
Jordana Zerpini Mecler

A simple and effective hybrid genetic search for
the job sequencing and tool switching problem

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor : Prof. Thibaut Victor Gaston Vidal
Co-advisor: Prof. Anand Subramanian

Rio de Janeiro
April 2020

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Jordana Zerpini Mecler

A simple and effective hybrid genetic search for
the job sequencing and tool switching problem

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Thibaut Victor Gaston Vidal
Advisor

Departamento de Informática – PUC-Rio

Prof. Anand Subramanian
Co-advisor

Departamento de Sistemas de Computação – UFPB

Prof. Marco Serpa Molinaro
Departamento de Informática – PUC-Rio

Prof. Marcus Vinícius Soledade Poggi de Aragão
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 29th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

All rights reserved.

Jordana Zerpini Mecler

Obtained a bachelor in Computer Engineering (2017) at the
Pontifical Catholic University of Rio de Janeiro (PUC-Rio).
Earned a scholarship by CAPES for the masters.

Bibliographic data
Mecler, Jordana Zerpini

A simple and effective hybrid genetic search for the
job sequencing and tool switching problem / Jordana Zer-
pini Mecler; advisor: Thibaut Victor Gaston Vidal; co-advisor:
Anand Subramanian. – Rio de Janeiro: PUC-Rio, Departa-
mento de Informática, 2020.

v., 43 f: il. color. ; 30 cm

Dissertação (Mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Metaheurística. 2. Otimização combinatória. 3.
Sequenciamento de tarefas. 4. Troca de ferramentas. 5.
Busca genética híbrida. I. Vidal, Thibaut Victor Gaston. II.
Subramanian, Anand. III. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Acknowledgments

Firstly, I would like to thank my incredible advisor, Thibaut Vidal, for all
the discussions, help and support in the past years and my coadvisor, Anand
Subramanian, for helping making it fun to write a paper and becoming a
great friend of mine in the process. I would also like to thank the examination
committee, Marco Molinaro and Marcus Poggi, for their insightful comments
and suggestions.

I would like to thank my family, Elizabeth Zerpini, Ian Mecler, Katia
Mecler, Rosinha Goldenstein, Nair Zerpini, Edir Semblano and specially my
brother, Davi Mecler, who is also a great colleague in the area.

My sincere gratitude also goes to my fellow colleagues, specially Rafael
França, Bianca Teixeira, Lucas Murtinho, Pedro Ferreira and Marcelo Paulon,
for their amazing friendship and important moments shared in the past couple
of years.

Last but not least, I would like to thank my best friends, Laura Becker
and Gabriela Mariz, for all their love, always.

This study was financed in part by the Coordenação de Aperfeiçoamento
Pessoal de Nível Superior (CAPES) – Finance Code 001, and I am very grateful
for this scholarship.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Abstract

Mecler, Jordana Zerpini; Vidal, Thibaut Victor Gaston (Advisor);
Subramanian, Anand (Co-Advisor). A simple and effective hybrid
genetic search for the job sequencing and tool switching
problem. Rio de Janeiro, 2020. 43p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

EN
The job sequencing and tool switching problem (SSP) has been extensively
studied in the field of operations research, due to its practical relevance
and methodological interest. Given a machine that can load a limited
amount of tools simultaneously and a number of jobs that require a subset
of the available tools, the SSP seeks a job sequence that minimizes the
number of tool switches in the machine. To solve this problem, we propose
a simple and efficient hybrid genetic search based on a generic solution
representation, a tailored decoding operator, efficient local searches and
diversity management techniques. To guide the search, we introduce a
secondary objective designed to break ties. These techniques allow to explore
structurally different solutions and escape local optima. As shown in our
computational experiments on classical benchmark instances, our algorithm
significantly outperforms all previous approaches while remaining simple to
apprehend and easy to implement. We finally report results on a new set of
larger instances to stimulate future research and comparative analyses.

Keywords
Metaheuristic; Combinatorial optimization; Job sequencing; Tool switch-

ing; Hybrid genetic search

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Resumo

Mecler, Jordana Zerpini; Vidal, Thibaut Victor Gaston; Subramanian,
Anand. Uma busca genética híbrida simples e efetiva para o
problema de sequenciamento de tarefas e troca de ferramen-
tas. Rio de Janeiro, 2020. 43p. Dissertação de Mestrado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

PT
O problema de sequenciamento de tarefas e troca de ferramentas (job
sequencing and tool switching problem - SSP) tem sido extensivamente
estudado na área de pesquisa operacional, devido à sua relevância prática
e interesse metodológico. Dada uma máquina que pode carregar uma
quantidade limitada de ferramentas simultaneamente e um número de
tarefas que requerem um subconjunto das ferramentas disponíveis, o SSP
procura uma sequência de tarefas que minimize o número total de trocas de
ferramentas na máquina. Para resolver este problema, é proposta uma busca
genética híbrida simples e efetiva baseada em uma representação de solução
genérica, um operador de decodificação sob medida, buscas locais eficientes
e técnicas de gerenciamento de diversidade. Para orientar a busca, um
objetivo secundário desenvolvido para tratar empates é introduzido. Essas
técnicas permitem explorar soluções estruturalmente distintas e escapar de
ótimos locais. Conforme apresentado nos experimentos computacionais em
instâncias clássicas, o algoritmo proposto supera significativamente todas as
abordagens anteriores, mesmo sendo de fácil entendimento e implementação.
Por fim, resultados obtidos em um novo conjunto de instâncias maiores são
reportados para estimular futuras pesquisas e análises comparativas.

Palavras-chave
Metaheurística; Otimização combinatória; Sequenciamento de tarefas;

Troca de ferramentas; Busca genética híbrida

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Table of contents

1 Introduction 10

2 Related studies 13

3 Proposed methodology 18
3.1 Solution evaluation 19
3.2 Generation of new solutions 21
3.3 Biased fitness and population diversity management 22

4 Computational experiments 23
4.1 Classical benchmark instances 23
4.2 Parameters calibration 24
4.3 Sensitivity analysis 25
4.4 Comparison with other algorithms on classical benchmark instances 27
4.5 Experiments on larger instances 33

5 Conclusions 37

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

List of figures

Figure 1.1 Example with 4 jobs, 5 tools and a machine capacity of
3. The tools which are kept in the machine magazine but not
currently used are underlined. Tool switches are circled. 10

Figure 3.1 Illustration of the OX crossover on a small example with
10 jobs 21

Figure 4.1 Distribution of objective values in the population after
first survivors selection, halfway through the execution and after
last survivors selection. 27

Figure 4.2 Average number of tool switches over time for the in-
stances of Group F1 36

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

List of tables

Table 2.1 Summary of SSP studies 16

Table 3.1 Required tools matrix – Before KTNS 19
Table 3.2 Loaded tools matrix – After KTNS 20

Table 4.1 SSP instances 24
Table 4.2 Varying population size 25
Table 4.3 Varying µelite 25
Table 4.4 Varying µclose 25
Table 4.5 Sensitivity Analysis 26
Table 4.6 Summary of the comparative analyses 29
Table 4.7 Performance comparison on Group A instances 30
Table 4.8 Performance comparison on Group B instances 30
Table 4.9 Performance comparison on Group C instances 30
Table 4.10 Performance comparison on Group D instances 31
Table 4.11 Performance comparison on Group E instances 31
Table 4.12 Performance comparison on Groups C1, C2, C3, and C4 32
Table 4.13 Performance comparison on Groups datA, datB, datC

and datD 32
Table 4.14 Performance comparison on Groups F1, F2 and F3 35

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

1
Introduction

The job sequencing and tool switching problem (SSP) considers a set of
jobs J = {1, ..., n}, a set of tools T = {1, ...,m}, and a single machine whose
magazine can hold up to C tools simultaneously. Each job j ∈ J requires a
subset Tj of the available tools to be performed, where |Tj| ≤ C. We assume
that the tool setup times are identical and that every tool fits into one slot
of the machine. In most applications, the total number of tools needed by all
the jobs exceeds the machine magazine capacity. Therefore, the machine may
switch some tools when finishing a job and starting another one. The goal of
the SSP is to find a job sequence and a tool loading strategy that minimizes the
total number of switches, calculated as the number of times a tool is replaced
by another. A problem and solution example is provided in Figure 1.1.

Instance
Jobs 1 2 3 4

Tools
1 2 1 2
4 3 4 4
5 5

Solution
Jobs 2 4 3 1

Tools
2 2 1 1
3 4 4 4
5 5 5 5

Figure 1.1: Example with 4 jobs, 5 tools and a machine capacity of 3. The tools
which are kept in the machine magazine but not currently used are underlined.
Tool switches are circled.

The SSP arises in many applications, including circuit-board manufactur-
ing (Privault and Finke, 1995), computer memory management (Ghiani et al.,
2007) and pharmaceutical packaging (Mütze, 2014). In the first application,
the jobs represent circuits which need to be placed on a board and the tools
are the surface-mount component feeders. In the second application, the jobs
represent tasks which must be processed and the tools are the pages (memory
fragments) that need to be transferred from the slow memory to the fast mem-
ory. In the last application, the jobs represent patient medicine boxes, and the
tools are the pills.

The SSP can be generally decomposed into a sequencing problem which
aims to find the best job sequence, and a tooling problem which seeks the best
tool loading policy for a fixed sequence. For any fixed job sequence, the tooling
problem can be solved in time O(nm) with the “keep tools needed soonest”

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 1. Introduction 11

(KTNS) policy (Tang and Denardo, 1988a). In contrast, finding an optimal
job sequence (i.e., solving the SSP) is known to be NP-hard (Crama et al.,
1994).

Due to its practical interest, the SSP has been the focus of extensive re-
search, and most of the classical metaheuristic frameworks (e.g., tabu search, it-
erated local search, and genetic algorithms) have been adapted to this problem.
However, the discrete nature of the objective (number of tool switches) and the
problem symmetries (solutions with the same cost obtained by simple reversals
of job sequences) tend to diminish the effectiveness of local searches. As a con-
sequence, notable methodological breakthroughs remain achievable, even for
medium-scale problems with a few dozens of jobs. Finally, the problem deci-
sion sets lend themselves to an effective application of solution representative-
and decoder-based algorithms, consisting in searching the space of the permu-
tations and systematically applying a decoder (the KTNS policy) to evaluate
solution costs. Such a decision-set problem decomposition has been instrumen-
tal in designing efficient metaheuristics for a variety of permutation and set
based problems (see, e.g., Gribel and Vidal, 2019; Toffolo et al., 2019; Vidal,
2017; Vidal et al., 2015, 2014).

In this work, we present new methodological advances for the SSP and
pursue the study of decision set decomposition-based metaheuristics. Inspired
by the success of hybrid genetic searches (HGS) on vehicle routing problems —
i.e., genetic algorithms with local search and population diversity management
Vidal et al. (2012, 2014)— we use and adapt this methodological paradigm with
search operators tailored for the SSP. To perform a controlled exploration
of solutions with identical cost, we also exploit a secondary objective which
favors small 0-blocks (see definition in Section 3.1) to guide the search
towards solution improvements. The main contributions of this dissertation
are fourfold:

– We introduce an efficient HGS for the SSP. This method exploits a simple
permutation-based solution representation and measures solution quality
in terms of cost and contribution to the population diversity during
parents and survivors selections.

– We introduce a secondary objective which promotes short 0-blocks as a
means to progress towards solutions with fewer tool switches.

– We conduct extensive computational experiments on classical SSP in-
stances to evaluate the performance of our approach and measure the
contribution of its principal components. These experiments show that
the proposed method performs remarkably well in relation to previous

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 1. Introduction 12

approaches and that its main strategies (secondary objective and diver-
sity management) are critical for a good performance.

– We finally report additional results and comparative analyses on a set of
larger-scale instances to stimulate future research.

The remainder of the dissertation is organized as follows. We firstly
review the literature in Chapter 2. Then, we describe the proposed algorithm
in Chapter 3, present our experimental results in Chapter 4, and conclude in
Chapter 5.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

2
Related studies

The SSP was formally proposed in the late 1980s by Tang and Denardo
(1988a). Along with the problem, the authors introduced the KTNS policy,
which determines the optimal number of tool switches in polynomial time given
a predefined job sequence. The KTNS policy is a fundamental example of a
greedy algorithm, which is also commonly used for interval scheduling, coloring
and caching problems (Bouzina and Emmons, 1996; Carlisle and Lloyd, 1995).

Later, Gray et al. (1993) discussed decision models for tooling manage-
ment, including the SSP, while Crama et al. (1994) proved that this problem
is NP-hard. A network flow approach for the nonuniform case was proposed
by Privault and Finke (1995). Crama (1997) and Crama and van de Klundert
(1999) introduced optimization models and studied the worst-case performance
of some approximation algorithms for the SSP, as well as other production
planning and scheduling problems. An empirical study of the SSP in manufac-
turing companies was conducted by Shirazi and Frizelle (2001). The authors
concluded that the heuristics available at the time outperformed the methods
used in companies. Reflecting the variety of application cases, other studies
have considered variants of the SSP, e.g., minimizing the tool switching in-
stants (Adjiashvili et al., 2015; Konak and Kulturel-Konak, 2007; Tang and
Denardo, 1988b), considering multiple objectives (Keung et al., 2001; Salo-
nen et al., 2006b), parallel machines Beezão et al. (2017); Fathi and Barnette
(2002); Zeballos (2010), different tool sizes (Matzliach, 1998; Tzur and Altman,
2004), and other features (Avci and Akturk, 1996; Furrer and Mütze, 2017;
Ghrayeb et al., 2003; Hertz and Widmer, 1996; Raduly-Baka and Nevalainen,
2015; Salonen et al., 2006b; Tzur and Altman, 2004).

Several exact methods based on mathematical programming have been
proposed for the SSP. Tang and Denardo (1988a) formulated the problem as
an integer linear program (ILP). This line of study was followed by Laporte
et al. (2004), Ghiani et al. (2007) and Catanzaro et al. (2015) who also
proposed ILP-based branch-and-cut approaches. Ghiani et al. (2007) used the
same formulation as Laporte et al. (2004) with additional symmetry-breaking
strategies. The linear programming relaxation of the formulation of (Tang
and Denardo, 1988a) is known to be weaker than that of (Laporte et al.,

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 2. Related studies 14

2004), which is in turn weaker than that of (Catanzaro et al., 2015). The
latter approach represents the best exact algorithm to date, but it cannot
consistently solve instances with more than 10 jobs and tools. Branch-and-
bound algorithms based on combinatorial bounds (Laporte et al., 2004) and
enumerative approaches (Yanasse et al., 2009) can be competitive with branch-
and-cut methods on some instances, especially when the number of required
tools is close to the machine capacity. Bard (1988) finally developed a nonlinear
integer program and solved it using a dual-based relaxation heuristic, while
Ghiani et al. (2010) modeled and solved the problem as a nonlinear least-cost
Hamiltonian cycle problem.

Other SSP studies have been principally focused on heuristics and
metaheuristics. Tang and Denardo (1988a) presented a job scheduling heuristic
to find a short Hamiltonian path on a graph, where the nodes represent jobs
and the edge weights represent the minimum number of tool switches obtained
by processing two jobs consecutively. Salonen et al. (2006b) considered both
job-grouping and tool-switch objectives but also reported heuristic results for
the classical SSP. Burger et al. (2015) developed job-grouping heuristics for the
color print scheduling problem, which is an application of the SSP. Crama et al.
(1994) proposed heuristics based on the traveling salesman problem (TSP) for
a graph representation similar to that of Tang and Denardo (1988a). Hertz
et al. (1998) improved on earlier heuristics using methods such as GENIUS
(Gendreau et al., 1992). Privault and Finke (1995) reduced the tool-switching
part of the general nonuniform problem case into a search for a minimum cost
flow of maximum value over an acyclic network, and they proposed a set of
heuristics for the job sequencing. Djellab et al. (2000) formulated the problem
using a hypergraph representation and implemented a constructive method.
Salonen et al. (2006a) presented a multi-start algorithm, creating the starting
points by grouping jobs with similar tools.

A variety of local search-based metaheuristics have been applied to the
problem, including tabu search (Al-Fawzan and Al-Sultan, 2003; Konak et al.,
2008), iterated local search (ILS) (Paiva and Carvalho, 2017), and beam search
(Senne and Yanasse, 2009; Zhou et al., 2005). Population-based methods have
also been successful. Hybrid methods combining genetic algorithms (GA) with
other search procedures can be found in (Ahmadi et al., 2018; Amaya et al.,
2008, 2011, 1305, 2012, 2010; Chaves et al., 2016). Amaya et al. (1305, 2008,
2012) combined GA with local search-based procedures such as hill climbing,
simulated annealing and tabu search, leading to hybrid methods which are also
known under the name of memetic algorithms. Amaya et al. (2011, 1305, 2010)
combined GA with a multi-agent approach or cross-entropy methods. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 2. Related studies 15

Chaves et al. (2016) combined clustering search (CS) with a biased random-key
genetic algorithm (BRKGA), while Ahmadi et al. (2018) solved the problem
as a TSP of second order (Jäger and Molitor, 2008) with a learning-based GA.
Table 2.1 summarizes the SSP studies in chronological order, lists their main
contributions as well as the origin of the benchmark instances considered.
We also refer to Calmels (2019) for a comprehensive literature review and
classification of SSP variants.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 2. Related studies 16

Ta
bl
e
2.
1:

Su
m
m
ar
y
of

SS
P

st
ud

ie
s

W
or

k
Y

ea
r

A
pp

ro
ac

h
In

st
an

ce
s

Ta
ng

an
d
D
en
ar
do

(1
98
8a
)

19
88

Ex
ac
t
m
et
ho

ds
+

he
ur
ist

ic
s

Ta
ng

an
d
D
en
ar
do

(1
98
8a
)

B
ar
d
(1
98
8)

19
88

Ex
ac
t
m
et
ho

ds
+

he
ur
ist

ic
s

B
ar
d
(1
98
8)

C
ra
m
a
et

al
.(
19
94
)

19
94

H
eu
ris

tic
s

C
ra
m
a
et

al
.(

19
94
)

Pr
iv
au

lt
an

d
Fi
nk

e
(1
99
5)

19
95

N
et
w
or
k
flo

w
fo
rm

ul
at
io
n
+

he
ur
ist

ic
s

Pr
iv
au

lt
an

d
Fi
nk

e
(1
99
5)

H
er
tz

et
al
.(

19
98
)

19
98

H
eu
ris

tic
s

H
er
tz

et
al
.(
19
98
)

C
ra
m
a
an

d
va
n
de

K
lu
nd

er
t
(1
99
9)

19
99

W
or
st
-c
as
e
an

al
ys
is

–
D
je
lla

b
et

al
.(

20
00
)

20
00

H
eu
ris

tic
s

C
ra
m
a
et

al
.(

19
94
)

Sh
ira

zi
an

d
Fr
iz
el
le

(2
00
1)

20
01

Em
pi
ric

al
st
ud

y
R
ea
ll
ife

A
l-F

aw
za
n
an

d
A
l-S

ul
ta
n
(2
00
3)

20
03

Ta
bu

se
ar
ch

A
l-F

aw
za
n
an

d
A
l-S

ul
ta
n
(2
00
3)

La
po

rt
e
et

al
.(

20
04
)

20
04

Ex
ac
t
m
et
ho

ds
H
er
tz

et
al
.(

19
98
);
La

po
rt
e
et

al
.(

20
04
)

Zh
ou

et
al
.(

20
05
)

20
05

B
ea
m

se
ar
ch

B
ar
d
(1
98
8)

Sa
lo
ne
n
et

al
.(

20
06
a)

20
06

H
eu
ris

tic
s

C
ra
m
a
et

al
.(

19
94
)

Sa
lo
ne
n
et

al
.(

20
06
b)

20
06

Ex
ac
t
m
et
ho

ds
+

he
ur
ist

ic
s

Sa
lo
ne
n
et

al
.(
20
06
b)

G
hi
an

ie
t
al
.(

20
07
)

20
07

Ex
ac
t
m
et
ho

ds
H
er
tz

et
al
.(
19
98
);
La

po
rt
e
et

al
.(

20
04
)

A
m
ay
a
et

al
.(
20
08
)

20
08

M
em

et
ic

al
go
rit

hm
s

A
m
ay
a
et

al
.(
20
08
)

K
on

ak
et

al
.(
20
08
)

20
08

Ta
bu

se
ar
ch

K
on

ak
et

al
.(
20
08
)

Se
nn

e
an

d
Ya

na
ss
e
(2
00
9)

20
09

B
ea
m

se
ar
ch

Se
nn

e
an

d
Ya

na
ss
e
(2
00
9)

Ya
na

ss
e
et

al
.(
20
09
)

20
09

Ex
ac
t
m
et
ho

ds
Ya

na
ss
e
et

al
.(
20
09
)

G
hi
an

ie
t
al
.(

20
10
)

20
10

Ex
ac
t
m
et
ho

ds
G
hi
an

ie
t
al
.(
20
10
)

A
m
ay
a
et

al
.(
20
10
)

20
10

H
yb

rid
co
op

er
at
iv
e

A
m
ay
a
et

al
.(
20
10
)

A
m
ay
a
et

al
.(
20
11
)

20
11

M
em

et
ic

co
op

er
at
iv
e

A
m
ay
a
et

al
.(

20
11
)

A
m
ay
a
et

al
.(
20
12
)

20
12

M
em

et
ic

al
go
rit

hm
s

A
m
ay
a
et

al
.(
20
12
)

A
m
ay
a
et

al
.(
13
05
)

20
13

C
ro
ss

en
tr
op

y-
ba

se
d
m
em

et
ic

al
go
rit

hm
s

A
m
ay
a
et

al
.(
13
05
)

B
ur
ge
r
et

al
.(

20
15
)

20
15

H
eu
ris

tic
s

B
ur
ge
r
et

al
.(
20
15
)
&

R
ea
ll
ife

C
at
an

za
ro

et
al
.(

20
15
)

20
15

Ex
ac
t
m
et
ho

ds
C
at
an

za
ro

et
al
.(
20
15

)
C
ha

ve
s
et

al
.(
20
16
)

20
16

H
yb

rid
m
et
ah

eu
ris

tic
s

C
ra
m
a
et

al
.(
19

94
);
Ya

na
ss
e
et

al
.(
20
09
)

Pa
iv
a
an

d
C
ar
va
lh
o
(2
01
7)

20
17

It
er
at
ed

lo
ca
ls

ea
rc
h

C
ra
m
a
et

al
.(
19
94
);
C
at
an

za
ro

et
al
.(
20
15
);

Ya
na

ss
e
et

al
.(
20
09
)

A
hm

ad
ie

t
al
.(

20
18
)

20
18

H
yb

rid
m
et
ah

eu
ris

tic
s

C
ra
m
a
et

al
.(

19
94
);
C
at
an

za
ro

et
al
.(
20
15
)

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 2. Related studies 17

Most of the aforementioned GA-based implementations use traditional
parent-selection strategies (Whitley, 2019) such as roulette wheel (Ahmadi
et al., 2018) and binary tournament (Amaya et al., 2008, 2011, 2012). Survivor
selections are solely based on individual objective values, typically obtained
with KTNS (Ahmadi et al., 2018; Amaya et al., 2008, 2011, 1305, 2012;
Chaves et al., 2016). Ahmadi et al. (2018) also take into account a chromosome
similarity function to remove individuals from the population. The crossover
operators applied are parameterized uniform crossover (Chaves et al., 2016),
uniform cycle crossover (Amaya et al., 2012), alternating position (APX)
(Amaya et al., 2008, 2011) and partially mapped (PMX) (Ahmadi et al., 2018).
Finally, although some authors have developed local search procedures based
on problem-specific metrics such as 0-blocks and 1-blocks (Crama et al., 1994),
ties arising during move evaluations are generally handled arbitrarily (Amaya
et al., 2011, 2012).

In terms of performance, the current best metaheuristics are those of
Chaves et al. (2016), Paiva and Carvalho (2017) and Ahmadi et al. (2018). The
ILS of Paiva and Carvalho (2017) achieves the best average solution quality
so far, but at the expense of a computational time which is larger on large-
scale instances. Over multiple runs, the method of Ahmadi et al. (2018) also
produced several best known solutions. During our experimental comparisons,
we will therefore compare our results with those of the three aforementioned
methods.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

3
Proposed methodology

To solve the SSP, we exploit the hybrid generic search (HGS) paradigm
(Vidal et al., 2012, 2014) outlined in Algorithm 1. Our algorithm starts with
a population of size µ containing random solutions (permutations) improved
by local search (line 1). Then, iteratively, it selects two parents by binary
tournament (line 3) and crosses them via an order crossover (OX) (Oliver
et al., 1987) to produce a single offspring (line 4), which is improved by
local search (line 5). The generation scheme is pursued until the population
reaches a maximum size of |P| = µ + λ individuals. At this point, a survivor
selection procedure is applied to discard λ individuals. To that extent, the
method considers not only the objective value of each individual, but also
its contribution to the diversity of the population. The method terminates as
soon as IMAX consecutive iterations (individual generations) have been made
without improvement of the best solution.

Algorithm 1 HGS with diversity management for the SSP
1: Generate an initial population P with µ random individuals subject to

local search
2: while the termination criterion is not attained do
3: Select two parents S1 and S2 by binary tournament
4: Generate a single child S by order crossover (OX) on S1 and S2
5: Apply local search on S
6: Insert the resulting individual into the population P
7: if |P| = µ + λ then use a survivors selection procedure to discard λ

individuals, taking into account their quality and contribution to the
population diversity

8: end while
9: return best solution found

As visible in Algorithm 1, the overall solution approach follows a simple
scheme similar to the HGS of Vidal et al. (2012, 2014). This search paradigm,
combining an adaptive population-diversity management with efficient local
searches and solution decoders, has been applied with great success to the
family of vehicle routing problems, but has rarely been tested on other
permutation-based problems. In our application of HGS, each component
and operator (solution evaluation, crossover, local search) has been tailored

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 3. Proposed methodology 19

to the SSP and plays a major role in the success of the method. Moreover,
compared to previous studies in the domain, our genetic algorithm is the first
to systematically use a hierarchical objective for solution evaluations and a
fitness function accounting for population diversity. These components will be
detailed in the following sections.

3.1
Solution evaluation

Each solution (i.e., individual) in the population and local search is
represented as a simple permutation of jobs. To evaluate it, we apply the
KTNS algorithm (Tang and Denardo, 1988a) as a solution decoder to find an
optimal tooling strategy. As illustrated in Table 3.1 on an example containing
n = 10 jobs, m = 10 tools with a magazine of capacity C = 4, the job sequence
can be represented as a binary matrix M in which columns are the jobs and
rows are the tools. If the jth job in the sequence requires tool t, then Mtj = 1,
otherwiseMtj = 0. Since the number of tools needed by each job cannot exceed
the magazine capacity, each column contains no more than C times the value 1.

Table 3.1: Required tools matrix – Before KTNS

Jobs

To
ol
s

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 0 0 0 0 0
2 1 0 0 0 1 1 1 0 0 0
3 0 1 0 0 1 1 0 0 0 0
4 0 0 1 1 0 0 1 0 1 0
5 0 0 0 0 1 1 0 0 0 0
6 1 0 0 0 0 0 0 1 0 0
7 0 0 1 0 1 0 0 0 0 1
8 0 0 0 1 0 0 0 1 0 1
9 0 1 0 0 0 1 1 1 1 0
10 0 0 0 0 0 0 0 0 1 0

Evaluation of the primary objective. The KTNS algorithm determines
the extra tools which may be maintained in the magazine when performing
each job. It iterates over the job sequence from beginning to end and adheres
to two simple rules:
(i) at each step, only the tools required for the current job are inserted; and
(ii) whenever new tools are loaded, the other tools kept in the machine are

those which are needed soonest.
To efficiently implement this policy, we maintain for each job an auxiliary data
structure which keeps track, at each instant, of the next instant in which this
job is needed. Table 3.2 displays the loaded tools matrix obtained with KTNS

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 3. Proposed methodology 20

on the previous example. For each job, the tools which are kept in the magazine
but not required are represented by an underscored 1.

Table 3.2: Loaded tools matrix – After KTNS

Jobs

To
ol
s

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 0 0 0 0 0
2 1 1 1 0 1 1 1 0 0 0
3 0 1 1 1 1 1 0 0 0 0
4 0 0 1 1 0 0 1 1 1 0
5 0 0 0 0 1 1 1 0 0 0
6 1 0 0 0 0 0 0 1 0 0
7 0 0 1 1 1 0 0 0 0 1
8 0 0 0 1 0 0 0 1 1 1
9 0 1 0 0 0 1 1 1 1 1
10 0 0 0 0 0 0 0 0 1 1

The number of tool switches can be obtained from Table 3.2 by comput-
ing the number of times a 1 turns into a 0 in every row, which is equivalent to
replacing a tool by another in the machine.

Evaluation of the tie-breaking objective. Many solutions explored during
the search, within the GA and the local search, have the same number of tool
switches. It is therefore necessary to guide the algorithm in “plateau” regions
of the search space, where all solutions have the same primary objective. To
that extent, we define a secondary objective, designed to break ties in favor
of solutions which are more likely to lead to future improvements. We use
the concept of 0-blocks, first introduced in Crama et al. (1994). A 0-block is a
maximum sequence of consecutive zeros, preceded and followed by a one, in the
loaded matrix representation. It represents an interval during which a tool is
not needed, but which could be filled by maintaining the tool in the magazine.
In Table 3.2, the 0-blocks have been highlighted in gray. For example, the jobs
in positions 5 to 7 represent a 0-block of size 3 for tool 8.

Intuitively, short 0-blocks are more likely to be filled during the search
process, leading to an effective reduction of the number of tool switches and to
an improvement of the primary objective. For a solution S, and for each tool
j, let kj(S) be the number of 0-blocks in the loaded tool matrix and let bx

j (S)
be the size of the xth 0-block, for x ∈ {1, . . . , kj(S)}. For example, the number
of 0-blocks for tool 4 in Table 3.2 is k4(S) = 1, and the size of this block is
b1

4(S) = 2. The tie-breaking objective is then evaluated as:

Φ′(S) =
m∑

j=1

kj(S)∑
x=1

√
bx

j (S). (3-1)

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 3. Proposed methodology 21

In this equation, we use the square root function due to its concavity. By
minimizing Φ′(S), we favor solutions with short and large 0-blocks (e.g., one
block of size 2 and another of size 8) over solutions with balanced blocks
(e.g., two blocks of size 5), with the aim of ultimately eliminating some of the
shortest ones and reducing the number of tool switches.

3.2
Generation of new solutions

Firstly, two parents are selected by binary tournament. Each binary tour-
nament selection consists in picking up randomly (with uniform probability)
two individuals in the population and retaining the one with the best biased
fitness, as defined in Section 3.3.

Secondly, the order crossover (OX) (Oliver et al., 1987) is applied on the
two parents to generate a single child. This crossover, illustrated in Figure 3.1,
consists in (i) selecting a random substring from the first parent; (ii) copying
this substring into the child while leaving the rest of the positions empty;
and (iii) sweeping through the second parent, starting from the second cutting
point, to fill the empty positions with the missing visits.

1 2 3 4 5 6 7 8 9 10

4 10 7 9 2 5 3 1 8 6

 4 5 6 7

9 2 3 4 5 6 7 1 8 10

Step 1: Inherit a random fragment
of the first parent

Step 2: Complete circularly with the
visits of the second parent, starting
from the second cutting point

Parent P1

Parent P2

Figure 3.1: Illustration of the OX crossover on a small example with 10 jobs

Finally, the resulting offspring is improved by means of three successive
local searches, based on the 2-opt, relocate and swap neighborhoods,
in this specific order. As discussed in Section 4.3, we performed sensitivity
analysis for each alternative neighborhood ordering, and this setting led to
solutions of significantly higher quality. In each local search, the neighborhood
is explored in random order according to a first-improvement policy, i.e., any
improving move (improving the number of tool switches, or improving the
tie-breaking objective for an equal number of tool switches) is immediately
applied. Each local search stops as soon as all moves have been successively

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 3. Proposed methodology 22

tested without improvement of the primary or auxiliary objective, therefore
reaching a local minimum. The resulting solution is added into the population.

3.3
Biased fitness and population diversity management

The biased fitness fP(p) of each individual p in the population P is
calculated in a similar way as in Vidal et al. (2012, 2014). It depends on
two parameters: the number µclose of closest individuals in the population
considered in the distance measure, and the number of elite individuals µelite

one wishes to preserve. The individuals are kept ordered in terms of quality
(considering primary and tie-breaking objectives) and diversity contribution.
To calculate the diversity contribution of each individual, the algorithm
computes its average distance to its µclose closest individuals, the distance
between two individuals (represented as job permutations) being defined as
the number of job pairs in the first individual which are broken in the second
one (broken-pairs distance). Then, it sorts the population in decreasing order of
diversity contribution, and in increasing order of objective function, associating
to each individual a diversity rank fdiv

P (p) and a quality rank f obj
P (p). Finally,

the biased fitness of each individual is calculated as:

fP(p) = f obj
P (p) +

(
1− µelite

| P |

)
× fdiv

P (p). (3-2)

Small values of biased fitness correspond to promising individuals, with a small
objective value and a large contribution to the population diversity. The biased
fitness measure is used when selecting parents by binary tournament (retaining
the individual with the smallest biased fitness) and when selecting individuals
to exclude from the population during survivor selections. In the latter case,
the algorithm iteratively excludes the worst individual (i.e., with highest biased
fitness) having a clone whenever duplicated solutions exist in the population,
or the worst individual otherwise. This process is repeated until the desired
population size of µ is attained. As discussed in Vidal et al. (2012), this survivor
selection procedure preserves diversity and meanwhile guarantees that the best
µelite individuals in the population remain preserved.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

4
Computational experiments

We implemented the proposed method in C++ and compiled it with
g++ 8.1 using the -O3 flag. The source code and benchmark instances
are accessible at https://github.com/jordanamecler/HGS-SSP. We first
describe the characteristics of the classical instances used in our experiments in
Section 4.1. Next, we explain in Section 4.2 how we calibrated the parameters
of the algorithm and investigate the impact of several methodological choices
in Section 4.3. Finally, we compare our algorithm with other state-of-the-art
methods for the existing instances in Section 4.4 as well as new larger ones
in Section 4.5. For the existing instances, we ran our code on a single thread
of an Intel Core i5-4288U 2.6GHz processor with 8GB of RAM using macOS
High Sierra 10.13.6 and compare our solutions with published results. For the
new instances, no results were available and therefore we contacted the authors
to obtain source codes. Chaves et al. (2016) and Paiva and Carvalho (2017)
kindly provided their original code to us. As discussed in Section 4.5, we could
therefore compare these two algorithms with the proposed HGS-SSP using the
same computational environment: a single thread of an Intel Gold 6148 Skylake
2.4GHz processor with 256MB of reserved RAM running CentOS 7.7.1908.

4.1
Classical benchmark instances

We first consider the classical benchmark instances of Crama et al.
(1994), Yanasse et al. (2009), and Catanzaro et al. (2015) to evaluate the
performance of the proposed method. As summarized in Table 4.1, these
instances are organized in different groups corresponding to different size
parameters. Groups A, B, C, D, and E (from Yanasse et al. (2009)) contain
a total of 1350 instances with 8 to 25 jobs. Groups C1, C2, C3, and C4 (from
Crama et al. (1994)) as well as datA, datB, datC, and datD (from Catanzaro
et al. (2015)) contain 40 instances each and include 10 to 40 jobs.

https://github.com/jordanamecler/HGS-SSP
DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 24

Table 4.1: SSP instances

Group #Jobs #Tools Capacity #Instances
Min Max Min Max Min Max

A 8 8 15 25 5 20 340
B 9 9 15 25 5 20 330
C 15 15 15 25 5 20 340
D 20 25 15 25 5 20 260
E 10 15 10 20 4 12 80
C1 10 10 10 10 4 7 40
C2 15 15 20 20 6 12 40
C3 30 30 40 40 15 25 40
C4 40 40 60 60 20 30 40
datA 10 10 10 10 4 7 40
datB 15 15 20 20 6 12 40
datC 30 30 40 40 15 25 40
datD 40 40 60 60 20 30 40

4.2
Parameters calibration

We conducted preliminary experiments on a subset of the instances to
find suitable parameter values for our algorithm. We opted to perform the
calibration tests on the benchmark of Crama et al. (1994) (groups C1, C2, C3,
and C4) since it contains instances with very diverse characteristics. This led to
our baseline configuration with the following parameter values: µ = 20, λ = 40,
µelite = 10, and µclose = 3. Subsequently, we performed additional analyses to
investigate the impact of any deviation from this parameter setting. We modify
the value of each parameter using a one-factor-at-a-time (OFAT) approach and
report the results obtained by each configuration.

Tables 4.2, 4.3, and 4.4 show the average results of different method
configurations for the benchmark instances of Crama et al. (1994). In these
tables, Avg is the average objective value over 10 runs and over all instances
and T is the average CPU time in seconds. As visible in these experiments,
modifying µclose has only a minor impact on the solution quality and CPU time.
On the other hand, as µelite decreases, the CPU time tends to increase, and
the best results are obtained when it is set to half of the base population size.
The CPU time increases with the population size, but a mid-sized population
yielded the best results in terms of solution quality.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 25

Table 4.2: Varying population size

µ λ µelite µclose Avg T
10 10 5 2 53.07 105.35
10 20 5 2 53.04 112.70
20 20 10 3 53.01 127.12
20 40 10 3 53.00 133.09
40 40 20 5 53.00 152.58
40 80 20 5 53.02 163.27
80 80 40 10 53.04 181.49
80 160 40 10 53.06 190.17

Table 4.3: Varying µelite

µ λ µelite µclose Avg T
20 40 2 3 53.03 160.65
20 40 5 3 53.02 144.80
20 40 8 3 53.01 139.42
20 40 10 3 53.00 133.09
20 40 12 3 53.00 129.29
20 40 15 3 53.02 124.60
20 40 20 3 53.03 114.59

Table 4.4: Varying µclose

µ λ µelite µclose Avg T
20 40 10 1 53.02 132.28
20 40 10 2 53.00 133.16
20 40 10 3 53.00 133.09
20 40 10 5 53.00 138.38
20 40 10 7 53.00 138.33
20 40 10 10 53.00 138.22

4.3
Sensitivity analysis

We performed a sensitivity analysis for the main components of the al-
gorithm on the same subset of instances as in Section 4.2. The following mod-
ifications of the method were tested: changing the order of the neighborhoods,
deactivating some or several neighborhoods, deactivating the diversity man-
agement component, and deactivating the secondary objective. The results of
these alternative configurations are reported in Table 4.5 and compared to
our baseline configuration. This table also indicates the p-values of pairwise
Wilcoxon signed-rank tests between the solution value of each method config-
uration and the baseline.

These results confirm our methodological design and baseline parameter
choices. Indeed, at significance level 0.05, all alternative configurations but

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 26

Table 4.5: Sensitivity Analysis

Configuration Avg T p-value
Baseline 53.00 135.31 –
2opt-swap-relocate 53.01 145.42 0.52
swap-2opt-relocate 53.06 178.56 1.31 ×10−5

swap-relocate-2opt 53.06 183.41 6.17 ×10−7

relocate-2opt-swap 53.06 160.73 8.75 ×10−7

relocate-swap-2opt 53.08 183.61 1.91 ×10−6

without 2opt 53.61 130.95 7.85 ×10−15

without swap 53.02 118.97 0.02
without relocate 53.11 105.70 2.00 ×10−11

without 2opt and swap 53.80 74.93 5.36 ×10−15

without 2opt and relocate 53.66 71.03 7.85 ×10−15

without relocate and swap 53.17 74.02 6.65 ×10−12

without diversity management 53.16 111.63 9.16 ×10−11

without secondary objective 53.16 87.20 1.31 ×10−11

one obtained solutions of significantly worse quality than the baseline for only
moderate time gains. The remaining configuration (swap-2opt-relocate)
had a similar performance but a longer CPU time. Based on these results, the
2opt neighborhood appears to be the most important for a good performance,
followed by the relocate and swap neighborhoods. This difference of impact
may also explain why the exploration of the neighborhoods by order of
importance 2opt-relocate-swap (as done in our baseline configuration)
leads to generally better results in shorter time. The use of the secondary
objective as well as the diversity management strategy also contributes to
attain solutions of significantly higher quality.

To better visualize the impact of the secondary objective, we conducted
another experimental analysis of the distribution of the individuals in the
objective space during a typical GA run, on the first instance of group C3.
This analysis is displayed in Figure 4.1 at three stages of the solution process:
after the first survivors selection, half way through the execution, and after the
last survivors selection. On this figure, dot sizes are proportional to the number
of solutions sharing the same objective value. Visibly, numerous solutions
share the same primary (KTNS) objective value, especially at intermediate
or late stages of the search. Fortunately, secondary objective values are better
spread, therefore allowing to rank solutions and guide the search towards more
promising regions by selection pressure.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 27

Primary objective value (KTNS)
96 97 98 99 100 101 102 103 104 105 106

First Middle Last

Secondary objective
213 215 217 219 221 223 225 227 229 231 233

First Middle Last

Figure 4.1: Distribution of objective values in the population after first sur-
vivors selection, halfway through the execution and after last survivors selec-
tion.

4.4
Comparison with other algorithms on classical benchmark instances

The tables presented hereafter report the best solution (Best), the aver-
age solution over 10 runs (Avg), and the average CPU time in seconds (T) of
each method. The best solutions, for each group of instances, are highlighted
in boldface. It is worth mentioning that new random seeds were used in these
experiments to eliminate any possibility of overtuning.

Comparison with previous heuristics. We compare our results with those
found by the best methods from the literature, namely the CS+BRKGA of
Chaves et al. (2016), the ILS of Paiva and Carvalho (2017) and the DQGA
of Ahmadi et al. (2018). The following experimental setup has been used in
previous studies, based on the data reported in previous papers and additional
information sent to us by the authors:

– Chaves et al. (2016): average of 20 runs on a single thread of an Intel
i7-2600 3.4GHz with 16GB of RAM;

– Paiva and Carvalho (2017): average of 20 runs on a single thread of Intel
i5-3330 3.2GHz with 8GB of RAM;

– Ahmadi et al. (2018): average of 10 runs on an Intel i7 3.4GHz with
16GB of RAM.

The processors used in CS+BRKGA (Chaves et al., 2016) and ILS (Paiva
and Carvalho, 2017) experiments are from a similar generation as ours, with
a similar speed, such that the magnitude of the CPU times reported by

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 28

these authors remain comparable. The time measurements of DQGA (Ahmadi
et al., 2018), however, are not directly comparable with the other works, since
only the time taken to attain the final solutions in each run was counted
(i.e., excluding the remaining search time until termination), and a different
programming language was used (MATLAB instead of C++).

Table 4.6 presents a summary of the results. Each line reports average
values for one instance group. HGS-SSP found the solutions of best quality
for all groups, in a computational time which is equal of smaller than existing
algorithms. The difference of solution quality and speed is especially visible on
the larger and more challenging instances of groups C3, C4, datC and datD.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 29

Ta
bl
e
4.
6:

Su
m
m
ar
y
of

th
e
co
m
pa

ra
tiv

e
an

al
ys
es

C
S+

BR
K
G
A

IL
S

D
Q
G
A

H
G
S-
SS

P
G
ro
up

Be
st

Av
g

T
Be

st
Av

g
T

Be
st

Av
g

Be
st

Av
g

T
A

12
.6

3
12

.6
3

3.
71

12
.6

3
12

.6
3

0.
09

-
-

12
.6

3
12

.6
3

0.
06

B
13

.3
2

13
.3
2

4.
05

13
.3

2
13
.3
2

0.
16

-
-

13
.3

2
13

.3
2

0.
10

C
17

.4
6

17
.6
2

9.
83

17
.4

6
17
.4
6

1.
45

-
-

17
.4

6
17
.4
6

0.
91

D
13
.4
0

13
.6
8

27
.6
6

13
.3

8
13
.3
9

5.
22

-
-

13
.3

8
13
.3
8

4.
28

E
9.

64
9.
70

6.
54

9.
64

9.
64

0.
40

-
-

9.
64

9.
64

0.
43

C
1

5.
68

5.
68

2.
42

5.
68

5.
68

0.
07

5.
68

5.
68

5.
68

5.
68

0.
07

C
2

13
.0

0
13
.0
7

11
.5
8

13
.0

0
13
.0
1

0.
85

13
.0

0
13
.0
3

13
.0

0
13

.0
0

0.
78

C
3

60
.5
8

61
.7
1

12
3.
15

60
.2
5

60
.5
4

13
4.
78

60
.1
5

60
.9
9

60
.0

8
60
.1
7

67
.4
5

C
4

13
5.
03

13
7.
21

54
1.
10

13
3.
70

13
4.
19

90
1.
81

13
3.
63

13
6.
28

13
2.

78
13
2.
99

47
2.
55

d
a
tA

-
-

-
5.

35
5.

35
0.
07

5.
35

5.
35

5.
35

5.
35

0.
06

d
a
tB

-
-

-
12

.7
8

12
.7

8
1.
08

12
.7

8
12
.8
6

12
.7

8
12

.7
8

0.
74

d
a
tC

-
-

-
55
.5
3

55
.7
9

13
6.
64

55
.5
3

56
.6
2

55
.4

3
55
.4
8

63
.7
7

d
a
tD

-
-

-
13
4.
00

13
4.
38

94
5.
89

13
3.
98

13
6.
19

13
2.

85
13
3.
11

47
2.
33

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 30

Tables 4.7 to 4.13 now compare the results of HGS-SSP with those of
the best methods from the literature for each particular group. We therefore
compare with CS+BRKGA and ILS for the first five groups (A, B, C, D and
E), and with DQGA and ILS for the remaining groups.

Table 4.7: Performance comparison on Group A instances

CS+BRKGA ILS HGS-SSP
n m C # Best Avg T Best Avg T Best Avg T
8 15 5 10 12.00 12.00 2.39 12.00 12.00 0.04 12.00 12.00 0.04
8 15 10 30 6.83 6.83 2.65 6.83 6.83 0.07 6.83 6.83 0.04
8 20 5 10 16.80 16.80 2.97 16.80 16.80 0.06 16.80 16.80 0.06
8 20 10 30 13.07 13.07 3.54 13.07 13.07 0.13 13.07 13.07 0.06
8 20 15 60 7.08 7.08 3.57 7.08 7.08 0.10 7.08 7.08 0.05
8 25 5 10 20.10 20.10 4.54 20.10 20.10 0.03 20.10 20.10 0.07
8 25 10 30 18.20 18.20 4.37 18.20 18.20 0.12 18.20 18.20 0.08
8 25 15 60 12.95 12.95 4.61 12.95 12.95 0.14 12.95 12.95 0.08
8 25 20 100 6.61 6.61 4.72 6.61 6.61 0.11 6.61 6.61 0.06

Table 4.8: Performance comparison on Group B instances

CS+BRKGA ILS HGS-SSP
n m C # Best Avg T Best Avg T Best Avg T
9 15 5 10 12.20 12.20 2.72 12.20 12.20 0.07 12.20 12.20 0.07
9 15 10 30 7.37 7.37 3.15 7.37 7.37 0.11 7.37 7.37 0.07
9 20 5 10 17.40 17.40 3.13 17.40 17.40 0.08 17.40 17.40 0.09
9 20 10 30 14.17 14.17 3.92 14.17 14.17 0.19 14.17 14.17 0.10
9 20 15 60 7.60 7.60 3.99 7.60 7.60 0.18 7.60 7.60 0.08
9 25 5 10 20.40 20.40 4.08 20.40 20.40 0.05 20.40 20.40 0.11
9 25 10 30 18.77 18.77 5.08 18.77 18.77 0.21 18.77 18.77 0.13
9 25 15 50 14.74 14.75 5.10 14.74 14.74 0.33 14.74 14.74 0.13
9 25 20 100 7.19 7.19 5.26 7.19 7.19 0.20 7.19 7.19 0.10

Table 4.9: Performance comparison on Group C instances

CS+BRKGA ILS HGS-SSP
n m C # Best Avg T Best Avg T Best Avg T
15 15 5 10 16.60 16.69 5.31 16.60 16.60 0.53 16.60 16.60 0.71
15 15 10 30 9.80 9.88 7.10 9.80 9.80 0.89 9.80 9.80 0.57
15 20 5 10 20.60 20.77 7.26 20.60 20.60 0.67 20.60 20.60 0.83
15 20 10 30 18.33 18.52 8.93 18.33 18.33 1.59 18.33 18.33 0.96
15 20 15 60 10.52 10.65 9.61 10.52 10.52 1.71 10.52 10.52 0.76
15 25 5 10 27.50 27.7 9.30 27.50 27.50 0.65 27.50 27.51 1.02
15 25 10 30 25.07 25.30 13.52 25.07 25.07 1.92 25.07 25.07 1.28
15 25 15 60 19.07 19.27 13.63 19.07 19.07 3.02 19.07 19.07 1.18
15 25 20 100 9.66 9.79 13.82 9.66 9.66 2.06 9.66 9.66 0.90

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 31

Table 4.10: Performance comparison on Group D instances

CS+BRKGA ILS HGS-SSP
n m C # Best Avg T Best Avg T Best Avg T
20 15 5 10 21.10 21.58 10.78 20.90 20.90 1.39 20.90 20.90 2.59
20 15 10 20 8.20 8.44 12.34 8.20 8.21 2.20 8.20 8.20 1.83
20 20 5 10 24.30 24.93 14.84 24.20 24.24 1.85 24.20 24.20 3.23
20 20 10 10 10.60 10.76 16.08 10.60 10.60 2.88 10.60 10.60 2.52
20 20 15 30 6.67 6.79 24.66 6.67 6.67 3.32 6.67 6.67 2.27
20 25 5 10 30.10 30.74 19.16 30.10 30.10 2.10 30.10 30.11 3.99
20 25 10 10 15.40 15.47 21.49 15.40 15.40 3.73 15.40 15.40 3.37
20 25 15 40 21.25 21.75 28.11 21.25 21.26 7.41 21.25 21.25 3.88
20 25 20 40 6.15 6.28 35.53 6.15 6.15 3.45 6.15 6.15 2.69
25 15 10 10 5.90 6.00 21.14 5.90 5.90 3.97 5.90 5.90 3.78
25 20 10 10 11.60 12.05 27.48 11.60 11.61 9.73 11.60 11.60 6.58
25 20 15 10 7.60 7.82 25.66 7.60 7.60 9.93 7.60 7.60 6.74
25 25 10 10 16.60 17.06 36.88 16.60 16.67 11.68 16.60 16.67 8.60
25 25 15 10 10.00 10.00 54.70 10.00 10.00 7.83 10.00 10.00 6.21
25 25 20 30 5.50 5.59 66.10 5.50 5.50 6.89 5.50 5.50 5.97

Table 4.11: Performance comparison on Group E instances

CS+BRKGA ILS HGS-SSP
n m C # Best Avg T Best Avg T Best Avg T
10 10 4 10 9.50 9.50 1.55 9.50 9.50 0.08 9.50 9.50 0.07
10 10 5 10 6.20 6.21 1.96 6.20 6.20 0.08 6.20 6.20 0.06
10 10 6 10 4.30 4.30 2.88 4.30 4.30 0.05 4.30 4.30 0.06
10 10 7 10 3.00 3.00 3.45 3.00 3.00 0.03 3.00 3.00 0.06
15 20 6 10 21.40 21.71 7.09 21.40 21.40 0.77 21.40 21.40 0.92
15 20 8 10 14.20 14.33 7.68 14.20 14.20 0.90 14.20 14.21 0.84
15 20 10 10 10.30 10.34 12.71 10.30 10.30 0.69 10.30 10.30 0.72
15 20 12 10 8.20 8.20 14.97 8.20 8.20 0.62 8.20 8.20 0.69

On the first five groups of instances, we observe that HGS-SSP finds,
in general, solutions of similar quality as ILS. Group A contains very small
instances, and thus all methods find the BKSs. For group B, our algorithm
obtains the BKS for all instances, with a CPU time slightly smaller than that
of ILS, and much faster than that of CS+BRKGA. For groups C, D and
E, HGS-SSP finds in most cases the same solution as ILS with similar CPU
times. Since these instances are relatively small, however, very little differences
between methods can be generally observed, and we should turn towards larger
problem instances with better discriminating power.

Tables 4.12 and 4.13 now compare the performance of existing methods
on the larger instances of Crama et al. (1994) and Catanzaro et al. (2015). On
these instances, very significant differences of performance can be noticed.

For the first two groups of each table (C1 and C2 from Table 4.12 and

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 32

Table 4.12: Performance comparison on Groups C1, C2, C3, and C4

ILS DQGA HGS-SSP
n m C # Best Avg T Best Avg Best Avg T
10 10 4 10 9.10 9.10 0.08 9.10 9.10 9.10 9.10 0.08
10 10 5 10 6.20 6.20 0.08 6.20 6.20 6.20 6.20 0.07
10 10 6 10 4.30 4.30 0.06 4.30 4.30 4.30 4.30 0.06
10 10 7 10 3.10 3.10 0.04 3.10 3.10 3.10 3.10 0.06
15 20 6 10 20.60 20.63 0.84 20.60 20.70 20.60 20.60 0.93
15 20 8 10 13.70 13.70 1.09 13.70 13.70 13.70 13.70 0.82
15 20 10 10 10.10 10.10 0.87 10.10 10.10 10.10 10.10 0.73
15 20 12 10 7.60 7.60 0.60 7.60 7.60 7.60 7.60 0.64
30 40 15 10 91.40 91.70 86.81 91.30 91.88 91.10 91.10 75.85
30 40 17 10 71.30 71.59 132.01 71.20 72.08 71.20 71.20 66.94
30 40 20 10 50.40 50.71 173.47 50.40 51.36 50.20 50.37 64.40
30 40 25 10 27.90 28.14 146.81 27.70 28.64 27.80 28.02 62.61
40 60 20 10 178.40 179.00 441.66 178.40 180.92 177.20 177.41 512.09
40 60 22 10 151.50 152.04 665.13 151.30 154.00 150.50 150.67 490.88
40 60 25 10 121.00 121.52 1016.37 120.90 123.90 120.20 120.44 478.33
40 60 30 10 83.90 84.18 1484.97 83.90 86.30 83.20 83.44 408.90

Table 4.13: Performance comparison on Groups datA, datB, datC and datD

ILS DQGA HGS-SSP
n m C # Best Avg T Best Avg Best Avg T
10 10 4 10 8.50 8.50 0.09 8.50 8.50 8.50 8.50 0.07
10 10 5 10 5.80 5.80 0.09 5.80 5.80 5.80 5.80 0.06
10 10 6 10 4.10 4.10 0.05 4.10 4.10 4.10 4.10 0.06
10 10 7 10 3.00 3.00 0.04 3.00 3.00 3.00 3.00 0.05
15 20 6 10 20.50 20.50 1.09 20.50 20.72 20.50 20.50 0.88
15 20 8 10 13.70 13.70 1.38 13.70 13.74 13.70 13.70 0.79
15 20 10 10 9.70 9.70 1.12 9.70 9.76 9.70 9.70 0.69
15 20 12 10 7.20 7.20 0.71 7.20 7.20 7.20 7.20 0.60
30 40 15 10 83.90 84.09 99.09 83.80 84.82 83.50 83.50 74.71
30 40 17 10 65.50 65.82 137.08 65.50 66.74 65.40 65.43 71.77
30 40 20 10 46.60 46.78 172.59 46.60 47.82 46.60 46.66 60.58
30 40 25 10 26.30 26.47 137.79 26.20 27.10 26.20 26.32 48.01
40 60 20 10 178.00 178.36 488.66 178.00 180.16 176.50 176.71 501.21
40 60 22 10 151.60 152.05 706.13 151.50 153.68 150.30 150.45 437.85
40 60 25 10 121.20 121.68 1069.98 121.20 123.68 120.30 120.61 466.12
40 60 30 10 85.20 85.42 1518.80 85.20 87.22 84.30 84.66 484.14

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 33

datA and datB from Table 4.13), detailed in the first eight lines, the average
solutions of HGS-SSP match the BKS on all instances. HGS-SSP consumes
a CPU time similar to that of ILS. For the last two groups of each table
(C3 and C4 from Table 4.12 and datC and datD from Table 4.13), HGS-
SSP finds the same or new BKSs, with only one exception, and produces
significantly better average results than all other methods for a CPU time
which is two to three times smaller. These significant improvements, especially
on larger instances, show that the proposed method performs a more sustained
and diversified search in the solution space. We conducted pairwise Wilcoxon
signed-rank tests, comparing the average solution value of HGS-SSP on each
instance group with those of CS+BRKGA (Chaves et al., 2016), ILS (Paiva
and Carvalho, 2017) and DQGA (Ahmadi et al., 2018), obtaining p-values of
3.78×10−5, 6.31×10−4 and 8.84×10−4, respectively. At a significance level of
0.05, this statistical analysis rejects the null hypothesis and confirms significant
improvements. Finally, Catanzaro et al. (2015) published optimal solutions for
several instances with 10 jobs and 10 tools from group datA. For all of these
instances, the proposed algorithm retrieved the optimal solutions on every run.

4.5
Experiments on larger instances

The benchmark instances of Crama et al. (1994), Yanasse et al. (2009),
and Catanzaro et al. (2015) have been widely used in the literature. However,
these instances remain limited in terms of number of jobs and tools, and start
to lose their discriminative power: state-of-the-art heuristics now find solutions
which are close to each other. Moreover, as discussed in Shirazi and Frizelle
(2001), companies are regularly confronted with problems that contain over
sixty jobs. To stimulate future research on the SSP and allow comparisons on
more challenging instances, we generated a set of additional instances of a size
comparable to that reported in (Shirazi and Frizelle, 2001).

These new instances are divided into three groups (F1, F2 and F3). Within
each group, the instances have the same number of jobs and tools but four
possible capacity levels. For each group and capacity value we generated five
instances. Overall, the number of jobs ranges from 50 to 70 and the number
of tools ranges from 75 to 105. Since no previous results are available for these
instances, we contacted previous authors to obtain the original source codes.
Based on the available codes, Table 4.14 draws a comparison of the results of
HGS-SSP, CS+BRKGA (Chaves et al., 2016) and ILS (Paiva and Carvalho,
2017) on the new instances. Each line corresponds to an instance group and
capacity value. All the algorithms were implemented in C++ and run on the

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 34

same processor: an Intel Gold 6148 Skylake 2.4 GHz with 256MB of dedicated
RAM. Ten runs were done for each instance. As previously, we display the
average and best solution quality over these runs, as well as the average CPU
time of each method.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 35

Ta
bl
e
4.
14
:P

er
fo
rm

an
ce

co
m
pa

ris
on

on
G
ro
up

s
F

1,
F

2
an

d
F

3

C
S+

BR
K
G
A

IL
S

H
G
S-
SS

P
n

m
C

#
Be

st
Av

g
T

Be
st

Av
g

T
Be

st
Av

g
T

50
75

25
5

27
9.
00

28
2.
82

16
92
.1
2

27
0.
00

27
2.
22

17
60
.0
2

26
8.

40
26
8.
70

36
29
.9
1

50
75

30
5

20
6.
20

21
0.
02

14
86
.2
6

19
7.
00

19
9.
72

39
01
.0
3

19
6.

40
19
7.
12

30
65
.4
0

50
75

35
5

15
5.
60

15
9.
12

13
46
.3
1

14
8.
80

15
0.
00

63
45
.7
7

14
7.

20
14
8.
12

24
95
.3
5

50
75

40
5

11
7.
20

11
9.
70

11
86
.4
0

11
0.
60

11
1.
86

78
00
.1
2

10
9.

80
11
0.
48

24
65
.9
2

60
90

35
5

43
4.
80

43
9.
76

43
66
.1
0

42
0.
00

42
3.
64

58
88
.1
0

41
4.

60
41
5.
40

12
89
0.
92

60
90

40
5

33
7.
40

34
2.
16

38
59
.7
2

32
4.
40

32
7.
12

11
52
9.
91

32
0.

40
32
1.
12

10
52
0.
43

60
90

45
5

26
3.
80

26
7.
92

34
31
.5
9

25
0.
00

25
3.
46

19
78
3.
86

24
6.

80
24
8.
52

89
04
.5
0

60
90

50
5

20
4.
80

20
9.
16

29
96
.0
4

19
3.
60

19
5.
84

28
21
7.
05

19
1.

60
19
2.
74

78
88
.2
6

70
10
5

40
5

60
6.
60

61
1.
98

55
84
.0
9

58
8.
00

59
1.
42

11
29
0.
74

57
7.

00
57
7.
56

21
95
2.
61

70
10
5

45
5

48
7.
80

49
3.
76

82
80
.2
2

46
8.
40

47
2.
20

20
45
3.
05

45
9.

20
45
9.
94

19
70
4.
58

70
10
5

50
5

39
4.
80

39
9.
42

74
78
.6
4

37
6.
80

37
9.
36

34
75
4.
23

36
9.

80
37
1.
14

17
43
0.
14

70
10
5

55
5

31
9.
40

32
5.
38

66
84
.3
1

30
3.
40

30
5.
76

53
31
4.
82

29
8.

20
29
9.
78

16
58
2.
72

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Chapter 4. Computational experiments 36

As visible in Table 4.14, the use of larger instances emphasizes the
differences of performance. On these instances, we observe that HGS-SSP
significantly outperforms previous algorithms, obtaining better average and
best solution quality for all groups and capacity values. Remarkably, the
average solution quality of HGS-SSP is generally better than the best solution
quality of the other algorithms. The statistical significance of this difference
of solution quality is confirmed by pairwise Wilcoxon signed-rank tests, with
p-values of 1.97 × 10−21 and 1.96 × 10−21 for ILS and CS+BRKGA. The
proposed algorithm also proves to be more robust in the sense that the standard
deviation of its solution values is smaller: 0.83 in average for HGS-SSP in
comparison to 1.68 and 2.76 for ILS and CS+BRKGA, respectively. Finally,
the CPU time of HGS-SSP on these instances is intermediate between that of
CS+BRKGA and ILS.

To eliminate the impact of CPU times in the analysis, we conducted
a final experiment in which the three algorithms were run 10 times on each
instance of Group F1 (with 50 jobs and 75 tools) with a fixed termination
criterion of T = 5000 seconds. During these runs, we measured the solution
value (number of tool switches) of each algorithm at fixed instants: 50, 100,
250, 500, 750, 1000, 1500, 2500, 3750 and 5000 seconds. The average number
of tool switches for each method is represented in Figure 4.2 as a function of
CPU time. Moreover, the filled area represents the interval between the best
and worst results over the 10 runs.

T(s)

Figure 4.2: Average number of tool switches over time for the instances of
Group F1

As seen in Figure 4.2, HGS-SSP outperforms previous approaches in
terms in performance and convergence behavior, since it finds solutions of
better quality at every considered time instant. As such, it represents a
promising approach for practical applications.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

5
Conclusions

In this work, we introduced a simple and efficient metaheuristic for the
well-known job sequencing and tool switching problem (SSP). The proposed
HGS-SSP contrasts with previous algorithms, which had a tendency to be over-
engineered and generally complex. Our algorithm finds a good balance between
aggressive intensification, achieved by an efficient local search in the space of
permutations, and diversification (Blum and Roli, 2003; Vidal et al., 2013),
obtained via a simple crossover, population diversity management strategy,
and tie-breaking objective to guide the search towards potential tool switches
reductions. Through extensive experiments on several sets of benchmark
instances, we observed that our algorithm significantly outperforms existing
methods in terms of solution quality and CPU time. To guide future research,
we also evaluated the impact of each neighborhood and methodological choice
in the method. We observed that adopting a defined order of neighborhood
exploration in the local search is beneficial for this problem since 2opt tends to
operate larger structural changes than Swap or Relocate. The tie-breaking
objective was also essential for a good performance, along with our population
diversity management techniques.

Many promising research perspectives are open. The proposed algorithm
could be extended and tested on other SSP variants, e.g., with multiple
machines (Beezão et al., 2017) or with different objective functions (Calmels,
2019). As the proposed method exploits an indirect solution representation as
a job permutation with a solution decoder (the KTNS algorithm), it conducts
the search on a much smaller space at the price of more computationally
expensive solution evaluations. Such a disciplined analysis of metaheuristics
and structural problem decompositions should be pursued and extended to
other problems, seeking to achieve a search space reduction which is as large
as possible for a decoder which is a fast as possible, opening the way to a
variety of complexity analyses and algorithmic contributions. Finally, the HGS
framework could be extended to efficiently solve other difficult permutation-
based optimization problems.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Bibliography

Adjiashvili, D., Bosio, S., and Zemmer, K. (2015). Minimizing the number
of switch instances on a flexible machine in polynomial time. Operations
Research Letters, 43(3):317–322.

Ahmadi, E., Goldengorin, B., Süer, G. A., and Mosadegh, H. (2018). A hybrid
method of 2-TSP and novel learning-based GA for job sequencing and tool
switching problem. Applied Soft Computing, 65:214–229.

Al-Fawzan, M. and Al-Sultan, K. (2003). A tabu search based algorithm for
minimizing the number of tool switches on a flexible machine. Computers
& Industrial Engineering, 44(1):35–47.

Amaya, J. E., Cotta, C., and Fernández, A. J. (2008). A memetic algorithm
for the tool switching problem. In Blesa, M. J., Blum, C., Cotta, C.,
Fernández, A. J., Gallardo, J. E., Roli, A., and Sampels, M., editors, Hybrid
Metaheuristics, pages 190–202, Berlin, Heidelberg. Springer.

Amaya, J. E., Cotta, C., and Fernández-leiva, A. (2013/05). Cross entropy-
based memetic algorithms: An application study over the tool switching
problem. International Journal of Computational Intelligence Systems,
6:559–584.

Amaya, J. E., Cotta, C., and Fernández-Leiva, A. J. (2011). Memetic
cooperative models for the tool switching problem. Memetic Computing,
3(3):199–216.

Amaya, J. E., Cotta, C., and Fernández-Leiva, A. J. (2012). Solving the
tool switching problem with memetic algorithms. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 26(2):221–235.

Amaya, J. E., Cotta, C., and Leiva, A. J. F. (2010). Hybrid cooperation models
for the tool switching problem, pages 39–52. Springer, Berlin, Heidelberg.

Avci, S. and Akturk, M. (1996). Tool magazine arrangement and opera-
tions sequencing on CNC machines. Computers & Operations Research,
23(11):1069–1081.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Bibliography 39

Bard, J. F. (1988). A heuristic for minimizing the number of tool switches on
a flexible machine. IIE Transactions, 20(4):382–391.

Beezão, A. C., Cordeau, J.-F., Laporte, G., and Yanasse, H. H. (2017).
Scheduling identical parallel machines with tooling constraints. European
Journal of Operational Research, 257(3):834–844.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys (CSUR),
35(3):268–308.

Bouzina, K. and Emmons, H. (1996). Interval scheduling on identical machines.
Journal of Global Optimization, 9(3-4):379–393.

Burger, A. P., Jacobs, C. G., van Vuuren, J. H., and Visagie, S. E. (2015).
Scheduling multi-colour print jobs with sequence-dependent setup times.
Journal of Scheduling, 18(2):131–145.

Calmels, D. (2019). The job sequencing and tool switching problem: State-of-
the-art literature review, classification, and trends. International Journal of
Production Research, 57(15-16):5005–5025.

Carlisle, M. and Lloyd, E. (1995). On the k-coloring of intervals. Discrete
Applied Mathematics, 59(93):225–235.

Catanzaro, D., Gouveia, L., and Labbé, M. (2015). Improved integer linear pro-
gramming formulations for the job sequencing and tool switching problem.
European Journal of Operational Research, 244(3):766–777.

Chaves, A., Lorena, L., Senne, E., and Resende, M. (2016). Hybrid method
with CS and BRKGA applied to the minimization of tool switches problem.
Computers & Operations Research, 67:174–183.

Crama, Y. (1997). Combinatorial optimization models for production schedul-
ing in automated manufacturing systems. European Journal of Operational
Research, 99(1):136–153.

Crama, Y., Kolen, A. W. J., Oerlemans, A. G., and Spieksma, F. C. R. (1994).
Minimizing the number of tool switches on a flexible machine. International
Journal of Flexible Manufacturing Systems, 6(1):33–54.

Crama, Y. and van de Klundert, J. (1999). Worst-case performance of
approximation algorithms for tool management problems. Naval Research
Logistics (NRL), 46(5):445–462.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Bibliography 40

Djellab, H., Djellab, K., and Gourgand, M. (2000). A new heuristic based on
a hypergraph representation for the tool switching problem. International
Journal of Production Economics, 64(1):165–176.

Fathi, Y. and Barnette, K. W. (2002). Heuristic procedures for the parallel
machine problem with tool switches. International Journal of Production
Research, 40(1):151–164.

Furrer, M. and Mütze, T. (2017). An algorithmic framework for tool switch-
ing problems with multiple objectives. European Journal of Operational
Research, 259(3):1003–1016.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postop-
timization procedures for the traveling salesman problem. Operations Re-
search, 40(6):1086–1094.

Ghiani, G., Grieco, A., and Guerriero, E. (2007). An exact solution to
the TLP problem in an NC machine. Robotics and Computer-Integrated
Manufacturing, 23(6):645–649.

Ghiani, G., Grieco, A., and Guerriero, E. (2010). Solving the job sequencing
and tool switching problem as a nonlinear least cost hamiltonian cycle
problem. Networks, 55(4):379–385.

Ghrayeb, O. A., Phojanamongkolkij, N., and Finch, P. R. (2003). A mathe-
matical model and heuristic procedure to schedule printed circuit packs on
sequencers. International Journal of Production Research, 41(16):3849–3860.

Gray, A. E., Seidmann, A., and Stecke, K. E. (1993). A synthesis of decision
models for tool management in automated manufacturing. Management
Science, 39(5):549–567.

Gribel, D. and Vidal, T. (2019). HG-means: A scalable hybrid metaheuristic
for minimum sum-of-squares clustering. Pattern Recognition, 88:569–583.

Hertz, A., Laporte, G., Mittaz, M., and Stecke, K. E. (1998). Heuristics for
minimizing tool switches when scheduling part types on a flexible machine.
IIE Transactions, 30(8):689–694.

Hertz, A. and Widmer, M. (1996). An improved tabu search approach for
solving the job shop scheduling problem with tooling constraints. Discrete
applied mathematics, 65(1):319–345.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Bibliography 41

Jäger, G. and Molitor, P. (2008). Algorithms and experimental study for the
traveling salesman problem of second order. In Yang, B., Du, D.-Z., and
Wang, C. A., editors, Combinatorial Optimization and Applications, pages
211–224, Berlin, Heidelberg. Springer Berlin Heidelberg.

Keung, K. W., Ip, W. H., and Lee, T. C. (2001). The Solution of a multi-
objective tool selection model using the GA approach. The International
Journal of Advanced Manufacturing Technology, 18(11):771–777.

Konak, A. and Kulturel-Konak, S. (2007). An ant colony optimization ap-
proach to the minimum tool switching instant problem in flexible manufac-
turing system. In 2007 IEEE Symposium on Computational Intelligence in
Scheduling, pages 43–48.

Konak, A., Kulturel-Konak, S., and Azizoğlu, M. (2008). Minimizing the num-
ber of tool switching instants in flexible manufacturing systems. Interna-
tional Journal of Production Economics, 116(2):298–307.

Laporte, G., Salazar-Gonzáles, J. J., and Semet, F. (2004). Exact algorithms
for the job sequencing and tool switching problem. IIE Transactions,
36(1):37–45.

Matzliach, B. (1998). The online tool switching problem with non-uniform
tool size. International Journal of Production Research, 36(12):3407–3420.

Mütze, T. (2014). Scheduling with few changes. European Journal of
Operational Research, 236(1):37–50.

Oliver, I., Smith, D., and Holland, J. (1987). A study of permutation
crossover operators on the traveling salesman problem. In Grefenstette, J.,
editor, Genetic algorithms and their applications: Proceedings of the Second
International Conference, pages 224–230.

Paiva, G. S. and Carvalho, M. A. M. (2017). Improved heuristic algorithms
for the job sequencing and tool switching problem. Computers & Operations
Research, 88:208–219.

Privault, C. and Finke, G. (1995). Modelling a tool switching problem on a
single NC-machine. Journal of Intelligent Manufacturing, 6(2):87–94.

Raduly-Baka, C. and Nevalainen, O. S. (2015). The modular tool switching
problem. European Journal of Operational Research, 242(1):100–106.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Bibliography 42

Salonen, K., Raduly-Baka, C., and Nevalainen, O. S. (2006a). A note on
the tool switching problem of a flexible machine. Computers & Industrial
Engineering, 50(4):458–465.

Salonen, K., Smed, J., Johnsson, M., and Nevalainen, O. (2006b). Grouping
and sequencing PCB assembly jobs with minimum feeder setups. Robotics
and Computer-Integrated Manufacturing, 22(4):297–305.

Senne, E. L. F. and Yanasse, H. H. (2009). Beam search algorithms for min-
imizing tool switches on a flexible manufacturing system. In Proceedings
of the 11th WSEAS International Conference on Mathematical and Compu-
tational Methods in Science and Engineering, pages 68–72, Stevens Point,
USA. World Scientific and Engineering Academy and Society.

Shirazi, R. and Frizelle, G. D. M. (2001). Minimizing the number of tool
switches on a flexible machine: An empirical study. International Journal
of Production Research, 39(15):3547–3560.

Tang, C. S. and Denardo, E. V. (1988a). Models arising from a flexible
manufacturing machine, Part I: Minimization of the number of tool switches.
Operations Research, 36(5):767–777.

Tang, C. S. and Denardo, E. V. (1988b). Models arising from a flexible
manufacturing machine, Part II: Minimization of the number of switching
instants. Operations Research, 36(5):778–784.

Toffolo, T. A., Vidal, T., and Wauters, T. (2019). Heuristics for vehicle routing
problems: Sequence or set optimization? Computers & Operations Research,
105:118–131.

Tzur, M. and Altman, A. (2004). Minimization of tool switches for a flexible
manufacturing machine with slot assignment of different tool sizes. IIE
Transactions, 36(2):95–110.

Vidal, T. (2017). Node, edge, arc routing and turn penalties: Multiple problems
– One neighborhood extension. Operations Research, 65(4):992–1010.

Vidal, T., Battarra, M., Subramanian, A., and Erdogan, G. (2015). Hybrid
metaheuristics for the clustered vehicle routing problem. Computers &
Operations Research, 58(1):87–99.

Vidal, T., Crainic, T., Gendreau, M., and Prins, C. (2013). Heuristics for
multi-attribute vehicle routing problems: A survey and synthesis. European
Journal of Operational Research, 231(1):1–21.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

Bibliography 43

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012).
A hybrid genetic algorithm for multidepot and periodic vehicle routing
problems. Operations Research, 60(3):611–624.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2014). A unified
solution framework for multi-attribute vehicle routing problems. European
Journal of Operational Research, 234(3):658–673.

Whitley, D. (2019). Next generation genetic algorithms: A user’s guide and
tutorial, pages 245–274. Springer International Publishing.

Yanasse, H. H., Rodrigues, R. d. C. M., and Senne, E. L. F. (2009). Um
algoritmo enumerativo baseado em ordenamento parcial para resolução do
problema de minimização de trocas de ferramentas. Gestão & Produção,
16:370–381.

Zeballos, L. (2010). A constraint programming approach to tool allocation
and production scheduling in flexible manufacturing systems. Robotics and
Computer-Integrated Manufacturing, 26(6):725–743.

Zhou, B.-H., Xi, L.-F., and Cao, Y.-S. (2005). A beam-search-based algorithm
for the tool switching problem on a flexible machine. The International
Journal of Advanced Manufacturing Technology, 25(9):876–882.

DBD
PUC-Rio - Certificação Digital Nº 1813313/CA

	A simple and effective hybrid genetic search for the job sequencing and tool switching problem
	Resumo
	Table of contents
	Introduction
	Related studies
	Proposed methodology
	Solution evaluation
	Generation of new solutions
	Biased fitness and population diversity management

	Computational experiments
	Classical benchmark instances
	Parameters calibration
	Sensitivity analysis
	Comparison with other algorithms on classical benchmark instances
	Experiments on larger instances

	Conclusions

