
André de Souza Moreira

Hybrid Cloud Rendering for Industrial-Plant
CAD Models

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática.

Advisor: Prof. Waldemar Celes Filho

Rio de Janeiro
March 2020

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



André de Souza Moreira

Hybrid Cloud Rendering for Industrial-Plant
CAD Models

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Informática. Approved by the Examina-
tion Committee.

Prof. Waldemar Celes Filho
Advisor

Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Marcelo Gattass
Departamento de Informática – PUC-Rio

Prof. Marcos de Oliveira Lage Ferreira
Instituto de Computação – UFF

Prof. Renato Fontoura de Gusmão Cerqueira
IBM Research – IBM

Rio de Janeiro, March 13th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



All rights reserved.

André de Souza Moreira

André Moreira received his Bachelor degree in Computer Sci-
ence from the Federal University of Maranhão (UFMA) in
2019. He also holds a Master degree in Computer Science with
emphasis in Computer Graphics from PUC-Rio. Since gradua-
tion, he is involved in R&D projects, initially at NCA Institute
(UFMA) and more recently at Tecgraf Institute (PUC-Rio).
The student’s research interests include Visualization, Real-
Time Rendering, Medical Imaging, Artificial Intelligence and
Data Science.

Bibliographic data
Moreira, André de Souza

Hybrid Cloud Rendering for Industrial-Plant CAD Models
/ André de Souza Moreira; advisor: Waldemar Celes Filho. –
Rio de janeiro: PUC-Rio, Departamento de Informática, 2020.

v., 75 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Renderização na nuvem;. 3.
Modelos CAD;. 4. Modelos Massivos;. 5. Plantas industriais..
I. Celes Filho, Waldemar. II. Pontifícia Universidade Católica
do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Acknowledgments

I would like to express my deepest thanks:
To my advisor, Professor Waldemar Celes, for all contributions and support
that turned this work possible and more valuable.
To my family for unconditional support and affection.
To my darling Suellen Motta, for your companionship, opinions, and support.
To all my friends and colleagues that somehow contributed for this work,
especially from GEDi/Tecgraf, for sharing knowledge and experience over the
years and for the inspiration that created this work.
Thanks to PUC-Rio and Tecgraf, for their financial assistance and support.
This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Abstract

Moreira, André de Souza; Celes Filho, Waldemar (Advisor). Hybrid
Cloud Rendering for Industrial-Plant CAD Models. Rio de
Janeiro, 2020. 75p. Tese de doutorado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Industrial-plant CAD models play an important role in engineering
project management. Despite the advances in computing power in past
decades, rendering these models remains challenging due to their complexity
and large data volume. Different areas of computing have succeeded in
adopting cloud services to process massive data. However, when it comes
to cloud rendering, there is still a lack of cloud rendering services for CAD
models. In this paper, we propose a hybrid cloud rendering architecture
for CAD models, dividing the rendering task between client and server. In
addition to reducing server overhead, this approach affords greater resilience
to the system against variations of network latency. Finally, this work also
introduces a metaheuristic-based workload selection algorithm to determine
the set of objects to be drawn on the client side. Our results demonstrate
that the proposed methodology allows efficient visualization of massive
CAD models even under adverse conditions such as clients with limited
devices and high connection latency. Lastly, we discuss remaining research
opportunities for cloud rendering, opening avenues for future improvements.

Keywords
Cloud Rendering; CAD Models; Massive Models; Industrial

Plants.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Resumo

Moreira, André de Souza; Celes Filho, Waldemar. Renderização
Híbrida na Nuvem para Modelos CAD de Plantas Industriais.
Rio de Janeiro, 2020. 75p. Tese de Doutorado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Os modelos CAD de plantas industriais desempenham um papel
importante no gerenciamento de projetos de engenharia. Apesar dos avanços
do poder computacional nas últimas décadas, a renderização destes modelos
continua sendo um desafio devido à sua complexidade e ao grande volume de
dados. Diferentes áreas da computação obtiveram êxito ao adotar serviços
na nuvem para processar dados massivos. Contudo, quando se trata de
rendering na nuvem, ainda há uma deficiência destes serviços para modelos
CAD. Neste trabalho, propomos uma arquitetura de rendering híbrido na
nuvem para modelos CAD, dividindo a tarefa de renderização entre o cliente
e servidor. Além da diminuição da sobrecarga do servidor, esta abordagem
garante ao sistema maior resiliência a variações de latência da rede. Neste
trabalho também é introduzido um algoritmo de seleção de carga de
trabalho baseada em metaheurística para determinar o conjunto de objetos
a ser desenhado no lado do cliente. Nossos resultados demonstram que a
metodologia proposta permite a visualização eficiente de modelos CAD
massivos mesmo em condições adversas, como clientes com dispositivos
limitados e latência alta na conexão. Por fim, discutimos as oportunidades
de pesquisa restantes para renderização em nuvem, abrindo caminhos para
melhorias futuras.

Palavras-chave
Renderização na nuvem; Modelos CAD; Modelos Massivos; Plan-

tas industriais.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Table of contents

1 Introduction 13
1.1 Contributions 16
1.2 Document Organization 17

2 Cloud Rendering Background 19
2.1 Introduction 19
2.2 Classification 20
2.3 Advantages of Cloud Rendering for Industrial-plant models 21
2.4 Latency Analysis 22
2.5 Related Work 23
2.5.1 Remarks on Existing Works 25

3 Hybrid Rendering of CAD Models on the Cloud 27
3.1 Efficient Data Representation and Rendering 28
3.2 Client-Server Communication Model 31
3.3 Server Architecture 33
3.4 Client Architecture 37
3.5 Latency Analysis on Hybrid Cloud Rendering 41

4 Client Workload Selection 43
4.1 Assessing Spatial Uniformity 45
4.1.1 Index of Dispersion 47
4.2 Multi-objective Optimization 48
4.3 Simulated Annealing 49

5 Results 52
5.1 Dataset 53
5.2 Rendering Performance 54
5.3 Workload Selection 57
5.4 Image Quality 59

6 Future Research Opportunities 63
6.1 Artificial Intelligence 63
6.1.1 Super-Resolution Imaging 63
6.1.2 AI-based Image Completion 64
6.2 Autonomic Computing 64
6.3 Semantic Optimization 66

7 Conclusion 68
7.1 Future Work 69

Bibliography 71

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



List of figures

Figure 1.1 CAD model of an oil-platform 13
Figure 1.2 Schematic representation of cloud-gaming services. The

user inputs are reported to the server, which runs the game logic
and produces the game rendering to the client. 14

Figure 1.3 Example of valves and equipment in a industrial-plant
CAD model 15

Figure 2.1 Steps of a regular cloud rendering system 19
Figure 2.2 Cloud rendering systems classification 20
Figure 2.3 X Window server-client model. The X client application

can communicate with both a local or remote server. 23

Figure 3.1 List of objects with parametric definition 30
Figure 3.2 Representation of the rendering process of the parametric

objects 31
Figure 3.3 Data flow representation of our rendering system 31
Figure 3.4 Event-based communication model 33
Figure 3.5 Connection establishment between client and server 34
Figure 3.6 Types of images in video compression. 35
Figure 3.7 Exponential moving average for smoothing the client’s

performance function 36
Figure 3.8 Representation of lag compensation and path correction 37
Figure 3.9 Workflow for producing the final frame 38
Figure 3.10 DIBR operation 39
Figure 3.11 Forward-backward DIBR procedure 39
Figure 3.12 (a) Cracks on remote image surface due to image mag-

nification. (b) Hole-filling using the median filter. 40

Figure 4.1 Examples of different workload selection results 44
Figure 4.2 Analysis of spatial distribution of point pattern 46
Figure 4.3 Representation of the calculation of index of dispersion 48
Figure 4.4 Roulette-wheel selection 50

Figure 5.1 Comparison between rendering each object individually
and instanced rendering 55

Figure 5.2 Comparison of rendering performance for three different
configurations: rendering entire model on the server (higher
performance), rendering whole model on the client (higher
image quality), and rendering on both sides. 55

Figure 5.3 The response delay for both local and remote frames be
available for rendering on the client-side. 56

Figure 5.4 The normalized fitness function of our workload opti-
mization method for three different client profiles. We also plot-
ted the temperature values over different iterations. 57

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Figure 5.5 The same model presented in Figure1.1, but rendering
approximately 27% objects of the original model. 58

Figure 5.6 Fragmentation of object surfaces 59
Figure 5.7 Image quality comparisson between the original raw

image and the same image compressed with H.264 codec. 60
Figure 5.8 Filling the holes from the DIBR image using median filter. 60
Figure 5.10 The influence of time displacement error and image com-

pression on the image quality. The bubble size is the resulting
SSIM value for the given system settings. 61

Figure 5.9 Empty regions due to camera rotation movement 62

Figure 6.1 Representation of the stages from MAPE-K feedback loop. 65
Figure 6.2 First-order Markov Chain representation for 3D model

navigation. The transitions matrix shows the probabilities for
state changing considering the state 5 as the current state. 66

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



List of tables

Table 3.1 List of parametric objects. 29
Table 3.2 Descriptions of the notations used for latency analysis 41

Table 5.1 Technical Specification of the computers used in our tests. 53
Table 5.2 Details of the models used in our experiments. 54

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



List of abreviations

AEC – Achitecture & Construction
ANNs – Artificial Neural Networks
BIM – Building Information Modeling
CAD – Computer-Aided Design
CSR – Complete Spatial Randomness
DIBR – Depth Image Based Rendering
DMA – Direct Memory Access
DNNs – Deep Neural Networks
FPS – Frames per Second
GPGPU – General Purpose Graphics Processing Unit
GUI – Graphical User Interface
HUD – Heads-up display
IaaS – Infrastructure as a service
LAN – Local Area Network
LOD – Level of Detail
QoE – Quality of Experience
QoS – Quality of Service
WAN – Wide Area Network

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



It’s the possibility of having a dream come true
that makes life interesting.

Paulo Coelho, The Alchemist.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



1
Introduction

The efficient rendering of massive CAD (Computer-Aided Design) models
is a long-time challenging task in computer graphics. These models play a
significant role during the whole life cycle of engineering projects, especially in
facility management. In order to make their use effective, CAD models must
retain all details of the real-world product. This fine-grained representation
leads to massive data volume, as shown in Fig. 1.1, requiring high processing
power to handle them efficiently.

Figure 1.1: Example of CAD model of an oil-platform plant. This model
contains nearly 2 millions objects.

As the industrial-plant projects have increasingly become more complex,
more risks in terms of costs, deadlines, and safety are involved. The Building
Information Modelling (BIM) aims to mitigate the risks by promoting the
use of 3D CAD models as a central database to support decision-making,
activity planning, and execution (Chen et al., 2005; Dunston & Wang, 2005;
Rivard, 2000). The recent popularization of this approach led to CAD models
to become even more detailed, massive, and complex. At the same time, we
have witnessed both a slowdown in advances of computational power and

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 1. Introduction 14

LOW LATENCY VIDEO

CONTROL COMMAND

TV

THIN DEVICES

USER INPUTS

SERVER RESPONSE

TRANSMISSION

Figure 1.2: Schematic representation of cloud-gaming services. The user inputs
are reported to the server, which runs the game logic and produces the game
rendering to the client.

the popularization of portable devices, such as tablets. The rendering of such
models for interactive applications has become more challenging.

In the past few years, several computer areas have experienced an increase
in data volume. As a solution, most of them are shifting the heavyweight
tasks to the cloud. When it comes to rendering graphics contents, the cloud
gaming industry has achieved a notable progress (Shea et al., 2013). The server
is responsible for all graphics processing, including the game execution. The
rendered images are encoded by the server and then streamed to the client. The
client only acts as a dummy terminal, decoding the received images, listening
to user inputs and reporting them to the server. The server can also be used for
streaming the game match to an audience. The whole cloud gaming workflow
is depicted in Figure 1.2.

When we look beyond the cloud gaming field, though, there is a lack of
studies about how to employ cloud rendering in other visualization applica-
tions. When it comes to the rendering of industrial-plant CAD models, the
existing cloud rendering solutions do not suit the needs since they are mostly
general-purpose services. They lack efficient algorithms and optimizations to
handle these models properly. In this work, we aim to fill the gap between
cloud rendering services and the rendering of industrial-plant CAD models.
Our solution relies on a hybrid rendering approach, in which rendering tasks
are performed both in client and server sides.

In our method, we split the model into two disjoint sets of objects, one
to be rendered by the server and the other to be rendered by the client.
While the user is navigating through the scene, each side renders its object
set. The server produces a dual depth-augmented image and streams it to the

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 1. Introduction 15

Figure 1.3: Example of valves and equipment in an industrial plant model. The
majority of the objects are a composition of simple geometries like spheres,
cylinders, parallelograms, and others.

client. The client combines both remote and local images to produce the final
image. We decouple the client from the server by using an asynchronous event-
based communication model between them. This way, we prevent halting the
client operations waiting for a delayed server response. In such delayed cases,
the client performs an image-based rendering on the last available remote
image to provide a temporary result to the user. Due to this asynchronous
communication, the server uses a prediction model for the client camera in
order to anticipate future remote frames.

Since our cloud rendering targets a specific domain, we can benefit from
prior known particularities of CAD models to achieve some improvements.
For example, CAD models of industrial plants are mostly composed of objects
with simple geometries, such as spheres, cylinders, and others (Figure 1.3).
We describe these objects using only their parameters, which is more efficient
for storage, transmission, and rendering. Besides, the high redundancy of these
objects allows us to boost the rendering performance using instanced rendering.

We also present a novel metaheuristic-based workload selection to deter-
mine the objects to be rendered on the client side. This method attempts to
provide spatial awareness to the user. When the server connection is lost or
suffers from high latency, the user can still navigate through the scene using
only local rendering.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 1. Introduction 16

Lastly, the conduction of this work raised some possible research oppor-
tunities in different areas of computing. For example, we encourage the use of
machine learning techniques, like image completion, to improve the final image
quality. Autonomic computing is another important investigation field to mit-
igate the high resource variations commonly seen in cloud environments. We
detail each one of them and discuss how they can be used to provide overall
improvements for the current state of this work.

The results show that our system provides a reasonable experience to
the users, even on constrained networks. We assessed our method in terms of
rendering performance, latency analysis, image quality, and workload division.

As a disclaimer, this work is not concerned about scalability matters.
Although this is an important subject for cloud rendering services, we intend to
address it in future works. At this moment, the system architecture scalability
relies on vertical-scaling (i.e., adding more resources to the existing server).

1.1
Contributions

To the best of our knowledge, this is the first work that addresses
the rendering of industrial-plant CAD models on the cloud. This study also
resulted in two papers published on premier conference proceedings, as follows:

– A. Moreira, P. Ivson and W. Celes, "Hybrid Cloud Rendering System for
Massive CAD Models," 2018 31st SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), Paraná, 2018, pp. 234-241.

– A. Moreira and W. Celes, "Metaheuristic-Based Workload Selection for
Hybrid Cloud Rendering of CAD Models," 2019 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
Sydney, Australia, 2019, pp. 87-94.

Our additional contributions are:

1. Final image with better quality. The image produced on the server
is compressed before its transmission to the client. This process reduces
the image quality. On the other hand, the image produced by the client
is not compressed, preserving its high fidelity. Hence, the combination of
these two images results in a more pleasant looking image than if it was
fully rendered on the server side.

2. Workload division. We divide the client object set into two disjoint
sets: static and dynamic. The former is determined during the connection
establishment phase. This set aims to afford spatial awareness to the

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 1. Introduction 17

user. The latter set is a view-dependent object set, thus it is constantly
updated by the server. Its main goal is to ensure that the objects closer
to the client camera will be rendered on the client. Consequently, we
prevent wasting the limited client resources with unnecessary work.

In addition, our approach also poses the following advantages:

1. Efficient data representation. Instead of using only the traditional
triangular meshes for describing the geometry of all objects, we also
represent some well-known shapes (spheres, cylinders, torus, and others)
using only their parameters. This representation is much more efficient in
terms of rendering, transmission, and storage. In our tests, we achieved
a compression ratio of up to 87% of the original model size.

2. Less dependency on network conditions. Our asynchronous-based
communication model, along with the hybrid rendering, ensures that
the client application is always responding to the user events. When
the server response is delayed or in cases of disconnections, the client
application shows partial results to the user. These partial results are
obtained by the combination of the local rendering image with the
warping on the last available remote image. When the required remote
image is finally available on the client side, the partial result is replaced
by the complete final image.

3. Resource savings: although one of the significant contributions of cloud
rendering systems is enabling low-end devices to handle massive models,
high-end computers can also make use of cloud rendering solutions. When
it comes to CAD models, this can be quite common since these models
are stored on the server. In this case, the hybrid approach can fully take
advantage of the available processing power by assigning more jobs to be
performed on the client side. Consequently, the burden on the server is
reduced, allowing it to handle larger scenes and/or more users.

1.2
Document Organization

The remainder of this work is organized as follows. Chapter 2 introduces
cloud rendering techniques and discusses them in terms of their classification,
advantages, and latency analysis. In addition, that chapter analyzes the
existing alternatives and draws a parallel with ours, enlightening the reasons
the existing works are unfeasible to suit the needs of rendering industrial-plant
CAD models.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 1. Introduction 18

We discuss our proposal for a hybrid cloud rendering method for
industrial-plant CAD models in Chapter 3. We present our method in terms
of data format, client, and server architectures. Then, in Chapter 4, we detail
our metaheuristic-based workload selection to choose the objects to be drawn
on the client. There, we establish some criteria in order to afford spatial aware-
ness to the user. In Chapter 5, we report the results of our tests in terms of
rendering performance, image quality, and workload division.

In Chapter 6, we point out some research opportunities in the field of
Cloud Rendering. During our research, we identified some further promising
investigations that could enhance our solution. Lastly, in Chapter 7, we present
our final remarks and future works.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



2
Cloud Rendering Background

2.1
Introduction

A remote or cloud rendering system consists of two network-connected
computing devices, where one is responsible for rendering graphical contents
and the other for displaying them. The computer that provides the rendering
services is named server, while the consuming computer is known as a client.
Apart from the generation of remote frames, a cloud rendering system can also
involve rendering tasks on the client side. This is the case, for example, of our
hybrid cloud rendering discussed in this work.

In interactive cloud rendering systems, the user sends commands to
the application using an input device, like keyboard and mouse. The client
interprets these events and notifies the server about them. Once notified, the
server updates its internal state and produces a new remote image, encodes,
and transmits it to the client. Once the remote image is available on the client
side, the rendering system decodes and displays it on the screen. This entire
workflow is depicted in Figure 2.1.

N
et

w
o

rk

Thin Client Cloud Rendering Server

User
Interactions

Decoder

Update
Server State

GPU
Rendering

EncoderStreamer

Figure 2.1: Representation of the steps on a regular cloud rendering system.

The strategy of producing graphical content on a remote computer is
not new. This idea has its roots in the past century when the costs of the
computers were prohibitive, and processing capacity was limited. The solution
adopted by large companies was to acquire a few powerful computers, known
as mainframes, that could afford processing for dummy terminals.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 20

In 1975, Gordon E. Moore predicted that the processing power would
double every two years for at least a decade since smaller transistors could
be packed even more tightly, boosting the performance and reducing costs.
This prediction is known as Moore’s Law (Schaller, 1997). In this scenario,
personal computers have become cheaper, and their computing power has
hugely increased, whereas the interest in using remote computers for rendering
graphical content has been left aside.

Recently, however, the remote rendering area has attracted attention
again due to the combination of different factors. In the last years, we have
witnessed massive data generation both in volume and detail, whereas the
advance of the processing power of the microchips has slowed down. In
addition, the usage of portable devices (e.g., smartphones and tablets) has
also expanded. These devices have limitations in energy and processing power.
This scenario brought back the necessity of using remote services to overcome
the limitations in such environments.

2.2
Classification

Depending on the type of data transmitted from the server to the client,
the system can be classified into two major categories: model-based or image-
based (Shi & Hsu, 2015).

Figure 2.2: Classification of cloud rendering systems by the data type ex-
changed between client and server.

Model-based systems send geometric information to the client, typically
as triangular meshes. The size of transmitted data is proportional to how
complex or detailed the underlying representations are. In contrast, image-
based systems render the scene entirely on the server side and only display
the resulting images on the client. Unlike model-based systems, the size of
transmitted data mostly depends on screen resolution, regardless of the scene
complexity. This property made image-based systems popular since they are
more robust to the variation on the network quality.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 21

Some cloud rendering systems, however, streams both geometries and
images to the client, as depicted in Figure 2.2. Compared to the model-based
and image-based systems, this approach is usually a happy medium between
image quality and system performance. In this approach, the server transmits
both the remote images and some parts of the model to the client. The client
renders these objects and uses the remote image only to complete the local
image. In other similar approaches, the server renders the fine-grained version
of the model and transmits it along with a coarse version of the model. When
the client needs to produce a new frame, it renders the coarse version locally
and uses the remote frame as a texture to reproduce the details of the original
model.

Generally, the transmitted geometries are a simplified version of the
original model, and the way the image is used varies for each system. For
example, some use the image as a texture to encode the details of the original
geometry that are missing on its simplified version (Reinert et al., 2016). In
others, the client renders the objects assigned to it and uses the remote image
only to complete the image produced locally (Bao & Gourlay, 2006).

2.3
Advantages of Cloud Rendering for Industrial-plant models

Cloud services present several widely known advantages like cost savings
in acquisition, setup, and maintenance. Nonetheless, the employment of cloud
rendering services for CAD models brings forth other relevant advantages,
especially for large companies:

– Data Security: CAD models often contain industry secrets and other con-
fidential information. Having these models stored in a central repository
on the server, the users do not need to gain direct access to the files,
preventing the cases of data misappropriation.

– Team integration: As built (Pătrăucean et al., 2015) is an engineering
methodology that claims the virtual model should be updated at the
same pace as the real facility evolves. As a result, the model is constantly
being updated. Working locally, users are very likely to be using different
versions of the same model, which may weaken the team integration.
On a cloud system, the model only needs to be updated on the central
repository, and all users will have access to the same and newest model
version.

– Device Expansion: The use of portable devices, such as tablets and
smartphones, for visualizing industrial plants is increasingly common.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 22

However, the computing power of these devices is limited, and battery
consumption is critical. Offloading rendering tasks to remote computers
mitigate these two problems.

– Rendering Improvements: Since a cloud rendering engine runs on a
well-known device, the engine can provide state-of-the-art rendering
algorithms and optimizations to the users.

2.4
Latency Analysis

The ultimate challenge of any cloud rendering system consists of pro-
ducing remote frames at the lowest possible Response Delay (RD), which is
the elapsed time since the user performs some interaction until some response
is presented back. The cloud system must ensure low latency rates, prevent-
ing the degradation of the Quality of Experience (QoE) (Wang & Dey, 2009).
The tolerable delay for first-person shooter games is around 100ms, or ap-
proximately ten frames per second (fps) (Claypool & Claypool, 2006). The
reduction of system latency is achieved by shortening the delay of each step
involved in the production of the final image. When considering a conventional
remote rendering system, as depicted in Fig. 2.1, the RD is defined as the sum
of three components:

RD = ND + SD + CD,

where:

– Network Delay (ND): the time required to exchange data between the
client and the server. It is also known as network round-trip time.

– Server Delay (SD): the time the server takes since a new event arrives
on it until the new frame is produced.

– Client Delay (CD): the elapsed time since a new remote frame is
available on the client side until this frame is displayed on the screen
to the user.

When we break the response delay down into its main components, we
observe that the network delay is the most challenging one. Differently from the
server delay and client delay, which their results are proportional to the server
and client workloads, the network delay highly varies due to several events.
Unfortunately, it is very hard to predict these events in advance, resulting in
the difficulty in estimating the performance of this component. Consequently,
considering the cloud rendering systems which follow the overall steps depicted

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 23

Figure 2.3: X Window server-client model. The X client application can
communicate with both a local or remote server.

in Figure 2.1, regardless of how efficient their client and server operations are,
their final results highly depend upon the network performance.

2.5
Related Work

Cloud rendering systems have been widely used in different fields, ranging
from scientific visualization to the game industry. In this section, we discuss
some of the most notable works.

Despite the recent popularization of cloud rendering services, the idea
of rendering a graphic content on another machine is not a novelty. In the
early computing years, mainframes were responsible for providing computing
services to computers with no processing capabilities, known as dummy
terminals. One of the services provided by mainframes involved rendering
the graphical environment system for these dummy terminals. In 1984, the
X Window System (Scheifler & Gettys, 1986) was designed to provide 2D
GUI elements using a server-client architecture. The X application, which
runs on the client side, only informs the X server about user interactions. The
server then interprets these interactions and provides a graphical content to the
application. Despite the client/server architecture of the X Window System,
it is very common to see applications where both the client and the server are
running on the same machine, working like a regular application. Figure 2.3
shows the workflow of an X Window System in which two applications run on
the client side, but one is communicating with a remote server, and the other
is consuming the local server’s services.

Another widely adopted variant for remote rendering is the remote

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 24

desktop sharing. One of the most popular examples is the Virtual Network
Computing (VNC) protocol. This protocol allows to remotely control another
computer by sending input device events and replicating the remote display
on the local computer. This way, it is possible to run a complete application
on a remote computer, displaying the results on the local machine.

The recent proliferation of high-end cloud services, as well as the massive
adoption of the high-bandwidth network, enabled the creation of powerful 3D
remote rendering systems. WireGL (Humphreys et al., 2001) is a scalable
graphics system that allows users to send graphics commands to graphics
servers. Inspired by the WireGL system, the Chromium project (Humphreys
et al., 2002) has emerged, providing an interface to control the graphics
commands on clusters. This framework leads to a mobile-devices-oriented
solution that was used on the server side to manage the rendering commands
(Lamberti & Sanna, 2007).

More recently, researches on distributed rendering (Abraham et al., 2004;
DeFanti et al., 2011; Renambot et al., 2004) have become popular. The
distributed rendering fits well when the rendering computation is complex for a
single server or when the system needs to render multiple views, as in the case
of CAVE’s (Cave Automatic Virtual Environment) (Peternier et al., 2007).
The central idea of distributed rendering systems is the division of the final
viewport into disjoint spatial regions. The system assigns different computers
to each one of these viewport regions. Once all regions are available, the system
generates the final image by stitching the tiles.

The Game as a Service (GaaS) (Ahmadi et al., 2015; Al-Rousan et
al., 2015; Semsarzadeh et al., 2015) has been pushing the boundaries of
cloud rendering in recent years. Different from the traditional video game
consoles, with all computation being processed locally, cloud gaming services
enable lightweight devices to run the latest games. Despite the similarities
to a walkthrough CAD application, the main concern of these services is the
game state synchronization. Model massiveness is rarely a concern for these
platforms since their models are known previously and the rendering engine
can optimize them. In addition, the existing platforms usually comprise a set of
inter-connected dependent modules, such as input, rendering and game logic.
Thus, if any of these modules is not performing well, the whole system will
suffer from slow performance. For these reasons, the existing cloud rendering
solutions do not fit well the requirements for rendering massive CAD models.

Remote rendering has also been employed for scientific data (volume
rendering) (Tamm & Krüger, 2014). The authors used hybrid rendering to
attenuate the network latency. The server keeps several versions of the same

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 25

volume data, each one with different level-of-detail (LOD). Depending on the
network conditions and the client processing power, the server estimates which
version the client should render locally. While the client renders the coarse
version of the model, the server renders a more fine-grained version of the
model. The goal is to determine a workload schedule that enables synergy
between the two sides to provide rendering results to the user as fast as possible.

The hybrid rendering approach has also been used for VR (Virtual
Reality) application (Lai et al., 2019). This work splits the VR workload in
rendering foreground and background frames. In this works, the background is
drawn by the server, while the foreground is rendered on the client. According
to the authors, the background frame has a much heavier rendering load due
to rich details and complex textures. For such reasons, it is reasonable the
pre-rendering the background on the server.

The recent advances in both WebGL and HTML5 motivated some works
to study the hybrid rendering using web browsers (Dyken et al., 2012). In that
work, both sides render the same geometry, but the client renders a simplified
version to reduce network latency. The remote image is transmitted to the
client in order to increase the details of the local rendering. Despite the recent
advances, web applications still have limited access to computer resources.

The majority of cloud-based solutions rely on virtualized remote comput-
ing resources provided by third-party organizations, known as Infrastructure
as a Service (IaaS). These services are charged accordingly to the amount
and duration of used computing capabilities. In this scenario, some works
have emerged aiming at the reduction of the cost involved using these ser-
vices(Azumah et al., 2018; Lin et al., 2017; Loukopoulos et al., 2018). They
tackle this problem by establishing a minimal task set that still produces the
desired results but requires minimal computing capabilities as possible. Gener-
ally, this problem involves at least two opposite objective functions: minimize
the service cost and maximize the system performance, resulting in a multi-
objective optimization problem.

2.5.1
Remarks on Existing Works

Our work is closely related to general research on remote rendering of
3D models. However, none of the existing works provide a perfect fit for our
requirements. Although some of them share common issues and solutions, they
are not concerned about handling a large data volume. The massiveness of
CAD models is usually the bottleneck for visualization systems. In order to
provide a satisfactory user experience, the model massiveness must be taken

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 2. Cloud Rendering Background 26

into account, especially for using the model particularities to improve the
rendering performance.

At first glance on the existing works, we notice that the communication
between the client and the server is tightly coupled, making the client very
dependant on the server response. This high dependency is critical for inter-
active applications. Instead, in our method, we use the client as a complete
and independent application that only uses incoming data to improve the user
experience.

With regards to use web browsers as the client platform, they are not
yet a viable solution. In our tests, although the computer has considerable
resources, the browser restricts the use of these resources for security reasons.
Since we are dealing with massiveness, we demand full access to the hardware
resources.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



3
Hybrid Rendering of CAD Models on the Cloud

In this chapter, we present our proposal for rendering industrial-plant
CAD models on the cloud. Our goal is to overcome the limitations of the
existing cloud rendering works for CAD models, such as handling massive
data volume and low response delay. We address the former by establishing
a set of nine standard primitives (Table 3.1) in which each one of them can
be described by a set of parameters. The key feature of this representation
is its compactness, allowing efficient storage, transmission, and rendering. We
approach the latter issue by employing a hybrid rendering mechanism, i.e.,
rendering a small portion of the model on the client and the remaining on the
server. Besides, we immediately display a new image to the user as soon as
the local rendering is done, instead of waiting for the remote frame. Lastly,
the hybrid rendering also allows us to render textual elements on the client
side. This way, we ensure their readability since their rendering results are not
compressed.

In order to guide our investigation, we first established the following
requirements that a hybrid cloud rendering service must meet in order to
achieve robustness and efficiency:

1. Efficient data representation: network performance is the most crit-
ical aspect of cloud services because it is impossible to make early as-
sumptions on the network performance. It is beyond system control. For
this reason, we can only ensure that the data exchanged between the two
points are as compact as possible. Besides, a compact data representation
also reduces the necessity of huge capacity storage devices. In addition, it
also important using an efficient representation when rendering massive
models since the video memory is usually very constrained on low-end
devices.

2. Efficient rendering: the primary task of any rendering service is the
rendering itself. The massiveness of CAD models turns this task even
more important since they demand large graphics memory (VRAM)
and high processing power. An efficient rendering engine allows more
rendering tasks to be executed on both sides, reducing at the same time

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 28

the server’s workload and turning the client more independent from the
server responses.

3. Controlled workload: the workload on the client side must not exceed
the client’s processing capacity. The remote processing becomes useless
if the client is continuously busy processing its tasks and, for this reason,
can barely consume the incoming data.

4. Low response rates: any interactive application must provide low
response rates to guarantee a reasonable user experience. Considering
a client/server application, this means it must not rely upon network
conditions in order to provide some feedback to the user. Otherwise, the
system can suffer from high latency variations. Partial scene rendering
results are allowed, as long they convey a spatial awareness to the user.

All these requirements guided our investigation to achieve an efficient
cloud rendering system. In the next sections, we discuss the details of our
method from the following perspectives: efficient data representation and
rendering, communication model, client and server architectures.

3.1
Efficient Data Representation and Rendering

A striking feature of CAD models is the high object redundancy. About
95% of objects from industrial-plant models are a composition of simple objects
such as spheres, planes, cones, cylinders and others (Requicha & Voelcker,
1982). Such objects can be defined by their underlying parameters.

Despite the traditional triangle mesh representation being very proper
for rendering purposes, it is an inefficient representation in terms of storage
and transmission due to its verbosity. For this reason, we establish a set of
standard primitives with nine well-known objects that each one of them can
be described by the parameters of the underlying shape. All parametric objects
and their respective parameters are listed in Table 3.1. This approach plays a
central role in satisfying our requirement for efficient data representation.

If we consider a triangle mesh, each triangle is composed of three vertices.
Every vertex has two attributes: position and normal, each one represented
by three floating-point scalars. A mesh with k non-indexed triangles would
require k × 72 bytes1. Moreover, at least nine additional floats (36 bytes) may
be necessary to instantiate the object in the world: translation, rotation, scale
(36 bytes). For the sake of simplicity, we denote these transformations as M:

1Considering IEEE 754 single-precision binary floating-point format.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 29

Table 3.1: List of parametric objects.

Geometry Type Geometry Description Total Size
(bytes)1

• Cuboids
• Ellipsoids
• Spherical Cap

M 36

• Cylinders M + 2 offsets + radius + height 52
• Sloped Cylinders M + radius + height + 4 slopes 60
• Truncated Cone M + 2 offsets + 2 radii 52
• Square Frustum M + 2 offsets + 4 side lengths 60
• Rectangular Torus
• Circular Torus M + 2 radii + sweep angle 48

a 3x3 matrix containing the values for translating, rotating, and scaling the
object in each axis of the coordinate system. Note that this is not the matrix
used to represent the affine transformation in the homogeneous space.

In contrast, some of the objects defined by our set of standard primitives
can be represented by only the M matrix. The information to describe a right
circular cylinder is already encoded on the M matrix. Both the diameter of
the base and its height is already encoded on the scale transformation. The
cuboids and spheroids are represented in the same way. For the other class of
objects, only a few additional parameters are necessary.

In addition to efficiency in data transmission, the parametric representa-
tion also allows thin clients to draw a higher number of objects. The rendering
system only needs a single regular grid on the client memory to render all
these objects. Therefore, the consumption of VRAM (Video Ram) is constant
regardless of the number of objects and their surface resolution. In order to
transform the regular grid into the final object shape, each parametric object
has a custom vertex shader that properly deforms the grid, as depicted in
Figure 3.2.

Finally, we address the high redundancy object of CAD models by taking
advantage of hardware-accelerated instanced rendering. This way, the system
only issues one draw call for each geometry type. This approach vastly reduces
the rendering cost. Previous research has shown that rendering performance
can be improved from 6x to 10x by using this approach (Santos & Celes Filho,
2014). Nonetheless, it is important to keep in mind that such a feature may
not be available on the client side due to limited graphics capabilities.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 30

(a) Cuboid (b) Ellipsoid (c) Spherical cap

(d) Cylinder (e) Sloped Cylinder (f) Truncated Cone

(g) Square Frustum (h) Rectangular Torus (i) Circular Torus

Figure 3.1: Categories of objects with parametric representation supported by
our rendering system.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 31

(a) (b)

Figure 3.2: Rendering of parametric objects. (a) regular grid used for rendering
all objects. (b) resulting sphere from the deformation of the regular grid.

Server ClientCAD Models
Dataset

Client Object SetRemote 
Frames

User 
Events

System
Performance Data

Local Rendering

Image Composition

HUD RenderingRemote 
Rendering

Camera Model
Prediction

Client Object
Selection

Figure 3.3: Representation of our cloud rendering system architecture. The
yellow boxes are the data type exchanged between client and server, while the
blue boxes are the tasks each side executes.

3.2
Client-Server Communication Model

In this section, we present our communication model employed to ex-
change information between the client and the server.

In cloud services, the definition of a communication model is a crucial task
once the network performance is beyond developers’ control. In this section,
we describe the communication flow between the server and the client in a
session. The communication model involves two machines playing two roles:
client and server. The server provides rendering capabilities through an internet
connection or an enterprise network. All CAD models are stored in a repository
on the server side. A schematic overview of our system architecture and the
data types exchanged between client and server are presented in Figure 3.3.

Communication starts with the client requesting a model to the server.
Along with this request, the client also informs about its computing capabilities

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 32

(CPU, memory, and graphics card). In the first time the client connects to the
server, the server uses this information to determine the proper workload that
the client can handle without the loss of efficiency. The server has a predefined
list of the most common graphics cards and the ideal workload for each one.
The next time this client connects to the same server, its historical performance
data may also be taken into account to increase or decrease the client workload.

The server then assigns objects for the client to render. It chooses only
parametric objects, due to their compactness, requiring less bandwidth for
transmission and memory for rendering. The client object set is subdivided
into two disjoint sets: static and dynamic sets. The static object set is defined
during the connection establishment phase (Chapter 4), and it remains the
same during the session. On the other hand, the server is continuously sending
new objects to the client’s dynamic object set (Section 3.3). The ratio between
the number of objects in each client’s object set is defined for each model by
the repository maintainer.

During the model transmission, the server also sends the model’s meta-
data, such as creation date, author, and engineering data. Some of them are
displayed as HUD (Head-up display) elements (i.e., 2D elements drawn over
the final image). All textual elements are always rendered on the client side to
avoid harming their readability due to compression. As soon as the first objects
arrive on the client side, the client starts rendering, and the first frames are
presented to the user.

At first glance, we notice that the existing cloud rendering architectures
are composed of several sequential and highly dependent steps, as shown in
Figure 2.1. If any of these steps is not performing well, the entire operation
of the system will be compromised. Consequently, the user experience is
very sensitive to network conditions. We propose to decouple client and
server operations using an asynchronous event-based communication model, as
depicted in Figure 3.4. The client is always running its task cycle, regardless of
whether the remote data is available or not. Therefore, the client application
is always responding to user input events, enabling the user to always navigate
through the scene.

The client application executes its task loop whenever the user interacts
with the application or a remote data arrives, such as new objects or remote
frames. In the first case, the client starts rendering the local scene at the same
time it notifies the server about the event. The client also sends the world
position in which the user event took place. The server uses this information
to adjust its camera position, as discussed in Section 3.3.

After rendering the local image, the client completes it using the last

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 33

Client

N
ET
W
O
R
K

Server

User Events + 
System Statistics

Remote Frames

Figure 3.4: Schematic representation of the event-based communication model.
The dashed lines represents the weak dependency due to the asynchronous
communication between the client and server

available remote image and then displays the result to the user. Due to the
asynchronous communication model, we do not halt the client waiting for the
remote frame associated with the new local viewpoint. When this remote frame
becomes available, the client enters again in the running state and uses it to
improve the quality of the displayed image.

From the server perspective, it continuously produces new frames while
the user is navigating on the scene. These images are encoded and transmitted
to the client. Along with these frames, the server also sends the camera
configuration used in their production. This way, the client can use them to
combine with its local image. The process of establishing a connection until
the first frame is displayed to the user is depicted in Figure 3.5.

Lastly, the client is frequently sending performance statistics to the
server, like network latency and local rendering performance. The server uses
such information to improve the future workload division for this particular
client, and also to predict future frames, as discussed in the next section.

3.3
Server Architecture

For each incoming connection, the server launches a new rendering
engine that runs in a separate thread. A shared bus is responsible for the
communication between the clients and their associated engine instance.

The server is continuously rendering new frames while its queue of user
events is not empty. For each camera viewpoint, the server produces two depth-
augmented images: primary and depth-peeled images. The primary image is
a regular frame, whereas the second one is produced using the depth peeling
technique (Liu et al., 2009). The peeled frame is important to mitigate missing

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 34

Server Client

Ti
m
e

Rendering DMA Transfer (D)Encoding

Figure 3.5: Interaction between client and server during connection establish-
ment phase. The first frames are displayed after the first geometries arrive on
the client side.

pixels on the client’s final image due to disocclusion.
After rendering the primary frame, the server starts a Direct Memory

Access (DMA) to download both color and depth frames from VRAM. In the
meantime, it starts the rendering of the peeled frame. This approach avoids
wasting time synchronizing CPU and GPU. Lastly, the server encodes the
depth-augmented images and transmits them to the client along with the
camera settings used in their rendering.

In our implementation, we use the H.264 codec (Luthra et al., 2003) to
encode the color image, and we use the LZ4 (Bartıik et al., 2015), a lossless real-
time compression algorithm, to encode the depth information. The H.264 codec
supports three different types of frames: I-frame (Intra-coded picture), B-frame
(Bidirectional predicted picture), P-frame (Predicted picture). An I-frame is a
complete image like any other regular image file. The P-frame holds only the
changes in the image from the previous frame. This way, to decode a P-frame
we only need its previous image. Lastly, the B-frame encodes the difference
between the current image and both the preceding and the following frame.

Despite the B-frames being more compact than the others, its use
increases the system latency because they need both one preceding and one
succeeding frames for decoding them. This way, the client would need buffering
frames until the required succeeding frame becomes available. For this reason,
we only use I-frames and P-frames during the encoding. The first is a self-
contained frame, and the latter only needs one preceding frame to be decoded,
as depicted in Figure 3.6.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 35

Figure 3.6: The three major image types used in the video encoding: p, b and
i. The b-frame is the one which introduces more latency because it needs one
preceding and one succeeding frames.

Due to our asynchronous event-based communication model, the server
must anticipate the rendering of future frames. Otherwise, the remote frames
would likely be very outdated once the client does not halt their operation,
waiting for the server response. The client always uses the last available remote
frame to complete its local rendering. The more different the client and server
viewpoints are, the more artifacts, such as holes, will appear in the final image.
To overcome this issue, the server uses a camera prediction model to estimate
future positions of the client camera. This whole prediction model involves two
mechanisms: lag compensation and path correction.

The lag compensation estimates the time displacement of the server cam-
era to compensate for the extra overhead in the remote frames production. This
overhead involves the encoding/decoding of the color and depth images, the
network transmission, and other additional tasks, as explained in Section 3.5.

The camera movement of both sides follows a uniform linear motion:
S ← S0 + V∆t, where S and S0 are, respectively, the final and initial camera
positions, V is the velocity and ∆t is the time period considered for the next
image rendering. The client’s time period, ∆tc, is the elapsed time of the last
local rendering. The time period on the server camera is ∆ts ← ∆tc +k, where
the k is a constant that grasp the extra overhead of the remote frames. The k
value is approximately the response delay of the remote frames (Section 3.5).

Since the computation of the server camera displacement involves several
noisy values, the server smooths them using the exponential moving average
(EMA) function. Differently from the simple moving average (SMA) function,
the EMA function gives more weighting, or importance, to recent data. This

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 36

Figure 3.7: Client rendering performance and the resulting smoothing curves
using a 10-period simple moving average (SMA) and a 10-period exponential
moving average (EMA).

behavior is important in historical data, once recent events are more likely to
happen again. Figure 3.7 depicts the behavior of both EMA and SMA on the
client rendering performance.

Since the server camera is displaced, whenever the user changes the client
camera direction, the server camera is in an invalid path. In this case, the path
correction fixes the server camera by moving it back to the place where the
event took place. Next, the server camera is displaced again toward the new
direction.

Figure 3.8 depicts both lag compensation and path correction: while the
client camera is rendering the image from t0 time point, the server camera
is displaced in time, rendering the next predicted position. If in this moment
the user changes the camera orientation, the client notifies the server about
this event. Nonetheless, the server camera is only notified at t1 time point due
to the network latency. At this moment, the path correction moves the server
camera back again to the position in which the event took place, and then the
camera is displaced again, but now towards the new direction.

Lastly, the server is constantly updating the objects on the client’s
dynamic object set as the user navigates through the world. The goal of this
set is to ensure that the closest objects are drawn on the client side. This
is important to improve the image quality since near objects are likely to
be visible on the final image. In addition, in case of disconnections, the near
objects still be visible. This result is crucial for some engineering activities,
such as equipment inspections.

Also, when the user rotates the camera, the last remote image available
is often useless because almost no pixels can be reused on the final image once

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 37

Figure 3.8: Representation of the lag compensation and path correction.

the user is looking in another direction. The dynamic object set also mitigates
this issue since the closest objects are surrounding the camera.

The server selects the objects to the dynamic set using the k-nearest
neighbor algorithm (Bhatia et al., 2010), where the k is the size of the dynamic
object set that was defined at the connection establishment. Whenever the
server sends a new object set to the dynamic set, it also computes the bounding
box of this set. In each rendering loop, the server uses the predicted camera
to check if the client leaves the bounding box of the last dynamic object set.
If so, the server selects a new set and transmit again to the client.

3.4
Client Architecture

The client architecture comprises two threads: rendering and resource
threads. The first one is primarily responsible for rendering the local image
and combining it with remote frames. The latter manages the incoming
and outgoing data over the network. Besides, it receives remote frames,
decompresses, and uploads them to the client VRAM as textures. When the
remote frame is ready for rendering, the resource thread notifies the rendering
thread.

The client renders its local scene into a texture using offscreen rendering
(Oat, 2008). This way, if the user stops navigating and a delayed remote frame
arrives, we do not need to render the local scene again to update the final
result. We only combine the last result of the local rendering with the new
remote frame. To produce the final image, the client combines three images
according to their depth: one local and two remotes (the primary and peeled

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 38

Figure 3.9: Schematic representation of client’s operation to produce the final
frame.

images (Liu et al., 2009)). Then, the client draws the HUD (Heads-up display)
elements over this image (Figure 3.9).

Since the server camera is displaced in time, the viewpoints of the remote
and local images are unlikely to match. Thus, the client has to adjust the
viewpoint of the remote image to match its local camera viewpoint. The client
uses the depth-image based rendering (DIBR) (Fehn, 2004) on the remote
image to perform the viewpoint adjustment. The DIBR is a procedure for
multi-view image generation. It uses a depth-augmented image as a reference to
produce novel images from different viewpoints. To synthesize novel images, we
first warp the points from the original image plane to the 3D world coordinates
and then back-project these points onto the virtual image plane, which is
located at the required viewing position. Figure 3.10 depicts this operation.

DIBR operation often produces holes on the image surface. They come
mainly from disocclusion and undersampling. We mitigate the first issue by
using the peeled remote frame. If the user is in a region with a high density
of objects, when translating the camera, the client will be able to rapidly
reconstruct the structures that are now visible.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 39

PosWORLD = VS
-1 * PS

-1 * PosNDC1 PosFINAL = VC * PC * PosWORLD2

Figure 3.10: Depth-image based rendering operation. The V and P are the
view and projection matrices, respectively. The subscript s and c are related
to the server and client transformations.

Figure 3.11: Schematic representation of forward-backward depth-image based
rendering.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 40

(a) (b)

Figure 3.12: (a) Cracks on remote image surface due to image magnification.
(b) Hole-filling using the median filter.

Holes due to undersampling occur when the user suddenly quickly
approaches remote objects. In this case, the client has a larger region to
cover with remote pixels. While the new remote frame is unavailable, the
client will have to use the last remote frame it has, which does not have
enough pixels to cover the new region. As a result, some cracks appear on
the surface (Figure 3.12). We investigated three different approaches to reduce
these cracks: pixel splat (Bao & Gourlay, 2006), dilation of the depth image
(Xu et al., 2013), and using the median filter on the color image (McGuire,
2008). In our tests, the last approach provided the best results.

We propose to use forward-backward DIBR, instead of the regular DIBR
(Figure 3.11). At the first moment, in the forward step, we only apply the
regular DIBR operation on the depth source image. Then, in the backward
phase, we retrieve the pixel color by filtering the pixel’s source neighborhood
using the median filter. The image filtering can successfully fill small cracks at
the small cost of slightly reducing the image definition.

Even though these artifacts can harm the user experience, they only
appear on temporary frames. After stop navigating, the last remote frames
will arrive, and these frames are exactly from the same viewpoint as the local
image. Therefore, the client skips the DIBR operation, and the final result is
a high-quality image.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 41

Table 3.2: Descriptions of the notations used for latency analysis

Symbol Description
vi Indicates the viewpoint i.
Imgvi Image from viewpoint vi.
rdr(vi) Rendering from viewpoint vi.
enc(Imgvi) Encoding image Imgvi .
dec(Imgvi) Decoding image Imgvi .
W vi→v′i Image Warping from the viewpoint i to the viewpoint i’.

cmb
Combination of remote and local images to produce the
final image.

c, s
When subscribed or overwritten it relates to the client and
server, respectively.

down Transference from VRAM to RAM.
upl Transference from RAM to VRAM.

3.5
Latency Analysis on Hybrid Cloud Rendering

As discussed in Section 2.4, the response delay is the elapsed time from
a user event occur until the system provides a response to this event. At first
glance, we notice that the response delay on the existing remote rendering
works is very dependant on the network performance. In our hybrid rendering
approach, since the system produces two responses (local and remote frames)
for each user event, we break our response delay into two components: the local
response delay (LRD) and the remote response delay (RRD). The former is the
time to the local frame be available to the user, whereas the second is related
to the remote frame. The LRD ensures the system responsiveness, even when
the server responses are delayed or unavailable. The RRD affects the quality
of the final image since it measures how fast the client has an updated version
of the remote image.

Since we decouple the client operation from the server responses, the LRD
is similar to a regular on-premise rendering service, i.e., a rendering engine
running solely locally. In both cases, the response to the user only depends on
the client processing time (CD). Considering the notation defined in Table 3.2,
the LRD can be described as:

LRD = CD

LRD = rdrc(vc) +W vs→vc + cmb(Imgvc
c , Img

vc
s )

The local response delay only depends on the local rendering (rdrc(vc))
and the composition with the remote image (cmb(Rvc

c , R
vc
s )). If the viewpoints

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 3. Hybrid Rendering of CAD Models on the Cloud 42

from local and remote images are different (vs 6= vc), the client also performs
a DIBR on the remote image to adjust the remote viewpoint to the local
viewpoint(W v→v+):

Imgvc = W v→v+(Imgvs)

When it comes to the remote response delay (RRD), it comprises the op-
erations from the production of the remote frame until this frame be available
on the client side. Generally speaking, it depends on the remote rendering, the
encoding on the server side, the network delay for data transmission, and the
decoding of the remote frame in the client side:

RRD = rdrs(vs) + enc(Imgvs
s ) + dec(Imgvs

s ) +ND

These operations can be analyzed as follows: first, the server starts
rendering its scene and produces the remote image.

Imgvs
s = rdr(vs)

Next, the color and depth images are transferred from GPU to CPU.

< Imgvs , Dvs >= down(Imgvs)

Next, the server encodes the resulting images:

Imgvs
compressed = enc(< Ivs , Dvs >),

When the encoded frame arrives on the client side, the client decodes it:

< Imgvs , Dvs >= dec(Imgvs
compressed)

Finally, the client uploads the remote color and depth images to VRAM.
Only after this operation, the remote image is ready to be used by the client:

Imgvs = upl(< Ivs , Dvs >)

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



4
Client Workload Selection

A key feature in hybrid cloud rendering systems is their high resilience
to network conditions. If the communication between the client and server has
any issue, the client application can still display partial results to the user.
This resilience is only possible due to the local rendering combined with the
image-based rendering of the remote image.

For this reason, the workload division plays an important role in hybrid
cloud rendering systems. In order to grant a good user experience regardless
of the network conditions, we must ensure that the local frame is sufficient to
allow the user still navigate through the scene, even when the connection is
lost. To achieve this goal, we must ensure that the local rendering can grant
spatial awareness to the user. We approach this establishing two criteria for
the selection of the client object set: the objects must be as large as possible,
and their spatial distribution must be uniform.

Industrial-plant CAD models contain several small objects, such as
screws, lamps, spools, nuts, bolts, and others. These objects are almost visually
imperceptible when compared to the overall model dimensions. Therefore,
selecting the largest scene objects prevents wasting the limited client resource
rendering objects that are very likely to contribute to only a few or none pixels
on the final image. Besides, this selection approach also improves the final
image quality because the local pixels have higher quality than the remote
ones. Both the image compression and DIBR rendering reduces the quality of
remote pixels.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 44

(a) (b)

(c) (d)

Figure 4.1: Examples of different client workload selection. (a) Complete CAD
model. (b) Selection of 49’520 small objects such as valves and screws. (c)
Selection of larger objects, but clustered. (d) Desired result, i.e., large objects
with uniform spatial distribution.

On the other hand, only selecting the largest objects to the client can
also lead to spatial clustering. When the local objects are clustered, there will
be a large number of regions that will not be represented in the local frame.
Imposing a uniform spatial distribution on the client object set ensures that
every region will be covered by some object. As a result, the system grants
spatial awareness to the client regardless of the remote image being available.
This way, in the cases where the remote image is delayed, the user can still
navigate towards the desired region. After some moment, the remote image
will be available, and the client can improve the current image.

In short, our workload selection process poses a multi-objective optimiza-
tion problem: we want to determine the best object set that has the largest
objects at the same time these objects are evenly distributed on the scene.
The stated problem is an example of a combinatorial problem. Nonetheless,
this class of problems is NP-hard, meaning that there is no known polynomial-
time algorithm to solve them. On the other hand, we do not need the optimal
solution to achieve our goal. We only need a set of objects in which its ele-
ments can provide an experience close to the optimal set. For this reason, we
use a metaheuristic-based algorithm, Simulated Annealing (Kirkpatrick et al.,
1983), to determine which objects to render on the client side. In the next

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 45

sections, we discuss how to assess the two discussed criteria. Lastly, we explain
the Simulated Annealing and how we use this metaheuristic to solve the stated
optimization problem.

4.1
Assessing Spatial Uniformity

There is an increasing number of research topics that need to evaluate
how individuals, particles, or components are distributed in a region. In this
section, we present a brief overview of these methods, and then we describe
how we evaluate the spatial distribution of our client object set.

Theoretical Foundations

The Complete Spatial Randomness (CSR) (Assuncao, 1994) is the basis
for spatial uniformity assessment of point patterns. In the spatial analysis, a
common first approach is to compare the investigated data with the complete
spatial randomness, which follows a homogeneous Poisson distribution. Several
methods have been developed to evaluate uniformity. In the high level, these
methods belong to one of the following types: quadrat-based or distance-based
(Kam et al., 2013), both methods are depicted in Figure 4.2.

In quadrat-based methods, the region under investigation is partitioned
into small-sized regular cells, named quadrats. For each quadrat, there is an
associated counter which indicates the number of points contained in this
subregion. The CSR hypothesis asserts that the cell-count distribution for each
cell must be the same. These methods are very popular due to their simplicity
and ease of implementation. In our work, we use the Index of Dispersion (Perry
& Mead, 1979), a quadrat-based method, to evaluate the degree of uniformity
of the client object set.

Nonetheless, there are some drawbacks to quadrat methods. The first
is the loss of spatial information from the point pattern since these methods
only use the counts. In addition, the process of partitioning the region under
investigation has much influence on the final result. In the majority of the
cases, there is no natural choice of the partition size, and defining its ideal
number is challenging.

As an alternative to quadrat-based methods, other methods assess the
degree of uniformity using the observation of the distance between the points
and their nearest neighbors. As the name suggests, the nearest neighbor
indicates the closest point for a given point, considering all the points in the
pattern. Other methods do the same observations, but instead of calculating

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 46

(a) (b)

(c)

d

(d)

Figure 4.2: Analysis of spatial distribution of point pattern. (a) Point pattern
following the Poisson distribution. (b) Point pattern with clustering. (c)
Evaluation of spatial distribution using quadrat-based approach. (d) Two
examples of distance-based point pattern analysis: nearest neighbor and fixed-
radius near neighbors.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 47

the nearest neighbor from all points that belong to the observation set, they
pick random points contained in the investigated region. The average of the
distances between the points can be used as a metric that indicates clustering
or dispersion.

4.1.1
Index of Dispersion

The index of dispersion (Perry & Mead, 1979) is one of the simplest and
most popular indicator for assessing spatial uniformity. It is a quadrat-based
method, so it requires the division of the space into regular cells. Since CAD
model scenes are naturally static and well-known, we can properly determine
the appropriate division resolution for each model.

The dimensions of an industrial-plant model along the ground plane
are incomparably larger when compared to its height. Therefore, enforcing a
uniform distribution considering only this ground plane (i.e., the XY plane) is
enough to grant spatial awareness to the user. We assess the spatial distribution
of the candidate object set as follows:

1. Divide the XY plane into q regular quadrats,

2. Associate a counter to each quadrat,

3. Project each object on the XY plane (Fig 4.3).

4. Increment the quadrat counter for each object projection that touches
its region (green shadow in Fig. 4.3b). The final counter value indicates
the number of objects that touch the quadrat.

At the end of this process, we can evaluate the index of dispersion:

ID = (q − 1)s2/x̄

where q denotes the number of quadrats, and x̄ and s represents the mean and
standard deviation of counts. High values indicate non-uniformity or clustering.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 48

(a)

1 1 1

111

1 1

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b)

Figure 4.3: Evaluation of spatial distribution using quadrat-based methods.
(a) Projection of a cylinder onto XY plane. The green shadow represents the
resulting projection. (a) Resulting grid of counters after projecting the cylinder.

4.2
Multi-objective Optimization

The general multi-objective optimization problem can be described as:

minimize
x

F (x) = [F1(x), F2(x), . . . , Fk(x)]

subject to gj(x) ≤ 0, j = 1, 2, . . . ,m,
hl(x) = 0, l = 1, 2, . . . , e,

where k is the number of objective functions, m is the number of inequality
constraints, and e is the number of equality constraints. x is a vector of decision
variables, and F (x) is a vector of objective functions.

Typically, for a nontrivial multi-objective optimization problem, there is
no single global solution that optimizes all objective functions at the same
time. This occurs when the objective functions are conflicting. In this case,
the improvement in one objective function leads to the worsening of the other.
Because of this, there exist several possible Pareto optimal solutions. A Pareto
(Marler & Arora, 2004) optimal outcome is one such none of the objective
functions can be improved in value without degrading some of the other
objective values. All Pareto optimal points lie on the boundary of the feasible
criterion space, named Pareto frontier.

The scalarization method is often used for solving multi-objective prob-
lems. It is used for obtaining a single-objective optimization problem such that
its optimal solutions are also Pareto optimal to the original problem. One of the
most common general scalarization methods for multi-objective optimization
is the global criterion method in which all objective functions are combined to
form a single function. With different parameters for the scalarization, differ-

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 49

ent Pareto optimal solutions are produced. The linear scalarization is defined
as:

min
x∈X

k∑
i=1

wiFi(x),

where the weights of the objectives wi > 0 are the parameters of the scalariza-
tion.

In our method we use linear scalarization to transform our two objective
functions, the volume and spatial distribution, into a single-objective function:

minimize
x∈X

f ′(x) = w′ID(x)− w′′V ol(x)

where ID(x) is the index of dispersion, V ol(x) is the volume of the set, w′ > 0
and w′′ > 0 are the weights of the scalarization. The volume of the set is
obtained by summing the volumes of the oriented bounding box of objects,
so we have an approximation that is fast to compute and provides reasonable
results.

4.3
Simulated Annealing

Annealing is a technique used in metallurgy, which consists of two steps:
heating and cooling. First, the temperature is increased, resulting in the
melting of the material. Then the temperature is decreased slowly, cooling
the material until it solidifies again. If the material is cooled very quickly, then
several separate crystal structures appear, producing an arrangement that is
much more disordered.

Simulated Annealing (Kirkpatrick et al., 1983) is a probabilistic method
that exploits the annealing process to obtain low-cost solutions for combinato-
rial optimization problems. It may be modeled as a random walk on a search
graph, whose vertices are all possible states, and whose edges are the candidate
moves. The ultimate goal is the energy reduction by moving from an arbitrary
initial state to another with lower energy.

At each iteration, the system probabilistically decides between stay at
same state or moving to neighboring state. The probabilistic approach leads
the system to move to states of lower energy. This step is repeated until the
system reaches a state which provides the desired result, or until a given stop
criterion has been achieved. The system can reach the global optimum if it
runs for a long enough amount of time.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 50

Metaheuristics that explore the solution space by seeking better neighbor-
ing states can be stuck at local optimum. To prevent this condition, movements
to worse states are also allowed, but with less probability.

The Simulated Annealing starts in high temperature, meaning that the
system will more easily accept any candidate solutions, even those that are
worse than the current one. As time goes by and the temperature decreases,
the system becomes more selective. The speed of temperature decay determines
how fast the system will provide the solution. Conversely, it determines how
close the final solution will be to the optimal one.

The probability P (e, e′, T ) of moving from an state s to a neighboring
state s∗ depends on their energy function, e = E(s) and e′ = E(s∗), respec-
tively, and time-varying parameter T (the temperature). When T approaches
zero, the probability P (e, e′, T ) must tend to zero if e′ > e, and to a positive
value otherwise. Therefore, for small temperature values, the uphill movements
(i.e. replace current solution to a worse one) become less frequent. The accep-
tance probability from the Simulated Annealing original work (Kirkpatrick
et al., 1983) decreases exponentially with how bad this move is, which is the
amount energy by which the solution is increased:

P (e, e′, T ) =

1 ∆E < 0

e
−∆E
KT ∆E > 0

where ∆E is the difference between the two states, i.e., ∆E = e′−e and k is the
Boltzmann, a constant that relates the system energy with the temperature
values.

Figure 4.4: Representation of roulette-wheel selection. The fittest individual
has the largest share of the roulette. Conversely, the weakest one has the
smallest portion. In our work, the object fitness corresponds to the underlying
object volume.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 4. Client Workload Selection 51

The parameters which control the simulated annealing process are the
initial temperature, the temperature decay rate (cooling step), and the Boltz-
mann constant.

We present the pseudocode of our simulated annealing process in Alg. 1.
Our system state is the current candidate object set, and the system energy
is the result of our fitness function to the current candidate object set. We set
the initial state as the n largest objects of the scene, where the n is the number
of objects to transmit to the client. This set is a reasonable guess since the
largest objects are likely to cover more quadrats when evaluating the index of
dispersion. At each iteration, we move to a neighbor state by replacing 5% of
the objects from the current candidate set by objects that are not in the current
state. We select the neighbor objects using roulette-wheel selection (Lipowski
& Lipowska, 2012). The area of each object in the wheel is proportional to its
volume (Figure 4.4). This way, we have more chances to select objects that
would be in the optimal set.

Algorithm 1 Simulated annealing algorithm
Input:

T : Temperature
K: Boltzmann’s constant
α: Reduction Factor

Output:
best: Best Set

1: best← INIT()
2: while Termination criterion is not satisfied do
3: next← NEIGHBOUR(best)
4: ∆E ← f(next) − f(best)
5: if ∆E < 0 then
6: best← next
7: else if e−∆E/KT < random(0,1) then . uphill movement
8: best← next
9: T ← α× T

return best

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



5
Results

In this chapter, we evaluate our proposal in terms of rendering perfor-
mance, workload selection, and image quality. We developed a prototype using
C++17 as the main programming language and OpenGL 3.1+ for computer
graphics. We employed the Protocol Buffers library (Google Inc., 2001) for data
serialization and Boost Asio (Boost, 2015) for data transmission. We ran the
experiments using two computers whose hardware specifications are described
in Table 5.1. The image resolutions was set to 720p.

We used two different network setups in our tests. In the first arrange-
ment, we connected both computers on a private local area network (LAN)
using the wired connection. In the second, both computers are connected to
different networks: the server is still connected in the same private local net-
work, but the client has only access to an internet connection. Since our server
is not visible outside its private network, the client connects first with a proxy
server. A proxy server is an intermediate computer that sits between the two
endpoints. The proxy server makes requests on behalf of the client. Therefore,
the client never talks directly to the resource.

In order to use the proposed method in production, an affordable alter-
native relies on deploying the service to a commercial IaaS (Infrastructure as
a service). However, at the moment we write this work, the cloud services that
provide rendering services are all located in other continents. Consequently,
the latency in this communication is always over 100 ms, which turns their use
prohibitive to our purposes. Therefore, in our tests, we only have taken into
account the first two scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 53

Table 5.1: Technical Specification of the computers used in our tests.

Client Server

Processor Intel(R) Core(TM)
i7-7700HQ @ 2.80GHz

Intel(R) Core(TM)
i7-8700 @ 3.20GHz

Graphics Card Intel HD Graphics
Model 4000

Nvidia GeForce
GTX 980

Memory 2x8GB DDR3
1600 MHz

16GB DDR4
2400MHz

Network Interface
Qualcomm Atheros QCA9377
Wireless Network Adapter

866Mbps @ 5GHz connection

Intel Corporation
82578DC Gigabit

1000Mbps

Operating System Ubuntu 18.04.3 LTS
Kernel 5.0.0-23.24

Ubuntu 18.04.2 LTS
Kernel 4.18.0-25.26

5.1
Dataset

In order to evaluate the efficiency of our data representation, we used
three different real models of oil refineries and platforms. These models differ
in the number of objects and scene complexity. Here, we name them as small,
medium and large models.

In our first test, we assess how feasible the parametric representation is to
reduce the size of industrial-plant CAD models. Looking at the various existing
CAD file formats, we notice that the object representation varies among them.
Apart from the parametric representation, the majority of CAD file formats
also use boundary representation (BREP) and solid revolution to describe the
objects. These representations can be directly converted or inferred to the
parameters of the shape. However, during our experiments, we observed that
some of this information is lost when converted to a neutral file format, such as
Wavefront OBJ (McHenry & Bajcsy, 2008). Generally, the objects have their
continuous representation converted to the unstructured triangular mesh.

In order to recover the continuous representation of these objects, we
preprocess our models with an AI-based reverse engineering method (Moreira,
2015). Given a triangular mesh surface, this method attempts to identify,
classify, and recover its continuous representation. In our case, this continuous
representation is one of the nine supported standard primitives.

Reverse engineering methods are also useful for reducing object redun-
dancy. Generally, in neutral file formats, when the scene has several instances
of the same mesh, the mesh surface is redundantly described for each instance.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 54

Table 5.2: Details of the models used in our experiments.

Model Total
Objects

Mesh
Size (MB)

Parametric
Size (MB)

Conversion
Ratio

Size
Reduction

Small 257’296 699.4 166.8 60.5% 76.15%
Medium 487’646 1’842.0 278.4 65.5% 84.88%
Large 659’075 2’555.7 328.6 70.6% 87.14%

Identify such cases is not a naïve task because, in most cases, these meshes
have different triangularization or their vertices must be presented in a differ-
ent order. Therefore, reverse engineering plays an important role in overcoming
this object redundancy. As a result, the memory consumption is reduced, and
the rendering performance is improved, as we discuss in the next section.

To assess how efficient the parametric representation is for CAD models,
we converted as many objects as possible of our three CAD models to the
parametric representation. We achieved a compression ratio of up to 87%
describing some shapes by their parameters. Table 5.2 describes the obtained
results for each one of the models.

In short, the results show the importance of using the parametric
representation to define the objects with simple geometries. The compactness
of this representation reduces the requirements for storage and transmission.
This is particularly important when using a pay-as-you-go service since they
use a consumption-based pricing model.

5.2
Rendering Performance

First, we compare two different ways of rendering the scene: issuing one
draw call per object and using the instanced rendering approach (Santos &
Celes Filho, 2014). In both cases, the rendering performance was measured
using the same fixed viewpoint, letting the application continuously rendering
the scene. The results are the average of the measurements during a fixed time
period. Figure 5.1 shows the obtained results when rendering on the server. We
notice that instanced rendering improves up to 9x the rendering performance.
The poor performance of the first method comes from the bottleneck on the
CPU with API function call overhead and costly memory transfers.

On hybrid cloud rendering systems, the client performance can be
described as x% + k, where x% is the model ratio being rendered locally, and
k is a constant factor, due to additional processing tasks like the composition
of the final image. The lower the local model ratio, the higher the rendering
performance on the client. Conversely, the lower is the final image quality since
this image has more chances to have pixels from the remote image. Since the

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 55

0

50

100

150

200

250

300

350

400

450

Large Medium Small

R
EN

D
ER

IN
G

 P
ER

FO
R

M
A

N
C

E 
(F

P
S)

Draw per object Instanced Rendering

Figure 5.1: Rendering performance comparison for issuing one draw call per
object and one draw call for all object instances.

remote image is compressed and it is usually used after a DIBR operation, its
quality is lower when compared to the local image.

Figure 5.2 shows the rendering performance for three different workload
divisions: rendering the whole model on the server-side (red dot), rendering the
entire model on the client-side (orange dot) and, lastly, dividing the rendering
tasks for both sides (blue dot).

5 10 20 40 80 160 320

frames per second (log)

Rendering Performance

100% Local

Hybrid Rendering

100% Remote

Small Model

Medium Model

Large Model

Figure 5.2: Comparison of rendering performance for three different configu-
rations: rendering entire model on the server (higher performance), rendering
whole model on the client (higher image quality), and rendering on both sides.

Figure 5.3 shows the response delay of local and remote frames for
rendering the large model. Response delay is the elapsed time since a user
action occurs until its result is displayed on the screen. The response delay

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 56

of the local frame is the same as a regular rendering application since its
production does not involve any remote procedure. In our example, this time is
around 28 milliseconds, i.e., approximately 35 fps. Once we decouple the client-
side operation from the server-side, this is also the overall response delay of our
rendering system. When considering only the remote frames, the response delay
is higher due to the additional steps: (de)compression, transmission, viewpoint
adjustments (DIBR), and others.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Remote
Frame

Local
Frame

Time (milliseconds)

Latency Analysis

Rendering

H.264 Compression

LZ4 Compression

Network

DIBR

H.264 Decompression

LZ4 Decompression

Upload VRAM

Figure 5.3: The response delay for both local and remote frames be available
for rendering on the client-side.

As a future improvement, we will explore alternatives to encode the
depth information as part of the image frame. Currently, we are only using a
widely adopted real-time compression algorithm, LZ4. Although its impressive
runtime performance, it is a general-purpose compression algorithm. Conse-
quently, we are not taking full advantage of the temporal coherence between
the produced frames. In our experiments, we used a 16-bits depth map, which
compressed is approximately 476 KB on average.

In addition, we intend to leverage the encoding step by shifting this
operation to the GPU. The latest graphics cards support fully-accelerated
hardware video encoding shipping dedicated chipsets to this goal (Nvidia.,
2012). This way, the graphics card run encoding or decoding workloads without
slowing the execution of graphics tasks running at the same time. Ultimately,
the input frame for encoding is already on VRAM. The transference of the
frame from VRAM to RAM is costly, but instead of transferring the raw frame,
we would replace it with its compressed version. In our tests, the size of the

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 57

raw color frame is approximately 2.63 MB, and when compressed, it can reach
up to less than 50 KB.

For each remote image at 720p resolution, we need to transfer around
500 KB of data. Using the dual-view approach (primary and peeled images),
and with the server rendering at 13 fps, the required network throughput is
around 104 Mb/sec. This is very feasible for local networks, even when using
wireless connections. For example, the transfer speed of the 802.11n Wi-Fi
standard (Perahia & Stacey, 2013) reaches up to 450 Mb/s. When it comes
to a wired Ethernet connection, a network infrastructure using IEEE 802.3an-
2006 standard (Gupta et al., 2008) can offer up to 10 Gb/s.

Nonetheless, when we use an internet connection to communicate com-
puters from different networks, this requirement is challenging. In our exper-
iments, when using the internet, we achieved better results when the server
produces and transmits only the primary image. This way, we slightly reduce
the image quality, but we enhance the user experience by reducing the net-
work throughput requirement. Therefore, we use the dual-view remote images
only for inbound connections. Although it is possible to achieve this transfer
rate on the internet, especially using optical fiber connection, this suggests the
necessity of improving the depth compression.

5.3
Workload Selection

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Te
m

p
er

at
u

re

Fi
tn

es
s 

V
al

u
e

Iterations

Evolution of Fitness Value

30k no roulette 30k with roulette 300k with roulette Temperature

Figure 5.4: The normalized fitness function of our workload optimization
method for three different client profiles. We also plotted the temperature
values over different iterations.

Regarding our workload selection, we defined three different scenarios
to evaluate it. First, we ran our method for selecting 30’000 objects using

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 58

Figure 5.5: The same model presented in Figure1.1, but rendering approxi-
mately 27% objects of the original model.

uniform selection distribution. Thus, when moving to a neighboring state in
Simulated Annealing, each object has the same probability of being picked
up. We also repeated this same setup but using the roulette-wheel instead of
uniform distribution for object selection. Finally, we increased the number of
objects in the selection.

Figure 5.4 shows the squared normalized results of our fitness function
for the three different scenarios. This chart shows how much the roulette-wheel
selection method boosts our optimization results. The main reason is that the
majority of objects are small (e.g., screws). A uniform random selection is very
likely to pick more small objects, and our fitness function is profoundly affected
by the size of objects into the set. This is the same cause the value of our fitness
function does not improve while we enlarge the size of the client object set.
When selecting 30k and 300k objects using roulette-wheel, the values of our
fitness has the same pattern. Considering the model used in this test, the
selection of 30k objects has already encompassed the largest scene objects.
This way, increasing the number of objects barely minimizes the fitness value.

Regarding the quality of workload selection, we noticed that some
apparently large objects, which would have a good chance of being selected,
were never in the final set, regardless of how many times we ran our method.
We identified that some of these "large" objects are actually the junction of
several other smaller objects. Figure 5.6 shows a case where the cylinder side
was modeled as several rectangles.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 59

Figure 5.6: Example of surface fragmentation. The entire cylinder is an
equipment body, but it is modeled as the junction of three smaller cylinders.
The cylinder in the middle is hilighted just for the sake of clarity.

We overcame this using the model’s metadata to guide the object selec-
tion process. The model’s objects are organized hierarchically in logical nodes,
which in turn contain some valuable associated information. For example, the
equipment has information about its operating specifications. Therefore, in-
stead of randomly choosing model geometries, we select these logical nodes,
and then we retrieve the geometries associated with this node.

Lastly, Figure 5.5 shows the result of rendering the same model depicted
in Figure 1.1 but rendering only approximately 27% of objects from the original
models. The initial temperature was 100, with 0.02 of decay. The majority of
the missing objects are screws, valves, and other small objects. Besides, we
have a considerable amount of objects spread in the whole scene extents. This
visualization is enough to allow the user to navigate through the scene even
when the server is not responding.

5.4
Image Quality

In order to evaluate the image quality, we used the structural similarity
(SSIM) (Wang et al., 2004) index, a popular method for measuring the
similarity between two images based on human perception. It serves as a
quantitative measurement of the quality of one image when compared to the
perfect image, i.e., the ground truth.

The image quality can be affected mostly due to three factors: image com-
pression, remote image undersampling, and when a remote object previously
occluded or out of the field of vision becomes visible. The image compression is
the most controlled one. It is just a matter of deciding between image quality
and transmission efficiency. In the cases the network is not a bottleneck, the

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 60

(a) (b)

Figure 5.7: Image quality comparisson between the original raw image and the
same image compressed with H.264 codec. (a) Ground-truth image, i.e., the
raw remote image. (b) The same image from (a) but compressed with H.264
codec (SSIM = 98.16%).

(a) (b)

Figure 5.8: Example of holes on the object’s surface due undersampling. (a)
is the result of DIBR rendering using an outdated remote image. In (b) we
mitigate the holes using the median filter with 5x5 window size.

server can afford a higher image quality. Figure 5.7 shows an image in its raw
and compressed version. In this example, the SSIM value between these two
images is 98.16%.

The remote undersampling happens when the client rapidly moves closer
to a remote object. In this case, the client requests a new frame to the server,
and in the meanwhile, the client uses the last available remote image to produce
the final image. Nonetheless, this remote image does not have enough pixels
to cover the region in the final image, where the remote object is supposed to
be. As a consequence, some holes appear on the object’s surface. We attenuate
these artifacts using the median filter (McGuire, 2008) when fetching pixels
from the source image (Figure 5.8).

When the user rotates the camera, there is a high probability that a
vast region of the screen is blank. This effect is greater depending how faster
the user rotates the camera because this movement highly alters the temporal

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 61

coherence of the remote frames. Therefore, while new remote images does not
arrive on the client, these missing regions will only contain the objects from
local rendering, as shown is Figure 5.9.

We also evaluated the final image quality for different combinations of
latency values and compression ratio on the remote images. Figure 5.10 depicts
this experiment. We captured these values in a very dense spatial region, where
more than 80% of the pixels in the final images belong to the remote image.
The bubble size is the obtained quality value (SSIM); the biggest bubble value
is 0.78, and the value of the smallest is 0.59. We can easily conclude that
the latency affects much more the image quality when compared to image
compression. Thus, the system can use high compression ratios, once this
vastly saves network bandwidth and reduces the transmission time without
compromising image quality. Also, this experiment reinforces the importance of
our time camera prediction model on the server-side, as a means of mitigating
the network fluctuations by anticipating futures events.

-10

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

R
em

o
te

 Im
ag

e 
C

o
m

p
re

ss
io

n

Time displacement error (ms)

Image Quality (SSIM) for Different System Settings

Figure 5.10: The influence of time displacement error and image compression
on the image quality. The bubble size is the resulting SSIM value for the given
system settings.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 5. Results 62

(a)

(b)

(c)

Figure 5.9: Example of blank region due to camera rotation movement. (a)
shows the initial state, before the rotation movement. (b) was obtained by
disconnecting the server on purpose and then moving the client camera to
the left. In this image we can see clearly the plane of the last remote image
available. The objects that appear on the left are being rendered on the client.
Finally, the rotated image is updated when new remote images arrive on the
client (c).

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



6
Future Research Opportunities

While conducting this research, we identified some research opportunities
from different fields of computer science that may contribute to the study of
rendering CAD models in the cloud. In this chapter, we discuss the main
remaining challenges and their possible solutions, thus serving as a guide for
future research.

6.1
Artificial Intelligence

In the last decades, artificial intelligence has been experiencing significant
advances, pushing the boundaries of several research fields. Among them, the
image processing is one of the most notable areas. Recent works have succeeded
in using convolutive networks to make improvements to input images. We claim
that some of these studies can also be employed on cloud rendering services to
improve their results.

6.1.1
Super-Resolution Imaging

High-resolution devices have become increasingly accessible, and it is
worth noting the recent popularization of 4k devices. The use of these dis-
plays in the cloud rendering scenario presents the challenge of transmitting
high definition images from the server to the client without latency and with-
out overloading the network. The super-resolution imaging consists of a set
of techniques aimed at the upscale image with no quality degradation. Image
super-resolution techniques are not new. The first work in this subject was
published in 1984
citeptsai1984multiframe. The traditional approach for super-resolution imag-
ing relies on multiple images of the same scene from slightly different perspec-
tives.

In recent years, we witnessed promising results using deep learning
techniques, especially convolutional-based networks, to solve super-resolution
problems. The basic difference of these techniques arises from their network
architecture

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 6. Future Research Opportunities 64

citepkim2016accurate, lim2017enhanced, ahn2018fast, loss function
citepsajjadi2017enhancenet, johnson2016perceptual, bulat2018super and how
they train the network
citeplim2017enhanced.

We encourage the usage of super-resolution techniques as a mechanism
to reduce the burden from the server and the network. When the client is using
a high-resolution display, the server could render a low-resolution image, and
the client is responsible for image magnification when necessary. Consequently,
the server can handle more incoming connections, and the network latency is
mitigated.

6.1.2
AI-based Image Completion

Depth-image based rendering is a valuable technique to produce novel
images from an arbitrary viewpoint given a reference image and its transfor-
mation matrix. Its high efficiency and reasonable results turn these techniques
very appealing to provide temporary results in cloud rendering. Nonetheless,
the drawback of these techniques is the presence of holes in the synthesized
images.

The image completion comprises several techniques that aim filling-in
target regions. They are used to remove unwanted objects or to generate
occluded regions for image-based 3D reconstruction. In order to succeed, it
is important to these techniques the high-level recognition of the scene instead
of just filling textured patters.

We believe that such techniques can be successfully employed to fill the
holes in the warped images by the depth-image-based rendering. Some works
yield impressive results, even for complex images
citepiizuka2017globally. One of the most wanted use cases is the crowd removal
from tourist spots. Our images are even simpler than these real-world images
in terms of textures, illumination, and coherence. Thus, the use of these
techniques to fill the holes of our images would not incur additional challenges.

6.2
Autonomic Computing

Autonomic computing is an emerging philosophy inspired by the auto-
nomic nervous system of the human body. This nervous system controls impor-
tant vital signals (e.g., breathing rate, heart rate, and body temperature) with-
out any conscious intervention. The increasing complexity of modern systems
leads to an enormous complexity in maintaining these systems. Autonomic

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 6. Future Research Opportunities 65

Figure 6.1: Representation of the stages from MAPE-K feedback loop.

systems are supposed to be capable of running themselves, even on different
unknown circumstances, and adjusting their internals to achieve the highest
possible performance.

The MAPE-K (Monitor, Analyze, Plan, Execute, and Knowledge)
citepcomputing2006architectural feedback loop is one of the most famous
architecture for autonomic computing. This framework is constantly checking
and optimizing its status and automatically adapt itself to changing conditions.

Figure 6.1 shows the general steps of the MAPE-K framework. The
monitor stage is responsible for gathering information about the current
state of the managed system. This information includes internal and external
system metrics, for example, performance and resource availability metrics,
respectively. This collected data is used as the input of the next step (Analyze).
The system performs analysis and reasoning over the raw data to identify
possible failures or unwanted conditions. If changes are required, a change
request is passed to the planning process. The plan process structures all the
actions needed to overcome the identified issues. The actions involved can
consist of a single command or a complex workflow. In the executed phase,
the system executes the actions recommended by the previous stage. All the
historical data of the system management is stored in the knowledge base, and
it is very useful to guide future decisions.

The cloud rendering presented in this work contains many parameters
that influence the system operations. The ideal values for these parameters
are hard to decide in advance due to the unpredictable conditions of the
environment. In order to achieve good results, these parameters must be
dynamic, as the conditions are. For example, a load balance could change
the workload division during the system execution, either because the server

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 6. Future Research Opportunities 66

has more clients to serve or because the user started using other compute-
intensive tools. Other examples are the video compression rate, the server
camera displacement, the division between the client’s static and dynamic
object set.

6.3
Semantic Optimization

A valuable advantage of using cloud applications is the possibility of
gathering information about the users and how each one of them interacts
with the application. The system can use this information to identify usage
patterns and, consequently, to make some decisions. For example,
citepposada2005methodology provided adapted visualizations depending on
each user and his intentions.

Considering our proposal, we could use such information to support the
object selection for the client’s dynamic set. Currently, this process consists
only of selecting the nearest neighbor objects. However, in an engineering
project, each engineering experts (e.g., structural, mechanical, electrical) has
different background and intentions. When selecting the nearest objects, we
could use this information to filter the objects that the user is probably more
interested in.

Besides, we believe that a statistical motion-aware prediction model could
succeed for prefetching objects to the client’s dynamic set. Currently, we are
using the displaced server camera, which assumes the user will indefinitely walk
in the same direction. In this new approach, for each model, the system could
make assumptions about future positions considering the historical navigation
data for each user group. To achieve this, we suggest the use of Markov Chain
citeppvribyl2013motion.

Figure 6.2: First-order Markov Chain representation for 3D model navigation.
The transitions matrix shows the probabilities for state changing considering
the state 5 as the current state.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 6. Future Research Opportunities 67

Markov Chain is a stochastic model that describes a sequence of possible
events. According to this method, the probability of a particular state of the
system in the next time interval depends only on the current state and a set
of defined transition probabilities. These probabilities can be organized in a
matrix form, called stochastic matrix.

A simple approach would be the division of the scene into a regular grid,
in which each cell corresponds to a single state, as the schematic example in
Figure 6.2. Since we are dealing with the direction of the user’s movement, a
high order Markov Chain would fit better. In this method, the probability of the
state in the next time interval depends on the current and the previous state.
For a new model, the transition probabilities would initially be the same for
all transitions. Nevertheless, over time, these probabilities would be updated
and refined as more engineering experts use the model. As a result, the system
could make assumptions even if the user is navigating through the model for
its first time.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



7
Conclusion

The efficient rendering of massive CAD models has always been a chal-
lenging task, especially for interactive visualization. During the past decades,
several studies were presented to overcome the massiveness of such models.
However, recently, we have witnessed an exponential growth in data gener-
ation, both in size and details, while the advances in processing capabilities
have been slowing down.

When it comes to computer graphics, cloud rendering has been the
solution adopted by many areas of interest. Nonetheless, there is an absence
of existing cloud rendering services for industrial-plant CAD models. The
main reason is that the existing services are mostly general-purpose rendering
services.

All these reasons motivated us to study and propose a novel hybrid cloud
rendering approach to support interactive visualization of CAD models. In this
work, we attempt to bridge this existing gap between cloud rendering and CAD
models. The construction of a specific cloud service for CAD models allows us
to make use of some premises to improve the performance of the proposed
solution.

In our hybrid rendering approach, the server is responsible for overwhelm-
ing rendering tasks, while the client renders a smaller set of objects, propor-
tional to its rendering capabilities. The server provides to the client a dual-view
depth-augmented images from the remote scene. This remote image is com-
bined with the local image to produce the final image.

Since our method focus on CAD models, it benefits from some assump-
tions to improve the system performance. For example, CAD models are mostly
composed of simple geometries, which are suitable for the use use of implicit
representation. Besides, the objects are very redundant, which allows the use
of instanced rendering, resulting in an efficient rendering approach.

Regarding the communication model, we propose a loosely coupled com-
munication mechanism between client and server. As a result, the client appli-
cation remains responsive even if the server stops responding. The drawback of
this approach is the final image degradation when the remote frame is delayed.
This happens because the client does not have an updated remote frame. How-

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 7. Conclusion 69

ever, the server anticipates possible future network fluctuations displacing its
camera in time.

We also established a multi-objective optimization problem to guide
our workload selection. In this problem, we attempt to select an object set
to render on the client in such a way the select objects can grant spatial
awareness to the user. To solve the optimization problem, we use the simulated
annealing metaheuristic since the optimal solution of a combinatorial problem
has pseudo-polynomial complexity.

The results show that our technique can achieve high frame rates with
satisfactory image quality, even in an adverse environment, such as a high
latency network or thin devices. In case the network is not performing well, the
client-side is still able to produce interactive frame rates, but slightly reducing
the final image quality, as expected. Lastly, the presented method paves the
way for other research opportunities. We detail them in Chapter 6.

7.1
Future Work

Considering the current state of the presented work, we point out some
suggestions for future work:

– Dynamic workload ratio. The workload division between the client
and the server is defined during the connection establishment phase. For
this, the server takes into account both the computational capability
of the client’s computer and its historical performance data. However,
the performance of both sides varies as the availability of resources also
changes. For example, if the user runs another heavy consuming-resources
application, the performance of local rendering will be affected. When it
comes to portable devices, the battery level is an important aspect to take
into consideration. As more workload on client side of portable devices,
more energy will be required. Ideally, the workload ratio between the
client and the server should vary as the availability of computational
resources also changes.

– Camera Prediction Validation. As discussed before, the server cam-
era is displaced in time to anticipate future client viewpoints. By now,
this displacement is only evaluated using the historical performance data
of both network latency and rendering capacity of the client. However,
due to the high complexity of the cloud environment, this estimate may
not be accurate in some scenarios. Therefore, the client could validate the
predicted viewpoints positions and computed error metrics. This metric

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Chapter 7. Conclusion 70

could be reported to the server in order to fine-tune its camera displace-
ment.

– General performance improvements. Our goal in this work is to
investigate a method for rendering massive CAD models using cloud
services. Nonetheless, to use it in production, some improvements must
be made. The most important is the image encoding on the GPU since
this is the most time-consuming step for producing the remote frame.
Next, the current algorithm used for depth image compression does not
make use of temporal coherence to achieve better results.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Bibliography

ABRAHAM, FREDERICO; CELES, WALDEMAR; CERQUEIRA, RE-
NATO; CAMPOS, JOAO LUIZ. A load-balancing strategy for sort-
first distributed rendering. Proceedings. 17th Brazilian Symposium
on Computer Graphics and Image Processing. IEEE. 2004, pp. 292–299.

AHMADI, HAMED; HASHEMI, MAHMOUD REZA; SHIRMOHAMMADI,
SHERVIN. An Open Source Cloud Gaming Testbed Using Di-
rectShow. 2015 IEEE 7th International Conference on Cloud Comput-
ing Technology and Science (CloudCom). IEEE. 2015, pp. 606–610.

ASSUNCAO, RENATO. Testing spatial randomness by means of an-
gles. Biometrics (1994), pp. 531–537.

AZUMAH, KENNETH KWAME; KOSTA, SOKOL; SØRENSON, LENE
TOLSTRUP. Scheduling in the hybrid cloud constrained by pro-
cess mining. 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE. 2018, pp. 308–313.

BAO, PAUL; GOURLAY, DOUGLAS.A framework for remote rendering
of 3-D scenes on limited mobile devices. IEEE Transactions on
Multimedia 8.2 (2006), pp. 382–389.

BARTIIK, MATĚJ; UBIK, SVEN; KUBALIK, PAVEL. LZ4 compression
algorithm on FPGA. Electronics, Circuits, and Systems (ICECS),
2015 IEEE International Conference on. IEEE. 2015, pp. 179–182.

BHATIA, NITIN et al. Survey of nearest neighbor techniques. arXiv
preprint arXiv:1007.0085 (2010).

BOOST. Boost C++ Libraries. http://www.boost.org/. Last accessed
2020-01-30. 2015.

CHEN, PO-HAN; CUI, LU; WAN, CAIYUN; YANG, QIZHEN; TING, SENG
KIONG; TIONG, ROBERT LK. Implementation of IFC-based web
server for collaborative building design between architects and
structural engineers. Automation in construction 14.1 (2005), pp. 115–
128.

CLAYPOOL, MARK; CLAYPOOL, KAJAL. Latency and Player Actions
in Online Games. Commun. ACM 49.11 (2006), pp. 40–45. issn: 0001-
0782. doi: 10.1145/1167838.1167860. url: https://doi.org/10.
1145/1167838.1167860.

http://www.boost.org/
http://dx.doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Bibliography 72

DEFANTI, THOMAS A et al. The future of the CAVE. Central European
Journal of Engineering 1.1 (2011), pp. 16–37.

DUNSTON, PHILLIP S; WANG, XIANGYU. Mixed reality-based visu-
alization interfaces for architecture, engineering, and construc-
tion industry. Journal of construction engineering and management
131.12 (2005), pp. 1301–1309.

DYKEN, CHRISTOPHER; LYE, KJETIL OLSEN; SELAND, JOHAN;
BJØNNES, ERIK W; HJELMERVIK, JON; NYGAARD, JENS OLAV;
HAGEN, TROND RUNAR.A framework for OpenGL client-server
rendering. 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings. IEEE. 2012, pp. 729–734.

FEHN, CHRISTOPH.Depth-image-based rendering (DIBR), compres-
sion, and transmission for a new approach on 3D-TV. Stereo-
scopic Displays and Virtual Reality Systems XI. Vol. 5291. International
Society for Optics and Photonics. 2004, pp. 93–104.

GOOGLE INC. Protocol Buffers. https : / / developers . google . com /
protocol-buffers. Last accessed: 2020-01-31. 2001.

GUPTA, SANDEEP et al. A 10Gb/s IEEE 802.3 an-compliant ethernet
transceiver for 100m UTP cable in 0.13 µµµm CMOS. 2008 IEEE
International Solid-State Circuits Conference-Digest of Technical Papers.
IEEE. 2008, pp. 106–599.

HUMPHREYS, GREG; ELDRIDGE, MATTHEW; BUCK, IAN; STOLL,
GORDAN; EVERETT, MATTHEW; HANRAHAN, PAT. WireGL: a
scalable graphics system for clusters. Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. ACM. 2001,
pp. 129–140.

HUMPHREYS, GREG; HOUSTON, MIKE; NG, REN; FRANK, RANDALL;
AHERN, SEAN; KIRCHNER, PETER D; KLOSOWSKI, JAMES T.
Chromium: a stream-processing framework for interactive ren-
dering on clusters. ACM transactions on graphics (TOG) 21.3 (2002),
pp. 693–702.

KAM, KIN MING; ZENG, LI; ZHOU, QIANG; TRAN, RICHARD; YANG,
JIAN. On assessing spatial uniformity of particle distributions
in quality control of manufacturing processes. Journal of Manu-
facturing Systems 32.1 (2013), pp. 154–166.

KIRKPATRICK, SCOTT; GELATT, C DANIEL; VECCHI, MARIO P. Op-
timization by simulated annealing. science 220.4598 (1983), pp. 671–
680.

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Bibliography 73

LAI, ZEQI; HU, Y CHARLIE; CUI, YONG; SUN, LINHUI; DAI, NINGWEI;
LEE, HUNG-SHENG. Furion: Engineering high-quality immersive
virtual reality on today’s mobile devices. IEEE Transactions on
Mobile Computing (2019).

LAMBERTI, FABRIZIO; SANNA, ANDREA.A streaming-based solution
for remote visualization of 3D graphics on mobile devices. IEEE
transactions on visualization and computer graphics 13.2 (2007).

LIN, ZIQIAO; WANG, ZEHUA; CAI, WEI; LEUNG, VICTOR CM. A Novel
Game Map Preloading and Resource Provisioning Scheme in
Cooperative Cloud Networks. 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom). IEEE. 2017,
pp. 210–217.

LIPOWSKI, ADAM; LIPOWSKA, DOROTA. Roulette-wheel selection
via stochastic acceptance. Physica A: Statistical Mechanics and its
Applications 391.6 (2012), pp. 2193–2196.

LIU, BAOQUAN; WEI, LI-YI; XU, YING-QING; WU, ENHUA. Multi-
layer depth peeling via fragment sort. 2009 11th IEEE International
Conference on Computer-Aided Design and Computer Graphics. IEEE.
2009, pp. 452–456.

LOUKOPOULOS, THANASIS; TZIRITAS, NIKOS; KOZIRI, MARIA; STA-
MOULIS, GEORGIOS; KHAN, SAMEE. A Pareto-Efficient Algo-
rithm for Data Stream Processing at Network Edges. 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE. 2018, pp. 159–162.

LUTHRA, AJAY; SULLIVAN, GARY J; WIEGAND, THOMAS. Introduc-
tion to the special issue on the H. 264/AVC video coding stan-
dard. IEEE Transactions on Circuits and Systems for Video Technology
13.7 (2003), pp. 557–559.

MARLER, R TIMOTHY; ARORA, JASBIR S. Survey of multi-objective
optimization methods for engineering. Structural and multidisci-
plinary optimization 26.6 (2004), pp. 369–395.

MCGUIRE, MORGAN. A Fast, Small-Radius GPU Median Filter.
Published in ShaderX6. ShaderX6. 2008. url: https : / / casual -
effects.com/research/McGuire2008Median/index.html.

MCHENRY, KENTON; BAJCSY, PETER. An overview of 3d data con-
tent, file formats and viewers. National Center for Supercomputing
Applications 1205 (2008), p. 22.

https://casual-effects.com/research/McGuire2008Median/index.html
https://casual-effects.com/research/McGuire2008Median/index.html
DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Bibliography 74

MOREIRA, A. Engenharia Reversa em Modelos CAD Utilizando
Descritores de Forma e Maquina de Vetores de Suporte. MA
thesis. PUC–Rio, 2015.

NVIDIA. Nvidia NVENC. https : / / developer . nvidia . com / video -
encode-decode-gpu-support-matrix. Last accessed: 2020-02-01. 2012.

OAT, CHRISTOPHER. Rendering to an off-screen buffer with
WGL_ARB_pbuffer. Technology paper of ATI Inc (2008), pp. 1–13.

PĂTRĂUCEAN, VIORICA; ARMENI, IRO; NAHANGI, MOHAMMAD; YE-
UNG, JAMIE; BRILAKIS, IOANNIS; HAAS, CARL. State of research
in automatic as-built modelling. Advanced Engineering Informatics
29.2 (2015), pp. 162–171.

PERAHIA, ELDAD; STACEY, ROBERT. Next generation wireless
LANs: 802.11 n and 802.11 ac. Cambridge university press, 2013.

PERRY, JN; MEAD, R. On the power of the index of dispersion test
to detect spatial pattern. Biometrics (1979), pp. 613–622.

PETERNIER, ACHILLE; CARDIN, SYLVAIN; VEXO, FRÉDÉRIC; THAL-
MANN, DANIEL. Practical design and implementation of a
CAVE environment. Proceedings 2nd International Conference on
Computer Graphics Theory. 2007, pp. 129–136.

REINERT, BERNHARD; KOPF, JOHANNES; RITSCHEL, TOBIAS;
CUERVO, EDUARDO; CHU, DAVID; SEIDEL, HANS-PETER.
Proxy-guided image-based rendering for mobile devices. Com-
puter Graphics Forum. Wiley Online Library. 2016, pp. 353–362.

RENAMBOT, LUC et al. Sage: the scalable adaptive graphics environ-
ment. Proceedings of WACE. Citeseer. 2004, pp. 2004–09.

REQUICHA, ARISTIDES AG; VOELCKER, HERBERT B. Solid model-
ing: a historical summary and contemporary assessment. IEEE
computer graphics and applications 1.2 (1982), pp. 9–24.

RIVARD, HUGUES.A Survey on the impact of information technology
in the Canadian architecture, engineering and construction
Industry. ITcon 5 (2000), pp. 37–56.

AL-ROUSAN, NABIL M; CAI, WEI; JI, HONG; LEUNG, VICTOR CM.
DCRA: Decentralized Cognitive Resource Allocation Model for
Game as a Service. 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE. 2015, pp. 218–
225.

SANTOS, PAULO IVSON NETTO; CELES FILHO, WALDEMAR. In-
stanced rendering of massive cad models using shape matching.

https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
DBD
PUC-Rio - Certificação Digital Nº 1521392/CA



Bibliography 75

2014 27th SIBGRAPI Conference on Graphics, Patterns and Images.
IEEE. 2014, pp. 335–342.

SCHALLER, ROBERT R. Moore’s law: past, present and future. IEEE
spectrum 34.6 (1997), pp. 52–59.

SCHEIFLER, ROBERT W; GETTYS, JIM. The X window system. ACM
Transactions on Graphics (TOG) 5.2 (1986), pp. 79–109.

SEMSARZADEH, MEHDI; YASSINE, ABDULSALAM; SHIRMOHAM-
MADI, SHERVIN. Video encoding acceleration in cloud gaming.
IEEE Transactions on Circuits and Systems for Video Technology 25.12
(2015), pp. 1975–1987.

SHEA, RYAN; LIU, JIANGCHUAN; NGAI, EDITH C-H; CUI, YONG.
Cloud gaming: architecture and performance. IEEE network 27.4
(2013), pp. 16–21.

SHI, SHU; HSU, CHENG-HSIN. A survey of interactive remote render-
ing systems. ACM Computing Surveys (CSUR) 47.4 (2015), p. 57.

TAMM, GEORG; KRÜGER, JENS. Hybrid rendering with scheduling
under uncertainty. IEEE transactions on visualization and computer
graphics 20.5 (2014), pp. 767–780.

WANG, SHAOXUAN; DEY, SUJIT. Modeling and characterizing user
experience in a cloud server based mobile gaming approach.
Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE.
IEEE. 2009, pp. 1–7.

WANG, ZHOU; BOVIK, ALAN C; SHEIKH, HAMID R; SIMONCELLI,
EERO P, et al. Image quality assessment: from error visibility
to structural similarity. IEEE transactions on image processing 13.4
(2004), pp. 600–612.

XU, XUYUAN; PO, LAI-MAN; NG, KA-HO; FENG, LITONG; CHEUNG,
KWOK-WAI; CHEUNG, CHUN-HO; TING, CHI-WANG. Depth map
misalignment correction and dilation for DIBR view synthesis.
Signal Processing: Image Communication 28.9 (2013), pp. 1023–1045.

DBD
PUC-Rio - Certificação Digital Nº 1521392/CA


	Hybrid Cloud Rendering for Industrial-Plant CAD Models
	Resumo
	Table of contents
	Introduction
	Contributions
	Document Organization

	Cloud Rendering Background
	Introduction
	Classification
	Advantages of Cloud Rendering for Industrial-plant models
	Latency Analysis
	Related Work
	Remarks on Existing Works


	Hybrid Rendering of CAD Models on the Cloud
	Efficient Data Representation and Rendering
	Client-Server Communication Model
	Server Architecture
	Client Architecture
	Latency Analysis on Hybrid Cloud Rendering

	Client Workload Selection
	Assessing Spatial Uniformity
	Index of Dispersion

	Multi-objective Optimization
	Simulated Annealing

	Results
	Dataset
	Rendering Performance
	Workload Selection
	Image Quality

	Future Research Opportunities
	Artificial Intelligence
	Super-Resolution Imaging
	AI-based Image Completion

	Autonomic Computing
	Semantic Optimization

	Conclusion
	Future Work

	Bibliography



