3. Experimentos de laboratório em halita

Os dados experimentais para a realização deste projeto foram fornecidos pela empresa Baker Hughes (Hoffman, 2012). As propriedades mecânicas da halita são obtidas a partir dos resultados experimentais de ensaios triaxiais e de compressão simples na rocha. Para a comparação das estimativas dos modelos analíticos, têm se os resultados do ensaio de cortador único feito para três condições de pressão confinante na halita.

3.1. Obtenção das propriedades dos evaporitos

As rochas salinas atuam como selos para os reservatórios de armazenamento de óleo e gás (pre-sal). Suas propriedades mecânicas possuem variabilidades devido a diferentes origens, componentes mineralógicos, disposição litográficas, textura e história digenética, etc. Os evaporitos são rochas salinas com um comportamento não convencional quando submetidas a tensões e confinamento.

Para conhecer as propriedades mecânicas das rochas salinas foram realizados ensaios de compressão axial (uniaxial e triaxial) em amostras deste material. Estes ensaios estão destinados a medir a resistência de uma determinada amostra de rocha submetida à compressão. As medições fornecem os valores necessários para determinar a envoltória de resistência e assim determinar as propriedades mecânicas. Os parâmetros obtidos são o ângulo de atrito interno (ϕ) e a coesão (c).

A empresa Baker Hughes disponibilizou as medições das resistências obtidas no ensaio de compressão simples e no ensaio triaxial para diferentes pressões de confinamento na rocha evaporítica. Na Figura 3.1 são apresentadas as curvas de tensão *versus* deformação para aproximadamente 10% / minuto de velocidade de deformação dos ensaios para confinamentos de 0, 300, 3000, 5000, 10000, 15000 PSI (0, 2.1, 21, 34, 69 e 103MPa).

Nas curvas pode ser visto o comportamento dúctil na tendência côncava no início da curva como é dito na literatura para as rochas evaporíticas (Liang et al., 2006) e (Hofer e Thoma, 1968).

Este comportamento pode ser relacionado com o começo das fissuras e o fechamento dos poros. Na halita este intervalo é maior quando comparado com outras rochas devido à rocha salina apresentar grande deformação quando submetida a carregamento.

Para obtenção dos parâmetros da resistência da halita foi utilizado o diagrama p-q como é sugerido no livro de Mecânica dos Solos de Lambe (1972), e foram calculados a coesão e ângulo de atrito (Figura 3.2).

Foram utilizados os dados da curva de tensão – deformação (Figura 3.1), sendo que o diagrama só foi traçado para as pressões confinantes de 0, 300, 3000 PSI (0, 2.1 e 21.0 MPa) dado que traçando para as outras pressões confinantes se apresenta uma dispersão nos dados. Os valores de tensão total axial foram tomados numa deformação axial de 0,03 pol/pol, dado que as curvas apresentam comportamentos dúcteis e não mostram um pico máximo. Tendo desenhado o diagrama p-q com os valores da Tabela 3.1, é traçada a linha de tendência que melhor se ajusta à curva. A linha de tendência é caraterizada pela sua inclinação, (*m*) e o seu intercepto com o eixo Y, (*b*). Com os valores de *m* e *b* são calculados o ângulo de atrito interno (φ) e a coesão (c), com a formulação dada na teoria da falha de Morh-Coulomb. (Equação 3.1).

Figura 3.2 – Diagrama p-q para obtenção parâmetros

Tabela 3.1-Valores de p e q obtidos a partir das curvas tensão – deformação dos ensaios triaxiais (tomado de Hoffman, 2012)

σ1	σ3	р	q	
[MPa]	[MPa]	[MPa]	[MPa]	
21.55	0	10.77	10.77	
41.66	2.1	21.86	19.79	
71.82	21	46.25	25.57	

$$q = a + ptanm$$

$$sen\phi = \tan m; \qquad c = \frac{m}{\cos\phi}$$
(3.1)

Depois de realizados os cálculos, os parâmetros da resistência mecânica da halita obtidos são apresentados na Tabela 3.2. Estes valores foram comparados com os obtidos em Carrapatoso (2011).

	Parâmetros da resistência				
Ângulo de atrito interno		φ[°]	31.02		
	Coesão	c [MPa]	9.24		
	Resistência à compressão simples	UCS [MPa]	19.76		

3.2. Ensaio de cortador único

O ensaio de cortador único foi realizado com um cortador PDC (*Pollycrystaline Diamond Compact*), de forma circular e afiado. As especificações do ensaio como a orientação do cortador (ângulo de ataque e ângulo de inclinação lateral), a rotação, a taxa de penetração, o raio de corte, a frequência e o deslocamento angular estão na Tabela 3.3. As especificações do cortador são apresentadas na Tabela 3.4.

Parâmetro	Valor	Unidade
Ângulo do ataguo	20	graus
Aligulo de ataque	0.34906585	radianos
Ângulo do inclinação latoral	0	graus
Angulo de inclinação lateral	0	radianos
Dotocão	60	RPM
KULAÇAU	1	rot./ s
POD	0.033	pol./s
KUP	0.0008382	m/s
Doio do cortador	2.78125	pol.
	0.07064375	m
Fraguância da laitura	512	hz
riequencia de leitura	0.00195313	S
Deslocamento angular/rev	0.44386777	m/s

Tabela 3.3-Especificações do ensaio de cortador único (Hoffman, 2012)

Tabela 3.4-Geometria do cortador PDC (Hoffman, 2012)

Parâmetro	Valor	Unidade		
Diâmatra	0.625	pol.		
Diametro	0.015875	m		
Paio	0.3125	pol.		
KdiU	0.0079375	m		
lorguro	0.5	pol.		
Largura	0.0127	m		
Altura da chanfra	0.017	pol.		
Altura do chamro	0.0004318	m		
Comprimento do Chanfro	0.026	pol.		
	0.0006604	m		

O ensaio foi realizado com velocidade constante e profundidade de corte constante de 0.44mm/s e 0.8382mm, respectivamente. As pressões de confinamento para cada ensaio correspondem a pressão atmosférica, e pressões confinantes de 2.1 MPa e 21 MPa. O ângulo de ataque e o ângulo de inclinação lateral são mantidos constantes em 20° e 0°, respectivamente.

3.2.1. Resultados das forças de corte

Os resultados obtidos a partir das forças de corte horizontal, força de corte vertical e forças de corte lateral versus o deslocamento horizontal sob as diferentes pressões de confinamento serão apresentados nas Figuras 3.3 a 3.5.

Forças de corte - Halita O MPa

Figura 3.3-Forças de corte no ensaio de cortador único 0 MPa

Figura 3.4- Forças de corte no ensaio de cortador único 2.1 MPa

Figura 3.5- Forças de corte no ensaio de cortador único 21 MPa