIMO) is currently being
used in many wireless communication systems like long-term evolution (LTE),
which allows for a small number of antennas at the base station [1]. How-
ever, in the last decade wireless applications like mobile phones, laptops and
wireless sensors, have experienced an explosive growth and current MU-MIMO
systems cannot serve such a large number of users. With large antenna arrays
at the base station (BS), large-scale (or massive) MIMO can significantly in-
crease the spectral efficiency, mitigate the propagation loss caused by channel
fading, reduce the inter-user-interference and have many other advantages as
compared to current systems [2, 3]. As such, large-scale MIMO is a key tech-
nique for future wireless communication systems [4]. However, many different
configurations and deployments need to be reconsidered. For example, by us-
ing current high-resolution (8-12 bits) analog-to-digital converters (ADCs) for
each element of the antenna arrays at the BS, the hardware cost and the en-
ergy consumption may become prohibitively high since the dissipated power
scales exponentially with the number of bits [5].

The use of low-cost and low-resolution ADCs is then promoted for
large-scale MIMO systems. As one extreme case, 1-bit ADCs can largely
reduce the hardware cost and energy consumption of the receiver. Many
recent works have studied this area. For instance, the works in [6]- [12]
have studied massive MU-MIMO systems with coarsely quantized signals
operating over frequency-flat, narrowband channels. The works in [6]- [7] have
investigated the uplink sum rate capacity by MU-MIMO systems with 1-bit
ADCs at the BS and [8]- [9] have analyzed different precoding techniques
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for the downlink. With regard to channel estimation, the studies in [10]- [11]
have proposed the Bussgang linear minimum mean squared error (BLMMSE)
and expectation-maximization (EM) based iterative hard thresholding (IHT)
channel estimators, respectively. In the context of signal detection used in
uplink 1-bit massive MU-MIMO systems, the work in [12] presents a low-
complexity near maximum-likelihood-detection (near-MLD) algorithm called
1-bit sphere decoding.

Moreover, some prior works have investigated 1-bit ADCs used in wide-
band communication systems. The works in [13–16] have studied massive
MU-MIMO systems with coarsely quantized signals that deploy orthogonal
frequency-division multiplexing (OFDM) for wideband communications. Their
results show that it is satisfactory to use 1-bit ADCs in wideband massive
MU-MIMO-OFDM systems. Furthermore, the studies in [17–19] have dis-
cussed some key transceiver design challenges, including channel estimation,
signal detection, achievable rates and precoding techniques, in millimeter-Wave
(mmWave) massive MIMO systems, which are promising candidates for 5G cel-
lular systems.

1.2
Contributions

The contributions of this thesis are the development of channel estimation
and signal detection algorithms used in the 1-bit systems sampling at both
Nyquist and oversampling rate.

– In the Nyquist-sampling system, adaptive channel estimators are pro-
posed for achieving low computational cost and high estimation accu-
racy. Iterative detection and decoding (IDD) schemes are developed for
1-bit quantized systems to mitigate the interference from the other users.

– In the uniform-oversampling system, various channel estimation algo-
rithms are proposed and the corresponding computational complexities
are analyzed. The fundamental estimation limits are examined by deriv-
ing a Bayesian framework and bounds on channel estimation. To reduce
the computational complexity caused by the large number of samples due
to oversampling, the sliding window based linear detectors are proposed.

– In the dynamic-oversampling system, two different design criteria are
proposed and the dimension reduction algorithms are developed to
achieve high accuracy and low complexity.
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1.3
Outline

The rest of the thesis is organized as follows:

– Chapter 2 gives some technical background on this thesis. In the first
section, basic concepts of multiuser MIMO are presented, which includes
sum rate capacity, channel estimation, multiuser detection and precoding
technique. In section 2, some related information about low-resolution
signal processing is presented, where the signal is processed after the
low-resolution ADCs. The concept of oversampling, which increases the
signal-to-quantization-noise ratio (SQNR) of the quantizer, and power
consumption of the receiver equipped with low-resolution ADCs are also
illustrated.

– Chapter 3 presents the pilot-based channel estimation and detection al-
gorithms for 1-bit ADCs systems sampling at Nyquist rate. The compar-
ison of computational complexity between different channel estimators
is also described in this chapter. In order to improve signal detection, an
IDD scheme is devised for 1-bit system.

– Chapter 4 presents the pilot-based channel estimation and detection algo-
rithms for 1-bit ADCs systems sampling at oversampling rate. Moreover,
the channel estimation limits, Bayesian and general Cramér-Rao bounds
(CRB), are also derived depending on the availability of knowledge of
channel statistics Rh′ . In order to perform signal detection, sliding win-
dow based detectors are illustrated.

– Chapter 5 gives two system designs for the asynchronous 1-bit MIMO
system sampling at dynamic oversampling rate. Different dimension re-
duction algorithms are presented and the complexities are also compared.

– Chapter 6 presents the conclusions of this thesis and suggests directions
in which further research could be carried out.

1.4
Notation

The following notation is used throughout the thesis. Matrices are in bold
capital letters while vectors in bold lowercase. In denotes the n × n identity
matrix and 0n is the n × 1 all-zero column vector. Additionally, diag(A) is a
diagonal matrix only containing the diagonal elements of A. The transpose,
conjugate transpose and pseudoinverse of A are represented by AT , AH and
A+, respectively. a∗ denotes the complex conjugate of a and [a]k represents
the kth element of vector a. (·)R and (·)I get the real and imaginary part from
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the corresponding vector or matrix, respectively. ⊗ is the Kronecker product.
Finally, vec(A) is the vectorized form of A obtained by stacking its columns
and det(A) is the determinant function. blkdiag(·) is a block matrix such
that the main-diagonal blocks are matrices and all off-diagonal blocks are zero
matrices. Tr(·) is denoted by the operation of trace. x ∼ CN (a,B) indicates
that x is a complex Gaussian vector with mean a and covariance matrix B.
The expectation and covariance are denoted as E{·} and Cov{·}, respectively.
bac gets the largest integer smaller or equal to a and mod (a, b) returns the
remainder after division of a by b. While calculating the computational costs,
O(·) represents the big O notation indicating the number of flops.

1.5
Publication List

1.5.1
List of Publications

During the preparation of this thesis, several parts have been published
(or are under review for publication) as articles in peer-reviewed journals or
have been presented at international conferences:

Journal papers:

1. Z. Shao, R. C. de Lamare and L. T. N. Landau, Iterative Detection and
Decoding for Large-Scale Multiple-Antenna Systems With 1-Bit ADCs,
in IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 476-479,
June 2018.

2. Z. Shao, L. T. N. Landau and R. C. de Lamare, Channel Estimation for
Large-Scale Multiple-Antenna Systems Using 1-Bit ADCs and Oversam-
pling, in IEEE Access, vol. 8, pp. 85243-85256, 2020.

3. Z. Shao, L. T. N. Landau and R. C. de Lamare, Dynamic Oversampling
for 1-Bit ADCs in Large-Scale Multiple-Antenna Systems, in IEEE
Transactions on Signal Processing, 2020, under review.

Conference papers:

1. Z. Shao, L. T. N. Landau and R. C. de Lamare, Adaptive RLS Channel
Estimation and SIC for Large-Scale Antenna Systems with 1-Bit ADCs,
WSA 2018; 22nd International ITG Workshop on Smart Antennas,
Bochum, Germany, 2018.

2. Z. Shao, L. T. N. Landau and R. C. de Lamare, Sliding Window Based
Linear Signal Detection Using 1-Bit Quantization and Oversampling
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2
Technical Background

This chapter reviews some basic concepts related to this thesis, which are
important for understanding the techniques used in the field and the remaining
chapters. For advanced readers, this chapter can be skipped.

The first section briefly introduces topics related to the MU-MIMO
systems including sum rate capacity, channel estimation, multiuser detection
and precoding techniques. The second section gives some information about
the ADCs, which involves quantization theorem, oversampling technique and
power consumption.

2.1
Basics of Large-scale MU-MIMO

MIMO stands for multiple-input multiple-output, which is a method
for allowing the transmission and reception of more than one data signal
simultaneously over the same radio link. This technique has become an
essential element of different wireless communication standards including
WIFI, 3G and 4G. The standard MU-MIMO networks tend to use small
number of antennas (e.g. below ten), whereas the large-scale MIMO, or massive
MIMO, are systems that employ an especially high number of antenna arrays
(e.g. a few hundred). They have the potential to increase the capacity without
requiring more spectrum, mitigate the propagation loss caused by channel
fading, be resistant to the interference and have many other advantages [20].
This section will describe a single-cell MU-MIMO system, which has been used
for assessing the techniques developed in this thesis.

2.1.1
MU-MIMO

Generally, multiuser MIMO can be generalized into two categories, the
MIMOmultiple access channel (MAC) and the MIMO broadcast channel (BC).
In cellular networks, the MAC, or uplink, models the channel from mobile
devices to the base station, and the BC, or downlink, models the channel
from the base station to mobile devices. The system model we consider in the
following is outlined in Fig. 2.1, where a single BS with Nr antenna elements
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communicates with Nt single antenna users1. In large-scale MIMO systems, Nr

is much larger than Nt.

User 1

•

•

•

User Nt

BS
•

•

x1

xNt

y1

y2

yNr

Uplink

Downlink

Figure 2.1: Multiuser MIMO system setup.

In the uplink transmission, if the channel between user nt and BS is
denoted by hupnt

∈ CNr×1, the signal received at the BS is described by

yup =
Nt∑
nt=1

hupnt
xnt + nup = Hupx + nup, (2-1)

where x = [x1, x2, ..., xNt ]T . The vector nup is the thermal noise at the BS with
the size of Nr × 1 and Hup = [hup1 ,h

up
2 , · · · ,hupnt

] has the size of Nr ×Nt.
On the other hand, the signal received at the ntth user in the downlink

is
ydownnt

= hdownnt
x + ndownnt

(2-2)
where ndownnt

is the thermal noise at the user nt and the total received signal at
the users is

ydown = Hdownx + ndown, (2-3)
where Hdown = [hdown1 ,hdown2 , · · · ,hdownnt

] ∈ CNr×Nt .
Basically, large-scale MIMO systems can be operated into two modes,

time division duplexing (TDD) and frequency division duplexing (FDD).
In TDD mode, the channel state information (CSI) remains the same for
the uplink and downlink channel, called channel reciprocity, while in FDD
mode, the uplink and downlink transmission share the same time but differ
in frequency spectrum [22]. In this thesis, TDD transmission and perfect
reciprocity is assumed. The superscript in the notation is therefore dropped

hupnt
= hdownnt

= hnt (2-4)

Hup = Hdown = H. (2-5)
1Potentially, each user can be equipped with multiple antennas. The single-antenna user

is a simplification and common configuration of research in cellular wireless systems [21].
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2.1.2
Sum Rate Capacity

The channel capacity of a point-to-point MIMO channel is the funda-
mental limit on reliable communication: the maximum rate of communication
for which arbitrarily small error probability can be achieved [21].

For the MIMO MAC channel, each transmitter is assumed to have an
independent message for the base station, and thus the capacity is the sum
rate of all users. The upper bound of the sum rate is given by [23]

Nt∑
nt=1

Rnt ≤ log2 det
(
INr + HCxHHC−1

n

)
, (2-6)

where Rnt is the rate of user nt. Cx and Cn represent autocorrelation of
transmit and noise signal, respectively.

In the MIMO BC channel, the transmitter is assumed to have a different
(and independent) message for each of the receivers. A key component in
establishing capacity results for the MIMO BC is the duality relationship
between the MIMO BC and the MIMO MAC [23]. The duality relationship
refers to the fact that the dirty paper rate region of the MIMO BC is equal
to the union of capacity regions of the dual MIMO MAC, where the union is
taken over all individual power constraints and then summation is equal to the
power constraint in MIMO BC [24].

2.1.3
Pilot-based Channel Estimation

In the TDD mode, the BS relies on good uplink channel knowledge to
recover the data symbols transmitted from each user. A common technique for
channel estimation is to let the users transmit a known sequence of symbols
(τ pilots) and evaluate the effect of the channel on these symbols at the BS,
as shown in Fig. 2.2. The mathematical form can be illustrated as

Yp = HXp + Np, (2-7)

where Xp and Yp has the size of Nt× τ , Nr× τ , respectively. Vectorizing (2-7)
we obtain

yp = (XT
P ⊗ INr)h + np = X̃Ph + np, (2-8)

where yp and h has the size of Nrτ × 1 and NrNt × 1, respectively. In
the following, two basic approaches for estimating the channel vector h are
introduced.

pilot data

Figure 2.2: One block of transmission stream at each user
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The least squares (LS) approach seeks to minimize the squared error
between the received pilot sequence and its noise-and-interference free version
[25] as described by

ĥLS = arg min
h̄
||yp − X̃P h̄||2

= (X̃H
p X̃p)−1X̃H

p yp.
(2-9)

The linear minimum mean square error (MMSE) estimator exploits the
prior knowledge of covariance matrices to improve the channel estimates, by
amplifying the signal from spatial direction of desired terminal and attenuating
the interferers [25]. The linear filter is

WMMSE = arg min
W

E{||h−Wyp||2}

= Chyp
C−1

yp
,

(2-10)

where Chyp
and Cyp are defined as E{hyHp } and E{ypyHp }, respectively. The

linear MMSE channel estimator is given by

ĥMMSE = Chyp
C−1

yp
yp. (2-11)

Both estimators have their drawbacks. The MMSE estimator suffers from
a high complexity, whereas the LS estimator has a higher MSE.

2.1.4
Multiuser Detection

Multiuser detection is based on the idea of detecting signals of users, and
exploiting the detected signal to mitigate their effect on the desired user sig-
nal [26]. Generally, besides the optimum maximum likelihood (ML)/maximum
a posterior probability (MAP) detectors the other suboptimum multiuser de-
tectors can be characterized into two categories, linear and nonlinear detec-
tors. The former class includes the matched filter (MF), zero-forcing (ZF)
receiver and the minimum mean square error (MMSE) receiver; the latter
includes interference cancellation (IC), decision feedback receivers and turbo
receivers [27].

2.1.4.1
Optimal Detectors

In communication systems, the optimum rule of designing optimal de-
tectors looks for minimizing the error probability based on the observed sig-
nals and a given set of hypotheses, which is called the maximum a posteriori
(MAP) criterion. When considering the system model of (2-1), the MAP cri-
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terion based MIMO detector is formulated as

x̂MAP = arg maxPr(x|y). (2-12)

Using Bayes’ rule, the a posteriori probability (APP) can be expressed as

Pr(x|y) = p(y|x)Pr(x)
p(y) , (2-13)

where Pr(x) is the a priori probability of x, and p(y|x) is the conditional
probability density function (PDF) of the observed signal vector y given x.
The MAP criterion can be simplified when each transmitted signal in x has
an identical a priori probability. Furthermore, considering the fact that p(y)
is independent of which particular signal is transmitted, the MAP detector
becomes equivalent to the ML detector, which can be computed by

x̂ML = arg maxPr(y|x) (2-14)

Therefore, the MAP criterion is usually used in iterative detection
and decoding (IDD) aided receivers, where the a priori probabilities of the
transmitted symbols, Pr(x), may be obtained with the aid of a backward-and-
forward oriented iterative information exchange between the signal detector
and the channel decoder. By contrast, the ML criterion is usually used in
uncoded systems, where the a priori probabilities of the transmitted symbols
cannot be obtained [27].

2.1.4.2
Linear Detectors

Similar to linear equalization for elimination of inter-symbol-interference
(ISI), linear detectors can be considered as filtering using a matrix filter for
elimination of interference. They have the advantage of low complexity, but
suffer from a considerable performance loss in comparison to the optimum
detector. More explicitly, the decision statistics of linear MIMO detectors may
be expressed as

x̂ = Ty, (2-15)
where T is the linear transformation (or filtering) matrix with the size of
Nt×Nr to be designed using various criteria. In the literature, the most popular
linear detectors are MF, ZF and MMSE detectors [27].

The ZF criterion based MIMO detector is designed to completely remove
interuser interference, but does not take noise into account. If the matrix H
satisfies Nr > Nt and has a full column rank of Nt, the linear transformation
matrix is given by

TZF = (HHH)−1HH . (2-16)
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The linear transformation matrix T of (2-15) can be designed according
to the MMSE criterion, which minimizes the MSE between the actual trans-
mitted data and the detector’s outputs after using the linear transformation
matrix. To be more specific, T is obtained by solving the following optimization
problem:

TMMSE = arg min
T

E
{
||x−Ty||22

}
= CxyC−1

y ,
(2-17)

where Cxy and Cy are defined as E{xyH} and E{yyH}, respectively.
The linear ZF detector completely eliminates the interference amongst

the multiple inputs, although the noise power has been enhanced. On the other
hand, the linear MMSE detector considers both the multiuser interference
(MUI) and the noise to jointly minimize the detection error. It achieves a
better balance between the MUI elimination and noise enhancement. Hence,
at low SNR the linear MMSE detector achieves a better performance.

2.1.4.3
Nonlinear Detectors

Another important class of suboptimum MIMO detectors are the inter-
ference cancellation based MIMO detectors, which are nonlinear and generally
achieve a better performance than linear MIMO detectors but at the expense of
a higher complexity. Some nonlinear MIMO detectors are listed as follows [27]:

– Successive interference cancellation (SIC): In the most popular SIC
detectors, a single symbol xnt is detected at a time. While making the
detection of other symbol xn′t , the interference imposed by xnt on the
other symbol xn′t will be recreated and subtracted as described by

yn′t = y−Hntx̂nt , (2-18)

where x̂nt is the estimated symbol and Hntx̂nt represents the recon-
structed interference from the ntth users.

With this mechanism, the ordering criterion that which symbol is de-
tected first is quite important in this scheme. Some ordering crite-
ria include the decreasing signal-to-noise ratio (DSNR) [35], the great-
est signal-to-noise ratio (GSNR) [37], the increasing mean-square error
(IMSE) criterion [36], and the least mean-square error (LMSE) crite-
rion [38]. Note that the optimal detection order can be achieved by
the vertical-Bell laboratory layered space time (V-BLAST) [39] order-
ing, which is equivalent to the highest signal-to-interference noise ratio
(SINR) ordering. However, when the dimension of transmitted symbol
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vector x is too high, the processing delay of SIC technique will increase
largely.

– Parallel interference cancellation (PIC): In the PIC based detectors, all
symbols are detected simultaneously. With initial estimate of all symbols,
the interference can be regenerated and subtracted from the received
signals. This process may be repeated for several iterations. Among them
one iteration is described as

yn′t = y−
Nt∑

l=1,l 6=n′t

Hlx̂l, (2-19)

where Hlx̂l is the reconstructed interference from the lth user.

Compared to SIC, PIC has much lower processing delay. In the context
of multi-antenna MIMO systems, the PIC detector was studied mainly
in [40,41].

– Other common nonlinear detectors include tree-search based MIMO
detectors [42], lattice-reduction aided detectors [43,44], probabilistic data
association based detectors [45] and semidefinite programming relaxation
based detectors [46].

2.1.5
Precoding

In MU-MIMO systems, precoding is another important aspect. Before
the transmission, the source signals are precoded in order to reduce the
performance loss caused by MUI and channel fading. Normally, precoding is
performed at the BS during the downlink transmission. The advantage of this
method is that the detection procedure at the user equipment (UE) can be
simplified, which can reduce the complexity and the power consumption of the
UE.

2.1.5.1
Linear Precoders

The classical ways to deal with the interference are the linear processing
approaches, which usually achieve reasonable performance with much lower
complexity than the nonlinear precoders. The estimation of the transmitted
signal x̂ after the receive filter T is given by

x̂ = T(HGx + n), s.t. E
{
||Gx||22

}
= Ex, (2-20)

where Ex is the transmit power and G is the linear precoder with the size
of Nt × Nt to be designed based on different criteria. Similar to the linear
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detectors in subsection 2.1.4.2, linear precoding strategies also include MF, ZF
and MMSE criterion [47].

In the ZF precoder, all interference are termed to zero. The precoded
transmitted signal in (2-3) will be

GZF = βZFHHTH(THHHTH)−1, (2-21)

where βZF is a gain factor to make sure that the transmitted signal power after
precoding will not be changed.

However, (2-21) has not considered the noise enhancement. In the MMSE
precoder design the knowledge of the noise covariance matrix is necessary,
which has the form as

GMMSE = βMMSE(HHTHTH + Tr(Cn)
Ex

INt)−1HHTH , (2-22)

where βMMSE has the same function as βZF .

2.1.5.2
Nonlinear Precoders

Apart from the above-mentioned linear precoders, nonlinear precoders
can provide the potential to improve the system performance. The design
concept is the dirty paper coding (DPC), which shows that any known
interference at the transmitter can be subtracted without the penalty of radio
resources if the optimal precoding scheme can be applied on the transmit
signal [48]. However, the DPC is a highly nonlinear technique and is too
complex for practical implementation [23]. Suboptimal approximations of DPC
include Tomlinson-Harashima precoder (THP) [49] and vector perturbation
(VP) [50].

– THP: it is a pre-equalization technique proposed for channels with ISI.
The basic idea is to use the LQ decomposition on the channel matrix H
as

H = LQ, (2-23)
where L is a lower triangular matrix and Q is a unitary matrix.
Basically there are two structures, decentralized and centralized. The
only difference is the location of scaling matrix G, whether it is at
receivers or transmitters [51]. In decentralized THP the received signal
is

y = GTHP(HFx + n), (2-24)
whereas in centralized THP the received signal is

y = β(H 1
β

FGTHPx + n), (2-25)
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where F = QH and GTHP is a diagonal matrix. Each diagonal element is
the inverse of the diagonal element of the matrix L. The factor β is used
to impose the power constraint.

– VP: this approach adds additional complex integer vector to the original
data vector. With the perturbation, a near optimal performance is
achieved. The perturbed data vector is

x′ = x + τ`, (2-26)

where τ is a positive real number and ` is a complex integer vector
that needs to be decided. Usually, τ is fixed according to the chosen
constellation.

2.2
Low-resolution Signal Processing

In large-scale MU-MIMO systems, the BS is equipped with a large
number of antenna arrays. Each receive antenna is connected to a radio-
frequency (RF) chain, which mainly consists of two ADCs, low noise amplifier
(LNA), mixers, automatic gain control (AGC) and some filters. Among all
these components, the power consumption of ADCs dominates the total power
of the whole RF chain. The deployment of today’s high-speed and high-
resolution (more than 8 bits) ADCs is unaffordable for the practical use of
large-scale MIMO [28,29]. The author in [30] has analyzed the affecting factors
on the energy consumption of ADCs and proposed the figure of merit (FOM)
formula, which is

FOMw = Power

2ENOBfs
, (2-27)

where ENOB represents the effective number of bits and fs is the sampling
rate. Moreover, the ADC survey made by R. H. Walden is illustrated in Fig.
2.3, where it can be seen that at high sampling rate (above 300MHz) the energy
consumption grows largely.

Low-resolution signal processing refers to techniques for processing
coarsely quantized (1-3 bits) signals after the ADCs. The benefits of using
such low-resolution ADCs are low cost and low energy consumption, which
may be a suitable solution for large-scale MIMO systems.

2.2.1
Analog-to-Digital Conversion

In electronics, an ADC converts a continuous-time and continuous-
amplitude analog signal to a discrete-time and discrete-amplitude digital
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Figure 2.3: ADC survey [30]

signal. Under the control of an external clock, the output of an A/D converter
can be stated as

yQ(n) = Q{y(n)} = Q{y
(
nT

M

)
}, n = 1, 2, ... (2-28)

where Q{·} represents the quantization function to the corresponding quan-
tization levels and M is the oversampling factor. T is the duration of one
symbol. Generally, quantizers can be defined with either uniformly or nonuni-
formly spaced quantization levels [31]. As one example, Fig. 2.4 shows a typical
uniform 3-bit quantizer characteristic, in which the sample values are rounded
to the nearest quantization level.
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111

Time

Quantization
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∆

Figure 2.4: Analog to digital conversion process.
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The conversion involves quantization of the input, so it necessarily
produces a quantization error, defined as

e[n] = y[n]− yQ[n]. (2-29)

For the example showed in Fig. 2.4, the error is bounded as follows

−∆/2 ≤ e[n] < ∆/2, (2-30)

where ∆ is the step-size between two adjacent quantization levels. For small ∆,
it is reasonable to assume that e[n] is a random variable uniformly distributed
from −∆/2 to ∆/2 [31]. Therefore, the probability density function assumed
for the quantization noise is uniformly distributed as shown in Fig. 2.5, and
its variance is

σ2
e[n] =

∫ ∆/2

−∆/2
e[n]2 1

∆de[n] = ∆2

12 . (2-31)

e[n]

pe[n]

∆
2− ∆

2

1
∆

Figure 2.5: Probability density function of quantization error.

As one extreme case, 1-bit ADC has recently attracted much attention
by researchers due to its low cost (only constituted by a simple comparator)
and low power consumption (will be illustrated in subsection 2.2.3). This thesis
mainly concentrates on investigating the signal processing with 1-bit ADCs. In
particular, 1-bit ADC can also be termed as a hard-limiter, where the output
has only two results, e.g. 1 or -1. Fig. 2.6 shows the 1-bit quantization outputs
of the same input signal as in Fig. 2.4, where the quantization error e[n] is
extremely large.

Since 1-bit quantization strongly changes the properties of signals, some
statistical properties of quantization for Gaussian input signals need to be
discussed. For 1-bit quantization and Gaussian inputs, the cross-correlation
between the unquantized signal s with covariance matrix Cs and its 1-bit
quantized signal sQ is described by [32]

DBD
PUC-Rio - Certificação Digital Nº 1621980/CA



Chapter 2. Technical Background 32

-1

1
Time

Quantization

Analog Signal

Figure 2.6: 1-bit analog to digital conversion process.

CsQs =
√

2
π

KCs,where K = diag(Cs)−
1
2 . (2-32)

Furthermore, the covariance matrix of the 1-bit quantized signal sQ can be
obtained through the arcsin law [33]

CsQ = 2
π

(
sin−1(KCR

s K) + jsin−1(KCI
sK)

)
. (2-33)

2.2.2
Oversampling

In signal processing, oversampling is the process of sampling a signal
at a frequency higher than the Nyquist rate, which is defined as twice the
bandwidth of the transmission. Theoretically, a bandwidth-limited signal can
be perfectly reconstructed if it is sampled at or above the Nyquist rate.
Especially, for 1-bit quantization Fig. 2.7 shows an example with 2-fold
oversampling of Fig. 2.6, where the red lines represent the samples sampling
at the oversampling rate.

In [31]2, the authors have illustrated that the noise power of the over-
sampled signal in the decimated output can be decreased by increasing the
oversampling ratio M . Since the signal power is independent of M , increasing
M will increase the signal-to-quantization-noise ratio (SQNR). In other words,
oversampling reduces the quantization error caused by the ADCs, expressed
by

σ2
e[n] = ∆2

12M . (2-34)
It can be seen that the quantization error has been reduced to the one-Mth of
the error in (2-31).

2More derivations can be found in the subsection 4.9.1.
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Figure 2.7: 1-bit analog to digital conversion with 2-fold oversampling.

2.2.3
Power Consumption

The advantage of 1-bit ADCs is that they do not require AGC and
linear amplifiers, and hence the corresponding radio frequency chains can be
implemented with very low cost and power consumption (a few milliwatts)
[7,10,34]. As an example, Fig. 2.8 shows the total receiver power consumption
as a function of the quantization bits b. The calculation of the receiver power
consumption is based on the work in [52]

Ptotal = PBB + PLO +Nr(PLNA + PH + 2PM) + 2Nr(cPAGC + PADC), (2-35)

where PBB, PLO, PLNA, PH, PM and PAGC denote the power consumption in
the baseband processor, local oscillator (LO), LNA, π

2 hybrid and LO buffer,
mixer and AGC, respectively. The parameter c is chosen as 0 for the 1-bit
system and 1 for b-bit systems (b > 1). Nr = 64. The power consumption of
different hardware components is given as PBB = 200 mW, PLO = 22.5 mW,
PLNA = 5.4 mW, PH = 3 mW, PAGC = 2 mW and PM = 0.3 mW. The PADC is
calculated as

PADC = FOMw ×Mfn × 2b, (2-36)
where FOMw is 200 fJ/conversion-step at 50 MHz bandwidth and the Nyquist
sampling rate fn is 100 MHz. From the results, we can see that the 1-bit
system consumes much less power than the 2-bit and 3-bit systems in both
non-oversampled and oversampled systems.

2.3
Summary

This chapter has reviewed the technical background about this thesis.
The basic knowledge about MU-MIMO is illustrated including sum rate
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Figure 2.8: Receiver power consumption as a function of the quantization bits b.

capacity, channel estimation, multiuser detection and precoding techniques.
Moreover, to decrease the power consumption at receiver low-resolution signal
processing is equipped with MU-MIMO systems. The function of ADCs and
its use with oversampling are also presented and discussed in this chapter.
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3
Symbol-rate based System Design

In this chapter, a single-cell large-scale MU-MIMO system with 1-bit
ADCs sampling at the symbol or Nyquist rate is considered. This system
configuration is used by most of the research. The authors in [18] have
examined approximate message passing (AMP) based channel estimation
algorithm in millimeter wave MIMO systems with 1-bit quantization. Other
channel estimators, such as the Bussgang based LMMSE and the maximum
a posteriori probability (MAP), and their performance analysis have been
studied in [10] and [53], respectively. The authors in [54] have made an
investigation about massive MIMO systems with 1-bit ADCs, which is based on
the LS channel estimation, maximal ratio combining (MRC) and ZF detection.
An analytical approach to calculate the mutual information for the MRC
receiver is also provided. A near ML-type detector and channel estimator are
proposed in [55].

The system model is firstly illustrated and two adaptive low-resolution
aware channel estimation algorithms are proposed. The computational com-
plexity of existing channel estimators are then compared. In the section of
signal detection, an iterative detection and decoding (IDD) scheme with soft
interference cancellation and an MMSE-type filter is devised for 1-bit MIMO
systems, which is novel compared to prior works.

3.1
System model

The system model is depicted in Fig. 3.1. There are Nt single-antenna
users and the receiver is equipped with Nr antennas, where Nr � Nt. The
information bits are firstly modulated to xnt according to a given modula-
tion scheme. The transmit symbols xnt have zero-mean and the same energy
E{|xnt |2} = σ2

x. The modulated symbols are then transmitted over block-
fading channels with frequency flat. The vector n ∼ CN (0Nr , σ

2
nINr) contains

independent and identically distributed (IID) complex Gaussian random vari-
ables with zero mean and variance σ2

n. The received unquantized signal is given
by

y = Hx + n =
Nt∑
nt=1

hntxnt + n, (3-1)
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where hnt ∈ CNr×1 denotes the channel from the user nt to the BS and
H ∈ CNr×Nt is the channel matrix. Q(.) represents the 1-bit quantization.
The real and imaginary parts of the unquantized signal y are element-wisely
quantized to {± 1√

2} based on a threshold (e.g. zero). The resulting quantized
signal yQ is

yQ = Q (y) = Q (R{y}) + jQ (I{y}) , (3-2)
where R{·} and I{·} get the real and imaginary part, respectively.

Based on (2-32) and (2-33), we can reformulate (3-2) as a statistically
equivalent linear system, which is given by

yQ = Ay + nq, (3-3)

where A is a linear operator chosen independently from y. The vector nq
contains the statistically equivalent quantizer noise with covariance matrix
Cnq = CyQ −ACyA. With (2-32) the matrix A is calculated as

A = CH
yyQC−1

y =
√

2
π
diag (Cy)−

1
2 , (3-4)

where Cy denotes the auto-correlation matrix of y as

Cy = E
{

(Hx + n) (Hx + n)H
}

= σ2
xHHH + σ2

nINr . (3-5)

Proof. See Appendix A. �

3.2
Pilot-based Channel Estimation

In the uplink, each transmission packet contains two parts, pilot and
data symbols. During the training phase, all Nt users simultaneously transmit
τ pilots to the receiver, which yields

YQp = Q (Yp) = Q (HXp + Np) , (3-6)

where Xp ∈ CNt×τ is the pilot matrix.
In large-scale MIMO Nr � Nt, the multiplications and divisions involv-

ing large matrices, whose dimensions contain Nr elements, need to be avoided
in order to reduce computational complexity. With this motivation, the channel
from Nt users to the nrth receive antenna is concentrated, where the received
quantized signal is

ynr
Qp

= Q
(
XT
p hnr + nnr

p

)
(3-7)

with ynr
Qp

=
[
ynr
Qp

(1), ynr
Qp

(2), ..., ynr
Qp

(τ)
]T

and nnr
p ∈ Cτ×1.
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3.2.1
LRA-LMS Channel Estimator

Least mean squares (LMS) is the most widely used adaptive algorithm,
which has been adopted in various applications like system identification,
speech coding and channel equalization [56]. It has the advantage of robust
performance and a low cost of implementation. In this subsection, the Bussgang
theorem based low-resolution aware (LRA) LMS channel estimator is proposed
to compensate for the performance loss due to the quantization of signals to 1
bit.

According to (3-7), the optimization problem that leads to the proposed
LRA-LMS channel estimation algorithm can be stated as

ĥnr(n) = arg min
hnr (n)

τ∑
n=1

∣∣∣ynr
Qp

(n)− Ap(n)xTp (n)hnr(n)
∣∣∣2 , (3-8)

where xp(n) =
[
x1p(n), x2p(n), ..., xNtp

(n)
]T

and

Ap(n) = CH
ynr

p (n)ynr
Qp

(n)C−1
ynr

p (n) =
√

2
π

(
Ntσ

2
x + σ2

n

)− 1
2 . (3-9)

Taking the partial derivative of the objective function in (3-8) with respect to
hnr(n)H , we obtain

∂
∑τ
n=1

∣∣∣ynr
Qp

(n)− Ap(n)xTp (n)hnr(n)
∣∣∣2

∂hnr(n)H

=
τ∑

n=1
−
(
ynr
Qp

(n)− Ap(n)xTp (n)hnr(n)
)
Ap(n)x∗p(n)

=
τ∑

n=1
−e(n)Ap(n)x∗p(n)

(3-10)

The recursion of the proposed LRA-LMS algorithm is

hnr(n) = hnr(n− 1) + µe(n)Ap(n)x∗p(n), n = 1, . . . , τ, (3-11)

where µ is the constant stepsize. The initial guess hnr(0) is an all-zero column
vector.

3.2.2
LRA-RLS Channel Estimator

Compared to LMS-based algorithms, the recursive least squares (RLS)
algorithms can achieve fast convergence and excellent performance when
working in time-varying environments for multiple-antenna systems [57].

According to (3-7), the proposed LRA-RLS algorithm can be derived by
solving the following least-squares optimization problem:
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ĥnr(n) = arg min
hnr (n)

τ∑
n=1

λτ−n
∣∣∣ynr
Qp

(n)− Ap(n)xTp (n)hnr(n)
∣∣∣2 + δλτ ||hnr(n)||22 ,

(3-12)
where λ is the forgetting factor and δ is the regularization factor. The linear
operator Ap(n) is calculated in (3-9). The LRA-RLS channel estimator is
summarized in Algorithm 1.

Algorithm 1 Proposed LRA-RLS Channel Estimation
1: Parameters:

λ = forgetting factor, δ = regularization factor
2: Inputs:

ynr
Qp

(n), xp(n)
3: Initialization:

hnr(0) = 0Nt , P(0) = δINt

4: Iteration:
5: Ap(n) =

√
2
π

(Ntσ
2
x + σ2

n)−
1
2 ,

6: for n = 1 : τ do
7: x′p(n) = Ap(n)xp(n),
8: end for
9: for nr = 1 : Nr do

10: for n = 1 : τ do
11: k(n) = P(n−1)x′p(n)

λ+x′p(n)HP(n−1)x′p(n) ,
12: e(n) = ynr

Qp
(n)− hnr(n− 1)Hx′p(n),

13: hnr(n) = hnr(n− 1) + k(n)e(n)∗,
14: P(n) = 1

λ

(
P(n− 1)− k(n)x′p(n)HP(n− 1)

)
,

15: end for
16: end for

3.2.3
Complexity Analysis

The computational complexity can be calculated as a function of the
number of receive antennas Nr, transmit antennas Nt and the length of pilot
symbols τ as depicted in Table 3.1, where other estimation techniques are also
listed. Figure 3.2 shows the comparison of computational cost.

Channel estimator The order of complexity
LS [54] O(N3

t + (τ +Nr)N2
t + τNrNt)

BLMMSE [10] O((Nrτ)3 + (Nrτ)2(36 +NrNt) + 2(Nrτ)(1 +NrNt) +Ntτ
2)

LRA-LMS O(4NrNtτ + 2Nrτ + 3)
LRA-RLS O(Nrτ(N3

t + 4N2
t + 6Nt + 2) + τNt + 3))

Table 3.1: Computational complexity of different channel estimators
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Figure 3.2: Nt = 4. Computational complexity comparison between different channel
estimators with τ = 40 pilot symbols.

3.2.4
Numerical Results

In this subsection, the proposed adaptive channel estimators are eval-
uated in terms of the normalized mean squared error (MSE) and are com-
pared with current existing estimators. There are 4 single-antenna users and
16 receive antennas at the BS in the simulation. The modulation scheme is
quadrature phase shift keying (QPSK) and SNR = 10 log(Ntσ2

x

σ2
n

). The channel
is assumed to experience block fading and the channel matrix is modeled as
Gaussian distribution with zero mean and identity covariance matrix. The pilot
length at each user is 25. The normalized MSE performance of the LRA-LMS
channel estimator and other estimators is illustrated in Fig. 3.3, which shows
that the proposed LRA-LMS channel estimator achieves a close performance
to that of the BLMMSE algorithm. The normalized MSE performance of the
LRA-RLS channel estimator is depicted in Fig. 3.4, which shows that the pro-
posed LRA-RLS channel estimator achieves a close performance to that of the
BLMMSE algorithm but with lower complexity. In the LRA-RLS channel es-
timation phase λ is chosen as 0.94. The value of δ is not fixed and it increases
from 10−11 to 3 × 10−1 while the SNR grows. In both figures, the standard
LMS/RLS represents the original LMS/RLS channel estimator without con-
sidering the effect of 1-bit quantization.
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Figure 3.3: Normalized MSE comparison between the LRA-LMS channel estimator (µ =
0.52) and other existing estimators.
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Figure 3.4: Normalized MSE comparison between the LRA-RLS channel estimator (λ =
0.94) and other existing estimators.
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3.3
Signal Detection

In this section, an IDD scheme is described for 1-bit quantized systems
sampling at the Nyquist rate and a low-resolution aware LMMSE (LRA-
LMMSE) receive filter is derived for soft interference mitigation. The key
mechanism of the IDD process is the soft information exchange between
the detector and the channel decoder, which leads to successive performance
improvement [58]. The soft information exchanged often has the form of log
likelihood ratio (LLR) of a certain bit. An adaptive decoding approach is
developed to combine a quasi-uniform quantization of the passing messages
with adjustable scaling factors, which can avoid trapping sets and refine the
exchange of LLRs between the detector and the decoder.

3.3.1
Proposed LRA-LMMSE Detector

Inspired by prior works on IDD schemes [58, 59], the LRA-LMMSE
detector is proposed, which employs a modified LMMSE receive filter and
performs soft parallel interference cancellation. The soft estimate of the ntth
transmitted symbol is firstly calculated based on the extrinsic LLR Lent

provided by the channel decoder from a previous stage:

x̃nt =
∑
x∈A

xPr(xnt = x) =
∑
x∈A

x

(
Mc∏
l=1

[
1 + exp(−xlLlent

)
]−1

)
, (3-13)

where A is the complex constellation set with 2Mc possible points. The symbol
xl corresponds to the value (+1,−1) of the lth bit of symbol x. Denote
x̃ = [x̃1, ..., x̃Nt ]T and

x̃nt = x̃− x̃ntent , (3-14)
where ent is a column vector with all zeros, except that the ntth element is
equal to 1. For each user nt, the interference from the other Nt − 1 users is
canceled according to

yQnt
= yQ −

Nt∑
j=1,j 6=nt

x̃jhj = yQ −Hx̃nt . (3-15)

Note that when no prior information is given, yQnt
= yQ. The linear LRA-

LMMSE filter is then applied to yQnt
, to obtain

x̂nt = wH
nt

yQnt
, (3-16)

where wnt is chosen to minimize the MSE between the transmitted symbol xnt

and the filter output, i.e.,
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wnt = arg min
w′nt

E
{∣∣∣∣∣∣xnt −w′Hnt

yQnt

∣∣∣∣∣∣2}
= arg min

w′nt

−2w′Hnt
cxntyQnt

+ w′Hnt
CyQnt

w′nt .
(3-17)

Differentiating (3-17) with respect to w′Hnt
, the solution of the LRA-LMMSE

receive filter is given by

wnt = C−1
yQnt

cxntyQnt
, (3-18)

where the covariance matrix is

CyQnt
= CyQ −

(
CyQx̃nt

HH
)H
−CyQx̃nt

HH + HCx̃nt
HH (3-19)

and the cross-correlation vector is

cxntyQnt
= σ2

x

√
2
π

Khnt , with K = diag (Cy)−
1
2 . (3-20)

In (3-19), the covariance matrix of the quantized data vector yQ is described
by

CyQ = 2
π

(
sin−1 (KR{Cy}K) + jsin−1 (KI{Cy}K)

)
, (3-21)

and the cross-correlation vector between yQ and x̃nt is

CyQx̃nt
=
√

2
π

KHCx̃nt
. (3-22)

Note that Cy is the covariance matrix of the unquantized data vector y, which
leads to the following result

Cy = E
{

(Hx + n) (Hx + n)H
}

= σ2
xHHH + σ2

nINr . (3-23)

In order to calculate p(x̂nt|x), following [58] the LRA-MMSE filter output
can be approximated by a complex Gaussian distribution. The mean and
variance of the estimated symbol x̂nt , which is conditioned on the transmitted
symbol x, are given respectively by

µnt

∆= E {x̂nt |x} = wH
nt

(Q (hntx+ Hx̃nt)−Hx̃nt) (3-24)

η2
nt

∆= var {x̂nt |x} = wH
nt

cxntyQnt
−
(
wH
nt

cxntyQnt

)2
. (3-25)

Therefore, the likelihood function can be approximated by

p(x̂nt|x) ' 1
πη2

nt

exp
(
− 1
η2
nt

|x̂nt − µnt |
2
)
. (3-26)

Then the LLR computed by the LRA-MMSE detector for the l-th bit (l ∈
{1, ...,Mc}) of the symbol x̂nt is given by
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Llcnt
= ln

Pr
(
blnt

= +1|x̂nt

)
Pr
(
blnt

= −1|x̂nt

) − ln
Pr
(
blnt

= +1
)

Pr
(
blnt

= −1
)

= ln
∑
x∈A+1

l
P (x̂nt |x)Pr (x)∑

x∈A−1
l
P (x̂nt |x)Pr (x) − L

l
ent
,

(3-27)

where A+1
l is the set of hypotheses x for which the l-th bit is +1 and A−1

l is
similarly defined.

3.3.2
Proposed Soft Information Processing and Decoding

The soft information provided by the LRA-MMSE detector is then fed
into a channel decoder that adaptively scales the input LLRs and quasi-
uniformly quantizes the messages.

3.3.2.1
Iterative Decoder

The decoding method is based on message passing, which iteratively com-
putes the distributions of variables in graph-based models. In the system, the
box-plus sum product algorithm (SPA) [60] is used, which is an approximation
of SPA decoding. One drawback of SPA is the hyperbolic tangent function,
which has numerical saturation problems when computed with finite preci-
sion. To avoid such problems, thresholds on the magnitudes of messages must
be applied. In the box-plus SPA, the message sent from check node (CN) j to
variable node (VN) i is

Lj→i = �i′∈N(j)\iLi′→j, (3-28)

where � is the pairwise "box-plus" operator defined as

x� y = ln
(

1 + ex+y

ex + ey

)
= sign(x)sign(y) min (|x|, |y|) + ln

(
1 + e−|x+y|

)
− ln

(
1 + e−|x−y|

)
.

(3-29)
The message from VN i to CN j is then calculated as

Li→j = Li +
∑

j′∈N(i)\j
Lj′→i, (3-30)

where Li is the LLR at VN i. The quantity j′ ∈ N(i)\j represents all CNs
connected to VN i except CN j.
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3.3.2.2
Quasi-uniform Quantizer

This quantizer is used both in the decoder and the extrinsic message
quantizer to refine or compensate for the effect of 1-bit quantization on the
LLRs. The algorithm is based on the quasi-uniform quantization in [61],
which represents a compromise between conflicting objectives of retaining fine
precision, allowing large dynamic range and implementation complexity. It is a
combination of non-uniform and uniform quantization and realized as follows:

Q∗∆(Lcnt
) =



dN+1N∆ if dN+1N∆ ≤ Lcnt

drN∆ if drN∆ ≤ Lcnt
< dr+1N∆, for 1 ≤ r ≤ N

Q∆(Lcnt
) if − dN∆ < Lcnt

< dN∆

−drN∆ if − dr+1N∆ < Lcnt
≤ −drN∆, for 1 ≤ r ≤ N

−dN+1N∆ if Lcnt
≤ −dN+1N∆

(3-31)
with

Q∆(Lcnt
) =



N∆ if N∆− ∆
2 ≤ Lcnt

m∆ if m∆− ∆
2 ≤ Lcnt

< m∆ + ∆
2 , for N > m > 0

0 if − ∆
2 < Lcnt

< ∆
2

m∆ if m∆− ∆
2 < Lcnt

≤ m∆ + ∆
2 , for −N < m < 0

−N∆ if Lcnt
≤ −N∆ + ∆

2
(3-32)

where d is the growth rate parameter, ∆ is the step size, N is the total number
of bits for representing each range and Lcnt

is the passing message at the ntth
decoder.

3.3.2.3
Adaptive Scaling Factors

For improving the decoding performance two scaling factors are deployed,
which are obtained offline and online, respectively.

– Offline Scaling Factor: This factor is utilized to correct LLR values used
in iterative decoding based on the LLR distribution [62]. In the training
phase, data packets are sent to the receiver for obtaining sufficient LLR
statistics. For a given SNR, the following steps are carried out:

1) Calculate the probabilities of Pr(Lcnt
|bnt) conditioned on transmit-

ted bits bnt through histograms.
2) Obtain f(Lcnt

) = ln Pr(Lcnt
|bnt=1)

Pr(Lcnt
|bnt=0) .
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3) Employ the approximation f(Lcnt
) = αntLcnt

.

This factor αnt is only applied in the first iteration at the ntth decoder
input during the data transmission phase. Moreover, the scaled mean
absolute value αntLcnt

for each user is stored for calculating the online
scaling factor.

– Online Scaling Factor: The factor fnt is calculated at the ntth decoder
input in the second iteration and applied for all the iterations except the
first iteration. It aims to correct the LLR errors caused by the quantizer.
The scaled LLR should be approximated to the scaled LLR in 3). The
linear scaling factor is calculated as:

fnt = αntLcnt
/L

2nd iteration
cnt

, (3-33)

where L2nd iteration
cnt

is the mean absolute value of LLRs for the ntth user
in the second iteration.

3.3.3
Numerical Results

A short length regular low-density parity-check (LDPC) code [63] with
block length n = 512 and rate 1/2 is considered. The modulation scheme
is QPSK and the parameters of the quasi-uniform quantizer are ∆ = 0.25,
d = 1.3 and N = 6. The channel is assumed to experience block fading and is
modeled by IID circularly symmetric complex Gaussian random variables with
zero mean and unit variance. The channel matrix is estimated unless otherwise
specified through the BLMMSE channel estimator [10]. During training, all Nt

users simultaneously transmit τ pilot symbols to the receiver. Recall that the
vectorized received signal is described by

yQp = Q (yp) = Q
(
X̃ph + np

)
,

where X̃p = (XT
p ⊗ INr) ∈ CNrτ×NtNr is the modified pilot matrix. The

vector h ∈ CNtNr×1 is the vectorized channel matrix H. With the assumption
Ch = INtNr , the estimated channel vector is

ĥ =
(
ApX̃p

)H
C−1

yQp
yQp , (3-34)

where Ap =
√

2
π
diag(Cyp)− 1

2 . CyQp
and Cyp are calculated according to (3-21)

and (3-23), respectively.
The bit error rate (BER) performance of IDD schemes under perfect CSI

are shown in Fig. 3.5. It can be seen that the proposed LRA-MMSE detector
obtains a large gain compared to the traditional MMSE one. Moreover, Fig.
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3.5 also depicts the BER performance of IDD schemes with and without
quasi-uniform quantizer and scaling factors, which shows the system has a
significant performance gain after 2 iterations. These results also demonstrate
that the quantizer and the scaling factors offer extra performance gains. Fig.
3.6 illustrates the system performance using BLMMSE channel estimation,
where τ = 70 pilot symbols are used in each block.
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Figure 3.5: Nt = 12 and Nr = 32. BER performance of IDD schemes under perfect CSI.

3.4
Summary

This chapter has presented adaptive channel estimators and an IDD
scheme for 1-bit large-scale MIMO systems. The proposed adaptive channel
estimators have obtained good MSE performance with low computational cost.
Moreover, an IDD scheme equipped with the LRA-LMMSE receive filter has
been developed for 1-bit systems. The simulation results have shown a great
performance gain after several iterations. Furthermore, an adaptive channel
decoder has been devised using a quantizer together with scaling factors for
further performance improvement.
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Figure 3.6: Nt = 9 and Nr = 32. BER performance of IDD schemes using BLMMSE channel
estimation with τ = 70 pilot symbols.
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Uniform-oversampling-rate based System Design

The majority of current works about 1-bit quantized systems operate
at the Nyquist-sampling rate, where only one sample is obtained in a Nyquist
interval. To increase the information rate, oversampling (or faster-than-Nyquist
signaling) is applied so that more samples are obtained in one Nyquist interval.
The first work about 1-bit quantized signals with oversampling has been
reported in [64], which shows a great advantage in terms of the achievable
rate. For Gaussian noisy channels, the authors in [65] have demonstrated
the advantage of oversampling in capacity. Furthermore, in [66] the authors
have investigated the influence of different pulse shaping filters on the 1-bit
quantized systems with oversampling. The results show that when using root-
raised-cosine (RRC) filters, information rates can be increased.

More recently, several works have investigated 1-bit quantization with
oversampling in MIMO systems. The study in [74] considers time-of-arrival
estimation for systems with 1-bit quantization and oversampling and proposes
corresponding performance bounds. The study in [71] has proposed carrier
phase estimation and given lower bounds on complex channel parameter es-
timation for 1-bit oversampled systems based on [72]. In the study in [67]
the BLMMSE channel estimator is applied to the MIMO channel with 1-bit
quantization and oversampling using the simplifying assumption of uncorre-
lated noise samples which then yields performance degradation especially at
low SNR and high oversampling factors. The authors in [68] have derived
channel estimation algorithms for such systems. To reduce the additional com-
putational cost caused by the extra samples resulting from oversampling, the
sliding window technique is proposed while making the signal detection [69],
where each transmission block is separated into several sub-blocks for further
signal processing.

In this chapter, low-resolution aware (LRA) channel estimation and
signal detection algorithms are developed for 1-bit oversampled large-scale
MU-MIMO systems. Although the received signals are quantized to 1 bit, the
computations after the 1-bit ADCs of all algorithms compared are performed
at a higher resolution (8 bits or higher). Unlike prior work on 1-bit MIMO
with oversampling [67], the main property of oversampled systems, which is the
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correlation of the filtered noise, is considered in this thesis. From the simulation
results, the application of oversampling at the receiver can lead to significantly
better performance.

Throughout this chapter, the system model is firstly illustrated and the
correlation of filtered noise is then analyzed. Section 4.3 presents the proposed
channel estimators, compares the complexity and gives the CRBs on MSE.
Section 4.4 shows the sliding window based receivers for the 1-bit oversampled
system.

4.1
System Model

The system model is depicted in Fig. 4.1, where M is the oversampling
factor. In the uplink, assuming perfect synchronization the received oversam-

User 1 MOD p(t)
•

•

•

User Nt MOD p(t)

m(t)

m(t)

M-fold
Oversampling

M-fold
Oversampling

Q(·)

Q(·)

Sliding
window
based
receiver

B

Channel
estimation

x1

1
T

xNt

1
T

M
T

M
T

y1

yNr

yQ1

yQNr

x̃1

x̃Nt

1-bit ADC

1-bit ADC

Figure 4.1: System model of 1-bit MIMO system with oversampling at the receiver

pled signal y ∈ CMNrN×1 can be expressed as

y = Hx + n, (4-1)

where x ∈ CNNt×1 contains IID transmitted symbols from Nt terminals, each
with block length N . The vector x is arranged as

x = [x1,1 · · · xN,1 x1,2 · · · xN,Nt ]T , (4-2)

where xi,j corresponds to the transmitted symbol of terminal j at time instant
i. Each symbol has unit power so that E{|xi,j|2} = 1. The vector n represents
the filtered oversampled noise expressed by

n = (INr ⊗G)w (4-3)

with w ∼ CN (03MNrN , σ
2
nI3MNrN). Note that the noise samples are described

such that each entry of n has the same statistical properties (such as the same
variances). Since in digital domain the receive filter has a length of 2MN + 1
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samples, 3MN unfiltered noise samples in the noise vector w need to be
considered for the description of an interval of MN samples of the filtered
noise n. The matrix G ∈ RMN×3MN is a Toeplitz matrix that contains the
impulse response of the receive filter m(t) at different time instants and is
shown as

G =


m(−NT ) m(−NT + 1

M
T ) . . . m(NT ) 0 . . . 0

0 m(−NT ) . . . m(NT − 1
M
T ) m(NT ) . . . 0

... ... . . . ... ... . . . ...
0 0 . . . m(−NT ) m(−NT + 1

M
T ) . . . m(NT )

,
(4-4)

where T is the symbol period and M denotes the oversampling rate. The
equivalent channel matrix H is described as

H = [INr ⊗ Z(IN ⊗ u)](H′ ⊗ IN), (4-5)

where H′ ∈ CNr×Nt is the channel matrix for non-oversampled systems and u
is an oversampling vector with length M , which has the form

u = [0 · · · 0 1]T . (4-6)

The matrix Z ∈ RMN×MN is a Toeplitz matrix that contains the coefficients
of z(t) at different time instants, where z(t) is the convolution of the pulse
shaping filter p(t) and the matched filter m(t) given by

Z =


z(0) z( T

M
) . . . z(NT − 1

M
T )

z(− T
M

) z(0) . . . z(NT − 2
M
T )

... ... . . . ...
z(−NT + 1

M
T ) z(−NT + 2

M
T ) . . . z(0)

 . (4-7)

In particular, M = 1 refers to the non-oversampling case.
LetQ(·) represent the 1-bit quantization function, the resulting quantized

signal yQ is given by

yQ = Q(y) = Q(yR) + jQ(yI). (4-8)

The real and imaginary parts of y are quantized element-wised to {± 1√
2} based

on the sign. The factor 1√
2 is to make the power of each quantized signal to be

one.

4.2
Noise covariance matrix Cn

With (4-3) the auto-correlation matrix of filtered noise Cn is calculated
as

Cn = σ2
n(INr ⊗GGH). (4-9)
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For non-oversampled system (M = 1), (4-9) is reduced to

Cn = σ2
nINNr . (4-10)

However, for oversampled system (M ≥ 2) (4-9) cannot be further simplified
due to the correlation of oversampled samples. The off-diagonal elements will
appear in the matrix GGH . One example is shown in the following figures,
where m(t) is assumed to be a normalized RRC filter with different roll-off
factors, M = 2 and N = 10.

Figure 4.2: Matrix representation of GGH

with roll-off factor 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Matrix representation of GGH

with roll-off factor 0.9

We can see that the lower the roll-off factors the more off-diagonal
elements appear in GGH , which means that for systems with low roll-off factors
it is important to consider Cn as a full matrix rather than a simplified diagonal
matrix as assumed in [67].

4.3
Pilot-based Channel Estimation

Based on the Bussgang decomposition [32] the nonlinear system (4-8) can
be reformulated into a statistically equivalent linear system. From this linear
model, low-resolution aware LS, LMMSE and LMS channel estimation algo-
rithms are developed for 1-bit oversampled systems and their computational
costs are also evaluated. The fundamental estimation limit is also examined in
this section by deriving a Bayesian framework and bounds on channel estimates
for both non-oversampled and oversampled systems.

In a standard uplink implementation, the CSI is estimated at the BS
and then used to detect the data symbols transmitted from the Nt users. Each
transmission block is divided into two sub-blocks: one for pilots and another
for the data symbols. Pilots are either located at the beginning of each block
or spread according to a desired pattern [70]. During the training phase, each
terminal simultaneously transmits τ pilot symbols to the BS, which yields
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yp = Hxp + np. (4-11)

Vectorizing and inserting (4-5) into (4-11) we get

yp = (xTp ⊗ INr)vec(H) + np
= [xTp ⊗ INr ⊗ Z(Iτ ⊗ u)]vec(H′ ⊗ Iτ ) + np
= Φph′ + np,

(4-12)

where h′ = vec(H′) and the equivalent pilot matrix is

Φp = [xTp ⊗ INr ⊗Z(Iτ ⊗u)][INt⊗ (e1⊗ INr ⊗e1 + · · ·+eτ ⊗ INr ⊗eτ )]. (4-13)

The vector xp ∈ CτNt×1 contains the transmitted pilots and en ∈ Rτ×1

represents a column vector with a one in the nth element and zeros elsewhere.
After processing by 1-bit ADCs, the quantized signal can be expressed as

yQp = Q(Φph′ + np) = Φ̃ph′ + ñp, (4-14)

where Φ̃p = ApΦp ∈ CMτNr×NtNr and ñp = Apnp + nq ∈ CMτNr×1. The vector
nq is the statistically equivalent quantization noise with covariance matrix
Cnq = CyQp

− ApCypAp. The matrix Ap ∈ RMτNr×MτNr is the Bussgang-
based linear operator chosen independently from yp and is given by

Ap = CH
ypyQp

C−1
yp

=
√

2
π

K, with K = diag(Cyp)− 1
2 . (4-15)

where CypyQp
denotes the cross-correlation matrix between the received signal

yp and its quantized signal yQp

CypyQp
=
√

2
π

KCyp . (4-16)

The formulas of (4-15) and (4-16) involve the auto-correlation matrix Cyp :

Cyp = ΦpRh′ΦH
p + Cnp , (4-17)

where Rh′ = E{h′h′H}.

4.3.1
Standard LS Channel Estimator

The work in [54] has proposed the standard LS estimator for 1-bit
non-oversampled systems. Similar to this, the extension of this estimator to
oversampled systems is

ĥ′Standard LS = arg min
h̄′

||yQp −Φph̄′||2

= (ΦH
p Φp)−1ΦH

p yQp .
(4-18)
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The advantage of this estimator is that no priori information is needed at
the receiver. However, the issue with this estimator, when applied with 1-
bit quantization, is that the channel estimate ĥ′ scales with the amplitude
associated with the quantizer, which then corresponds to a biased estimation.

4.3.2
LRA-LS Channel Estimator

Based on the linear equivalent system model in (4-14), the LRA-LS
channel estimator is obtained by solving the following optimization problem:

ĥ′LRA-LS = arg min
h̄′

||yQp − Φ̃ph̄′||2

= (Φ̃H
p Φ̃p)−1Φ̃H

p yQp .
(4-19)

Compared to the standard LS channel estimator, the proposed estimator has
taken Rh′ into consideration in order to obtain the linear operator Ap.

4.3.3
LRA-LMMSE Channel Estimator

The LMMSE channel estimator has the advantage of superior MSE per-
formance to that of the LS channel estimator. Based on the statistically equiv-
alent linear model in (4-14), the oversampling based LRA-LMMSE channel
estimator is proposed. The optimal filter is given by

WLRA-LMMSE = arg min
W

E{||h′ −WyQp ||2}

= Rh′Φ̃HC−1
yQp

,
(4-20)

where
CyQp

= 2
π

(
sin−1(KCR

yp
K) + jsin−1(KCI

yp
K)
)
. (4-21)

The resulting LRA-LMMSE channel estimator is then

ĥ′LRA-LMMSE = Rh′Φ̃HC−1
yQp

yQp . (4-22)

Proof. See Appendix B. �

Note that when M = 1, (4-22) reduces to the same as that of the
BLMMSE channel estimator in [10].

4.3.4
LRA-LMS Channel Estimator

Since for large-scale MIMO we have Nr � Nt, in order to reduce the
computational complexity the multiplications and divisions involving large
matrices, whose dimensions contain Nr elements, need to be avoided. For this
reason, the channel fromNt users to only one receive antenna nr is concentrated
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ynr
Qp

= Φ̃nr
p h′nr + ñnr

p , (4-23)
where ynr

Qp
= [ynr

Qp
(1), ynr

Qp
(2), ..., ynr

Qp
(Mτ)]T and h′nr ∈ CNt×1 is the nrth row

of H′. Different from Φ̃p in (4-14), Φ̃nr
p ∈ CMτ×Nt is an equivalent pilot ma-

trix to the nrth receive antenna. The sliding window technique is proposed
together with the LMS channel estimation. Fig. 4.4 shows the basic mecha-
nism, which combines the adjacent symbol-rate-sampled symbols together to
estimate the instantaneous channel parameters, since in oversampled systems
the interference from adjacent symbol-rate-sampled symbols should be consid-
ered. The first window contains the first Mlwin oversampled samples and the
second contains the next Mlwin samples until the last window. Note that only
one symbol-rate-sampled symbol (or M oversampled samples) is shifted for
the subsequent window.

t

t
•
•
•

t

Mlwin = 6

1st

2nd

Last

Figure 4.4: Illustration of the sliding window at each receive antenna when lwin = 3 and
M = 2, where lwin is the window length representing the number of non-oversampled
symbols.

Based on (4-23), the received signal at the nth window can be expressed
as

ynr
Qp

(n) = Φ̃nr
p (n)h′nr + ñnr

p (n), (4-24)
where ynr

Qp
(n) = [ynr

Qp
(M(n − 1) + 1), . . . , ynr

Qp
(M(n − 1) + Mlwin)]T and

Φ̃nr
p (n) = Anr

p (n)Φnr
p (n) ∈ CMlwin×Nt contains the transmit pilot sequences

in the nth window.
The optimization problem that leads to the proposed LRA-LMS channel

estimation algorithm can be stated as

ĥ′
nr

LRA-LMS(n) = arg min
h̄′nr (n)

τ−lwin+1∑
n=1

||ynr
Qp

(n)− Φ̃nr
p (n)h̄′nr(n)||2, (4-25)

where h̄′nr(n) is the instantaneous estimate of h′nr in the nth window.
Taking the partial derivative of the objective function in (4-25) with

respect to h̄′nr(n)H , we obtain
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∂
∑τ−lwin+1
n=1 ||ynr

Qp
(n)− Φ̃nr

p (n)h̄′nr(n)||2

∂h̄′nr(n)H

=
τ−lwin+1∑
n=1

−Φ̃nr
p (n)H(ynr

Qp
(n)− Φ̃nr

p (n)h̄′nr(n))

=
τ−lwin+1∑
n=1

−Φ̃nr
p (n)Henr(n).

(4-26)

The recursion of the proposed LRA-LMS algorithm is

h̄′nr(n+ 1) = h̄′nr(n) + µΦ̃nr
p (n)Henr(n), n = 1, . . . , τ − lwin + 1, (4-27)

where the constant step size µ fulfills

0 < µ <
2

γmax
. (4-28)

γmax is the largest eigenvalue of CΦ̃nr
p (n), which is E{Φ̃nr

p (n)Φ̃nr
p (n)H}.

Proof. See Appendix C. �

The proposed adaptive channel estimator is summarized in Algorithm 2,
where xp(n) ∈ ClwinNt×1 contains the pilot symbols in the nth window. Both
e′n ∈ Rlwin×1 and e′′n ∈ RNr×1 represent all-zero column vectors except that the
nth elements are ones.

Algorithm 2 Proposed LRA-LMS Channel Estimator
1: Parameters:

µ: forgetting factor
2: Initialization:

h′nr(1) = 0Nt×1

3: Iteration:
4: for nr = 1 : Nr do
5: for n = 1 : τ − lwin + 1 do
6: Φnr

p (n) = [xTp (n)⊗Z(Ilwin ⊗ u)][INt ⊗ (e′1 ⊗ e′1 + · · ·+ e′lwin ⊗ e′lwin)];
7: Cnr

yp
(n) = Φnr

p (n)Φnr
p (n)H + σ2

nGGH ;
8: Anr

p (n) =
√

2
π
diag(Cnr

yp
(n))− 1

2 ;
9: Φ̃nr

p (n) = Anr
p (n)Φnr

p (n);
10: enr(n) = ynr

Qp
(n)− Φ̃nr

p (n)h′nr(n);
11: h′nr(n+ 1) = h′nr(n) + µΦ̃nr

p (n)Henr(n);
12: end for
13: end for

Fig. 4.5 shows the convergence performance of the proposed LRA-LMS
channel estimator for each receive antenna. The proposed estimator achieves
its steady state after τ = 40.
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Figure 4.5: Convergence of the LRA-LMS channel estimator with Nt = 8 and Nr = 64 at
SNR = 20dB.

4.3.5
Complexity Analysis

The computational complexities of the proposed channel estimators are
compared in this subsection. For the sake of simplification and a fair com-
parison among the estimators, Rh′ is assumed to be an identity matrix since
there is no linear operator used in the standard LS channel estimator. Table
4.1 shows the total required complex additions/subtractions and multiplica-
tions/divisions for obtaining the channel estimate ĥ′. More intuitively, Fig.
4.6 shows the total number of complex operations, which is a sum of complex
additions and multiplications, as a function of the number of receive antennas
Nr. Compared to other channel estimators, the LRA-LMS channel estimator
consumes the lowest computational cost since there are no matrix inversions
or large matrix multiplications in the algorithm. The comparisons in terms of
MSE performance are shown in the subsection of numerical results.

4.3.6
Estimation of Rh′

In practical environments, there is no prior information about Rh′ at the
receiver. In this subsection, an adaptive technique is proposed to recursively
estimate Rh′

R̂h′(n+ 1) = λR̂h′(n) + (1− λ)ĥ′(n)ĥ′(n)H , n = 1, . . . , τ, (4-29)
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LRA-LMSFigure 4.6: Computational complexity comparison among different channel estimators in an

oversampled system M = 3 with τ = 20, lwin = 3 and Nt = 8.

Table 4.1: Computational complexity of different channel estimators

Complex Additions/Subtractions Complex Multiplications/Divisions

Standard LS
N3
rN

2
t (Nt +Mτ 3 + 2Mτ)

−N2
rNt(Mτ +Nt)− 2NrNt

+Mτ 2(Mτ − 1)

N3
rN

2
t (Nt + 2Mτ + τ 3M)

+N2
r τ [τN2

t + (τ 2 + 1)MNt + τ 2 + (1 +M)τ ]
+2NrNt +Mτ 2(1 + τ)

LRA-LS
N3
rNt[N2

t + (Mτ 3 + 2Mτ)Nt + 2M2τ 2]
−N2

rNt(2Mτ +Nt)− 2NrNt

+Mτ 2(Mτ −M − 1 + 3M2τ)

N3
rNt[N2

t + (Mτ 3 + 2Mτ)Nt + 2M2τ 2]
+N2

r τ [τN2
t + (τ 2 + 1)MNt + τ 2 + (1 +M + 2M2)τ ]

+2Nr(Mτ +Nt) + 3M3τ 3 +Mτ 2(1 + τ)

LRA-LMMSE
N3
r [Mτ 3N2

t + 3M2τ 2Nt +M3τ 3]
−2N2

rMτNt −Nr(Mτ +Nt)
+Mτ 2(Mτ − 1 + 3M2τ −M)

N3
r [Mτ 3N2

t + 3M2τ 2Nt +M3τ 3]
+N2

r τ [τN2
t + (τ 2 + 1)MNt + τ 2 + (1 + τ +M + 5M2)τ ]

+3MτNr + 3M3τ 3 +Mτ 2(1 + τ)

LRA-LMS Nr(τ − lwin + 1)[l2winM(2MNt −M − 1)
+l3winM(3M2 +M +N2

t )]

Nr(τ − lwin + 1)[Nt + 2lwinM(1 +Nt)
+l2win(1 +N2

t + 2M + 2M2Nt + 2M2)
+l3win(N2

tM + 1 +MNt +M + 3M3)]

where λ is the forgetting factor (0 < λ < 1) and ĥ′(n) is the channel estimate
at the Nyquist time instant n. Consider the system model

yQ(n) = Q(Hx(n) + n(n))

= Q((x′Tp (n)⊗ INr ⊗ Z′u)h′ + n(n)),
(4-30)

where yQ(n) and n(n) are column vectors with size MNr × 1. Different from
xp(n) in Algorithm 2, x′p(n) ∈ CNt×1 contains pilot symbols from Nt terminals
at time instant n. Z′ ∈ RM×M is a simplified version of Z with N = 1. The
instantaneous estimate of h′ is calculated as

ĥ′(n) = (x′Tp (n)⊗ INr ⊗ Z′u)+yQ(n), (4-31)
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where the initial guess of R̂h′(1) is an identity matrix, as channel parameters
are assumed to be uncorrelated and each has unit power.

4.3.7
Cramér-Rao Bounds

In this subsection, analytical bounds on the MSE are analyzed. Unlike the
works in [71, 72], which have proposed the CRBs for the unbiased estimators,
the existing CRBs are extended for the biased estimators. Two different types
of CRBs are proposed depending on whether the prior information Rh′ is
known at the receiver, namely Bayesian CRB with known Rh′ and general
CRB with estimated Rh′ .

4.3.7.1
Bayesian Cramér-Rao Bounds

The Bayesian bounds on the fundamental limits of estimation are derived
for non-oversampled and oversampled systems. Without loss of generality, (4-
12) is extended for considering the whole system and not just the pilots. The
complex-valued model can be rewritten in the following real-valued formyR

yI

 =
ΦR −ΦI

ΦI ΦR

h′R

h′I

+
nR

nI

 . (4-32)

Let h̃′ = [h′R; h′I ] be the unknown parameter vector, since the real and
imaginary parts are independent, the Bayesian information matrix (BIM) [73]
for the quantized signal is defined as

JyQ(h̃′) = JyR
Q

(h̃′) + JyI
Q

(h̃′), (4-33)

where

[JyR/I
Q

(h̃′)]ij , EyR/I
Q ,h̃′

∂ ln p(yR/IQ , h̃′)
∂[h̃′]i

∂ ln p(yR/IQ , h̃′)
∂[h̃′]j

 (4-34)

with [h̃′]i and [h̃′]j being the elements of h̃′. The expression in (4-34) can be
divided into two parts:

[JyR/I
Q

(h̃′)]ij = [JDyR/I
Q

(h̃′)]ij + [JPyR/I
Q

(h̃′)]ij, (4-35)

where we define

[JDyR/I
Q

(h̃′)]ij , EyR/I
Q |h̃′

∂ ln p(yR/IQ | h̃′)
∂[h̃′]i

∂ ln p(yR/IQ | h̃′)
∂[h̃′]j

 (4-36)

[JPyR/I
Q

(h̃′)]ij , Eh̃′

{
∂ ln p(h̃′)
∂[h̃′]i

∂ ln p(h̃′)
∂[h̃′]j

}
. (4-37)

DBD
PUC-Rio - Certificação Digital Nº 1621980/CA



Chapter 4. Uniform-oversampling-rate based System Design 60

To transform the real-valued JyQ(h̃′) back to the complex domain
JyQ(h′), JyQ(h̃′) is defined with the following structure:

JyQ(h̃′) =
JRRyQ (h̃′) JRIyQ(h̃′)
JIRyQ(h̃′) JIIyQ(h̃′)

 (4-38)

and apply the chain rule to get:

JyQ(h′) = 1
4(JRRyQ (h̃′) + JIIyQ(h̃′)) + j

4(JRIyQ(h̃′)− JIRyQ(h̃′)), (4-39)

where JRRyQ (h̃′), JRIyQ(h̃′), JIRyQ(h̃′) and JIIyQ(h̃′) have the same dimensions NrNt×
NrNt. The variance of the estimator ĥ′(yQ) is lower bounded by

V ar{ĥ′i(yQ)} ≥ [J−1
yQ(h′)]ii. (4-40)

BIM for systems sampling at symbol rate

For non-oversampled systems, i.e, M = 1, the covariance matrix of the
equivalent noise vector n is Cn = σ2

nINNr . With the independence of the real
and imaginary parts, the log-likelihood function can be expressed as

ln p(yQ | h̃′) =
NNr∑
k=1

[ln p([yRQ]k | h̃′) + ln p([yIQ]k | h̃′)] (4-41)

with
p([yRQ]k = ± 1√

2
| h̃′) = Q

(
∓ [ΦRh′R −ΦIh′I ]k

σn/
√

2

)
(4-42)

p([yIQ]k = ± 1√
2
| h̃′) = Q

(
∓ [ΦIh′R + ΦRh′I ]k

σn/
√

2

)
(4-43)

where Q(x) = 1√
2π
∫∞
x exp(−u2

2 )du. Inserting (4-41) into (4-36), we obtain

[JDyQ(h̃′)]ij = −E
{
∂2 ln p(yQ | h̃′)
∂[h̃′]i∂[h̃′]j

}

= [JDyR
Q

(h̃′)]ij + [JDyI
Q

(h̃′)]ij.
(4-44)

With the derivative of the Q(x) function, the real part in (4-36) [JDyR
Q

(h̃′)]ijis
given by

[JDyR
Q

(h̃′)]ij =
NNr∑
k=1
−E

{
∂2 ln p([yRQ]k | h̃′)

∂[h̃′]i∂[h̃′]j

}
= 1
πσ2

n

×
NNr∑
k=1

exp(− [ΦRh′R−ΦIh′I ]2k
σ2

n/2
)∂[ΦRh′R−ΦIh′I ]k

∂[h̃′]i
∂[ΦRh′R−ΦIh′I ]k

∂[h̃′]j

Q
(

[ΦRh′R−ΦIh′I ]k
σn/
√

2

)
Q
(
− [ΦRh′R−ΦIh′I ]k

σn/
√

2

) .

(4-45)

The derivation for the imaginary part [JDyI
Q

(h̃′)]ij is analogous.
By assuming that h̃′ is Gaussian distributed with zero mean and covari-
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ance matrix Ch̃′ = 1
2I2 ⊗Ch′ , ln p(h̃′) yields

ln p(h̃′) = −1
2NrNt ln[(2π)2NrNt det(Ch̃′)]−

1
2 h̃′TC−1

h̃′ h̃
′. (4-46)

Substituting (4-46) into (4-37), we obtain

JPyQ(h̃′) = 2JPyR/I
Q

(h̃′) = 2C−1
h̃′ . (4-47)

Finally, the resulting BIM is the summation of (4-44) and (4-47) as
described by

JyQ(h̃′) = JDyQ(h̃′) + JPyQ(h̃′). (4-48)

BIM for systems sampling at uniform oversampling rate

When M ≥ 2 the equivalent noise vector n consists of colored Gaussian
noise samples. Computing p(yR/IQ | h̃′) requires the orthant probabilities,
which are not available or too difficult to compute. The authors in [72, 74]
have introduced a lower bounding technique on the Fisher information for
real-valued system. To employ this lower bounding technique in the complex-
valued system, the work of [71] has come out. The lower bound of JD

yR/I
Q

(h̃′) is
calculated based on the first and second order moments as

JDyR/I
Q

(h̃′) ≥
∂µyR/I

Q

∂h̃′

T C−1
yR/I
Q

∂µyR/I
Q

∂h̃′

 = J̃DyR/I
Q

(h̃′). (4-49)

Since the lower-bounding technique is identical for the real and the imaginary
parts, only the derivation of J̃DyR

Q
(h̃′) is presented. The mean value of the kth

received symbol is

[µyR
Q

]k = 1√
2
Pr([yQ]k = +1 | h̃′)− 1√

2
Pr([yQ]k = −1 | h̃′)

= 1√
2

1− 2Q
 [ΦRh′R −ΦIh′I ]k√

[Cn]kk/2

 . (4-50)

The partial derivative of (4-50) with respect to [h̃′]i is

∂[µyR
Q

]k
∂[h̃′]i

=
2exp

(
− [ΦRh′R−ΦIh′I ]2k

[Cn]kk

)
∂[ΦRh′R−ΦIh′I ]k

∂[h̃′]i√
2π[Cn]kk

. (4-51)

The diagonal elements of the covariance matrix are given by

[CyR
Q

]kk = 1
2 − [µyR

Q
]2k, (4-52)

while the off-diagonal elements are calculated as

[CyR
Q

]kn = Pr(zk > 0, zn > 0) +Pr(zk ≤ 0, zn ≤ 0)− 1
2 − [µyR

Q
]k[µyR

Q
]n, (4-53)
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where [zk, zn]T is a bi-variate Gaussian random vector
zk
zn

 ∼ N
[ΦRh′R −ΦIh′I ]k

[ΦRh′R −ΦIh′I ]n

 , 1
2

[Cn]kk [Cn]kn
[Cn]nk [Cn]nn

 .
The lower bound for the imaginary part is derived in the same way. With the
calculations above we get the lower bound of the BIM as

JyQ(h̃′) ≥ J̃DyQ(h̃′) + JPyQ(h̃′), (4-54)

where the equality holds for M = 1, as shown in [72] for the real valued CRB
and in [71] for the complex valued CRB. Based on (4-40), the inverse of this
BIM lower bound will result in an upper bound of the actual Bayesian CRB
for oversampled systems.

4.3.7.2
General Cramér-Rao Bounds

When Rh′ is unknown and needs to be estimated at the receiver, the
Bayesian CRBs will not be applicable. We derive here general CRBs for the
proposed channel estimators with estimated Rh′ .

Lemma 1 The proposed LRA channel estimators with combination of esti-
mated R̂h′ are biased channel estimators.

Proof. See Appendix D. �

Since the proposed LRA channel estimators are biased, while calculating
the CRBs, they should apply as

Cov{ĥ′
R

bias} ≥
∂E{ĥ′

R

bias}
∂h′R

JDRR

yQ (h′R)
−1∂E{ĥ′

R

bias}
∂h′R

T (4-55)

Cov{ĥ′
I

bias} ≥
∂E{ĥ′

I

bias}
∂h′I

JDII

yQ (h′I)−1∂E{ĥ′
I

bias}
∂h′I

T , (4-56)

where JDRR

yQ (h′R) and JDII

yQ (h′I) are defined by

[JDRR

yQ (h′R)]ij , E

{
∂ ln p(yQ | h′R)

∂[h′R]i
∂ ln p(yQ | h′R)

∂[h′R]j

}
(4-57)

[JDII

yQ (h′I)]ij , E

{
∂ ln p(yQ | h′I)

∂[h′I ]i
∂ ln p(yQ | h′I)

∂[h′I ]j

}
, (4-58)

which are the upper left and lower right part of the JDyQ(h̃′) (similar as (4-38)),
respectively.
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4.3.8
Numerical Results

The simulation results presented here consider an uplink single-cell 1-bit
large-scale MIMO system with Nt = 8 and Nr = 64. The modulation scheme
is QPSK. The m(t) and p(t) filters are normalized RRC filters with a roll-off
factor of 0.8. The channel is assumed to experience block fading and the pilots
are column-wise orthogonal with length 20. The SNR is defined as 10 log(Nt

σ2
n
).

The normalized MSE and SER performance plots are obtained by taking the
average of 300 channel matrices, noise and symbol vectors.

For the LRA-LMS channel estimator, the window length lwin is chosen
as three to ensure low computational complexity. The step size µ is optimized
according to the oversampling factor and SNR. In the simulation, µ varies
between 0.05 and 0.3. While recovering the transmitted symbols from the
received quantized signal, the sliding-window based LMMSE detector [69] with
window length equal to three (lwin = 3) and the estimate of the channel
obtained by the proposed algorithms is applied in the system for obtaining
both high accuracy and low computational cost.

The performance of the channel estimators is evaluated based on the
channel model simulated in [75]. The channel for user nt is assumed Rayleigh
distributed

h′nt = R
1
2
r,nth′w,nt

, (4-59)
where Rr,nt denotes the receive correlation matrix with the following form

Rr,nt =


1 ρnt . . . ρ(Nr−1)

nt

ρ∗nt
1 . . . ρ(Nr−2)

nt

... ... . . . ...
ρ∗(Nr−1)
nt

ρ∗(Nr−2)
nt

. . . 1

 . (4-60)

ρnt is the correlation index of neighboring antennas. (|ρnt | = 0 represents
an uncorrelated scenario and |ρnt| = 1 implies a fully correlated scenario).
The elements of h′w,nt

are IID complex Gaussian random variables with zero
mean and unit variance. All users are assumed to experience the same value
of |ρnt | = |ρ| but different phases uniformly distributed over 2π. The overall
channel model is summarized as

H′ = [h′1,h′2, · · · ,h′nt ] (4-61)

and Rh′ is calculated as
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Rh′ =


Rr,1 0 . . . 0
0 Rr,2 . . . 0
... ... . . . ...
0 0 . . . Rr,nt

 . (4-62)

4.3.8.1
Rh′ is known at the receiver

In this subsection, the performance of the proposed LRA channel estima-
tors with known Rh′ at the receiver is evaluated. Fig. 4.7 and Fig. 4.8 compare
the normalized MSE of the various channel estimators as a function of SNR
in uncorrelated (|ρ| = 0) and correlated channel (|ρ| = 0.75), respectively.
There is a 2dB performance gain of the oversampled systems as compared to
the non-oversampled systems for the LRA-LMMSE channel estimator at low
SNR, whereas a much larger gain at high SNR. In both channels the LRA-
LMMSE achieves the best MSE performance at the cost of high computational
cost.
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Figure 4.7: Normalized MSE comparisons of different channel estimators with known Rh′

and |ρ| = 0

In contrast, the LRA-LMS estimates the channel matrix H′ row by
row. This approach can largely reduce the computational cost (shown in Fig.
4.6).Note that this separation into several rows may overlook the correlation
of receive antennas. More specifically, the proposed LRA-LMS treats Rr,nt as
an identity matrix. As an amendment, the resulting estimated channel matrix
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Figure 4.8: Normalized MSE comparisons of different channel estimators with known Rh′

and |ρ| = 0.75

ĥ′LRA-LMS needs to be multiplied with the square root of the receive correlation
matrix R

1
2
rnt

, which can be derived from Rh′ in (4-62). From the results, it can
be seen that in both channels the LRA-LMS approaches the performance of the
LRA-LMMSE at low SNR (≤ 5 dB), whereas at high SNR this performance
gap becomes large.

The Bayesian CRBs illustrated in subsection 4.3.7.1 are also depicted in
Fig. 4.7 and Fig. 4.8. Note that for the oversampled systems (M ≥ 2) the
upper bounds of Bayesian CRBs are higher than the actual Bayesian CRBs,
since they are derived from the lower bounds of Bayesian information. The
black lines represent the standard LMMSE performance for the systems with
unquantized signals, which can be treated as lower bounds for the systems
with 1-bit quantized signals.

The LMMSE detector with sliding-window based SER performance of
the system with the LRA-LMMSE estimated and perfect channel matrix are
illustrated in Fig. 4.9, where the oversampled systems obviously outperform
the non-oversampled systems. As described in section 4.2, Fig. 4.10 shows
the MSE comparisons between LRA-LMMSE and simplified LMMSE [67]
channel estimator in the system with τ = 10 and roll-off factor 0.1. In this
thesis, the correlation of filtered noise is taken into account, and hence Cnp

is not a diagonal matrix in oversampled systems. It can be seen that at low
SNR (≤ 10 dB) the performance of simplified LMMSE [67] is worse than the
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Figure 4.9: SER comparisons of different oversampling factors for the LRA-LMMSE channel
estimator with known Rh′ .

proposed LRA-LMMSE, although they converge together at high SNR (> 10
dB). Another observation is that at low SNR the simplified LMMSE estimator
with M = 3 performs worse than that with M = 2, which shows that the
assumption in [67] is inaccurate.

4.3.8.2
Rh′ is unknown at the receiver

Practically, Rh′ is not known at the receiver. Fig. 4.11 shows the MSE
performance of the LRA channel estimators by using the proposed adaptive
recursion to estimate Rh′ , where λ is set to 0.99. It can be seen that the
performance remains almost the same as Fig. 4.7, which shows that the
proposed estimation of Rh′ works well under uncorrelated channel.

While analyzing the general CRBs proposed in (4-55) and (4-56), instead
of directly calculating the gradient of the expected value with respect to the
channel vector ∂E{ĥ′R/I

bias}
∂h′R/I , this gradient is numerically evaluated, since there is

an adaptive estimation technique inside the channel estimator, which makes
the calculation more difficult. As one example, Fig. 4.12 shows the normalized
MSE performance of the LRA-LS channel estimator with estimated R̂h′ in
(4-29) for estimating the first Nr elements1 of h′R and its corresponding

1For the sake of simplicity, only first Nr elements are considered, since for the large-scale
MIMO there are NtNr elements in h′R, which will cost much time for calculating the general
CRBs.
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Figure 4.10: Normalized MSE comparisons between LRA-LMMSE and simplified LMMSE
[67].
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Figure 4.11: Normalized MSE comparisons of different channel estimators with adaptively
estimated R̂h′ .
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numerically calculated general CRBs under uncorrelated channels (|ρ| = 0).
More specifically, each element of the gradient vector ∂E{ĥ′R/I

bias}
∂h′R/I is calculated

with the following steps:

– increasing a small value δ (e.g. 0.1) in the corresponding element of h′R/I

– estimating the channel ĥ′
R/I

bias with different transmit symbols and noises
(e.g. 1000 different realizations)

– calculating the mean value of all estimates E{ĥ′
R/I

bias}, which will be
divided by δ.

These steps are repeated until all the elements in ∂E{ĥ′R/I
bias}

∂h′R/I are obtained.
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Figure 4.12: Normalized MSE comparisons of different oversampling factors for the LRA-LS
channel estimator with estimated R̂h′ .

4.3.8.3
1-bit or b-bit systems

Fig. 4.13 shows the normalized MSE comparisons between 1-bit oversam-
pled and morebits system, where the LMMSE channel estimator for a system
with 2 or 3 bits is based on [6]. It can be seen that a system with 2 or 3 bits
has better performance than the 1-bit system especially at high SNR. How-
ever, the advantage of 1-bit ADCs is that they do not require automatic gain
controls (RGC) and linear amplifiers, and hence the corresponding radio fre-
quency chains can be implemented with very low cost and power consumption.
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Figure 4.13: Normalized MSE comparisons of LMMSE channel estimator with known Rh′

under uncorrelated channel (|ρ| = 0).

4.4
Signal Detection

Unlike existing systems in the literature, the received signal cannot be
detected from one time instant to another due to the ISI in oversampled
systems. The authors in [84] have used ZF and MRC linear receivers for
oversampled systems by using all the symbols in one block, which requires
a high computational complexity to yield high accuracy. As the block length
grows the computational complexities will increase drastically. By contrast,
a sliding window based detection technique is proposed, where detection can
be processed in a much shorter window range. Different receive filters can
be combined with this technique. In particular, LRA-ZF and LRA-LMMSE
receive filters for combined use with oversampling and sliding windows.

4.4.1
Proposed Sliding Window Based Receiver

In what follows, an advanced receiver with low complexity is proposed,
which is based on the sliding window technique. The oversampled signal at the
receiver in each block can be illustrated as Fig. 4.14 (for M = 2).

While performing detection a sliding window is equipped at each receive
antenna. The mechanism is shown in Fig. 4.15. To clarify this further, an
example is taken where the window length lwin is equal to 3 non-oversampled
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Figure 4.14: Illustration of one block of oversampled signal at the receiver.

symbols. To avoid confusion the first and the last window are not shown in
the figure. They are slight different from the normal case and will be described
later.

t

t
•
•
•
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Mlwin = 6

2nd

3rd

N-1

Figure 4.15: Illustration of the sliding window at each receive antenna excluding the first
and the last window when lwin = 3 and M = 2.

By extracting the signals from (4-8) into each corresponding window, we
obtain the quantized signal in each window as

yQwin = Q (ywin) = Q (Hwinxwin + nwin) , (4-63)

where xwin is a lwinNt×1 column vector. Hwin is aMlwinNr× lwinNt equivalent
channel matrix and nwin ∈ CMlwinNr×1. The soft estimate of xwin can be
calculated as

x̃′win = B′yQwin , (4-64)
where B′ is the receive filter. The ZF-type filter for the oversampled system [84]
with a sliding window is described by

B′ZF =
(
HH

winHwin
)−1

HH
win. (4-65)

Note that x̃′win is not fully used. There is a decimation process, which extracts
the symbols at the time instant zero. One example for lwin = 3 is denoted as

D = INt ⊗ d = INt ⊗ [0 1 0] , (4-66)

then the decimated symbols are
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x̃win = Dx̃′win = (DB′)yQwin = ByQwin , (4-67)

where B is the proposed sliding window based receiver.
Two special cases, the first and the last window of each block, will be

detailed in the following. Notice that both the first non-oversampled symbol
in the first window and the last non-oversampled symbol in the last window
are at the time instant zero, then the decimation vector d will be changed to

dfirst = [1 0 0] and dlast = [0 0 1]. (4-68)

In a more general case, for a given window length lwin the first (lwin − 1)
windows start from the first oversampled symbol and the last 2 windows
terminate at the end of each block. The corresponding decimation vector will
be similar to (4-68). For the first window the one will be placed in the first
position of the vector d. For the second window the one will be placed in the
second position and the rest can be done in the same manner. For the normal
windows, d is an all-zeros vector except that the (lwin − 1)th position is 1.

4.4.2
LRA-LMMSE Receive Filter

According to (4-64), the optimization problem for the LMMSE receive
filter is

B′LRA-LMMSE = arg min
B′

E
{
||xwin −B′yQwin ||

2
2

}
, (4-69)

and the solution is

B′LRA-LMMSE =
(
C−1

yQwin
CyQwinxwin

)H
. (4-70)

In (4-70) the covariance matrix CyQwin
is calculated as [33]

CyQwin
= 2
π

(
sin−1 (KR{Cywin}K) + jsin−1 (KI{Cywin}K)

)
(4-71)

and the cross-correlation vector CyQwinxwin is given by [32]

CyQwinxwin =
√

2
π

KHwin, with K = diag (Cywin)−
1
2 , (4-72)

where Cywin is the covariance matrix of the unquantized data vector ywin, which
leads to the following result

Cywin = E
{

(Hwinxwin + nwin) (Hwinxwin + nwin)H
}

= HwinHH
win + Cnwin

(4-73)

with Cnwin = σ2
nINr ⊗ RwinRH

win. Rwin represents R in each window. Unlike
prior work on LRA-LMMSE receive filters, we obtain expressions for a system
with oversampling and sliding windows.
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4.4.3
LRA-ZF Receive Filter

Recall the system model in (4-63), based on the Bussgang decomposition
it can be written as

yQwin = Aywin + nq, (4-74)
where A is the linear operator that is chosen to make nq uncorrelated with ywin.
The vector nq is the statistically equivalent quantization noise with covariance
matrix Cnq = CyQwin

−ACywinA. The matrix A is calculated as

A = CH
ywinyQwin

C−1
ywin =

√
2
π
diag (Cywin)−

1
2 . (4-75)

The ZF filter minimizes the mean square error (MSE) as

B′LRA-ZF = arg min
B′

E
{
||B′ (Anwin + nq)||22

}
s.t.: B′AHwin = IlwinNt .

(4-76)
With the Lagrangian multiplier, we obtain

B′LRA-ZF =
(
HH

winAC−1
n AHwin

)−1
HH

winAC−1
n , (4-77)

where Cn = ACnwinA + Cnq .

4.4.4
Numerical Results

In this subsection, the proposed sliding window based receiver is exam-
ined in terms of the symbol error rate (SER). The modulation scheme is QPSK.
The channel is assumed to experience block fading, where each block contains
100 symbols. The m(t) and p(t) are normalized RRC pulse filter with a roll-
off factor of 0.8. The simulation based SER performance plots are obtained
by taking the average of 300 channel realizations and by defining the SNR as
10 log(Ntσ2

x

σ2
n

).
The SER performance of LRA-ZF and LRA-LMMSE receive filter based

sliding window techniques are shown in Fig. 4.16 and Fig. 4.17, where the
performances of different oversampling rates are compared. It can be observed
that oversampling by 2 results in a large SNR advantage as compared to the
case where no oversampling is performed. The SER curve for an oversampling
rate of 4 is also provided, which has about 2dB SNR gain as compared to the
case ofM = 2. Moreover, the performances of large window systems (lwin = 25)
are also shown in the figures, where they have very similar performances
with short window systems. One notable observation is that at high SNR the
SER performance degrades when the system is oversampled above the factor
of two and detected with window length of one. One possible explanation

DBD
PUC-Rio - Certificação Digital Nº 1621980/CA



Chapter 4. Uniform-oversampling-rate based System Design 73

for this performance degradation is that at high SNR the dominant noise is
the interference from adjacent symbols, but window length of one has not
considered this interference which results in large detection error.
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Figure 4.16: Nt = 12 and Nr = 64. SER performance comparison with LRA-ZF receiver,
where the black line represents the non-oversampled full-resolution system with ZF receive
filter.

Regarding the computational complexity of the analyzed schemes using
the ZF filter, the proposed sliding window technique (O(N3

t l
3
winN)) has a much

lower cost than that of the non-windowed systems (O(N3
t N

3)) [84], when
N is large enough. From Fig. 4.18, the SER performance will maintain the
same level after lwin = 4. This indicates that the performance of the non-
windowed systems are the same as those of systems with a large window length
(lwin = 25).

4.5
Summary

In this chapter, oversampling based low-resolution aware channel estima-
tors have been proposed for uplink single-cell large-scale MIMO systems with
1-bit ADCs employed at the receiver. The Bussgang decomposition is used
to derive linear channel estimators based on different criteria. With oversam-
pling in such systems, it is observed that we can achieve obvious advantage
compared to the non-oversampled system in terms of the normalized MSE.
Moreover, the LMS adaptive technique used for channel estimation can largely
reduce the computational cost and has almost the same accuracy as the LRA-
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Figure 4.17: Nt = 12 and Nr = 64. SER performance comparison with LRA-LMMSE
receiver, where the black line represents the non-oversampled full-resolution system with
LMMSE receive filter.
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Figure 4.18: Nt = 12 and Nr = 64. SER performance comparison among different window
lengths, M = 2 and SNR = 20dB.
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LMMSE channel estimator at low SNR, which is important to ensure low com-
putational complexity and for hardware implementation. In addition, Bayesian
and general CRBs on MSE are derived, which give theoretical limits on the
performance of the channel estimators. Furthermore, an adaptive technique
to estimate the auto-correlation of the channel vector is proposed, which is
important for practical use.

In order to achieve low signal processing complexity, the sliding window
based receiver for 1-bit oversampled systems has been proposed. The simula-
tion results have shown that the system with short window length can achieve
the same SER performance as the system considering the whole transmission
block. The sliding window based LRA-ZF and LRA-LMMSE receive filters
have also been proposed. It can be seen that a gain of 5dB in SNR for the same
SER with oversampling of two is achieved over the standard non-oversampled
system.
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5
Dynamic-oversampling-rate based System Design

In the previous chapter, we have seen that oversampling can largely im-
prove the system performance including the MSE of channel estimates and the
SER in synchronous mode. For example, the work in [76] has proposed several
channel estimation algorithms for 1-bit systems with uniform oversampling.
The error floor of MSE at high SNR has been obviously lowered. The work
in [67] has shown that oversampling can provide a gain in signal-to-noise ratio
(SNR) of about 5dB for the same symbol error rate (SER) and achievable rate
with a linear zero forcing (ZF) receiver. Analytical bounds on the SER and
achievable rate have also been given.

In this chapter, the oversampling technique is investigated in asyn-
chronous large-scale MU-MIMO systems with 1-bit ADCs at the receiver. How-
ever, different from uniform oversampling, a dynamic oversampling technique
is first proposed in the new system. In the proposed system two rates are intro-
duced, initial sampling rate and signal processing rate. The received signal is
initially oversampled at a higher rate and then processed by dimension reduc-
tion matrices, which either combine or select samples prior to further signal
processing. The criterion of which samples are combined or selected is based
on how much information contributes to the desired system designs, namely,
maximizing the sum rate or minimizing the MSE of the detected symbols.
Simulation results show that the systems with proposed dynamic oversam-
pling outperform the uniformly oversampled system in terms of the achievable
sum rate and SER performance without increasing more computational cost.

In section 5.1, the system model of asynchronous 1-bit MU-MIMO is
firstly presented. The design criteria of dynamic oversampling are detailed in
section 5.2 and section 5.3 introduces the dimension reduction algorithms.
Section 5.4 analyzes the proposed scheme based on its convergence and
computational complexity. Section 5.5 illustrates and discusses the numerical
results.
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Figure 5.1: MU-MIMO with 1-bit ADCs and dynamic oversampling at the receiver.

5.1
System Model

The overall system model is illustrated with a block diagram in Fig.
5.1, where at the BS the system is firstly oversampled by a factor of M
(initial sampling rate) and downsampled to a factor of M ′ (signal processing
rate). The received oversampled signal y for the single-cell uplink large-scale
multiple-antenna system with Nt single-antenna users and Nr receive antennas
(Nr � Nt) is written as

y = Hx + n. (5-1)
The vector x ∈ CNNt×1 contains all transmitted symbols within one block and
is arranged as

x = [x1,1 · · · xN,1 x1,2 · · · xN,Nt ]
T , (5-2)

where xi,j corresponds to the transmitted symbol of terminal j at time instant
i and is IID with unit power E[|xi,j|2] = 1. The vector n ∈ CMNNr×1 is the
filtered oversampled noise expressed by

n = (INr ⊗G) w, (5-3)

where w ∼ CN (03MNNr , σ
2
nI3MNNr)1 contains IID complex Gaussian random

variables with zero mean and variance σ2
n. The matrix G ∈ RMN×3MN is a

Toeplitz matrix described by (5-4), wherem(t) represents the impulse response
of receive filter at the time instant t

G =


m(−NT ) m(−NT + 1

M
T ) . . . m(NT ) 0 . . . 0

0 m(−NT ) . . . m(NT − 1
M
T ) m(NT ) . . . 0

... ... . . . ... ... . . . ...
0 0 . . . m(−NT ) m(−NT + 1

M
T ) . . . m(NT )

.
(5-4)

1Note that the noise samples are described such that each entry of n has the same
statistical properties. Since the receive filter m(t) has a length of 2MN + 1 samples, 3MN
unfiltered noise samples in the noise vector w need to be considered for the description of
an interval of MN samples of the filtered noise n.
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T represents one symbol period. In the block scheme, the initial sampling rate
is M and the signal processing rate is M ′, where M ≥ M ′. The equivalent
channel matrix H is

H = (H′ ⊗ IMN) blkdiag ([Z1, . . . ,ZNt ]) (INNt ⊗ u), (5-5)

where H′ ∈ CNr×Nt is the standard channel matrix. The vector u is employed
as an oversampling operator defined as the vector u with the size of M × 1

u = [0 · · · 0 1]T . (5-6)

Similar to G, the Toeplitz matrix Znt ∈ RMN×MN contains the impulse
response of z(t) at different time instants, where z(t) is the convolution of
transmit filter p(t) and receive filter m(t), and is given by

Znt =


z(ndnt

) z(ndnt
+ T

M
) . . . z(ndnt

+NT − 1
M
T )

z(ndnt
− T

M
) z(ndnt

) . . . z(ndnt
+NT − 2

M
T )

... ... . . . ...
z(ndnt

−NT + 1
M
T ) z(ndnt

−NT + 2
M
T ) . . . z(ndnt

)

 .
(5-7)

In practical communication systems, the transmission delay is unavoidable due
to the different transmission paths of the users to the BS. In this chapter, an
asynchronous system is considered by assuming the terminal nt sends its signal
to the BS delayed by the time ndnt

.
Let Q(·) represents the 1-bit quantization at the receiver, the resulting

quantized signal yQ is

yQ = Q (y) = Q (R{y}) + jQ (I{y}) , (5-8)

where R{·} and I{·} get the real and imaginary part, respectively. They are
quantized element-wisely to {±1} and scaled to {± 1√

2} based on the sign.
The Bussgang theorem [32] implies that the output of the nonlinear quan-

tizer can be decomposed into a desired signal component and an uncorrelated
distortion noise nq

yQ = Ay + nq, (5-9)
where A ∈ RMNNr×MNNr is the linear operator chosen independently from y,
obtained as

A = CyyQC−1
y (5-10)

and the distortion nq has the following covariance matrix

Cnq = CyQ −ACyA. (5-11)

The involved CyyQ denotes the cross-correlation between the received signal y
and its quantized form yQ
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CyyQ =
√

2
π

KCy, with K = diag(Cy)− 1
2 (5-12)

and the auto-correlation matrix CyQ is obtained through the arcsin law [33]

CyQ = 2
π

(
sin−1(KCR

y K) + jsin−1(KCI
yK)

)
, (5-13)

where Cy is calculated as

Cy = HHH + Cn

= HHH + σ2
n(INr ⊗GGH).

(5-14)

Based on this decomposition, the signal after the 1-bit quantizer can be written
in the following form

yQ = Ay + nq
= AHx + An + nq.

(5-15)

5.2
System Design with Dynamic Oversampling

Unlike the conventional uniform oversampling technique used in most
of the applications, an advanced oversampling technique is devised, named
dynamic oversampling, where the system is initially oversampled at a higher
rate M and only few samples are selected and further processed. The uniform
oversampling can be treated as a special case of dynamic oversampling when
M = M ′. In this section, dynamic oversampled systems are derived based on
two different design strategies, maximizing the sum rate or minimizing the
MSE of detected symbols.

5.2.1
Sum Rate based System Design

Let us consider n′ = An + nq in (5-15) and assume it is Gaussian
distributed with the covariance matrix

Cn′ = ACnA + Cnq , (5-16)

the uplink sum rate lower bound2 is then given by

CLB = E
{ 1
N

log2 det
(
IMNNr + AHHHAC−1

n′
)}
, (5-17)

which can be simplified as

CLB = E
{ 1
N

log2 det
(
CyQC−1

n′
)}

. (5-18)
2Note that the actual sum rate is difficult to calculate due to the unknown characteristic

of the distortion noise nq. Similar to the work in [77], we assume n′ is Gaussian distributed.
This method minimizes the actual mutual information but simplifies the analysis.
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Assuming that the dimension reduction operation can be mathematically
described as a linear transformation with the matrix ∆ [78], the received signal
is then reduced to

y′Q = ∆yQ, (5-19)
where ∆ has the size of M ′NNr ×MNNr. The sum rate lower bound for the
dynamic oversampled system is

CLB = E{ 1
N

log2 det
(
∆CyQ∆H(∆Cn′∆H)−1

)
}. (5-20)

The optimization problem that corresponds to the design of the optimal ∆opt

that can obtain the highest achievable sum rate is described as

∆opt = arg max
∆

log2 det
(
∆CyQ∆H(∆Cn′∆H)−1

)
. (5-21)

Since the determinant is a log-concave function [79] and with the properties of
the determinant, (5-21) is simplified as

∆opt = arg max
∆

det(∆CyQ∆H)
det(∆Cn′∆H) . (5-22)

According to [80], the solution of (5-22) is equivalent to the solution of following
optimization problem

∆opt = arg max
∆

Tr
(
∆CyQ∆H(∆Cn′∆H)−1

)
, (5-23)

which will be solved in section 5.3.

5.2.2
Mean Square Error based System Design

In this system, the reduction matrix should be designed to obtain the
least MSE of the detected symbols. In order to reduce the computational cost
while performing detection, the sliding window technique is applied.

Similar to (5-19), the dimension reduction operation in each window can
be mathematically described as

y′Qwin = ∆winyQwin , (5-24)

where ∆win is the reduction matrix with the size of M ′lNr ×MlNr for each
window and l denotes the window length. yQwin ∈ CMlNr×1 represents the
received signal in each window. The optimization problem that leads to the
optimal linear detector is formulated as

WLRA-MMSE = arg min
W

E
{∣∣∣∣∣∣xwin −WHy′Qwin

∣∣∣∣∣∣2
2

}
, (5-25)

where W ∈ CM ′lNr×lNt and the solution is
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WLRA-MMSE = C−1
y′Qwin

Cy′Qwin
xwin

= (∆winCyQwin
∆H

win)−1∆winCyQwinxwin .
(5-26)

According to (5-12) and (5-13), the involved covariance matrix CyQwin
and the

cross-correlation matrix CyQwinxwin are calculated as

CyQwin
= 2
π

(
sin−1(KwinCR

ywinKwin) + jsin−1(KwinCI
ywinKwin)

)
(5-27)

CyQwinxwin =
√

2
π

KwinHwin,with Kwin = diag(Cywin)− 1
2 . (5-28)

The calculation of ∆win leads to the following optimization problem

∆opt
win = arg min

∆win
E
{∣∣∣∣∣∣xwin −WH

LRA-MMSEy′Qwin

∣∣∣∣∣∣2
2

}
. (5-29)

Inserting (5-26) into (5-29) and expanding the terms, we obtain

arg min
∆win

Tr
(
INt − (∆winCyQwinxwin)H(∆winCyQwin

∆H
win)−1(∆winCyQxwin)

)
,

(5-30)
which can be further simplified as

∆opt
win = arg max

∆win
Tr
(
∆winCyQwinxwinCH

yQwinxwin∆
H
win

(
∆winCyQwin

∆H
win

)−1
)

(5-31)
with

CyQwinxwinCH
yQwinxwin = 2

π
KwinHwinHH

winKwin. (5-32)

After obtaining the optimal reduction matrix ∆opt
win, which will be illustrated

in section 5.3, the sliding-window based LRA-MMSE detector for the dynamic
oversampled systems is then given by

Wopt
LRA-MMSE = (∆opt

winCyQwin
∆opt

win
H)−1∆opt

winCyQwinxwin (5-33)

and the detected symbols in one window are

x̃win = WoptH

LRA-MMSE∆opt
winyQwin . (5-34)

5.3
The Design of the Reduction Matrix

In this section, design algorithms are presented for the reduction matrix
∆ that operates on the oversampled signal and performs the dynamic oversam-
pling by combining or choosing the samples according to the sum rate or the
MSE criteria. In particular, algorithms are presented to solve the optimization
problems (5-23) and (5-31), both of which can be generalized as

∆opt = arg max
∆

Tr
(
∆CA∆H(∆CB∆H)−1

)
. (5-35)
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Assume that both CA and CB have the size of MNNr ×MNNr and ∆ has
the size of M ′NNr ×MNNr. The problem (5-35) is known as the ratio trace
problem [81]. In the following, two algorithms will be illustrated to solve this
problem, the generalized eigenvalue decomposition (GEVD) for obtaining a full
complex reduction matrix and the submatrix-level feature selection (SL-FS)
for getting a sparse binary matrix.

5.3.1
Generalized Eigenvalue Decomposition

From [81], the problem in (5-35) can be efficiently solved by the GEVD

CAδc = λcCBδc, (5-36)

where λc is the cth largest generalized eigenvalue. The matrix ∆optH is
then constituted of the corresponding eigenvectors δc, c = 1, · · · ,M ′NNr. A
rigorous GEVD solution [82] is summarized in Alg. 3. In step 5, Λ is a diagonal
matrix containing all the eigenvalues and the corresponding eigenvectors are
stored in ∆.

Algorithm 3 GEVD
1: Eigenvalue decomposition: ΦB,ΛB ← Cn′ΦB = ΦBΛB

2: Φ̃B ← Φ̃B = ΦBΛ−
1
2

B
3: A← A = Φ̃H

B CyQΦ̃B
4: Eigenvalue decomposition: ΦA,ΛA ← AΦA = ΦAΛA
5: Λ← ΛA
6: ∆←∆ = Φ̃BΦA
7: Extract the eigenvectors in ∆ related to theM ′NNr largest diagonal values

in Λ
8: Build ∆optH column by column

5.3.2
Submatrix-level Feature Selection

The main drawback of the GEVD algorithm is the high computational
cost of the eigenvalue decompositions and full matrix multiplications involved
in (5-19) and (5-34). Considering this, a new approach is proposed, in which
the reduction matrix is a sparse binary matrix only containing a single one in
each row. The advantage of this binary matrix ∆B is that while multiplying
with such matrix only a few data samples are selected. The samples associated
with zeros in ∆B are discarded without the need for arithmetic operations,
which can largely reduce the computational cost. The optimization problem
(5-35) can be converted as
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∆opt
B = arg max

∆B is sparse binary
Tr
(
∆BCA∆H

B (∆BCB∆H
B )−1

)
. (5-37)

However, (5-37) is not easy to be solved due to its combinatorial nature. The
simplest but hardest way is to search all possible patterns of ∆B and select
the best one. In large-scale MIMO systems, ∆B has a large dimensional size,
which will consume much computational cost while doing the searching. To
alleviate this, with the sparse characteristic of ∆B it is separated into several
short dimensional matrices

∆B = blkdiag([∆B1,∆B2, · · · ,∆BK ]) (5-38)

and search the best pattern for each submatrix ∆Bk (k = 1, · · · , K) with the
size of M ′NNr

K
× MNNr

K
. The choice of K depends on the value of M ′NNr, so

that M ′NNr

K
can not be very small nor large. Since a very short dimensional

matrix ∆Bk can not largely represent the original matrix ∆B and a very large
dimensional matrix will make the searching complex, there should be a trade-
off3. The optimization problem is then reduced to

∆opt
Bk

= arg max
∆Bk

is sparse binary
Tr
(
∆Bk

CAk
∆H

Bk
(∆Bk

CBk
∆H

Bk
)−1

)
, (5-39)

where CAk
,CBk

∈ CMNNr
K
×MNNr

K are block diagonal submatrices from CA and
CB, respectively.

In the following, two algorithms are proposed for searching the opti-
mal pattern ∆opt

Bk
, submatrix-level backward feature selection (SL-BFS) and

submatrix-level restricted greedy search (SL-RGS).

5.3.2.1
Backward Feature Selection

Inspired by the feature selection algorithms used in machine learning and
statistics [83], the idea of BFS is applied to search for ∆opt

Bk
. The initialization

is an identity matrix and remove the least significant row at each iteration. In
the end, the rows contributing to the smallest trace in (5-39) are eliminated.
The whole procedure is summarized in Alg. 4.

5.3.2.2
Restricted Greedy Search

The basic idea is that based on the initialized pattern ∆I
Bk

the best
row patterns are sequentially searched from the first until the last row. While
searching the rth row pattern, the position of the one is shifted within a pre-
defined small range and select the one contributing to the highest trace in

3For the system with a large receive antenna array (Nr ≥ 64), K can be chosen as M ′N .
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Algorithm 4 SL-BFS
1: Input: CAk

,CBk

2: Output: ∆opt
Bk

3: Algorithm:
4: ∆opt

Bk
= IMNNr

K

5: for r = 1 : (M−M ′)NNr

K
do

6: ∆tmp1
Bk

= ∆opt
Bk

, ∆tmp2
Bk

= ∆opt
Bk

, skmax = 0
7: for rr = 1 : MNNr

K
− r + 1 do

8: Delete the rrth row of ∆tmp1
Bk

9: sk = Tr
(
∆tmp1

Bk
CAk

∆tmp1
Bk

H(∆tmp1
Bk

CBk
∆tmp1

Bk

H)−1
)

10: if sk > skmax then
11: skmax = sk
12: ∆opt

Bk
= ∆tmp1

Bk

13: end if
14: ∆tmp1

Bk
= ∆tmp2

Bk

15: end for
16: end for

(5-39). While calculating the trace, the rest M ′NNr

K
−1 rows are fixed including

the first r − 1 optimized and the rest M ′NNr

K
− r non-optimized rows. The

proposed algorithm is described in Alg. 5.
The initialized pattern ∆I

Bk
is the kth block diagonal submatrix of ∆I

B

(as (5-38)). The matrix ∆I
B is the initialized pattern for ∆B and selected as

the pattern for uniform or quasi-uniform4 oversampling, i.e.,

∆I
B =



︸ ︷︷ ︸
r1

0 · · · 0 1 0 0 0 0 · · · 0 0 0
... ... ... ... ... ... ... ... ... ... ...

︸ ︷︷ ︸
rr

0 · · · 0 0 1 0 0 0 · · · 0 0 0
... ... ... ... ... ... ... ... ... ...

︸ ︷︷ ︸
rend

0 · · · 0 0 0 0 0 1 · · · 0 0 0


, (5-40)

where rr denotes the number of zeros before 1 in each row. In the following,
examples are taken to illustrate how ∆I

B is chosen. For a system with M = 4
(or M = 6) and M ′ = 2, ∆I

B can be easily found. Since the uniform sampling
pattern in one Nyquist interval is [1,0,1,0] (or [1,0,0,1,0,0] for M = 6),
rr = M r−1

M ′
, where r is the index of the row. However, for the system with

M = 3 (or M = 5) and M ′ = 2, the quasi-uniform sampling pattern in one
Nyquist interval has more alternatives, which can be either [1,0,1] or [1,1,0]

4When M
M ′ is an integer, ∆I

B is the pattern for uniform oversampling, otherwise it is for
quasi-uniform oversampling.
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Algorithm 5 SL-RGS
1: Input: CAk

,CBk
,∆I

Bk

2: Output: ∆opt
Bk

3: Algorithm:
4: ∆tmp

Bk
= ∆I

Bk
, ∆opt

Bk
= ∆I

Bk

5: Find the position of the one in each row of ∆I
Bk

and store them into vector
j

6: smaxk
= Tr

(
∆I

Bk
CAk

∆IH

Bk
(∆I

Bk
CBk

∆IH

Bk
)−1

)
7: for r = 1 : M ′NNr

K
do

8: Set the position (r, jr) in ∆tmp
Bk

to be zero
9: for c = jr − β : jr + β do

10: if c /∈ j then
11: Set the position (r, c) in ∆tmp

Bk
to be one

12: s = Tr
(
∆tmp

Bk
CAk

∆tmp
Bk

H(∆tmp
Bk

CBk
∆tmp

Bk

H)−1
)

13: if s > smaxk
then

14: smaxk
= s

15: ∆opt
Bk

= ∆tmp
Bk

16: end if
17: Set the position (r, c) in ∆tmp

Bk
to be zero

18: end if
19: end for
20: ∆tmp

Bk
= ∆opt

Bk

21: Update j
22: end for

(either [1,0,1,0,0] or [1,0,0,1,0] for M = 5).

rr =

Mb
r−1
M ′
c, if mod (r − 1,M ′) = 0

Mb r−1
M ′
c+ α, otherwise,

where α denotes the position of the second one starting from position 0.
In step 8, jr denotes the position of the one at the rth row and is stored

in the vector j ∈ R1×M′NNr
K . The parameter β in step 9 is the pre-defined range

number, which aims to reduce the cost of the search. The possible position of
the one is only searched within the range of 2β around jr.

5.4
Analysis of Proposed Scheme

In this section, the following topics are illustrated: the convergence of the
proposed SL-RGS algorithm, comparison of the computational complexities
of different reduction algorithms and the power consumption of the proposed
scheme at the receiver. The parameters used in this section areM ′ = 2, N = 4,
Nr = 64, β = 5 and K = 8.
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5.4.1
Convergence of the SL-RGS Algorithm

Let us consider a sparse dimension reduction submatrix ∆Bk
defined in

the previous section. The convergence of the proposed RGS algorithm to the
unrestricted (or exhaustive searched) GS algorithm is examined under some
reasonable assumptions. Note that the exhaustive search for ∆opt

Bk
results in(

(M−M ′)NNr

K

)M′NNr
K independent calculations of trace (step 12 in Alg. 5), which is

quite complex for practical use.
The proposed RGS algorithm greatly reduces the cost of the search (max-

imal (2β)
M′NNr

K independent calculations of trace) and under some conditions
can approach the performance of unrestricted GS obtained ∆opt

Bk
. Assume that

the RGS examines a range of patterns characterized by

∆Bk
=



︸ ︷︷ ︸
c1

0 . . . 0 1 0 . . . 0 0 0 0 . . . 0

0 . . . 0 ︸ ︷︷ ︸
c2

0 . . . 0 1 0 . . . 0 0 · · · 0

... ... ... ... ... ... ... ... ... ... ... ... ...

0 . . . 0 0 0 0 ︸ ︷︷ ︸
c M′NNr

K

0 . . . 0 1 0 . . . 0



, (5-41)

where cr = [0 . . . 0 1 0 . . . 0] (r = 1, 2, . . . , M ′NNr

K
) is a row vector that has a

length of 2β + 1. The trace of the rth optimized ∆r
Bk

is calculated as

sr = Tr
(
∆r

Bk
CAk

∆r
Bk

H(∆r
Bk

CBk
∆r

Bk

H)−1
)
. (5-42)

In the following, an example is taken to illustrate how

sr → soptimum, (5-43)

where soptimum is the trace obtained by the unrestricted GS with the form as

∆optmum
Bk

=



0 1 0 0 0 0 0 0 0 0 0 . . . 0

0 0 0 0 0 0 0 0 1 0 0 . . . 0

0 . . . 0 0 1 0 0 0 0 0 0 0 0


. (5-44)

In the RGS algorithm, the initialized pattern ∆I
Bk

is
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∆I
Bk

=



1 0 0 0 0 0 0 0 0 0 0 . . . 0

0 0 1 0 0 0 0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 0 0 0 0 0 1


. (5-45)

After the first iteration, we obtain

∆1
Bk

=



0 0 0 1 0 0 0 0 0 0 0 . . . 0

0 0 1 0 0 0 0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 0 0 0 0 0 1


. (5-46)

After the M ′NNr

K
th iteration, we have

∆
M′NNr

K
Bk

=



0 0 0 1 0 0 0 0 0 0 0 . . . 0

0 0 0 0 0 1 0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 0 0 1 0 0 0


. (5-47)

Fig. 5.2 shows the corresponding convergence performance, where r =
1, 2, · · · , 64. It can be seen that although ∆

M′NNr
K

Bk
and ∆optmum

Bk
do not have

similar patterns the difference (soptimum − sr) still decreases as the number of
iterations increases until it approaches zero. This indicates that the RGS might
lead to a close to optimal result in terms of sr, i.e. sr → soptimum provided that
the range 2β is sufficiently large.

This discussion aims to give insight on how the proposed RGS can obtain
satisfactory results provided the range 2β is chosen sufficiently large.

5.4.2
Computational Complexity

5.4.2.1
GEVD vs SL-FS

In the GEVD algorithm, the operations that contribute the most to the
computational complexity lie in the eigenvalue decomposition (O ((MNNr)3)
in [85]) and matrix multiplications. While in the SL-FS algorithms, the opera-
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Figure 5.2: Convergence of the proposed SL-RGS to the unrestricted GS algorithm.

tion of trace in each iteration consumes most of the calculations. The computa-
tional complexities of the illustrated design algorithms are shown in Table 5.1.
The solid lines in Fig. 5.3 represent the computational complexities of three

Table 5.1: Computational complexities of the illustrated matrix design algorithms

GEVD SL-BFS SL-RGS

O (6(MNNr)3)
O
(∑ (M−M′)NNr

K
n=1 2K(MNNr

K
− n+ 1)

(
(MNNr

K
− n)3+

(MNNr

K
− n)2MNNr

K
+ (MNNr

K
− n)(MNNr

K
)2
)) O

(
4M ′NNrβ

(
(M ′NNr

K
)3

+(M ′NNr

K
)2MNNr

K
+ M ′NNr

K
(MNNr

K
)2
))

matrix design algorithms. It can be seen that the SL-RGS algorithm consumes
roughly the same complexity as the GEVD and the SL-BFS algorithm has the
highest complexity.

Noticing that for obtaining the whole ∆opt
B , the SL-FS algorithm needs

to be repeated for K times in order to obtain all optimal submatrices ∆opt
Bk

(k = 1, · · · , K). To further reduce the complexity of the SL-FS algorithm,
a simplified version is proposed, in which it is assumed that all optimal
submatrices ∆opt

Bk
(k = 1, · · · , K) share the same pattern, so that only one

submatrix ∆Bk
will be optimized by the SL-FS algorithm. The choice of which

∆Bk
is optimized is influenced by the minimal trace calculated by its initial

pattern, which is shown from step 1 to 4 in Alg. 6. The complexity of the
simplified SL-BFS and SL-RGS are shown as the dashed lines in Fig. 5.3.
Compared to the standard algorithm, the simplified SL-FS can provide savings
of 87.5% in the computational cost.
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Figure 5.3: Comparison of computational complexities among illustrated matrix design
algorithms.

Algorithm 6 Simplified SL-FS
1: for k = 1 : K do
2: sk = Tr

(
∆I

Bk
CAk

∆IH

Bk
(∆I

Bk
CBk

∆IH

Bk
)−1

)
3: end for
4: Choose the ∆I

Bk
with the lowest sk

5: Use the SL-BFS or SL-RGS algorithm to find ∆opt
Bk

6: Let ∆opt
B1 = · · · = ∆opt

Bk
= · · · = ∆opt

BK

7: Rebuild ∆opt
B as (5-38)

5.4.2.2
Uniform vs Dynamic Oversampling

In the uniform-oversampled system, all received samples are used for the
signal processing, which means that there is no need for the pattern design and
dimension reduction. The corresponding sliding window based LRA-MMSE
detector is a modified version of (5-33), which is

Wuni
LRA-MMSE = C−1

yQwin
CyQwinxwin . (5-48)

Table 5.2 shows the computational complexities of different oversampling
techniques for obtaining the detected symbols in each window. Considering
the whole transmission block including the operation of pattern design, which
is obtained only once at the beginning of each transmission, and dimension
reduction, which is applied in each window, in dynamic oversampled systems,
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Table 5.2: Computational complexity by using different oversampling techniques in MSE
based system

Uniform
oversampling

GEVD based
dynamic oversampling

SL-FS based
dynamic oversampling

O ((MNNr)3 + (MNNr)2lNt
+(MNNr)lNt)

O ((M ′NNr)3 + (M ′NNr)2(lNt+MNNr)
+(M ′NNr)((MNNr)2 +MNNrlNt +MNNr + lNt))

O ((M ′NNr)3 + (M ′NNr)2lNt
+(M ′NNr)lNt)

the total complexity comparisons between uniform and dynamic oversampling
techniques are shown in Fig. 5.4. It can be seen that both the standard and
simplified SL-RGS based dynamic oversampling technique consume the lowest
computational cost among the listed oversampling techniques. Compared to
the standard algorithm, the simplified SL-BFS and SL-RGS has saved up to
87.33% and 63.19% in the computational cost, respectively. When comparing
with the uniform oversampling technique, the GEVD and the simplified SL-
RGS based dynamic oversampling technique can save up to 54.99% and 96.84%
in the computational cost, respectively.

2 3 4 5 6 71010
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(·)
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Dynamic (GEVD)
Dynamic (SL-BFS)
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Figure 5.4: Computational complexity comparisons between uniform (M = M ′) and dynamic
oversampling techniques (M ′ = 2).

5.5
Numerical Results

In this section, an uplink large-scale MIMO system with Nr = 64 and
Nt = 4 is considered. The m(t) and p(t) are normalized RRC filters with
a roll-off factor of 0.8 and the time delay ndnt

of each terminal is uniformly
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distributed between −T and T . The channel is assumed to experience block
fading. The simulation results presented here are obtained by averaging over
500 independent realizations of the channel matrix H′, noise and symbol
vectors. The SNR is defined as 10 log( 1

σ2
n
). In the SL-BFS and SL-RGS based

dynamic oversampling technique, β = 5 and K = 8 are used.

5.5.1
Sum Rate based System

In this system, each transmission block contains 4 symbols and Gaussian
signaling is considered. Fig. 5.5 shows the sum rate performance of the
systems with uniform and GEVD based dynamic oversampling technique,
where the latter has much better performance than the former. Fig. 5.6
compares the performance of SL-RGS based dynamic oversampling technique
with standard and simplified version. As depicted in the figure, although there
is performance degradation of the simplified algorithm the performance gaps
between these two versions are still small, especially after M = 4. Taking the
complexity analysis (subsection 5.4.2) into account, it can be concluded that
the proposed simplified SL-FS algorithm requires much lower computational
cost to approach the performance of the standard SL-FS. Fig. 5.7 compares
the performance of the simplified SL-FS algorithms, where both SL-BFS and
SL-RGS achieve similar sum rates5.

5.5.2
MSE based System

In this subsection, the proposed oversampling technique is examined in
terms of the normalized MSE and SER. The modulation scheme is quadrature
phase-shift keying (QPSK). Each transmission block contains 100 symbols.
The window length l is chosen as 4 Nyquist-sampled symbols.

Fig. 5.8 and Fig. 5.9 show the performance of normalized MSE and SER
as a function of SNR in GEVD based dynamic oversampled systems, respec-
tively. Similar to the Fig. 5.5, the dynamic oversampled system outperforms
the uniform-oversampled systems. Combining with the complexity analysis in
Fig. 5.4, it can be seen that the dynamic oversampling technique with M = 3
performs much better than the uniform oversampling technique at the price of
approximate similar computational costs.

Furthermore, Fig. 5.10 and Fig. 5.11 show the normalized MSE and SER
performance of SL-RGS based dynamic oversampling technique with standard

5The performance of the standard SL-BFS algorithm is not shown due to the very high
computational cost shown in subsection 5.4.2.
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Figure 5.5: Comparison between uniform and GEVD based dynamic oversampling technique
with M ′ = 2.
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Figure 5.6: Comparison between uniform and SL-RGS based dynamic oversampling tech-
nique with M ′ = 2.
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Figure 5.7: Comparison between simplified SL-BFS and simplified SL-RGS based dynamic
oversampling technique with M ′ = 2.
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Figure 5.8: Comparison between uniform and GEVD based dynamic oversampling technique
with M ′ = 2.
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Figure 5.9: Comparison between uniform and GEVD based dynamic oversampling technique
with M ′ = 2.

and simplified version. It can be seen that the performance of two proposed
versions have little difference. Combining with the complexity analysis in
Fig. 5.4, the simplified SL-RGS based dynamic oversampling technique is
more suitable for the practical use since the computational cost is much
lower. Moreover, it can also be seen that the dynamic oversampling technique
obviously outperforms the uniform oversampling technique. with considering
the complexity analysis in Fig. 5.4, it can be concluded that the proposed
simplified SL-RGS based dynamic oversampling technique manages to achieve
better normalized MSE and SER performance than the uniform oversampling
technique with almost the same computational cost. For example, whenM = 6
the complexity of detecting one block of symbols in the simplified SL-RGS
based dynamic oversampled system is almost similar with that in the uniform-
oversampled system but the performance has improved a lot. This reveals the
performance advantages of the proposed dynamic oversampling technique.
Similar to Fig. 5.7, the SER performance between the simplified SL-BFS and
the simplified SL-RGS algorithm is also compared in Fig. 5.12, where both
have similar performance.
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Figure 5.10: Comparison between uniform and SL-RGS based dynamic oversampling tech-
nique with M ′ = 2.

−5 0 5 10 15

10−3

10−2

Uniform
Dynamic (SL-RGS)
Dynamic (simplified SL-RGS)

SNR (dB)

SE
R

M=2
M=3
M=4
M=6

Figure 5.11: Comparison between uniform and SL-RGS based dynamic oversampling tech-
nique with M ′ = 2.
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Figure 5.12: Comparison between simplified SL-BFS and simplified SL-RGS based dynamic
oversampling technique with M ′ = 2.

5.6
Summary

This chapter has proposed dynamic oversampling techniques for large-
scale MU-MIMO systems with 1-bit quantization at the receiver. The designs
based on the sum rate and MSE of detected symbols criteria are developed.
Two algorithms have been devised for obtaining the dimension reduction
matrix, the GEVD for the complex full matrix ∆ and the SL-FS for the
sparse binary matrix ∆B. Furthermore, the proposed scheme is analyzed
based on the convergence, computational complexity and power consumption
at the receiver. Simulation results have shown that the proposed dynamic
oversampling techniques outperform the conventional uniform oversampling
technique in terms of the computational cost, achievable sum rate and SER
performance.
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6
Conclusions and Future Works

This thesis has developed novel signal processing techniques for large-
scale MU-MIMO systems with 1-bit quantization at the receiver that can pro-
vide energy-efficient algorithmic solutions for future wireless communication
systems.

Chapter 2 has described the technical background on MU-MIMO sys-
tems, channel estimation, multiuser detection, precoding technique and low-
resolution signal processing related to this thesis. In the section of MU-MIMO,
the basic system model is firstly illustrated. Based on the model, sum rate
capacity is given for a reliable transmission. While estimating the channel in-
formation, LS and LMMSE estimators are presented. The section of multiuser
detection has discussed some optimum and sub-optimum detectors. In the sec-
tion of low-resolution signal processing, the function of ADCs is explained in
a mathematical way and some statistical properties of 1-bit ADCs are also
presented. The use of oversampling aims at increasing the SQNR to mitigate
the quantization error caused by the ADCs. The ADCs’ power consumption
among different resolutions is also compared.

Chapter 3 has shown the system design for MU-MIMO systems with
coarsely quantized signals. Different from prior works on channel estimation
in 1-bit ADCs system, low-resolution-aware LMS and RLS adaptive channel
estimators are proposed to reduce the computational complexity while obtain-
ing high accuracy. While making the signal detection, an IDD scheme together
with an adaptive channel decoder using a quantizer is described. The simu-
lation results have shown a great performance gain after several iterations in
terms of BER.

To further improve the system performance, chapter 4 has presented the
system design for 1-bit MU-MIMO systems with uniform oversampling tech-
nique. Based on different estimation criteria novel linear channel estimators
are proposed for the systems sampling at oversampling rate. From the simula-
tion results, it can be seen that there is about 2dB SNR advantage with the
non-oversampled system in terms of MSE. The LMS adaptive technique is also
investigated in such systems. Numerical results have shown that the compu-
tational cost can be largely reduced but the MSE performance is almost the
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same as that of the LRA-LMMSE channel estimator, which is very important
for systems with low computational complexity and simple hardware imple-
mentation. In addition, Bayesian and general CRBs on the MSE are derived,
which give theoretical limits on the performance of the channel estimators.
Furthermore, an adaptive technique to estimate the auto-correlation matrix
of the channel vector is proposed, which is important for practical use. Novel
signal detection algorithms are also presented for 1-bit systems sampling at
uniform oversampling rate. To reduce the computational complexity caused
by extra oversampled samples sliding-window based low-resolution-aware ZF
and MMSE detectors have been developed. Simulation results have shown that
there is performance gain in SER compared to the standard non-oversampled
system.

Chapter 5 has proposed dynamic oversampling techniques for asyn-
chronous large-scale MU-MIMO systems with 1-bit quantization at the re-
ceiver. Two system designs are developed based on the sum rate and the MSE
of detected symbols criteria. Two algorithms have been devised for obtaining
the dimension reduction matrix, the GEVD for the complex full matrix ∆
and the SL-FS for the sparse binary matrix ∆B. Furthermore, the proposed
scheme is analyzed based on the convergence, computational complexity and
power consumption at the receiver. Simulation results have shown that the
proposed dynamic oversampling techniques outperform the conventional uni-
form oversampling technique in terms of the computational cost, achievable
sum rate and SER performance.

Some suggestions for possible future works are:

– Pilot optimization: until now all the works about channel estimation
in 1-bit ADCs systems consider the orthogonal pilots. However, due to
the large quantization loss this configuration may not be optimal to the
system. It would be promising to find out the optimal pilot patterns.

– B-bit ADCs: it is known that the 1-bit ADCs can produce a lot of
quantization error, which makes the signal processing even more difficult.
It would be interesting to investigate the use of b-bit (b=2,3) ADCs
on large-scale MU-MIMO systems including the development of signal
detection, channel estimation, oversampling and precoding techniques.
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A
Proof of the linear transformation in (3-3)

The Bussgang theorem in (2-32) gives us an insight about the calculation
of cross-correlation of a Gaussian signal before and after the nonlinear opera-
tion. Assume that yQ in (3-2) can be reformulated as the following linear form

yQ = Ay + nq, (A-1)
where A is the linear operator and nq is the quantization error. The cross-
correlation of the input and output of the quantizer is given by

CyQy = E{yQyH} = E{(Ay + nq)yH} = ACy, (A-2)

where we have assumed nq is independent of y and the resulting cross-
correlation E{nqyH} is zero. According to (2-32) we obtain

A =
√

2
π
diag(Cy)− 1

2 . (A-3)

The auto-correlation of yQ is calculated as

CyQ
= E{yQyHQ} = ACyA + Cnq (A-4)

and the resulting Cnq is

Cnq = E{nqnHq } = CyQ
−ACyA. (A-5)
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B
Proof of (4-22)

Recall the optimization problem

WLMMSE = arg min
W

E{||h′ −WyQp ||2}. (B-1)

Taking the partial derivative with respect to WH , we obtain

∂E{||h′ −WyQp ||2}
∂WH

= −E{h′yHQp
}+ WE{yQpyHQp

}. (B-2)

Inserting (4-14) into (B-2), the LMMSE filter becomes

WLMMSE = E{h′yHQp
}E{yQpyHQp

}−1

= (E{h′h′H}Φ̃H
p + E{h′ñHp })C−1

yQp
.

(B-3)

Since h′ is uncorrelated with np and nq [10], we have

E{h′ñHp } = E{h′(Apnp + nq)H} = 0. (B-4)

The resulting LRA-LMMSE channel estimator is given by

ĥ′LRA-LMMSE = Rh′Φ̃H
p C−1

yQp
yQp . (B-5)
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C
Proof of (4-28)

Defining ε(n) = h̄′nr(n)− h′nr and inserting it into (4-27), we obtain

ε(n+ 1) = ε(n) + µΦ̃nr
p (n)H(ynr

Qp
(n)− Φ̃nr

p (n)h̄′nr(n))

= ε(n) + µΦ̃nr
p (n)Hynr

Qp
(n)− µΦ̃nr

p (n)HΦ̃nr
p (n)(ε(n) + h′nr)

= (I− µΦ̃nr
p (n)HΦ̃nr

p (n))ε(n) + µΦ̃nr
p (n)H(ynr

Qp
(n)− Φ̃nr

p (n)h′nr).
(C-1)

Taking the expected value from ε(n+ 1), we have

E{ε(n+ 1)} = (I− µE{Φ̃nr
p (n)HΦ̃nr

p (n)})E{ε(n)}. (C-2)

With the eigenvalue decomposition E{Φ̃nr
p (n)HΦ̃nr

p (n)} = QΓQH , (C-2) can
be written as

QHE{ε(n+ 1)} = QH(I− µQΓQH)E{ε(n)}

= (I− µΓ)QHE{ε(n)},
(C-3)

where Q is a unitary matrix and Γ is a diagonal matrix, whose diagonal entries
are the eigenvalues of E{Φ̃nr

p (n)HΦ̃nr
p (n)}. With u(n) = QHE{ε(n)}, (C-3) is

then
u(n+ 1) = (I− µΓ)u(n). (C-4)

Decoupling the matrix form into individual elements we get

unt(n+ 1) = (1− µγnt)unt(n)

= (1− µγnt)τ−lwin+1unt(1), nt = 1, . . . , Nt.
(C-5)

In order for the LRA-LMS to converge, we must have

|1− µγnt| < 1. (C-6)

The stability condition is then given by

0 < µ <
2

γmax
, (C-7)

where γmax is the largest eigenvalue of E{Φ̃nr
p (n)HΦ̃nr

p (n)}.
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D
Proof of Lemma 1

The bias of the adaptive estimator R̂h′ is firstly examined. The expected
value of ĥ′(n) in (4-31) is

E{ĥ′(n)} = E{(x′Tp (n)⊗ INr ⊗ Z′u)+yQ(n)}. (D-1)

From the Bussgang theorem (4-30) can be decomposed as

yQ(n) = Q
(
(x′Tp (n)⊗ INr ⊗ Z′u)h′ + n(n)

)
= A′p(n)((x′Tp (n)⊗ INr ⊗ Z′u)h′ + n(n)) + nq(n),

(D-2)

where A′p(n) is the linear operator and nq(n) is the statistically equivalent
quantizer noise. Substituting (D-2) into (D-1) and with Φ′(n) = (xT (n) ⊗
INr ⊗ Z′u), we obtain

E{ĥ′(n)} = E{Φ′(n)+(A′p(n)(Φ′(n)h′ + n(n)) + nq(n))}

= E{Φ′(n)+A′p(n)Φ′(n)h′}+ E{Φ′(n)+A′p(n)n(n)}+ E{Φ′(n)+nq(n)}.
(D-3)

Since Φ′(n) and n(n) are uncorrelated and E{n(n)} = 0, we have

E{Φ′(n)+A′p(n)n(n)} = 0. (D-4)

Similarly,
E{Φ′(n)+nq(n)} = 0. (D-5)

Equation (D-3) can be further simplified as

E{ĥ′(n)} = E{Φ′(n)+A′p(n)Φ′(n)}h′. (D-6)

The matrix A′p(n) depends on Rh′ such that the expectation in (D-6)
can be different from the identity matrix especially for channels without
normalization, which verifies that (4-31) has an unknown bias [73]. With the
analysis above, it is concluded that the adaptive estimator R̂h′ is also biased,
which shows that the estimation procedures together with the proposed LRA
channel estimators are biased.
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