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Abstract

Coutinho, Eduardo Cesar; M Molinaro (Advisor). Online
Advertiser-Centric Budget Allocation. Rio de Janeiro, 2020.
52p. Dissertação de Mestrado – Departamento de Informática, Pon-
tifícia Universidade Católica do Rio de Janeiro.

In this work, we propose the problem AdInvest, which models the
decision-making process for allocating investment in digital marketing from
the advertiser’ perspective. For the proposed problem, we define an algorithm
called balGreedy, and we prove its guarantees in deterministic and stochastic
instances of the AdInvest. The proven theorems assure to our algorithm
worst-case results relatively close to OPT, in several types of instances
raised during the work. In particular, we focus on the instances that model
the audience saturation effect, which is present in the dynamics of online
advertisements. As shown in the computational experiments, the balGreedy
algorithm had been consistently efficient compared to the alternative policies
adopted, both in the instances generated by simulation and in real instances
built from the data of a certain Facebook Ads advertiser.

Keywords
Online Optimization; Theory of Computation; Design and Analysis of

Algorithms; Display Advertisemen.
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Resumo

Coutinho, Eduardo Cesar; M Molinaro. Alocação de Recursos
Online da Perspectiva de Anunciantes. Rio de Janeiro, 2020.
52p. Dissertação de Mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Nesse trabalho, propomos o problema AdInvest, que modela o processo
decisiório de alocação de investimento em marketing digital do ponto de vista
do anunciante. Para o problema proposto, definimos um algoritmo chamado
balGreedy, e provamos suas garantias para instâncias determísticas e esto-
cásticas do AdInvest. Os teoremas provados garantem ao nosso algoritmo
resultados de pior caso relativamente próximos ao OPT, em diversos tipos de
instâncias levantadas ao decorrer do trabalho. Em especial, focamos nas ins-
tâncias que modelam o efeito de saturação das audiências, que se faz presente
na dinâmica de anúncios online. Como mostrado nos experimentos compu-
tacionais, o algoritmo balGreedy se mostrou consistentemente eficiente em
comparação com as políticas alternativas adotadas, tanto nas instâncias que
foram geradas por simulação, quanto em instâncias reais obtidas a partir de
dados de um anunciante do Facebook Ads.

Palavras-chave
Otimização Online; Teoria da Computação; Projeto e Análise de

Algoritmos; Anúncios em Display.
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1
Introduction

There are many marketing channels where the advertisers can invest money
to display online banners, sponsored links, and other types of digital advertisement.
In this type of market, one of the investors’ intents is to maximize a user action, for
example clicks in their ad banners.

Marketing channels often offer some features to allow advertisers to focus
their efforts on targeted audiences. For instance, a wine company can choose to
show their ads only to middle-aged people, and a female cosmetics company is
able to invest only in female audiences. However, the advertisers’ task of choosing
which audiences they should invest in may not be simple because of the following
practical issues: 1) The advertisers do not know in advance which are the more
profitable audiences; 2) The profitability of an audience tends to decrease as it
receives impressions of an ad (saturation effect).

This motivates the following online advertiser-centric budget allocation prob-
lem that captures how the advertisers should decide in which audiences and channels
to invest (see Section 1.1 for a more formal definition):

– There is a fixed number K of options (audiences in the different marketing
channels) to be invested.

– Each option gives the agent a unit reward (a banner click, for example) after he
has invested a certain amount of money in it. The advertiser gets the feedback
when such reward happens.

– The amount of money needed for obtaining each reward is unknown, and it
depends on the option as well as on how many rewards the option has already
given thus far (allowing to model the audience saturation)

– The goal is to minimize the total money spent on obtaining a set number of
rewards.

See Figure 1.1 for an illustration. We note that while we focus on the budget
allocation decisions, there are several other important components that appear in
practice. For example, in many channels, the display of an ad is subject to a real-
time bidding process, in which the advertiser needs to decide its bids on the different
audiences (for example, by bidding on keywords in a search engine) and compete
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Chapter 1. Introduction 12

Figure 1.1: Online advertiser-centric budget allocation problem. Each option has
an unknown reward function that describes how many (cumulatively) rewards are
obtained depending on the agent’s investment in that option.

with other bidders for the display. In addition, often the advertiser has flexibility in
setting some definition of an audience (for example, deciding in which keywords to
bid in an audience). Here we are abstracting out options and the different rules of
interaction with them via their reward function, thus focusing on making higher-level
budget allocation decisions. Besides, although the time variable may be relevant in
certain types of marketing channels, we are not directly modeling it in this problem.

1.1
Problem definition

We now formally define the problem AdInvest. For an integer t, we use the
notation [t] := {1, . . . , t}. There are k fixed options that can be invested in by
the agent. For each option i ∈ [k], there is an unknown sequence of non-negative
marginal conversion costs (xj

i )j∈N, where xj
i is the additional investment necessary

for obtaining its jth conversion after its (j − 1)th conversion has been obtained
(see Figure 1.2). That is, after investing x1

i in option i the player gets a conversion;
after investing an additional x2

i in this option (for a total of x1
i + x2

i ) the player
gets the second conversion from this option, etc. The player continuously decides
how much to invest in each option. After each investment, the player learns which
options yielded new conversions; this is the only feedback the player receives about
the marginal conversion costs. Given a target value S, the player’s goal is to obtain
S conversions while minimizing its total investment over all the options.

As mentioned before, an important class of instances are those that have a
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Chapter 1. Introduction 13

Figure 1.2: The marginal conversion costs for option i. Each xj
i represents the

additional investment necessary for obtaining the jth conversion after the (j − 1)th
conversion has been obtained.

saturation effect, that is when the marginal conversion costs are non-decreasing
within each option, namely x1

i ≤ x2
i ≤ . . . for each i. We call these instances

monotone.
Given an instance I and a target S, we use OPTS(I) to denote the offline

optimal investment cost for obtaining S conversions, namely the optimal cost of
a policy that knows all marginal conversion costs xj

i ’s upfront. Our goal is to design
online algorithms whose costs are competitive against this offline OPT, namely that
for some values α, β satisfy

AlgS(I) ≤ α · OPTS(I) + β, for every instance I.

Example 1. Consider the instance I where for a fixed value L and multiplier α ≥ 1,
we have the last option with all marginal values equal to L, and the marginal values
of the other options are equal to αL:

xj
i =

αL if i ∈ [k − 1]

L if i = k
.

Let the target value S be a multiple of k. See Figure 1.3 for a depiction of this
instance.

One of the simplest investment policy is roundRobin: the algorithm starts in
option 1, and invest on it continuously until a reward is obtained. At this point it gets
the feedback that a reward was obtained, and moves to investing in the next option.
The process is repeated until S rewards are obtained (after obtaining the reward
from option k, go back to option 1). On the instance above, roundRobinS obtains
precisely S

k
conversions in each option, at a cost

roundRobinS(I) = (k − 1)αL
S

k
+ L

S

k
=
[
(1 − 1

k
)α + 1

k

]
· LS.
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Chapter 1. Introduction 14

On the other hand, the optimal policy is to invest only in the last option until it
yields S rewards. Thus, we have OPTS(I) = LS. As expected, roundRobinS is a
bad strategy: taking α arbitrarily large, this simple strategy can be arbitrarily bad
compared to OPTS .

Figure 1.3: Instance of the example, where the last option has the smallest marginal
costs.

1.2
Our results

Our main result is to show that a single algorithm balGreedy has a provably
good performance for several natural classes of instances. In particular, this illus-
trates that this is a robust algorithm, which is a good candidate for performing well
in practice. We also provide (almost matching) lower bounds, as well as computa-
tional results to validate the practical performance of the algorithm.

Monotone instances. We first show that algorithm balGreedy gives a good
approximation for monotone instances.

Theorem 1. Consider the problem AdInvest. The algorithm balGreedy has the
following guarantee: for every monotone instance I and integer S, the cost of the
algorithm for obtaining S conversions is bounded as

balGreedyS(I) ≤ OPTS(I) + k · C∗,

where C∗ is the highest marginal cost paid by an optimal solution OPTS(I).

An important observation is that this guarantee does not depend on the target
number S of conversions, which is desirable since the value S is typically large in
many situations. In addition, in principle C∗ can be as large as OPTS(I), in which
case the guarantee above only gives a multiplicative (k+1)-approximation. However,
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typically OPTS(I) grows as a function of the target S; since the S is usually much
larger than the number of options k, in many situations the above guarantee actually
gives a (1 + ε)-approximation for a small constant ε.

Moreover, we show that no algorithm can have a much better performance
guarantee.

Theorem 2. With the notation from Theorem 1, for every deterministic algorithm
Alg there is a monotone instance I and target S such that

AlgS(I) ≥ OPTS(I) + (k − 2) · C∗,

and for every randomized algorithm there is I and S such that

AlgS(I) ≥ OPTS(I) + k − 3
2

· C∗.

Approximately monotone instances. Next, we consider instances where the
saturation/monotonicity property is only satisfied approximately. Inspired by robust
optimization [4], it is useful to think that there is a “nominal” instance Ī that is
monotone, but the player actually faces a perturbed version I of this instance that
may not be monotone. We show that the same algorithm balGreedy still works
well for these instances, with the guarantee depending on how close the nominal
and actual instances are.

Theorem 3. Consider a monotone nominal instance Ī = (x̄j
i )i,j and a (not neces-

sarily monotone) actual instance I = (xj
i )i,j . Let α be such that xj

i ≤ αx̄j
i for all

i, j. Then for all targets S, the algorithm balGreedy satisfies

balGreedyS(I) ≤ α(OPTS(Ī) + k · C∗),

where C∗ is the highest nominal marginal cost paid by OPTS(Ī).

Notice that when the actual instance I is monotone Theorem 3 recovers
Theorem 1, since we can take Ī = I . We remark that such online algorithms whose
guarantees degrade nicely when the assumptions of the model are only partially
satisfied is a broad area of active interest [19, 14, 5, 28, 23, 35, 17].

Stochastic instances. Another important situation is when the instance is a noisy
version of a monotone instance, that is, the marginal conversion costs are random
variables whose expected values are non-decreasing in each option.

Definição 1.1 (Random instances). A random instance that is monotone in expecta-
tion I = (Xj

i )i,j is one where the marginal conversion costs Xj
i are non-negative
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independent random variables, and the expected instance Ī = (EXj
i )i,j is monotone.

We first consider the case where the random costs Xj
i ’s have exponential tails.

The following is a direct consequence of Theorem 3.

Theorem 4. Consider a random instance I = (Xj
i )i,j that is monotone in expecta-

tion. Also, assume that the costs have sub-exponential tails, namely there is β such
that

Pr(Xj
i ≥ λEXj

i ) ≤ e−λβ ∀λ ≥ 0, ∀i, j.

Then balGreedy has expected cost upper bounded as

E balGreedyS(I) ≤ 1
β

(1 + log kS)(OPTS(Ī) + k · C∗),

where C̄∗ is the highest (mean) marginal cost paid by OPTS(Ī).

This result covers, in particular, the case when the marginal costs are expo-
nentially distributed, which could model real instances, as described in more detail
in the section on our computational experiments (Section 6). Notice that while this
guarantee now depends on the target number of conversions S, this dependence is
only logarithmic, and hence still within a meaningful range in many situations.

Finally, we consider another class of stochastic instances with bounded devi-
ation from the mean.

Theorem 5. Consider a random instance I = (Xj
i )i,j that is monotone in expecta-

tion, and define µj
i = EXj

i . Let

∆ := min
i,i′,j,j′:µj

i ̸=µj′
i′

|µj
i − µj′

i′ |

be the smallest gap between the means. Let L be an upper bound such that |Xj
i −

µj
i | ≤ L for all i, j, and define top := mini,j Pr(Xj

i ≥ µj
i + L − ∆). Then we have

E balGreedyS(I) ≤ OPTS(Ī) + kC∗ + kL

(
1 + 1

top

)
,

where C̄∗ is the highest (mean) marginal cost paid by OPTS(Ī).

The main advantage of this guarantee compared to Theorem 4 is that it is
independent of the target number of conversions S. Instead, this guarantee has a
new term Lk(1+ 1

top
) that depends on the range ±L of the deviation of the marginal

costs, and also on the probability top that the deviation is close to its maximum
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value L. Notice that when all “noises” Xj
i − µj

i are the same bounded symmetric
distribution (e.g., truncated Normal) then ⊤ is a non-zero quantity that only depends
on this distribution (in particular being independent of k and S). Finally, we remark
that the term ∆ involved in this bound is a generalization of the standard “winner
gap” present in the standard bounds for multi-armed bandit problems [6].

Computational experiments. We computed experiments for both simulated and
real instances. For the simulated data, we generated synthetic data for marginal
conversion costs from some stochastic processes to model different types of instance
contemplated by the above theorems above. In addition, we built 3 real instances
from extracting campaign data from a Facebook Ads advertiser. The algorithm
balGreedy was the best online policy in almost all instances. In some instances,
in which the options were very similar, other algorithms had similar, or even better,
results than balGreedy. In the simulated instances, the balGreedy performed
better than all the online alternative algorithms and achieved good results even
compared to offline alternatives. Besides, the balGreedy obtained the best result
in all except one real instance.

1.3
Related work

Despite a great wealth of works in the broad area of online advertisement,
we are not aware of any model that tackles the advertiser’s investment problem as
proposed here.

Arguably most of the work in the literature focuses on the optimization prob-
lem from the perspective of the marketing channel. For example, there are several
results on choosing which ads are displayed to a given user (e.g., upon a search on a
search engine) aiming at maximizing the channel’s revenue. A very important exam-
ple is the AdWords problem introduced by [25]: users come one-by-one in an online
fashion, and when a new user comes the marketing channel decides on witch ad to
show him/her. Each advertiser reports a bid for this user, which is the money the
channel earns if it shows an ad from the advertiser. However, the advertisers also set
(at the beginning of the time horizon) the total budget that they are willing to spend
on the channel over all time steps. The channel’s goal is to allocate ads to users in
an online fashion so as to maximize its revenue while respecting the advertisers’
budgets. In [25], Mehta et al. give an online algorithm that is within a multiplicative
(1 − 1/e)-factor of the optimal offline solution (under mild conditions). For other
works in the area see [1, 22, 15, 30, 13, 11, 29, 21, 10]

There are several other papers that consider optimization problems from the
perspective of the advertisers. Many of them focus on optimizing an advertiser’s bids
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on channels that display ads based on real-time bidding. For example, one relevant
task is predicting the “value” (e.g., probability of a click) that an advertiser gets
from displaying an ad to a given user, see for example [8, 3, 2, 24, 7], an important
information when choosing which bid to give. In other areas, [16, 12, 31, 34] aim at
learning in an online fashion the bidding strategy of the other advertisers competing
for ad displays. Yet another set of papers focus on optimizing the actual bidding
strategy of an advertiser in a given marketing channel [27, 33, 32, 18] Compared to
these works, the model we introduce here is not restricted to real-time bidding-based
channels and is less fine-grained, abstracting several components of the problem into
the reward function of each option.

Our model is also somewhat related to the multi-armed bandit problem [6]. In
one classic version of this problem, there are k options/arms that can be “pulled” in
each time step, and upon a pull, it gives a random reward sampled from an unknown
arm-dependent (but usually time-invariant) distribution. Given a limited number of
pulls, the goal is to chose which arms to pull in each time step in order to maximize
the expected reward. Here, the performance of the algorithm is typically compared
to the expected reward of the best arm, i.e., OPT must play the same arm (the best
one) over all the time steps. In contrast, our model considers time-varying reward
(intervals) and the algorithms are compared against a fully dynamic OPT.
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2
Algorithm balGreedy and OPT

In this section, we describe our algorithm, then give a more combinatorial view
of the process, and finally show that when the instance is monotone the optimal
offline solution is given by the greedy algorithm. This structure of OPT will be
crucial for the development of guarantees on balGreedy in the remaining sections.

In this section we consider deterministic instances I = (xj
i )i,j that may not be

monotone; we will explicitly state when and where monotonicity is used.

2.1
Algorithm balGreedy

We will present an online algorithm balGreedy for this problem and the
respective guarantees. We consider that the process occurs in continuous time, with
the algorithm investing with infinitesimal increments.

At each point in time, the stash of an option i denotes the total amount invested
by balGreedy in option i since the last conversion of this option, or equivalently,
the amount invested that has not yet yielded a conversion (see Figure 1.1).

Figure 2.1: Example of stash for option i. The colored part represents the current
total investment in that option.

The algorithm balGreedyS is then the following investment policy:

Algorithm 1: balGreedyS

At every point in time, invest in the option with the smallest stash; if there is more
than one such option, invest equally in all options with minimum stash.

Stop after S conversions are obtained

Notice that the stash of an option becomes 0 when a new conversion is obtained
from this option (all stashes start at 0).
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Chapter 2. Algorithm balGreedy and OPT 20

Example 2. consider again the instance defined in Example 1. Executing the algo-
rithm balGreedy on this instance, we see that this policy starts investing equally
in all options until the first conversion occurs (Figure 2.2). From this point on, the
algorithm will only invest in the last option, until it gets S conversions in total (Fig-
ure 2.3). Thus, balGreedy spends a total of SL + (k − 1)L in this instance (recall
OPTS(I) = SL).

Figure 2.2: balGreedy running on the instance from Example 1. Shown here is the
moment right before the first conversion.

Figure 2.3: balGreedy running on the instance from Example 1. Shown here is the
“endgame” when the algorithm obtains a total of S conversions.

Water-filling perspective. balGreedy can also be described more visually as
a water-filling algorithm. Figure 2.4 depicts the execution of balGreedy at three
points in time, with the leftmost image happening right after a conversion (at option
3). The vertical bars represent the marginal costs xji+1

i for the next conversion in
each of the options i (so there have been ji conversions in option i). The yellow
bars represent the stash in each option. Then balGreedy can be thought of as
continuously raising the “water level” λ, investing in the options to ensure that all
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Chapter 2. Algorithm balGreedy and OPT 21

stash levels are at least λ. Notice that the next conversion happens when the level λ

reaches the smallest next-conversion cost xji+1
i .

Figure 2.4: Image depicting the water-filling perspective of algorithm balGreedy.
The leftmost image depicts the moment right after a conversion (at option 3), and
the rightmost image depicts the moment right before the next conversion (at option
4).

2.2
A more combinatorial view of the problem

To compare the execution of the different algorithms, it will be useful to
think of the problem in a more combinatorial way. We think of each option i as
composed of slabs (i, 1), (i, 2), . . . that can be collected. Each slab corresponds to
a possible conversion, with the cost of the slab (i, j) being the marginal cost xj

i of
the corresponding conversion. To collect a slab, the algorithm needs to pay its cost.
In addition, in any feasible solution, the jth slab of option i can only be collected
after all the previous slabs of that option have been collected. So a feasible solution
selects a prefix {(i, 1), . . . , (i, ji)} of the slabs of each option i, see Figure 2.5. The
goal of the algorithm is to collect a total S slabs using the different options. Finally,
in our online problem, the cost of a slab is only known after the algorithm fully pays
for it.

Figure 2.5: Image describing the combinatorial view for the picked slabs for an
option.

One remark in terms of the total cost of the algorithms: while the total cost
of OPTS is the just sum of the costs of the slabs that it picks, this is not true for
balGreedyS , since it may have made investments that were not enough to generate
a conversion. But notice that these “leftover” investments are exactly what compose
the stashes of the options. Thus we have the following.
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Chapter 2. Algorithm balGreedy and OPT 22

Observation 1 (Decomposition into slab and stash costs). The total cost of
balGreedyS(I) is the cost of the slabs that it picks (slab cost) plus the sum
of the stashes of the options at the end of its execution (stash cost). We use
stash(balGreedyS(I)) and slab(balGreedyS(I)) to denote these costs respec-
tively.

This combinatorial view allows us to abstract the two main properties of
feasible solutions for our problem:

Lemma 1 (Feasible sets of slabs). We have the following properties:

– (Augmentation) If S and S ′ are two feasible sets of slabs and S ′ has more
slabs than S , then there is a slab s ∈ S ′ \ S such that S ∪ {s} is feasible.

– (Compatibility) Consider a monotone instance I = (xj
i )i,j and a feasible set

of slabs S = {s1, s2, . . . , sn} ordered by costs, namely x(sj) ≤ x(sj+1) for
all j. Then for every t, the set of the t cheapest slabs {s1, s2, . . . , st} of the
solution is also feasible.

The first property holds because for any such solutions S, S ′ there is an option
i where the solution S ′ picks more slabs than S; then the next slab s = (i, ji + 1) in
this option that S did not pick belongs to S ′ and can be added to S while maintaining
feasibility.

For the second property, by feasibility, the solution S = {s1, s2, . . . , sn} picks
out a prefix of slabs (i, 1), . . . , (i, ji) for each option i. Then the instance is mono-
tone, the cost of the slab increases as we traverse such prefix, and hence truncating
the solution S to its t cheapest slabs simply selects a sub-prefix (i, 1), . . . , (i, j̄i) for
each option, thus giving a feasible solution.

(We remark that these properties show that the feasible sets form a greedoid,
which is a generalization of matroids, and that monotone instances are R-compatible,
which is an important property for the optimality of greedy algorithms, see [20].)

2.3
Greedy and the offline optimum OPT

Consider the (offline) greedy algorithm for selecting slabs that always picks
the “next slab” in one of the options that has smallest cost.

Algorithm 2: GreedyS

Input: Costs I = (xj
i )i,j , target number of slabs S

While has not picked S slabs
Let ji be the last slab picked in option i

Among the next slabs {(i, ji + 1)}i, pick the one with smallest cost
x((i, ji + 1))
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Notice that if there are multiple slabs with the same cost then there are multiple
executions of GreedyS depending on tie breaking, but it will not be important to
differentiate these executions.

We show next that for monotone instances, this greedy procedure is optimal.
(As indicated above, this follows from the general theory of greedoids, but we
provide a short self-contained proof.)

Lemma 2. For monotone instances I , any execution of GreedyS returns an optimal
solution, namely GreedyS(I) = OPTS(I).

Proof. Let S∗ = {s∗
1, . . . , s∗

S} be the slabs of an optimal solution and let S =
{s1, . . . , sS} be the slabs picked by GreedyS(I), both with items sorted in non-
decreasing cost (so x(s∗

i ) ≤ x(s∗
i+1) for all i and similarly for the si’s). Let S∗

t =
{s∗

1, . . . , s∗
t } be the t cheapest slabs of the optimal solution, and define St analogously

(which are feasible due to Lemma 1).
If for all t we have x(st) ≤ x(s∗

t ) then clearly GreedyS(I) = OPTS(I). Then
assume by contradiction that there is t such that x(st) > x(s∗

t ).
We claim that x(st) ≤ x(s∗

t ) for all t, which then shows GreedyS(I) =
OPTS(I). To see this, consider the solution St−1 obtained by GreedyS(I) right
before selecting st. By the augmentation property of Lemma 1 there is s̄ ∈ S∗

t \St−1

such that St−1 ∪ {s̄} is feasible, so s̄ was a possible candidate when GreedyS(I)
selected st. Then by the greedy criterion and the fact s∗

t is the most expensive slab
in S∗

t ∋ s̄, we have x(st) ≤ x(s̄) ≤ x(s∗
t ) as claimed. This concludes the proof.

DBD
PUC-Rio - Certificação Digital Nº 1820991/CA



3
Monotone instances

In this section, we consider monotone instances and prove the guarantee for
balGreedy over (Theorem 1) as well as an almost matching lower bound for every
online algorithm (Theorem 2).

3.1
Guarantee for balGreedy

We state again the guarantee that we will prove for balGreedy.

Theorem 1. Consider the problem AdInvest. The algorithm balGreedy has the
following guarantee: for every monotone instance I and integer S, the cost of the
algorithm for obtaining S conversions is bounded as

balGreedyS(I) ≤ OPTS(I) + k · C∗,

where C∗ is the highest marginal cost paid by an optimal solution OPTS(I).

To prove this theorem, first recall from Observation 1 that the cost
balGreedyS(I) incurred by the algorithm can is the sum of its stash
stash(balGreedyS(I)) and slab costs slab(balGreedyS(I)). To upper bound
the slab cost, notice that the water-filling perspective of balGreedy (Figure 2.4)
shows that the next slab it picks is always that of minimum cost. That is:

Lemma 3. For every instance (even non-monotone ones) I , the slabs picked by
balGreedyS(I) are exactly the same as those picked by some execution of the greedy
procedure GreedyS(I). In particular,

slab(balGreedyS(I)) = GreedyS(I).

Since for monotone instances Lemma 2 guarantees that the greedy procedure
selects an optimal solution, we directly have the following.

Corollary 1 (Slab cost). If I is a monotone instance, then balGreedyS(I) picks the
same slabs as some optimal solution S∗. In particular we have

slab(balGreedyS(I)) = GreedyS(I) = OPTS(I).
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Next, we upper bound the stash cost of the algorithm.

Lemma 4. Consider a (possibly non-monotone) instance I = (xj
i )i,j , and let S be

the set of slabs picked by balGreedyS(I). Then the stash cost of the algorithm can
be upper bounded using the maximum slab cost:

stash(balGreedyS(I)) ≤ k · max
s∈S

x(s).

Proof. Let stashi denote the stash at option i at the end of the execution of
balGreedyS(I). We claim that for all i,

stashi ≤ max
s∈S

x(s). (3-1)

For that, fix an option i. Using the water-filling perspective of balGreedyS (Figure
2.4), we see that during the execution the stash cost of option i only increases if the
“water level” λ reaches its current stash cost. This implies that at all points in time,
the stash cost of option i is at most the highest water level seen thus far. Moreover, is
S = {s1, . . . , sS} are the slabs picked by balGreedyS(I) in the order in which they
are picked, we see that the water level raises from 0 to x(s1) (causing the algorithm
to pick this slab), then drops to 0 and raises to x(s2), etc. Thus, the highest water
level reached during the execution is precisely the max slab cost maxs∈S x(s). This
proves inequality (3-1), and concludes the proof of the lemma.

Since Corollary 1 guarantees that for monotone instances there is an optimal
solution with the same slabs as balGreedy, its max slab cost is the same as that of
this optimal solution, giving the following.

Corollary 2 (Stash cost). If I = (xj
i )i,j is a monotone instance, then there is1 an

optimal solution S∗ such that

stash(balGreedyS(I)) ≤ k · max
s∗∈S∗

x(s∗).

Adding the bounds from Corollaries 1 and 2 concludes the proof of Theorem
1.

3.2
Lower bound for monotone instances

Now we prove a lower bound for online algorithms over monotone instances
(again restated for convenience).

1Actually using the same exchange argument as in the proof of Lemma 2 it is easy to see that the
max slab cost is the same for all optimal solution.
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Theorem 2. With the notation from Theorem 1, for every deterministic algorithm
Alg there is a monotone instance I and target S such that

AlgS(I) ≥ OPTS(I) + (k − 2) · C∗,

and for every randomized algorithm there is I and S such that

AlgS(I) ≥ OPTS(I) + k − 3
2

· C∗.

Proof. This is a reduction from the following promise version of the Unordered-
Search problem: The input is an array of integers A of size k, and an integer x that
appears in one of the entries of A. The goal is to locate the position of x in the array
while minimizing the number of lookups to the entries of the array. It is a folklore
result that to solve this problem every deterministic algorithm requires in the worst-
case at least k − 1 probes, and for every randomized algorithm there is an instance
that makes the expected number of probes to be at least k−1

2 .2

Given an instance (A, x) of this problem, we can encode it into an instance
I = (µj

i )i,j of our problem as follows: The first slab on all options cost 1, namely
x1

i = 1 for all i ∈ [k]. For the option i∗ such that A[i∗] = x, all other slabs cost 0;
for all other options, all other slabs cost ∞. The target number of slabs S is set to be
k + 1.

The offline optimal solution of this instance has cost

OPTk+1(I) = 1,

just picks k + 1 slabs in the option i∗. But notice that every online algorithm that
solves this instance with finite cost needs to locate the position i∗ whose second slab
has cost 0. But to start seeing the second slab of any option it needs to “probe”
it, namely to buy its first slab at cost 1. Then from the above lower bound, any
deterministic algorithm needs to pay at least

Algk+1(I) ≥ k − 1 = OPTk+1(I) + (k − 2) · C∗.

The lower bound for randomized algorithms follows by just using the randomized
lower bound for UnorderedSearch instead.

2The lower bound for deterministic algorithms is immediate, and we outline the proof for ran-
domized algorithms: By Yao’s Minimax Theorem [26], it suffices to consider how deterministic al-
gorithms do in expectation over the instance that plants x in a uniformly random position of A. It is
not hard to see that, without loss of generality, we can assume the algorithm to be non-adaptive and
that it probes the entries A[1], A[2], . . . , A[k − 1] in order (it does not need to probe A[k] because of
the promise that x belongs to A). For all i = 1, . . . , k −1, when x appears in position i the algorithm
pays i probes, and this happens with probability 1

k , giving k(k−1)
2k = k−1

2 probes in expectation.
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4
Approximately monotone instances

In this section, we prove that balGreedy still works well when the instance is
approximately monotone.

Theorem 3. Consider a monotone nominal instance Ī = (x̄j
i )i,j and a (not neces-

sarily monotone) actual instance I = (xj
i )i,j . Let α be such that xj

i ≤ αx̄j
i for all

i, j. Then for all targets S, the algorithm balGreedy satisfies

balGreedyS(I) ≤ α(OPTS(Ī) + k · C∗),

where C∗ is the highest nominal marginal cost paid by OPTS(Ī).

Going back to the guarantees for monotone instances given in Section 3, we
see that the monotonicity assumption was mostly used to guarantee that greedy
procedure GreedyS(I) (which we know picks the same slabs as balGreedyS(I))
gives an optimal solution OPTS(I). Since now our actual instance I is not monotone,
it is easy to see that greedy may not give an optimal solution. However, because of
the bounds connecting the actual and nominal instances I, Ī , in some sense running
greedy over the actual instance should give an approximately optimal solution to the
nominal instance. The next lemma makes this precise.

Lemma 5. With the notation from Theorem 3, for every execution of the procedure
GreedyS(I) we have

GreedyS(I) ≤ α OPTS(Ī)

and also

Proof. Since the nominal instance Ī is monotone, Lemma 2 shows that running
GreedyS over this instance produces an optimal nominal solution OPTS(Ī). So
consider such greedy/optimal solution S∗ = {s∗

1, . . . , s∗
S}, sorted in non-decreasing

order of nominal cost, so x̄(s∗
t ) ≤ x̄(s∗

t+1) for all t. Also, define the set of its t

cheapest slabs S∗
t = {s∗

1, . . . , s∗
t }.

Also let S = {s1, . . . , sS} be the slabs picked by running GreedyS over the
actual instance, sorted in non-decreasing order of actual cost, so X(st) ≤ X(st+1)
for all t. Define St similarly.

We claim that for all t we have X(st) ≤ αx̄(s∗
t ), which then shows that

GreedyS(I) ≤ α OPTS(Ī). For that, fix t. By the augmentation property of Lemma
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1, there is a slab s∗ ∈ S∗
t \St−1 such that St−1 ∪{s∗} is feasible, so s∗ was a possible

option for GreedyS(I) on the tth round. But its greedy choice minimizes actual
cost, so X(st) ≤ X(s∗). But using the assumption on I and Ī , this is at most α

times the nominal cost x̄(s∗), which in turn is at most x̄∗(s∗
t ) (since s∗

t is the most
expensive slab in the set S∗

t ∋ s∗). Chaining these inequalities gives X(st) ≤ αx̄(s∗
t )

as claimed. This concludes the proof.

This proof also proves the following control over the max slab cost of
GreedyS(I).

Lemma 6. Let S be the slabs picked by an execution of GreedyS(I). There is1 an
optimal solution S∗ for the nominal instance Ī (i.e. achieving OPTS(Ī)) such that

max
s∈S

X(s) ≤ α · max
s∗∈S∗

x̄(s∗).

Proof of Theorem 3. Let S be the slabs picked by balGreedyS(I), which by
Lemma 3 are the same picked by an execution of GreedyS(I). Applying the de-
composition of the cost of the algorithm into slab plus stash costs of Observation 1,
then the control of slab and stash costs for non-monotone instances from Lemmas 3
and 4, and then Lemmas 5 and 6 above, we have

balGreedyS(I) = slab(balGreedyS(I)) + stash(balGreedyS(I))

≤ GreedyS(I) + k · max
s∈S

X(s)

≤ α

(
OPTS(Ī) + k · max

s∗∈S∗
x̄(s∗)

)
,

where S∗ is an optimal solution for the nominal instance Ī . This concludes the
proof.

Observation 2. Notice that in the statement of Theorem 3 it suffices to require the
bound xj

i ≤ αx̄j
i to hold for the first S slabs of each option, namely for j ≤ S, since

these are the only slabs that can appear in the proofs of Lemmas 5 and 6.

1As before, one can show that all optimal solutions have the same max slab cost.
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5
Stochastic instances

In this section, we consider two types of stochastic instances, i.e. the marginal
conversion costs are now independent random variables, whose expected values
form a monotone instance. The first class of instances is when the random costs
have sub-exponential tails, for which our guarantee will depend on a parameter β

that is related to the sub-exponential decay. Next, we consider instances where the
marginal costs have bounded variation, for which we prove guarantees that are again
independent of S, but depend on some parameters of the cost distributions.

5.1
Sub-exponential instances

We start by proving Theorem 4, which will be a direct consequence of the
guarantee for balGreedyS for approximately monotone instances.

Theorem 4. Consider a random instance I = (Xj
i )i,j that is monotone in expecta-

tion. Also, assume that the costs have sub-exponential tails, namely there is β such
that

Pr(Xj
i ≥ λEXj

i ) ≤ e−λβ ∀λ ≥ 0, ∀i, j.

Then balGreedy has expected cost upper bounded as

E balGreedyS(I) ≤ 1
β

(1 + log kS)(OPTS(Ī) + k · C∗),

where C̄∗ is the highest (mean) marginal cost paid by OPTS(Ī).

Proof. To simplify the notation let µj
i := EXj

i . Applying Theorem 3 to each
scenario of the random instance I we get that

balGreedyS(I) ≤ R · (OPTS(Ī) + k · C∗), (5-1)

where R is now the random variable that gives the multiplicative gap between the
actual instance I and the expected instance in each scenario, namely

R := max
{

max
i∈[k], j∈[S]

Xj
i

µj
i

, 1
}

.
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Here we have used Observation 2, so the ratio R is only defined based on the S first
slabs of each option.

To bound the expected value of R we use the concentration properties of the
random costs Xj

i via standard arguments. Applying a union bound and then the
subexponentiality assumption on the Xj

i ’s we have

Pr
(

max
i∈[k], j∈[S]

Xj
i

µj
i

≥ λ

)
≤

∑
i∈[k],j∈[S]

Pr
(

Xj
i

µj
i

≥ λ

)
≤ kSe−λβ.

Since R is non-negative, we can obtain its expected value by integrating its tails:

ER =
∫ ∞

0
Pr(R ≥ λ) dλ ≤

∫ log kS
β

0
1 dλ +

∫ ∞

log kS
β

kSe−λβ dλ

= log kS

β
+ 1

β
.

Then taking expectation over (5-1) and noticing that on the right-hand side only R

is random, we have

E balGreedyS(I) ≤ 1
β

(1 + log kS)(OPTS(Ī) + k · C∗). (5-2)

This concludes the proof of the theorem.

5.2
Instances with bounded variation

Here we consider stochastic instances with bounded variation, proving Theo-
rem 5 stated in the introduction; we restate here for convenience.

Theorem 5. Consider a random instance I = (Xj
i )i,j that is monotone in expecta-

tion, and define µj
i = EXj

i . Let

∆ := min
i,i′,j,j′:µj

i ̸=µj′
i′

|µj
i − µj′

i′ |

be the smallest gap between the means. Let L be an upper bound such that |Xj
i −

µj
i | ≤ L for all i, j, and define top := mini,j Pr(Xj

i ≥ µj
i + L − ∆). Then we have

E balGreedyS(I) ≤ OPTS(Ī) + kC∗ + kL

(
1 + 1

top

)
,

where C̄∗ is the highest (mean) marginal cost paid by OPTS(Ī).
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Notice that while balGreedyS(I) pays the cost of the actual (random) instance
I , we compare here against the optimal value of the expected instance, namely
OPTS(Ī).

For the rest of this section, we prove this theorem. Since the expected instance
Ī is monotone, using Lemma 2 we consider throughout an optimal solution OPTS(Ī)
that is given by an execution of the greedy procedure.

As in Figure 2.3, we can depict OPTS(Ī) as the yellow region of the slabs it
picks. The main step in analyzing the cost of balGreedy is understanding how much
it “overshoots” this region, namely how many additional slabs it picks in each option
compared to OPTS(Ī). Notice that while the cost/size of the slabs is different in the
actual instance I (which is what the algorithm pays) and in the expected instance Ī

(which is what OPTS(Ī) pays), it may be useful to try to imagine that these instances
have the same slabs, albeit with different costs.

To make this idea precise, let Ni be the number of slabs balGreedyS(I) picks
on option i, and let n∗

i be the number of slabs that OPTS(Ī) picks on option i. We
use (x)+ := max{x, 0} to denote the positive part of a number.

Lemma 7.

E slab(balGreedyS(I)) ≤ OPTS(Ī) + L ·
∑

i

E(Ni − n∗
i )+.

Proof. Let S = {s1, . . . , sS} be the slabs obtained by balGreedyS(I), and let
S∗ = {s∗

1, . . . , s∗
S} be those obtained by OPTS(Ī). Since both differences S \ S∗

and S∗ \ S have the same number of elements, the previous lemma we have

slab(balGreedyS(I)) − OPTS(Ī) =
∑

s∈S\S∗

X(s) −
∑

s∗∈S\S∗

µ(s∗) ≤ L |S \ S∗|

Further notice that the size of the set S \ S∗ can be counted by looking, for
each option, at how many slabs the algorithm picked after OPT’s slabs, namely
|S \ S∗| = ∑

i(Ni − n∗
i )+. Taking expectations we get

E slab(balGreedyS(I)) − OPTS(Ī) ≤ L ·
∑

i

E(Ni − n∗
i )+,

concluding the proof of the lemma.

The heart of the proof is controlling the expected amount of “overshooting”
E(Ni − n∗

i )+ in each option, which is done in the next lemma.

Lemma 8. For every option i we have E(Ni − n∗
i )+ ≤ 1

top
.

Proof. Fix i. Notice that Ni ≥ n∗
i + b if and only if the slab X

n∗
i +a

i is picked. The
main idea of the proof is that for this to happen, all slabs X

n∗
i

i , X
n∗

i +1
i , . . . , X

n∗
i +a

i
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must have “small” cost; as a increases, the likelihood of all these events happening
should be small. To make this precise, define the bigi,b as the event that the cost
X

n∗
i +b

i is quite bigger than the last expected cost µℓ
n∗

ℓ
of all other options ℓ ̸= i:

(bigi,b) X
n∗

i +b
i > max

ℓ
{µ

n∗
ℓ

ℓ : ℓ ̸= i} + L.

Claim 1. Consider a ≥ 1. If any of the events {bigi,b}1≤b≤a happen, then
balGreedyS(I) does not pick the slab X

n∗
i +a

i .

Proof. First notice that the event bigi,b implies that

X
n∗

i +b
i > µ

n∗
ℓ

ℓ + L ≥ µj
ℓ + L ≥ Xj

ℓ , for all j ≤ n∗
ℓ and ℓ ̸= i, (5-3)

where the second inequality follows from the monotonicity of the means (µj
ℓ)j , and

the last inequality follows from the definition of L.
So by contradiction, assume that one of these events, say bigi,b (for 1 ≤ b ≤ a),

happens and balGreedyS(I) picks the slab X
n∗

i +a
i . In particular, it picks the earlier

slab X
n∗

i +b
i . But from Lemma 3, we know that balGreedyS(I) picks slabs according

to an execution of the greedy procedure. But then (5-3) gives that balGreedyS(I)
must have picked all the cheaper slabs Xj

ℓ for all j ≤ n∗
ℓ and ℓ ̸= i as well (i.e.,

X
n∗

i +b
i can only be picked after all these slabs). But this means that balGreedyS(I)

has picked a total of at least

(n∗
i + b) +

∑
ℓ̸=i

n∗
ℓ = (n∗

1 + . . . + n∗
k) + b = S + b ≥ S + 1

slabs, which is a contradiction. This concludes the proof of the claim. ■

Therefore, since the events bigi,b are independent we can upper bound the
probability that Ni ≥ n∗

i + a as

Pr(Ni ≥ n∗
i + a) ≤ Pr

(
none of the events {bigi,b}b≤a happen

)
=
∏
b≤a

(1 − Pr(bigi,b)).

(5-4)

We now lower bound Pr(bigi,b) for b ≥ 1. Again, since the optimal solution
OPTS(Ī) is given by the greedy procedure (using monotonicity of the expected
instance Ī = (µj

i )i,j and Lemma 2), the last slab µℓ
n∗

ℓ
it picks at any option ℓ costs

at most the slab µ
n∗

i +1
i right after the last one picked at option i (otherwise it would

have picked µ
n∗

i +1
i instead of µ

n∗
ℓ

ℓ ). Since ∆ is the smallest gap between means, we
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actually have that µ
n∗

i +1
i ≥ µ

n∗
ℓ

ℓ + ∆ for all ℓ ̸= i, and thus

Pr(bigi,b) = Pr(Xn∗
i +b

i ≥ max{µℓ
n∗

ℓ
: ℓ ̸= i} + L)

= Pr(Xn∗
i +b

i − µ
n∗

i +b
i ≥ max{µ

n∗
ℓ

ℓ : ℓ ̸= i} − µ
n∗

i +b
i + L)

≥ Pr(Xn∗
i +b

i − µ
n∗

i +b
i ≥ max{µ

n∗
ℓ

ℓ : ℓ ̸= i} − µ
n∗

i +1
i + L) (by monotonicity)

≥ Pr(Xn∗
i +b

i − µ
n∗

i +b
i ≥ −∆ + L)

≥ top (by def. of top).

Plugging this onto the inequality (5-4) gives the exponential bound Pr(Ni ≥
n∗

i + a) ≤ (1 − top)a. Using non-negativity and integrality, “integrating” these tails
gives the expected value of (Ni − n∗

i )+ and so we get

E(Ni − n∗
i )+ =

∑
a∈N

Pr(Ni ≥ n∗
i + a) ≤

∑
a∈N

(1 − top)a ≤ 1
top

.

This concludes the proof of the lemma.

Putting Lemmas 7 and 8 together gives a clean upper bound on the slab cost
of the algorithm.

Corollary 3.
E slab(balGreedyS(I)) ≤ OPTS(Ī) + kL

min
.

Finally, we just need to control the max actual slab cost paid by
balGreedyS(I). The same proof of Lemma 6 also proves this result.

Lemma 9. Let S be the slabs picked by an execution of GreedyS(I). There is an
optimal solution S∗ for the expected instance Ī (i.e. achieving OPTS(Ī)) such that
in every scenario

max
s∈S

X(s) ≤ max
s∗∈S∗

µ(s∗) + L.

Proof of Theorem 5. Let S be the slabs picked by balGreedyS(I), which by
Lemma 3 are the same picked by an execution of GreedyS(I). Applying the de-
composition of the cost of the algorithm into slab plus stash costs of Observation 1,
then the control of the (expected) slab and stash costs from Corollary 3 and Lemma
4, and then using Lemma 9, we have

E balGreedyS(I) = E slab(balGreedyS(I)) + E stash(balGreedyS(I))

≤ OPTS(Ī) + Lk

top
+ k · Emax

s∈S
X(s)

≤ OPTS(Ī) + Lk

top
+ k · max

s∗∈S∗
µ(s∗) + kL,
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where S∗ is an optimal solution for the expected instance Ī . This concludes the proof
of the theorem.
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6
Computational experiments

We have conducted preliminary experiments to validate the performance of
our algorithm balGreedy. Both simulated and real instances of the problem are
considered, which are described in detail below. We have compared balGreedy
against OPT, roundRobin (defined in Example 1) as well as with the following
other baseline algorithms:

randomArm: Randomly choose an option, invest in it until obtaining S

conversions.

uniformInvest: Invest equally in all options until obtaining S conversions.

offBestArm: This algorithm chooses the (offline) best option, and invest in
it until obtaining S conversions. Notice that this is not an online strategy since it
depends on the prior knowledge of which option is the best one.

6.1
Exponential marginal costs in real instances

Consider the following simple modeling for the process of displaying an adver-
tisement: A company wants to receive web traffic to its website. Then, this company
decides to invest money in an online marketing channel in banner advertisements to
obtain clicks of the users. So the banner is displayed to many different users. When
any of them receives the advertisement impression, he has a constant p probability
of converting (click in the banner in this case) after the advertisement is displayed
to him. If each impression in this channel costs an amount of money c, we have
that the investment X necessary for a conversion to occur is defined by a geometric
distribution

X ∼ c · geometric(p).

We define the conversion rate as

λ =
(

p

c

)
.

In the limit case, when p tends to zero, the random variable X tends to an exponential
distribution

X ∼ exp(λ).
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This limit case fits in many online marketing channels because usually each unique
ad impression has a small probability to result in a conversion. This type of modeling
was already used before (for example, in [9]) to describe user behavior when
interacting with advertisements.

6.2
Simulated data

We generated synthetic instances with 5 options and 50 marginal costs in
each option. In order to generate these sequences, we started from probability
distributions with a linearly increasing mean in the order of marginal conversion
in each option, as shown in Figure 6.1. Since the expected values of marginal
conversion cost are modeled from linear functions, we used the slope parameter
(saturation rate of the options) and intercept (initial marginal conversion cost values)
to model the expected values of marginal conversion in the options. Then, each
expected marginal conversion cost could be model as

EXj
i = Ai · j + Bi,

where A and B are the slope and intercept vectors, respectively.

Figure 6.1: Depiction of how the marginal costs are generated in the synthetic
instances.

Besides the expected values, we need to define the distributions to generate
the marginal costs values. The chosen probability distributions were the uniform
(with interval size equals to 60), the exponential and the constant, that is a degener-
ation that models deterministic instances. The exponential distribution was chosen
because it should better model the users’ behavior when interacting with the adver-
tisement, as we said before.

In order to simplify the comparison among the results for each instance cate-
gory, we considered only 2 sets of possibilities for each of the parameters intercept
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Instance Category Distribution Intercept Slope
1 constant similar similar
2 constant similar different
3 constant different similar
4 constant different different

5 uniform similar similar
6 uniform similar different
7 uniform different similar
8 uniform different different

9 exponential similar similar
10 exponential different similar
11 exponential similar different
12 exponential different different

Table 6.1: Simulated instance categories

Parameter Label Values
Intercept similar {150, 175, 200, 225, 250}
Intercept different {50, 200, 350, 500, 650}

Slope similar {2, 2, 2, 2, 2}
Slope different {10, 20, 30, 175, 200}

Table 6.2: Parameters for each instance category

and slope. We labeled the possibilities as similar, in which all the options have
similar values, and different, where the variability among the options parameters
is higher. Table 6.2 defines the 12 instance categories that were used to generate
the synthetic data. In addition, Table 6.2 shows the exact values used for the labels
similar and different in intercept and slope parameters.

The result for each algorithm and instance category was obtained from com-
puting the average of the result got by the algorithm in 20 simulated instances gener-
ated from the instance category. For each generated instance, we attributed the slope
and intercept values randomly among the options, without hard defining the values
for each option.

Table 6.2 shows the average results obtained by each of the policies in the
simulated instances. Among the online policies, balGreedy was the best in all the
instance categories. In instances 1, 5 and 9, the algorithms uniformInvest and
roundRobin obtained good results, which should be expected as all the options
have similar expected marginal costs functions in these instances, what favors the
policies that distribute regularly the conversions between the options, avoiding
saturated conversions. On the other hand, the algorithm randomArm had the worst
performance in all of the instance categories.
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Table 6.3: Algorithms comparison in simulated instances
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In instances 1, 3, 5, 7, 9 and 11, the offBestArm algorithm obtained a better
result than balGreedy, obtaining an average result lower than balGreedy in 1.0%,
10.7%, 1.6%, 11.9%, 4.7%, 25.2% for each of these instance categories. The differ-
ence between them was higher in instances with slope similar and intercept dif-
ferent. These instances favor the offBestArm policy because one of the options,
precisely the one with intercept component equals to 50, will be very profitable.
Then, the strategy that always invests in it will obtain a good result (for example, in
instance categories 3 and 7, the offBestArm performed equal to OPT).

6.3
Real data

We obtained data from Facebook Ads for a certain Brazilian advertiser com-
pany over a certain period to build the real instances. This advertiser was investing
in marketing campaigns to obtain traffic to its website. Thus, the company has in-
vested in some Facebook audiences to impact the social network users with images
to possibly get clicks on its ads.

The campaign performance data is available to the advertiser, but there are
some important observations to be done about how this data is available on Facebook
Ads and how we have processed it to build the instances:

– We considered the ad impression number as the investment costs to build the
instances, instead of the spent cost in Brazilian currency, because there are
some problems when we use it to define the marginal conversion costs, for ex-
ample: auction quality metrics1, exchange fluctuation2 and auction inflation3.

– The data provided by Facebook Ads to the advertiser are obtained in hourly
blocks of grouped metrics. Then, for each hour we have access to the respec-
tive total click value and ad impression for the audiences in which the adver-
tiser was investing. When the ad clicks are greater than 1 in an hourly grouped
data block, we can not know what was the exact marginal conversion cost
for each of these clicks. In this case, we are considering all the clicks having
the same marginal cost, dividing the accumulated cost among the number of
clicks. See Figure 6.2.

We built 3 different instances from the private Facebook Ads data provided
by the advertiser. Each instance is composed of the marginal costs (measured in

1The Facebook Ads continuously defines quality metrics to the campaigns, that directly impact
the cost per ad impression in the auctions (If an advertiser has worse metrics that the competitors, he
will pay more per ad impression). One of these metrics depends on the user experience after clicking
on the ads, which is related to website health.

2The Brazilian currency is not so stable, then there is a constant change in intrinsic currency value.
3The advertisement is exposed in Facebook Ads in blind auctions, that are very dynamic. Thus,

the cost per ad impression changes very drastically when new competitors enter or leave the auction.
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Figure 6.2: Instance building example - 1) in the first hour, we do not know exactly
when the first conversion (click) happens, but we consider that marginal conversion
cost is 500 in this situation; 2) the impressions from the second hour only sums for
the next conversion, as there is no conversion in the second hour; 3) we divide the
1200 accumulated marginal cost between the 2 conversions that happen in the third
hour.

ad impressions) extracted from different Facebook audiences in different periods,
following the method shown in Figure 6.2. We ran the algorithms for S equals the
number of slabs in the options (in the same instance, all the options have the same
number of slabs). Below, we describe in more detail the instances.

– The first real instance is composed of 500 marginal costs for 5 different
audiences, as shown in Figure 6.3.

– Similarly, the second instance is formed by 400 marginal conversions for 5
different audiences. See Figure 6.4.

– Finally, the third instance is composed of 300 marginal conversion for 3
different audiences. See Figure 6.5.

We would like to know how similar to exponential distributions the real
marginal conversions should be. Naturally, as there are some limitations in the data
extraction process to obtain the real instances, and because of the saturation effect
mentioned before, the empirical distributions are not expected to be fully adherent
to exponential distributions. We compared the empirical cumulative distributions
(CDF) of the marginal conversion costs for each real instance with an exponential
distribution having the same mean value. We could observe a reasonable exponential
behavior for some options and instances (for example, option 5 in real instance 1 and
option 3 in real instance 3). See figures 6.6, 6.7 and 6.8.

We compared the same algorithms adopted in the experiments with simulated
instances. We ran the algorithms 20 times for each instance and we computed the
average result for each of them.
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Table 6.4: Algorithms comparison in real instances
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Figure 6.3: Real instance 1 - Sequence of marginal conversions for each of the 5
options. The blue line is the moving average of these values for a window of 20 data
points.

Table 6.3 shows that balGreedy was the best in real instances 1 and 2. How-
ever, both roundRobin and offBestArm performed slightly better than balGreedy
in real instance 3. In this same real instance, all the algorithms performed similarly
(the cost for the best algorithm in this instance category was 5.25% lower than the
worst one).

In instances 1 and 2, the saturation effect is more evident than in the instance 3,
it is one of the reasons why the balGreedy performed better in the first 2 instances.
Besides, the algorithms roundRobin and uniformInvest obtained good results in
the first 2 instances too, because these algorithms regularly explore all the options,
taking advantage of the cheap first conversions in all options.
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Figure 6.4: Real instance 2 - Sequence of marginal conversions for each of the 5
options. The blue line is the moving average of these values for a window of 20 data
points.
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Figure 6.5: Real instance 3 - Sequence of marginal conversions for each of the 3
options. The blue line is the moving average of these values for a window of 20 data
points.
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Figure 6.6: Real instance 1 - The empirical CDF of marginal costs distribution for
the 5 options and the exponential distribution CDF with the same average.
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Figure 6.7: Real instance 2 - The empirical CDF of marginal costs distribution for
the 5 options and the exponential distribution CDF with the same average.
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Figure 6.8: Real instance 3 - The empirical CDF of marginal costs distribution for
the 5 options and the exponential distribution CDF with the same average.
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7
Conclusions

In this work, we introduced the problem AdInvest, that models the budget
allocation problem in marketing channels from the advertiser’s point of view. We
defined what should be an instance of this problem and we proved guarantees of the
algorithm in many types of instance that were defined to model possible marketing
channel behaviors. Although other works have also studied problems related to
online optimization in marketing channels, we are not aware of any model that
approached the advertiser’s investment problem as proposed here.

The proven guarantees assure that the balGreedy policy is an efficient al-
gorithm considering many types of deterministic and random instances, obtaining
relative near OPT results in most of them. Among the types of instance considered
in this is work, we highlighted those that model the saturation effect in marketing
audiences, that is the natural loss of efficiency in a channel as the advertiser explores
the audiences.

In addition, we computed computational experiments for synthetic and real
data, in which the balGreedy obtained good results compared to the online alter-
native algorithms and even the offline policy offBestArm.
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