
Daniela de Mattos Szwarcman

Quantum-inspired Neural Architecture Search

Tese de Doutorado

Thesis presented to the Programa de Pós-graduação em
Engenharia Elétrica of PUC-Rio in partial fulfillment of the
requirements for the degree of Doutor em Engenharia Elétrica.

Advisor: Prof. Marley Maria Bernardes Rebuzzi Vellasco
Co-advisor: Dr. Daniel Salles Civitarese

Rio de Janeiro
February 2020

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Daniela de Mattos Szwarcman

Quantum-inspired Neural Architecture Search

Thesis presented to the Programa de Pós-graduação em Enge-
nharia Elétrica of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Engenharia Elétrica. Approved by the
Examination Committee.

Prof. Marley Maria Bernardes Rebuzzi Vellasco
Advisor

Departamento de Engenharia Elétrica – PUC-Rio

Dr. Daniel Salles Civitarese
Co-advisor

IBM Research

Dr. Bianca Zadrozny
IBM Research

Prof. Douglas Mota Dias
UERJ

Prof. Jorge Amaral
UERJ

Prof. Valmir Carneiro Barbosa
UFRJ

Prof. Ricardo Tanscheit
Departamento de Engenharia Elétrica – PUC-Rio

Prof. Karla Figueredo
Departamento de Engenharia Elétrica – PUC-Rio

Rio de Janeiro, February the 17th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



All rights reserved.

Daniela de Mattos Szwarcman

Graduated in Electrical Engineering at the Pontifical Catholic
University of Rio de Janeiro (PUC-Rio) in 2013. Obtained her
M.Sc. Degree in Electrical Engineering from PUC-Rio in 2016.

Bibliographic data
de Mattos Szwarcman, Daniela

Quantum-inspired Neural Architecture Search /
Daniela de Mattos Szwarcman; advisor: Marley Maria
Bernardes Rebuzzi Vellasco; co-advisor: Daniel Salles
Civitarese. – Rio de janeiro: PUC-Rio, Departamento de
Engenharia Elétrica, 2020.

v., 97 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica
doRio de Janeiro, Departamento de Engenharia Elétrica.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Busca de Arquite-
turas Neurais. 3. Algoritmos de Inspiração Quântica.
4. Neuroevolução. 5. Redes Neurais Convolucionais. I.
Bernardes Rebuzzi Vellasco, Marley Maria. II. Salles Civ-
itarese, Daniel. III. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Engenharia Elétrica.
IV. Título.

CDD: 621.3

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Acknowledgments

First, I would like to thank my advisor Marley for her fundamental guidance and
understanding, besides always listening to my opinions and giving me valuable
feedback.

I would also like to thank my co-advisor Daniel for his support, ideas, patience,
friendship, and, most importantly, for always encouraging me.

I wish to thank my colleagues and friends at IBM Research, especially Emilio and
Breno, who contributed to meaningful discussions on various subjects.

I am grateful to all the members of the committee for agreeing to participate and
collaborate with this work.

I would like to acknowledge CNPq for financial support and that this study was
financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - Brasil (CAPES) - Finance Code 001.

I wish to thank my parents, Dilza and Moisés, for their constant support, patience,
and advice, but most of all, for their love and attention.

My eternal thanks to my sister Clara for being the best sister and the best friend,
who always is there for me and makes my days happier.

Finally, I wish to appreciate the best person in the world, Gustavo, for his love,
kindness, and encouragement. I will be forever grateful for his endless support
during all my years as a student, for inspiring me every day, and for being my partner
in life.

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Abstract

de Mattos Szwarcman, Daniela; Bernardes Rebuzzi Vellasco, Marley
Maria (Advisor); Salles Civitarese, Daniel (Co-Advisor).Quantum-inspired
Neural Architecture Search. Rio de Janeiro, 2020. 97p. Tese de doutorado
– Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do
Rio de Janeiro.

Deep neural networks are powerful and flexible models that have gained the
attention of the machine learning community over the last decade. For a variety of
tasks, they can even surpass human-level performance. Usually, to reach these excel-
lent results, an expert spends significant time designing the neural architecture, with
long trial and error sessions. In this scenario, there is a growing interest in automat-
ing this design process. To address the neural architecture search (NAS) problem,
authors have presented new methods based on techniques such as reinforcement
learning and evolutionary algorithms, but the high computational cost is still an is-
sue for many of them. To reduce this cost, researchers have proposed to restrict the
search space, with the help of expert knowledge. Quantum-inspired evolutionary al-
gorithms present promising results regarding faster convergence. Motivated by this
idea, we propose Q-NAS: a quantum-inspired algorithm to search for deep networks
by assembling substructures. Q-NAS can also evolve some numerical hyperparam-
eters, which is a first step in the direction of complete automation. We ran several
experiments with the CIFAR-10 dataset to analyze the details of the algorithm. For
many parameter settings, Q-NAS was able to achieve satisfactory results. Our best
accuracies on the CIFAR-10 task were 93.85% for a residual network and 93.70%
for a convolutional network, overcoming hand-designed models, and some NAS
works. Considering the addition of a simple early-stopping mechanism, the evolu-
tion times for these runs were 67 GPU days and 48 GPU days, respectively. Also,
we applied Q-NAS to CIFAR-100 without any parameter adjustment, reaching an
accuracy of 74.23%, which is comparable to a ResNet with 164 layers. Finally, we
present a case study with real datasets, where we used Q-NAS to solve the seismic
classification task. In less than 8.5 GPU days, Q-NAS generated networks with 12

times fewer weights and higher accuracy than a model specially created for this task.

Keywords
Neural Architecture Search. Quantum-Inspired Algorithms. Neuroevolution.

Convolutional Neural Networks.
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Resumo

de Mattos Szwarcman, Daniela; Bernardes Rebuzzi Vellasco, Marley Maria;
Salles Civitarese, Daniel. Busca de arquiteturas neurais com algoritmos
evolutivos de inspiração quântica. Rio de Janeiro, 2020. 97p. Tese de Douto-
rado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.
As redes neurais deep são modelos poderosos e flexíveis, que ganharam desta-

que na comunidade científica na última década. Para muitas tarefas, elas até superam
o desempenho humano. Em geral, para obter tais resultados, um especialista des-
pende tempo significativo para projetar a arquitetura neural, com longas sessões de
tentativa e erro. Com isso, há um interesse crescente em automatizar esse processo.
Novos métodos baseados em técnicas como aprendizado por reforço e algoritmos
evolutivos foram apresentados como abordagens para o problema da busca de ar-
quitetura neural (NAS - Neural Architecture Search), mas muitos ainda são algorit-
mos de alto custo computacional. Para reduzir esse custo, pesquisadores sugeriram
limitar o espaço de busca, com base em conhecimento prévio. Os algoritmos evolu-
tivos de inspiração quântica (AEIQ) apresentam resultados promissores em relação
à convergência mais rápida. A partir dessa idéia, propõe-se o Q-NAS: um AEIQ
para buscar redes deep através da montagem de subestruturas. O Q-NAS também
pode evoluir alguns hiperparâmetros numéricos, o que é um primeiro passo para
a automação completa. Experimentos com o conjunto de dados CIFAR-10 foram
realizados a fim de analisar detalhes do Q-NAS. Para muitas configurações de parâ-
metros, foram obtidos resultados satisfatórios. As melhores acurácias no CIFAR-10
foram de 93,85% para uma rede residual e 93,70% para uma rede convolucional, su-
perando modelos elaborados por especialistas e alguns métodos de NAS. Incluindo
um esquema simples de parada antecipada, os tempos de evolução nesses casos fo-
ram de 67 dias de GPU e 48 dias de GPU, respectivamente. O Q-NAS foi aplicado
ao CIFAR-100, sem qualquer ajuste de parâmetro, e obteve 74,23% de acurácia,
similar a uma ResNet com 164 camadas. Por fim, apresenta-se um estudo de caso
com dados reais, no qual utiliza-se o Q-NAS para resolver a tarefa de classificação
sísmica. Em menos de 8,5 dias de GPU, o Q-NAS gerou redes com 12 vezes menos
pesos e maior acurácia do que um modelo criado especialmente para esta tarefa.

Palavras-chave
Busca de Arquiteturas Neurais. Algoritmos de Inspiração Quântica. Neuroe-

volução. Redes Neurais Convolucionais.
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1
Introduction

Over the past few years, the machine learning community has witnessed
significant progress in the performance of deep networks for many tasks, especially
in image and speech recognition [1, 2]. Discussions on the subject were not in the
foreground until 2006 when Hinton et al. [3] efficiently trained their Deep Belief
Nets [4]. Although deep convolutional networks had been trained earlier, they only
became a relevant topic in machine learning research after the layer-wise pretraining
strategy [4, 5], proposed in 2006 [3].

Deep convolutional neural networks are highly responsible for the current
success of deep architectures. These networks provide a way to automatically learn
feature extractors from the dataset, eliminating the need for feature engineering [1].
Several researchers have proposed different deep convolutional models. For image
applications, AlexNet [6], VGGNet [7], Network-in-Network [8], and ResNet [9]
are successful examples of these models.

Together with this success, the demand for architecture engineering has
emerged, shifting the paradigm from feature design to network design. The pro-
cess of manually engineering deep architectures requires expert knowledge and a
considerable amount of time to test multiple options. In this scenario, the idea of
automating the network design has gained the attention of many researchers [1, 2],
establishing the field of Neural Architecture Search (NAS).

In addition, the performance of deep networks is usually sensitive to design
decisions regarding the architecture itself, the training procedure, the regularization
methods, and hyperparameters selection. An expert must make all these decisions
often by trial and error until they identify a set of choices that lead to satisfactory
performance. It is worth noting that this engineering process must be repeated for
every new application [1].

The area of automatic machine learning (AutoML) attempts to address the
complete automation of the decision process. The goal is to make machine learning
accessible to other scientists who want to apply these techniques to their domains.
NAS can be seen as a subfield in the AutoML area, and it is an essential step toward
the automation of machine learning methods.

Even though the automatic design of neural networks is not a new idea, its
application in deep architectures is quite recent. Works on neuroevolution describe
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evolutionary algorithms that evolve not only the network weights but also its struc-
ture [10–14]. In the deep architecture context, on the other hand, the NAS problem
extends beyond the field of evolutionary algorithms.

Several papers have proposed new approaches to address the NAS problem,
showing competitive results when compared to manually engineered networks. The
majority of these papers focus on the image classification task, more specifically
on the CIFAR-10 [15] benchmark dataset [1]. The algorithms are based on different
techniques, such as reinforcement learning (RL) [2,16–18], evolutionary algorithms
[19–21] or even Bayesian optimization [22]. They also differ in other factors,
including the performance estimation strategy and the search space description.

Despite the current success and progress of NAS algorithms, the required
computational resources are still significant for many of them [2, 17, 19, 21]. The
approach presented in [2] is an extreme example, in which the authors used 800

GPUs for more than three weeks to reach 96% of accuracy in the CIFAR-10 dataset.
Many researchers have considered the challenge of reducing computational

cost.More recently, various solutions have been developed, usually with some trade-
offs that are mostly related to search space reduction. There are efforts toward
efficiency using hypernets [23], network transformations [24, 25], early stopping
[18], block search [18,26], among others. The block search strategy optimizes small
cells that are later stacked in a predefinedway to build the final network, which limits
the exploration space substantially. Even with the new ideas, there is still room for
improvement, especially concerning human bias to restrict the search space.

1.1
Objectives

In this work, we propose Q-NAS: a quantum-inspired algorithm to search for
deep architectures by assembling substructures. In its implementation, our design
decisions consider the computational cost issue, but without adopting the block
search strategy.

Quantum-inspired evolutionary algorithms (QIEA) are a class of evolutionary
methods based on quantum computing principles, such as superposition of states
[27, 28]. Empirical results show that QIEAs can find better solutions with fewer
evaluations when compared to similar algorithms for many optimization problems
[29,30]. For applications in which the evaluation procedure is expensive, this feature
can be a valuable advantage of QIEAs over other evolutionary methods. Moreover,
QIEAs have been successfully applied to several optimization problems, including
the neuroevolution of shallow networks [12–14,31].

Our primary goal is to verify the applicability of a new QIEA to the NAS
problem. This verification involves applying Q-NAS to benchmark datasets to
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compare its results with other NAS algorithms. It also includes running Q-NASwith
different parameter configurations, to analyze the impact on final results.

Furthermore, Q-NAS addresses the network search and can, at the same
time, optimize some numerical hyperparameters. We intend to study this feature,
comparing the performance against the fixed hyperparameter scenario.

We also want to investigate if Q-NAS can be an alternative to cell search
algorithms in terms of efficiency.

Finally, we apply Q-NAS on seismic image datasets to verify its performance
in a realistic scenario.

We delineate the scope of our research in the context of image classification
tasks, so our experiments and conclusions reside in this context.

1.2
Contributions

In this section, we list the main contributions of this work:

• A new QIEA for the NAS problem. Motivated by the faster convergence
achieved by other QIEA authors, we developed a new algorithm to address
the NAS problem. Reducing the computational cost is essential to make NAS
feasible when dealing with large datasets. To the best of our knowledge, a
QIEA has never been used to address this problem before.

• A new quantum-inspired representation for the network structure. We
designed a specific representation to deal with a categorical search space,
different from other binary approaches. We encode networks in a chain-like
structure of nodes that can be either a layer or a (complex) block of layers,
providing significant flexibility to the Q-NAS user. There is no need tomodify
the algorithm to switch between simple and complex networks; the user only
needs to define which type of nodes he/she wants to use. Additionally, our
quantum representation enables the discovery of different network topologies,
as opposed to other works using block search.

• A combined quantum-representation, to encode network structures and
numerical hyperparameters. Q-NAS can focus only on the NAS problem,
but it is also possible to optimize some numerical hyperparameters. The
representation of these hyperparameters is an enhanced version of the one
presented in [30].

• A simple early-stopping mechanism to improve Q-NAS efficiency. We
studied the benefits of applying a simple early-stopping mechanism that is
based only on fitness improvement and, therefore, it is not restricted to Q-
NAS. In almost all cases, this simple scheme allowed us to significantly re-
duce the evolution runtime, indicating that it is a valuable addition to Q-NAS.
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• A study on penalization to handle invalid individuals in Q-NAS. When
generating networks for evaluation, it is possible to produce invalid architec-
tures. We propose to address this issue via a penalization scheme. We inves-
tigated the method not only on a performance point of view but also on how
the population of solutions is affected when penalization is present. This study
helped us examine the influence of invalid networks in the final results and
identify potential issues when the networks are deeper.

• A study about the impact of training schemes on the final result. As
observed in [32], several authors in theNAS literature apply specially adjusted
learning schedules when training their final structures. We investigated the
difference in retraining our networks with distinct learning schemes. We
observed that, although a special learning schedule shows better results than
the others, the cosine schedule presents similar accuracy, without any tuning.

• An environment for the study of network topologies. Q-NAS generates
thousands of structures during evolution. Since we store the population de-
scriptions, it is possible to analyze if there are common patterns, such as a
specific sequence of nodes that frequently appears. This analysis can be used
to discover new primitives to assemble different architectures. Also, it can be
useful to compare the networks generated for distinct tasks.

1.3
Work outline

This work comprises five additional chapters, which we describe below.
In Chapter 2, we provide the theoretical background necessary to understand

the NAS context, which includes the concepts of convolutional neural networks and
a review of some NAS works.

We present quantum-inspired evolutionary algorithms in Chapter 3, including
the definition of essential concepts and a brief description of some previous works.

Q-NAS is introduced in the following chapter, with a focus on the newly
developed quantum-representation. The steps of the algorithm are also specified.

Next, Chapter 5 describes and discusses the experiments. We present our
experimental track in the order it was developed, with each section addressing a
specific investigation subject.

Finally, we present the final remarks in Chapter 6, along with the next steps
of our research.
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2
Neural Architecture Search

In this chapter, we present the context of neural architecture search, with the
focus on convolutional neural networks for image recognition problems. First, we
review concepts regarding convolutional neural networks, including the required
design decisions to build and train them. Next, we review recent neural architecture
search algorithms for image classification problems.

2.1
Convolutional Neural Networks

In 1980, Fukushima [33] introduced an artificial neural network based on a
hierarchical model of the visual system’s structure, proposed in 1962. The key idea
involved applying neurons with the same parameters on patches of the previous layer
at different locations, to obtain a form of translational invariance [4]. This invariance
is essential for tasks such as image recognition: in this situation, one is interested in
the presence of a certain motif, regardless of its location [34]. Fukushima trained
his network, called Neocognitron, using an unsupervised learning1 scheme [33,
35]. Some years later, LeCun and other collaborators created the convolutional
neural network (CNN), following the Neocognitron ideas. However, they used
backpropagation (supervised learning) to train the network [35], achieving state-
of-the-art results for pattern recognition tasks [36].

CNNs are designed to process data in the shape of multiple arrays, such
as images, audio spectrograms, or volumetric images. In other words, the CNN
structure takes advantage of the properties of these types of signals.

Just as the name suggests, CNNs employ the linear operation of convolution.
The convolution of a function x(t) with a function w(t) is defined as follows:

s(t) =

∫ ∞

−∞
x(a)w(t− a)da = (x ∗ w)(t) (2-1)

As an illustrative example, imagine that x(t) is the position of a particle at
time t and that the sensor to measure this position is noisy. It is possible to average
several data points to obtain a cleaner version of signal x(t). Supposing that recent
observations are more relevant than old ones, we can use the weighting function

1Details about unsupervised learning can be found in [5]
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w(a), where a is the age of the measures. By applying this weighted average, we
obtain a smoothed estimate s(t) of x(t). This operation is also defined for discrete
values of t; we simply substitute the integral for an infinite summation [5].

In the context of CNNs, x is the input, w is the kernel or filter, and s is called
feature map. Also, the input is usually a multidimensional array of data (tensors) and
the kernel, an array of parameters that will be adjusted by the learning algorithm. For
example, the input can be a 2D image I and in this case, the kernel K should also
be two-dimensional. The convolution operation will then be applied simultaneously
on both axes:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2-2)

where the infinite summation can be reduced to a finite summation, assuming that the
input is zero everywhere outside the image area. Figure 2.1 shows a visual example
of the convolution operation applied on a 2D image I .

Image I

aw + bx +
ey + fz

bw + cx +
fy + gz

cw + dx +
gy + hz

ew + fx +
iy + jz

fw + gx +
jy + kz

gw + hx +
ky + lz

w x

y z

Kernel K

a b c d

e f g h

i j k l

feature map

Figure 2.1: Example of 2D convolution. The output in this example is only calculated for the
positions where the kernel lies entirely inside the image. This is called valid convolution.

The use of convolution operations in neural networks provides advantages
that are related to three main ideas: sparse interactions, parameter sharing, and
equivariant representations [5].

In traditional neural networks, such as the Multilayer Perceptron (MLP), all
elements in the input interact with the output elements. On the other hand, in CNNs,
if the convolution kernel is smaller than the input, there will be sparse connections.
This idea can be seen in Figure 2.1: input b, for example, only influences the first
and second outputs in the feature map. The sparse connectivity reduces the amount
of memory needed to store parameters and the number of operations to calculate the
output. This reduction is converted into a significant efficiency improvement [5].
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The second advantage is related to the fact that each kernel member is used
in all positions of the input image, i.e., the parameters are shared (see Figure 2.1).
Once again, this represents an increase in efficiency compared to densely connected
networks.

This specific form of parameter sharing in a CNN leads to a property called
equivariance to translation. A function f(x) is equivariant to a function g(x) if
f(g(x)) = g(f(x)). If g is a function that shifts the input, then the convolution
is equivariant to g. This means that if we move an object in the input image, for
example, its representation moves in the same way in the output image. It is worth
mentioning that the convolution operation is not equivariant to transformations like
changes in scale or rotations.

We just defined the convolution operation and its advantages, but we also need
to describe how CNNs are built using convolutional layers. Figure 2.2 shows a typ-
ical set of CNN layers, composed of three stages. The first one is responsible for the
convolution operations that produce a set of linear activations [5]. To define a con-
volutional layer, we need to specify the kernel sizem× n, the stride s in which the
kernel will scan the input, and the number f of feature maps that the layer will pro-
duce. This specification determines that f different kernels of sizem×n and stride
s will slide across the input tensor, generating f output maps. In this work, we refer
to a convolutional layer of size k × k, stride s and f feature maps as Conv(k, s, f ).

input

output

Convolutional
layer

Nonlinearity
(ReLU)

Pooling
layer

Figure 2.2: Example of a typical set of layers in a CNN. The nonlinearity can be suppressed
in illustrations, and the gray area will be depicted only as convolutional layer.

In the second stage or detector stage, a nonlinear activation function is applied
to the convolution outputs. The standard nonlinear function is the Rectified Linear
Unit, or simply ReLU, defined as f(x) = max(0, x) [5, 34]. We remark that this
nonlinearity is usually suppressed in illustrations: it is implicitly represented in the
convolutional layer.

Next, a pooling function replaces the activations of a feature map with sum-
mary statistics of neighboring activations. These functions define a rectangular
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neighborhood of size k × k that also slides across the input with a stride s. The
values that fall into this neighborhood are replaced by a statistic [5, 34], such as
the maximum value (MaxPool) or the average value (AvgPool). Here, we refer to a
MaxPool layer with stride s and neighborhood k × k as MaxPool(k, s); the same
applies to AvgPool. Note that k and s usually are set to be larger than 1 to downsam-
ple the input. By reporting the summary statistics of k × k neighborhoods spaced s
pixels apart, one reduces the feature map size. This reduction is valuable to improve
efficiency, especially in cases where translation invariance is more important than
accurate locations. Pooling helps to make representation invariant to small transla-
tions of the input, as the summary statistics remain stable in the neighborhood [5,34].
For classification problems, pooling functions can be advantageous, as we are only
interested in the presence of an object in the image. However, by replacing the pixels
with summary statistics, we can lose feature position information, which is essen-
tial in applications such as object detection. This corroborates the fact that pooling
layers are not always present in convolutional networks, as seen in [37].

A deep CNN is formed by repeatedly stacking these types of layers. In a typical
architecture, two or three stages of convolution and pooling are stacked, followed
by more convolution stages and fully-connected (FC) layers [34]. In the context of
classification tasks, the last layer is responsible for outputting the scores for each
category, and it is usually a fully-connected layer. If we have 100 classes in the
dataset, the last fully-connected layer should have 100 units.

Figure 2.3 shows the deep architecture Alexnet that won the ImageNet chal-
lenge [38] in 2012. It was able to distinguish the 1000 classes with top-5 test error

input

Conv(11, 4, 96)

output

MaxPool(3, 2)

Conv(5, 1, 192)

MaxPool(3, 2)

Conv(3, 1, 384)

Conv(3, 1, 384)

Conv(3, 1, 256)

MaxPool(3, 2)

FC(2048)

FC(2048)

FC(1000)

input example

sunflower

output

Figure 2.3: Alexnet architecture for classifying the 1000 classes in the ImageNet dataset.
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rate of 15.3% [6]. Notice that it has convolutional layers followed by other convo-
lutions or by pooling functions, but its general form matches the stacking recipe we
just mentioned.

2.1.1
Training a CNN

We have defined the general form of a CNN model, and now we need to
describe the training procedure, or how the network weights are adjusted. We will
consider the supervised learning case, and the image classification task will serve as
an example to illustrate this procedure.

Suppose we have a collection of images labeled as different classes, such as
a car, a dog, a flower, or others. Supervised learning involves the observation of
several examples of input x (our images) and its associated target y (our class label)
and then learning to predict y from x [5]. Ideally, after learning from the training data
collection, the model will be able to predict the classes of unseen images – ability
of generalizing what was just learned. In the neural network context, observing the
input image consists of providing it to the network so it propagates through the
layers. A score for each category is generated at the output, completing the forward
propagation. The idea is to adjust the network weights so that the highest score
appears for the correct label of the corresponding image. We must define an error
function that will measure how far the current output is from the correct answer. The
learning algorithm consists of minimizing this error function (or cost function) with
respect to the weights of the network. Stochastic Gradient Descent (SGD) and its
variants are the most popular optimization algorithms for training CNNs. It consists
of the following steps [34]:

1. presenting a batch of input arrays – images, in our example;

2. computing the output scores and errors;

3. calculating the average gradients for the batch of examples;

4. adjusting the weights accordingly.

The gradient descent technique is characterized by the observation that we
can reduce a function f(x) by moving in small steps with the opposite sign of its
gradient. This iterative optimization algorithm proposes a new point x′ as [5]:

x′ = x− λ∇xf(x) (2-3)

where λ is the learning rate, a positive real number which determines the step size.
The algorithm converges when every element of the gradient is zero [5].
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To actually compute the error function gradients with respect to each network
weight, the backpropagation algorithm is used. Backpropagation repeatedly applies
the chain rule of calculus, starting from the output of the network and moving to the
input. Details about the backpropagation algorithm can be found in [5].

One modification to the regular SGD is the addition of momentum. The SGD
with momentum accumulates an exponentially decaying moving average of the
previous gradients and continues to move in their direction. A parameter α, called
momentum, controls how fast the contributions from past gradients will decay [5].

The learning rate is a critical parameter for the SGD algorithm, as it can affect
the model performance significantly. Modern mini-batch based optimizers try to
address this issue by individually adapting learning rates for themodel’s parameters.
These algorithms use a separate learning rate for each weight and automatically
adapt these rates during training. The RMSProp is one well-known example of these
algorithms: it reduces the learning rate according to the historical square gradients.
It also discards contributions from the extreme past with the help of an exponentially
decaying moving average. RMSProp adds the moving average decay to the list of
parameters to be specified by the user. [5].

2.1.2
Regularization

In the training procedure just presented, we compute the errors on a set of
inputs called the training set, andminimize the cost function. However, anymachine
learning model should have the ability of generalization, that is, to perform well
not only on the training set but also on unseen data [5]. This requirement can be
challenging, as our learning algorithm is not directly addressing it. Several strategies
to reduce the generalization error, known as regularization techniques [5], have
been developed. We will briefly describe here the methods relevant to this work.

One of the most common regularization techniques is the L2 parameter norm
penalty orweight decay. The idea is to add a penalty term to the cost function to favor
weights with smaller squaredL2 norm. Considering a cost functionC(w;X,y), the
new cost with weight decay becomes [5]:

Creg(w;X,y) = C(w;X,y) +
α

2
∥w∥2 (2-4)

where α ∈ [0,∞) is a hyperparameter that controls the contribution of the penalty
term relative to the original cost function. The result of minimizing Creg(w;X,y)

is to select weights that make a trade-off between fitting the training data and having
small values [5].
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Even though weight decay is simple to use, one could claim that an effective
way to make a model generalize better is to train it on more data. However, in reality,
we have access to a limited set of examples. For some problems, it might be easy to
create fake data to increase the training set, a method called data augmentation [5].

In our object classification task, it is straightforward to simulate real variations
by applying simple operations on the images. For example, we can pad the images
and then randomly crop them; small brightness alterations are also possible; random
flip or rotations are common choices. Moreover, one can perform data augmentation
during training (online). When presenting a training example to the network, it has
a 50% chance of being modified by one operation. In this way, the network can
become more robust to these variations without the need to collect more data.

Another successful and more recent approach is called batch normalization
(BN) [39]. Although it was primarily designed to improve convergence in deep
models, batch normalization can also act as a regularizer [5, 39, 40].

Deep models are composed of many layers, and the inputs to a layer are
affected by the preceding ones. When training such models with SGD, we update
the weights according to the gradients [5]. However, small changes in the weights
can be amplified with increasing network depth [39]. So, after the update, the inputs
to each layer can be significantly modified, which may delay convergence, as the
layers need to adapt to new input distributions all the time. The idea behind BN is
to reduce the variations in these distributions. Consider, for example, an activation
x in the network and a mini-batchB, in which we havem values for this activation:
B = {x1, ..., xm}. The BN transform is defined as [39]:

BNγ,β(xi) ≡ γx̂i + β; x̂i =
xi − µB√
σ2
B + ϵ

;

µB =
1

m

m∑
k=1

xi; σ2
B =

m∑
k=1

(xi − µB)
2

(2-5)

where µB and σ2
B are the mini-batch mean and variance, γ and β are learned

parameters, and ϵ is a constant for numerical stability. Notice that each activation x in
the network has its unique γ and β parameters that are learned alongwith the original
model weights [39]. This normalization introduces additive and multiplicative noise
on the layers, which can have a regularizing effect [5].

It is important to note that the presented methods can be used together: one
can apply batch normalization and data augmentation simultaneously, for example.
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2.1.3
Residual Learning

As already mentioned, batch normalization stabilizes the gradients, improving
convergence. This method is one of the techniques that enabled researchers to
train deeper networks. However, with growing depth, a degradation problem arises:
accuracy saturates and then deteriorates fast while training error increases [9]. The
authors in [9] propose the residual learning framework to address the degradation
problem.

To understand the idea behind residual learning, first consider two networks: a
shallow one and a deep counterpart, created by adding identity layers on the smaller
model. The authors claim that the existence of this construction indicates that a
deeper network should not present higher training errors than its shallow equivalent.
Since experiments show the opposite, they also affirm that current solvers are
unable to find better (or even similar) solutions than this identity topology. So, they
propose tomake the layers fit a residual mapping instead of the original unreferenced
mapping. If the stacked identity layers were the optimal solution, they claim it would
be easier to zero out the residual than directly try to fit the identity [9].

If we denote the underlying mapping as H(x), the residual mapping is then
F (x) ≡ H(x) − x. The original mapping becomes F (x) + x [9]. Figure 2.4 (a)
shows a residual unit that implements the new formulation ofH(x). Then, to build
a residual network, we stack these units instead of standard convolutional layers.

The shortcut (or skip connection) in the unit of Figure 2.4 (a) can be directly
used if the input x and the output F (x) + x have the same dimensions. When
the sizes do not match, there are two typical approaches to fix this issue. The first
one pads the input with zeros when performing the summation. The second uses a
projection shortcut, depicted in Figure 2.4 (b), which applies a 1× 1 convolution to
fix the dimensions.

Conv + BN

+

ReLU

ReLU

Conv + BN
identity

(a) (b)

Conv + BN
ReLU

ReLU

Conv + BN
Conv
(1 x 1)

projection

+

Figure 2.4: (a) Residual unit with identity shortcut. (b) Residual unit with projection shortcut.
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2.2
Review of NAS methods

As seen in the last section, to create and train a CNN, the user must define not
only the network layers and its characteristics, but also several hyperparameters,
mostly related to the training procedure. The list of hyperparameters may include
the number of examples in a batch, the learning rate, the optimizer to use along with
its settings, the regularization methods, among others. These design choices require
expert knowledge and even trial and error, as there are only general suggestions and
no specific methodology to define them. In this context, researchers established the
area of AutoML that attempts to automate these decisions completely [1].

Neural Architecture Search is the process of automating network engineering
and can be considered a subfield of AutoML [1]. The idea of automatically designing
neural networks has been studied before, but at a time when deep networks were not
close to becoming a reality. The field of neuroevolution started with the purpose
of using evolutionary algorithms to adjust the weights of neural networks [11].
The concept was extended, as several authors proposed evolutionary algorithms to
adjust not only the weights of the networks but also their topologies [10–12]. The
NEAT [11] and GNARL [10] are examples of such systems. Although successfully
applied to smaller structures, the neuroevolution approaches do not directly scale to
the context of deep networks, as they optimize connections at the neuron level [20].

The current success of deep networks, combined with the difficulty in creating
them, instigated researchers again with the idea of design automation. NAS has
recently become a relevant research field, as a variety of new solutions have rapidly
emerged.

According to Hutter et al. [1], NAS can be characterized by three items: search
space, search strategy, and performance estimation strategy. The first one is related
towhich architectures can be represented. The search strategy defines how to explore
the search space, including the technique applied and the exploration-exploitation
trade-off. Finally, the performance estimation is associated with the evaluation of
the candidate networks [1]. In the next subsections, we review some NAS works,
focusing on the search strategy. The search techniques include reinforcement learn-
ing, evolutionary algorithms, and others. To compare the approaches, we provide
their results on the image classification benchmark dataset CIFAR-10 [15].

2.2.1
NAS with reinforcement learning

NAS research has gained more attention after Zoph and Le [2] presented com-
petitive results applying reinforcement learning (RL) to search for deep architec-
tures [1].
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In RL systems, an agent interacts with the environment through a sequence of
actions and rewards. The agent’s goal is to select actions in a way that maximizes
future reward [41]. A policy defines the behavior of the learning agent at any given
time: it maps the perceived states of the environment to action decisions when in
those states. Policies can be as simple as a look-up table or may involve complex
search processes [42].

NAS is formulated as a reinforcement learning problem by considering the
generation of a neural architecture as the agent’s action. The action space is then
identical to the network search space. The RL approaches are mainly distinguished
by the agent’s policy representation and the method to optimize it [1].

In policy gradient methods, for example, the policy is directly optimized by
gradient descent. Zoph and Le [2] apply this technique in their RL based NAS: they
use a recurrent neural network policy and train it with the REINFORCE algorithm.
In their work, the recurrent network is responsible for generating variable-length
strings that encode the candidate architectures. The decoded networks are trained
using 45 000 examples from the 50 000 of the CIFAR-10 training set. The remaining
5 000 examples compose the validation set, which is used to calculate the accuracy
of the structure. Then, they attribute this value as the agent’s reward and use it to
train the recurrent network policy. They achieved a test accuracy of 96.35% using
800 GPUs for more than three weeks. It is worth mentioning that after they find the
structure, they conduct a grid search to optimize some numerical hyperparameters
and retrain the model using these values.

Baker et al. [16] introduce MetaQNN, which uses Q-Learning to train a policy
that selects CNN layers sequentially. For example, if the layer is convolutional, the
options for kernel size and filters are {1, 3, 5} and {64, 128, 256, 512}. They used
ten GPUs for ten days to reach 93.08% of accuracy in the CIFAR-10 dataset.

Other researchers proposed RL based methods that, instead of searching for
the entire network, focus on optimizing smaller blocks [17,18]. A predefined meta-
architecture determines the specific way to stack these blocks to build the final
structure. This idea drastically reduces the search space and speeds up the search
process, but introduces a significant bias to the networks. The meta-architectures
restrict the possibilities of finding unusual structures and raises the question about
how to define them [1].

Zoph et al. [17] followed this idea and applied a recurrent neural network
policy, but now using Proximal Policy Optimization [43] to train it. They defined
the NASNet search space for the cells, and attempt to learn two blocks: the normal
cell and the reduction cell. The first one does not change the input feature map size,
while the second cell reduces it by a factor of two. In the NASNet space, there is
a set of 13 operations, such as 3 × 3 convolution and 7 × 7 max pooling, that can
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be selected for a hidden state inside a cell. The number of filters in convolutional
layers is predefined, but connectivity between the hidden states are learned. The
final NASNet architecture is composed by stacking N normal cells, followed by a
single reduction cell, repeated times. They were able to achieve 96.86% of accuracy
in the CIFAR-10 dataset using 500 GPUs over four days.

Zhong et al. [18] adopted Q-Learning rather than policy gradient methods. Us-
ing 32 GPUs for three days, BlockQNN reached 96.46% of accuracy on CIFAR-10.

A different approach involves reusing weights when training networks during
the search. In [25], the authors propose to explore the search space by applying trans-
formations that preserve functionality so that weights can be reused. They employ
a recurrent network policy, trained with REINFORCE, to increase the architecture
depth or width using function-preserving operations, such as adding a layer initial-
ized as identity. They obtained 95.11% of accuracy in the CIFAR-10 dataset using
five GPUs for two days. Although the method does not search for cells, it relies on
a seed network to begin the process. In this experiment, they set a small architecture
as the starting point that already presented 87.07% of validation accuracy.

2.2.2
NAS with evolutionary algorithms

Since neuroevolutionary methods have been proposed earlier, a natural alter-
native to RL based approaches is evolutionary algorithms. However, as mentioned
before, the former algorithms did not scale to the contemporary context of deep
architectures. Recent evolutionary techniques applied to NAS use regular gradient-
based training to adjust the network’s weights, and the evolution occurs only in the
structure space [1].

Evolutionary algorithms, as the name suggests, are inspired by the natural
process of evolution. There are many variations of such methods, but they all follow
the same basic idea [44]. A population of individuals represents candidate solutions
to an optimization problem. All the individuals are evaluated so that a fitness value
can be assigned to them. In each iteration of the algorithm (generation), the fittest
individuals are selected to create a new population [45].

In [20], Cartesian Genetic Programming (CGP) is used to discover new ar-
chitectures for the CIFAR-10 dataset. The CGP encoding scheme defines the net-
work as a directed acyclic graph in a two-dimensional grid of computational nodes.
They investigate two search spaces, which they name ConvSet and ResSet. The first
one considers convolutional networks, while the second, residual networks. Their
method allows for the search of multi-branch architectures, with skip connections,
and they experiment with a maximum depth of 30 layers. They evaluate two indi-
viduals per generation by training them and calculating the validation accuracy. In
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300 generations, they reported a test accuracy of 94.02% for the ResSet space using
two GPUs for two weeks. For the ConvSet space, they ran the algorithm for 500
generations and reported a test accuracy of 93.25%.

Real et al. [19] proposed an evolutionary method that produces a fully trained
network at the end, without the need for retraining. Following the idea of the
successful NEAT algorithm [11], the authors start the evolution process from a single
layer network and apply mutation operators that act in the structure, allowing it to
grow. However, unlike NEAT, these operators act on layers instead of neurons. A
regular training procedure is conducted for each network to obtain the individual’s
fitness (validation accuracy). The weights’ values are inherited across mutations,
whenever possible. The authors claim that the search space is fairly unrestricted and
reported a test accuracy on the CIFAR-10 dataset of 94.60% using 250 GPUs for
256 hours.

Assunção et al. [32] proposed an approach that combines ideas from two
evolutionary methods: Genetic Algorithms (GA) and Grammatical Evolution. The
GA-level encodes the macrostructure, such as layer types. The grammatical level
specifies the parameters and their valid ranges for each unit defined by the GA. After
evolution, they retrain the final network five times and report the average accuracy.
The authors provide interesting results concerning the learning rate schedule in this
retraining phase. With no schedule, they obtained 88.41% of accuracy on CIFAR-10
and 92.51% when applying the same schedule as [20].

The meta-architecture idea also appears in evolutionary approaches for NAS
[21, 26, 46]. Real et al. [21] apply an evolutionary algorithm to search for the
normal and reduction cells in NASNet search space, as defined in [17]. New cells
are generated by mutating parent cells, with simple modifications. Their mutation
operator guarantees that the cell still lies in the NASNet space. At every iteration,
instead of removing the worse individuals, they eliminate the oldest. They used 450
GPUs for seven days, and their best AmoebaNet-A reached 96.66% of test accuracy
on CIFAR-10.

Liu et al. [26] presented a hierarchical genetic representation of directed
acyclic graphs. At the lowest level of the hierarchy, the primitives are convolutions
and pooling operations. They are assembled in graphs, generating higher level mo-
tifs, which can then be combined again. The authors define a small meta-architecture
to insert the motifs in some of its layers so they can compute fitness via regular
training. For the final network, they insert the evolved blocks in a bigger meta-
architecture. They obtained an accuracy of 96.25% in the CIFAR-10 dataset, using
200 GPUs for 1.5 days.

The Genetic CNN proposed in [46] also defines a meta-architecture and
evolves blocks of the structure, which are encoded as fixed-length binary strings.
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The meta-architecture comprises a series of stages. Within each stage, the convolu-
tional operations have the same number of filters, and the spatial dimensions of data
remain unchanged. They applied the method to the CIFAR-10 dataset, running the
evolution for 50 generations in 17 GPU days, and reached 92.90% of accuracy.

2.2.3
NAS with other methods

With the growing interest in NAS, new techniques have been emerging be-
yond the scope of evolutionary algorithms or reinforcement learning. Authors have
proposed NAS methods using Particle Swarm Optimization [47], Bayesian opti-
mization [22, 48], and even Gradient Descent [49, 50].

The network transformation idea mentioned in Subsection 2.2.1 – also called
network morphism – is present in other works as well. The Auto-Keras framework
[48] uses Bayesian Optimization to guide network morphism. Elsken et al. [51]
propose a hill-climbing procedure that increases structures by applying network
morphisms.

Liu et al. [49] introduce DARTS, which formulates the architecture search
problem in a continuous space. They apply softmax over all the discrete structural
choices to relax the search space to be continuous. The network is then optimized
with respect to its validation performance by gradient descent. Their best accuracy in
CIFAR-10 was 97.24%consuming five GPU days, which was obtained by searching
for a cell and using a meta-architecture.

Alternative ideas, such as GDAS [50], NAO [52], and XNAS [53], also
consider NAS in a continuous search space for cells. XNAS uses a modified DARTS
search space, and interpret NAS as an online selection task. XNAS reached a
remarkable result on CIFAR-10: 98.40% of test accuracy in 0.3 GPU day. However,
it is worth mentioning that besides using a meta-architecture with a predefined
number of filters, the retraining procedure is quite complicated. They train the final
network for 1500 epochs using a particular learning rate schedule, along with six
different regularization techniques.

2.2.4
Final remarks

Table 2.1 summarizes the results and resource consumption for several NAS
works. The consumption is reported as GPU days, which is defined as the number
of days a single GPU would take to run the algorithm. Note, however, that a
fair comparison would also require to consider the GPU hardware specification,
which is not always available. The NAS methods described in this section show
excellent results compared to hand-designed architectures. On the other hand, the

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Chapter 2. Neural Architecture Search 29

approaches that use an extensive search space are significantly more expensive
regarding computational cost. The solutions proposed to reduce this cost frequently
impose a strong bias to restrict the search space. The trade-off between generality
and computational cost is a critical point in the NAS field, and current results
evidence the need for further development.

Table 2.1: Comparing hand designed models (top) and NASmethods (bottom), by accuracy,
number of parameters and GPU days of search. The ‘*’ marks the method that used other
dataset for the search and applied the network on CIFAR-10.

accuracy (%) # params. GPU days

ResNet [9] 93.57 1.7M -
VGG [7] as reported by [20] 92.06 15.2M -
Network in Network (NiN) [8] 91.19 - -
Maxout [54] 90.70 - -

XNAS [53] 98.40 7.2M 0.3
DARTS [49] 97.24 3.3M 5
NASNet-A [17] 96.86 3.3M 2000
AmoebaNet-A [21] 96.66 3.2M 3150
Block-QNN-S [18] 96.46* 39.8M 96
NAS [2] 96.35 37.4M 22400
Hierarchical Evolution [26] 96.25 - 300
EAS [25] 95.11 - 10
Large-scale Evolution [19] 94.60 5.4M 2670
CGP-CNN (ResSet) [20] 94.02 1.68M 28
CGP-CNN (ConvSet) [20] 93.25 1.52M -
MetaQNN [16] 93.08 11.18M 100
Genetic CNN [46] 92.90 - 17
NASBOT [22] 91.31 - 1.67
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3
Quantum-inspired Evolutionary Algorithms

This chapter introduces the idea of quantum computing and quantum-inspired
evolutionary algorithms.

3.1
Quantum computing

In the early 1980s, Richard Feynman remarked that classical computers could
not simulate some quantum mechanical effects efficiently. This observation sup-
ported the idea that general computationmay be executedmore efficiently if it makes
use of these quantum effects. The new idealized device is called the quantum com-
puter [55]. Quantum computing is then the term used to describe the computational
processes based on these quantum principles [56, 57].

In a classical computer, the smallest unit of information is the binary digit
or bit, which can assume the values of 0 or 1. Quantum computers, on the other
hand, manipulate quantum bits or q-bits [27, 56, 58]. A q-bit is a unit vector in a
two-dimensional complex vector space for which the orthonormal basis (in Dirac
notation) |0⟩, |1⟩ has been fixed. The basis states represent the classical bit values
0 and 1, respectively [55]. A q-bit, in contrast to the classical bit, can be in a
superposition of states, that is, the q-bit state |Ψ⟩ can be represented as a linear
combination of |0⟩ and |1⟩ [27, 28, 55]:

|Ψ⟩ = α|0⟩+ β|1⟩ (3-1)

where α and β are complex numbers such that:

|α|2 + |β|2 = 1 (3-2)

When the state is measured, the q-bit collapses to the values 0 or 1 with
probabilities |α|2 and |β|2, respectively. The q-bit state can be modified by means
of quantum gates. A quantum gate is a unitary operator that acts on the q-bit basis.
It can be represented by a matrix M that, in order to preserve orthogonality, must
satisfy M †M = I , where M † is the conjugate transpose of M . One can think of
these unitary transformations as being rotations of the q-bit vector space [28, 55].
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Although quantum computing offers great potential in terms of processing
capacity [56], the research community still needs to overcome many challenges
so that quantum computers can become readily available1. The idea of quantum-
inspired computing is to create classical algorithms that take advantage of quantum
physics principles but can be executed in classical computers [56,57,59]. The term
quantum-inspired was selected to distinguish these algorithms from pure quantum
computation, which is firmly based on the concepts of quantum mechanics. Similar
inspirations have emerged in different areas, such as artificial neural networks
motivated by neurobiology or genetic algorithms based on natural selection [57].

3.2
Quantum-inspired evolutionary algorithms

Embracing the quantum inspiration idea, Han and Kim [28, 60] presented the
first practical quantum-inspired evolutionary algorithm (QIEA). A QIEA applies
quantum computing principles, such as quantum bits and superposition of states, to
solve optimization problems [27, 28]. Like other evolutionary algorithms, a QIEA
is characterized by the individual representation, the evaluation function, and the
population dynamics.

Figure 3.1 shows the pseudocode for a canonical evolutionary algorithm (EA)
[44]. The EA maintains a population of individuals (P (t)) that represents possible
solutions to the problem in hand. Every solution in P (t) is evaluated, and a fitness
value is assigned to each one. At the beginning of the loop (line 6 in Figure 3.1),
genetic operators, such as mutation and crossover, modify some members of P (t).
This process generates new candidate solutions that are also evaluated. The next
population is created by selecting the best individuals in S(t). We proceed with
the iterations (which we call generations in the EA context) until we reach some
stopping condition, e.g., a specific number of generations. When the algorithm
converges, the best individual in P (t) should represent a solution that is close to
the optimal one [45].

There are several EAs available in the literature, and they differ mainly in
terms of the following aspects [45]:

1. how the individuals are encoded;

2. which genetic operators are applied;

3. the selection mechanism used to generate the new populations.

One key concept of QIEAs that distinguishes them from other EAs is the
quantum population. The quantum population is the core of QIEA [61]. It represents

1https://www.research.ibm.com/ibm-q/learn/what-is-ibm-q
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1: begin
2: t← 0
3: Initialize P (t)
4: Evaluate P (t)
5: while t ≤ T do
6: S(t)← Vary P (t)
7: Evaluate S(t)
8: P (t+ 1)← Select S(t)
9: t← t+ 1
10: end while
11: end

Figure 3.1: Simple evolutionary algorithm pseudocode.

a superposition of states that covers the search space, or more specifically, each
quantum state characterizes a possible solution. Quantum individuals cannot be
directly evaluated: they must be observed to generate classical individuals. In other
words, since a quantum individual represents many quantum states, it can only be
evaluated when it collapses to a single one.

Figure 3.2 shows a QIEA pseudocode [28, 56, 60], which is similar to the
canonical EA in Figure 3.1. The QIEA procedure includes some unique steps, such
as the observation of the quantum population Q(t) (lines 4 and 9) and the update of
the quantum individuals (line 11).

1: begin
2: t← 0
3: Initialize Q(t)
4: Generate classical population P (t) observing Q(t)
5: Evaluate P (t)
6: Store the best solutions of P (t) in B(t)
7: while t ≤ T do
8: t← t+ 1
9: Generate classical population P (t) observing Q(t− 1)
10: Evaluate P (t)
11: Q(t)← Update Q(t)
12: Store the best solutions of P (t) and B(t− 1) in B(t)
13: end while
14: end

Figure 3.2: A QIEA pseudocode.

In fact, a special update is needed as a consequence of the quantum individual
representation. The classical variation operators – crossover and mutation, in their
traditional forms – are not adequate for the quantum individuals. The quantum
individual represents the search space in a probabilistic way and we would like to
have a mapping of such space that favors promising solutions. For example, suppose
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we have a quantum gene represented by a q-bit q = [α β]T , with α = β = 1/
√
2.

Suppose further that, during evolution, candidate solutions with this gene set to 0

show better fitness scores. The algorithm should then increase α and decrease β, so
that the probability of the q-bit collapsing to state 0 approaches 1.0. Notice, however,
that classical operators can still be applied to the classical individuals if one wishes
to [12, 30, 56, 61].

To further describe and illustrate the QIEA concepts and advantages, we will
go through the already mentioned algorithm designed by Han and Kim [28, 60].
Their goal at the time was to solve combinatorial optimization problems, such
as the knapsack problem2. They define a quantum population with N individuals
Q(t) = {qt

1, q
t
2, ...q

t
N}. Each quantum individual qt

i is a string of q-bits [28, 60]:

qt
i =

[
αt
i1 αt

i2 ... αt
iG

βt
i1 βt

i2 ... βt
iG

]
(3-3)

whereG is the the string length (or the number of quantum genes), t is the generation
number and i = 1, 2, ..., N . Similar to the normalization in Equation 3-2, |αij|2 +
|βij|2 = 1.

The quantum individual qi can represent a superposition of 2G states or binary
solutions. Equation 3-4 shows an example of a quantum individual consisting of two
q-bits: [

1√
2

1
2

1√
2

√
3
2

]
(3-4)

To calculate the probability of the state |01⟩, we should first calculate the prob-
ability amplitude associatedwith this state. The amplitude is obtained bymultiplying
the positions (0, 0) and (1, 1) of the quantum individual matrix in Equation 3-4. So,
the probability of state |01⟩ is given by:

P|01⟩ =

(
1√
2
×
√
3

2

)2

=
3

8
(3-5)

In this example, one can see that a single quantum individual can represent
four possible solutions. The classical binary representation would need four strings
to represent the same amount of information. The authors claim that q-bit encoding
better characterizes the population diversity compared to other EAs, as it represents
a linear superposition of states probabilistically [28, 60].

2The knapsack problem is defined as follows. Given a set ofm items and a knapsack with limited
capacity, select a subset of the items to maximize the total value subject to the total weight limit.
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Now that the representation is defined, we can explore the steps of the algo-
rithm. The first QIEA procedure is the quantum population Q(t) initialization. The
strategy is to assign values to each quantum gene j of every individual i so that all
possible states have the same initial probability or, more specifically [28, 60]:

α0
ij, β

0
ij =

1√
2

i = 1, 2, ..., N ; j = 1, 2, ...G (3-6)

Next, we need to generate classical individuals by observing the quantum
population (line 4 of Figure 3.2). Notice that the observation here is an analogy, as
we are working with classical computers. Therefore, to generate a binary solution
pt
i to be evaluated, one selects a state for each gene independently.

The solution pt
i is a string of G bits, formed by randomly selecting each gene

to be either 0 or 1, respecting the probabilities |αij|2 and |βij|2 [28, 60]. In practical
terms, this can be achieved by sampling from a uniform distribution in the interval
[0, 1] and comparing the selected number with |αij|2. If this number is lower than
|αij|2, the state is 0; otherwise, it is 1. This process is repeated for all N individuals
to generate the classical population P (t) = {pt

1,p
t
2, ...,p

t
N}.

Once generated, the classical population P (t) is ready for evaluation (line 5);
the best solutions are stored in B(t) = {bt1, bt2, ..., btN} (line 6). At generation 0,
B(t) = P (t). This ends the initial procedures, and we begin the loop of generations
by the observation process (line 9), followed by the evaluation step (line 10).

As previously noted, we must update the quantum population so it can favor
the generation of promising solutions (line 11). The authors in [28, 60] propose the
use of a rotation quantum gate to update the quantum population:

U(∆θj) =

[
cos (∆θj) − sin (∆θj)

sin (∆θj) cos (∆θj)

]
(3-7)

where ∆θj is a rotation angle for each q-bit toward either 0 or 1 state depending on
its sign. This matrix must be applied to one q-bit at a time [56]:[

α
′
j

β
′
j

]
= U(∆θj)

[
αj

βj

]
(3-8)

where j = 1, 2, ..., G.
The angles ∆θj are obtained according to a lookup table designed by the

authors, which depends on the application. These values are a function of the j th

bit of the best solution bti and the j th bit of the binary solution pt
i.

Notice that the best solutions influence the quantum individuals’ update, so
the quantum gate will gradually rotate the q-bits in the direction of promising
solutions. Consequently, the q-bits will progressively converge to a single state – the
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optimal solution. According to the authors [28], by applying this update mechanism,
QIEAs can handle the balance between exploration and exploitation. This feature
can be seen as a significant advantage of QIEAs over other EAs. Usually, traditional
EAs need to balance the use of crossover and mutation operators to handle the
exploration/exploitation equilibrium. Finding this equilibrium can be a difficult task.

The last step in the loop consists of storing the best solutions among B(t− 1)

and P (t) into B(t) (line 12). In practical terms: the solutions from the current
generation and the best solutions are ordered by fitness value, and the best ones
from the group are selected.

This first QIEA inspired other researchers over the years, and different ver-
sions of the algorithm have been proposed to solve a variety of problems.

In [62], the authors introduce a new QIEA for ordering problems, such as the
traveling salesman problem and the vehicle routing problem. They adopt a special
quantum representation based on a vector of q-bits, in which only some binary
states are allowed. The results show that the order-based QIEA outperformed the
traditional order-based genetic algorithm.

The work in [63] also applies the q-bit representation and introduces a K-
means clustering algorithm based on QIEA. Likewise, in [52], SVM parameters
were tuned using a QIEA.

More recently, Ramos et al. [64] applied q-bit QIEA for feature selection in
a classification task of electroencephalography data. They compared the QIEA ap-
proach with a classical genetic algorithm. The results for QIEA showed significantly
better performance regarding convergence time.

Besides the quantum bit representation, researchers developed other encod-
ings during the years. An example is the extension of the q-bit idea to quantum
digits or qudits [65–67]. Additionally, in [29] and [30], the authors introduce a new
quantum individual better suited to solve numerical problems, as it respects the con-
dition that the observable states are continuous rather than discrete. The quantum
genes in [30] are formed by a probability density function, more specifically a square
pulse defined by two variables: the mean µ and the width σ. A set of genes then
composes the quantum individuals, and the parameters µ and σ of each pulse are
modified during the evolution in order to shift, narrow, or expand the probability
densities. They tested the algorithm on several benchmark functions and compared
it to traditional methods and q-bit QIEA. Their results confirm the advantages of
direct numerical representation [30].

QIEAs that combine binary and real representations have also been proposed
for problems in which both real and categorical variables need to be evolved.

The work in [12] proposes a hybrid QIEA that addresses a neuroevolution
task, which includes feature selection, the definition of some parameters of an MLP
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(Multilayer Perceptron) classifier network, and its weight optimization. The binary
part of the quantum individuals is responsible for encoding the parameters that have
a finite number of possibilities, naming: the number of hidden neurons, the type of
activation function, and the variables that will serve as input to the network. The
numerical part encodes the neuron weights, that lies in the universe of real numbers.

Another hybrid QIEA is employed to optimize the input features and param-
eters of a spiking neural network in the unsupervised learning context [68]. The au-
thors applied the model to eight benchmark datasets and presented higher clustering
accuracy than non-optimized spiking networks.
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4
Q-NAS

This chapter introduces the proposed Quantum-inspired Neural Architecture
Search (Q-NAS). First, an overview of the algorithm is provided. Then, we describe
the individual representation and its specific methods. We complete the chapter
presenting the steps of the algorithm in detail.

4.1
Q-NAS overview

Q-NAS is a quantum-inspired evolutionary algorithm focused on the deep
neural architecture search problem. The goal of Q-NAS is to automatically design
deep networks to execute a predefined task. Usually, in the NAS literature, this au-
tomation considers only the network architecture itself, disregarding its hyperpa-
rameters. Q-NAS aims to address the automation at a more challenging level, which
includes finding the best architecture and optimizing some of its hyperparameters.
This approach goes in the direction of complete automation, which is the goal of
AutoML.

In this work, we frame Q-NAS in the context of image classification tasks.
We made this decision based on the fact that most of the NAS research focus on this
application [1], which provides us with a solid base to compare our work. However,
we defined this context with the only purpose of developing experiments to test Q-
NAS applicability and performance. Q-NAS is not restricted to image classification
tasks, and it can be used in other application domains.

The scheme in Figure 4.1 illustrates the Q-NAS context, considering a classi-
fication task. The user specifies the search space for both the hyperparameters and
the network structure. The first specification consists of defining the value range for
each hyperparameter. The second one comprises the selection of building blocks
(layer functions) that will be used to assemble the networks. The output of the sys-
tem, as illustrated in Figure 4.1, is a network description along with the hyperpa-
rameters’ values.

We remark that Q-NAS does not evolve the weights of the networks. Reg-
ular gradient based training is conducted for this purpose, as will be described in
Section 4.4.
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Figure 4.1: Q-NAS context in a classification task. We define the network building blocks in
the function set. The numerical hyperparameters ranges for the search are also specified.
Q-NAS provides the optimized network structure and hyperparameters’ values.

Considering that we want to address the network structure design and the hy-
perparameter optimization, Q-NASmust be able to represent both of these elements.
Thus, we chose to divide the quantum chromosome into two parts: one is responsible
for encoding the network structure (categorical) search space, and the other encodes
the numerical space of some hyperparameters.

Figure 4.2 shows a simplified Q-NAS flowchart: in the loop of generations,
we sample solutions from the quantum individuals, evaluate them, and update the
quantum population. The overall steps are similar to those from the q-bit QIEA,
introduced in Section 3.2. The dark boxes indicate the steps that must consider
the particular quantum representation. Each part of the chromosome has a specific
observation and update procedures. Therefore, as depicted in Figure 4.2, we observe
each part of the chromosome separately, but the classical individual is evaluated as
one unique solution. The same reasoning applies to the update procedure.

The quantum individual representation is the essence of Q-NAS, and the pri-
mary factor that discriminates it from the previously discussed QIEA. The next sec-
tions cover the specific details and methods of each part of the quantum individual:
the numerical hyperparameters representation and the network structure representa-
tion.
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Figure 4.2: Q-NAS flowchart. The dark boxes highlight the Q-NAS steps that are executed
separetely for each part of the chromosomes.

4.2
Numerical hyperparameters representation

The numerical representation is based on the quantum individuals proposed in
[30,61]; they respect the fact that the search space is continuous. The idea is to define
a probability density function (PDF) pij(x) for each variable hj to be optimized,
respecting its domain. Then, if we have a set of G numerical hyperparameters to
optimize, a quantum chromosome qi can be defined as an array:

qi = [pi1(x), ..., piG(x)] (4-1)

Each function pij(x) represents the probability of observing the quantum gene
in a certain range of values when the superposition of states collapses. The PDFs can
be defined in terms of the wavefunction Ψij(x) and its complex conjugate Ψ∗

ij(x),
associated to the quantum gene j:

pij(x) = Ψ∗
ij(x)Ψij(x) (4-2)

Following [12, 30, 61], we chose a uniform PDF (square pulse) because of
its unbiased characteristics and simplicity. The uniform distribution allows us to
represent the initial search space without introducing a bias toward any specific
value. Additionally, it facilitates the observation procedure, as described later.

The square pulse pij(x) can be defined by its lower and upper limits, lij
and uij , respectively. These are the minimum and maximum values the numerical
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hyperparameter hj can assume. Figure 4.3 shows an example of a square pulse
defined by lij = 0.1 and uij = 0.9, along with its respective cumulative distribution
function (CDF).

PDF CDF

x

P
(x

)

x

F(
x)

Figure 4.3: Example of a uniform PDF and its corresponding CDF.

In Q-NAS, each numerical quantum gene consists of the pair (lij , uij), instead
of the mean µij = (lij + uij)/2 and width σij = uij − lij used in [12, 30, 61]. This
modification simplified the quantum update strategy, as detailed later in this section.

The observation procedure for the numerical quantum individuals consists of
sampling from the PDFs. Like in the q-bit QIEA, we observe each gene indepen-
dently. The Numpy library [69], for example, provides functions to sample from a
variety of distributions. However, we decided to use a standard sampling procedure
that, in the case of uniform PDFs, can make our observation process more efficient.
Despite its simplicity, we detail the sampling method to explain this benefit. First,
we need to calculate the CDF Fij(x) by integrating the uniform PDF pij(x):

Fij(x) =


0 if x < lij
x−lij
uij−lij

if x ∈ [lij, uij)

1 if x ≥ uij

(4-3)

as illustrated by the example in Figure 4.3. The sampling procedure comprises
simple steps: (1) generate a random number r in the interval [0, 1]; (2) find the x
such that Fij(x) = r. The scheme in Figure 4.4 illustrates these steps, using the
same CDF of Figure 4.3.

As Fij(x) inside the domain is a straight line, its inverse is easily determined,
and x is calculated by:

x = r × (uij − lij) + lij (4-4)

Note that the observation procedure is reduced to the evaluation of a simple
expression. Since the observation is independent for each gene, we can evaluate
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CDF

x

F(
x)

x = 0.74

F(x) = 0.8

sample 0.8

Uniform[0,1]

1 2

Figure 4.4: Scheme illustrating an example of the sampling procedure.

Equation 4-4 for the entire array of numerical quantum genes at once, as a vector
operation.

Once we have generated the classical individuals, it is possible to apply
traditional recombination and mutation operators. In the case of the numerical
variables, there are a lot of variation operators available in the literature. However,
as discussed in [30], the quantum individuals already provide a good diversity
representation, and thus the mutation operator might be unnecessary.

Following [12, 30], we decided to apply the arithmetic crossover operator
[45] on the numerical part of the classical population. A random mask based on
a crossover rate is generated to select which genes should be modified: it chooses
the indices of chromosomes i and genes j. The operation is defined in Equation 4-5:

C ′[i, j] = C[i, j] + r · (P [i, j]− C[i, j]) (4-5)

where (i, j) are the indices of the genes selected by the random mask, r is a random
value in the interval [0, 1],C is the current classical population, and P is the classical
population stored in the previous generation.

A final aspect of the numerical representation that needs to be addressed is how
to update the quantum individuals. In general, we want to reduce the search space
and also map the most promising search areas. Regarding our numerical quantum
individuals, we can accomplish this by reducing and shifting the square pulses.

The works in [30] and [56] use the 1/5 rule, which can reduce or increase the
square pulse width. The mean of the pulses is modified according to the value of the
classical genes. More specifically, the center of the pulse is shifted in the direction
of a classical gene by a factor λ selected by the user.

The authors in [12] propose a heuristic to update the quantum individuals
using the best classical ones. They shift the mean µ of the pulse in the direction

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Chapter 4. Q-NAS 42

of the best classical values and modify the pulse width σ according to the range
of classical values of the current best population. A random mask is used to define
which quantum genes will be updated. The random mask is generated based on the
parameter update_quantum_rate, which is equivalent to the crossover rate presented
before. We selected this heuristic, as it uses information from the best individuals
in both the center and the width of the pulses. Equation 4-6 shows its original
formulation based on µij and σij:

dt = max
i=1..N

ctij − min
i=1..N

ctij,

µt+1
ij = µt

ij + r ∗
(
ctij − µt

ij

)
,

σt+1
ij = σt

ij + r ∗
(
dt − σt

ij

) (4-6)

where r is a random number in the range [0, 1] and ctij is the jth current value
of classical individual i. Note that σij can increase or decrease depending on the
difference between σt

ij and dt. Rewriting Equation 4-6, we adapted the heuristic to
our representation of lower and upper limits, lij and uij , respectively:

l t+1
ij = l tij + r ∗

(
ctij − l tij −

dt

2

)
,

ut+1
ij = ut

ij + r ∗
(
ctij − ut

ij +
dt

2

) (4-7)

The heuristic presented in [30, 56] and the one just mentioned do not prevent
the pulses from stepping outside the initial domain. The authors in [12,30,56] correct
the pulse width but not the mean, which can make the sampling procedure generate
values outside the original domain. To address this issue, they assign the boundary
values to any invalid sample. In practice, this procedure deforms the PDF, which is
no longer uniform. Figure 4.5 illustrates this problem: if the blue pulse is shifted to
the position of the red one, all the probability in the gray area goes to the boundary
value of the pulse (0.9 in this example).

x

P
(x

)

Figure 4.5: Example of possible problem with the update procedures in [12,30,56].
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To address this issue, we reformulated the previous approach, truncating the
pulse after its update if it goes outside the initial domain. By adopting the lower
and upper limits to represent the pulses instead of the center and width, the domain
checking and pulse truncation are straightforward. In our reformulation, we can
directly compare the pulse’s lower and upper limits with the domain minimum
and maximum allowed values, and truncate the values if necessary. To sample new
values, we use Equation 4-4 that only requires the lower and upper limits. If the limits
are inside the domain, Equation 4-4 does not generate invalid values and, therefore,
no additional correction is needed. Figure 4.6 shows a PDF at the beginning and the
end of evolution. Notice the significant reduction in the x range in the final pulse,
although its area is still 1.0.

x

P
(x

)

Figure 4.6: Example of a PDF at the beginning and the end of evolution.

Now that we detailed the particular aspects of the numerical representation,
we will do the same for the network encoding in the next section.

4.3
Network representation

For the numerical part of the chromosome, we only defined the quantum
representation, as the classical individuals are already the values that will be used
in the evaluation step. In the network architecture part, we also need to define the
classical individual form. For complex entities, such as network structures, direct
representations are usually difficult to design. It is possible to create an intermediate
representation to encode the complex object so the algorithm can operate on it. A
decoding procedure is required to map back the representation to the real object.

We represent networks in a chain-like structure with a fixed size L, in which
every node has a function associated with it. These functions can be designed to be
as simple as a network layer function, or they can be a block with several layers and
skip connections. As we are currently working with image classification tasks, the
last network layer is fixed to be a classifier (fully connected) layer. Figure 4.7 shows
the chain-like structure and some examples of functions.
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input

F1

FL

classifier layer

output

Network structure

Conv(3, 1, 128)

Conv(3, 1, 128)

MaxPool(2, 2)

Conv(5, 1, 64)FA =

FB =

Function possibilities

Figure 4.7: Network representation and function possibilities. The functions for each node
can be as simple as one unique layer (FA) or a more complex structure as FB.

In the current version of Q-NAS, skip connections between nodes are not
allowed. Such ramifications, or any other, can only appear when encapsulated in
a function (node); our network representation remains as a chain structure.

The user specifies to the algorithm a list of predefined functions that will form
the search space for every node in the network. Note that it is also possible to include
in the list a NoOp function that assigns a no operation process to the node. NoOp
allows us to represent variable-length networks, even though we fix a maximum size
for the structure. This way, we can simplify the network representation, as it does
not need to handle variable-size architectures, but preserve flexibility regarding the
network depth. The NoOp idea is present in Genetic Programming algorithms [70].

The predefined function names are mapped to integers in the range [0,M − 1]

so we can define our classical individual pi as an array of integers:

pi = [gi1, ..., giL]; gij ∈ [0,M − 1] (4-8)

where L is the number of nodes in our networks, andM is the number of functions
available in the search space.

At thismoment, we have the two essential ingredients to elaborate the quantum
individual for the network structure: the classical representation and the search space
characteristics. The network is described as a list of nodes and our search space is
categorical and finite.

Considering these aspects, the quantum individual defines a probability mass
function (PMF) for each node in the structure. A quantum gene encoding a single
node is then represented by an array:

gj = [xj1, ..., xjM ]; xjk ∈ [0.0, 1.0);
M∑
k=1

xjk = 1.0 (4-9)
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If we have N individuals, a network size L and M functions in the function
list, the quantum population is an array of shape (N,L,M). All nodes start with the
same PMF, but the user can choose the specific initial probability values for each
function. This means that it is possible to start the evolution giving an initial bias to
one or more functions.

The observation procedure, as before, requires the process of sampling from
the probability distributions. The difference from the numerical case is that we are
now dealing with categorical variables. We use the NumPy [69] implementation to
sample from discrete distributions. Similar to the other cases, each gene is sampled
independently.

Figure 4.8 summarizes the entire generation process for the network part of
the chromosome: from the user input parameters to the final decoded network.
The decoding process consists of simply reversing the integer map to get the node
function names.

•  # nodes = 3
•  # functions = 5

•  Function list

0.  Conv(1, 1, 32)
1.  Conv(3, 1, 128)
2.  Conv(5, 1, 32) 
3.  MaxPool(2, 2) 
4.  NoOp()

Parameters Quantum individual (PMFs)

[0.1, 0.1, 0.3, 0.3, 0.2]

node 0
node 1
node 2

[0.2, 0.1, 0.3, 0.1, 0.3]
[0.1, 0.1, 0.2, 0.2, 0.4]

observe

decode

3

node 0
node 1
node 2

0
4

Classical individual

MaxPool(2, 2)

node 0
node 1
node 2

Conv(1, 1, 32)
NoOp()

Decoded individual

input

Conv(1, 1, 32)

MaxPool(2, 2)

NoOp()

FC layer

output

Network to evaluate

Figure 4.8: Network quantum individual and a generated architecture. The Q-NAS’ param-
eters are listed on the left. Conv(k, s, f ) stands for a convolution layer with kernel size k×k,
stride s and f filters. The observation of the quantum individual is carried out by sampling
from the PMF of each node. The decoding process is a mapping from integers to function
names. The final architecture includes a fully connected (FC) classifier layer at the end of
the structure.

Unlike the described numerical representation, our network quantum individ-
uals can lead to invalid structures. To illustrate this problem, imagine we have a
pooling operation in our function list that reduces the feature map size in half. For a
given input image size, there is a maximum number of times this pooling function
can appear in the network before the feature map reaches unit pixel size. However,
since we sample each node independently, we cannot handle this issue directly. A
possible solution, as applied in [20], is to verify the structure and keep resampling
individuals until a valid one is found. This approach requires the definition of a
verification scheme and can lead to long sampling loops. Another idea is to give
zero fitness to invalid networks and let the evolution itself take care of the prob-
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lem. Nevertheless, one can argue that this method can make the algorithm miss the
opportunity to evaluate potentially useful structures at every iteration.

Considering these points, we decided on a third option that involves penalizing
invalid architectures. First, we developed a simple procedure to correct an invalid
structure: when building the decoded network for evaluation, we ignore all pooling
operations that appear after the allowed number is reached. This means that if the
maximum is 5 and the decoded list has 6 pooling functions, the last one is ignored.
The parameter penalize_number defines the maximum number of reducing layers a
network can have without being subject to penalization. Every additional reducing
layer will decrease 0.01 from the fitness value1. For example, if penalize_number =
3 and the network has 5 reducing layers, its fitness is reduced by 0.02. Instead of
waiting for correctly sampled individuals, this approach corrects them at evaluation
time, so they can be trained and then penalized. It also differentiates networks with
a few invalid layers from others that greatly exceed the penalize_number.

Finally, the quantum update procedure must be created for the network part of
the chromosome. We also followed the idea of using the best classical individuals
information to modify the quantum population.

We designed the simple heuristic described in Figure 4.9, which is applicable
for the discrete PMFs. Our goal is to increase the probability of a promising function
in a node by a random factor, which can assume the maximum value of 0.05. The
other probabilities in the same node must be reduced to guarantee that the total sum
is 1.0. We decrease the other probabilities proportionally to their current size. This
proportional decrease ensures that small probabilities will never get negative. The
maximum update value was chosen to be conservative, but it can be increased for
future testing.

1: begin
2: Generate random mask, based on update_quantum_rate
3: Chosen nodes positions = idx
4: for each node position i in idx do
5: Get best_classical_individuals[i] function f .
6: Increase the probability for f in node i by:

update_value = random() ∗ 0.05
7: Subtract update_value from the probabilities other than f in node i

proportionally to their current size
8: end for
9: end

Figure 4.9: Q-NAS network quantum update. The loop is only depicted here for clarity; the
actual program applies the operation in the entire array of individuals at once.

1The factor of 0.01 represents a strong penalization based on the fitness range [0, 1] and our
preliminary analysis of fitness curves.
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4.4
Q-NAS steps

We already defined the complete quantum individual, with the network and
hyperparameters representation, including their unique observation and update pro-
cedures. In this section, we detail the Q-NAS steps.

In Figure 4.10, we provide the summarized steps of the algorithm, which are
similar to the previously presented QIEA (Figure 3.2). Here, we will refer to the
quantum population as Q(t), which consists of a set of N quantum individuals
qti , i = {1, 2, .., N}.

1: t← 0
2: Initialize Q(t)
3: while t ≤ T do
4: Generate classical population C(t) observing Q(t)
5: if t = 0 then
6: Evaluate C(t)
7: P (t)← C(t)
8: else
9: C(t)← recombination between C(t) and P (t)
10: Evaluate C(t)
11: P (t)← best individuals from [C(t) ∪ P (t)]
12: end if
13: Q(t+ 1)← update Q(t) based on P (t) values
14: t← t+ 1
15: end while

Figure 4.10: Q-NAS algorithm. Q(t) is the quantum population, C(t) is the classical popu-
lation, and P (t) is the saved classical population.

First, we need to initialize Q(t) (line 2 in Figure 4.10). The initialization
procedure involves assigning initial probabilities to the quantum individuals. For
the hyperparameters, the user specifies the ranges for each one, that is, the lower
and upper limits. Then, to initialize this part of the quantum chromosome, we assign
these values as the limits lij and uij of the PDFs. Additionally, for the network part
of the chromosome, the user can provide initial probabilities for each function in
the function set. However, if he/she does not provide these values, the program
assigns the same probability to all functions, creating a uniform PMF. All nodes
are initialized with the same PMF.

The loop of generations t starts with the observation of quantum individuals
to generate candidate solutions (line 4). As discussed earlier, we observe each part
of the quantum chromosome – numerical and structure – in well defined separate
procedures. We then combine these elements in one single classical individual.
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Therefore, the candidate solution comprises a network architecture description along
with the hyperparameters’ values.

It is important to mention that each quantum individual can generate one or
more classical ones, as long as they generate the same number of individuals. Oth-
erwise, we would favor some quantum individuals over the others, which could be
questionable, as they cannot be directly evaluated [56]. Considering this possibility,
the number of individuals in the classical population C(t) is a multiple of N :

C(t) = {ct1, ct2, ...ctm·N}, m ∈ N (4-10)

The parameter repetition (m) specifies the number of classical individuals per
quantum individuals that will be generated. If repetition = 2, for example, each
quantum individual generates two classical ones.

Once we have the classical population C(t), we evaluate each individual cti
independently (line 6 in Figure 4.10). Our evaluation comprises the following steps:

1. train the network for a relatively small number of epochs (50) using a subset
of the training data and the evolved hyperparameters;

2. from epoch 45 onward, evaluate the network according to a predefined metric
(accuracy, in our context) using a validation dataset, at the end of each epoch.

3. assign the best of the 5 evaluation results as the individual’s fitness.

The idea of training the networks for a restricted number of epochs is present
in several works [16, 20, 25, 26]. Nevertheless, the specific number differs, and
the authors do not provide any discussion about it. We use the same number as
Suganuma et al. [20], and we ran some experiments with 20 and 30 epochs of
training. Our preliminary results indicated that 50 was a better choice between the
tested values, but we did not explore this topic thoroughly. The same logic applies
to the final accuracy evaluation: authors propose different methods with no clear
justification. We calculate accuracy only at the final five epochs to save time, as it
is expensive to stop training and perform evaluations. Also, we take the best out
of five values because of common fluctuations, specially when training for few
epochs. Finally, we remark that the network weights are initialized using the method
proposed in [71], also applied by Suganuma et. al [20].

It is important to mention that we set a timeout for these training sessions.
If the first 45 epochs of training (before accuracy evaluations start) take more than
90 minutes, the candidate network receives a fitness value of zero. We made this
decision in order to make the algorithm exclude structures that take too long to train,
thus creating pressure towardmore efficient models. Note that the 90minutes limit is
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quite loose for the datasets used in this work, and it can be modified. In the majority
of our experiments, the candidate networks do not reach this time limit.

After all the individuals were assigned a fitness value, we can rank them to
save the best ones in P (t). However, in generation t = 0, we do not have any
previous population, so we store in P (t) all the individuals we just evaluated (line
7 in Figure 4.10).

In the other generations (t > 0), we already have stored some classical in-
dividuals in P (t), so we can apply recombination after generating C(t) (line 9 in
Figure 4.10). Notice that we only defined a crossover operator for the hyperparam-
eters part of the chromosome, so recombination is carried out only for this part. We
decided not to apply crossover operators in the network part, based on the follow-
ing observation. Blocks of subsequent nodes can repeatedly appear during evolution,
and new or unexpected sequences might be discovered. The application of crossover
operators may introduce some noise and disturb the analysis of the occurrence of
these blocks.

Unlike the first generation, since we already have P (t) when we evaluate a
new populationC(t), we must decide how to select individuals to be stored (line 11).
There are several selection mechanisms available in the literature, such as [45]:

• Replace the k worst individuals from the old population with the k best from
the new population (steady-state);

• Replace all the individuals from the old population, except for the best one
(elitism);

• Replace all individuals from the old population (no steady-state or elitism).

We developed Q-NAS to use a steady-state technique, in which we select the
best individuals from the old and new populations. Consider a population of K
individuals. Every generation, we create C(t) with sizeK, then we keep theK best
individuals from [C(t) ∪ P (t)]. Our studies in [72] analyzed the elitism selection,
which did not show any improvement over this steady-state method. Furthermore,
the variation that elitism promoted in the population only brought noise and no
additional benefit. Therefore, we did not consider elitism in this work.

Finally, quantum individuals are updated based on the best classical individ-
uals (line 13 in Figure 4.10). Similar to the observation process, this procedure is
executed separately for each part of the chromosome. Following [30,56,61], we use
the parameter update_quantum_gen to establish the frequency in which the update
procedure will be conducted. More specifically, if update_quantum_gen = 5, the
quantum update, described in sections 4.2 and 4.3, takes place every five genera-
tions, with a rate defined by update_quantum_rate. The update step completes the
algorithm loop, which is repeated for T generations.

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Chapter 4. Q-NAS 50

When the evolution is complete, we retrain the final architecture from scratch
for 300 epochs using the optimized hyperparameters and all the available training
data. We do not change the weight initialization method for the retraining phase. We
evaluate the network every ten epochs using a validation dataset. The accuracies
from the periodic evaluations are used to save the best model during the retraining
phase. When training is over, the best validation model is applied to the test data
so we can obtain the final accuracy value. The test accuracy is used to compare our
models among different experiments and with other works.

We close this chapter with Table 4.1, which summarizes the Q-NAS’ param-
eters and their meanings.

Table 4.1: Summary of Q-NAS’ parameters and their description.

Parameter name Description

crossover_rate rate for the numerical crossover operator

max_generations maximum number of generations to run the algo-
rithm

max_num_nodes maximum number of nodes in the network structure
(network size)

num_quantum_individuals number of quantum individuals in the quantum pop-
ulation

penalize_number maximum number of reducing layers a network can
have without suffering penalization

repetition number of classical individuals each quantum indi-
vidual will generate

update_quantum_gen periodicity, in generations, in which the quantum
individuals will be updated

update_quantum_rate rate for all the quantum update operations

params_ranges initial ranges of the hyperparameters to be opti-
mized

fn_dict dictionary defining the functions for the network
search space and their initial probabilities
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5
Experiments

This chapter presents the experiments we conducted, indicating how they in-
fluenced decisions about the Q-NAS algorithm and further investigation directions.
First, we provide an overview of the experiments, describing their primary goals.
The parameter settings, which are common to different tests, are also given. Then,
in the subsequent sections, we detail each experiment, provide the results, and dis-
cuss the outcomes.

5.1
Experiments overview

In the previous chapter, we described the Q-NAS algorithm, considering the
context of classification tasks. This chapter presents the experiments, which apply
Q-NAS to different image classification datasets.

We considered three main goals when designing the experiments. The first one
involves answering fundamental questions about Q-NAS, regarding its applicability
and operation. Our second goal arises naturally: verify if Q-NAS can be successfully
applied to a more challenging dataset. Finally, the third objective comprises a case
study in which we apply Q-NAS to real datasets. We associate each goal with a set
of experiments.

In the first group, we use the CIFAR-10 benchmark dataset, which contains
60 000 colored images of size 32 × 32 pixels, divided into training and test sets
– 50 000 and 10 000 examples, respectively. The images are labeled for ten cate-
gories, such as dog, cat, or airplane. We argue that CIFAR-10 is an adequate choice
to study Q-NAS and explore its parameters because the literature provides many
results on this dataset. We present this first group of experiments from Section 5.2
to Section 5.8, in chronological order, precisely how their results guided our inves-
tigation.

The second set of experiments requires a more challenging dataset, so we
selected CIFAR-100. It has the same properties as CIFAR-10, except for the number
of classes that is ten times bigger. Thus, for the 50 000 training examples, CIFAR-100
has only 500 examples per class. These experiments are described in Section 5.9.

Lastly, for our case study in Section 5.10, we define a seismic image classifi-
cation task and use Q-NAS to find a network that can solve it.
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In addition to themain goals, we provide some configurations that are common
to several experiments so the reader can have a general idea about the parameters.
Notice, however, that we modify these configurations throughout the chapter, and
we highlight the particular changes in the corresponding section.

Table 5.1 shows a parameter configuration shared among various experiments.
Note that penalize_number = 0, which means that no penalization is applied.

Table 5.1: Parameter configuration of the Q-NAS algorithm.

parameter value parameter value

crossover_rate 0.5 num_quantum_ind 5
max_generations 300 repetition 4
max_num_nodes 20 update_quantum_gen 5
penalize_number 0 update_quantum_rate 0.1

As discussed in Chapter 4, the user must determine the functions that will form
the search space for all network nodes. Table 5.2 specifies a list of functions that we
used in many experiments. In this case, we selected three types of functions, which
we call: ConvBlock, Pooling, and NoOp. Following the work in [20], the ConvBlock
comprises a convolutional layer, batch normalization, and ReLU activation. We also
use zero-padding in the convolution layer input borders. The others are straightfor-
ward: the Pooling function can be a max-pooling or an average pooling layer; NoOp
is the no-operation function that allows us to represent variable-length networks.

Table 5.2: Layer functions.

function name function kernel
size stride filters initial

probability

conv_1_1_32 ConvBlock 1 1 32 0.042
conv_1_1_64 ConvBlock 1 1 64 0.042
conv_3_1_32 ConvBlock 3 1 32 0.042
conv_3_1_64 ConvBlock 3 1 64 0.042
conv_3_1_128 ConvBlock 3 1 128 0.042
conv_3_1_256 ConvBlock 3 1 256 0.042
conv_5_1_32 ConvBlock 5 1 32 0.042
conv_5_1_64 ConvBlock 5 1 64 0.042
max_pool_2_2 MaxPool 2 2 - 0.167
avg_pool_2_2 AvgPool 2 2 - 0.167
no_op NoOp - - - 0.333

In Chapter 4, we demonstrated that to define convolution and pooling func-
tions completely, we need to specify some parameters, including kernel size and
strides. Note that one can be as general as desired regarding the options of kernel,
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strides, and number of filters. The options listed in Table 5.2 are somewhat biased to-
ward simplicity and efficiency. In other words, this list favors function specifications
that are relatively inexpensive concerning computational cost, e.g.,ConvBlockswith
a small number of filters. Furthermore, one can observe that the convolutional lay-
ers have a stride of 1, which means that they do not reduce the input size since they
apply zero-padding.

Notice that Table 5.2 also includes the initial probability for each function.
We equally divided the probabilities between the three types of functions: NoOp
received 1/3, and both ConvBlock and Pooling received 1/3 divided by the number
of options of each kind. This division guarantees that we are not favoring a specific
type of function merely because it has more options available.

To complete the definitions, we need to set some training configurations for
the Q-NAS evaluation step. First of all, in Section 4.4, we reported that only a subset
of the training data is used. Some preliminary results with CIFAR-10 showed that a
subset of 10 000 examples and a batch size of 256 lead to a good equilibrium between
evolution time and final accuracy. The sampling procedure guarantees class balance:
it randomly selects 900 examples per class for the training set (9000 in total) and 100
for the validation set (1000 in total).

We apply standard data augmentation and pre-processing techniques, also
based on our preliminary results. As suggested in [20], the data augmentation com-
prises random crop after zero-padding the borders and random horizontal flipping.
Mean subtraction (calculated over all the training data) is the only pre-processing
technique applied. Finally, besides the BN layers included in our ConvBlocks,
weight decay regularization is used in our training sessions. For the hardware con-
figuration, the reader can refer to Appendix A.

In each of the following sections, we describe an experiment and discuss its
outcomes. Due to resource constraints, we repeat runs only three or five times.
Therefore, we do not compare them statistically, and we provide all outcomes
without any summarization. Note that it is common in the literature to present NAS
results of only a few runs [18, 20, 23, 25, 46, 73]. Moreover, in a single run, we
evaluate about 6000 networks, and, hence the final accuracy is meaningful.

5.2
Optimizer and Hyperparameters

This first experiment aims to investigate the optimizer used for training the
candidate networks and the possibility of evolving hyperparameters.

The SGD with momentum is a frequent choice of optimizer among NAS re-
search [19, 20, 46, 74]. However, more sophisticated options are available, such as
RMSProp [5] or Adam [75]. Currently, there is no consensus in the literature on
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which one should be used; the choice strongly depends on the user [5]. We want to
compare Q-NAS results when using the popular SGD with momentum and when
applying a more elaborate optimizer. To accomplish this, we created two configura-
tions: one for the SGD with momentum (mom-1) and one for the RMSProp (rms-2),
using Tensorflow’s default values for the optimizers’ parameters (Table 5.3).

Additionally, we want to evaluate if some hyperparameters can be optimized
concurrently with the network search. The idea is to compare Q-NAS under two cir-
cumstances: in the first one, Q-NAS only considers the structure – hyperparameters
are fixed; in the other, it must look for both architecture and hyperparameters. We
selected configuration rms-2 to represent the first situation, as RMSProp has more
parameters than the Momentum optimizer. Then we created setup rms-3, which uses
RMSProp and evolves its parameters along with weight decay (see Table 5.3). Note
that rms-3 has wide search ranges that cover the values from rms-2.

Table 5.3: Hyperparameter configuration for the experiment.

config decay learning rate momentum weight decay

mom-1 – 1.0e-3 0.9 1.0e-4
rms-2 0.9 1.0e-3 0.0 1.0e-4
rms-3 [0.1, 0.999] 1.0e-3 [0.0, 0.999] [1.0e-5, 1.0e-3]

We decided not to evolve the learning rate at this moment because it is a
critical hyperparameter that, as observed in preliminary experiments, can affect the
results and disturb the investigation itself. Furthermore, RMSProp has an adaptive
learning rate scheme that adjusts the learning rate to a certain degree. We thus fixed
the learning rate as 1.0 · 10−3.

We repeated five runs of Q-NAS on CIFAR-10 for each optimizer setup. The
other parameters and the function list are defined in Table 5.1 and Table 5.2, respec-
tively. Table 5.4 presents the results, including the final evolution accuracy (best
fitness) and the number of layers in the winner network. Recall that, as reported in
Section 4.4, we retrain the best network using the complete dataset – 45 000 ex-
amples for training and 5 000 for validation, in CIFAR-10. Table 5.4 also shows the
accuracies for the retraining phase, for both the validation and test sets. We highlight
the best test result only for clarity; no decisions are made based on this outcome.

The runs with the momentum optimizer led to worse test accuracy than the
ones with RMSProp and also to smaller networks. The momentum optimizer might
needmore than 50 epochs to achieve lower losses for deeper networks, increasing the
pressure for smaller architectures that usually train faster. This difference suggests
that using the RMSProp optimizer can offer performance advantages over the SGD.

Configurations rms-2 and rms-3 produced similar results, although rms-2
generated slightly better architectures and also the best network with 89.84% of
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Table 5.4: Results for each optimizer configuration.

# config total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 mom-1 70 h 8 0.6940 0.8664 0.8611
2 mom-1 64 h 11 0.7000 0.8460 0.8405
3 mom-1 68 h 11 0.6940 0.8520 0.8511
4 mom-1 67 h 9 0.6950 0.8548 0.8502
5 mom-1 67 h 12 0.6830 0.8642 0.8539

1 rms-2 72 h 10 0.7890 0.8958 0.8877
2 rms-2 71 h 12 0.7780 0.8892 0.8746
3 rms-2 68 h 11 0.7810 0.8960 0.8895
4 rms-2 75 h 11 0.7900 0.8900 0.8790
5 rms-2 72 h 10 0.7820 0.9006 0.8984

1 rms-3 67 h 16 0.7740 0.8902 0.8800
2 rms-3 64 h 12 0.7790 0.8712 0.8679
3 rms-3 73 h 11 0.7710 0.8686 0.8553
4 rms-3 70 h 11 0.7700 0.8832 0.8704
5 rms-3 71 h 12 0.7630 0.8700 0.8693

test accuracy (rms-2 #5). Although this seems to be a moderate performance, we
should emphasize that we restricted the maximum network size to 20 layers, so
all of the tested networks are small. Our best architecture has only ten layers,
which is considerably smaller than most state-of-the-art networks. Furthermore, this
accuracy is already comparable to the results of the hand-designed model Maxout
[54] (90.70%). These outcomes indicate that Q-NAS can extract the capabilities of
simple layers and small networks to a great extent.

Figure 5.1 depicts the best (decoded) architectures for configurations rms-2
and rms-3. In both structures, typical sequences, such as two convolutional layers
followed by a pooling layer, are present (see the brackets in Figure 5.1). However,
the rms-3 best architecture also contains convolutions of different kernel sizes
interleaved, which contrasts with conventional hand-designed networks.

Figure 5.2 shows how the network part of a quantum individual evolved in
rms-2 #5. One can note some correspondence between the final structure and the
quantum individual. For example, in node 0, we have conv_3_1_256 with high
probability, which is the function of layer 0 on the left side of Figure 5.1. On the other
hand, as the quantum individual represents probabilities, the classical individuals it
generates can be entirely different. These probabilities never go to zero, so they
always allow the appearance of less favored functions.
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Figure 5.1: Final structures for runs rms-2 #5 and rms-3 #1.

Figure 5.2: Quantum individual 0 for run rms-2 #5.

A final and important observation is that Q-NAS was able to find networks
with 88% of test accuracy even in the more challenging scenario of configuration
rms-3. The numerical part of a quantum individual in its initial and final states for run
rms-3 #1 is shown in Figure 5.3. For all hyperparameters, the pulses did not decrease
substantially, which indicates that they are not much influential to the results, and a
relatively wide range of values is acceptable. Indeed, the default Tensorflow values,
represented in rms-2, were sufficient to produce similar and even better results.
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Figure 5.3: Numerical quantum individual 0 for rms-3 #1 in its initial and final states. The
width ratio between initial and final pulses are also given.

5.3
Analysis of parameters

In this section, we analyze the impact of the Q-NAS’ parameters on the
network search, using the CIFAR-10 dataset as the classification task. We de-
signed experiments varying one parameter at a time to study its influence on
the evolutionary process. Ideally, for a relatively wide range of parameter val-
ues, we would expect Q-NAS to find satisfactory architectures. We include here
the study of the following parameters (see Table 4.1): initial function probabili-
ties, crossover_rate, update_quantum_gen, update_quantum_rate, repetition, and
num_quantum_individuals. We explore the remaining parameters in other sections.

5.3.1
Initial function probabilities

We begin this set of experiments by exploring the initial function probabilities.
The idea is to create a scenario in which the user would try to bias the search with
more efficient functions and compare it with the unbiased case. For example, the
user could remove convolutions with larger kernel sizes from the function list and
increase the probabilities of convolutions with fewer filters. Table 5.5 shows the
function list we used to represent this scenario: there are no convolutions with 5× 5

kernels and the initial probabilities of conv_3_1_32 and conv_3_1_64 are bigger.
Table 5.5 also shows the probabilities for the unbiased case.

We used the values in Table 5.1 for the other parameters in both cases. Also, we
selected setup rms-3 in Table 5.3 for the optimizer and the hyperparameters’ ranges.

Q-NASwas executed five times for each scenario, and the results are presented
in Table 5.6. In terms of test accuracy, both configurations were able to achieve 87%,
but the unbiased case was slightly better, reaching more than 86% in all runs. On
the other hand, the biased case presented faster runtimes, which can be explained
by the emphasis given to convolutions with fewer filters to train. The results for the
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Table 5.5: Layer functions and their initial probabilities as divisions, e.g., 1/3/8 = 0.042.

function name function kernel
size stride filters

initial probability

unbiased biased

conv_1_1_32 ConvBlock 1 1 32 1/3/6 1/3/8
conv_1_1_64 ConvBlock 1 1 64 1/3/6 1/3/8
conv_3_1_32 ConvBlock 3 1 32 1/3/6 2/3/8
conv_3_1_64 ConvBlock 3 1 64 1/3/6 2/3/8
conv_3_1_128 ConvBlock 3 1 128 1/3/6 1/3/8
conv_3_1_256 ConvBlock 3 1 256 1/3/6 1/3/8
max_pool_2_2 MaxPool 2 2 - 1/3/2 1/3/2
avg_pool_2_2 AvgPool 2 2 - 1/3/2 1/3/2
no_op NoOp - - - 1/3 1/3

current experiment are worse than the previous ones in Table 5.4, indicating that the
inclusion of 5× 5 convolutions in the function list was beneficial to the search.

Table 5.6: Results for each configuration.

# bias total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 no 69 h 11 0.7720 0.8770 0.8779
2 no 70 h 12 0.7730 0.8656 0.8605
3 no 67 h 11 0.7790 0.8632 0.8669
4 no 69 h 10 0.7890 0.8708 0.8626
5 no 70 h 16 0.7770 0.8756 0.8661

1 yes 65 h 13 0.7870 0.8788 0.8704
2 yes 62 h 13 0.7710 0.8530 0.8511
3 yes 62 h 14 0.7710 0.8604 0.8548
4 yes 63 h 9 0.7750 0.8730 0.8667
5 yes 62 h 9 0.7690 0.8560 0.8516

Figure 5.4 shows the relative frequency of occurrence of each function during
evolution, for the best runs in each scenario. Take function conv_3_1_256 in the
left graph, for example: considering all network nodes throughout evolution, it
appeared around 10% of the nodes. In the biased case, the relative frequencies of the
preferred functions are higher, showing that the initial bias influenced the search, as
expected. Furthermore, one can observe that convolutions with more filters appear
more frequently in the unbiased scenario.

In the following subsections, we investigate parameters directly related to the
evolutionary process, such as the crossover rate or the number of individuals in each
generation. The biased setup will be our baseline for all experiments in this section,
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biased #1unbiased #1

Figure 5.4: Relative frequency of occurrence of each function during evolution, for the best
runs of biased and unbiased cases.

as its function list promoted shorter runtimes. The function list of Table 5.5 will be
left unchanged, as well as the optimizer settings (rms-3 in Table 5.3). The values
included in Table 5.1 will be the control configuration, for which we will vary one
parameter at a time in the next experiments.

5.3.2
Crossover rate

The second parameter of Q-NAS to be analyzed is the crossover rate. In the
baseline configuration, it is set to 0.5. We ran Q-NAS three times for two additional
crossover rates: 0.1 and 0.9. Table 5.7 shows these results along with the three best
ones from the biased scenario of Table 5.6, repeated here for clarity.

The changes in the crossover rate directly influence the hyperparameters’
evolution. However, as seen in Section 5.2, these specific hyperparameters did not
affect the results in a significant way. Therefore, even if we dramatically change the
course of evolution of these hyperparameters, we should not expect considerable
changes in the final results. All configurations in Table 5.7 reached accuracies above
87%, confirming this idea.

Figure 5.5 shows quantum genes representing the decay parameter, for the best
runs in Table 5.7. Observing the pulses, one can see that the crossover rate influences
the final width of the quantum genes. Higher crossover values seem to stimulate the
pulses to get thinner. However, this parameter alone is not sufficient to determine
the behavior of this quantum gene, as the final pulse for a crossover rate of 0.9 is
wider than the one for the 0.5 case. The genes encoding the other hyperparameters
showed similar responses to each crossover rate value.
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Table 5.7: Results for each crossover value.

# crossover
rate

total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 0.5 65 h 13 0.7870 0.8788 0.8704
3 0.5 62 h 14 0.7710 0.8604 0.8548
4 0.5 63 h 9 0.7750 0.8730 0.8667

1 0.1 62 h 14 0.7670 0.8862 0.8813
2 0.1 64 h 14 0.7690 0.8628 0.8607
3 0.1 61 h 13 0.7760 0.8468 0.8383

1 0.9 62 h 15 0.7730 0.8788 0.8740
2 0.9 61 h 12 0.7680 0.8642 0.8621
3 0.9 61 h 10 0.7680 0.8708 0.8597

0.1 #1 0.5 #1 0.9 #1

In
di
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du
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 0

, g
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e 
0

Figure 5.5: Genes representing the decay hyperparameter for the quantum individual 0 of
the best runs in Table 5.7.

5.3.3
Frequency of quantum updates

The update_quantum_gen parameter determines the periodicity (in genera-
tions) of the quantum updates. Unlike the crossover_rate, this parameter directly
affects the complete quantum individual. We consider the baseline value of 5 a con-
servative choice, that is, a relatively low update frequency. We explore here the
values of 3 and 1: updates occurring every three generations and every generation,
respectively. Table 5.8 shows the results.

One item that stands out in Table 5.8 is the evolution time: it increases
significantly with the frequency of updates (lower values of update_quantum_gen).
Despite the runtime contrast, the test accuracy is comparable in all configurations.

We remark that the update procedure, by itself, is not responsible for the run-
time increase. Executing only the update procedure for 300 iterations demanded 2.43
seconds of an i7 processor. We attribute this increase to the saturation of quantum
individuals, as detailed below.
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Table 5.8: Results for each update_quantum_gen (update generations) value.

#
update
genera-
tions

total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 5 65 h 13 0.7870 0.8788 0.8704
3 5 62 h 14 0.7710 0.8604 0.8548
4 5 63 h 9 0.7750 0.8730 0.8667

1 3 63 h 14 0.7760 0.8540 0.8524
2 3 65 h 13 0.7740 0.8766 0.8677
3 3 69 h 12 0.7750 0.8514 0.8449

1 1 80 h 13 0.7860 0.8714 0.8694
2 1 81 h 11 0.7810 0.8890 0.8781
3 1 91 h 10 0.7820 0.8732 0.8645

Individual 0, gene 2

(a)

(b)

(c)

Figure 5.6: Network quantum individuals and genes representing the weight decay hyperpa-
rameter for the best run of each update_quantum_gen value. The pairs (value, run number)
are: (a) 5 #1, (b) 3 #2, and (c) 1 #2.

Figure 5.6 shows the network part of quantum individuals, as well as quan-
tum genes representing the weight decay parameter, for the best runs of each
value of update_quantum_gen in Table 5.8. Observe that the network individual for
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update_quantum_gen = 1 is significantly more saturated than the others. This in-
dividual also shows many nodes saturated with conv_3_1_128 and conv_3_1_256,
that are slower to train compared to the other options. Therefore, the classical pop-
ulation will have more networks with these functions, increasing the total runtime.

The final width of the pulses is also affected by the update_quantum_gen
parameter. However, the effect seems to be weaker than in the network part of the
chromosome.

5.3.4
Update rate

The update_quantum_rate controls the number of quantum genes that will be
modified at each update: higher rates lead to more genes being adjusted at a time.
Again, the baseline value of 0.1 is a conservative choice, and we investigate higher
rates (0.5 and 0.9, specifically). The results for the runs with higher rates, along with
the baseline, are listed in Table 5.9.

Table 5.9: Results for each update_quantum_rate value.

#
update
quantum
rate

total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 0.1 65 h 13 0.7870 0.8788 0.8704
3 0.1 62 h 14 0.7710 0.8604 0.8548
4 0.1 63 h 9 0.7750 0.8730 0.8667

1 0.5 76 h 14 0.7790 0.8612 0.8635
2 0.5 78 h 13 0.7850 0.8826 0.8779
3 0.5 86 h 13 0.7940 0.8958 0.8853

1 0.9 104 h 10 0.7930 0.8756 0.8775
2 0.9 87 h 10 0.7930 0.8858 0.8777
3 0.9 88 h 14 0.7900 0.8956 0.8930

The runtime seems to increase with the update rate, a similar effect to the
update frequency. On the other hand, the runs for higher rates presented higher
fitness values and also reached better final accuracies.

In Figure 5.7, we can see quantum individuals for the best runs of 0.5 and 0.9
rates. The network part of the chromosomes shows intense saturation, even stronger
than the ones in Figure 5.6. As in the last experiment, we can associate the runtime
increase to this saturation. The influence on the numerical quantum genes is also
noticeable and stronger than in the cases of Figure 5.6.
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Individual 0, gene 2

(a)

(b)

Figure 5.7: Network quantum individuals and genes representing the weight decay hyper-
parameter for runs (a) 0.5 #3 and (b) 0.9 #3.

Although higher rates produced better results than the conservative baseline,
strong saturation is not beneficial to evolution. This contrast suggests that further
experiments are needed to select a combination of parameters that improves the
balance between performance, runtime, and saturation. However, we highlight that,
even without this enhancement, for the broad range of rate values, Q-NAS generated
networks with more than 87% of accuracy.

5.3.5
Number of individuals

Two parameters determine the number of classical individuals: repetition and
num_quantum_individuals. Here we explore configurations varying each one of
them separately and also altering both simultaneously. In the baseline configuration,
we have five quantum individuals, and repetition is 4, making 20 classical individ-
uals. Fixing the number of quantum individuals as 5, we added the repetition values
of 1 and 2. Keeping the repetition equal to 4, the additional numbers of quantum
individuals are 1 and 3. Finally, we explored the extremes: one quantum individ-
ual with a repetition factor of 20, and 20 individuals for a repetition of 1. We did
not use setups that create more than 20 classical individuals, restricting the compu-
tational resources for the benefit of efficiency. The results for the runs with all of
these configurations are listed in Table 5.10.

The executions with setups that generate fewer classical individuals (4 and 5)
presented shorter evolution times. A limited number of candidate networks at every
generation can reduce the chance to evaluate several slow networks. The results are
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Table 5.10: Results for each num_quantum_individuals (# of q-ind) and repetition (rep)
configuration.

# # of
q-ind. rep.

# of
class.
ind.

total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 5 4 20 65 h 13 0.7870 0.8788 0.8704
3 5 4 20 62 h 14 0.7710 0.8604 0.8548
4 5 4 20 63 h 9 0.7750 0.8730 0.8667

1 5 1 5 40 h 12 0.7650 0.8330 0.8205
2 5 1 5 39 h 13 0.7820 0.8810 0.8752
3 5 1 5 41 h 12 0.7790 0.8998 0.8982

1 5 2 10 48 h 13 0.7740 0.8624 0.8595
2 5 2 10 51 h 15 0.7650 0.8840 0.8822
3 5 2 10 55 h 13 0.7750 0.8700 0.8654

1 1 4 4 38 h 14 0.7580 0.8480 0.8431
2 1 4 4 37 h 9 0.7640 0.8590 0.8384
3 1 4 4 43 h 14 0.7620 0.8656 0.8662

1 3 4 12 53 h 12 0.7830 0.8826 0.8762
2 3 4 12 54 h 13 0.7630 0.8144 0.8081
3 3 4 12 57 h 12 0.7680 0.8542 0.8522

1 1 20 20 62 h 12 0.7840 0.8688 0.8687
2 1 20 20 61 h 13 0.7820 0.8726 0.8686
3 1 20 20 59 h 11 0.7960 0.8662 0.8582

1 20 1 20 64 h 14 0.7800 0.8816 0.8772
2 20 1 20 60 h 11 0.7730 0.8644 0.8565
3 20 1 20 63 h 12 0.7820 0.8662 0.8528

comparable regarding the final accuracy, with some exceptions (runs for 4 and 12

classical individuals). It is expected that more classical individuals should increase
the chance of finding better structures. Nevertheless, the results in Table 5.9 are
not sufficient to confirm this idea, as one can see good accuracies for 5, 10, and 20
classical individuals. For example, compare the following runs in Table 5.9, defined
as (quantum individuals, repetition, run number): (5, 1, #3), (5, 2, #2), (20, 1, #1).

Looking at num_quantum_individuals and repetition separately, one can see
that the runs with five quantum individuals were generally better than the others. All
quantum individuals begin with the same probability distribution, so they all repre-
sent the search space equally at first. If one quantum individual becomes saturated
during evolution, the others can still maintain the variability of the search. In the ex-
treme case of 20 quantum individuals and repetition of 1, though, we observed that
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some quantum individuals do not change much during evolution, indicating that this
combination is not ideal.

The results throughout this section are promising regarding the robustness of
Q-NAS. We varied several parameters and observed that some of them affect more
the evolutionary process than others, but the results were similar in most of the runs.
Even though a parameter tuning study can help improve the results, many setups
were able to produce satisfactory outcomes.

5.4
Sampling

In the last section, we studied the impact of several parameters on the evolu-
tionary process. Another essential element of investigation is the influence of the
dataset sample. In all experiments so far, the evaluation procedure trained candidate
networks using the same subset of 10 000 examples from the 50 000 training im-
ages of CIFAR-10. Although the winner networks are retrained with the complete
dataset, we want to verify if using different samples in the evolution can affect the
final results for CIFAR-10. We thus propose to run Q-NAS with a fixed parameter
configuration for three different dataset samples and compare the results.

We selected the rms-2 runs from Section 5.2 as our baseline results (sample 1),
because the best network so far was generated by one of these runs. Two additional
samples were created with the same sampling scheme (samples 2 and 3). We ran
Q-NAS five times for each new sample using the parameter settings of the rms-2
runs. Table 5.11. shows the results; the rms-2 runs are repeated here for clarity.

For all samples, Q-NAS was able to find networks reaching more than 89%
of test accuracy, with a new best value of 90.09% for run sample-2 #5. Also, the
variation between runs of each sample is similar: the difference between maximum
and minimum accuracies is about 2%, and sample 1 is slightly worse than the others.
These observations indicate that the influence of the sample is small for the CIFAR-
10 dataset. In this case, we still have a reasonable number of examples of each class
in the subset, so using a reduced dataset in evolution is an adequate strategy to
improve efficiency. However, when the number of examples per class is already
small, sampling might affect the results and needs to be carefully investigated.

Another interesting observation is the difference in the values for the accuracy
during evolution (fitness): for sample 1, they are smaller than the others. One
possible explanation is the small validation set in the sampled datasets. The fitness
value is the best validation accuracy of the candidate network. As the validation set
contains only 100 examples per class, different samples can contain a better or worse
representation of the dataset. One could increase the validation set to reduce this
difference, in detriment of efficiency, as evaluation would take longer to conclude.
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Table 5.11: Results for each sample.

# sample total
time

# of
layers

accuracy

fitness retrain
validation

retrain
test

1 1 72 h 10 0.7890 0.8958 0.8877
2 1 71 h 12 0.7780 0.8892 0.8746
3 1 68 h 11 0.7810 0.8960 0.8895
4 1 75 h 11 0.7900 0.8900 0.8790
5 1 72 h 10 0.7820 0.9006 0.8984

1 2 70 h 13 0.8090 0.8958 0.8858
2 2 70 h 10 0.8070 0.8954 0.8993
3 2 69 h 14 0.8000 0.8838 0.8820
4 2 72 h 12 0.8040 0.8940 0.8905
5 2 71 h 12 0.8110 0.8990 0.9009

1 3 70 h 12 0.7870 0.8956 0.8938
2 3 67 h 10 0.8010 0.8842 0.8819
3 3 69 h 11 0.8000 0.8982 0.8878
4 3 70 h 13 0.8020 0.9024 0.8963
5 3 72 h 13 0.7910 0.8914 0.8817

However, as the final test accuracy seems to be little affected, we do not consider
increasing the validation set in this work.

5.5
Retrain analysis

The discussions so far have focused on evolution, but it is also necessary
to examine the retraining phase. As detailed in Section 4.4, the final retraining
procedure differs from the training scheme of the evolution in two points: the dataset
and the number of epochs.We retrain the final network using the complete dataset for
more epochs; the other settings are unchanged, or, if applicable, we use the evolved
values.

On the other hand, as pointed by Assunção et al. [32], several authors use
special schemes for the final retraining phase: different optimizers, learning rate
schedules, additional regularization methods, among others [16, 18, 20, 53, 76].
We selected two such schemes from the NAS literature to investigate further and
compare them to our method. More specifically, we retrained some of our final
networks using the new schemes to analyze the behavior of each training procedure.

The first scheme [23] uses SGD with a momentum of 0.9 for 300 epochs and
cosine decay for the learning rate. The initial learning rate is set to 0.1, and it decays
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as a half period cosine function (see Figure 5.8). We will refer to this approach as
cosine scheme.

The second one [20], which we call special scheme, also uses SGD with a
momentum of 0.9, but for 500 epochs, and applies a unique learning rate schedule.
The learning rate values in this schedule are modified in specific epochs. The values
for starting epoch and learning rate are [(0; 0.01), (5; 0.1), (250; 0.01), (375; 0.001)]
(see Figure 5.8). It is worth mentioning that this schedule was developed and tested
for the CIFAR-10 dataset, so it might not be an adequate option for other datasets.

We selected the networks from the runs for sample 2, in Section 5.4 to retrain
using the schemes above. We repeat the results for our retrain method (column
evolution scheme) and add the new ones in Table 5.12.

Table 5.12: Test accuracies for different retraining schemes.

# evolution
scheme

cosine
scheme

special
scheme

1 0.8858 0.9221 0.9245
2 0.8993 0.9138 0.9266
3 0.8820 0.9208 0.9264
4 0.8905 0.9197 0.9216
5 0.9009 0.9233 0.9274

evolution scheme cosine scheme special scheme

10-3

Figure 5.8: Retraining schemes. Bottom: the learning rate as a function of training epochs
for each scheme. Top: the training loss and validation accuracy for the best network (run #5).

For all networks in Table 5.12, it is possible to see a significant improvement
in the test accuracy when using the new schemes. The training loss and validation
accuracy curves in Figure 5.8 helps explain this behavior. In our scheme, we used
the RMSProp optimizer with a fixed learning rate of 0.001, which is the same
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configuration applied during evolution for sample-2 runs. The validation accuracy
in the early stages of training (less than 70 epochs in Figure 5.8) is higher for our
scheme. However, it increases only by a small amount from this point forward. The
other schemes benefit from the decrease in the learning rate and show a significant
accuracy improvement at the end of the training session.

The special scheme presented the best results for all networks, but compared
to the cosine scheme, the difference is negligible, especially if we consider that the
cosine scheme runs for 300 epochs and the special scheme for 500. Furthermore, the
cosine decay is a more generic learning rate schedule; it was not specially designed
for a specific dataset, and yet provided remarkable results.

When we compared the optimizers RMSProp and SGD with momentum
in Section 5.2, we concluded that RMSProp was a better choice. Specifically,
the RMSProp executions led to higher accuracies when using the same optimizer
and learning rate for evolution and retraining phases (runs mom-1 and rms-2 in
Table 5.4). On the other hand, the optimizer SGD with momentum, in conjunction
with the cosine scheme, improved the retraining results.

Considering all the points discussed here, we decided to keep using RMSProp
for the evolution phase, with fixed hyperparameters, and the cosine scheme for the
retrain phase from now on. Although our experiments in sections 5.2 and 5.3 showed
that it is possible to evolve numerical hyperparameters with Q-NAS, we did not
see a clear advantage of evolving the RMSProp parameters in the CIFAR-10 task.
Additionally, for short periods of training with a fixed learning rate, as occurs during
the evolutionary process, the RMSProp reaches higher accuracies.

Regarding the retraining phase, the cosine scheme only requires the definition
of an initial learning rate, as opposed to a specially tuned learning rate schedule.
Therefore, we consider that using the cosine scheme for the retraining phase has the
same level of automation as applying a selected optimizer with a fixed learning rate.

5.6
Penalization

In Section 4.3, we described the selected method to address the problem of
invalid structures: a penalization scheme along with a correction procedure. The
structures are always corrected if necessary, even in the absence of penalization. We
did not apply penalization (penalize_number = 0) in the previous experiments, and
in this section, we investigate this feature.

The problem concerning structures with an excessive number of reducing
layers can be aggravated with increasing network sizes. As the nodes are sampled
independently in Q-NAS, a bigger network has a higher chance of including more
reducing layers. So far, we set the maximum number of nodes to 20, and we propose
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to study the penalization effect also on deeper networks (max_num_nodes = 30).
We selected the sample-2 runs as our control results (absence of penalization).

Thus, we adopted the configuration of these runs, including the dataset sample,
for the new experiments. The CIFAR-10 dataset has images of 32 × 32 pixels, so
the maximum number of pooling layers allowed is five. Therefore, we decided to
penalize networks with more than three layers of reducing functions (only Pool in
our function list of Table 5.2).

One can argue that the presented penalization method adds a new parameter
to Q-NAS and that we could use, instead, an intrinsic penalization scheme: initial
probability bias. To investigate this possibility, we created an additional configura-
tion where we divided the initial probabilities in the following way: NoOp receives
1/3, ConvBlock receives 3/6, and Pool, 1/6. The pooling functions begin with three
times less probability than the convolutional functions.

In summary, we will run Q-NAS three times for each new configuration: two
for penalize_number = 3 (maximum network size of 20 and 30) and two for the
initial bias scheme (maximum sizes of 20 and 30). Table 5.13 lists these results and
the baseline; it also shows the number of pooling layers in the winner networks.

Table 5.13: Results for each configuration defined in the second column.

#
penalize?
-bias?
-nodes

total
time

# of
layers

# of
pool
layers

accuracy

fitness retrain
validation

retrain
test

1 no-no-20 70 h 13 5 0.8090 0.9262 0.9221
2 no-no-20 70 h 10 2 0.8070 0.9172 0.9138
3 no-no-20 69 h 14 4 0.8000 0.9244 0.9208
4 no-no-20 72 h 12 4 0.8040 0.9258 0.9197
5 no-no-20 71 h 12 3 0.8110 0.9248 0.9233

1 yes-no-20 65 h 11 2 0.8000 0.9024 0.8970
2 yes-no-20 69 h 14 4 0.8030 0.9308 0.9296
3 yes-no-20 70 h 11 2 0.7940 0.9150 0.9183

1 yes-no-30 78 h 17 5 0.7770 0.9254 0.9306
2 yes-no-30 73 h 17 5 0.7790 0.9266 0.9136
3 yes-no-30 78 h 14 3 0.7760 0.9178 0.9154

1 no-yes-20 131 h 14 3 0.8040 0.9196 0.9147
2 no-yes-20 132 h 17 4 0.8040 0.9240 0.9250
3 no-yes-20 134 h 11 2 0.8150 0.8852 0.8792

1 no-yes-30 149 h 20 5 0.8030 0.9260 0.9246
2 no-yes-30 150 h 18 3 0.8080 0.9306 0.9275
3 no-yes-30 151 h 19 5 0.8010 0.9300 0.9311
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Regarding the test accuracies, the penalized runs reached the same levels as
the non-penalized control runs. For the configuration yes-no-30, a network of size 17
achieved an accuracy of 93.06%. Notice that, for this setup, the number of pooling
layers in the final structure is higher than in the 20 nodes runs, as expected. This
result can indicate that for even bigger networks, the penalization scheme might not
be sufficient to maintain the number of pooling layers inside the allowed limit.

When comparing the various settings, the most evident difference between
penalization and bias schemes is the evolution time: for the latter, it is two times
higher. The initial bias favors the occurrence of more convolutional layers in each
network, which can increase the training time and, consequently, the evolution time.
The accuracies, however, are similar to those from the penalization runs, with a new
best value of 93.11%. We consider the penalization scheme the best choice because
it is a more general method, and it did not increase the runtime.

In Table 5.13, we highlight run #1, for the bias scheme with 30 nodes, in which
the final network description had more pooling layers than the maximum allowed.
The number of pooling layers from the actual corrected network is different from the
decoded individual description. This is an example of unwanted behavior, which the
penalization scheme should help minimize. However, it cannot guarantee it: when
the best network appears early in evolution, the penalization cannot help, as it will
only affect the subsequent structures. In our experiments, this situation was rare even
when no penalization was applied.

To further investigate this issue, we analyzed the number of pooling layers in
each network generated in the evolutionary process. The top graphs on Figure 5.9
show the relative frequency of pooling layers in all generated networks, for the best
penalization and baseline runs. Consider, for example, the top graph for the baseline
run, indicated by no-no-20. It shows that about 12% of the generated networks had
four pooling layers. We extended the same analysis to the saved population, which
contains the best individuals that guide the evolution (see the bottom of Figure 5.9).

The top graphs of Figure 5.9 show that several invalid networks are generated
(more than five pooling layers), especially in the 30-nodes configuration. However,
the majority of the networks in the winning population are valid, indicating that
invalid networks have little influence on the final results.

Comparing graphs no-no-20 and yes-no-20 in Figure 5.9, we highlight some
observations. Regarding the generated population, it seems to be slightly affected
by the penalization, as the distribution and average are similar. The effect of pe-
nalization becomes evident in the winning population, as we notice a considerable
decrease in the average number of pooling layers.

As penalization acts after the networks are generated, its impact should be
stronger in the best population. Ideally, the chances of generating invalid architec-
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no-no-20 #5 yes-no-20 #2 yes-no-30 #1

Figure 5.9: Relative frequency of pooling layers in the networks for the generated population
(top) and the saved (best) population (bottom). Each column shows the relative counts for
the best runs of baseline, 20 nodes with penalization, and 30 nodes with penalization.

tures should decrease with time, since the best structures influence the quantum
individuals. However, for the number of iterations we ran Q-NAS, this effect was
not apparent.

A possible alternative to the penalization scheme is a mechanism that corrects
not only the network at training time but also its description as a classical individual.
Thus, Q-NAS would have access to the corrected structures and update the quantum
individuals accordingly. We intend to investigate this option in future work.

5.7
Function set

The function lists of Table 5.2 and Table 5.5 used in the previous experiments
are somewhat biased toward efficiency, i.e., there are more options of convolutions
with fewer filters, which are faster to train. In this section, we exploremore challeng-
ing function lists in terms of the number of options and their impact on the training
time. We created two function lists to represent these scenarios.

The first one is an expanded version of Table 5.2: it contains more convolu-
tional functions, including options with 512 filters (Table 5.14). The structure search
space, for a maximum network size of 20, increases from 1120 = 6.7 · 1020 to
1520 = 3.3 · 1023 options (including the invalid ones, as in reality, they are gen-
erated). This function set is similar to the one presented in [16].

The second list explores residual units instead of convolutional functions.
We adopted two types of units: the ResidualV1, with identity shortcut, and the
ResidualV1Pr, with projection shortcut, both depicted in Figure 2.4. Table 5.15
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shows the options we considered. Just like the convolution-based lists, only the
pooling operations are responsible for feature map size reduction.

Table 5.14: Functions for expanded convolution set.

function name function kernel
size stride filters initial

probability

conv_k_1_f ConvBlock [1, 3, 5] 1 [64, 128,
256, 512] 0.028

max_pool_2_2 MaxPool 2 2 - 0.167
avg_pool_2_2 AvgPool 2 2 - 0.167
no_op NoOp - - - 0.333

Table 5.15: Functions with residual blocks.

function name function kernel
size stride filters initial

probability

bv1_3_1_f ResidualV1 3 1 [64, 128, 256] 0.055
bv1p_3_1_f ResidualV1Pr 3 1 [64, 128, 256] 0.055
max_pool_2_2 MaxPool 2 2 - 0.167
avg_pool_2_2 AvgPool 2 2 - 0.167
no_op NoOp - - - 0.333

To compare the outcomes, we selected the runs for configuration yes-no-
20 from the last section as our control results. Accordingly, for the runs with the
new function sets, we used the evolution parameters of Table 5.1, except for the
penalize_number parameter, which we set to 3. As in the yes-no-20 runs, we used
the dataset sample 2, along with the RMSProp configuration rms-2 from Table 5.3.

We repeated the runs for each function set three times; these results and
the baseline are listed on Table 5.16. All runtimes for the new function sets are
considerably higher than before. This increase is expected because (1) we included
many convolutions with more filters in the expanded set, and (2) residual networks
are slower to train. It is interesting to note that even in more challenging scenarios,
Q-NAS was able to find structures with the same (or better) level of test accuracy.
The residual units provided a new best network, with 93.85% of accuracy, found at
generation 51 (about 42 hours of execution) of run #2.

Figure 5.10 shows quantum individual 0 and the final architecture for the best
runs of each function set. Both quantum individuals demonstrate some preference for
convolutionswithmore filters inmany nodes. Considering that each residual unit has
two convolutional layers, one can notice that the architecture depicted in Figure 5.10
(b) is reasonably deeper (24 layers) than the structure in (a), and the difference in
final accuracy is small. On the other hand, our best residual network outperformed a
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Table 5.16: Results for each function set.

# function
set

total
time

# of
layers

# of
pool
layers

accuracy

fitness retrain
validation

retrain
test

1 conv 65 h 11 2 0.8000 0.9024 0.8970
2 conv 69 h 14 4 0.8030 0.9308 0.9296
3 conv 70 h 11 2 0.7940 0.9150 0.9183

1 conv exp 198 h 10 4 0.8110 0.9292 0.9295
2 conv exp 199 h 13 4 0.8110 0.9330 0.9270
3 conv exp 210 h 13 2 0.8060 0.9184 0.9179

1 residual 245 h 19 3 0.8310 0.9210 0.9194
2 residual 251 h 24 4 0.8260 0.9428 0.9385
3 residual 249 h 24 2 0.8250 0.9300 0.9292

conv_5_1_512
no_op (x2)
conv_3_1_128
conv_3_1_512
no_op (x2)
conv_5_1_256
avg_pool_2_2
no_op (x3)
conv_3_1_256
avg_pool_2_2
no_op
conv_5_1_128
avg_pool_2_2
max_pool_2_2
no_op (x2)

Final networks

bv1p_3_1_128
bv1p_3_1_128
bv1p_3_1_256
avg_pool_2_2
no_op
bv1p_3_1_256
no_op (x3)
max_pool_2_2
max_pool_2_2
bv1_3_1_128
bv1_3_1_64
bv1p_3_1_256
bv1_3_1_256
no_op
max_pool_2_2
bv1_3_1_256
bv1p_3_1_64
no_op

(a)

(b)

Figure 5.10: Quantum individuals and final architectures for the best runs of each function
set: (a) run conv exp #1 and (b) run residual #2
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ResNet with 110 layers (93.57%, as seen in Table 2.1). This final architecture has a
quite balanced mixture of each residual unit type, while the mentioned ResNet uses
only identity shortcuts.

5.8
Early-stopping

In this section, we complete our analysis of Q-NAS applied to CIFAR-10
by studying the addition of an early-stopping mechanism. Our previous work [72]
showed that Q-NAS could benefit from a simple early-stopping method, signifi-
cantly reducing the total runtime, while maintaining the level of test accuracy. These
results, however, were based on Q-NAS runs that took no more than 60 hours to
complete. We want to apply this mechanism to more runtime-critical examples, like
the ones from the function set experiments (Section 5.7).

The early-stopping criterion is based on the behavior of the best fitness
throughout evolution. The curves exhibited a stepwise characteristic with long
plateaus, which we illustrate later. In the previous analysis, we related these plateaus
not to stagnation but to the difficulty in finding architectures with a stand-out perfor-
mance. The early-stopping criterion considers the small increments in fitness [72]:
stop if the best individual fitness does not improve above a threshold of 0.005 for 80
generations.

Since we store the population descriptions and fitness values, it is possible
to apply the criterion on the saved data. Therefore, we used the data from the runs
in Table 5.16 and retrained the best individual at the generation indicated by the
early-stopping rule. Table 5.17 compares the networks at the last generation and the
early-stopping generation, in terms of test accuracy, evolution time, and the number
of layers and parameters.

The early-stopping method was able to reduce the evolution time in more than
60% for most of the runs in Table 5.16. Run #3 for the residual set showed the
best improvement on this matter: the early-stopped generation represents 22%of the
total execution time. Furthermore, test accuracies were only slightly affected. One
can also observe that some accuracies did not change, which means that the best
network was already available when the mechanism indicated to stop the evolution.
For these runs, Q-NAS found the final structures with only a few iterations.

Regarding the number of parameters, in many cases, the networks from the
early-stopped generation have fewer weights to train than the final ones. We high-
light the runs in Table 5.17 indicated by 3-c + and 3-res: the structures from early-
stopping have fewer parameters but higher test accuracy. We attribute this result to
the way we evaluate the candidate architectures. The fitness value is an estimation
of the network capacity that might not always reflect the architecture with the best
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Table 5.17: Results for early-stopping applied to the function set runs: c 1 (usual convolu-
tional set), c + (expanded conv set), and res (residual set).

run
-set

no early-stopping with early-stopping

gen. evol.
time L param.

(M)
test
acc. gen. evol.

time L param.
(M)

test
acc.

1-c 1 300 65 h 11 1.66 0.8970 100 22 h 11 1.66 0.8970
2-c 1 300 69 h 14 1.60 0.9296 94 22 h 13 0.55 0.9121
3-c 1 300 70 h 11 0.82 0.9183 163 38 h 11 0.35 0.9102

1-c + 300 198 h 10 5.91 0.9295 92 57 h 12 3.85 0.9263
2-c + 300 199 h 13 3.20 0.9270 90 55 h 13 5.05 0.9205
3-c + 300 210 h 13 4.67 0.9179 93 58 h 13 3.80 0.9370

1-res 300 245 h 19 1.72 0.9194 160 98 h 19 1.72 0.9194
2-res 300 251 h 24 7.07 0.9385 131 80 h 24 7.07 0.9385
3-res 300 249 h 24 7.07 0.9292 87 54 h 21 3.32 0.9304

*gen. = generations; L = number of layers; param. = number of parameters

generalization capabilities. To favor efficiency, we evaluate individuals by training
them with a limited dataset for just a few epochs. Therefore, a network can show
better accuracy in this reduced dataset, but when trained with the complete data, it
might not be the best one. We remark that in all experiments so far, this method
did not produce networks with low test accuracy. So, we consider that our approach
provides an adequate balance between efficiency and the final quality of results.

Figure 5.11 shows the best and the average fitnesses in the population during
evolution, for two runs of Table 5.17. Observe that the best individual is unchanged
for many generations (plateaus). Additionally, the best fitness value at the generation
indicated by early-stopping (red dot in the graphs) is close to the final one.

2-c 1 3-c +

Figure 5.11: Best and average fitness in the population for runs 2-c 1 and 3-c +. The
generation indicated by early-stopping is also shown.

DBD
PUC-Rio - Certificação Digital Nº 1612983/CA



Chapter 5. Experiments 76

We end the series of CIFAR-10 experiments comparing our results with the
state-of-the-art. To support our analysis, we include Table 5.18, which incorporates
the literature outcomes of Table 2.1 and our best results presented in this section.

Table 5.18: Comparing our results with some literature models. The ‘*’ marks the methods
that used other datasets for the search and applied the network on CIFAR-10.

accuracy (%) # params. GPU days

Hand-designed models
ResNet [9] 93.57 1.7M -
VGG [7] as reported by [20] 92.06 15.2M -
Network in Network (NiN) [8] 91.19 - -
Maxout [54] 90.70 - -

NAS
NAS [2] 96.35 37.4M 22400
EAS [25] 95.11 - 10
Large-scale Evolution [19] 94.60 5.4M 2670
CGP-CNN (ResSet) [20] 94.02 1.68M 28
Q-NAS 2-res + early-stop 93.85 7.07M 67
Q-NAS 3-c+ + early-stop 93.70 3.8M 48
CGP-CNN (ConvSet) [20] 93.25 1.52M -
MetaQNN [16] 93.08 11.18M 100
Q-NAS 2-c1 92.96 1.6M 58
NASBOT [22] 91.31 - 1.67

NAS with cell search
XNAS [53] 98.40 7.2M 0.3
DARTS [49] 97.24 3.3M 5
NASNet-A [17] 96.86 3.3M 2000
AmoebaNet-A [21] 96.66 3.2M 3150
Block-QNN-S [18] 96.46* 39.8M 96
Hierarchical Evolution [26] 96.25 - 300
Genetic CNN [46] 92.90 - 17

The run 2-c 1 represents the best accuracy for the smaller convolutional set
(92.96%), with a total runtime of 58 GPU days. This accuracy is better than the
hand-designed architectures, excluding ResNet. The VGG network contains more
than 15 million parameters and presented 92.06%of accuracy, while ours performed
better and has only 1.6 million. With the addition of the early-stopping mechanism,
we obtained a runtime of 67 GPU days for our best accuracy of 93.85%, surpassing
the performance of ResNet.

The NAS systems that apply the meta-architecture strategy (bottom of Ta-
ble 5.18) present the best results regarding accuracy values and, in some cases, also
efficiency. However, as discussed in Section 2.2, this strategy represents a strong
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bias in the search, which we proposed to reduce. Therefore, we focus our analysis
on the methods that do not follow this approach.

Themethods NAS and EAS provide the best accuracies, but NAS spent 22 400
GPU days, which is considerably more than our runtimes. On the other hand, EAS
achieved 95.11%of accuracy using only ten GPU days. Asmentioned in Section 2.2,
EAS uses a seed network to start the search, which is not identical to the meta-
architecture approach but raises the same questions about bias. Also, according to
the authors, the seed network already presents 87% of validation accuracy.

Themethod referred to as Large-scale Evolution in Table 5.18 reached 94.60%
of accuracy, which is slightly better than our results, but using significantly more
computational resources compared to Q-NAS. Considering theMetaQNN approach,
all of our results are better regarding the number of parameters and execution time.
Our network 2-c 1 has only 14% of the total parameters in the MetaQNN structure,
with a difference in the accuracy value of just 0.12 percentage points.

The CGP-CNN approach is competitive with respect to efficiency: they
achieve 94.02% of accuracy in only 28 GPU days. However, in this experiment,
the authors report the evaluation of 600 networks [20], which is ten times less than
our runs. In Subsection 5.3.5, we varied the number of individuals per generation
and, consequently, the number of evaluated networks. In the runs where we tested
1 500 structures (five individuals per generation), the maximum runtime was 8.5
GPU days. Furthermore, CGP-CNN uses specially designed learning schedules for
the final retraining phase. As we confirmed in our retrain study of Section 5.5, this
approach can improve accuracies for the CIFAR-10 dataset. Training our best net-
work with this particular scheme increased the accuracy from 93.85% to 94.18%.
However, as also mentioned before, it may require tuning for each different dataset,
which goes against the idea of automation.

In summary, our results indicate that Q-NAS is competitive regarding the
balance between performance, efficiency, and automation. Without using meta-
architectures or specially designed learning schemes, we were able to outperform
hand-designed models and other NAS methods, in less than 70 GPU days.

5.9
CIFAR-100

After the comprehensive analysis presented in the previous experiments, in
this section, we proceed to our second goal: applying Q-NAS to CIFAR-100. The
idea is to repeat some experiments we conducted for CIFAR-10 to evaluate the
performance of Q-NAS when applied to a more challenging dataset. More specifi-
cally, we selected the sampling and function set experiments from Section 5.4 and
Section 5.7, respectively. CIFAR-100 has the same number of training images as
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CIFAR-10, but 100 classes instead of 10. Thus, with fewer examples per class, it
is interesting to analyze the impact of sampling in the final results. Additionally,
with a more difficult task, it is relevant to evaluate the difference in using simple or
complex function sets.

The NAS literature does not provide many results on CIFAR-100, and some
of them perform the search on other datasets to only retrain the final network on
CIFAR-100. Table 5.19 includes the methods from Table 2.1 that also present results
using CIFAR-100. Table 5.19 serves as the baseline to evaluate our results, which
will be introduced in the next subsections.

Table 5.19: Results from the literature on CIFAR-100. The ‘*’ marks the methods that used
other datasets for the search and applied the network on CIFAR-100.

accuracy (%) # params. GPU days

Hand-designed models
ResNet-1001 [77] 77.30 10.2M -
ResNet-164 [77] 75.67 1.7M -
Network in Network (NiN) [8] 64.32 - -
Maxout [54] 61.43 - -

NAS
Large-scale Evolution [19] 77.00 40.4M -
MetaQNN [16] 72.86* 11.18M 100

NAS with cell search
XNAS-Small [53] 86.40* 3.7M 0.3
Block-QNN-S [18] 81.94 39.8M 96
Genetic CNN [46] 70.97* - -

5.9.1
Sampling

Repeating the methodology presented on Section 5.4, we generated three
samples from the CIFAR-100 dataset containing 10 000 images (9 000 for training
and 1 000 for validation). Recall from Section 5.1 that our sampling procedure
ensures class balance.

We executed Q-NAS three times for each sample. For these runs, we used
the same settings as the penalization experiments (Section 5.6) with a maximum
network size of 30. This configuration corresponds to the optimizer setup rms-2
in Table 5.3 and the parameters of Table 5.1, with max_num_nodes = 30 and
penalize_number = 3. Like in Section 5.4, the selected function set is the one from
Table 5.2. The results for these runs are listed in Table 5.20.
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Table 5.20: Results for each sample of CIFAR-100.

# sample total
time

# of
layers

param.
(M)

# of
pool
layers

accuracy

fitness retrain
validation

retrain
test

1 1 73 h 12 1.18 3 0.3650 0.6508 0.6495
2 1 74 h 14 2.94 2 0.3600 0.6522 0.6431
3 1 73 h 16 1.03 3 0.3700 0.6610 0.6595

1 2 72 h 15 1.37 3 0.3710 0.6462 0.6469
2 2 72 h 16 1.45 4 0.3890 0.6826 0.6775
3 2 73 h 16 0.63 4 0.3820 0.6114 0.6117

1 3 76 h 17 0.78 4 0.3530 0.6608 0.6551
2 3 71 h 13 1.98 2 0.3330 0.6692 0.6727
3 3 74 h 13 2.02 5 0.3470 0.7034 0.6995

Table 5.19 demonstrates that CIFAR-100 is more challenging than CIFAR-10.
The hand-designed models MaxOut and NiN present test accuracies of 61.43% and
64.32% for CIFAR-100, respectively, while for CIFAR-10, they both show more
than 90% of accuracy. For all samples, Q-NAS was able to generate networks that
outperform these hand-designed models, which is a significant result, as we applied
the algorithm without adjusting any parameter. However, some samples reached
better accuracies than others, which might indicate that the impact is not negligible.

Our best accuracy (69.95%) is close to the value of 70.97% reported by the
authors of Genetic-CNN. This particular network generated by QNAS falls into the
case where its description has more pooling layers than the maximum allowed. The
structure was found early (at generation 27) with significantly better fitness, so even
with penalization, the invalid description was kept in the population.

s2 #2

s3 #3

Figure 5.12: Quantum individuals for the best runs for sample 2 (#2) and sample 3 (#3).
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Figure 5.12 shows quantum individuals from the two best runs in Table 5.20.
Note that some nodes demonstrate a preference for convolutions with more filters.
However, unlike the CIFAR-10 experiments, there are also many nodes with high
probabilities for convolutions with 64 and 32 filters. The final structures corroborate
with this idea: in most of the runs from Table 5.20, the number of parameters is less
than 2 million, even for networks with more than 16 layers.

5.9.2
Function set

Wenow repeat the function set experiments fromSection 5.7 using the CIFAR-
100 dataset. The configuration for Q-NAS is maintained: evolution parameters from
Table 5.1 with penalize_number = 3 and optimizer configuration rms-2 in Table 5.3.
For the expanded convolutional set (Table 5.14) and residual set (Table 5.15), we
executed Q-NAS three times. We selected sample-3 runs from the last subsection as
control, and we used this dataset sample for the new runs (results in Table 5.21).

Table 5.21: Results for each function set in the CIFAR-100 task.

# function
set

total
time

# of
layers

param.
(M)

# of
pool
layers

accuracy

fitness retrain
validation

retrain
test

1 conv 76 h 17 0.78 4 0.3530 0.6608 0.6551
2 conv 71 h 13 1.98 2 0.3330 0.6692 0.6727
3 conv 74 h 13 2.02 5* 0.3470 0.7034 0.6995

1 conv exp 216 h 13 13.64 3 0.3980 0.7182 0.7051
2 conv exp 211 h 10 5.69 4 0.3960 0.7162 0.7019
3 conv exp 220 h 8 2.86 4 0.4010 0.6602 0.6562

1 residual 245 h 21 6.57 3 0.4080 0.6896 0.6848
2 residual 240 h 20 6.25 4 0.4070 0.7460 0.7423
3 residual 247 h 19 4.46 3 0.4140 0.7294 0.7177

Our new best accuracies outperform GeneticCNN (70.97%) and MetaQNN
(72.86%) results, which were obtained by retraining the network found in the
CIFAR-10 case. Compared to our CIFAR-10 outcomes, the test accuracy difference
between runs of the same configuration is higher, although the fitness values are
similar. A possible reason is the quality of the network performance estimation
during evolution. With a more challenging dataset, the 50 epochs of training might
not be sufficient to distinguish a considerably better structure. Furthermore, we are
working with networks of much lower depth than the state-of-the-art models. To
achieve higher accuracies, we might need to experiment with deeper architectures.
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Observe that both ideas (increase training epochs and network depth) should raise
the evolution time. Therefore, finding a satisfactory balance is a relevant topic for
future investigation.

Figure 5.13 illustrates the final networks of the best runs in Table 5.21 for
each function set. Observe that, in all structures, the convolutions with more filters
predominate. In run 1-c +, there are convolutions with all available kernel sizes, con-
trasting with well-known hand-designed models, such as Alexnet [6] or VGG [7].

conv_3_1_64
conv_3_1_256
max_pool_2_2
conv_3_1_256
conv_3_1_64
conv_3_1_128
conv_3_1_128
avg_pool_2_2
conv_3_1_256
avg_pool_2_2
max_pool_2_2
conv_3_1_256
max_pool_2_2

conv_3_1_256
conv_1_1_128
conv_5_1_64
conv_5_1_256
conv_3_1_128
conv_5_1_512
max_pool_2_2
max_pool_2_2
conv_3_1_512
conv_1_1_256
conv_3_1_512
conv_5_1_512
avg_pool_2_2

bv1_3_1_128
bv1p_3_1_64
max_pool_2_2
bv1_3_1_256
bv1p_3_1_128
bv1p_3_1_256
bv1p_3_1_256
avg_pool_2_2
bv1p_3_1_256
bv1p_3_1_256
avg_pool_2_2
avg_pool_2_2

3-c 1 1-c + 2-res

Figure 5.13: Final networks for the best runs of each function set.

We also applied the early-stopping mechanism described in Section 5.8 to the
runs of Table 5.21 with accuracies above 69%; the results can be seen in Table 5.22.
For all tested runs, except 2-c +, the mechanism indicated to stop when the final
network was available, which means no accuracy loss. Furthermore, there was a
significant runtime decrease in almost all situations: in the best case (3-res), the
early-stopped generation represents 27% of the total time. Run 2-res had a more
modest reduction: generation 235 represents 78% of the total runtime. Compared to
CIFAR-10 results, the number of GPU days is in the same range for most cases.

Table 5.22: Results for early-stopping applied to the best function set runs on CIFAR-100:
c 1 (usual convolutional set), c + (expanded conv set), and res (residual set).

run
-set

no early-stopping with early-stopping

gen. GPU
days L param.

(M)
test
acc. gen. GPU

days L param.
(M)

test
acc.

3-c 1 300 62 13 2.02 0.6995 107 21 13 2.02 0.6995
1-c + 300 180 13 13.64 0.7051 175 105 13 13.64 0.7051
2-c + 300 176 10 5.69 0.7019 103 62 10 8.58 0.6789
2-res 300 200 20 6.25 0.7423 235 156 20 6.25 0.7423
3-res 300 206 19 4.46 0.7177 85 55 19 4.46 0.7177

*gen. = generations; L = number of layers; param. = number of parameters
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We highlight that Q-NAS could reach accuracy levels comparable to other
methods for CIFAR-100, without any adjustments on parameter values or the early-
stopping mechanism, indicating robustness in the algorithm.

5.10
Case study: seismic data

Researchers have also applied NAS to real data. A very recent example is to
use NAS to create networks for emulating complex computer simulations of natural
phenomena [78, 79]. We conclude our experiments with a case study on seismic
image classification, applying Q-NAS to real datasets, as detailed below.

Geoscientists usually examine seismic images to study the subsurface of the
Earth, as they represent the geologic structures beneath the ground. The process to
generate these images starts with data acquisition: an intense sound source directs
waves into the ground, which are reflected and then recorded by geophones. Finally,
this signal is processed, producing seismic images that experts will interpret [37].
In a crucial step of the analysis, the expert separates layers of rock with different
properties by looking for visual patterns that might distinguish them. Then, he marks
the horizons, which are the division lines between layers [80]. This process can
take months to complete, especially with large amounts of data. Both academia and
industry have been investing in methods to accelerate this procedure [37, 80].

Figure 5.14 shows examples of seismic images from two real datasets: Penob-
scot 3D survey [81] and Netherlands F3 Block [82]. They both consist of a horizon-
tal stack of 2D seismic images (slices) that creates a 3D volume (seismic cube). The
vertical axis represents depth, and the other two perpendicular directions are called
inline and crossline (see Figure 5.15 (a)). Penobscot contains 481 crossline and 601
inline slices, with dimensions 601× 1501 and 481× 1501 pixels, respectively. The
Netherlands dataset has 951 crosslines of size 651 × 462 pixels, and 651 inlines of
951 × 462 pixels. Figure 5.14 also depicts the layers separated by an expert. From
the machine learning point of view, the layers (areas between horizons) can be con-
sidered categories that a model can classify. In the ideal scenario, the expert would
annotate a minimum amount of slices, the model would learn from this small set,
and then classify the rest of the images in the cube.

Civitarese et al. [37] developed deep networks specifically for this classifi-
cation task, focusing on efficiency. They carefully designed the models and used a
particular learning rate schedule. We want to verify if Q-NAS can produce networks
with equivalent performance to their best modelDanet-3. To compare the networks’
performance fairly, we followed the preprocessing method detailed in [37] to gener-
ate datasets from the seismic images of Penobscot andNetherlands. Then, we trained
Danet-3 with these datasets, using the learning scheme described by the authors, in-
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Figure 5.14: Examples of (cropped) inline slices and respective layers for (a) Penobscot
and (b) Netherlands. In (b), we show a tile collected from the image and how it is labeled
for a classification task.

cluding the values for the training parameters. We remark that the results in [37]
were obtained with a different test set, so we could not compare directly with ours.

As detailed in [37], to get samples from each layer in the seismic images, it is
necessary to break them into smaller parts (see Figure 5.14 (b)). The authors use a
slidingwindowmechanism to get tiles of size 40×40 pixels. Note that the smaller the
stride of the sliding window, the bigger is the number of generated tiles. They allow
for a noise of 30%, that is, 70% of the tile must belong to a single layer; otherwise,
the tile is discarded. Also, the original images have float ranges, which they rescale
to the regular grayscale (0 to 255) before breaking them into tiles.

To generate the training set, we selected regularly spaced inline slices from
the cubes (20 for Penobscot and 25 for Netherlands). For the test set, we randomly
picked 50 slices from the blocks in between the training slices, guaranteeing similar
numbers from each block (see Figure 5.15 (b)). Next, we applied the preprocessing
procedure for each set. After the training and test tiles were ready, we randomly
selected 20% of the training tiles to comprise the validation set. Also, we guarantee
class balance by discarding tiles from the classes with more examples. Table 5.23
lists the characteristics of the generated tile datasets.

(a)

depth

inline crossline

(b)
inline slices

Figure 5.15: (a) Seismic cube with highlighted inline (dark blue) and crossline slices. (b)
Selection scheme for train and test sets. The dark blue slices go to the training set. The test
set is randomly selected from the areas between training slices (red triangles).
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Table 5.23: Characteristics of each tile dataset.

dataset tile size stride classes train tiles valid tiles test tiles

Penobscot 40 × 40 5 7 3 420 381 9 030
Netherlands 40 × 40 10 8 4 737 527 10 336

Notice that, unlike the CIFAR cases, the challenge here is to work with limited
amounts of data. Consequently, we did not reduce the datasets for evolution, as
they have less than 5000 training examples, and we decreased the batch size to 64.
Moreover, for a fair comparison with Danet-3, we did not apply data augmentation
nor the mean subtraction we have used in all runs so far. The evolution parameters,
on the other hand, are kept equal to the ones in Subsection 5.9.1 with a single
exception: the number of classical individuals. We want to simulate a restricted
resource scenario, with only a few GPUs available to run Q-NAS. Therefore, we
set repetition to 1, so the five quantum individuals produce five structures per
generation. Table 5.24 and Table 5.25 list the results of the runs for each dataset.

Table 5.24: Results for Penobscot dataset.

# total
time

GPU
days

# of
layers

param.
(M)

# of
pool
layers

accuracy

fitness retrain
validation

retrain
test

1 31 h 6.5 13 0.50 2 0.9869 0.9816 0.9730
2 32 h 6.6 14 1.05 2 0.9895 0.9816 0.9672
3 31 h 6.5 13 0.44 3 0.9895 0.9869 0.9812
4 33 h 6.8 13 0.34 3 0.9895 0.9869 0.9781
5 32 h 6.6 10 0.82 3 0.9895 0.9921 0.9857

Danet-3 - test accuracy: 0.9745

Table 5.25: Results for Netherlands dataset.

# total
time

GPU
days

# of
layers

param.
(M)

# of
pool
layers

accuracy

fitness retrain
validation

retrain
test

1 41 h 8.5 13 0.53 3 0.9772 0.9848 0.9790
2 40 h 8.4 14 1.17 3 0.9791 0.9905 0.9818
3 38 h 7.9 11 0.46 3 0.9848 0.9810 0.9732
4 39 h 8.2 13 0.57 3 0.9772 0.9753 0.9761
5 38 h 7.8 11 0.33 3 0.9810 0.9867 0.9803

Danet-3 - test accuracy: 0.9638
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For both datasets, Q-NAS was able to generate networks that outperform
Danet-3. Furthermore, these structures have significantly fewer parameters than
Danet-3, which has 14.98 millions of weights. In the best case for Penobscot,
the final network showed 98.57% of accuracy, and it has only 0.82 millions of
parameters. For the Netherlands dataset, run #5 reached 98.03% of accuracy, with
a structure that has 0.33 million weights. Also, all runs spent less than 41 hours to
complete (8.5 GPU days, considering the five GPUs that were used).

Figure 5.16 illustrates a quantum individual and the final network for run #5
of the Netherlands dataset. Notice the preference for functions with a kernel size of
5 and low probabilities for conv_3_1_256. This behavior was also observed in other
runs of this experiment, which is reasonably different from the CIFAR results. This
contrast is interesting since, in both cases, the input images have similar sizes, but a
notably different visual aspect.

conv_5_1_32
conv_3_1_128
no_op
conv_5_1_32
no_op
avg_pool_2_2
no_op (x3)
conv_5_1_64
no_op
conv_3_1_128
conv_1_1_64
no_op
conv_5_1_32
avg_pool_2_2
max_pool_2_2
no_op
conv_1_1_32
no_op

Figure 5.16: Quantum individual 0 and final network for run #5 of the Netherlands dataset.

To close this section, we remark that Q-NAS was applied to seismic datasets
that represent real problems in the geoscience domain. Based on our results, it is
possible to conclude that Q-NAS could automatically find structures to solve the
seismic classification task in less than 8.5 GPU days, surpassing specially designed
models in accuracy and efficiency.
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6
Conclusions

In this work, we introduced a new quantum-inspired algorithm to search for
deep neural network structures. The proposed quantum representation allows for
Q-NAS to evolve both the architecture and some numerical hyperparameters.

Our new quantum representation for deep networks provides considerable
flexibility to the user, as he/she can choose how complex will be the search space
of node functions. Furthermore, the probabilistic quality of the quantum individual
offers another degree of flexibility, as initial probabilities can be defined to favor
some functions over the others.

Using the CIFAR-10 dataset, we varied the values of the Q-NAS’ parameters,
covering a wide range of options for many of them. We observed that some param-
eters affect more the evolution process than others, but the final accuracy is similar
in most of the cases. Our results are promising regarding the robustness of Q-NAS,
as satisfactory outcomes were obtained with many different parameter setups.

We also developed an experiment to verify if Q-NAS can evolve both the
network structure and some hyperparameters. We selected a few numerical hyper-
parameters to optimize and compared them to the case with fixed values. In both
situations, Q-NAS was able to produce similar results, but we did not observe a
clear benefit in optimizing the selected hyperparameters.

Additionally, we investigated the impact of different retraining schemes on
the final test accuracy. We observed that, although special learning schedules can
lead to better results, the cosine schedule provides similar accuracies (less than 0.5
percentage points of difference). Also, it requires only the definition of an initial
learning rate, with no further tuning. We incorporated the cosine scheme in our
retrain phase, which improved our test accuracies.

The study on penalization showed that our method could not decrease the
number of invalid structures generated during evolution, but it helped to remove
such networks from the saved population. In this way, it reduced the chances of
invalid individuals affecting the final results. We believe that correcting not only
the network at training time but also its description in Q-NAS may be an alternative
that could help reduce the generation of invalid structures.

We obtained our best accuracies for CIFAR-10 when exploring a search space
containing convolutions with more filters and also when searching in the space of
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residual networks. For these runs, we investigated the effect of adding a simple early-
stopping mechanism, which improved the runtimes significantly. Our best residual
network achieved 93.85% of test accuracy on the CIFAR-10 task, with a runtime of
67 GPU days considering the early-stop. The best convolutional network reached
93.70% of accuracy, requiring 48 GPU days with early-stopping. These accuracy
values overcome the performance of hand-designed models and also other NAS
works. Furthermore, these results indicate that Q-NAS is competitive regarding the
balance between accuracy, runtime efficiency, and automation. We emphasize that
our algorithm does not rely on meta-architectures, which represent strong human
bias in the search, or specially designed learning schemes that require tuning.

We extended our investigation by applying Q-NAS to the more challenging
dataset CIFAR-100, and we were able to outperform the hand-designed models
Maxout [54] and NiN [8]. Our best accuracy of 74.23% from a residual network with
24 layers is comparable to that of a ResNet with 164 layers and only 2.8 percentage
points worse than the NAS method in [19]. We highlight that in the CIFAR-100
experiments, we only applied Q-NAS with previously defined configurations, i.e.,
we did not perform any parameter adjustment.

Finally, we applied Q-NAS to real datasets to solve the seismic classification
task, which lies in the image recognition context. In a restricted resource scenario,
Q-NAS’ networks were able to outperform a hand-designed model (Danet-3 [37]),
specially developed for this task. For the Penobscot dataset, our best network (with
0.82 million parameters) reached an accuracy of 98.57%, while Danet-3, which has
more than 14 million weights, achieved 97.45%. In the Netherlands dataset, the
outcomes were similar: Danet-3 showed 96.38% of accuracy, and our best result
was 98.18%, with a network of 1.17 million parameters. For the two real datasets
used in this work, Q-NAS could automatically find structures to solve the seismic
classification task in less than 8.5 GPU days.

As future work, we intend to study further the invalid networks issue. More
specifically, we want to experiment with the correction scheme introduced in Sec-
tion 5.6: when fixing the networks at training time, we can alsomodify the individual
description accordingly. We believe that this method might reduce the generation
of invalid networks faster (in terms of evolution iterations) than the penalization
scheme. Also, it is possible to combine the description correction with penalization,
to intensify the rejection of invalid structures.

Additionally, we plan to extend our parameter analysis, studying their impact
when working with other datasets. Although we obtained satisfactory results with a
similar configuration for all tested datasets, a more in-depth investigation is needed.
This analysis is also important to select a configuration that is appropriate for many
datasets.
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Another subject we plan to investigate is the analysis of the generated struc-
tures. We believe that the thousands of networks we produce in the evolutionary
process can provide interesting insights about the topologies. It is possible to verify
if specific sequences of functions frequently appear so we can encapsulate them in
future runs. Also, we can compare the structures generated for different datasets, to
investigate a potential relation between the topology and the characteristics of the
data.

In this work, we framed Q-NAS in the image classification context to run
our experiments and compare them to the literature results. However, Q-NAS is not
restricted to this task, and we want to extend our analysis to other problems suitable
for neural networks, such as regression tasks.

Finally, we intend to conduct a more comprehensive study on the evolution of
hyperparameters. We want to verify which ones should be evolved, that is, which
parameters notably improve the results when optimized. Note that it is possible to
extend this idea to the dataset preprocessing, which usually has many options and
parameter values to select.
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A
Implementation details

Q-NAS was developed in Python 3.6 1. The network assembling and training
code made use of Tensorflow 1.9 [83] open source deep learning library.

Q-NAS runs in a multi-process environment, via MPI messages (with the help
ofMPI4Py library [84]). Themaster node runs Q-NAS and distributes the evaluation
tasks to the slaves with non-blocking send operations. It also collects the results with
non-blocking receives. Each worker (including the master) evaluates one individual
per generation, that is, the total number of processes is equal to the number of
classical individuals to be evaluated.

The experiments were executed in a multi-computer environment, which
contains NVIDIA K80 2 GPUs and Power8 processors running Linux (Red Hat
Enterprise Linux 7.4 3). OpenMPI [85] 3.1.1 distribution was installed.

For the retraining phase, however, we run the jobs on a single machine from
the environment described above. We use 1 GPU and 1 CPU in the single machine.

1https://docs.python.org/3.6/
2https://www.nvidia.com/en-gb/data-center/tesla-k80/
3https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
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