

Letícia Lazzari

Reconstrução em alta resolução das variações paleoambientais em sedimentos ao longo dos últimos 14 mil anos na Plataforma continental do Rio de Janeiro, SE – Brasil.

Tese de doutorado

Tese apresentada ao Programa de Pósgraduação em Química da PUC-Rio como requisito parcial para obtenção do grau de Doutor em Química.

Orientador: Prof. Renato da Silva Carreira Coorientadora: Prof^a. Angela de Luca Rebello Wagener

> Rio de Janeiro Outubro de 2016

Letícia Lazzari

Reconstrução em alta resolução das variações paleoambientais em sedimentos ao longo dos últimos 14 mil anos na Plataforma continental do Rio de Janeiro, SE – Brasil.

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Renato da Silva Carreira Orientador - Departamento de Química - PUC-Rio

Profa. Angela de Luca Rebello Wagener Coorientadora - Departamento de Química - PUC-Rio

> Prof. Marcelo Corrêa Bernardes UFF

Prof. Bastiaan Adriaan Knoppers UFF

Profa. Tatiana Dillenburg Saint'Pierre Departamento de Química - PUC-Rio

Prof. Arthur de Lemos Scofield Departamento de Química - PUC-Rio

Prof. Márcio da Silveira Carvalho

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 18 de Outubro de 2016

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Letícia Lazzari

Possui mestrado em Química pela Pontifícia Universidade Católica do Rio de Janeiro (2012) e graduação em Oceanografia pela Universidade do Vale do Itajaí (UNIVALI) (2009). Participa de trabalhos e congressos na área de Química Ambiental, focados em Geoquímica Marinha e Paleoceanografia.

Ficha Catalográfica

Letícia Lazzari

Reconstrução em alta resolução das variações paleoambientais em sedimentos ao longo dos últimos 14 mil anos na plataforma continental do Rio de Janeiro, SE - Brasil / Letícia Lazzari; orientador: Renato da Silva Carreira; coorientadora: Angela de Luca Rebello Wagener. - 2016.

199 f. : il. color ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2016. Inclui bibliografia

1. Química – Teses. 2. multi-elementos. 3. hidrocarbonetos. 4. paleoambiente. 5. Plataforma continental. I. Carreira, Renato da Silva. II. Wagener, Angela de Luca Rebello. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. IV. Título.

CDD: 540

PUC-Rio - Certificação Digital Nº 1212274/CA

Aos meus pais, Luiz e Sílvia, por todo apoio, compreensão, amor ecarinho incondicionais.

Agradecimentos

Ao meu orientador Prof. Renato da Silva Carreira, pelo incentivo, apoio, confiança e ensinamentos no desenvolvimento deste trabalho;

À minha coorientadora Prof^a. Angela de Luca Rebello Wagener, também pelo incentivo, pela amizade, confiança e por estar sempre disposta a ajudar e aconselhar;

Ao Prof. Ed Boyle, que me orientou durante meu estágio sanduíche no MIT, e à toda a equipe do laboratório, em especial ao Rick Kayser e ao Gonzalo Carrasco;

À minha família, por todo apoio, segurança e incentivo;

Ao Rafael e família, que me deram muito amor e conforto em todos os momentos;

À CAPES, pelo auxílio financeiro nos primeiros anos do doutorado;

Ao CNPq, pelo auxílio financeiro durante o doutorado sanduiche;

À FAPERJ, pela bolsa aluno nota 10;

À PUC-Rio, pela bolsa de estudos concedida;

Aos professores Arthur Scofield e José Marcos Godoy, que me ajudaram muito no desenvolvimento da minha tese;

Ao pessoal do Labmam, Lilian (amigona), Ricardo (incentivador), Lívia, Ivy, em especial Wellington que me ajudou com as calibrações iniciais, e Carlos (Cacá), meu amigo, que me ajudou muito com as metodologias dos hidrocarbonetos;

Aos alunos e ex-alunos do Labmam Cris (my best), Gilson, Juju (querida), Milena, Ana Cecília, Thaís, Luiza, Lelê, Michel, Gláucia;

Aos meus colegas do curso de pós-graduação, pelos incansáveis dias de estudos na salinha;

Aos estagiários, Arthur, Babi, Taíssa, Giulia e Carol;

Ao Prof. Cleverson Guizan Silva, da UFF, por disponibilizar o laboratório para abertura dos testemunhos e ao Rodrigo Abuchacra, pelas análises dos dados de perfilagem;

À Prof^a. Sívia Helena Sousa, da USP, por disponibilizar o laboratório e me ajudar na separação de foraminíferas, bem como ao Edilson, que me ajudou com toda a metodologia;

À Prof^a. Raquel Velloso, por disponibilizar o Laboratório de Geotecnia da PUC-Rio para determinação granulométrica e ao Edson, que auxiliou nas análises;

Ao Prof. Ricardo Aucélio e à Dra. Adriana Doyle, pela determinação dos elementos majoritários;

Ao pessoal do Lagon da UERJ;

À tripulação do Oc. Diadorim, da Marinha do Brasil, que me ajudou com a coleta;

À equipe do Pato Rocco (Sílvio);

À equipe da secretaria do departamento de Química, em especial à Fátima;

À Claudia Vega (Muchacha), pela companhia em casa;

Aos funcionários da PUC-Rio, que presenciaram muitos momentos do desenvolvimento da minha tese;

A Deus, por me abrir caminhos e me dar força para conquistar tudo que almejo.

Resumo

Lazzari, Letícia; Carreira, Renato da Silva (Orientador); Wagener, Angela de Luca Rebello (Coorientadora). **Reconstrução em alta resolução das variações paleoambientais em sedimentos ao longo dos últimos 14 mil anos na plataforma continental do Rio de Janeiro, SE – Brasil**. Rio de Janeiro, 2016. 199p. Tese de Doutorado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Estudos paleoambientais sobre reconstruções climáticas no pretérito ajudam a compreender os processos biogeoquímicos atuais e, portanto, fornecem subsídios ao atual cenário de mudanças globais. As principais ferramentas utilizadas nesses estudos envolvem indicadores que requerem a integração de informações geoquímicas, geomorfológicas, oceanográficas e biológicas. No presente trabalho, dois testemunhos (RJ13-01 e RJ13-02) foram coletados na plataforma continental do Rio de Janeiro na isóbata de 100-m e datados através dos métodos de ²¹⁰Pb e ¹⁴C, englobando, respectivamente, 14,5 cal kyr BP e 5,3 cal kyr BP. O objetivo principal do trabalho foi investigar o efeito de variáveis climáticas e ambientais sobre o aporte de material autóctono e alóctono na plataforma continental do Rio de Janeiro. Foram considerados dados geofísicos, granulometria, elementos traços (V, Cr, Mn, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Tl, Pb e U), elementos majoritários (Ca, Si, Al e Fe), nitrogênio total (TN), carbono orgânico total (TOC), carbonato de cálcio (CaCO₃), hidrocarbonetos alifáticos (n-alcanos) e hidrocarbonetos aromáticos (HPAs), assim como consideradas razões entre elementos e compostos que indicam a introdução de material continental e biogênico, razões redox e de produtividade, além de marcadores de tipo de vegetação e de combustão. Os resultados ressaltaram três fases deposicionais na área estudada: a primeira fase vai de 14,5 cal kyr BP à 7,5 cal kyr BP, e se caracteriza pela ocorrência de granulometria média a grosseira, fragmentos de conchas, alto teor de Si (27%), alto aporte de material biogênico Ca/Al (3,00), altos valores (~30,5) de ACL (tamanho médio da cadeia n-alcanos) e alta contribuição de HPAs pirogênicos (33%), por volta de 8,0 cal kyr BP,

indicando maior incidência de clima seco na maioria dos períodos, além de ser marcada por níveis do mar mais baixos. A segunda fase, entre 7,5 cal kyr BP e 4,5 cal kyr BP, mostrou influência das Águas Centrais do Atlântico Sul (SACW), marcada por um máximo de elevação do nível do mar, eventos de seca com maior intensidade de incêndios naturais com alta contribuição de HPAs pirogênicos de 5-6 anéis (68%), entre 6,1 cal kyr BP e 4,1 cal kyr BP, e alto aporte de material continental Al/Ca (0,69); Fe/Ca (0,27) e alta produtividade. A terceira fase cobre o Holoceno superior, a partir de 4,5 cal kyr BP até o presente. Nessa fase, foram encontrados fluxos mais elevados de matéria orgânica, entre 3,2 cal kyr BP a 3,3 cal kyr BP (RJ13-01) e 3,4 cal kyr BP (RJ13-02), como indicado por TN, TOC, Ni, Cu, Zn, HA e HPAs, e um maior aporte continental, devido aos altos valores de razões redox-sensíveis a partir de 2,5 cal kyr BP no RJ13-01 e ao longo do testemunho RJ13-02. Esses fatores provavelmente são decorrentes do deslocamento da Zona de Convergência Intertropical (ITCZ) mais ao sul, deixando o clima mais úmido na Amazônia, a intensificação do SAMS trazendo umidade para SE do país através da SACZ. Porém, também podem refletir um evento de menor nível do mar, que influenciou nos níveis de oxigênio na coluna d'água. Por outro lado, indicadores de clima seco (ACL, HPAs pirogênicos de 5-6 anéis) sugerem que houve oscilações entre clima úmido e seco ao longo do Holoceno superior. Desta forma, os indicadores orgânicos e inorgânicos considerados nos testemunhos da plataforma continental do RJ possibilitaram avaliar e corroborar dados de outros estudos sobre os eventos climáticos ocorridos nos últimos 14 mil anos no SE do Brasil, e suas relações com fatores como: variações no nível do mar, mudanças na ITCZ, intensificação da SAMS influenciando a SACZ, mudanças nos padrões de ventos e na Corrente do Brasil; influência da SACW mais no sentido S-W do sistema de ressurgência de Cabo Frio; variações climáticas com registros de incêndios naturais e variações da vegetação; além de registros que podem ser relacionados à ocupação humana.

Palavras-chave

Multi-elementos; hidrocarbonetos; paleoambiente; plataforma continental.

Abstract

Lazzari, Letícia; Carreira, Renato da Silva (Advisor); Wagener, Angela de Luca Rebello (Co-advisor). **High resolution reconstruction of paleoenvironmental variations over the last 14 kyears in sediments of Rio de Janeiro continental shelf, SE - Brazil**. Rio de Janeiro, 2016. 199p. Dsc Thesis - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Paleoenvironmental studies on climate reconstructions in the past help to understand the current biogeochemical processes and therefore become increasingly important in the current scenario of global changes. The main parameters used in these studies involve proxies that require the integration of geochemical, geomorphological, oceanographic and biological information. In this study two cores (RJ13-01 and RJ13-02) were collected on the continental shelf of Rio de Janeiro in the isobath 100-m and dated by ²¹⁰Pb and ¹⁴C methods covering14.5 cal kyr BP and 5.3 cal kyr BP, respectively. The main goal of this work was to investigate the effect of climatic and environmental variables on the autochthonous and allochthonous material inputs in the continental shelf of Rio de Janeiro. For this, geophysical properties, grain size, trace elements (V, Cr, Mn, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Tl, Pb and U), major elements (Ca, Si, Al and Fe), total nitrogen (TN), total organic carbon (TOC), calcium carbonate (CaCO₃), aliphatic hydrocarbons (n-alkanes) and polycyclic aromatic hydrocarbons (PAHs) were considered jointly with continental and biogenic input proxies, redoxsensitive and productivity proxies besides vegetation type and combustion proxies. Results highlighted three periods: the first period (from 14.5 to 7.5 cal kyr BP) with the occurrence of mean grain size of the sediment, shell fragments, high content of Si (27%), high input of biogenic material Ca/Al (3.00) and high ACL (average chain length) values (~ 30.5). In addition to high contribution of pyrogenic PAHs (33%) around 8.0 cal kyr BP indicating higher incidence of dry weather in most periods; marked by a low sea level. The second period between 7.5 cal kyr BP and 4.5 cal kyr BP showed the influence of the South Atlantic Central Waters (SACW) marked by a maximum transgression of the sea, drought events with greater intensity of wildfires with high contribution of pyrogenic PAHs of 5-6 rings (68%) between 6.1 and 4.1 cal BP kyr BP and high input continental materials Al/Ca (0.69); Fe/Ca (0.27) and high productivity. The third period covers the late Holocene from 4.5 cal kyr BP to present. In this period, higher fluxes of organic matter were found between 3.2 cal kyr BP to 3.3 cal kyr BP (RJ13-01) and 3.4 cal kyr BP (RJ13-02), as indicated by TN, TOC, Ni, Cu, Zn, n-alkanes and PAHs, and higher continental input due to high redox-sensitive proxies from 2.5 cal kyr BP in RJ13-01 and along RJ13-02. These factors are probably related to the displacement further south of the Intertropical Convergence Zone (ITCZ), which brought humidity to Amazon, the intensification of SAMS bringing humidity to SE of Brazil trought SACZ. Also has been marked by the decrease in sea level which influenced the oxygen levels in the water column. On the other hand, dry climate indicators (ACL, pyrogenic PAHs with high molecular weight) suggest that there were fluctuations between wet and dry climate along the late Holocene. Thus, the organic and inorganic proxies considered on the cores of continental shelf of Rio de Janeiro allowed to evaluate and corroborate the data of other studies of climate events over the past 14,000 years in SE Brazil and their relation to the facts such is the variations in the sea-level, chances in ITCZ, the intensification of SAMS and SACZ, changes in wind pattern, and in the Brazilian current; influence of the SACW further S-W of the Cabo Frio upwelling system; and climate variations with records of wildfires and variation on the vegetation; in addition to records that could be related to human occupation.

Keywords

Multi-elements; hydrocarbons, paleoenvironment; continental shelf.

Sumário

1. Introdução	21
 Objetivos Objetivos específicos 	24 24
 3. Fundamentação teórica 3.1. Elementos traços e majoritários 3.2. Marcadores Moleculares orgânicos 3.2.1. Hidrocarbonetos 3.2.1.1. Hidrocarbonetos Alifáticos 3.2.1.2. Hidrocarbonetos Policíclicos Aromáticos 	25 25 26 27 27 31
 4. Área de estudo 4.1. Características geomorfológicas 4.2. Características hidrográficas 4.3. Características sedimentológicas 	37 37 38 39
 5. Materiais e Métodos 5.1. Amostragem e Dados Geofísicos 5.2. Metodologia 5.2.1. Datação 5.2.1.1. Datação por ²¹⁰Pb 5.2.1.2. Datação por ¹⁴C 5.2.3. Densidade de sólidos 5.2.4. Determinação dos teores de TC (CaCO₃), TOC e TN 5.2.5. Determinação de Elementos Traços 5.2.6. Determinação de Elementos Majoritários 5.2.7. Determinação de Hidrocarbonetos Alifáticos e Policíclicos Aromáticos 5.2.7.1. Extração 5.2.7.2. Identificação e quantificação dos hidrocarbonetos 5.2.8. Taxa de acumulação de sedimento e Fluxos 5.2.9. Avaliação estatística 	41 42 43 43 43 43 44 44 44 45 46 46 47 47 50 51
 6. Resultados e Discussão 6.1. Geocronologia, taxa de sedimentação e taxa de acumulação de sedimento 6.1.1. Datação por ²¹⁰Pb 6.1.2. Datação por ¹⁴C 	52 52 52 53

6.1.3.Taxa de sedimentação e taxa de	
acumulação de Sedimento	54
6.2. Características da composição dos sedimentos	
dos testemunhos coletados	55
6.2.1. Dados Geofísicos	56
6.2.2. Granulometria	58
6.2.3. %TN, %TOC, %CaCO ₃ e C/N	60
6.3. Elementos traços e majoritários	64
6.3.1. Aporte continental/biogênico e proxies redox-sensíveis	
e de produtividade	71
6.3.1.1. Aporte continental e biogênico	76
6.3.1.2. Proxies redox-sensíveis e produtividade	78
6.3.2. Variações paleoceanográficas e paleoclimáticas	80
6.4. Hidrocarbonetos	81
6.4.1. Hidrocarbonetos Alifáticos	81
6.4.2. Hidrocarbonetos Policíclicos Aromáticos	90
6.4.3. Avaliação de fontes e variações paleoambientais	104
7. Conclusão	113
8. Referências	115
9. Anexos	137

Lista de siglas e abreviações

SACW - Águas centrais do Atlântico Sul

ITCZ - Zona de Convergência Intertropical

CB - corrente do Brasil

YD - do inglês, Younger Dryas

ENSO - El Niño Oscilação Sul

SAMS - Sistema de Monções da América do Sul

BG – Baía de Guanabara

cal yr BP - do inglês, calibrated year Before Present/ Anos calibrados Antes do

Presente

cal kyr BP - do inglês, calibrated kilo year Before Present/ Quilo anos

calibrados Antes do Presente

SR - taxa de sedimentação

- SAR taxa de acumulação
- MO matéria orgânica
- Vp velocidade da onda P
- Dgama densidade gama

ImpAc – impedância acústica

- SM susceptibilidade magnética
- TN nitrogênio total
- TOC carbono orgânico total
- C/N molar razão entre carbono molar e nitrogênio molar
- TE elementos traços
- ME elementos majoritários
- HAs hidrocarbonetos alifáticos
- IPC Índice de Preferência de Carbono

TAR - razão de n-alcanos de fontes terrígenas em relação a fontes aquáticas

- ACL índice de Tamanho Médio da Cadeia de n-alcanos
- Paq predomínio de macrófitas aquáticas submersas/ macrófitas aquáticas

flutuantes ou de plantas terrestre e emersas

- IA Índice Alcano
- UCM mistura complexa não resolvida
- Σ n-Alk somatório do n-alcanos individuais de n-C₁₂ a n-C₄₀
- ΣTerr somatório de n-alcanos de origem terrestre (n-C₂₇+n-C₂₉+n-C₃₁₎
- HR hidrocarbonetos resolvidos

- HTot hidrocarbonetos totais HPAs - hidrocarbonetos policíclico aromáticos N – naftaleno Acen – acenaftileno Ace - acenafteno F - fluoreno Ph- fenantreno A - antraceno Fl - fluoranteno Py - pireno B(c)Ph - benzo(c)fenantreno BaA - benzo(a)antraceno Ch - criseno BbjFl - benzo(b+j)fluoranteno BkFl - benzo(k)fluoranteno BePy - benzo(e)pireno BaPy - benzo(a)pireno Pe - perileno 3-MeChl - 3-metilcolantreno IP - indeno(1,2,3-c,d)pireno DBahA - dibenzo(a,h)antraceno BghiPe - benzo(ghi)perileno DBalPy - dibenzo(al)pireno DBaiPy - dibenzo(ai)pireno DBahPy - dibenzo(ah)pireno ΣPyro – somatório de HPAs de origem pirogênica ΣBio - somatório de HPAs de origem de biossíntese PUC-Rio - Pontifícia Universidade Católica do Rio de Janeiro
 - MIT Massachusetts Institute of Technology
 - UFF Universidade Federal Fluminense
 - USP Universidade de São Paulo
 - UERJ Universidade do Estado do Rio de Janeiro
 - CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
 - CAPES Coordenação de Aperfeiçoamento de Pessoa de Nível Superior
 - FAPERJ Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

Lista de figuras

Figura 1: Esquema de alterações de percursores diterpenóides para a formação de derivados aromáticos como o reteno. Fonte: Simoneit (2005) modificado.	35
Figura 2: Pontos de coleta de testemunhos estação 1 (RJ13-01) e estação 2 (RJ13-02).	42
Figura 3: Curva para cálculo do modelo de idade do radiocarbono para RJ13-01.	54
Figura 4: Curva para cálculo do modelo de idade do radiocarbono para RJ13-02.	54
Figura 5: Variação da SR e SAR ao longo dos testemunhos RJ13- 01 e RJ13-02.	55
Figure 6: Dados de Vp, Dgama, ImpAc, SM e porosidade ao longo dos anos para RJ13-01.	57
Figure 7: Dados de Vp, Dgama, ImpAc, SM e porosidade ao longo dos anos para RJ13-02.	58
Figura 8: Gráficos representando o percentual de granulometria ao longo dos anos para a RJ13-01 e RJ13-02.	59
Figura 9: Correlação entre TN e TOC para as amostras representadas por segmento (cm) dos testemunhos RJ13-01 e RJ13-02.	62
Figura 10: Correlação entre CaCO ₃ e TOC para as amostras representadas por segmento (cm) do testemunho RJ13-01.	63
Figura 11: Correlação entre CaCO ₃ e TN para as amostras representadas por segmento (cm) do testemunho RJ13-01.	63
Figura 12: Teores de TN, TOC e CaCO ₃ em % (círculos abertos) e fluxos em g cm ⁻² kyr ⁻¹ (círculos sólidos) e razão C/N molar ao longo dos anos em cal kyr BP para o testemunho RJ13-01.	64
Figura 13: Teores de TN, TOC e $CaCO_3$ em % (círculos abertos) e fluxos em g cm ⁻² kyr ⁻¹ (círculos sólidos) e razão C/N molar ao longo dos anos apenas para os dados a partir de 12 cm (2,3 cal kyr BP) até 205 cm (5,3 cal kyr BP) para o testemunho RJ13-02.	64
Figura 14: Teores em % (círculos abertos) e fluxos em g cm ⁻² kyr ⁻¹ (círculos sólidos) para ME, concentrações em mg kg ⁻¹ (círculos	

abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para TE ao longo dos anos em cal kyr BP para o testemunho RJ13-01.

Figura 15: Teores em % (círculos abertos) e fluxos em g cm⁻² kyr⁻¹ (círculos sólidos) para ME, concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para TE ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

Figura 16: a: Fator 1 x Fator 2; b: Fator 1 x Fator 3; c: Fator 2 x Fator 3 para RJ13-01.

Figura 17: PCA para RJ13-01 incluindo %TOC e %Si e as razões Al/Ca, Fe/Ca, Fe/Al, V/Al, Mn/Al, Sr/Al, Cd/Al, Ba/Al e Ca/Al. a: Fator score 1 em função do tempo (cal kyr BP); b: Fator score 2 em função do tempo (cal kyr BP); c: Fator score 3 em função do tempo (cal kyr BP).

Figura 18: a: Fator 1 x Fator 2; b: Fator 1 x Fator 3; c: Fator 2 x Fator 3 para RJ13-02.

Figure 19: PCA para RJ13-02 incluindo %TOC e %CaCO₃ e as razões Al/Ca, Fe/Ca, V/Al, Sr/Al, Cd/Al, Ba/Al e Ca/Al. a: Fator score 1 em função do tempo (cal kyr BP); b: Fator score 2 em função do tempo (cal kyr BP); c: Fator score 3 em função do tempo (cal kyr BP).

Figura 20: Cromatogramas de amostras do testemunho RJ13-01: amostra de 12 anos BP (I); amostra de 3,3 cal kyr BP (II); amostra de 1,2 cal kyr BP (III); amostra de 7,6 cal kyr BP (IV); eixo horizontal (tempo de retenção de cada composto em minutos) variando de 8,5 minutos para n-C12 à 52 minutos para n-C40; eixo vertical (intensidade do pico em milivolts).

Figura 21: Cromatogramas de amostras do testemunho RJ13-02: amostra de 3,8 cal kyr BP (V); amostra de 3,0 cal kyr BP (VI); eixo horizontal (tempo de retenção de cada composto em minutos) variando de 8,5 minutos para n-C12 à 52 minutos para n-C40; eixo vertical (intensidade do pico em milivolts).

Figura 22: Concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para Σ n-alk, Σ Terr, % Σ Terr/ Σ nalk, IA, ACL, Paq e IPC ao longo dos anos em cal kyr BP para o testemunho RJ13-01. A amostra de 12 anos antes do presente não foi incluída nos perfis pois a SAR é muito elevada e mascara a variação ao longo dos anos.

Figura 23: Concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para Σ n-alk, Σ Terr, % Σ Terr/ Σ n-alk, IA, ACL, Paq e IPC ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

76

86

88

87

68

70

73

74

Figura 24: Concentrações em μ g kg⁻¹ (círculos abertos) e fluxos em μ g cm⁻² kyr⁻¹ (círculos sólidos) para HPAs individuais, Σ HPAs, Σ Pyro e Σ Bio ao longo dos anos em cal kyr BP para o testemunho RJ13-01. A amostra de 12 anos antes do presente não foi incluída nos perfis pois a SAR é muito elevada e mascara a variação ao longo dos anos.

Figura 25: Concentrações em μ g kg⁻¹ (círculos abertos) e fluxos em μ g cm⁻² kyr⁻¹ (círculos sólidos) para HPAs individuais, Σ HPAs, Σ Pyro e Σ Bio ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

Figura 26: Contribuição do HPAs individuais marcadores de combustão para RJ13-01.

Figura 27: Contribuição do HPAs individuais marcadores de combustão para RJ13-02.

Figura 28: Contribuição do HPAs individuais marcadores de origem biogênica para RJ13-01. 102

Figura 29: Contribuição do HPAs individuais marcadores de origem biogênica para RJ13-02. 102

Figura 30: Razões de área para HPAs biogênicos ao longo dos anos em cal kyr BP para o testemunho RJ13-01. 103

Figura 31: Razões de área para HPAs biogênicos ao longo dos anos em cal kyr BP para o testemunho RJ13-02. 104

Figura 32: Contribuição das variáveis SM, %TOC, ΣN, ΣPh, Ret, Pe, Pyro (4 anéis), Pyro (5-6 anéis), IA e ACL explicadas nos factors loadings F1, F2 e F3 para RJ13-01.

Figura 33:PCA para RJ13-01 incluindo SM, %TOC, ΣN, ΣPh, Ret, Pe, ΣPyro(4 anéis), ΣPyro(5-6 anéis), IA e ACL. Fator score 1 em função do tempo (cal kyr BP); Fator score 2 em função do tempo (cal kyr BP); Fator score 3 em função do tempo (cal kyr BP).

Figura 34: Contribuição das variáveis SM, %TOC, CaCO₃, ACL, Σ N, Σ Ph, Ret, Pe, Pyro (4 anéis) e Pyro (5-6 anéis); explicadas nos *factors loadings* F1, F2, F3 e F4 para RJ13-02.

Figura 35: PCA for RJ13-02 incluindo SM, %TOC, %CaCO₃, Σ N, Σ Ph, Ret, Pe, Σ Pyro(4 anéis), Σ Pyro(5-6 anéis) e ACL. Fator score 1 em função do tempo (cal kyr BP); Fator score 2 em função do tempo (cal kyr BP); Fator score 3 em função do tempo (cal kyr BP); Fator score 4 em função do tempo (cal kyr BP).

94

96

99

99

107

106

105

Lista de Tabelas

Tabela 1: Massa molar (MM), número de anéis (N. anéis), ponto de fusão (PF), ponto de ebulição (PE), pressão de vapor a 25°C (P) e coeficiente de partição octanol-água (log Kow) dos principais HPAs estudados. Fonte: Bjorseth e Ramdahl (1985) modificado. hidrocarbonetos alifáticos. Present (cal yr BP).

Tabela 10: Número de amostras (n), mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para as concentrações de hidrocarbonetos alifáticos em mg kg⁻¹ e suas razões para os testemunhos RJ13-01 e RJ13-02.

Tabela 11: Valores de número de amostras (n), mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para as concentrações de hidrocarbonetos policíclicos aromáticos em µg kg¹ e suas razões para os testemunhos RJ13-01 e RJ13-02.

32

48

49

52

53

56

60

65

66

83

Tabela 2: Condições cromatográficas para determinação de

Tabela 3: Condições do equipamento para determinação de hidrocarbonetos policíclicos aromáticos.

Tabela 4: Datação (ano), SR (cm ano⁻¹) e SAR (g cm⁻² ano⁻¹) calculadas através do ²¹⁰ Pb para os primeiros 11 cm dos testemunhos RJ13-01 e RJ13-02.

Tabela 5: Dados referentes a datação por ¹⁴C ao longo dos testemunhos RJ13-01 e RJ13-02, segmentos datados (cm), idade convencional do radiocarbono em anos Antes do Presente ou years Before Present (yr BP) e idade calibrada do radiocarbono em anos calibrados Antes do Presente ou calibrated years Before

Tabela 6: Valores de média, desvio padrão (DP), mínimos (Min) e máximos (Máx) para os testemunhos RJ13-01 e RJ13-02.

Tabela 7: Valores de número de amostras (n), mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para os teores de %TN, %TOC, %CaCO₃ e razão C/N molar dos testemunhos RJ13-01 e RJ13-02.

Table 8: Valores de mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para TE em mg kg⁻¹ para os testemunhos RJ13-01 (n=47) e RJ13-02 (n=51) e para ME em % para RJ13-01 (n=40) e RJ13-02 (n=17).

Tabela 9: : Correlação de Pearson (r) para TE, ME, TOC e CaCO₃ para RJ13-01 (T:9a) e RJ13-02 (T:9b).

Tabela 12: Resumo das fases estudades e suas interpretações ao longo dos anos

PUC-Rio - Certificação Digital Nº 1212274/CA

"Pensar o passado para compreender o presente e idealizar o futuro."

Herodotus (485 – 425 a. C.)

1 Introdução

Estudos paleoambientais que utilizam dados geoquímicos, geomorfológicos, oceanográficos, biológicos e palinológicos têm se tornado cada vez mais importantes para as reconstruções climáticas e consequentes interpretações das alterações da paisagem e de processos que modificam a composição de elementos químicos e matéria orgânica ao longo dos anos (Pessenda *et al.*, 2004; De Souza *et al.*, 2013; Calvert *et al.*, 2015).

O Quaternário é o período geológico mais recente da história da Terra, sendo iniciado há cerca de 2,6 milhões de anos e estendendo-se até o presente. O Quaternário se divide em duas épocas, Pleistoceno e Holoceno. O primeiro, compreende o período entre 2,6 milhões de anos e 11,6 mil anos antes do presente, correspondendo à última fase glacial e compondo uma série de eventos ao longo desta época. O segundo teve início com o final do evento Younger Dryas entre 12.800 – 11.600 anos calibrados Antes do Presente (anos cal AP) ou *calibrated years Before Present* (cal yr BP) e estende-se até os dias de hoje (Bradley, 1999).

Há estudos que indicam um evento chamado *Antarctica Cold Reversal* (ACR) (14.500 – 12.700 cal yr BP) (Stenni *et al.*, 2001; Carter *et al.*, 2008; Putnam *et al.*, 2010), que precede o Younger Dryas (YD), no qual teriam ocorrido baixas temperaturas nos oceanos no Hemisfério Sul (Blunier *et al.*, 1997; Sachs *et al.*, 2001; Augustin *et al.*, 2004; Carter *et al.*, 2008). Estes eventos foram identificados na costa brasileira (Ledru *et al.*, 2005; Weldeab *et al.*, 2006).

O Holoceno representa a época quente mais recente na escala climática do Quaternário. Esta escala compreende desde períodos frios (glaciais), nos quais o gelo alcançou o máximo de extensão até períodos quentes (inter-glaciais) no qual houve o retrocesso das camadas de gelo, apresentando climas médios semelhantes ou um pouco mais quentes do que o atual. O entendimento das mudanças no Holoceno é fundamental para avaliação do impacto antropogênico global (Rohling *et al.*, 2002; Sepúlveda *et al.*, 2009) a partir da revolução industrial no século XVIII, seguida da grande aceleração no crescimento populacional e industrial nos meados do século XX, período este chamado por muitos cientistas de "Antropoceno" (Zalasiewicz *et al.*, 2008; Goldewijk *et al.*, 2010; Steffen *et al.*, 2011; Zalasiewicz *et al.*, 2011; Ruddiman, 2013; Waters *et al.*, 2016).

O clima no Holoceno aparenta ser relativamente estável quando observado a longo-prazo, pois as variações não foram excessivamente extremas como em períodos anteriores. Porém há registros importantes de oscilações de temperatura, umidade, vegetação e nível do mar durante o Holoceno, podendo estas variar de décadas a milênios (Wanner *et al.*, 2008; Leduc *et al.*, 2009; Schaefer *et al.*, 2009; Behling e Safford, 2010; Castro *et al.*, 2014). Além disto há registros de incêndios relacionados ao clima ao longo de todo o Holoceno (Behling e Lichte, 1997; Ybert *et al.*, 2003; Pessenda *et al.*, 2004; Behling e Safford, 2010).

Dentre as principais forçantes de mudanças climáticas atuantes durante o Holoceno estão as variações de incidência solar, orbitais (ciclos de Milankovicth), da cobertura vegetal do solo, gases do efeito estufa e de atividades vulcânicas (Bradley; Ganopolski *et al.*, 1998; Bradley, 1999; Wanner *et al.*, 2008; Schaefer *et al.*, 2009). O Holoceno pode ser divido em três diferentes períodos: Holoceno Inferior (11,6 – 7 cal kyr BP), Holoceno Médio (7 – 5 cal kyr BP) e Holoceno Superior (5 cal kyr BP até o presente).

Mudanças climáticas ocorridas no Hemisfério Sul estão associadas ao fenômeno do El Niño Oscilação Sul (ENSO), às variações nos sistemas de monções da América do Sul (SAMS) e dos ventos de oeste (Westerlies) (Lamy *et al.*, 2001; Razik *et al.*, 2013). Os ciclos modernos de precipitação sobre a América do Sul, SAMS, compreende dois componentes: um equatorial associado à Zona de Convergência Intertropical (ITCZ) agindo sobre convecção na Amazônia; e um subtropical associado à Zona de Convergência do Atlântico Sul (SACZ) sobre o Sudeste da América do Sul (Sylvestre, 2009; Vimeux *et al.*, 2009).

O estabelecimento da SACZ é um sinal de sazonalidade do sistema de monções sobre toda a América do Sul. O fluxo de umidade transitória da Amazônia é importante para a manutenção da SACZ e a localização desta é influenciada pela topografia do centro-leste do Brasil. A associação das mudanças climáticas com a SACZ foi identificada em diversas escalas de tempo (Vera *et al.*, 2006; Marengo *et al.*, 2012).

Atualmente, existem diversas ferramentas para realizar estudos paleoambientais (*proxies*) que podem ser aplicadas testemunhos sedimentares e de gelo, pólen, anéis de crescimento de árvores, solo, espeleotemas, entre outros. Dentre estas opções os testemunhos marinhos estão disponíveis em cerca de 70% da superfície da Terra e podem fornecer registros importantes de eventos ambientais ao longo dos anos (Bradley, 1999).

Há poucos estudos sedimentares na plataforma continental do Rio de Janeiro em comparação com outro locais ao redor do mundo (Haug *et al.*, 2001; Lamy *et al.*, 2001; Mayewski *et al.*, 2004; Chang *et al.*, 2014), ou em outros locais no Brasil (Mahiques, M. *et al.*, 2002; Mahiques *et al.*, 2007; Mahiques *et al.*, 2009; Chiessi *et al.*, 2010; Nagai *et*

al., 2010; Mathias *et al.*, 2014) e além disso, a maioria dos estudos paleoceanográficos e paleoclimáticos na plataforma do Estado do Rio de Janeiro estão localizados na plataforma continental de Cabo Frio (Mahiques, M. *et al.*, 2004; Mahiques *et al.*, 2009; Nagai *et al.*, 2009; Gyllencreutz *et al.*, 2010; Cruz, 2013; Albuquerque *et al.*, 2016; Lessa *et al.*, 2016; Nagai *et al.*, 2016). Baseado nisto, estudos de registros paleoambientais em intervalos de alta resolução em dois testemunhos da plataforma continental do Rio de Janeiro fornece informações valiosas para contribuir nas investigações sobre mudanças ambientais e suas teleconexões globais ao longo de 14 mil anos.

2 Objetivos

O objetivo deste trabalho é avaliar as variações ambientais ao longo de 14 mil anos registradas em testemunhos sedimentares da plataforma continental do Rio de Janeiro, utilizando elementos traços, elementos majoritários e marcadores moleculares orgânicos.

2.1. Objetivos específicos

- Realizar uma geocronologia detalhada através de ²¹⁰Pb e ¹⁴C para identificação ciclos climáticos e variações do nível do mar ao longo dos anos;
- (2) Calcular a taxa de sedimentação (SR) e a taxa de acúmulo de sedimento (SAR) a fim de calcular o fluxo dos parâmetros ao longo dos anos;
- (3) Fazer uso de informação auxiliar, tal como o conteúdo de nitrogênio total (TN), carbono orgânico total (TOC), carbonato de cálcio (CaCO₃), razão C/N, parâmetros geofísicos (densidade gama, velocidade da onda *p*, impedância acústica, suscetibilidade magnética, porosidade) e granulometria a fim de compreender tendências e relações;
- (4) Determinar a concentração de elementos traços (V, Cr, Mn, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Tl, Pb e U) e elementos majoritários (Si, Ca, Al e Fe);
- (5) Identificar e quantificar os hidrocarbonetos alifáticos (HAs) e policíclicos aromáticos (HPAs) a fim de identificar o tipo de matéria orgânica presente nos sedimentos da plataforma e relacionar com eventos climáticos;
- (6) Utilizar razões redox-sensíveis (V/Al, Mn/Al e Fe/Al), razões indicadoras de produtividade (Sr/Al; Cd/Al e Ba/Al) e marcadores orgânicos como *proxies* paleoambientais e de paleoincêndios;

3 Fundamentação teórica

3.1. Elementos traços e majoritários

Muitos estudos têm sido realizados sobre o uso de elementos traços (TE) como indicadores de processos geoquímicos em ambientes sedimentares antigos (Calvert e Pedersen, 1993). Elementos traços estão presentes na coluna d`água, seja na forma solúvel ou adsorvidos em partículas, e a sua remoção da água para os sedimentos resulta tanto em processos bióticos como abióticos (Tribovillard *et al.*, 2006; Calvert *et al.*, 2015). Os processos bióticos incluem a absorção destes elementos pelo plâncton. Os processos abióticos são mais limitados em ambientes com oxigênio, porém, em ambientes subóxicos pode ocorrer o enriquecimento de elementos traços por difusão na coluna d`água, passando pela interface sedimento – água, ou através da remobilização e repartição de gradientes redox junto aos sedimentos. Elementos traços estão eficientemente ligados ao ciclo redox do manganês e do ferro. Processos abióticos são muito eficientes sob condições de redução, incluindo adsorção de íons metálicos ou espécies iônicas em substratos orgânicos ou minerais e formação de complexos organometálicos (Calvert e Pedersen, 1993; Crusius *et al.*, 1996; Algeo e Maynard, 2004; Tribovillard *et al.*, 2006; Algeo e Rowe, 2012).

Além dos TE, os elementos majoritários (ME) também são importantes em estudos paleoambientais tais como Ca, Al e Fe, visto que estes encontram-se em concentrações muito maiores. As concentrações tanto de TE e ME podem variar em resposta às mudanças no sistema, sendo influenciados por processos biológicos, aporte marinho ou continental, bem como a hidrodinâmica local (Valdés *et al.*, 2008). O comportamento de tais elementos em ambientes marinhos depende das condições físico-químicas, podendo ser associados a distintas fases orgânicas ou inorgânicas.

Na maioria das vezes, os TE e ME são usados para estudos paleoambientais relacionados a sedimentos de granulometria fina (lama) e rochas sedimentares, ricos em matéria orgânica (MO) (Taylor e Mclennan, 1985). Sedimentos e rochas sedimentares podem conter proporções variadas de frações minerais tais como o CaCO₃ e silicatos, frequentemente de origem biogênica, fazendo com que a concentração do TE diminua na

amostra. Sendo assim, para comparar a variação de TE com teores de CaCO₃ e silicatos é frequente normalizar os TE com o teor de alumínio, visto que este é um marcador de origem continental. O Al é o terceiro elemento mais abundante da crosta terrestre, e o principal constituinte das argilas, desta forma é considerado um traçador conservativo, sendo um indicador da fração de alumino-silicatos no sedimento pois possui baixa capacidade de mobilização durante a diagênese (Calvert e Pedersen, 1993; Tribovillard *et al.*, 2006).

O Fe é também um outro elemento indicador de processos físicos, inorgânicos e biológicos. A presença deste elemento no ambiente marinho pode caracterizar um aporte continental por via eólica e/ou por transporte aquático vindo de rios e estuários. A mobilidade do ferro no gradiente redox, relacionado com a formação de oxi-hidróxidos de Fe age na transferência de TE, tanto para a coluna d'àgua como para o sedimento e também contribui para formação da pirita (Tribovillard *et al.*, 2006)

Devido ao previsível comportamento dos TE às variações redox, o uso de um conjunto de elementos para análise das condições do ambiente é a melhor opção, visto que alguns elementos podem ter diversas origens como o Cr, Co e o Ba ou até mesmo variar muito ou pouco após a deposição como o P, Ba, Zn, Pb e Cd, o que muitas vezes conduzem os estudos para a abordagem de elementos menos vulneráveis como o U, V, Mo, Ni e Cu (Tribovillard *et al.*, 2006).

3.2 Marcadores Moleculares orgânicos

Plataformas continentais e áreas costeiras são regiões ricas em matéria orgânica, totalizando cerca de 90% do carbono orgânico depositado nos oceanos. São importantes áreas na produção e armazenamento de matéria orgânica, recebendo significativos aportes de material autóctone e alóctone (Gordon e Goñi, 2003; Ogrinc *et al.*, 2005). Os teores de carbono orgânico sedimentar depositados nesses sistemas variam em média entre 0,3 e 1,0%. O material sedimentar detrítico representa uma mistura complexa de substâncias biogênicas, as quais possuem reatividade biológica variável. Essa mistura compreende um amplo espectro de material dissolvido, particulado e coloidal, o qual é introduzido no ambiente através de um variado aporte, tanto marinho quanto continental (Thornton e Mcmanus, 1994; Ogrinc *et al.*, 2005).

A caracterização das fontes desses materiais depositados nas margens continentais e a definição dos processos que afetam a deposição final podem promover um melhor entendimento dos mecanismos referentes à preservação do material orgânico presente nos oceanos (Gordon e Goñi, 2003; Ramaswamy *et al.*, 2008). Estudos com um

significativo número de indicadores geoquímicos são necessários para se obter um melhor entendimento dos processos que controlam a preservação e distribuição da matéria orgânica no sedimento marinho (Schmidt *et al.*, 2010). A escolha de indicadores, no entanto, deve levar em conta suas especificidades e limitações. Diversos trabalhos têm adotado essa abordagem de multi-indicadores na caracterização e no entendimento dos processos que ocorrem na plataforma continental (Mahiques *et al.*, 2009).

Os compostos orgânicos de carbono são componentes onipresentes nos oceanos, lagos e rochas sedimentares (Summons, 1993). Estes compostos abastecem todos os processos biogeoquímicos de forma direta e indireta (Cranwell *et al.*, 1987; Brassell, 1993; Hedges e Oades, 1997; Meyers, 1997; Volkman *et al.*, 1998; Meyers e Lallier-Vergès, 1999; Simoneit, B. R., 2002).

3.2.1. Hidrocarbonetos

Os hidrocarbonetos constituem uma das principais classes dos compostos orgânicos e são também componentes abundantes da MO nas zonas costeiras, estão presentes na composição da MO de origem vegetal e animal e na composição do petróleo (UNEP, 1992). Estas substâncias têm sido utilizadas como indicadores de eventos de processos naturais e antrópicos no ambiente. A origem natural pode estar associada às fontes biogênicas (síntese por organismos vegetais e animais) e fontes pirogênicas (queima de biomassa) (Commendatore e Esteves, 2004; Gao e Chen, 2008).

Processos como do solo e de sedimentos, seguidos de transporte aéreos ou fluviais, incêndios florestais e, em menor extensão, diagênese prévia da MO no ambiente marinho, contribuem para o aporte de hidrocarbonetos ao ambiente marinho (Nrc, 1985). Muitos hidrocarbonetos alifáticos e aromáticos, como os HPAs (hidrocarbonetos policíclicos aromáticos), têm origens nas bactérias ou nas plantas superiores terrestres. Estes organismos biossintetizam hidrocarbonetos durante o metabolismo e há formação ou transformações dos compostos no decorrer dos processos de decomposição após a morte. Estes compostos também são formados pela combustão do carvão, petróleo e madeira (Grimmer, 1983).

3.2.1.1. Hidrocarbonetos Alifáticos

Os hidrocarbonetos alifáticos compreendem uma vasta classe de compostos orgânicos que apresentam baixa polaridade. Pertencem a esta classe, os alcanos e ciclo-

alcanos (cadeia normal e ramificada), alcenos e ciclo-alcenos (cadeia normal e ramificada), alcinos, terpanos, hopanos e esteranos, entre muitos outros compostos (Bianchi e Canuel, 2011).

Os n-alcanos apresentam cadeia aberta não-ramificada e podem ser sintetizados por organismos terrestres, como plantas superiores e bactérias, ou por organismos marinhos como o fitoplâncton e zooplâncton, predominando a síntese de cadeias carbônicas ímpares. No fito e zooplâncton marinhos e algas bentônicas, há abundância de cadeias ímpares entre n- C_{15} e n- C_{21} , predominando o n- C_{17} ; algumas espécies de zooplâncton e de bactérias podem produzir n-alcanos de cadeia longa, sem predomínio de cadeias pares ou ímpares(Bianchi e Canuel, 2011) (Blumer, Guillard, *et al.*, 1971; Volkman e Maxwell, 1986; Carro *et al.*, 2006). Nas macrófitas aquáticas há predomínio de n- C_{21} , n- C_{23} e n- C_{25} (Ficken *et al.*, 2000) bem como nas macroalgas.

Os aportes naturais de origem continental são constituídos, na maioria, por nalcanos derivados de ceras cuticulares de plantas vasculares, por exemplo, as presentes em mangues. Estes compostos possuem cadeias moleculares longas e com número ímpar de átomos de carbonos n- C_{23} a n- C_{35} , predominando n- C_{27} , n- C_{29} e n- C_{31} dependendo da vegetação do ambiente (Eglinton e Hamilton, 1967). Os n-alcanos de origem terrígena chegam ao sedimento das margens continentais, principalmente via aporte fluvial. Porém, o aporte pode também ocorrer através da deposição atmosférica de partículas contento esses compostos.

No ambiente marinho, os n-alcanos de origem continental apresentam uma distribuição controlada por forçantes hidrodinâmicas e sedimentares, geralmente associados a partículas finas de sedimento transportadas a longas distâncias. Este transporte pode resultar em um enriquecimento de n-alcanos terrígenos em regiões profundas distantes da costa, o que difere daquele mecanismo atuante sobre n-alcanos autóctones, os quais dependem de fatores hidrodinâmicos e principalmente, de processos ecológicos relacionados ao fitoplâncton (Pelejero, 2003; Schmidt *et al.*, 2010).

A predominância de n-alcanos de cadeia carbônica com número ímpar de átomos deriva da biossíntese dos n-alcanos a partir dos ácidos graxos, os quais têm predomínio de número par de átomos de carbono, através da descarboxilação enzimática (Killops e Killops, 2005).

Como as plantas superiores sintetizam hidrocarbonetos com grande predomínio de cadeias impares de n-alcanos (10 vezes superiores às pares) (Eglinton e Hamilton, 1967; Bianchi e Canuel, 2011), enquanto as algas marinhas não apresentam predomínio entre cadeias ímpares e pares de carbonos nos n-alcanos (Fahl e Stein, 1997). Bray e Evans (1961) desenvolveram um índice que se aproveita dessas diferenças para avaliar a

contribuição de plantas terrestres em sedimento: o Índice de Preferência de Carbono (IPC) calculado conforme a equação 1:

$$IPC = 0,5 x [(C_{25}+C_{27}+C_{29}+C_{31}+C_{33}/C_{24}+C_{26}+C_{28}+C_{30}+C_{32}) + (C_{25}+C_{27}+C_{29}+C_{31}+C_{33}/C_{26}+C_{28}+C_{30}+C_{32}+C_{34})] equação 1$$

Autores demonstraram que valores de IPC de algas marinhas são inferiores a 1,5 e de plantas terrestres superiores a 2,3 (Eglinton *et al.*, 1962; Eglinton e Hamilton, 1963; Clark Jr e Blumer, 1967; Bi *et al.*, 2005). O aumento nos valores de IPC sugere um aumento no aporte de matéria orgânica de origem terrestre. A diminuição de valores de IPC no sedimento marinho pode sugerir a redução de aporte terrígeno e/ou uma diluição pela matéria orgânica marinha (Collister *et al.*, 1994).

Por possuírem fontes específicas, os n-alcanos constituem uma importante classe de marcadores geoquímicos, capazes de fornecer informações significantes sobre o aporte biogênico (continental ou marinho) e antropogênico (Simoneit *et al.*, 1993; Martins, 2005). E são amplamente usados como proxies em estudo paleoceanográficos e paleoclimáticos (Meyers, 1997; Eglinton e Eglinton, 2008; Ouyang *et al.*, 2015).

Uma outra forma de estimar a contribuição terrestre para o ambiente marinho é através do índice TAR (terrígenos/aquáticos) que utiliza a diferença entre as cadeias sintetizadas por organismos marinhos e terrestres como mostra a equação 2. Altos valores desta razão indicam aumento de n-alcanos de fontes terrígenas em relação a fontes aquáticas (Bourbonniere e Meyers, 1996).

$$TAR = (C_{27} + C_{29} + C_{31})/(C_{15} + C_{17} + C_{19}) \qquad equação 2$$

Em sedimentos marinhos, a matéria orgânica terrestre pode indicar variações climáticas, por exemplo, o aumento na concentração do n-alcanos de cadeia longa como consequência de um incremento da drenagem continental devido a uma maior incidência de chuvas e/ou eventos de baixos níveis do mar (Rullkötter, 2006). O tipo de molécula sintetizada pelas plantas terrestres pode depender de fatores ambientais climáticos tais como a temperatura e umidade. O sinal da vegetação terrestre nos sedimentos pode estar diretamente relacionado às condições climáticas que controlam a erosão e o transporte de marcadores moleculares para o ambiente marinho (Schulz e Zabel, 2006; Eglinton e Eglinton, 2008). Em resposta ao estresse hídrico, as plantas terrestres tendem a produzir n-alcanos com cadeias carbônicas maiores para promover uma cobertura de cera mais eficiente e assim evitar a perda de água (Rullkötter, 2006; Sachse *et al.*, 2006). A variação no número de carbono nas cadeias de n-alcanos pode ser calculada através do índice de Tamanho Médio da Cadeia (ACL) conforme a equação 3, onde n-alcanos contendo um tamanho médio da cadeia menor geralmente indicam ambientes de menor temperatura e/ou maior umidade (Poynter e Eglinton, 1990).

ACL ₂₇₋₃₃=
$$(27x[C_{27}]+29x[C_{29}]+31x[C_{31}]+33x[C_{33}])/$$

(C₂₇+C₂₉+C₃₁+C₃₃) equação 3

Para identificar contribuição de macrófitas pode-se fazer uso do índice ACL_{25-35} conforme a equação 4:

ACL
$$_{25-35}=(25x[C_{25}]+27x[C_{27}]+29x[C_{29}]+31x[C_{31}]+33x[C_{33}]+35x[C_{35}])/$$

(C $_{25}+C_{27}+C_{29}+C_{31}+C_{33}+C_{35}$) equação 4

Ficken *et al.* (2000) propuseram um outro índice, P_{aq} , para indicação de predomínio de macrófitas aquáticas submersas/macrófitas aquáticas flutuantes ou de plantas terrestres e emersas, o qual baseia-se na razão de e n-alcanos de cadeia média (C₂₃, C₂₅) para n-alcanos de cadeia longa (C₂₉,C₃₁) conforme a equação 5. Valores de Paq<0,4 correspondem a predomínio de plantas terrestres e emersas e Paq (0,4-1,0) correspondem a predomínio de macrófitas aquáticas submersas/ macrófitas aquáticas flutuantes (Mead *et al.*, 2005).

$$Paq = (C_{23}+C_{25})/(C_{23}+C_{25}+C_{29}+C_{31}) equação 5$$

A adaptação fisiológica das plantas sob estresse hídrico também faz com que haja uma diferença na distribuição dos homólogos de $n-C_{29}$ e $n-C_{31}$. Plantas terrestre sob um maior estresse hídrico tendem a exibir o máximo de distribuição de n-alcanos no $n-C_{31}$, enquanto as de clima mais úmido mostram o máximo em $n-C_{29}$ (Horikawa *et al.*, 2010). Há distinção entre n-alcanos de origem terrestre, produzidos por plantas vasculares (C₃) que tendem a sintetizar maiores quantidade de $n-C_{27}$ e $n-C_{29}$, e aqueles produzidos por gramíneas (C₄), que sintetizam mais intensamente $n-C_{31}$ e $n-C_{33}$ (Zhang *et al.*, 2006; Zech *et al.*, 2009; Damsté *et al.*, 2011). A predominância relativa de plantas do tipo C3 ou C4 pode ser avaliada através do Índice Alcano (IA), que relaciona as concentrações de $n-C_{29}$ e $n-C_{31}$ através da equação 6 (Schefuß *et al.*, 2003). Valores de IA > 0,5 indicam predomínio de plantas de clima mais seco e/ou do tipo C4, enquanto o predomínio das de clima mais úmido e/ou do tipo C3 é indicado por valores de IA < 0,5 (Zhang *et al.*, 2006).

$$IA = C_{31}/(C_{31} + C_{29})$$
 equação 6

Os alcanos isoprenóides são uma classe de hidrocarbonetos alifáticos de cadeia ramificada com estrutura molecular comum derivada do isopreno. Dentre os mais estudados quanto à indicação de origem de hidrocarbonetos no meio marinho estão o pristano (2,6,10,14-tetrametil-pentadecano) e o fitano (2,6,10,14-tetrametil-hexadecano), os quais são produzidos a partir da degradação do fitol ($C_{20}H_{40}O$), um álcool abundante na natureza e constituinte da clorofila-*a* (Blumer, Sanders, *et al.*, 1971).

A formação de um ou de outro esta associada a condições oxidantes (pristano) ou redutoras (fitano) no ambiente deposicional. A relação entre pristano e fitano, pode ser um indicativo de variações climáticas e ou condições oxidantes ou redutoras do meio. A razão pristano/fitano < 0,6 indica a degradação do fitol em condições anóxicas, a razão >

3 indica degradação do fitol em condições oxidantes. Além disso, esta razão também pode ser afetada pela maturidade do sedimento (Peters e Moldowan, 1993).

3.2.1.2. Hidrocarbonetos Policíclicos Aromáticos

Os Hidrocarbonetos Policíclicos Aromáticos (HPAs) são compostos orgânicos formados por carbono e hidrogênio contendo pelo menos dois anéis benzênicos condensados, podendo apresentar ramificações de cadeias alifáticas e neste caso são denominados HPAs alquilados. Os HPAs são amplamente distribuídos no ambiente, encontrado em diferentes compartimentos como atmosfera, água, sedimentos, solos e biota apresentando fontes difusas e pontuais (Neff, 1979).

As propriedades físico-químicas dos HPAs tais como ponto de fusão e ebulição, baixa pressão de vapor e baixa solubilidade em água estão relacionadas as suas estruturas e massas moleculares e ao número de anéis. O caráter hidrofóbico dos HPAs (log Kow=3-8) faz com que tenham elevada afinidade pela matéria orgânica e por este motivo os HPAs tendem a adsorver ao material orgânico particulado e a acumular nos sedimentos (Chu e Chan, 2000); algumas informações sobre HPAs de 2-6 anéis estão descritas na tabela 1. Muitos HPAs são tóxicos, possuindo propriedades mutagênicas e/ou carcinogênicas os quais fazem com que 16 deles sejam classificados como prioritários pela Agência de Proteção Ambiental Americana (USEPA).

HPAs	мм	N. anéis	PF (°C)	PE (°C)	P a 25°C	log Kow
Naftaleno	128,17	2	81	217,9	10,4	3,4
Acenaftileno	152,2	3	92-93		8,9 . 10 ⁻¹	4,07
Acenafteno	154,21	3	95	279	2,9.10-1	3,92
Fluoreno	166,22	3	115-116	295	8,0 . 10 ⁻²	4,18
Antraceno	178,23	3	216,4	342	8,0 . 10 ⁻⁴	4,5
Fenantreno	178,23	3	100,5	340	1,6 . 10 ⁻²	4,6
Reteno	234,33	3	98,5	390		6,4
Fluoranteno	202,26	4	108,8	375	1,2.10-3	5,22
Pireno	202,26	4	150,4	393	6,0 . 10 ⁻⁴	5,18
Benzo(a)antraceno	228,29	4	160,7	400	2,8.10-5	5,61
Criseno	228,29	4	253,8	448	8,4 . 10 ⁻⁵	5,91
Benzo(a)fluoranteno	252,32	5	168,3	481	6,7 . 10 ⁻⁵	6,12
Benzo(j)fluoranteno	252,32	5	165,4	480	2,0.10 ⁻⁶	6,12
Benzo(k)fluoranteno	252,32	5	215,7	480	1,3 . 10 ⁻⁷	6,84
Benzo(a)pireno	252,32	5	178,1	496	7,3 . 10 ⁻⁷	6,5
Benzo(e)pireno	252,32	5	178,7	493	7,4 . 10 ⁻⁷	6,44
Perileno	252,32	5	277,5	503		5,3
Dibenzo(a,h)antraceno	278,35	5	266,6	524	1,3 .10 ⁻⁸ (20°C)	6,5
Indeno(1,2,3- c,d)pireno	276,34	6	163,6	536	1,3 .10 ⁻⁸ (20°C)	6,58
Benzo(g,h,i)perileno	276,34	6	278,3	545	1,4 . 10 ⁻⁸	7,1

Tabela 1: Massa molar (MM), número de anéis (N. anéis), ponto de fusão (PF), ponto de ebulição (PE), pressão de vapor a 25°C (P) e coeficiente de partição octanol-água (log Kow) dos principais HPAs estudados. Fonte: Bjorseth e Ramdahl (1985) modificado.

Os HPAs podem ser formados por diferentes processos de acordo com a sua fonte, podendo esta ser pirogênica, quando formados em processos de queima em alta temperatura; petrogênica, quando originados do petróleo; diagenética, quando formados por processos de diagênese recente; e biogênica, quando sintetizados por organismos (Hites *et al.*, 1978; Laflamme e Hites, 1978; Laflamme e Hites, 1978; Laflamme e Hites, 1979; Wakeham *et al.*, 1980; Yunker e Macdonald, 1995; Simoneit, B. R. T., 2002; Grice *et al.*, 2009). Dentre as fontes naturais de HPAs estão a queima espontânea de florestas, a diagênese da matéria orgânica e a biossíntese por bactérias, fungos e algas.

Os HPAs pirogênicos são emitidos por combustão incompleta de compostos contendo carbono tais como combustíveis fósseis e também como resultados de queimadas naturais de biomassa (Baek *et al.*, 1991; Wilcke, 2007). Visto que a principal fonte de HPAs é através da combustão, registros históricos de HPAs em testemunhos sedimentares podem ser usados como *proxies* de frequência e intensidade de incêndios naturais relacionados a condições ambientais no passado e/ou atividades humanas (Jiang *et al.*, 1998; Bandowe *et al.*, 2014). Muitas características fazem dos HPAs bons indicadores de incêndios, tais como: alta resistência à diagênese; a estrutura é relacionada à temperatura de queima. Estruturas mais condensadas (aumento do número de anéis aromáticos) formam-se a altas temperaturas de queima e é possível obter-se informação sobre a intensidade do incêndio numa faixa de temperatura de 200 a >900 °C

(Conedera *et al.*, 2009). A formação de HPAs de baixo peso molecular (2-3 anéis aromáticos) ocorre em processos de queima à baixa temperatura ($<550^{\circ}$ C) e os de alto peso molecular (4-6 anéis), tais quais o fluoranteno, pireno, benzo(a)antraceno, criseno, benzofluorantenos, benzopirenos, indeno[1, 2, 3-*c*,*d*]pireno e benzo[*ghi*]perileno, são formandos em temperaturas >950°C (Bouloubassi e Saliot, 1993; Liu *et al.*, 2012).

A combustão de biomassa pode ser divida em três etapas distintas: *ignition* (ignição), *flaming* (queima) e *smoldering* (latência). A ignição constitui o início da combustão, e ocorre com pequenas chamas; na queima, a qual é a etapa mais eficiente da combustão, atinge-se temperaturas mais elevadas, gerando gás carbônico, água, nitrogênio, dióxido de enxofre e NOx (óxidos de nitrogênio com níveis de oxidação variados). Quando inicia-se o processo de pirólise dos compostos orgânicos presentes na biomassa ocorre formação de radicais livres que reagem entre si formando substâncias de menor peso molecular, seguindo-se uma polimerização e formação de anéis benzênicos, que são relativamente estáveis em altas temperaturas. Por fim, na etapa de latência, que ocorre com baixas temperaturas e ausência de chama, sendo um processo autossustentável, ocorre a liberação de grandes quantidades de compostos parcialmente oxidados, como o CO, CH₄, aminas e outros hidrocarbonetos adsorvidos em partículas (Simoneit, B. R., 2002).

Na atmosfera, os HPAs de menor peso molecular geralmente são encontrados na fase gasosa, enquanto os de maior peso molecular encontram-se associados a partículas em suspensão (Callén *et al.*, 2011). Os HPAs podem sofrer reações fotoquímicas dependendo da temperatura e intensidade solar. A remoção a partir da atmosfera dos HPAs adsorvidos no material particulado pode ser realizada por deposição seca ou úmida das partículas, sendo transportadas para solos e sedimentos. Os presentes na fase gasosa se dissolvem nas nuvens e nas gotas de chuva sendo assim depositados por precipitação (Offenberg e Baker, 2002; Ravindra *et al.*, 2008; Lammel *et al.*, 2010).

A queima de biomassa em incêndios naturais tem sido um processo natural no planeta, visto em registros sedimentares desde o Carbonífero (Raymond *et al.*, 1989). No entanto, atualmente a frequência de incêndios globais parece ter acelerado devido à intervenção antrópica (Simoneit, B. R., 2002). A investigação de incêndios naturais é de extrema importância no contexto global de mudanças climáticas, visto que incêndios têm efeitos diretos no armazenamento global da carbono, na introdução atmosférica de substâncias químicas e na diversidade de ecossistemas. A compreensão de mecanismos naturais (clima) que controlam a ocorrência de incêndios em ecossistemas terrestres exige registros contínuos de incêndios no passado ao longo de centenas e milhares de anos (Gill e Bradstock, 1995; Van Der Werf *et al.*, 2004; Denis *et al.*, 2012).

HPAs originados de biossíntese, embora também conhecidos por quase quatro décadas, são bem menos estudados, seja por causa das baixas concentrações em relação aos antropogênicos ou porque os protocolos analíticos focam em HPAs de origem antropogênica. Porém, esses HPAs são produzidos por transformações diagenéticas através de percursores biológicos, sendo sintetizados por bactérias, plantas fungos e animais. Os HPAs mais comuns destas fontes são o perileno, o reteno e os tetra e pentacíclicos derivados do criseno e do piceno (Tan e Heit, 1981; Wakeham e Canuel, 2015).

Quanto à origem diagenética dos HPAs, esta envolve reações que ocorrem nos primeiros mil anos após o soterramento do sedimento a baixas temperaturas (<50°C) e a centenas de metros de profundidade. As reações, na maioria das vezes, envolvem organismos e a matéria orgânica sofre inúmeras reações eliminando o oxigênio, o enxofre e o nitrogênio dos compostos originais e os substituídos por hidrogênio. Ao longo dos anos, o produto resultante da diagênese continua sendo soterrado para profundidades mais elevadas sofrendo reações químicas abióticas com altas temperaturas (>60°C) e elevada pressão, processo chamado de catagênese, o qual dá origem ao petróleo (Tissot *et al.*, 1974; Libes, 2011).

A digênese recente de HPAs envolve processos de modificação da MO soterrada a pequenas profundidades e baixas temperaturas < 20°C (Venkatesan, 1988). Estas transformações são caracterizadas pelo degradação bioquímica e decomposição iniciada por diferentes microorganismos presentes nos sedimentos, podendo ocorrer a formação de certos HPAs como o perileno e o reteno em sedimentos anóxicos (Wakeham *et al.*, 1980; Wilcke *et al.*, 2002).

O perileno é amplamente distribuído no ambiente e já tem sido estudado há décadas (Orr e Grady, 1967; Wakeham *et al.*, 1979; Venkatesan, 1988; Silliman *et al.*, 1998; Suzuki *et al.*, 2010). Por ser um HPA de alto peso molecular, já foi historicamente considerado pirogênico (Simoneit *et al.*, 1993), mas devido a sua distinta variação na coluna sedimentar comparada aos de origem pirolítica, muitas vezes apresentando menores concentrações em sedimentos superficiais e maiores em sedimentos mais profundos, a origem do perileno passou também a ser considerada natural no ambiente (Venkatesan, 1988; Varnosfaderany *et al.*, 2014).

A origem do perileno nos sedimentos está relacionada a percursores tanto marinhos como terrestres, sendo produzidos a partir de diatomáceas até de compostos de origem terrestre que são carreados por rios até os sedimento, podendo ser depositados em ambientes marinhos (Jiang *et al.*, 2000; Bakhtiari *et al.*, 2009; Grice *et al.*, 2009; Varnosfaderany *et al.*, 2014). Trabalhos recentes tem revelado uma provável origem a

partir de compostos produzidos por fungos decompositores de madeira (Jiang *et al.*, 2000; Grice *et al.*, 2009; Suzuki *et al.*, 2010).

O reteno, o fenantreno e seus alquilados também estão relacionados a fontes diagenéticas de HPAs. O reteno é considerado como originário de plantas vasculares, principalmente gimnospermas, sendo um diterpenóide encontrado em resinas e ceras destas plantas e também formado pela desidrogenação do ácido abiético (Laflamme e Hites, 1979; Wakeham *et al.*, 1980; Simoneit, 1986) A figura 1 mostra a alteração de percursores diterpenóides para formação do reteno (Simoneit, 2005). O reteno é também produto da combustão da madeira (Ramdahl, 1983; Simoneit, B. R. T., 2002) e pode ainda ser formado durante a sedimentação e, assim, preservado em sedimentos redutores (Barnes e Barnes, 1981; Meyers *et al.*, 1995).

Figura 1: Esquema de alterações de percursores diterpenóides para a formação de derivados aromáticos como o reteno. Fonte: Simoneit (2005) modificado.

O fenantreno pode ser formado pela diagênese de esteróis, através da desidrogenação de compostos como o colesterol e pela desalquilação do reteno (Lee *et al.*, 1977; Wakeham *et al.*, 1980). A formação de compostos alquilados de fenantreno pode ocorrer através da metilação do fenantreno, da desalquilação parcial do reteno, da movimentação do radical metila entre os isômeros e também podem ser produtos da diagênese dos diterpenóides (Simoneit, 1977; Tan e Heit, 1981; Budzinski *et al.*, 1993; Tan *et al.*, 1996; Budzinski *et al.*, 1997)

Outros HPAs também podem ter origem biogênica e diagenética, como o naftaleno que pode ser biossintetizado por fungos, insetos e plantas. Autores sugerem que concentrações de HPAs em ambientes tropicais são inferiores aos encontrados em sedimentos de regiões temperadas e que o padrão de distribuição individual de HPAs em ambientes tropicais, como em solos, nos quais existe predomínio de naftaleno, fenantreno e perileno, é consideravelmente diferente do que é observado em regiões urbanizadas e de

clima temperado. Concentrações elevadas de HPAs mais voláteis e de mais fácil decomposição, presentes em ambientes tropicais, como o naftaleno e o fenantreno, sugerem que estes compostos podem possuir origens naturais nessas regiões (Wilcke *et al.*, 2000; Wilcke *et al.*, 2002).
4 Área de estudo

4.1. Características geomorfológicas

A Plataforma Continental Sudeste Brasileira, compreende o setor sudeste em forma de arco da margem continental superior. Estende-se desde o Cabo de Santa Marta (SC), ao sul (28°30'S; 49°W) até Cabo Frio (RJ), ao norte (23°S; 42°W). A largura da plataforma continental nesse setor varia de 73 a 231 km e sua declividade varia de 1:656 a 1:1333. A quebra da plataforma está localizada entre 120 e 180 metros. As isóbatas se direcionam para a costa em direção ao norte, sendo a plataforma continental adjacente a Cabo Frio mais estreita (Mahiques, M. M. *et al.*, 2004). A Ilha de São Sebastião, localizada na porção central da plataforma continental, marca uma inflexão na orientação da linha de costa, bem como em sua morfologia. A orientação geral passa de SW – NE para W – E. Ao norte da ilha, a linha de costa é caracterizada por meandros, um contorno mais irregular das isóbatas e pela presença de diversas ilhas, revelando uma grande complexidade da morfologia local (Mahiques et al., 1999). A presença da Serra do Mar, alinhada com a atual configuração de linha de costa, reflete a pequena extensão de planície costeira e o arranjo das isóbatas (Mahiques, M. M. *et al.*, 2004).

Toda a plataforma nesta região é cortada por canais estreitos, rasos, longos e perpendiculares ao declive que, em geral, alcançam a quebra da plataforma, por vezes ultrapassando-a. Esses canais facilitam o transporte de sedimentos para as regiões mais profundas. Os mais evidentes são os canais de Cabo Frio, Rio de Janeiro, Ilha Grande, Cananéia e Itajaí (Zembruscki, 1979).

A maioria dos sistemas de drenagem presente na região alimenta a bacia de drenagem do Rio Paraná e Rio da Prata, a sudoeste, e em uma extensão muito menor a bacia do Rio Paraíba do Sul ao norte. Apenas pequenos sistemas fluviais escoam diretamente das terras adjacentes para o mar, implicando que o aporte sedimentar autóctone é limitado. Dessa forma é provável que a sedimentação moderna provavelmente esteja confinada a fontes alóctones (Gyllencreutz *et al.*, 2010).

Durante o Pleistoceno Superior e o Holoceno, as plataformas continentais Sul e Sudeste do Brasil sofreram ciclos glaucio-eustáticos marcados por uma regressão, a qual causou a exposição da superfície da plataforma, seguida por uma transgressão que moldou a morfologia moderna da mesma (Zembruscki e Chaves, 1979). Alguns estudos sobre variações do nível relativo do mar identificaram formações de linhas de costa na última transgressão (Castro *et al.*, 2014). Este evento foi também responsável pela ampliação dos limites da Baía de Guanabara (Amador, 1997; Barreto *et al.*, 2015). Reis *et al.* (2013), observaram alterações na inclinação e uma sucessão de diferentes características de barreiras no assoalho oceânico ao redor da isobata de 100 m durante o Quaternário.

4.2. Características hidrográficas

Em larga escala, a circulação no Atlântico Sul é caracterizada pela presença da Corrente do Brasil (CB) ao longo da margem continental da América do Sul e pelo fluxo ao norte da Corrente das Malvinas (CM) na plataforma Argentina. Em aproximadamente 36°S essas correntes confluem (Lima *et al.*, 1996).

A Corrente do Brasil é uma corrente de contorno oeste associada ao giro subtropical do Atlântico Sul. A partir de sua área de formação, 10 °S, flui para sul, bordejando o continente até aproximadamente $33 - 38^{\circ}$ S. É formada pelo empilhamento de massas d'água características do Atlântico sul: (i) Água Tropical (AT – T = 20°C; S = 36); (ii) Água Central do Atlântico Sul (SACW – T = 6-20°C; S = 34,6-36); (iii) Água Intermediária Antártica (AIA – T = 3-6°C; S = 34,2-34,6) (Silveira, I. C. a. D. *et al.*, 2000). Na região de Cabo Frio, a CB está a cerca de 200 metros de profundidade e atinge velocidade média de 0,15 m s-1. Já na região do Cabo de Santa Marta, sua profundidade ultrapassa os 670 metros e sua velocidade média é de 0,5 m s-1 (Silveira, I. C. a. D. *et al.*, 2000). Ao sul da plataforma continental, há a presença de uma corrente costeira, Corrente Costeira do Brasil (CCB), a qual flui para norte. Essa corrente é descrita como relativamente lenta, porém extremamente energética, a qual flui no sentido contrário a CB. A CCB ocorre sobre a plataforma continental sul do Brasil no período de inverno e primavera. O alcance máximo dessa corrente ao norte é de 25,2°S. No entanto, pelo seu traçado, é possível que alcance os 23°S (Souza e Robinson, 2004).

A plataforma continental brasileira é caracterizada pela interação entre os fluxos em direção ao norte de águas sub-antárticas originadas na plataforma argentina (frias e de baixa salinidade), as quais se misturam com as águas do Rio da Prata e com a descarga da Lagoa dos Patos, bem como com o fluxo direcionado a sul das águas tropicais (quentes e salinas) da CB (Lima *et al.*, 1996). Também se caracteriza pela formação de vórtices ligados às correntes. Ao longo de seu percurso, a CB forma vórtices ciclônicos, os quais induzem a ocorrência de ressurgências de quebra de plataforma. Tal fenômeno traz águas da SACW para áreas rasas da plataforma continental (Silveira, I. C. a. D. *et al.*, 2000).

Esses vórtices também se desprendem da CB e podem entrar na CCB, sendo transportados para nordeste por essa corrente (Souza e Robinson, 2004).

Dados hidrográficos revelam que na camada superior da plataforma continental, há larga influência da descarga continental, principalmente do Rio da Prata (RP). Durante o inverno, uma pluma de baixa salinidade (< 33) alcança os 28 °S, enquanto no verão fica restrita aos 32 °S. Essa variabilidade sazonal ao longo da costa exibida pela pluma é principalmente induzida pelos ventos, fator esse que é mais importante do que a própria vazão e descarga do rio (Piola *et al.*, 2000). Uma fonte secundária de água doce para a plataforma continental ao sul é a Lagoa dos Patos, que drena diversos rios do Rio Grande do Sul e a Lagoa Mirim, que recebe águas dos rios uruguaios (Möller Jr *et al.*, 2008). Ao norte, 22°S, localiza-se o Rio Paraíba do Sul (RPS). Esse rio tem uma área de drenagem de aproximadamente 55.400 km² e uma extensão de 1.145 km, atravessando os estados de São Paulo e Rio de Janeiro. No norte do Rio de Janeiro, atravessa 120 km da costa desse estado (Molisani *et al.*, 1999). O Rio Paraíba do Sul é responsável pelo aporte continental encontrado na região, o qual é transportado para o sul pela CB (Gyllencreutz *et al.*, 2010).

4.3. Características sedimentológicas

Segundo Mahiques et al. (1999), a Plataforma Continental Sudeste Brasileira, em sua porção interna (profundidades inferiores a 100 metros) é caracterizada por dois setores, os quais resultam de características sedimentológicas e geomorfológicas distintas, bem como pelas características da matéria orgânica. Esses são a porção ao sul da Ilha de São Sebastião e porção ao norte dessa ilha. Ao sul de São Sebastião há um aumento no teor de argila com o aprofundamento da plataforma. Isso reflete a ação mais efetiva da energia das ondas sobre o fundo, o que torna mais difícil a deposição de sedimento fino e matéria orgânica nas áreas mais rasas, causando um gradiente deposicional em direção à quebra da plataforma. Ao norte de São Sebastião, os teores de argila são inferiores aos observados ao sul. No entanto, a complexidade geomorfológica atenua significativamente a energia hidrodinâmica, favorecendo a deposição. No que se refere à matéria orgânica, sua distribuição está principalmente relacionada à textura do sedimento, apresentando padrões semelhantes.

Mahiques et al. (2004) reafirmam a dicotomia existente entre os setores sul e norte da Plataforma Continental em relação à Ilha de São Sebastião, estendendo-se até a porção externa e talude superior. Ao sul de São Sebastião, reafirmou-se a tendência do enriquecimento da fração de sedimento fino depositado com o aumento da profundidade, sendo que a isóbata de 100 metros controla a deposição de lama na plataforma. A porção norte apresenta uma sedimentação com padrão mais complexo, havendo presença de sedimento bioclástico entre as isóbatas de 100 e 200 metros. As taxas de sedimentação são variáveis ao longo da plataforma, estando entre 5 - 660 mm kanos⁻¹. A distribuição espacial das taxas de sedimentação está correlacionada com a morfologia do talude e da plataforma e com os meandros da CB. As taxas de sedimentação também apresentam boa correlação com a deposição de matéria orgânica, ou seja, há maior acúmulo de matéria orgânica nos locais de maior sedimentação (Mahiques, M. M. *et al.*, 2002).

O sedimento de superfície moderno é coberto por areias siliciclásticas muito finas e siltes com variações nos teores de argila e carbonato de cálcio; no entanto, os sedimentos mais grosseiros e cascalhos de carbonato são geralmente derivados de antigos sedimentos depositados em circunstâncias de baixo nível do mar (Milliman e Summerhayes, 1975; Kowsmann, 1979; Mahiques, M. *et al.*, 2002). Sedimentos lamosos em suspensão da Baía de Guanabara, do Rio Paraíba do Sul e de pequenos rios podem ser transportados para áreas de deriva litorânea e depositados mais afastados da costa (Dominguez, 1987; Gyllencreutz *et al.*, 2010).

5 Materiais e Métodos

5.1. Amostragem e Dados Geofísicos

As amostras de sedimento foram coletadas em dezembro de 2013 em triplicatas utilizando tubos de policarbonato com, aproximadamente, 2m de comprimento e 75 mm de diâmetro através de um amostrador do tipo *piston corer*. Os pontos de coleta escolhidos estão localizados nas coordenadas $23^{\circ}24.265$ 'S; $43^{\circ}20.139$ 'W (RJ13-01); $23^{\circ}16.807$ 'S; $43^{\circ}04.179$ 'W (RJ13-02) ambos na isóbata de 100m (Figura 2). Logo após a coleta, foi realizada a perfilagem dos testemunhos usando um sensor (Multi sensor core logger) obtendo dados geofísicos de velocidade de onda *P* (Vp), suscetibilidade magnética (SM), densidade gama (Dgama) e impedância acústica (ImpAc) no Laboratório de Geologia Marinha (LAGEMAR) da UFF. Os testemunhos foram seccionados de 1 em 1 cm para obtermos uma melhor resolução. A réplica utilizada para determinação de elementos traços foi manipulada com material plástico e teflon. Já a réplica destinada à determinação de compostos orgânicos foi manuseada com material metálico e teflon, foram descartadas finas camada de cada fração, as quais encontravamse em contato com o tubo, para evitar qualquer tipo de contaminação. As réplicas foram correlacionadas através dos dados geofísicos.

Figura 2: Pontos de coleta de testemunhos estação 1 (RJ13-01) e estação 2 (RJ13-02).

5.2. Metodologia

Todos os procedimentos descritos a seguir foram realizados no Laboratório de Estudos Marinhos e Ambientais (LABMAM) do Departamento de Química da PUC-Rio, a não ser os que são mencionados em suas metodologias.

Descontaminação do material

Todo o material utilizado nas amostragens, no tratamento das amostras e durante as etapas analíticas passaram por processo de lavagem com solução de Detertec 10% e água corrente, lavado repetidas vezes com água destilada e Milli-Q e por fim descontaminados conforme requerido para os diferentes fins analíticos.

Toda a vidraria utilizada para as análises dos compostos orgânicos passou pelo processo de descontaminação em mufla à 450° C por 12 horas e descontaminação com solventes orgânicos (acetona e diclorometano). Os solventes utilizados foram: acetona (CH₃COCH₃), n-hexano (C₆H₁₄), diclorometano (CH₂Cl₂). Todos os solventes utilizados foram grau cromatográfico (pureza 99.9 %) da Merck® ou da Mallinckrodt Chemicals®. Todos os reagentes utilizados foram Merck® pró análise (p.a.), com grau de pureza 99 % e preparados das seguintes formas:

Lã de vidro: descontaminada em mufla a 450° C durante 8 horas;

Sílica Gel 60 - SiO₂ (0,063-0,200 mm): ativada em estufa a 170 °C por 12 horas. Resfriada em dissecador antes de ser utilizada.

O material utilizado no processo das amostras destinadas a determinação de elementos traços e foi descontaminado utilizando soluções de HCl e HNO₃. Informações mais detalhadas estão descritas na metodologia de determinação de elementos traços.

5.2.1. Datação

5.2.1.1. Datação por ²¹⁰Pb

Amostras de sedimentos secos, aproximadamente 20g, foram acondicionadas em placas de petri de polietileno de 50 mm de diâmetro. Em seguida foram analisadas pelo método instrumental de emissão de raios gama para ²¹⁰Pb (46,5 keV), ²¹⁴Pb (351 keV) e ¹³⁷Cs (661 keV) por um detector de Germânio de alta pureza (modelo Canberra GCW 4023S) no laboratório do Professor Ed Boyle no MIT. As contagens duraram em média 40.000 segundos por amostra. Para calibração do método foi adicionado 0,1g do material de referência certificado do New Brunswick Laboratory- USA (NBL - CRM 101- A Pitchblende Ore-Silica Mixture) 1,007±0,013 % de Urânio em uma das amostras, permanecendo estocada durante 3 semanas para permitir o equilíbrio radioativo entre ²²⁶Ra e ²¹⁰Pb (²²⁶Ra-> ²²²Rn-> ²¹⁴Pb) em seguida foi aplicado o mesmo processo das demais amostras. O reforço do sinal para o ²¹⁰Pb na mistura adicionada proporcionou o produto da geometria de contagem e auto absorção. Da mesma forma, o ²¹⁰Pb suportado foi estimado a partir da longa-vida do seu pai²²⁶Ra pela contagem da curta-vida da sua filha ²¹⁴Pb a 351,9keV para as amostras com spike de CRM e sem spike para a geometria de contagem e menor auto absorção (Appleby et al., 1987). Recipientes vazios foram utilizados como branco. A aquisição dos dados deu-se através do programa Gamma Aquisition & Analysis.

5.2.1.2. Datação por ¹⁴C

Foraminíferas plantônicas (*Globigerinoides ruber*) da fração de sedimento maior que 125 µm foram triadas de 4 segmentos de cada testemunho. O procedimento de limpeza das foraminíferas seguiu o proposto por Barker *et al.* (2003). As amostras foram datadas no *Accelerator Mass spectrometry* (AMS) no laboratório do professor Timothy Eglinton no ETH Zurique - Suiça. Os resultados das idades de ¹⁴C corrigidas com o teor de ¹³C foram convertidas em idades de *radiocarbon* (¹⁴C) calibradas usando a curva de calibração Marine13 (Reimer *et al.*, 2013) no programa OxCal online, o efeito reservatório utilizado para a região foi $\Delta R = -127 \pm 67$ (Macario *et al.*, 2015).

5.2.2. Análise granulométrica

A análise granulométrica foi realizada no Laboratório de Geotecnia e Meio Ambiente no Departamento de Engenharia Civil da PUC-Rio através do equipamento de análise de tamanho de partículas por difração a laser Cilas 1190 líquido. Foram selecionadas 20 amostras do testemunho RJ13-01 e 12 amostras do testemunhos RJ13-02 em diferentes profundidades a partir dos dados de perfilagem.

5.2.3. Densidade de sólidos

A densidade de sólidos foi determinada através do método do balão volumétrico modificado (Flint e Flint, 2002), porém como determinação indireta, onde leva-se em consideração a massa do balão volumétrico, a massa do balão com o sedimento, a massa do balão com o sedimento e o álcool etílico, e a densidade do álcool etílico. Foram selecionadas 10 amostras de cada testemunho baseadas nos dados de granulometria e perfilagem. Este procedimento foi realizado para determinar a massa de sedimento (g) em cada segmento fazendo uma correção com o dado de densidade gama (g cm³) como parte da equação de fluxo.

5.2.4. Determinação dos teores de TC (CaCO₃), TOC e TN

Para quantificar os teores de TN, TOC e TC foi utilizado o método de combustão a seco no equipamento THERMO Scientific (modelo Flash 2000) para isto as amostras de sedimento (aproximadamente 10 mg) sofreram o processo de descarbonatação com HCl 1 M apenas as destinadas a TOC, após este procedimento foram secas em banho de areia para posterior leitura em analisador elementar de C e N. Para calcular o teor de carbonato de cálcio (CaCO₃) foi através da equação 7 (Bernard *et al.*, 1995). O equipamento foi calibrado com o padrão de ácido aspártico (C = 36,09% p.s e N = 10,52% p.s) sendo aceitos somente valores de r=0,99 ou superiores. Os limites de detecção (LD) e quantificação (LQ) obtidos para o equipamento foram calculados utilizando a menor quantidade possível do padrão que pode ser detectada n=7, de forma que o LD é 3 vezes o desvio padrão dos resultados obtidos. Como as medições foram realizadas com massa mínima, foi atribuído ao LQ o mesmo valor do LD (0,003 mg de C e 0,01 mg de N). Um padrão intermediário foi usado como amostra desconhecida a cada 10 amostras reais ao longo da leitura de todas as amostras a fim de assegurar a manutenção da calibração.

A precisão instrumental foi monitorada pelo material de referência NIST SRM 1941B (*Organics in Marine Sediment*) que possui 2,99% \pm 0,24% de TOC. Os limites de quantificação (LQ) e detecção (LD) para determinação de C e N foi calculado utilizando a menor quantidade possível do padrão de que poderá ser detectada pelo mesmo com n=7, de forma que o LD foi 3 vezes o desvio padrão dos resultados obtidos. Como as medições foram realizadas com massa mínima, será atribuído ao LQ o mesmo valor do LD.

5.2.5. Determinação de Elementos Traços

O elementos traços foram analisados no Laboratório do Professor Ed Boyle no MIT. A preparação do material e reagentes de laboratório seguiu o padrão de protocolos para análise de elementos traços, sob condições de classe 100. Resumidamente, frascos de polipropileno foram lixiviados por 1 dia a 60°C em 1M de HCl grau analítico. Os frascos foram em seguida invertidos e mantidos à temperatura ambiente durante um dia adicional e em seguida enxaguadas completamente com água destilada de alta pureza.

A preparação das amostras para determinação de TE foi feita à partir da pesagem de cerca de 5g de sedimento seco em estufa à 60°C e então macerado. Pesou-se cerca de 100 mg deste sedimento colocado em tubo de centrifuga de polipropileno adicionando exatamente 1ml de solução 1,75M HNO₃: 3M HCl (Graney *et al.*, 1995) deixando por, aproximadamente, 12 horas para ter certeza de que a toda material orgânica e carbonatos foram eliminados. Em seguida foram submetidas ao banho de ultrassom por 90 minutos. Depois de frias as amostras foram centrifugadas por 1 minuto à 4000 rpm, retirando 0,7ml, o primeiro sobrenadante, que foi novamente centrifugado, colhendo-se então 0,5ml, o segundo sobrenadante (amostra concentrada ou lixiviada), o qual foi utilizado para as análises de elementos traços (Wu e Boyle, 1997). Este método de digestão ou lixiviação inclui elementos traços em superfícies minerais, fases orgânicas, e fases

facilmente dissolvidas como $CaCO_3$, porém inclui apenas uma parte de elementos lixiviados da forma de mineral aluminosilicato.

Os elementos traços (TE) analisados quanto as concentrações foram: V, Cr, Mn, Ni, Cu, Zn, As, Sr, Ag, Cd, Sn, Ba, Tl, Pb e U. Para isto, diluiu-se em 0,2M HNO₃ uma alíquota da amostra concentrada e esta foi filtrada em cartucho de 0,45um de PTFE. A partir desta filtração as amostras foram diluídas conforme a necessidade para cada elemento traço.

As amostras foram analisadas em um espectrômetro de massas com plasma indutivamente acoplado ICP-MS quadrupolo (VG Fisons PlasQuad2+) adicionando *spike* de Índio de concentração 1 ppb, como padrão interno para correção conforme a sua sensibilidade e número de contagem. Possíveis interferências poliatômicas foram resolvidas através de cálculos matemáticos. Para a medição da concentração de Pb usou-se *spike* de ²⁰⁴Pb seguindo o método do Oak Ridge National Laboratory. A precisão analítica para o instrumento é reportada como melhor que 2% (Wu e Boyle, 1997). Os dados brutos de Pb foram corrigidos para o *background*, brancos e a interferência de ²⁰⁴Hg, antes de calcular as concentrações de Pb. Em geral, a contagem do ²⁰⁴Pb.

5.2.6. Determinação de Elementos Majoritários

Os elementos majoritários foram analisados no Laboratório de Espectroanalítica e Eletroanalítica Aplicada (LEEA) na PUC-Rio. Uma alíquota de, aproximadamente, 1g de sedimento seco e macerado foi prensado em forma de pastilha para a determinação por espectrometria de fluorescência de Raios-x (XRF-1800) Shimadzu dos teores de Silício (Si), Cálcio (Ca), Alumínio (Al) e Ferro (Fe) calculados a partir de suas formas em óxidos. O material de referência certificado (MRC) utilizado para a calibração do método foi a Argila São Simão (SiO₂= 44,00%; AlO₃= 36,80%; FeO₃= 0,97%; CaO= 0,23%).

5.2.7. Determinação de Hidrocarbonetos Alifáticos e Policíclicos Aromáticos

As metodologias utilizadas tanto para extração quanto para o clean-up e quantificação dos compostos foram baseadas nos protocolos da *Environmental Protection Agency* (EPA) 8270 e 8015.

5.2.7.1. Extração

As amostras de sedimento, aproximadamente 13g, previamente liofilizadas e maceradas foram extraídas em Extrator Acelerado por Solvente (ASE200 - *Accelerated Solvent Extraction*) em cloreto de metileno (diclorometano – DCM) adicionando 2500 ng do padrão n-C16d₃₄ e n-C30d₆₂ – para F1 (alifáticos) e 100 ng de uma mistura de naftaleno-d₉, acenafteno-d₁₀, fenantreno-d₁₀, criseno-d₁₂ e pireno-d₁₂ para F2 (Aromáticos) para controle de recuperação do procedimento analítico. As condições do método foram: 3 ciclos com pressão de 1500 psi e temperatura de 40°C. Após o processo de extração, o extrato foi concentrado em evaporador com fluxo contínuo de nitrogênio à 1 mL, com posterior troca do solvente para hexano.

O fracionamento foi feito por cromatografia líquida em coluna de sílica, empregando uma coluna de vidro previamente calibrada e descontaminada, adicionando lã de vidro na extremidade da coluna e em seguida preenchida com hexano. Foram transferidos lentamente, 1,5 g de sílica-gel 100 % ativada. A Fração (F1) correspondente ao hidrocarbonetos alifáticos foi retirada com 5 mL de hexano e a fração (F2) foi retirada com 5 mL de solução hexano:diclorometano (1:1). As amostras foram concentradas em evaporador com fluxo contínuo de nitrogênio à 1 mL e adicionadas padrões internos de 2500 ng n-C24d para F1 e 100 ng de *p*-terfenil-d₁₄ para F2. A recuperação analítica média para as extrações foi de 103,29% \pm 20,28% (65,03% - 130,58%) para o n-C30d₆₂ (F1) e 74,22% \pm 9,85% (60,98% - 116,67%) para criseno-d₁₂ (F2). A exatidão das determinações dos compostos orgânicos foi verificada com sucesso pela análise do material de referência NIST SRM 1941B (*Organics in Marine Sediment*).

5.2.7.2. Identificação e quantificação dos hidrocarbonetos

5.2.7.2.1. Hidrocarbonetos Alifáticos

Na fração F1 foram quantificados os n-alcanos individuais ($n-C_{12}$ ao $n-C_{40}$), os isoprenóides (fitano e pristano), os hidrocarbonetos resolvidos (HR) e a mistura complexa não resolvida (UCM), como segue:

- n-alcanos: somatório de n-C₁₂ ao n-C₄₀ mais os isoprenóides pristano e fitano;

- hidrocarbonetos Resolvidos (HR): somatório de $n-C_{12}$ ao $n-C_{40}$, pristano e fitano e mais todos os picos resolvidos pela coluna cromatográfica (incluindo os que não podem ser identificados);

- Mistura complexa não resolvida (UCM): mistura de centenas de compostos que não pode ser resolvida pelas colunas capilares, e é composta por isômeros e homólogos de hidrocarbonetos ramificados e cíclicos;

- Hidrocarbonetos totais: somatório do HR mais a UCM.

Os hidrocarbonetos alifáticos foram identificados e quantificados por cromatografia gasosa em detector de ionização por chama (CG/DIC), segundo o método EPA-8015B. Foi aplicado o método de padronização interna, utilizando-se como padrão interno o n- $C_{24}d$ (em concentração igual a 2500 ng/mL). O tempo de retenção de cada composto, foi verificado pela injeção de mistura-padrão (0,05; 0,25; 0,50; 1,00; 2,00; 5,00 ug mL⁻¹) utilizando as condições resumidas na tabela 2. O limite de detecção do método, já estabelecido pelo laboratório, foi 0,003 ug g⁻¹ e o limite de quantificação foi tomado como o primeiro ponto da curva analítica 0,004 ug g⁻¹,considerando-se a quantidade amostrada para cálculo de ambos os limites. O valores médios dos brancos analíticos de cada batelada de amostra foram descontados dos valores obtidos para cada amostra.

Tabela 2: Condi	ções cromatográficas para determinação de hidrocarbonetos alifáticos.								
Equipamento	Cromatrógrafo Thermo Finnigan - Modelo TRACE GC-FID								
	Estação de dados: ChromQuest 4.1								
Coluna	J&W DB 5 (30 m x 0,25 mm x 0,25 um)								
Gases									
	Carreador: Hélio - 2mL min ⁻¹								
	Make-up: Nitrogênio - 25mL min ⁻¹								
	Detector: Ar - 175 mL min ⁻¹ ; Hidrogênio - 15 mL min ⁻¹								
Temperatura									
	Injetor: 290 °C								
	 Condições eronatograficas para determinação de marocar concess amadeos: Cromatrógrafo Thermo Finnigan - Modelo TRACE GC-FID Estação de dados: ChromQuest 4.1 J&W DB 5 (30 m x 0,25 mm x 0,25 um) Carreador: Hélio - 2mL min⁻¹ Make-up: Nitrogênio - 25mL min⁻¹ Detector: Ar - 175 mL min⁻¹; Hidrogênio - 15 mL min⁻¹ tura Injetor: 290 °C Detector: 310 °C C h are 50 %C (0.75 min) tané 6 %C mini taté (210 %C (20 min)) 								
	Coluna: 50 °C (0,75 min); taxa 6 °C min ⁻¹ até 310 °C (20 min)								

A quantificação dos n-alcanos individuais foi baseada no fator de resposta dos nalcanos individuais relativos ao n-C24d (FRR). Conforme a equação 8:

$$FRR = (A_c/A_{pi}) \times (C_{pi}/C_c) \qquad Equação 8$$

Onde:

A_c e C_c = área e concentração, respectivamente, do composto alvo;

A_{pi} e C_{pi} = área e concentração, respectivamente, do padrão interno (n-C24d).

5.2.7.2.2. Hidrocarbonetos Policíclicos Aromáticos

A determinação dos HPAs foi realizada em cromatógrafo a gás da marca Thermo Finnigan, modelo Trace GC Ultra do tipo quadrupolo, acoplado ao espectrômetro de massas Thermo Finnigan modelo DSQ (GC-MS) com monitoramento de íons seletivos (SIM). As condições do equipamento estão descritos na tabela 3.

Tabela 3: Condições do equipamento para determinação de hidrocarbonetos policíclicos aromáticos.

Equipamento	Cromatrógrafo Thermo Finnigan - Modelo TRACE GC
Coluna	J&W DB 5 (30 m x 0,25 mm x 0,25 um)
Gás de arraste	Hélio - 1,2 mL min ⁻¹
volume de injeção	1,4 µL (splitless)
Temperatura	250 °C
	50 °C durante 5 min
	50 °C por min ⁻¹ até 80 °C
	6 °C min ⁻¹ até 280 °C
	280 °C durante 25 min
Equipamento	EM - Thermo Scientific DSQ - Quadrupolo
Temperatura	
	Fonte de íons: 250 °C
	Interface: 300 °C
	Impacto de elétrons: 70 eV
	Corrente de emissão: 250 µA

A identificação dos analitos foi feita através dos tempos de retenção e dos espectros de massas. O equipamento foi calibrado (r > 0,999) usando-se nove soluções (2, 5, 10, 20, 50, 100, 200, 400 e 1.000 ng mL-1) contendo os HPAs: naftaleno (N), acenaftileno (Acen), acenafteno (Ace), fluoreno (F), fenantreno (Ph), antraceno (A), fluoranteno (Fl), pireno (Py), benzo(c)fenantreno (B(c)Ph), benzo(a)antraceno (BaA), criseno (Ch), benzo(b+j)fluoranteno (BbjFl), benzo(k)fluoranteno (BkFl), benzo(e)pireno (BePy), benzo(a)pireno (BaPy), perileno (Pe), 3-metilcolantreno (3-MeChl), indeno(1,2,3-c,d)pireno (DBalPy), dibenzo(ai)pireno (DBaiPy) e dibenzo(ah)pireno

(DBahPy) e os padrões internos deuterados (naftaleno-d₈, acenafteno-d₁₀, fenantreno-d₁₀, criseno-d₁₂ e perileno-d₁₂) em concentração igual a 100 ng mL⁻¹. Os homólogos alquilados contemplados pelo método EPA (1-metil- e 2- metilnaftaleno, C2 a C4- naftalenos, C1 a C3-fluorenos, C1 a C4-fenantrenos, C1 e C2-pirenos, C1 e C2-crisenos) foram determinados utilizando-se a curva de calibração do homólogo não alquilado. O reteno (1-metil-7-isopropilfenantreno) de massa 234 foi quantificado usando a curva do fenantreno.

O limite de detecção instrumental variou entre 0,22 pg para naftaleno e fluoranteno (compostos que apresentam maior razão sinal/ruído) a 1,04 pg para criseno e benzo(a)antraceno. O limite de quantificação do método foi considerado como igual a menor concentração utilizada na curva de calibração, atendendo a quantidade amostrada sendo então 0,13 ng g⁻¹. O valores médios dos brancos analíticos de cada batelada de amostra foram descontados dos valores obtidos para cada amostra.

Na busca de novos indicadores biogênicos que possam ser utilizados neste estudo foram identificados de maneira complementar outros HPAs biogênicos derivados do criseno e piceno: 3,4,7,12-tetrametil-1,2,3,4,4a,11,12,12a-octahidrocriseno e 3,3,7,12tetrametil-1,2,3,4,4a,11,12,12a-octahidrocriseno (m/z = 292), 3,4,7-trimetil-1,2,3,4tetrahidrocriseno e 3,3,7-trimetil-1,2,3,4-tetrahidrocriseno (m/z = 274), 1,2,4a,9tetrametil-1,2,3,4a,5,6,14b-octahidropiceno e 2,2,4a,9-tetrametil-1,2,3,4a,5,6,14boctahidropiceno (m/z = 342), 1,2,9-trimetil-1,2,3,4-tetrahidropiceno e 2,2,9-trimetil-1,2,3,4-tetrahidropiceno (m/z = 324) seguindo a metodologia de Wakeham e Canuel (2015).

5.2.8. Taxa de acumulação de sedimento e Fluxos

A taxa de acumulação de sedimento (SAR) foi calculada usando a massa em gramas (g) ou quilogramas (kg) de sedimento de cada camada do testemunho (1 cm) (Msed); taxas de sedimentação (SR) em cm ano⁻¹ ou cm kyr⁻¹, obtida através das determinações de ²¹⁰Pb e ¹⁴C, e o volume do cilindro do testemunho em cm³ em cada profundidade (1 cm) (Vc), como descrito na equação 9. O fluxo dos elementos e dos compostos foi calculado baseado na SAR e na concentração do parâmetros em massa/massa (kg) [C] conforme a equação 10 (Schoepfer *et al.*, 2015).

Fluxo (massa cm⁻² kyr⁻¹) = SAR x [C]
$$equação 10$$

5.2.9. Avaliação estatística

A avaliação dos dados foi feita através do teste de correlação de Pearson e através de técnicas exploratórias multivariadas, tais como análise fatorial (FA) utilizando o programa Statistica 11. Todas as discussões referindo-se às diferenças ou semelhanças foram com base nos resultados da análise estatística p<0,05. Todos os gráficos resultantes das análises foram examinados para excluir conclusões equivocadas baseadas apenas em valores de p ou r (coeficiente de correlação). O conjunto de dados utilizados para as análises fatoriais foram padronizados (z *score*) a fim de equalizar a contribuição de cada variável e foi aplicada a rotação Varimax.

6 Resultados e Discussão

6.1.

Geocronologia, taxa de sedimentação e taxa de acumulação de sedimento

6.1.1. Datação por ²¹⁰Pb

As taxas de sedimentação calculadas a partir da atividade do 210 Pb_{não suport} variaram de 5,9 a 278 Beq kg⁻¹ para RJ13-01 e de 0,7 a 216 Beq kg⁻¹. Para ambos os testemunhos o 210 Pb_{não suport} foi encontrado até a fração de 11cm. Foram calculadas duas taxas de sedimentação através do 210 Pb para cada testemunho. Até a camada de 5 cm dos testemunhos a taxa de sedimentação foi de 0,17 cm ano⁻¹ ou 170 cm kyr⁻¹. É plausível dizer que tal taxa pode ter sido devido à pouca diferença do 210 Pb_{não suport} para as camadas de 3 cm e 4 cm para ambos testemunhos. A taxa de sedimentação a partir de 6 cm até 11 cm foi de 0,04 cm ano⁻¹ ou 40 cm kyr⁻¹ para RJ13-01 e 0,02 cm ano⁻¹ ou 20 cm kyr⁻¹ para RJ13-02. Portanto, a idade calculada através do 210 Pb para os primeiros 11 cm de cada testemunho e levando em consideração as duas taxas de sedimentação é de 275 anos para RJ13-01 e 550 anos para a RJ13-02 (Tabela 4).

Tabela 4: Datação (ano), SR (cm ano⁻¹) e SAR (g cm⁻² ano⁻¹) calculadas através do ²¹⁰ Pb para os primeiros 11 cm dos testemunhos RJ13-01 e RJ13-02.

		RJ13-01		RJ13-02							
Segmento (cm)	ano	SR (cm ano ⁻¹)	SAR (g cm ⁻² ano ⁻¹)	ano	SR (cm ano ⁻¹)	SAR (g cm ⁻² ano ⁻¹)					
1	6	0,17	0,164	6	0,17	0,215					
2	12	0,17	0,164	12	0,17	0,215					
3	18	0,17	0,164	18	0,17	0,215					
4	24	0,17	0,164	24	0,17	0,215					
5	29	0,17	0,164	29	0,17	0,215					
6	150	0,04	0,038	300	0,02	0,025					
7	175	0,04	0,038	350	0,02	0,025					
8	200	0,04	0,038	400	0,02	0,025					
9	225	0,04	0,038	450	0,02	0,025					
10	250	0,04	0,038	500	0,02	0,025					
11	275	0,04	0,038	550	0,02	0,025					

6.1.2. Datação por ¹⁴C

O modelo de idade para a maior parte dos testemunhos RJ13-01 (12 - 160 cm) e RJ13-02 (12 - 205 cm) foi obtido através da datação por ¹⁴C em foraminíferas plantônicas *G. ruber* triadas em 4 segmentos distintos de cada testemunho sem a ocorrência de inversões de idade e calculadas pelo curva Marine13 mencionada na metodologia (Tabela 5).

Tabela 5: Dados referentes a datação por ¹⁴C ao longo dos testemunhos RJ13-01 e RJ13-02, segmentos datados (cm), idade convencional do radiocarbono em anos Antes do Presente ou *years Before Present* (yr BP) e idade calibrada do radiocarbono em anos calibrados Antes do Presente *ou calibrated years Before Present* (cal yr BP).

segmento (cm)	Idade convencional do radiocarbono (yr BP)	Mínimo (2 σ)	Idade calibrada do radiocarbono (cal yr BP)	Máximo (2 σ)
RJ13-01				
15	1357±82	879	1101	1323
36	1861 ± 87	1375	1622	1868
67	5473±90	5805	6061	6316
116	9256±121	9875	10258	10640
RJ13-02				
28	2550±70	2207	2473	2739
70	3184±71	2945	3195	3445
106	3814±76	3719	4003	4286
151	4078±79	4044	4338	4632

O modelo de idade calculado para o testemunho RJ13-01 foi obtido utilizando uma curva de regressão linear compilando os quatro pontos datados através de ¹⁴C e calibrados no programa Oxcal com o último ponto datado através do ²¹⁰Pb (275 anos), gerando a equação da reta observada na figura 3 com uma incerteza de 8,3%. O modelo de idade para o testemunho RJ13-02 também foi obtido utilizando uma curva de regressão linear, porém, foi calculado utilizando apenas os quatro pontos datados e calibrados através do ¹⁴C, gerando a equação da reta observada na figura 4 com uma incerteza de 13%.

Segundo este modelo o testemunho RJ13-01 cobre um período de 0,3 cal kyr BP a 14,5 cal kyr BP a partir do segmento de 11 cm até os 160 cm de comprimento abrangendo os períodos Pleistoceno tardio (*Younger Dryas*) da base até os 11,5 cal kyr BP, Holoceno Inferior de 11,5 cal kyr BP a 7 cal kyr BP, Holoceno Médio de 7 cal kyr BP a 5 cal kyr BP e Holoceno Superior de 5 cal kyr BP até o presente. O modelo de idade para RJ13-02 cobre um período de 2,3 cal kyr BP a 5,3 cal kyr BP a partir dos 12 cm até os 205 cm de comprimento abrangendo apenas o Holoceno Superior.

Figura 3: Curva para cálculo do modelo de idade do radiocarbono para RJ13-01.

Figura 4: Curva para cálculo do modelo de idade do radiocarbono para RJ13-02.

6.1.3. Taxa de sedimentação e taxa de acumulação de Sedimento

A taxa de sedimentação (SR) calculada a partir dos dados de ²¹⁰Pb e ¹⁴C para o RJ13-01 aumentou gradativamente da base do testemunho com maior intensidade a partir dos 750 anos até o presente. A SR variou de 11 cm kyr⁻¹ a 43 cm kyr⁻¹ (Figura 5). A taxa de acumulação de sedimento (SAR) para RJ13-01 diminui da base (0,022 kg cm⁻² kyr⁻¹) até aproximadamente, 6,1 cal kyr BP (0,014 kg cm⁻² kyr⁻¹), seguida de um leve aumento até 2,9 cal kyr BP (0,016 kg cm⁻² kyr⁻¹), diminuindo novamente até aproximadamente 2,5 cal kyr BP (0,014 kg cm⁻² kyr⁻¹) antes de voltar a aumentar até o presente (Figura 5). Para o RJ13-02 a SR e SAR calculadas a partir dos dados de ¹⁴C mostraram-se opostas às

observadas para RJ13-01, diminuindo da base (38 cm kyr⁻¹; 0,068 kg cm⁻² kyr⁻¹) até 2,3 cal kyr BP (5 cm kyr⁻¹; 0,006 kg cm⁻² kyr⁻¹) (Figura 5). Dados em anexo.

Figura 5: Variação da SR e SAR ao longo dos testemunhos RJ13-01 e RJ13-02.

Variações em taxas de sedimentação, como as observadas acima para ambos testemunhos da plataforma sudeste do Brasil já foram reportadas por diferentes autores variando entre 1 cm kyr⁻¹ a 180 cm kyr⁻¹ (Mahiques, M. M. *et al.*, 2002; Mahiques, M. *et al.*, 2004; Mahiques *et al.*, 2011; Albuquerque *et al.*, 2016; Lessa *et al.*, 2016).

6.2. Características da composição dos sedimentos dos testemunhos coletados

A caracterização composicional do sedimento foi determinada através da análise dados geofísicos (Vp, Dgama, ImpAc, SM, e porosidade), granulometria, teor de nitrogênio total (%TN), teor de carbono orgânico total (%TOC), teor de carbonato de cálcio (%CaCO₃) e razão C/N, os valores estão listados no anexo. Para RJ13-02 foram descritos e discutidos apenas os dados datados através do ¹⁴C, correspondendo ao período entre 5,3 cal kyr BP e 2,3 cal kyr BP.

6.2.1. Dados Geofísicos

As propriedades físicas dos sedimentos marinhos estão intimamente relacionadas aos seus constituintes como porosidade, arranjos estruturais e propriedades de contato entre os grãos (Ayres e Theilen, 1999). A perfilagem de testemunhos com multi sensores possibilita obter informações que auxiliam na descrição da composição dos sedimentos disponibilizando informação como velocidade da onda *p*, densidade, impedância acústica, porosidade e susceptibilidade magnética tornando-se de grande ajuda para a escolha das frações a serem analisadas (Schultheiss e Weaver, 1992; Figueiredo Jr *et al.*, 2008; Abuchacra *et al.*, 2009).

O magnetismo em sedimentos está relacionado aos minerais ferromagnéticos, que adquirem magnetização remanescente (óxido de ferro, magnetita, etc) e os de pouco magnetismo como minerais paramagnéticos encontrados em sedimentos marinhos que derivam, principalmente de material terrígeno (argilas ricas em ferro, *e. g.*) (Ellwood *et al.*, 2000). Sendo assim, o aumento da suscetibilidade magnética (SM) é associado ao aumento do aporte continental para o oceano, isto é, valores altos de SM indicam teores altos de minerais paramagnéticos e valores mais baixos indicam maiores teores de carbonatos (Ellwood *et al.*, 2006; Roberts *et al.*, 2012). Minerais como calcita e quartzo são abundantes em sedimentos marinhos e podem adquirir SM negativa quando expostos ao um campo magnético induzido, fatores como alterações na produtividade biológica ou taxas de acúmulo de carbono orgânico podem causar variações nos valores de SM (Ellwood *et al.*, 2000). Contudo, a SM também pode auxiliar como um proxy de variação climática em uma ampla gama de sedimento marinho (Ellwood *et al.*, 2008). Observa-se que o RJ13-01 obteve uma maior variação dos dados geofísicos (Vp, Dgama, ImpAc, SM e porosidade) comparados com o RJ13-02 (tabela 6).

RJ13-01	Vp (m s ⁻¹)	Dgama (cm ³ g ⁻¹)	ImpAc	SM (SI x 10 ⁻⁵)	Porosidade
Média±DP	1617±98	$1,81\pm0,22$	2897±611	$2,68\pm2,90$	0,54±0,13
Min-Máx	1493-1796	1,44-2,17	1264-3891	(-1,06)-12,13	0,34-0,76
RJ13-02* Vp (m s ⁻¹) Dg		Dgama (cm ³ g ⁻¹)	ImpAc	SM (SI x 10 ⁻⁵)	Porosidade
Média±DP	1567±22	$1,72\pm0,04$	2694 ± 78	4,31±4,14	0,60±0,02
Min-Máx	1521-1613	1,62-1,83	2496-2943	(-1,27)-16,00	0,53-0,65

Tabela 6: Valores de média, desvio padrão (DP), mínimos (Min) e máximos (Máx) para os testemunhos RJ13-01 e RJ13-02.

*Não foram observados dados realísticos para os primeiros 11 cm do testemunho.

Em geral, há uma tendência do aumento da Vp com o decréscimo da porosidade e consequentemente um aumento da densidade e da impedância acústica que estão relacionados com tipo de material e a granulometria do sedimento, portanto, este

comportamento leva à uma diminuição da SM (Ayres Neto, 1998; Ayres e Theilen, 1999). Esta relação foi bem definida para RJ13-01, através da determinação do coeficiente de Pearson as amostras do testemunho RJ13-01 mostraram correlação fortemente positiva das variáveis Vp e Dgama (r = 0,9766; p<0,05), Vp e ImpAc (r = 0,9416; p<0,05), Dgama e ImpAc (r = 0,9664; p<0,05) e SM e porosidade (r = 0,7683; p<0,05) e fortemente negativas Vp e SM (r = -0,7162; p<0,05), Vp e porosidade (r = -0,9766; p<0,05), Dgama e SM (r = -0,7682; p<0,05), Dgama e porosidade (r = -1; p<0,05), ImpAc e SM (r = -0,8578; p<0,05) e ImpAc e porosidade (r = -0,9664; p<0,05). A figura 6 apresenta os parâmetros geofísicos ao longo dos anos para RJ13-01.

Figure 6: Dados de Vp, Dgama, ImpAc, SM e porosidade ao longo dos anos para RJ13-01.

Em RJ13-02 as variáveis que mostraram correlação moderada, positiva, foram Vp e SM (r = 0,7296; p<0,05) e Dgama e ImpAc (r = 0,6590; p<0,05); fraca positiva Vp e ImpAc (r = 0,3837; p<0,05), SM e porosidade (r = 0,3238; p<0,05) Vp e porosidade (r = 0,167; p<0,05); moderada negativa Dgama e porosidade (r = -0,6007; p<0,05) e ImpAc e porosidade (r = -0,6395; p<0,05) e Dgama e SM (r = -0,3338; p<0,05). A figura 7 apresenta os parâmetros geofísicos ao longo dos anos para RJ13-02.

Figure 7: Dados de Vp, Dgama, ImpAc, SM e porosidade ao longo dos anos para RJ13-02.

6.2.2. Granulometria

A granulometria fornece informações complementares que auxiliam a interpretação dos dados. Os dados granulométricos para RJ13-01 e RJ13-02 estão apresentados na figura 8 conforme a classificação proposta por Wentworth (1922).

Figura 8: Gráficos representando o percentual de granulometria ao longo dos anos para a RJ13-01 e RJ13-02.

A fração lama (argila+silte) foi a principal componente sedimentológico para ambos testemunhos estando presente em toda coluna sedimentar. Para RJ13-01 a argila variou de 1,49% a 8,52 %, o silte (30,94% - 92,17 %) e a areia muito fina (0,26% – 61,12 %) que também está presente ao longo de todo o testemunho. A presença de areia grossa foi observada desde a base do testemunho até aproximadamente 8,0 cal kyr BP (0,38% – 0,71 %), areia média foi encontrada da base até 7,0 cal kyr BP (1,08% – 17,3%), com ausência na camada correspondente 7,8 cal kyr BP e areia fina foi observada da base até cerca de 5,7 cal kyr BP (0,33% – 17,15 %). A partir de 5,0 cal kyr BP até o presente a coluna sedimentar apresentou apenas teores de argila, silte e areia muito fina, com exceção da camada correspondente aos 3,0 cal kyr BP que apresentou apenas lama (Figura 8). Variações na composição sedimentar similares às observadas para o testemunho RJ13-01 foi reportada por Mahiques (Mahiques *et al.*, 1999; Mahiques *et al.*, 2011) em testemunho coletado na isóbata de 100 m na plataforma sudeste do Brasil.

Para RJ13-02, observou-se pouca variação de granulometria ao longo dos anos, para lama a variação foi de 4,81% a 5,72%, silte (65,68% - 77,72%), areia muito fina (17,13% - 27,74%) e areia fina (0,33% - 1,67%) sendo que todas as frações foram observadas ao longo de todo o testemunho (Figura 8).

O tamanho dos grãos também está relacionado com a hidrodinâmica local/regional além de diferentes tipos de minerais dominantes que podem interferir em interpretações paleoambientais. Sedimentos com maior granulometria podem ter sido introduzidos por forte erosão costeira e/ou pode estar relacionado com ambientes de forte hidrodinâmica costeira impedindo a deposição de sedimentos mais finos permitindo o acúmulo de sedimento mais grosseiro (Albuquerque et al., 2016). Entretanto, grãos menores referentes à silte/argila, apresentando grande superfície de aderência propiciando o acúmulo de MO. A correlação da granulometria com os dados geofísicos através do coeficiente de Pearson para RJ13-01 foi moderadamente positiva da fração de areia (% areia muito fina+% areia fina+% areia média+% areia grossa) com Vp (r = 0.7712; p<0.05; %areia e Dgama (r = 0.7570; p<0.05), %areia e ImpAc (r = 0.7533; p<0.05) e negativa para % areia e SM (r = -0.5783; p<0.05) e % areia e porosidade (r = -0.7570; p<0,05) já para lama a correlação mostrou-se inversa como esperado, %lama e Vp (r = -0,7712; p<0,05), %lama e Dgama (r = -0,7570; p<0,05), %lama e ImpAc (r = -0,7533; p<0.05), %lama e SM (r = 0.5785; p<0.05) e %lama e porosidade (r = 0.7570; p<0.05). Para RJ13-02 foi observada presença de argila (4,56 – 5,72 %), silte (65,68 - 77,72 %), areia muito fina (17,13 - 27,03 %) e areia fina (0,33 - 1,7 %) com pouca variação ao longa da coluna sedimentar. A correlação com os dados geofísicos foi fraca para RJ13-02, % areia e Vp (r = 0,2525; p<0,05), % areia e Dgama (r = -0,4466; p<0,05), % areia e ImpAc (r = -0,4127; p<0,05), % areia e SM (r = 0,1713; p<0,05) e % areia e porosidade (r = -0,0288; p<0,05). Para % lama e Vp (r = -0,2525; p<0,05), % lama e Dgama (r = 0,4466; p<0,05), % lama e ImpAc (r = 0,4127; p<0,05), % lama e SM (r = -0,1713; p<0,05) e % lama e porosidade (r = -0,0288; p<0,05).

6.2.3. %TN, %TOC, %CaCO₃ e C/N

Os teores de %TN, %TOC e %CaCO₃ foram mais elevados e variaram mais ao longo do testemunho RJ13-01 comparados ao RJ13-02, ao contrário da razão C/N molar que obteve valores mais elevados para RJ13-02 (Tabela 7).

Tabela 7: Valores de número de amostras (n), mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para os teores de %TN, %TOC, %CaCO₃ e razão C/N molar dos testemunhos RJ13-01 e RJ13-02.

				RJ13-01				RJ13-02								
%	n	Min	Max	Méd	DP	Median	n	Min	Max	Méd	DP	Median				
TN	24	0,020	0,143	0,099	0,029	0,104	41	0,033	0,110	0,076	0,014	0,075				
тос	35	0,158	1,184	0,676	0,346	0,815	41	0,587	0,980	0,751	0,096	0,739				
CaCO ₃	35	7,346	23,504	17,818	3,784	18,624	41	10,007	18,041	13,499	2,114	12,505				
C/N molar	24	7,681	13,270	10,615	1,327	10,473	41	9,075	22,801	11,735	2,067	11,345				

O nitrogênio (TN) em RJ13-01 ficou abaixo do limite de detecção (LD) até aproximadamente 8,0 cal kyr BP, a partir deste período até aproximadamente 3,5 cal kyr BP aumentou exponencialmente de 0,02% a 0,12% e então oscilou entre 0,05 e 0,14%. O nitrogênio mostrou correlação (p<0,05) fraca negativa ($-0,5 < r \le -0,1$) com os dados geofísicos (Vp, Dgama e ImpAc) e fraca positiva ($0,5 < r \le 0,1$) com SM, porosidade e %lama (r = 0,6043) e %areia (-0,6043). Para RJ13-02 o TN apresentou correlação fraca negativa (Dgama, ImpAc e lama) e fraca positiva (Vp, SM, porosidade e areia).

O carbono orgânico (TOC) para RJ13-01variou entre 0,16% e 0,20% até cerca de 8,0 cal kyr BP após este período ocorreu um aumento de mais de 3 vezes no seu teor variando entre 0,6% a 1,18% até o presente. O TOC mostrou forte correlação (p<0,05) com os dados geofísicos e granulometria, Vp (r = -0,9102), Dgama (r = -0,9085), ImpAc (r = -0,8317), SM (r = 0,6563), porosidade (r = 0,9085), %lama (r = 0,8268) e % areia (r = -0,8268). Para RJ13-02 o TOC mostrou correlação fraca negativa (-0,5< r \leq -0,1) com Dgama, ImpAc e %lama e fraca positiva (0,5< r \leq 0,1) com Vp, SM, porosidade e %areia.

O CaCO₃ mostrou valores mais baixos até aproximadamente 8,0 cal kyr BP e aumento até o presente para RJ13-01. A correlação com os dados geofísicos (p<0,05)

para Vp, Dgama e ImpAc (r = -0,7835), SM (r = 0,4644), porosidade (r = 0,7835), %lama (r = 0,5074) e %areia (r = -0,5074). Para RJ13-02 o CaCO₃ mostrou correlação negativa fraca com todos os dados geofísicos e %lama, e fraca positiva com %areia.

O carbono orgânico total é um dos mais importantes indicadores de matéria orgânica (MO), sendo que, aproximadamente 50% da MO é composta de carbono, quando combinado com TN torna-se um indicador para diferenciação entre fontes marinhas e terrestres de MO (Bianchi e Canuel, 2011). As algas marinhas apresentam valores de C/N que variam entre 4 e 8, enquanto as plantas terrestres apresentam valores de C/N acima de 12 assim como plantas terrestres vasculares podem apresentar valores \geq 17. Esta diferenciação da razão C/N molar na MO é devido as diferenças nos componentes estruturais das fontes. As algas são compostas principalmente por proteínas possuindo altos teores de nitrogênio, por outro lado as plantas terrestres possuem altos terores de carbono na forma de lignina e a celulose (Meyers, 1997; Cloern *et al.*, 2002; Bianchi e Canuel, 2011).

Deve-se tomar cuidado com o uso da razão C/N como *proxy* em estudos paleoambientais, pois a degradação seletiva de alguns compostos durante a diagênese pode alterar os valores de C/N na MO do sedimento. Como exemplo, a decomposição de algas pode diminuir os componentes proteicos e com isso pode resultar em valores mais elevados de C/N. Reações de nitrato-redução podem resultar em valores de C/N superestimados, pois pode ocorrer adsorção da amônia e liberação do carbono no sedimento (Meyers, 1997; Meyers *et al.*, 1998).

A determinação de nitrogênio em amostras de sedimento é normalmente representativa do nitrogênio total (orgânico e inorgânico), visto que a fração inorgânica é muito baixa em relação à inorgânica, levando a confiáveis razões C/N que representam a origem da MO. Todavia, amostras contendo baixas concentrações de MO, podem conter uma alta fração de nitrogênio inorgânico, podendo gerar razões C/N superestimadas (Meyers, 1997).

Para comprovar que a fração de nitrogênio inorgânico não influencia nos dados de origem da MO, deve-se observar a relação entre o TOC e o TN. A presença de uma forte relação positiva entre os dois indica que a origem orgânica do nitrogênio. Para os testemunhos do presente trabalho, ambos apresentaram correlação fortemente positiva entre o TOC e o TN. Para o RJ13-01 TN e TOC (r = 0,8974; p<0,05) e para RJ13-02 TN e TOC (0,7775; p<0,05) (Figura 9).

Figura 9: Correlação entre TN e TOC para as amostras representadas por segmento (cm) dos testemunhos RJ13-01 e RJ13-02.

Para a maioria das amostras da RJ13-01 a razão C/N molar foi de 10, o que pode significar uma mistura de fontes de MO de origem marinha e terrestre (Bianchi e Canuel, 2011), não existindo uma definição certa quanto a fonte de matéria orgânica.

O carbonato de cálcio representa um dos principais componentes biogênicos dos sedimentos marinhos, a acumulação do CaCO3 nos sedimentos está diretamente relacionada com a produção fitoplanctônica e bentônica e da dissolução na coluna d`água durante a sedimentação. As variações na produtividade planctônica, a dissolução de carapaças calcárias durante e depois da deposição e a diluição por material nãocarbonáticos através do aumento no aporte de matéria terrígena influenciam no conteúdo de CaCO₃ (Schneider et al., 2006). A correlação do CaCO₃ com o TOC para RJ13-01 foi de moderada para forte positiva (Figura 10), principalmente nas amostras a partir de 8,0 cal kyr BP o que pode estar relacionado com o aporte continental da MO (Figura 12), porém o período entre 14,4 cal kyr BP e 8,0 cal kyr BP foi observado menores teores de TOC, porém, os teores de CaCO₃ foram mais elevados em relação aos de TOC. A correlação entre CaCO₃ e TN foi fraca (Figura 11), pois as amostras dos segmentos 12 cm, 18 cm e 24 cm referentes aos períodos mais próximos ao presente 0,3 cal kyr BP, 0,9 cal kyr BP, respectivamente e ao segmentos 82 cm, 88 cm e 92 cm referentes aos períodos 7,0 cal kyr BP, 7,6 cal kyr BP e 8,0 cal kyr BP, respectivamente, foram os períodos nos quais o CaCO₃ obteve teores relativamente mais elevados em comparação aos teores de TN, isto explica a fraca correlação entre estas duas variáveis. A correlação entre CaCO₃ e TOC e CaCO₃ e TN para RJ13-02 não foi estatisticamente significativa.

Figura 10: Correlação entre $CaCO_3$ e TOC para as amostras representadas por segmento (cm) do testemunho RJ13-01.

Figura 11: Correlação entre $CaCO_3$ e TN para as amostras representadas por segmento (cm) do testemunho RJ13-01.

A mudança na concentração dos compostos está relacionada com a diferença de granulometria e com as diferentes taxas de sedimentação (Meyers, 2003). Os fluxos ou taxas de acumulação dos compostos são as massas destes compostos preservadas por uma unidade de área e tempo. As figuras 12 e 13 mostram as concentrações e taxas de acumulação para TN, TOC e CaCO₃ e a razão C/N molar para RJ13-01 e RJ13-02 respectivamente.

Figura 12: Teores de TN, TOC e $CaCO_3$ em % (círculos abertos) e fluxos em g cm⁻² kyr⁻¹ (círculos sólidos) e razão C/N molar ao longo dos anos em cal kyr BP para o testemunho RJ13-01.

Figura 13: Teores de TN, TOC e $CaCO_3$ em % (círculos abertos) e fluxos em g cm⁻² kyr⁻¹ (círculos sólidos) e razão C/N molar ao longo dos anos apenas para os dados a partir de 12 cm (2,3 cal kyr BP) até 205 cm (5,3 cal kyr BP) para o testemunho RJ13-02.

6.3. Elementos traços e majoritários

Os valores para elementos traços e majoritários estão listados no anexo. Alguns elementos obtiveram concentrações mais elevadas em RJ13-02 como para V, Cr, Ni, Zn e As (Tabela 8), porém os valores variam mais em RJ13-01. Para RJ13-02 foram descritos

e discutidos apenas os dados datados através do ¹⁴C, correspondendo ao período entre 4,7 cal kyr BP e 2,3 cal kyr BP.

			RJ13-01					RJ13-02		
	Min	Max	Méd	DP	Median	Min	Max	Méd	DP	Median
V	6,414	24,452	15,379	5,822	16,962	14,504	28,696	20,701	3,102	20,030
Cr	9,929	27,915	18,992	5,825	20,577	22,208	38,715	28,908	4,174	27,738
Mn	44,427	194,248	116,488	49,490	135,500	89,463	136,652	116,652	9,963	116,494
Ni	2,434	10,949	6,567	2,318	6,967	6,695	11,156	8,618	1,093	8,544
Cu	0,156	1,352	0,714	0,349	0,817	0,89	1,650	1,176	0,177	1,139
Zn	2,058	7,614	4,705	1,485	4,883	6,897	16,155	9,080	1,654	8,750
As	3,639	10,721	7,699	1,747	7,739	6,031	11,889	8,296	1,187	8,158
Sr	140,503	336,176	232,727	46,014	232,483	159,565	256,882	216,003	22,710	222,266
Ag	0,003	0,015	0,009	0,003	0,009	0,008	0,014	0,011	0,001	0,01
Cd	0,028	0,127	0,066	0,023	0,064	0,055	0,103	0,073	0,01	0,072
Sn	0,243	1,436	0,774	0,352	0,864	0,97	1,649	1,237	0,165	1,190
Ba	3,027	8,442	5,037	1,338	5,204	6,204	11,702	8,219	1,432	7,630
Tl	0,053	0,157	0,092	0,026	0,088	0,091	0,142	0,119	0,013	0,118
Pb	1,926	11,360	5,428	2,433	5,832	4,840	6,650	5,778	0,404	5,744
U	0,752	3,973	1,686	0,758	1,510	1,364	3,218	2,045	0,381	1,970
Si	18,961	27,376	22,331	1,683	21,952	24,878	26,785	25,776	0,043	25,810
Ca	10,650	17,485	13,228	1,423	12,944	8,527	9,982	9,459	0,354	9,504
Al	4,931	8,331	7,295	0,873	7,650	7,110	7,809	7,456	0,219	7,452
Fe	1,843	3,402	2,875	0,431	3,045	2,519	2,953	2,705	0,106	2,704

Table 8: Valores de mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para TE em mg kg⁻¹ para os testemunhos RJ13-01 (n=47) e RJ13-02 (n=51) e para ME em % para RJ13-01 (n=40) e RJ13-02 (n=17).

A maioria dos elementos em RJ13-01 mostrou fortes correlações de Pearson significativos perfis lineares (Tabela 9a), porém para RJ13-02 as correlações foram fracas (Tabela 9b).

	Tabela 9	:: Correla	açao de P	earson (r) para TE	<u>, ME, TC</u>	DC e CaC	O_3 para R	J13-01 (T:9a) e R	J13-02 (1	l:9b).								
CA _L	V	Cr	Mn	Ni	Cu	Zn	As	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U	тос	CaCO ₃	Si	Ca	Al
274	0,98																			
212	0,94	0,90																		
N°1	0,85	0,89	0,77																	
ital	0,95	0,94	0,91	0,94																
Dig	0,92	0,92	0,88	0,94	0,98															
ıção																				
ifice	0,57	0,67	0,55	0,74	0,60	0,59	0,40													
Cert	0,83	0,89	0,72	0,91	0,88	0,85	0,39	0,68												
0	0,45	0,55	0,29	0,71	0,53	0,52	0,69	0,66	0,79											
Ч.	0,93	0,94	0,89	0,89	0,97	0,95		0,56	0,90	0,53										
PUC	0,83	0,86	0,79	0,90	0,91	0,94		0,57	0,84	0,56	0,92									
Tl	0,49	0,62	0,37	0,67	0,54	0,53	0,66	0,70	0,80	0,83	0,62	0,58								
Pb	0,92	0,88	0,93	0,80	0,93	0,91		0,47	0,78	0,33	0,94	0,82	0,43							
U							0,73	0,46		0,55			0,50							
TOC	0,79	0,80	0,79	0,71	0,77	0,71		0,61	0,66		0,72	0,53	0,44	0,78						
CaCO ₃	0,48	0,49	0,52	0,45	0,47	0,46		0,47	0,38	0,11	0,39	0,30	0,26	0,46	0,05	0,79				
Si	-0,3	-0,36	-0,25	-0,31	-0,28	-0,25		-0,41	-0,35	-0,27	-0,27		-0,35	-0,26	-0,28	-0,52	-0,59			
Ca	-0,49	-0,51	-0,47	-0,38	-0,42	-0,37		-0,42	-0,48	-0,36	-0,5	-0,41	-0,46	-0,47		-0,4				
Al	0,7	0,72	0,66	0,77	0,74	0,73		0,66	0,69	0,53	0,67	0,58	0,55	0,67		0,86	0,86	-0,6	52	
Fe	0,79	0,8	0,79	0,79	0,79	0,77		0,68	0,7	0,5	0,72	0,63	0,53	0,74		0,92	0,82	-0,6	54	0,97

T:9b	\mathbf{V}	Cr	Mn	Ni	Cu	Zn	As	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U	TOC	CaCO ₃	Si	Ca	Al
4	0,92																			
4 <u>(</u> C)	0,52	0,36																		
227,	0,53	0,40	0,56																	
1212	0,30		0,50	0,87																
å		-0,35																		
Jital	0,30		0,35	0,75	0,82															
Diç	-0,48	-0,42																		
ção	0,60	0,41	0,58	0,82	0,75		0,60													
ifica	0,30		0,49	0,63	0,63	0,38	0,54		0,63											
Cert			0,54	0,61	0,82	0,41	0,60		0,73	0,54										
- 0			0,38		0,54		0,38		0,46		0,79									
, Ri	0,63	0,56	0,43	0,56					0,60	0,50	0,36									
PUG			0,51		0,32						0,40									
U													0,51							
TOC	0,38	0,36											,							
CaCO ₃																0,40				
Si				0,58	0,47	0,54			0,62											
Ca																-0,60	0,66			
Al				0,53												0,73				
Fe	0,53	0,58											0,48			0,67				0,74

Itálico: p<0,05; negrito: p<0,05; branco: nenhuma correlação significativa.

Os fluxos e concentrações (%; mg kg⁻¹) para ME e TE para RJ13-01 estão na figura 14, os dados para os 5 cm do topo nao estão incluídos nos perfis.

Figura 14: Teores em % (círculos abertos) e fluxos em g cm⁻² kyr⁻¹ (círculos sólidos) para ME, concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para TE ao longo dos anos em cal kyr BP para o testemunho RJ13-01.

A maioria dos elementos em RJ13-01 mostrou baixas concentrações da base 10,8 cal kyr BP até 8,0 cal kyr BP e aumentando em direção ao presente. O oposto foi observado para Si e Ca. Este comportamento e a correlação negativa destes dois elementos com os outros componentes (Tabela 9a) sugere que os altos teores de Si e Ca podem estar diluindo as concentrações dos TE (Ganeshram *et al.*, 1996; Nameroff *et al.*, 2004; Tribovillard *et al.*, 2006). O CaCO₃ não está significantemente correlacionado com o Ca e Si (Tabela 9a), entretanto, o %CaCO₃, %Ca e seus fluxos mostrados na figura 14 sugerem que entre 10,8 cal kyr BP e 9,0 cal kyr BP o Ca poderia estar presente na forma de CaCO₃. Tal comportamento pode ser resultado da dissolução do CaCO₃ durante o Holoceno médio e superior (Anderson e Winckler, 2005), sendo assim promovendo a redistribuição de Ca em diferentes formas minerais no sedimento. Outros dois elementos que mostraram diferentes correlações com o restante dos componentes foram o U e o As que demostraram correlação significativa entre ambos (r = 0,73) (Tabela 9).

Os fluxos e concentrações (%; mg kg⁻¹) para ME e TE para RJ13-02 estão na figura 15.

Figura 15: Teores em % (círculos abertos) e fluxos em g cm⁻² kyr⁻¹ (círculos sólidos) para ME, concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para TE ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

Como descrito na tabela 8 e na figura 15, a maioria dos dados de TE e ME para RJ13-02 demonstraram variação relativamente baixa da base 4,7 cal kyr BP para o período mais recente, porém o SR e a SAR diminuíram da base para o topo do testemunho resultando no aumento dos fluxos entre 4,7 cal kyr BP e 3,5 cal kyr BP para RJ13-02.

6.3.1. Aporte continental/biogênico e *proxies* redox-sensíveis e de produtividade

A influência do aporte continental foi avaliada utilizando os valores de SM, %lama e as razões Al/Ca e Fe/Ca (Arz *et al.*, 1998; Morford *et al.*, 2001). A possível correlação entre estes componentes foi testada usando a análise da correlação de Pearson: para RJ13-01 o coeficiente de correlação (p<0,05) para SM vs Al/Ca foi (r) = 0,60 e vs Fe/Ca (r) = 0,65; para %lama vs Al/Ca (r) = 0,89 e vs Fe/Ca (r)= 0,90, e finalmente para Al/Ca vs Fe/Ca (r) = 0,98. Para RJ13-02 o coeficiente de correlação (p<0,05) para SM vs Al/Ca is (r) = 0,71 e vs Fe/Ca (r) = 0,83; para Al/Ca vs Fe/Ca (r) = 0,90. Nenhuma correlação significativa com %lama foi observada para RJ13-02.

V, Cr, Mn e U são elementos muito utilizados como *proxies* de condições redox (Calvert e Pedersen, 1993; Moreno *et al.*, 2004; Tribovillard *et al.*, 2006). Estes elementos tem sido também relacionados com entrada de material continental como o Al e o Fe (Tabela 9). Alguns outros elementos como Ni, Cu e Zn, são geralmente considerados influenciados pela disponibildade de MO e relacionandos com o TOC, aparecem significativamente relacionados aos *proxies* de redox-sensíveis e de contribuição continental, especialmente em RJ13-01 (Tabela 9a). Por isso, eles podem ser originados da mesmo fonte antes de sua deposição.

Os *proxies* redox-sensíveis utilizandos no presente trabalho foram as razões Fe/Al, V/Al, e Mn/Al. Para RJ13-01 a correlação de Pearson (p<0,05) para Fe/Al vs V/Al foi (r) = 0,71; para Fe/Al vs Mn/Al (r)= 0,70 e para V/Al vs Mn/Al (r)=0,98. Para RJ13-02 foram observadas fracas correlações para Fe/Al vs V/Al (r) = 0,41 e V/Al vs Mn/Al (r) = 0,53; nenhuma outra correlação com Mn/Al foi observada.

As razões de Sr, Cd e Ba com Al e Ca têm sido frequentemente utilizadas como *proxies* de produtividade (Sun *et al.*, 2008; Martín-Puertas *et al.*, 2011). Para RJ13-01 a correlação de Pearson entre as razões desses elementos com o Al, ainda que moderadas foram significativas (p<0,05), tais (Sr/Al vs Cd/Al (r) = 0,57; Sr/Al vs Ba/Al (r) = 0,48; Cd/Al vs Ba/Al (r) = 0,48). No entanto, as correlações entre as razões de TE/Al vs TE/Ca foram robustas (Sr/Al vs Sr/Ca (r) = 0,77; Cd/Al vs Cd/Ca (r) = 0,94; Ba/Al vs Ba/Ca (r)

= 0,91). Para RJ13-02 (p<0.05) as correlações entre as razões dos TE com o Al foram fracas porém significativas (Cd/Al vs Ba/Al (r) = 0,45) e robustadas quando comparadas com TE/Ca (Sr/Al vs Sr/Ca (r) = 0,91; Cd/Al vs Cd/Ca (r) = 0,84; Ba/Al vs Ba/Ca (r) = 0,93). Estas correlações entre TE/Al e TE/Ca confirmam que Sr, Cd e Ba são apropriados proxies de produtividade mesmo quando são normalizados com os teores de Al ou Ca.

A PCA (análise de componentes principais) é amplamente usada para extrair uma variância comum entre *proxies* tais como de aporte continental ou biogênico, redoxsensíveis e de produtividade para registros paleoclimáticos e paleoceanográficos (Clemens e Prell, 2003; Sun *et al.*, 2008; Nagai *et al.*, 2016). As razões e parâmetros mais apropriados foram utilizados para realizar a PCA para RJ13-01 e RJ13-02, tratados como descrito no capítulo de avaliação estatísica.

PCA para RJ13-01 – Multi-elementos

Os seguintes parâmetros de redox-sensíveis, produtividade e aporte continental (Al/Ca, Fe/Ca, Fe/Al, V/Al, Mn/Al, Sr/Al, Cd/Al, Ba/Al), incluindo %TOC and %Si foram tratados na PCA para RJ13-01. Ca/Al foi utilizado para distinguir o aporte biogênico do continental (Sun *et al.*, 2008; Nagai *et al.*, 2016). Três *factors loadings* com *eigenvalues* >1 agruparam as variáveis sendo responsáveis por 83% da variância. O fator 1 foi responsável por 58% da variância correlacionando positivamente os *proxies* de aporte continental e negativamente com os *proxies* biogênicos (Figura 16a,b); fator 2 foi responsável por 16% da variância correlacionando positivamente os *proxies* redox-sensíveis (Figura 16a,c); e o fator 3, responsável por 9% da variância, correlacionando positivamente os *proxies* de produtividade (Figura 16b,c). A figura 17 (a, b,c) mostra graficamente o resultados da PCA para RJ13-01.

Figura 16: a: Fator 1 x Fator 2; b: Fator 1 x Fator 3; c: Fator 2 x Fator 3 para RJ13-01.

Figura 17: PCA para RJ13-01 incluindo %TOC e %Si e as razões Al/Ca, Fe/Ca, Fe/Al, V/Al, Mn/Al, Sr/Al, Cd/Al, Ba/Al e Ca/Al. a: Fator score 1 em função do tempo (cal kyr BP); b: Fator score 2 em função do tempo (cal kyr BP); c: Fator score 3 em função do tempo (cal kyr BP).

PCA for RJ13-02

A melhor abordagem de dados para a PCA do testemunho RJ13-02 foi utilizando %TOC e %CaCO₃, os *proxies* de aporte continental, redox-sensíveis e produtividade: Al/Ca, Fe/Ca, V/Al, Sr/Al, Cd/Al, Ba/Al. Ca/Al foi também utilizado para distinguir o aporte biogênico do continental. Três fatores (*eigenvalues* >1) agruparam as variáveis responsáveis por 78% da variância. Fator 1 foi responsável por 40% da variância correlacionando positivamente os *proxies* biogênicos/produtividade e negativamente os *proxies* continentais (Figura 18a,b); fator 2 foi responsável por 22% da variância correlacionando positivamente os *proxies* redox-sensíveis (Figura 18a); fator 3 responsável por 16% da variância correlacionou %TOC and %CaCO₃ (Figura 18c). Figura 19 (a, b, c) mostra graficamente o resultados da PCA para RJ13-02.

Figura 18: a: Fator 1 x Fator 2; b: Fator 1 x Fator 3; c: Fator 2 x Fator 3 para RJ13-02.

Figure 19: PCA para RJ13-02 incluindo %TOC e %CaCO₃ e as razões Al/Ca, Fe/Ca, V/Al, Sr/Al, Cd/Al, Ba/Al e Ca/Al. a: Fator score 1 em função do tempo (cal kyr BP); b: Fator score 2 em função do tempo (cal kyr BP); c: Fator score 3 em função do tempo (cal kyr BP).

6.3.1.1. Aporte continental e biogênico

RJ13-01 registrou (Figura 17a) um período de intensa introdução de material biogênico como Si e Ca entre 10,8 cal kyr BP e 7,5 cal kyr BP. A textura arenosa do sedimento e a presença de fragmentos de conchas sugerem que era um ambiente costeiro deposicional de alta energia. Baseado nas curvas globais e regionais de nível do mar e o que está descrito em estudos (Angulo *et al.*, 2006; Castro *et al.*, 2014) o nível do mar, no período acima citado, estava abaixo do nível atual, portanto, os registros de sedimentos são compatíveis com uma forte dinâmica costeira de um ambiente litorâneo (Albuquerque *et al.*, 2016). A turbulência natural de tal ambiente não favorece a deposição de partículas finas, porém, permite que partículas mais grosseiras se acumulem, diminuindo os teores de TOC e da maioria dos ME e TE como observados (Figura 14). Além disso, o alto teor de Si encontrado entre 10,8 cal kyr BP e 7,5 cal kyr BP contribui nas baixas concentrações dos outros elementos e sua correlação com %areia (r) = 0,65 indica que o Si poderia estar presente na forma de quartzo durante este período. Chang *et al.* (2015)

reportou altos teores de opala (59% wt) relacionados a floração de diatomáceas em sedimentos do Golfo da Califórnia e associado a diluição de outros componentes presentes no sedimento. Dados geofísicos como Vp, Dgama, ImpAc demonstraram valores altos durante este período (Figura 6) e estão bem relacionados com % areia, o oposto foi observado para SM e porosidade, os quais estão com valores baixos no Holoceno inferior. Sedimentos marinhos são consittuídos de material derivado de fonte continentais, atmosféricas e biogênicas, sendo que estruturas de carbonato e/ou silicato de organismos marinhos são principalmente remanecentes de atividades biogênicas. Todo conteúdo mineral magnético, independente da fonte, é susceptível a tornar-se magnetizado na presença de um campo magnético e, por seguinte, a SM é um indicador da força dessas partículas magnetizáveis em uma amostra (Ellwood et al., 2006; Roberts et al., 2012), SM é um excelente indicador de abundância de MO no sedimento. Por volta de 2,8 cal kyr BP, um aumento no aporte de material biogênico é observado (Figura 17a) bem como uma mudança moderada nos parâmetros geofísicos e um aumento de areia muito fina (Figura 6) que se estendeu até o presente. Padrão similar foi observado para RJ13-02 para o Holoceno superior (Figura 7). Mendoza et al. (2014) observou padrões similares através de dados geofisicos em testemunho coletados próximo a isóbata de 120m na plataforma continental de Cabo Frio, evidenciando a necessidade de uma maior investigação na plataforma continental sudeste do Brasil a fim de entender as influências atmosféricas e oceanográficas a nível regional.

No mesmo gráfico para RJ3-01B (Figura 17a), nos períodos entre 7,5 cal kyr BP e 4,0 cal kyr BP, e 2,5 cal yr BP até o presente observa-se altos valores de SM, porosidade %lama, portanto, sedimento mais fino (Figura 6), assim como alto aporte continental. Nestes mesmos períodos são observados altos fluxos de Ni, Cu and Zn (Figura 14), o que pode ser devido ao transporte atmosférico possivelmente relacionado com incêndios naturais ocorridos durante o Holoceno médio em períodos de clima seco indicados através de registros de pólen e análises de MO em carvão (Behling, 1995; Pessenda et al., 2004). Mahiques, M. et al. (2002) através de análises de isótopos de nitrogênio e carbono reportaram aumento de material continental a partir de 5,0 cal kyr BP até o presente na plataforma continental sudeste do Brasil. Processos sedimentares nesta região da plataforma são principalemente influenciados pelo fluxo em direção ao sul da corrente do Brasil (CB) ao longo da margem continental oeste do Atlântico (Silveira, I. C. A. et al., 2000; Mahiques, M. et al., 2002; Mahiques, M. et al., 2004). Em geral, areias siliclásticas muito finas e siltes com variadas quantidades de argila e CaCO₃ cobrem o assoalho oceânico contemporâneo da plataforma sudeste do Brasil (Milliman e Summerhayes, 1975; Kowsmann, 1979; Mahiques, M. et al., 2002). Haug et al. (2001) em estudo na Bacia de Cariaco sobre o deslocamento da ITCZ durante o Holoceno,

reportaram variações nas concentrações de Ti e Fe, nas quais baixas concentrações destes foram observadas durante YD e altas teores de Fe e Ti foram observadas entre 10,5 cal kyr BP e %, 4,0 cal kyr BP relacionados a insolação orbital, com flutuações de baixas concentrações em 8,3 cal kyr BP, 7,8 cal kyr BP, 5,0 cal kyr BP, 3,8 cal kyr BP, 3,4 cal kyr BP, 3,0 cal kyr BP e 2,8 cal kyr BP (Kaufman *et al.*, 2004; Peterson e Haug, 2006; Renssen *et al.*, 2012). Entretanto, no presente trabalho elevada introdução de material continental foi marcado entre 4,8 cal kyr BP e 3,8 cal kyr BP mostrando a ocorrência de eventos pretéritos opostos entre o Hemisfério Sul e Norte.

A figura 19a do testemunho RJ13-02 demonstra um período de entrada continental a partir de 3,4 cal kyr BP até o presente e um período de aporte biogênico marinho mais relevante a partir de 4,7 cal kyr BP a 3,4 cal kyr BP. As variações nos parâmetros geofísicos tais como o aumento na SM e porosidade começando em 3,2 cal kyr BP (Figura 7) apoiam essas afirmações. Ambos testemunhos RJ13-01 e RJ13-02 demonstraram um intervalo de tempo por volta de 4,0 cal kyr BP e 3 cal kyr BP quando o aporte continental passou a ter menor significância e isto sobrepõe-se com o início do período em que o nível do mar começou a baixar após a máxima transgressão a cerca 5,1 cal kyr BP (Martin *et al.*, 2003; Angulo *et al.*, 2006; Castro *et al.*, 2014).

A figura 19c de RJ13-02 mostra um aumento de TOC e CaCO₃. Na figura 18 é evidente que o TOC está melhor relacionado com os marcadores continentais e redoxsensíveis, por outro lado, o CaCO₃ parece estar melhor relacionado com os marcadores biogênicos e de produtividade.

6.3.1.2. *Proxies* redox-sensíveis e produtividade

A figura 17b evidencia os períodos em que os *proxies* redox-sensíveis estavam mais elevados. É posível observer uma tendência geral decrescente para os marcadores redox-sensíveis e de produtividade entre 10,8 cal kyr BP e 7,5 cal kyr BP (Figura 17b,c). Estas características podem estar relacionadas com o baixo nível do mar neste período com a presença de uma zona de surf a qual oxigena a água. Eventos de produtividade são moderados e apenas por volta de 8,7 cal kyr BP maior produtividade começa a parecer assim como altos teores de Si. Entre 7,5 cal kyr BP e 4,5 cal kyr BP há um aumento constante de marcadores redox-sensíveis no qual após 4,0 cal kyr BP alcançou um máximo com valores, suficientemente, altos para implicar em depleção de oxigênio na coluna d'água e nos sedimentos supeficiais. As concentrações mais elevadas dos elementos marcadores redox-sensíveis ocorreram por volta de 3,3 cal kyr BP e 2,8 cal kyr BP e entre 2,2 cal kyr BP e 1,0 cal kyr BP (Figuras 14 e 17b). Estes comportamentos

podem estar associados a um fundo oceânico subóxido promovendo a deposição de TE redox-sensíveis; subsequente aos períodos citados de diminuição destes TE até o presente.

O período de maior produtividade ocorreu entre 7,0 cal kyr BP e 4,5 cal kyr BP, possivelmente contribuindo para um ambiente mais oxigenado e então diminuindo até 3,0 cal kyr BP. Lessa *et al.* (2016) reportou baseado em análises de isótopos estáveis de oxigênio e de razões Mg/Ca em assembléias de foraminíferas em testemunho na região de Cabo Frio um período entre 7,0 cal kyr BP e 5,0 cal kyr BP marcado por uma baixa intesidade da CB e alta produtividade ligada a ressurgência de águas frias e enriquecidas de nutrientes pelas águas centrais do Atlântico Sul (SACW) na região de Cabo Frio também observada por Albuquerque *et al.* (2016) através de indicadores elementares e minerais em sedimento. Os *proxies* de produtividade aumentaram novamente após 3 cal kyr BP para RJ13-01: primeiramente entre 2,2 cal kyr BP e 1,8 cal kyr BP e então, a partir de 1,0 cal kyr BP até próximo ao presente. Eventos de ressurgência parecem ter ocorrido com mais frequência após o Holoceno médio para o superior. Nagai *et al.* (2016) reportaram a ocorrência de picos de produtividade associados a altos níveis de V/AI e Cr/AI após 2,5 cal kyr BP na região de Cabo Frio. No presente trabalho um aumento nos *proxies* redox-sensíveis entre 2,2 cal kyr BP e 1,0 cal kyr BP foi observado em RJ13-01.

A figura 19b para RJ13-02 mostra 2 picos de altas razões de *proxies* redoxsensíveis um por volta de 3,7 cal kyr BP e outro a partir de 2,9 cal kyr BP e 2,5 cal kyr BP. Como registrados em RJ13-02, eventos de alta produtividade foram notáveis entre 4,5 cal kyr BP e 3,5 cal kyr BP (Figura 19a).

O Holoceno superior foi mais úmido que o Holoceno médio (Behling e Safford, 2010). Scheel-Ybert (2000) reportou, através de análises de partículas de carvão, flutuações climáticas em que episódios de umidade ocorreram por volta de 4,5 kyr BP e 2,3 kyr BP intercalados com aumento de eventos de clima seco na costa do estado do Rio de Janeiro. Barreto *et al.* (2015) reportaram através de análises de pólen em Jurujuba no Rio de Janeiro indicando a ocorrência de 2 episódios climáticos: um úmido entre 3.380 yr BP e 2.960 yr BP e um período mais quente porém menos úmido por volta de 2.820 yr BP. Tais características podem explicar as diferenças cronológicas de eventos registrados em RJ13-01 e RJ13-02 tais como a incidência de altos valores de *proxies* redox-sensíveis e de produtividade durante o Holoceno superior, uma vez que variações entre climas secos e úmidos ocorrem dentre de curtos espaços de tempo. Além disso, a entrada de material continental pode vir do transporte atmosférico e/ou aquático.

6.3.2. Variações paleoceanográficas e paleoclimáticas

Condições de clima seco, com longo período anual de seca ocorreram durante o Holoceno Inferior na América do Sul, como consequência do evento Younger Dryas pouco antes do início do Holoceno (Ledru, 1993; Baker *et al.*, 2001; Araujo *et al.*, 2005; Ledru *et al.*, 2009; Behling e Safford, 2010). Por volta de 11.000 cal yr BP, clima quente e úmido foi registrado em amostras da Amazônia enquanto um clima frio e úmido parecia prevalecer na região central do Brasil sugerindo que a zona de convergência intertropical (ITCZ) estava alocada mais ao norte do que está agora no presente (Sifeddine *et al.*, 2001). Durante a transição entre o Pleistoceno e o Holoceno, o nível relativo do mar na costa brasileira estava cerca de 4,5 m abaixo do nível atual. Após esta transição, o nível do mar começou a subir rapidamente e então por volta de 8,0 cal kyr BP o nível do mar estava o mesmo que no presente (Angulo *et al.*, 2006; Castro *et al.*, 2014). Estas mudanças foram observadas em RJ13-01 através da diminuicão do aporte biogênico e da presença de granulometria grosseira do sedimento entre 10,8 cal kyr BP e 7,5 cal kyr BP como mostram as figuras 6 e 17a.

As alterações nas condições oceanográficas e atmosféricas no Holoceno médio no Brasil foram marcadas por clima úmido no nordeste brasileiro, porém, um clima mais seco na Amazônia (Cruz et al., 2009); condições de seca também foram registradas em outras regiões do Brasil através de análises de pólen e carvão durante este período (Behling e Lichte, 1997; Pessenda et al., 2004; Behling e Safford, 2010). Estas características parecem estar relacionadas com os níveis mais baixos de insolação no verão austral neste período comparado com o Holoceno superior, reduzindo o contraste de temperatura terra-mar e enfraquecendo a circulação do Sistema de monção da América do Sul (SAMS) (Marengo et al., 2012; Prado et al., 2013). O alto aporte continental, condições de alta produtividade e altos fluxos de TE como Ni, Cu e Zn entre 7,0 cal kyr BP e 4,5 cal kyr BP em RJ13-01 podem estar relacionados com incêndios naturais durante este clima mais seco e ocorrência de aporte atmosférico (Behling, 1995) como esses TE podem ser produzidos por queima de biomassa, eles podem ser usados como uma ferramenta adicional em estudos de paleoincêndios. Pessenda et al. (2004) reportou através de partículas de carvão alta frequência e intensidade de paleoincêndios entre 6,4 cal kyr BP e 4,0 cal kyr BP nas regiões de Jaguariúna e Salitre no sudeste do Brasil, os quais podem estar coincidindo com o período de elevação do nível do mar (máxima do nível do mar por volta de 5,1 cal kyr BP (Castro et al., 2014)) e o fortalecimento da ação da CB na plataforma (Mahiques et al., 2007). Além disso, a força da espiral de Ekman poderia causar a deposição de sedimentos neste período e a intensificação da intrusão da

SACW na plataforma média para a zona eufótica (Campos *et al.*, 2000). Estes processos estabeleceram a configuração oceanográfica regional do sistema de ressurgência de Cabo Frio na fronteira oeste do Atlântico como sugerem Albuquerque *et al.* (2016) e Lessa *et al.* (2016).

O deslocamento mais ao sul da ITCZ após 5,0 cal kyr BP aumentou a umidade na região amazônica, o SAMS tornou-se mais intenso expandindo a floresta tropical (Sifeddine *et al.*, 2001; Cruz *et al.*, 2009), por conseguinte, aumentando a umidade no sudeste do Brasil. Além disso, este período é marcado pela diminuição do nível do mar relative a partir de 4.690 cal yr BP até o presente como descrito por Castro *et al.* (2014). Barreto *et al.* (2015) reportou a incidência de clima úmido entre 3.380 cal yr BP e 2.960 cal yr BP através de seus estudos palinológicos na Baía de Guanabara. Este clima úmido foi seguido por um período mais quente e menos úmido até 2.820 cal yr BP. Esta observação coincide com altos fluxos de TOC e de elementos marcadores continentais registrados em RJ13-02 para os períodos 4,4 cal kyr BP, 3,5 cal kyr BP, 3,2 cal kyr BP e 2,8 cal kyr BP, enquanto um aumento do aporte continental foi registrado em 2,5 cal kyr BP e de marcadores redox-sensíveis em 3,3 cal kyr BP, 2,8 cal kyr BP e 1,0 cal kyr BP para RJ13-01.

Além disso, Barreto *et al.* (2015) identificou aumento de ocupação humana ao redor da Bacia de Guanabara durante o Holoceno Superior perto do presente; outros autores reportam ocupação indígena durante este período em outras áreas do Rio de Janeiro (Scheel-Ybert, 2001; Behling e Safford, 2010; Scheel-Ybert *et al.*, 2014). No presente trabalho um aumento nos fluxos de alguns TE, tais como Ni, Zn e Cu e TOC por volta de 1,8 cal kyr BP, 1,6 cal kyr BP e 1,4 cal kyr BP pode estar relacionado com a ocupação humana e com as práticas de corte e queima para uso do solo.

6.4. Hidrocarbonetos

6.4.1. Hidrocarbonetos Alifáticos

Os dados de hidrocarbonetos alifáticos estão apresentados no anexo. Para RJ13-02 foram descritos e discutidos apenas os dados datados através do ¹⁴C, correspondendo ao período entre 5,3 cal kyr BP e 2,3 cal kyr BP.

O testemunho RJ13-01 apresentou maior variação de concentração dos n-alcanos comparado ao RJ13-02, com a média \pm DP do Σ n-Alk (somatório do n-alcanos individuais de n-C₁₂ a n-C₄₀) (0,270 \pm 0,219 mg kg⁻¹) e (0,226 \pm 0,078 mg kg⁻¹) atingindo máximos de

1,090 mg kg⁻¹ e 0,400 mg kg⁻¹ para RJ13-01 e RJ13-02, respectivamente. A correlação de %TOC e Σ n-Alk p<0,05 foi (r = 055) para RJ13-01, não ocorreu correlação significativa para RJ13-02. A média±DP do Σ Terr (somatório de n-alcanos de origem terrestre (n-C₂₇+n-C₂₉+n-C₃₁)) (0,130±0,065 mg kg⁻¹) e (0,128±0,032 mg kg⁻¹) com máximos de 0,225 mg kg⁻¹ e 0,177 mg kg⁻¹ para RJ13-01 e RJ13-02, respectivamente (Tabela 10). A correlação de %TOC e Σ Terr p<0,05 foi (r = 0,84) para RJ13-01, não ocorreu correlação significativa para RJ13-02.

A UCM (mistura complexa não resolvida) definida como uma variedade de compostos ramificados e cíclicos que não podem ser resolvidos por cromatografia gasosa (Blumer *et al.*, 1973; Killops e Al-Juboori, 1990) foi observada em apenas em 3 amostras do testemunho RJ13-01, referentes aos anos de 3,2 e 3,3 cal kyr BP com concentrações de 2,090 e 3,456 mg kg⁻¹, respectivamente e a concentração mais elevada 10,067 mg kg⁻¹ foi encontrada na amostra equivalente à deposição recente, 12 anos da coleta, a qual representa a única amostra do Antropoceno.

				RJ13-01						RJ13-02		
	n	Min	Max	Méd	DP	Median	n	Min	Max	Méd	DP	Median
nC13	18	0,005	0,010	0,007	0,002	0,007						
nC14	5	0,005	0,011	0,007	0,003	0,007						
nC15	6	0,005	0,015	0,009	0,005	0,009						
nC16	9	0,005	0,012	0,007	0,003	0,006						
nC17	5	0,005	0,010	0,008	0,002	0,009						
nC18	3	0,008	0,017	0,012	0,005	0,011						
Fit	8	0,005	0,016	0,008	0,005	0,005	7	0,005	0,007	0,006	0,001	0,006
nC19	3	0,010	0,019	0,014	0,005	0,012						
nC20	4	0,006	0,023	0,013	0,008	0,012						
nC21	6	0,005	0,037	0,016	0,012	0,012	8	0,005	0,020	0,008	0,005	0,006
nC22	8	0,005	0,075	0,023	0,025	0,011	20	0,005	0,015	0,008	0,003	0,007
nC23	27	0,005	0,137	0,016	0,029	0,007	20	0,005	0,020	0,009	0,004	0,008
nC24	14	0,005	0,168	0,028	0,048	0,008	11	0,005	0,021	0,010	0,005	0,008
nC25	32	0,006	0,168	0,033	0,031	0,026	27	0,005	0,036	0,021	0,007	0,022
nC26	22	0,004	0,076	0,014	0,017	0,009	14	0,004	0,019	0,008	0,004	0,006
nC27	31	0,008	0,057	0,027	0,013	0,024	27	0,004	0,031	0,020	0,007	0,022
nC28	19	0,004	0,019	0,011	0,005	0,012	8	0,005	0,012	0,008	0,003	0,007
nC29	33	0,006	0,096	0,055	0,028	0,058	27	0,025	0,076	0,055	0,013	0,058
nC30	27	0,005	0,034	0,015	0,007	0,012	24	0,005	0,019	0,011	0,004	0,010
nC31	33	0,006	0,084	0,049	0,024	0,049	27	0,022	0,076	0,052	0,013	0,053
nC32	6	0,005	0,016	0,008	0,004	0,006	11	0,005	0,026	0,016	0,005	0,017
nC33	29	0,006	0,047	0,026	0,013	0,024	27	0,005	0,038	0,025	0,009	0,027
nC34	1	0,038	0,038	0,038		0,038	5	0,005	0,013	0,008	0,003	0,006
nC35	21	0,005	0,038	0,010	0,007	0,008	22	0,005	0,011	0,007	0,002	0,007
Σn-Alk	33	0,018	1,096	0,270	0,219	0,223	27	0,065	0,400	0,226	0,078	0,224
ΣΗR	33	0,229	2,421	0,947	0,455	0,843	27	0,077	0,911	0,642	0,210	0,713
UCM	3	2,090	10,067	5,204	4,266	3,456						
ΣΗΤot	33	0,251	13,129	1,691	2,375	1,059	27	0,142	1,219	0,868	0,274	0,938
ΣTerr	33	0,012	0,225	0,130	0,065	0,137	27	0,050	0,177	0,128	0,032	0,135
%ΣTerr/ Σn-alk	33	20,483	100,000	55,203	14,562	56,004	27	40,842	86,753	59,132	9,542	57,354
IA	33	0,422	0,583	0,480	0,039	0,476	27	0,438	0,540	0,486	0,023	0,484
ACL	33	29,288	30,448	29,904	0,257	29,984	27	29,868	30,218	30,072	0,077	30,076
Paq	32	0,148	0,667	0,285	0,135	0,233	27	0,083	0,298	0,200	0,053	0,217
IPC	30	2,607	24,595	8,896	5,525	6,349	25	2,574	16,696	9,099	4,409	7,951

Tabela 10: Número de amostras (n), mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para as concentrações de hidrocarbonetos alifáticos em mg kg⁻¹ e suas razões para os testemunhos RJ13-01 e RJ13-02.

A figura 20 apresenta quatro cromatogramas distintos representativos de amostras do testemunho RJ13-01, o cromatograma I da amostra de 12 anos antes do presente mostra a formação de UCM unimodal entre n-C18 e n-C35, a qual está relacionada à presença de resíduos de óleo bruto degradado por microrganismos (Farrington e Tripp, 1977; Gouch *et al.*, 1992). Esta é a única amostra a apresentar tal perfil cromatográfico de hidrocarbonetos alifáticos. O cromatograma II da amostra de 3,3 cal kyr BP mostra a formação de UCM mais próxima dos n-alcanos de cadeia média entre n-C₁₉ e n-C₂₇ sugerindo a ocorrência de degradação da MO de origem natural por microrganismos, em especial MO de detritos de algas (Johnson e Calder, 1973; Cranwell, 1976; Hatcher *et al.*, 1977; Venkatesan e Kaplan, 1982). O cromatograma III da amostra de 1,2 cal kyr BP representa um período mais úmido como sugere o n-C₂₉ mais elevado (350 mV de intensidade do pico) que o n-C₃₁ (300 mV de intensidade do pico), enquanto o cromatograma IV da amostra de 7,6 cal kyr BP representa um período mais seco conforme indica o n-C₃₁ semelhante ao n-C₂₉ (~200 mV de intensidade dos picos). Estes

83

-

foram exemplos dos diferentes perfis cormatográficos de hidrocarbonetos alifáticos para RJ13-01.

A figura 21 mostra dois cromatogramas representativos do testemunho RJ13-02, o cromatograma V da amostra de 3,9 cal kyr BP sugere um período mais úmido por apresentar o n-C₂₉ levemente mais elevado (200 mV de intensidade do pico) que o n-C₃₁ (150 de intensidade do pico) e o cromatograma VI da amostra de 3,0 cal kyr BP representa um período mais seco onde o n-C₃₁ assemelha-se ao n-C₂₉ (~110 mV de intensidade dos picos). As variações entre os valores n-alcanos para RJ13-02 foram pequenas como observado na tabela 10, a seguir outros parâmetros serão discutidos para colaborar com as observações mencionadas acima.

Cromatograma I

Figura 20: Cromatogramas de amostras do testemunho RJ13-01: amostra de 12 anos BP (I); amostra de 3,3 cal kyr BP (II); amostra de 1,2 cal kyr BP (III); amostra de 7,6 cal kyr BP (IV); eixo horizontal (tempo de retenção de cada composto em minutos) variando de 8,5 minutos para n-C12 à 52 minutos para n-C40; eixo vertical (intensidade do pico em milivolts).

Figura 21: Cromatogramas de amostras do testemunho RJ13-02: amostra de 3,8 cal kyr BP (V); amostra de 3,0 cal kyr BP (VI); eixo horizontal (tempo de retenção de cada composto em minutos) variando de 8,5 minutos para n-C12 à 52 minutos para n-C40; eixo vertical (intensidade do pico em milivolts).

A razão % Σ Terr/ Σ n-alk representa a porcentagem de n-alcanos de origem terrestre em relação ao somatórios de n-alcanos. Em ambos testemunhos esta apresentou médias maiores que 50%, com exceções dos 12 anos antes do presente que representou 35%, 3,2 cal kyr BP (24%), 3,3 cal kyr BP (20%) e 10,7 cal kyr BP (24%) para RJ13-01 (Figura 22) e por volta dos 5,0 cal kyr BP (41%) para RJ13-02 (Figura 23). Os n-alcanos

de origem marinha possuem predominância de n-alcanos n- C_{15} , n- C_{17} e n- C_{19} por isso são preferencialmente degradados em sua deposição, o que pode resultar em predomínio dos n-alcanos de origem terrestre sobre os marinhos (Cranwell, 1976). Isto torna os n-alcanos de origem terrestre indicadores mais adequados da contribuição continental ao longo do tempo (Meyers, 1997), visto que os n-alcanos de cadeia longa representam menos de 5% da composição lipídica do fitoplâncton (Bianchi e Canuel, 2011).

Figura 22: Concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para Σ n-alk, Σ Terr, % Σ Terr/ Σ n-alk, IA, ACL, Paq e IPC ao longo dos anos em cal kyr BP para o testemunho RJ13-01. A amostra de 12 anos antes do presente não foi incluída nos perfis pois a SAR é muito elevada e mascara a variação ao longo dos anos.

Figura 23: Concentrações em mg kg⁻¹ (círculos abertos) e fluxos em mg cm⁻² kyr⁻¹ (círculos sólidos) para Σ n-alk, Σ Terr, Σ Terr/ Σ n-alk, IA, ACL, Paq e IPC ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

O índice de alcanos (IA) oscilou bastante entre 14,4 cal kyr BP e 9,0 cal kyr BP e após este período predominaram valores próximos ou abaixo de 0,5 em RJ13-01 (Figura 22). Em RJ13-02 houve predomínio de valores abaixo de 0,5 para IA à exceção dos segmentos relativos a 3,0 cal kyr BP e 3,1 cal kyr BP (Figura 23). Como este índice é indicativo da predominância do tipo de vegetação, valores superiores a 0,5 sugerem predominância de n- C_{31} que é o n-alcano mais abundantes em plantas do tipo C4, como as gramíneas, o que indica clima mais seco. Valores de IA menores que 0,5 indicam predominância de n- C_{29} que é mais abundante em plantas do tipo C3, que são plantas vasculares, portanto, sugerindo clima mais úmido (Zhang et al., 2006). Visto que o IA leva em conta apenas os n-alcanos n-C₂₉ e n-C₃₁, o índice de Tamanho Médio da Cadeia (ACL) pode ser robusto visto que, além destes dois n-alcanos, inclui o $n-C_{27}e o n-C_{33}$ os quais podem indicar a variação climática em decorrência do tipo de vegetação. Houve correlação estatisticamente significativa entre IA e ACL (r = 0,60) para RJ13-01 e para RJ13-02 a correlação foi fraca. Valores maiores de ACL indicam clima mais seco ou de temperatura mais elevada como observa-se em amostras do Holoceno Inferior em RJ13-01 com exceção em 10,7 cal kyr BP. Valores menores de ACL indicam clima úmido e/ou ocorrência de temperaturas mais baixas, como pode-se observar na maioria das amostras do Holoceno médio e superior em RJ13-01, mas principalmente em 3,2 cal kyr BP e 3,3 cal kyr BP (Figura 22) e em 3,1 cal kyr BP para RJ13-02 (Figura 23) (Poynter e Eglinton, 1990).

As macrofitas aquáticas também podem influenciar no padrão de distribuição dos n-alcanos de cadeia longa, Ficken *et al.* (2000) desenvolveram o índice Paq, o qual quando apresenta-se entre 0,13 e 0,51 indica maior contribuição de plantas terrestres e quando entre 0,45 e 1 indicam uma contribuição maior de macrófitas aquáticas. Apenas em 3,2 cal kyr BP, 3,3 cal kyr BP e 10,7 cal kyr BP ocorreram valores de Paq maiores que 0,57 em RJ13-01 (Figura 22), para RJ13-02 todos os valores de Paq foram menores que 0,4 (Figura 23) indicando predomínio de vegetação terrestres sobre as macrófitas aquáticas.

Na ocorrência de n-alcanos de origem natural, o índice de preferência de carbono (IPC) é utilizado para identificar presença de bactérias fotossintetizantes e não fotossintetizantes, fungos, algas, zooplâncton e plantas superiores (Blumer, Guillard, *et al.*, 1971; Caldicott e Eglinton, 1973; Cranwell *et al.*, 1987). Valores altos de IPC indicam maior aporte de MO de origem continental e, no presente trabalho, o maior valor observado foi de 24,6 em 9,9 cal kyr BP para RJ13-01 (Figura 22). O valores oscilaram bastante, porém, apresentaram-se maiores que 2,6 em ambos os testemunhos (Figuras 22 e 23) sugerindo elevada contribuição de MO de origem continental.

6.4.2. Hidrocarbonetos Policíclicos Aromáticos

Os dados de hidrocarbonetos policíclicos aromáticos estão listados no anexo. Para RJ13-02 foram descritos e discutidos apenas os dados datados através do ¹⁴C, correspondendo ao período entre 5,3 cal kyr BP e 2,3 cal kyr BP. De modo geral, assim como os outros parâmetros as concentrações de HPAs mostraram variação maior em RJ13-01 em relação a RJ13-02 (Tabela 11).

O somatório de HPAs (Σ HPAs) incluiu todos os compostos quantificados, sem exceção. A média±DP de Σ HPAs foi de 15,03 ±15,60 µg kg⁻¹ e 14,56±15,99 µg kg⁻¹ com máximos de 75,05 µg kg⁻¹ e 60,73 µg kg⁻¹ para RJ13-01 e RJ13-02, respectivamente. A correlação de Pearson entre %TOC e Σ HPAs para RJ13-01 foi fraca (p<0,05; r = 0,50), nenhuma correlação significativa foi observada para RJ13-02. O somatório dos hidrocarbonetos marcadores de combustão (Σ Pyro) incluem os HPAs: Fl, Py, Ch, BbjFl, BkFl, BePy, BaPy, IP, BghiPe e DBalPy, visto que estes marcadores podem resistir à transformação ao longo de tempo, em escalas geológicas (Venkatesan e Dahl, 1989; Killops e Massoud, 1992). As médias±DP para Σ Pyro foram de 2,18 ±1,66 µg kg⁻¹ e 2,19±0,85 µg kg⁻¹ com máximos de 7,34 µg kg⁻¹ e 4,68 µg kg⁻¹ para RJ13-01 e RJ13-02, respectivamente. A correlação entre %TOC e Σ Pyro para RJ13-01 foi de (p<0,05; r = 0,70) e fraca (p<0,05; r = 0,45) para RJ13-02. A média±DP do somatório dos HPAS

marcadores de MO de biossíntese (Σ Bio) (N, C1N, C2N, C3N, C4N, Ph, C1Ph, C2Ph, C3Ph, C4Ph, Ret e Pe) foi de 9,77 ±11,42 µg kg⁻¹ e 10,39±14,52 µg kg⁻¹ com máximos de 55,92 µg kg⁻¹ e 53,85 µg kg⁻¹ para RJ13-01 e RJ13-02, respectivamente (Tabela 11). Fraca correlação foi observada entre %TOC e Σ Bio (p<0,05 r = 0,43) para RJ13-01, nenhuma correlação foi observada para RJ13-02.

O perileno (Pe) é um HPA biogênico constituído de 5 anéis aromáticos e amplamente encontrado em sedimento marinhos, de água doce e em solos (Silliman *et al.*, 1998; Wilcke *et al.*, 2000). O Pe, sob condições anóxicas, pode ser formado microbiologicamente a partir de percursores biológicos específicos de origem continental ou aquática (Venkatesan, 1988; Silliman *et al.*, 1998), mais recentemente o perileno tem sido também considerado ser resultado da degradação da madeira por fungos (Jiang *et al.*, 2000; Grice *et al.*, 2009; Suzuki *et al.*, 2010). Para comprovar a origem de biossíntese do perileno detectado nas amostras foi calculada a razão entre o Pe e seus isômeros (Pe/(BbjFl+BkFl+BePy+BaPy+Pe)). Valores deste índice acima de 10% indicam que o perileno é de origem de biossíntese. Em ambos os testemunhos os valores dessa razão foram acima de 40%. A correlação de Pearson entre o %TOC e HPAs parentais de biossíntese (N e Pe) foi (p<0,05; r = 0,77) e fraca correlação entre %TOC e Ph e Re para RJ13-01; nenhuma correlação entre o %TOC e os HPAs parentais de biossíntese foi observada para RJ13-02.

A variação dos HPAs individuais, Σ HPAs, Σ Pyro e Σ Bio ao longo dos anos está ilustrada na figura 24 para RJ13-01 e figura 25 para RJ13-02.

				RJ13-01						RJ13-02		
	n	Min	Max	Méd	DP	Median	n	Min	Max	Méd	DP	Media n
Ν	32	0,148	1,585	0,734	0,380	0,716	24	0,381	5,772	1,043	1,076	0,768
C1N	23	0,127	0,888	0,358	0,207	0,329	22	0,127	0,501	0,284	0,123	0,239
C2N	33	0,138	3,050	0,737	0,698	0,469	22	0,134	0,829	0,407	0,210	0,347
C3N	23	0,133	2,101	0,596	0,565	0,410	13	0,125	0,415	0,221	0,109	0,174
C4N	18	0,150	2,476	0,569	0,637	0,303	10	0,134	0,579	0,269	0,136	0,233
F	24	0,137	1,258	0,365	0,240	0,283	8	0,131	0,526	0,211	0,131	0,167
C1F	29	0,125	1,546	0,459	0,397	0,277	21	0,131	1,122	0,403	0,299	0,272
C2F	26	0,128	1,896	0,489	0,463	0,285	20	0,136	1,636	0,478	0,444	0,272
C3F	29	0,137	5,760	1,120	1,372	0,543	18	0,134	2,572	0,770	0,636	0,607
Ph	30	0,268	3,079	0,914	0,566	0,833	22	0,144	1,097	0,366	0,225	0,310
C1Ph	30	0,141	3,158	0,550	0,665	0,337	21	0,131	0,458	0,291	0,100	0,320
C2Ph	30	0,126	7,668	0,980	1,614	0,402	20	0,128	1,110	0,395	0,267	0,304
C3Ph	31	0,165	12,942	1,408	2,816	0,408	21	0,127	1,165	0,468	0,312	0,383
C4Ph	29	0,198	24,618	2,937	5,741	1,058	20	0,135	22,961	4,000	7,307	1,007
Ret	16	0,126	0,768	0,268	0,185	0,180	20	0,133	25,861	3,768	8,127	0,267
Fl	28	0,126	2,167	0,542	0,427	0,414	25	0,156	1,535	0,505	0,277	0,468
Ру	23	0,128	2,209	0,357	0,483	0,205	18	0,125	0,361	0,191	0,063	0,171
C1Py	23	0,127	1,822	0,384	0,412	0,239	19	0,127	0,341	0,178	0,059	0,166
C2Py	15	0,128	1,838	0,575	0,578	0,280	14	0,126	0,364	0,208	0,076	0,198
Ch	22	0,128	0,559	0,277	0,111	0,249	22	0,137	0,333	0,192	0,050	0,190
C1Ch	9	0,139	0,498	0,229	0,121	0,175						
C2Ch	8	0,152	1,567	0,513	0,510	0,287						
BbjFl	23	0,326	0,792	0,507	0,124	0,487	24	0,296	0,680	0,449	0,074	0,447
BkFl	6	0,126	0,493	0,230	0,156	0,140	3	0,401	0,449	0,422	0,025	0,414
BePy	17	0,143	0,369	0,175	0,051	0,161	10	0,128	0,348	0,161	0,067	0,143
Pe	33	0,146	3,015	1,003	0,606	1,027	25	0,487	2,684	0,982	0,402	0,906
3-MeChl	8	0,159	0,820	0,420	0,266	0,361	11	0,133	0,365	0,217	0,075	0,203
IP	23	0,254	0,709	0,504	0,125	0,485	25	0,192	0,758	0,349	0,129	0,344
DBahA	15	0,127	0,260	0,176	0,038	0,177	12	0,138	0,308	0,203	0,064	0,179
BghiPe	23	0,154	0,466	0,324	0,098	0,325	17	0,136	0,656	0,284	0,111	0,276
DBalPy	17	0,130	0,414	0,229	0,080	0,206	15	0,125	0,942	0,361	0,284	0,254
ΣHPAs	33	1,179	74,970	14,728	15,678	10,940	25	1,135	60,702	14,284	16,071	7,668
ΣΡуго	29	0,126	7,387	2,367	1,586	2,379	25	0,648	4,489	2,150	0,851	2,083
ΣPyro/ ΣHPAs	29	0,031	0,328	0,165	0,092	0,194	25	0,049	0,571	0,244	0,119	0,225
%ΣPyro/ ΣHPAs	29	3,097	32,792	16,516	9,170	19,389	25	4,871	57,072	24,432	11,943	22,510
ΣΒίο	33	0,992	55,921	9,683	11,469	6,771	25	0,487	53,849	10,304	14,561	5,268
ΣBio/	33	0,521	0,900	0,653	0,103	0,639	25	0,420	0,888	0,616	0,132	0,635
2117 AS %ΣBio/ ΣΗΡΛα	33	52,093	90,032	65,324	10,316	63,941	25	41,974	88,799	61,583	13,212	63,544

Tabela 11: Valores de número de amostras (n), mínimos (Min), máximos (Max), médias (Méd), desvios padrão (DP) e medianas (Median) para as concentrações de hidrocarbonetos policíclicos aromáticos em μ g kg⁻¹ e suas razões para os testemunhos RJ13-01 e RJ13-02.

PUC-Rio - Certificação Digital Nº 1212274/CA

Figura 24: Concentrações em $\mu g kg^{-1}$ (círculos abertos) e fluxos em $\mu g cm^{-2} kyr^{-1}$ (círculos sólidos) para HPAs individuais, Σ HPAs, Σ Pyro e Σ Bio ao longo dos anos em cal kyr BP para o testemunho RJ13-01. A amostra de 12 anos antes do presente não foi incluída nos perfis pois a SAR é muito elevada e mascara a variação ao longo dos anos.

Figura 25: Concentrações em μ g kg⁻¹ (círculos abertos) e fluxos em μ g cm⁻² kyr⁻¹ (círculos sólidos) para HPAs individuais, Σ HPAs, Σ Pyro e Σ Bio ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

Para avaliar a origem dos HPAs e relacioná-la com eventos climáticos ao longo do Holoceno, estes foram classificados em HPAs de origem pirogênica (Pyro) e de origem de biossíntese (Bio). Os de origem pirogênica decorreriam de incêndios naturais que podem variar tanto em frequência como em intensidade (Killops e Massoud, 1992; Jiang *et al.*, 1998; Finkelstein *et al.*, 2005; Marynowski e Simoneit, 2009; Denis *et al.*, 2012) e, portanto, podem sugerir relação à clima seco (Flannigan *et al.*, 2000; Pessenda *et al.*, 2004; Westerling *et al.*, 2006). A modificação de HPAs pirogênicos durante o transporte, sedimentação e processos pós sedimentação é considerada mínima (Prahl e Carpenter, 1983).

Os HPAs de biossíntese (Bio) são produzidos por transformações diagenéticas através de percursores biológicos, sendo sintetizados por bactérias, plantas fungos e animais e estão relacionados ao aporte de diferentes tipos de vegetação (Wakeham e Canuel, 2015). A maior contribuição de HPAs Bio de origem continental pode sugerir clima mais úmido relacionado à intensidade de chuvas e carreando estes compostos por via aquática e/ou atmosférica (Sepúlveda *et al.*, 2009). Porém, maior intensidade de chuvas também pode elevar a produção primária em meio aquático elevando a concentração de HPAs de origem fitoplantônica, portanto, a forte presença de HPAs originados da biossíntese tanto continental como marinha pode estar relacionada a clima mais úmido (Wakeham *et al.*, 1980; Jiang *et al.*, 1998; Bakhtiari *et al.*, 2009; Varnosfaderany *et al.*, 2014).

A contribuição dos HPAs pirogênicos sobre o total de HPAs está expressa em percentual, $\%\Sigma$ Pyro/ Σ HPAs, e variou entre 3,1% a 32,8% em RJ13-01 e 4,9% a 57,1% em RJ13-02; a contribuição de HPAS biogênicos expressa em $\%\Sigma$ Bio/ Σ HPAs variou entre 52,1% a 90,0% para RJ13-01 e 42,0% a 88,8% para RJ13-02 (Tabela 11).

Os HPAs-Pyro passaram a surgir de forma mais significativa a partir de 8,0 cal kyr BP, com exceção do Fl e do Py que foram identificados em amostras entre 13,8 cal kyr BP e 8,8 cal kyr BP, porém em muito baixas concentrações e o Ch que foi identificado em 13,3 cal kyr BP em RJ13-01 (Figura 24). Este resultado não significa ausência de aporte de hidrocarbonetos pirogênicos, mas certamente está relacionado à granulometria observada neste período, compreendendo aproximadamente 60% de areia (areia muito fina+areia fina+ areia média +areia grossa) (Figura 8). Este tipo de material sedimentar impede a adsorção e fixação de compostos orgânicos sobre os sólidos uma vez que constitui-se de suportes pouco ativos tal como CaCO₃ e silicatos. Além disto, fragmentos de conchas observados neste período sugerem um ambiente deposicional costeiro de alta energia.

A variação nas concentrações relativas de HPAs-Pyro individuais pode estar relacionada tanto com à intensidade de incêndios como ao tipo de biomassa queimada (Killops e Massoud, 1992; O'malley *et al.*, 1997). De modo geral, a predominância de

HPAs de 4 anéis aromáticos está associada a incêndios naturais de baixa a moderada intensidade e a predominância de HPAs de 5 a 6 anéis está relacionada a incêndios de moderada a alta intensidade (Finkelstein *et al.*, 2005). Diferenças no tipo de material de queima (madeira *versus* vegetação), carga e condições do material, condições do tempo, heterogeneidade do substrato e duração da queima também podem influenciar a distribuição do HPAs (Rundel, 1981; Schmidt e Noack, 2000).

Os picos de maior contribuição de HPAs-Pyro em relação ao EHPAs para RJ13-01 ocorreram em: 8,0 cal kyr BP (33%), entre 3,0 cal kyr BP e 2,6 cal kyr BP (cerca de 29%), 0,9 cal yr BP (28%) e 0,3 cal kyr BP (22%); e os de menor contribuição ocorreram entre 14,4 cal kyr BP e 9,0 cal kyr BP <7% e em 7,6 cal kyr BP (7,5%), 3,3 cal kyr BP e 3,2 cal kyr BP (10%) e 0,5 cal kyr BP (7%) (Figura 26). No período de 8,0 cal kr yr BP a 4,1 cal kyr BP a contribuição de Pyro com 5 e 6 anéis aromáticos sobre o ΣPyro é em média de 65% sendo maior do que a dos HPAs de 4 anéis durante esta época, principalmente entre 6,0 cal kyr BP e 4,1 cal kyr BP. O Holoceno médio é considerado um período de maior incidência de clima seco (Prado et al., 2013). Pessenda et al. (2004) através de análises em carvão observaram maior incidência de incêndios durante o Holoceno médio e início do Holoceno superior no sudeste do Brasil. Após este período, um aumento na contribuição de Pyro de 4 anéis que atinge 67% em 3,3 cal kyr e cai a partir de 3,0 cal kyr BP que se estendeu até o presente em RJ13-01 (Figura 26). Em períodos nos quais os HPAs pirogênicos de 5 e 6 anéis dominaram é provável que a intensidade de incêndios estivesse sido maior, sugerindo a ocorrência de clima mais seco. Outros autores relataram incêndios durante o Holoceno médio e início do Holoceno superior nas regiões da Amazônia e sudeste do Brasil indicando períodos de seca (Behling, 1995; Ledru et al., 2009; Prado et al., 2013).

Em RJ13-02 os picos de maior contribuição de HPAs-Pyro em relação ao Σ HPAs ocorreram em 3,1 cal kyr BP (43%), 2,5 cal kyr BP (57%) e os de menor contribuição se deram em 3,6 cal kyr BP, 3,4 cal kyr BP e 2,9 cal kyr BP cerca de 5% (Figura 27). A maior contribuição de HPAs-Pyro de 4 anéis sobre o Σ Pyro ocorreu em 4,2 cal kyr BP (62%) e 3,0 cal kyr BP (58,5%). A contribuição expressiva entre 65% e 80% de HPAs-Pyro de 5 e 6 anéis sobre o Σ Pyro que indica intervalos de maior intensidade de incêndios, deu-se nos períodos entre 3,7 cal kyr BP e 3,1 cal kyr BP; 2,6 cal kyr BP e 2,5 cal kyr BP (Figura 27).

Figura 26: Contribuição do HPAs individuais marcadores de combustão para RJ13-01.

Figura 27: Contribuição do HPAs individuais marcadores de combustão para RJ13-02.

Houve grande contribuição de HPAs de biossíntese ao longo de todo o Holoceno. Visto que são originados a partir de triterpenóides e esteróis, esses podem ser de origem continental e marinha. Os HPAs-Bio representaram mais do que 50 % do total de HPAs em RJ13-01 (Figura 28) e RJ13-02, com exceção em 3,1 cal kyr BP e entre 2,6 cal kyr BP e 2,5 cal kyr BP, quando perfizeram menos do que 50% (Figura 29). As maiores contribuições de HPAs-Bio em RJ13-01, cerca 70% a 90% em relação ao total de HPAs, foram observadas por volta de 13,7 cal kyr BP (82%), 10,9 cal kyr BP (90%), 10,7 cal kyr BP (80%), 10 cal kyr BP (84%), 9,0 cal kyr BP (85%), 3,3 cal kyr BP (75%) e 3,2 cal kyr BP (77%). Para RJ13-02 os períodos de maior contribuição de HPAs-Bio em relação ao

 Σ HPAs foram observadas em 3,6 cal kyr BP (84%), 3,4 (89%) e 2,9 cal kyr BP (89%) (Tabela 11).

Os períodos de menor contribuição de HPAs-Bio em relação ao Σ HPAs para RJ13-01 foram em 8,0 cal kyr BP (53%), 5,3 cal kyr BP (53%), 2,6 cal kyr BP (53%) e 0,5 cal kyr BP (55%). Em RJ13-02 os mínimos deram-se em 3,1 cal kyr BP (43%), 2,6 cal kyr BP (46%), 2,6 cal kyr BP (43%) e 2,5 cal kyr BP (42%) (Figuras 28 e 29).

O Pe apresentou uma grande variação ao longo do Holoceno registrada em RJ13-01 e mais especificamente ao longo do Holoceno Superior, registrada em RJ13-02. Entre 14,4 cal kyr BP e 10,7 cal kyr BP o Pe representou, em média, 12% do Σ Bio mostrando picos de, aproximadamente, 30% do total em 9,9 cal kyr BP e 8,0 cal kyr BP (Figura 28). Em RJ13-01 à 6,6 cal kyr BP o Pe representou cerca de 40 % do Σ Bio, diminuindo em direção ao presente até um mínimo de cerca de 3 % em 3,3 cal kyr BP e 3,2 cal kyr (Figura 28). Em RJ13-02 o Pe mostrou uma contribuição média de 25 % entre 5,3 cal kyr BP e 3, 7 cal kyr BP. Há um pico de 40 % em 4,7 cal kyr BP que se reduz à menos de 2 % em 3,6 cal kyr BP e em 3,4 cal kyr BP há aumento em direção ao presente chegando a contribuição em relação ao Σ Bio à 49% em 2,5 cal kyr BP. Em 2,6 cal kyr BP o Pe foi os único HPAs-Bio identificado (Figura 29).

O reteno é um HPA de 3 anéis aromáticos derivado do ácido abiético, diterpenóide comum em resina de plantas superiores do tipo gimnosperma (Wakeham *et al.*, 1980), provavelmente é também formado durante a sedimentação, assim como o Pe e preservado em sedimentos redutores (Meyers *et al.*, 1995). O reteno apresenta maiores contribuições ao grupo HPAs-Bio entre 13,8 cal kyr BP e 8,8 cal kyr BP com média de 5,4 % e máximos de 9,4% em 12,4 cal kyr BP e em 6% em 10,9 cal kyr BP. Sua contribuição mostra tendência ao decréscimo em direção ao recente e em algumas épocas não foi detectado, surgindo, porém, no último milênio com contribuição entre 2-3% em 0,9 cal kyr BP, 0,3 cal kyr BP e 0,3 cal kyr BP e 4,1% na amostra do Antropoceno (12 anos) em RJ13-01 (Figura 28).

No testemunho RJ13-02 o reteno mostrou concentração média mais elevada do que em RJ13-01 (Tabela 11) e sua contribuição em relação aos HPAs-Bio variou largamente, mostrando picos de 47% em 3,6 cal kyr BP, 48% em 3,4 cal kyr BP, 44% em 2,9 cal kyr BP e 32% em 2,8 cal kyr BP (Figura 29).

Como já mencionado o fenantreno pode ser formado pela diagênese de esteróis, através da desidrogenação de compostos como o colesterol e pela desalquilação do reteno (Lee *et al.*, 1977; Laflamme e Hites, 1979; Wakeham *et al.*, 1980) e a distribuição do Ph e seus alquilados é influenciada pelo tipo de matéria orgânica (Cassani *et al.*, 1988). Budzinski *et al.* (1995) procuraram identificar as diferentes origens dos metilfenantrenos e relacionaram o 1-metilfenantreno à origem terrestre e o 9-metilfenantreno à origem

marinha. O Ph e seus alquilados também mostraram uma ampla variação ao longo do Holoceno como pode ser observado no testemunho RJ13-01. O mais abundante entre os homólogos de Ph foi o C4Ph. O Ph, C1Ph, C2Ph e C3Ph mostraram distribuição semelhantes ao C4Ph ao longo do Holoceno, porém com concentrações menores para RJ13-01 (Figura 24). As maiores contribuições do somatório do fenantreno com seus alquilados (Ph+C1Ph+C2Ph+C3Ph+C4Ph) (Phs) em relação ao Σ Bio foi em 9,0 cal kyr BP (84%), 7,6 cal kyr BP (84%), 3,3 cal kyr BP (89%) e 3,2 cal kyr BP (88%) e as menores foram em 14,4 cal kyr BP (27%) e em 1,4 cal kyr BP (22%) (Figura 28).

Em RJ13-02 o Phs contribuíram em média cerca de 37% sobre o Σ Bio, com picos altos em 4,8 cal kyr BP, 4,2 cal kyr BP, 3,6 cal kyr BP, 3,4 cal kyr BP de (46%), 2,9 cal kyr BP, 2,8 cal kyr BP e 2,3 (48%) com um máximo de 55% em 2,4 cal kyr BP (Figura 29). As menores contribuições de Phs em relação ao Σ Bio foram observadas em 3,1 cal kyr BP (15%), 3,1 cal kyr BP (18%) e 2,6 cal kyr BP (16%) para RJ13-02 (Figura 29).

O naftaleno e seus alquilados podem ser sintetizados por plantas, bactérias, fungos e insetos (Silliman *et al.*, 1998; Wilcke *et al.*, 2003). Autores reportaram que o naftaleno, o fenantreno e o perileno podem ter origem na atividade de cupins e microorganismos em ambientes tropicais (Wilcke *et al.*, 2003; Bandowe *et al.*, 2009). O naftaleno também pode ser produzido por flores do gênero *Magnolia* em ambientes temperados (Azuma *et al.*, 1996) e também por plantas da família Annonaceae da floresta Amazônica (Jürgens *et al.*, 2000). O N mostrou uma variação temporal diferente daquela de seus alquilados em RJ13-01 e em RJ13-02 (Figuras 24 e 25). As maiores contribuições do N e seus alquilados (N+C1N+C2N+C3N+C4N) (Ns) em relação ao Σ Bio foram em 14,4 cal kyr BP (59%), 3,8 cal kyr BP (60%), 1,4 cal kyr BP (66%) e 0,47 cal kyr BP (61%) e as menores contribuições foram em 10,7 cal kyr BP (9%), 9,0 cal kyr BP (12%), 7,6 cal kyr BP (10%), 3,3 cal kyr BP (7%) e 3,2 cal kyr BP (9%) para RJ13-01 (Figura 28).

Para RJ13-02, a maior contribuição de Ns sobre Σ Bio foi de cerca 70% em 3,1 cal kyr BP seguida de 47% em 3,1 cal kyr BP e 46% em 3,0 cal kyr BP, em 3,7 cal kyr BP foi observada 48% de contribuição de Ns em relação ao total de HPAs-Bio (Figura 29). As menores contribuições ocorreram ente 3,6 cal kyr BP e 3,4 cal kyr BP (5%) seguida de 4% em 2,9 cal kyr BP e 8 % em 2,8 cal kyr BP para RJ13-02 (Figura 29).

Figura 28: Contribuição do HPAs individuais marcadores de origem biogênica para RJ13-01.

Figura 29: Contribuição do HPAs individuais marcadores de origem biogênica para RJ13-02.

Os HPAs tetra e pentacíclicos derivados do criseno e do piceno, marcadores de plantas superiores, foram analisados qualitativamente com o objetivo de verificar a presença e a distribuição relativa ao longo dos anos. Na figura 28 observa-se que derivados do criseno e o 2,2,4a9-TMPic demonstram um pico em 3,3 cal kyr BP. Elevado aporte de MO baseado nas concentrações de TN, TOC, TE (Ni, Cu and Zn), n-alks derivados de macrófitas e HPAs, principalmente, o Ph e seus alquilados foram

observados para o testemunho RJ13-01. O oposto foi observado para o restando dos derivados do piceno em RJ13-01.

Figura 30: Razões de área para HPAs biogênicos ao longo dos anos em cal kyr BP para o testemunho RJ13-01.

Em RJ13-02 observou-se uma distribuição um pouco diferente daquela em RJ13-01. O 3,4,7,12-TMCh mostra um pico em 3,3 cal kyr BP, o 3,4,7 e o 3,3,7-TMCh em 3,6 cal kyr BP, 2,8 cal kyr BP e 2,3 cal kyr BP semelhante comportamento do reteno. O 1,2,4a9-TMPic mostra um pico em 2,5 cal kyr BP, o 1,2,9-TrMPic aumenta em 2,6 cal kyr BP e 2,8 cal kyr BP. Para o 2,2,4a9-TMPic há um pico em 5,0 cal kyr BP e o 2,2,9-TrMPic mostrou maior presença entre 4,7 cal kyr BP e 3,6 cal kyr BP coincidindo com o aporte de HPAs-Bio (Figura 31).

Figura 31: Razões de área para HPAs biogênicos ao longo dos anos em cal kyr BP para o testemunho RJ13-02.

6.4.3. Avaliação de fontes e variações paleoambientais

Para avaliar as fontes de MO e as variações paleoambientais baseadas nos dados de hidrocarbonetos foi realizada análise fatorial dos dados de cada testemunho, os dados foram tratados conforme descrito no capítulo de avaliação estatística.

PCA para RJ13-01 - Hidrocarbonetos

Os seguintes dados foram utilizados na PCA para RJ13-01: SM como indicador de matéria orgânica continental; %TOC; os HPAs de biossíntese que incluem ΣN (N, C1N,

C2N, C3N e C4N), ΣPh (Ph, C1Ph, C2Ph, C3Ph e C4Ph), Ret e Pe; os HPAs pirogênicos Σ Pyro(4 anéis) (Fl, Py e Ch) e Σ Pyro(5-6 anéis) (BbjFl, BkFl, BePy, BaPy, IP, BghiPe e DBalPy). Além do IA e ACL, nos quais valores mais elevados destes são utilizados como marcadores de clima seco. Três factors loadings com eigenvalues >1 agruparam as variáveis responsáveis por 77% da variância. O fator 1 (F1), responsável por 39% da variância, agrupou e correlacionou positivamente SM, %TOC, ΣN, Pe e fracamente Σ Pyro (4 anéis); IA aparece negativamente correlacionado em F1 assim como ACL, este fracamente. Há, assim, evidências de aporte continental de MO sugerindo um clima mais úmido, pois além disto, como mencionado anteriormente, F1 correlacionou negativamente o IA e o ACL, os quais valores mais elevados destes marcam clima seco para RJ13-01 (Figura 32). O fator 2 (F2) é responsável por 24% da variância e agrupou positivamente Σ Ph, Ret e Σ Pyro(4 anéis) e fracamente %TOC e Σ Pyro(5-6 anéis), IA e ACL aparecem com correlações negativas fracas também neste fator. Tais evidências indicam um grande aporte de MO com mistura de fontes, sugerindo altas incidências de chuvas e/ou alta produção primária para RJ13-01 (Figura 32). O fator 3 (F3), responsável por 14% da variância dos dados, correlaciona: positivamente o ACL, $\Sigma Pyro(5-6 \text{ anéis})$ e IA e fracamente SM, Ret e Σ Pyro(4 anéis), sugerindo clima seco; negativamente correlacionado está ΣN e fracamente o %TOC, o ΣPh e o Pe que são indicadores de clima úmido. O F3 foi responsável por evidenciar positivamente as principais variáveis relacionadas a clima seco para RJ13-01 (Figura 32).

Figura 32: Contribuição das variáveis SM, %TOC, ΣN, ΣPh, Ret, Pe, Pyro (4 anéis), Pyro (5-6 anéis), IA e ACL explicadas nos *factors loadings* F1, F2 e F3 para RJ13-01.

A figura 33 mostra graficamente os resultados da PCA para RJ13-01 – Hidrocarbonetos.

Figura 33:PCA para RJ13-01 incluindo SM, %TOC, ΣN, ΣPh, Ret, Pe, ΣPyro(4 anéis), ΣPyro(5-6 anéis), IA e ACL. Fator score 1 em função do tempo (cal kyr BP); Fator score 2 em função do tempo (cal kyr BP); Fator score 3 em função do tempo (cal kyr BP).

PCA para RJ13-02 - Hidrocarbonetos

Os dados utilizados na PCA para RJ13-02 foram SM como indicador de matéria orgânica de origem continental; %TOC e %CaCO₃; os HPAs biogênicos, que incluem Σ N (N, C1N, C2N, C3N e C4N), Σ Ph (Ph, C1Ph, C2Ph, C3Ph e C4Ph), Ret e Pe; os HPAs Pirogênicos Σ Pyro(4 anéis) (Fl, Py e Ch) e Σ Pyro(5-6 anéis) (BbjFl, BkFl, BePy, BaPy, IP, BghiPe e DBalPy); além do ACL como marcador de clima seco. Quatro *factors loadings* com *eigenvalues* >1 agruparam as variáveis responsáveis por 73% da variância.

Apesar de a soma do fatores 1 e 2 ter sido responsável por 47% da variância dos dados, a PCA para RJ13-02 serviu como guia para identificar a influência das variáveis em determinados períodos entre 5,3 cal kyr BP e 2,3 cal kyr BP, visto que, a variação de aporte de MO e a identificação de eventos climáticos neste intervalo de tempo no Holoceno superior está bem representado nos gráficos de hidrocarbonetos alifáticos e policíclicos aromáticos nas figuras 23, 25, 27 e 29 para RJ13-02.

O fator 1 com 29% da variância agrupou e correlacionou positivamente os dados de Σ Ph e Ret e fracamente o %CaCO₃, Σ Pyro(5-6 anéis) e o ACL o que pode-se relacionar à ocorrência de clima mais seco, e separou negativamente e fracamente o Pe, SM e Σ Pyro(4 anéis). Ainda que o fator 1 tenha separado positivamente o Σ Pyro(5-6 anéis) e o ACL, estes contribuíram muito fracamente, portanto, o fator 1 pode indicar eventos de elevado aporte de MO de origem continental para RJ13-02 (Figura 34).

O fator 2 é responsável por 18% da variância e agrupou positivamente ΣN , $\Sigma Pyro(4 anéis) e \Sigma Pyro(5-6 anéis) e fracamente o Pe, sugerindo um aporte de MO com mistura de$

fontes. O ACL aprece fraca e negativamente correlacionado nesse fator para RJ13-02 (Figura 34). O Fator 3 responsável por 14% da variância dos dados, correlacionou positivamente SM, %TOC e Σ Pyro(5-6 anéis), mas fracamente o Σ Pyro(4 anéis) e o %CaCO₃ sugerindo mistura de fontes, aporte continental e clima seco registrados em RJ13-02 (Figura 34). O Fator 4 responsável por 11% da variância dos dados correlacionou positivamente %CaCO₃ e negativamente separou Pe e fracamente ACL (Figura 32) indenficando uma influência de material terrestre para RJ13-02 (Figura 34).

Figura 34: Contribuição das variáveis SM, %TOC, CaCO₃, ACL, ΣN, ΣPh, Ret, Pe, Pyro (4 anéis) e Pyro (5-6 anéis); explicadas nos *factors loadings* F1, F2, F3 e F4 para RJ13-02.

A figura 35 mostra graficamente os resultados da PCA para RJ13-02 – Hidrocarbonetos.

Figura 35: PCA for RJ13-02 incluindo SM, %TOC, %CaCO₃, ΣN, ΣPh, Ret, Pe, ΣPyro(4 anéis), ΣPyro(5-6 anéis) e ACL. Fator score 1 em função do tempo (cal kyr BP); Fator score 2 em função do tempo (cal kyr BP); Fator score 3 em função do tempo (cal kyr BP); Fator score 4 em função do tempo (cal kyr BP).

O fator 1 da figura 33 do testemunho RJ13-01 evidência um período de menor aporte de MO de origem continental entre 14,4 cal kyr BP e 7,6 cal kyr BP, marcado por valores mais elevados de IA e ACL, o fator 3 (Figura 33) relaciona positivamente períodos onde os valores mais elevados de ACL e IA foram observados, indicando diversos momentos relacionados com clima seco durante este período entre 14,4 cal kyr BP e 7,5 cal kyr BP, tais como em 13,3 cal kyr BP, 11,8 cal kyr BP, 10,9 cal kyr BP, 9,9 cal kyr BP, 9,0 cal kyr BP e 7,6 cal kyr BP. O fator 2 que relaciona positivamente períodos com grande aporte de MO de diferentes fontes, evidencia 2 momentos de grande aporte: um em 7,6 cal kyr BP e outro em 10,7 cal kyr BP relacionado à elevada concentração de Σ Ph para ambos períodos e alto valor de Paq (~0,6) relacionado à MO originada de macrófitas aquáticas em 10,7 cal kyr BP. Behling (1997) relatou, através da variação de vegetação, um período de instabilidade climática entre 10,9 cal kyr BP e 9,9 cal kyr BP em Morro de Itapeva no sudeste do Brasil. Tais evidências corroboram com eventos de clima seco relatados durante a YD e consecutivamente, durante o inicio do Holoceno Inferior na América do Sul (Ledru, 1993; Ledru et al., 2009; Behling e Safford, 2010). Porém, foram relatados aumento da umidade por volta de 11 cal kyr BP no Rio de Janeiro (Behling e Safford, 2010) e na Amazônia (Sifeddine et al., 2001). Tais variações foram também observadas em RJ13-01.

A partir de 7,6 cal kyr BP o aporte de MO de origem continental passou a aumentar, como observado no fator 1 (Figura 33) com um pico em 6,6 cal kyr BP dada a
influência de alta concentração e fluxo de Pe (Figura 24) neste período. O Holoceno médio foi marcado com variações de clima seco e úmido (Wanner et al., 2008), como indica o fator 3 (Figura 33). Concentrações mais elevadas de HPAs-Pyro(5-6 anéis) foram observadas entre 6 cal kyr BP e 4,1 cal kyr BP em RJ13-01 (Figura 26), além de dois picos marcantes observados no fator 3 (Figura 33), um em 4,6 cal kyr BP e 4,1 cal kyr BP relacionados a clima seco para RJ13-01. Para RJ13-02 foi observado maior aporte de HPAs-Pyro(5-6 anéis) (Figura 27) e concentrações elevadas de n-alk (Figura 23) e Ph e seus alquilados (Figura 25) entre 5,3 cal kyr BP e 4,9 cal kyr BP. Ainda para RJ13-02 marcadores de clima seco ACL e concentrações elevados de HPAs-Pyro(4 anéis) foram observados entre os períodos de 4,7 cal kyr BP e 3,8 cal kyr BP (Figuras 23, 25 e 27) e correlacionados negativamente no fator 4 (Figura 35) (Finkelstein et al., 2005; Conedera et al., 2009; Marynowski e Simoneit, 2009). Eventos de clima úmido foram reportados no nordeste e centro-leste do Brasil, entretanto, secas foram observadas na Amazônia (Cruz et al., 2009; Schellekens et al., 2014). Schellekens et al. (2014) relataram através da análise de multi-proxies uma fase úmida e quente entre 7.400 cal yr BP e 4.200 cal yr BP no centro-leste do Brasil. Eventos de seca foram registrados através de análises de pólen e carvão durante este período em outras regiões do Brasil, relacionados aos baixos níveis de insolação no verão do Hemisfério sul reduzindo o contraste de temperatura terra-mar. Como consequência ocorreu uma diminuição na incidências de chuvas, tornando o clima mais seco (Behling, 1997; Behling e Lichte, 1997; Pessenda et al., 2004; Prado et al., 2013). Pessenda et al. (2004) reportaram através de análises de pólen e carvão incêndios com maior intensidade entre 6,4 cal kyr BP e 4,0 cal kyr BP na regiões de Jaguariúna e Salitre no sudeste do Brasil relacionados à clima seco, o que condiz com as evidências observadas no presente trabalho.

A partir de 4,0 cal kyr BP já no Holoceno superior, elevado aporte de MO de diferentes fontes, principalmente continental, foram registrados em diversos períodos, como salientados pelos fatores 1 e 2 para RJ13-01 (Figura 33). Em 3,7 cal kyr BP o Σ N (Figura 28) foi indicativo de elevado aporte de MO; em 3,3 cal kyr BP e 3,2 cal kyr BP aparecem as maiores concentrações das variáveis como %TOC, Σ n-Alk e Σ HPAs. Compostos orgânicos presentes no ambiente marinho possuem maior afinidade com sedimentos de granulometria mais final como a lama (argila+silte), os quais possuem superfície ativa que facilita as trocas iônicas e os processos de sorção dos compostos orgânicos (Pelejero, 2003). No presente trabalho os maiores teores de lama foram registrados no Holoceno superior em RJ13-01 (Figura 6). Entretanto, os principais compostos orgânicos presente na MO durante os períodos de 3,3 cal kyr BP e 3,2 cal kyr BP foram o Ph e seus alquilados (Figuras 24 e 28) e nestes dois períodos também foram registrados índices mais elevados de Paq (~0,6) (Figura 22) relacionado ao aporte de

macrófitas aquáticas. Concentrações elevadas de Σ Pyro(4 anéis) foram registradas para estes períodos de 3,3 cal kyr BP e 3,2 cal kyr BP em RJ13-01 (Figura 26) e em 3,0 cal kyr BP RJ13-02 (Figura 27).

Para RJ13-02 alto aporte de MO de origem continental foi registrado nos períodos de 3,6 cal kyr BP e 3,4 cal kyr BP como sugerem as variáveis no fator 1 (Figura 35), sendo os compostos de Ph os principais responsáveis pelo aporte de MO originado de biossíntese. Em 3,1 cal kyr BP ocorreu alta concentração de Ns e de HPAs-Pyro como observado no fator 2 (Figura 35) o que indica aporte de HPAs de origem de biossíntese e pirogênica, o qual pode estar relacionado a eventos de incêndios locais no Rio de Janeiro, visto que o testemunho RJ13-02 está situado em frente à Baía de Guanabara.

Por volta de 2,8 cal kyr BP, conforme evidenciam os fatores na figura 33, ocorreu uma diminuição no aporte de MO de origem continental e um aumento nos marcadores de combustão HPAs-Pyro (Figuras 24 e 26) e marcadores de clima seco IA e ACL (figura 22) conforme registrado no testemunho RJ13-01. Por volta de 2,9 cal kyr BP ocorreu uma diminuição de aporte de MO para RJ13-02, com exceção do Ret que foi o principal indicador de aporte de HPAs-Bio neste período (Figura 29). Apesar de o ACL ter variado pouco ao longo do registro em RJ13-02, neste período atingiu um valor de 30,1. Visto que o Ret também pode ser indicador de MO de clima seco, pois está presente em vegetação do tipo gminosperma, pode-se afirmar que este período apresenta características de clima seco. Outro período marcado por concentrações elevadas de ΣPyro(5-6 anéis) registrados em RJ13-02 deu-se ao redor de 2,6 cal kyr BP (Figura 27), conforme sugerem os resultados para o fator 2 (Figura 35), da mesma forma ocorreram tais elevações em RJ13-01 (Figura 26). Outros períodos foram marcados por maior contribuição de HPAs-Pyro como em 0,9 cal kyr BP e 0,3 cal kyr BP (Figura 26). Porém, o aporte de HPAs-Bio também foi elevado no Holoceno superior até o presente (Figura 28).

Variações entre clima seco e clima úmido em escala decanais foram observadas na América do sul em decorrência das flutuações do SAMS ao longo do Holoceno superior (Chiessi *et al.*, 2009; Bird *et al.*, 2011) e em outras regiões do Hemisfério Norte também em decorrência do regime de ventos como na região da Bacia de Cariaco (Haug *et al.*, 2001; Goni *et al.*, 2009). O aumento de marcadores de origem continental pode estar relacionado a um aumento na precipitação (Sepúlveda *et al.*, 2009). O aumento de umidade a partir do Holoceno superior como descrito no capítulo de ME pode estar relacionado ao deslocamento mais ao sul da ITCZ trazendo umidade para a Amazônia estabelecendo a SAMS e, por conseguinte, trazendo umidade para o sudeste do Brasil através da SACZ (Sifeddine *et al.*, 2001; Chiessi *et al.*, 2009; Cruz *et al.*, 2009; Ledru *et al.*, 2009).

Flutuações climáticas foram reportadas através de análises em partículas de carvão, identificando períodos úmidos entre 4,5 kyr BP e 2,3 kyr BP intercalados por eventos de seca na costa do estado do Rio de Janeiro (Scheel-Ybert, 2000). Como já mencionado no capítulo anterior, Barreto *et al.* (2015) reportaram um episódio de umidade entre 3.380 yr BP e 2.980 yr BP e outro período mais quente e menos úmido por volta de 2.820 yr BP através de análises de pólen em Jurujuba no Rio de Janeiro e identificaram aumento de ocupação humana nos arredores da Bacia de Guanabara durante o Holoceno superior, próximo do presente.

Além disso, mesmo que alguns autores tenham relatado a existência de populações humanas de pescadores, coletores e caçadores desde 7.000 yr BP na costa do Brasil (Gaspar, 1996), a ocupação no sudeste do Brasil foi identificada com maior intensidade entre de 5.700 yr BP e 3.300 yr BP na costa do estado de São Paulo (Scheel-Ybert, 2001; Ybert *et al.*, 2003).

Na costa do Rio de Janeiro a ocupação por índios Tupinambás e Guaranis foi relatada em períodos entre 3.220 cal yr BP e 2.849 cal yr BP; em 2.150 cal yr BP e entre 1.820 e 1.390 cal yr BP e mais recentemente em 750 cal yr BP, identificada através de análises de fragmentos de carvão. Além da queima da vegetação para o uso do solo e uso de madeira como combustível, foram também identificadas intensas práticas de queima para manuseio e confecções de cerâmica, rituais sociais e funerários nos quais o principal elemento era o fogo, essas atividades eram praticadas diariamente por estas populações de Tupinambás e Guaranis (Scheel-Ybert *et al.*, 2008; Scheel-Ybert *et al.*, 2014). Estes acontecimentos corroboram com as evidências registradas através dos marcadores de combustão, tais como o aumento de Σ Pyro(4 anéis) entre 3,3 cal kyr BP e 3,1 cal kyr BP registrados em RJ13-01 e RJ13-02 seguido do aumento de Σ Pyro(5-6 anéis) até o presente.

A seguir é apresentado na tabela o resumo das fases estudadas no presente trabalho com as interpretações observadas ao longo dos anos.

Fase	Período	Parâmetro e	Interpretação
	(cal kyr BP)	evidências	
Ι	14,5 - 7,5	granulometria média a	
		grosseira;	Baixo nível do mar;
		Fragmentos de conchas;	predominância de clima seco
		SM negativa; <porosidade< td=""><td></td></porosidade<>	
		>%Si; >%Ca; >Ca/Al	
		>IA; >ACL	
		<toc< td=""><td></td></toc<>	
п	75 15	Same: SM:	
11	7,5 - 4,5	>Al/Ca:>Fe/Ca:	Elevação do nível do mar
		\sim TOC \sim Ni Cu e Zn	> aporte de MO:
		,>100,>10, 0u 0 2h	>produtividade: >intrusão
		>Sr/Al;Cd/Al;Ba/Al	SACW
			maior incidência de eventos
		>ACL	de clima seco
		>HPAs-Pyro(5-6anéis)	maior incidência de incêndios
III	4.5 – presente	>>MO (TN, TOC, Ni, Cu,	Deslocamento ao sul da ITCZ
	.,	Zn, HA e HPAs)	(umidade na Amazônia)
		>V/Al e Mn/Al;	Intesificação da SAMS
		<ia; <acl(com="" td="" variações)<=""><td>> umidade no SE (SACZ)</td></ia;>	> umidade no SE (SACZ)
			>> clima úmido com
		>HPAs-Pyro(4anéis)	intercalação de clima seco
		>HPAs-Pyro(5-6anéis)	
		(presente)	registros de ocupação humana
		>>Phs	

Tabela 12: Resumo das fases estudades e suas interpretações ao longo dos anos

7 Conclusão

Processos sedimentares na plataforma continental do Rio de Janeiro foram investigados utilizando dados geofísicos (densidade gama, velocidade da onda *p*, impedância acústica, suscetibilidade magnética, porosidade), granulometria, fluxos de TN, TOC, CaCO₃, TE, ME, HA, HPAs bem como *proxies* de aporte continental/biogênico (Al/Ca, Fe/Ca, e Ca/Al), redox-sensíveis (Fe/Al, V/Al e Mn/Al), de produtividade (Sr/Al, Cd/Al e Ba/Al), marcadores de tipo de vegetação e material orgânica (IA, ACL, Paq, IPC, HPAs-Bio) e marcadores de combustão (HPAs-Pyro). Por estes meios foram identificados os efeitos das mudanças ambientais (climáticas e oceanográficas) ao longo de 14,4 cal kyr BP;

O primeiro período compreendido pelo testemunho RJ13-01 (14,4 cal kyr BP a 7,5 cal kyr BP) foi influenciado pelo baixo nível do mar, granulometria média a grosseira do sedimento e presença de fragmentos de conchas o que sugeriu e relacionou com maior teor de Si, período de menor aporte de MO de origem continental com exceção em 7,6 cal kyr BP e outro em 10,7 cal kyr BP; período marcado por altos índices de IA e ACL em 13,3 cal kyr BP, 11,8 cal kyr BP, 10,9 cal kyr BP, 9,9 cal kyr BP, 9,0 cal kyr BP e 7,6 cal relacionando-os a clima seco. Período de alta produtividade foi observado em 9,0 cal kyr BP.

O segundo período registrado em RJ13-01 e parte em RJ13-02 foi entre 7,5 cal kyr BP a 4,1 cal kyr BP, possivelmente marcado por um máximo de elevação do nível do mar, altas concetrações de Σ Pyro(5-6 anéis) entre 6,0 cal kyr BP e 4,1 cal kyr BP em RJ13-01 sugerindo incêndios de alta intensidade, elevados índices de ACL marcados por eventos de clima seco intercalados com clima úmido, foi fortemente influenciado pela SACW como sugere o aumento dos fluxos dos componentes, alta produtividade, além de alto aporte continental como n-alks e HPAs-Bio.

O Holoceno superior foi marcado pela diminuição do nível do mar a partir de 4,7 cal kyr BP e aumento do aporte de MO de origem continental. Em 3,3 cal kyr BP e 3,2 cal kyr BP para RJ13-01 e 3,6 cal kyr BP, 3,4 cal kyr BP e 3,11 cal kyr BP para RJ13-02 foram registrados as maiores concentrações para a maioria dos paramêtros. A partir de 4,5 cal kyr BP até o presente em RJ13-02 altos fluxos de TE relacionando com o aporte de OM (Ni, Cu e Zn) e *proxies* redox-sensíveis foram observados, principamente em 3,1

cal kyr BP e para RJ13-01. Variações entre clima seco e úmido foram registradas em menores escalas de tempo durante o Holoceno Superior. Estas características são compatíveis com o aumento de umidade na Amazônia devido ao deslocamento da ITCZ e da intensificação do SAMS transportando umidade para o sudeste do Brasil através da SACZ. Além disso, o aumento de HPAs-Pyro ao longo do Holoceno superior próximo ao presente coloboram com os registros de ocupação humana na costa do Rio de Janeiro.

Eventos passados que ocorreram no Brasil e, possivelmente, em uma escala regional mais ampla foram observados no presente estudo: variações no nível do mar, mudanças na ITCZ, variações na SAMS, mudanças nos padrões de ventos e na CB; influência da SACW mais no sentido S-W do sistema de resurgência de Cabo Frio; e variações climáticas com registros de incêndios naturais e variações de vegetação, além de registros que podem ser relacionados à ocupação humana.

8 Referências

ABUCHACRA, R. C. et al. Densidade Gama, impedância acústica e velocidade da onda "p" como parâmetros indicadores do teor de minerais pesados em testemunhos 2009.

ALBUQUERQUE, A. L. et al. Mineral and elemental indicators of post-glacial changes in sediment delivery and deposition under a western boundary upwelling system (Cabo Frio, southeastern Brazil). **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 445, p. 72-82, 2016. ISSN 0031-0182.

ALGEO, T. J.; MAYNARD, J. B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. **Chemical geology**, v. 206, n. 3, p. 289-318, 2004. ISSN 0009-2541.

ALGEO, T. J.; ROWE, H. Paleoceanographic applications of trace-metal concentration data. **Chemical Geology**, v. 324, p. 6-18, 2012. ISSN 0009-2541.

AMADOR, E. D. S. Baía de Guanabara e ecossistemas periféricos: homem e natureza. **Edição do Autor, Rio de Janeiro**, p. 539, 1997.

ANDERSON, R. F.; WINCKLER, G. Problems with paleoproductivity proxies. **Paleoceanography**, v. 20, n. 3, 2005. ISSN 1944-9186.

ANGULO, R. J.; LESSA, G. C.; DE SOUZA, M. C. A critical review of mid-to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. **Quaternary Science Reviews**, v. 25, n. 5, p. 486-506, 2006. ISSN 0277-3791.

APPLEBY, P. et al. 210Pb dating by low background gamma counting. In: (Ed.). **Paleolimnology IV**: Springer, 1987. p.21-27. ISBN 9401082960.

ARAUJO, A. G. et al. Holocene dryness and human occupation in Brazil during the "Archaic Gap". **Quaternary Research**, v. 64, n. 3, p. 298-307, 2005. ISSN 0033-5894.

ARZ, H. W.; PÄTZOLD, J.; WEFER, G. Correlated Millennial-Scale Changes in Surface Hydrography and Terrigenous Sediment Yield Inferred from Last-Glacial Marine Deposits off Northeastern Brazil. **Quaternary Research**, v. 50, n. 2, p. 157-166, 9// 1998. ISSN 0033-5894. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0033589498919925</u> >. AUGUSTIN, L. et al. Eight glacial cycles from an Antarctic ice core. **Nature**, v. 429, n. 6992, p. 623-628, 2004. ISSN 0028-0836.

AYRES, A.; THEILEN, F. Relationship between P-and S-wave velocities and geological properties of near-surface sediments of the continental slope of the Barents Sea. **Geophysical prospecting,** v. 47, n. 4, p. 431-441, 1999. ISSN 1365-2478.

AYRES NETO, A. Relationships between physical properties and sedimentological parameters of near surface marine sediments and their applicability in the solution of engineering and environmental problems. Relationships Between Physical Properties and Sedimentological Parameters of Near Surface Marine Sediments and their Applicability in the Solution of Engineering and Environmental Problems, 1998.

AZUMA, H. et al. Naphthalene—a constituent of Magnolia flowers. **Phytochemistry**, v. 42, n. 4, p. 999-1004, 1996. ISSN 0031-9422.

BAEK, S. et al. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, air, and soil pollution, v. 60, n. 3-4, p. 279-300, 1991. ISSN 0049-6979.

BAKER, P. A. et al. The history of South American tropical precipitation for the past 25,000 years. **Science**, v. 291, n. 5504, p. 640-643, 2001. ISSN 0036-8075.

BAKHTIARI, A. R. et al. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. **Applied Geochemistry**, v. 24, n. 9, p. 1777-1787, 2009. ISSN 0883-2927.

BANDOWE, B. A. M. et al. Naphthalene production by microorganisms associated with termites: evidence from a microcosm experiment. **Soil Biology and Biochemistry,** v. 41, n. 3, p. 630-639, 2009. ISSN 0038-0717.

BANDOWE, B. A. M. et al. A 2600-year record of past polycyclic aromatic hydrocarbons (PAHs) deposition at Holzmaar (Eifel, Germany). **Palaeogeography**, **Palaeoclimatology**, **Palaeoecology**, v. 401, p. 111-121, 2014. ISSN 0031-0182.

BARKER, S.; GREAVES, M.; ELDERFIELD, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. **Geochemistry, Geophysics, Geosystems,** v. 4, n. 9, p. n/a-n/a, 2003. ISSN 1525-2027. Disponível em: < <u>http://dx.doi.org/10.1029/2003GC000559</u> >.

BARNES, M.; BARNES, W. Oxic and anoxic diagenesis of diterpenes in lacustrine sediments. Advances in organic geochemistry, p. 289-298, 1981.

BARRETO, C. F. et al. Palynological studies of Late Holocene Jurujuba Sound sediments (Guanabara Bay), Rio de Janeiro, southeast Brazil. **Catena**, v. 126, p. 20-27, 2015. ISSN 0341-8162.

BEHLING, H. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. **Journal of Paleolimnology**, v. 14, n. 3, p. 253-268, 1995. ISSN 0921-2728.

_____. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 129, n. 3, p. 407-422, 1997. ISSN 0031-0182.

BEHLING, H.; LICHTE, M. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. **Quaternary Research**, v. 48, n. 3, p. 348-358, 1997. ISSN 0033-5894.

BEHLING, H.; SAFFORD, H. D. Late - glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro State, southeastern Brazil. **Global Change Biology**, v. 16, n. 6, p. 1661-1671, 2010. ISSN 1365-2486.

BERNARD, B. B.; BERNARD, H.; BROOKS, J. M. Determination of total carbon, total organic carbon and inorganic carbon in sediments. **TDI-Brooks International/B&B** Labratories Inc. College Station, Texas, p. 1-5, 1995.

BI, X. et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. **Organic Geochemistry**, v. 36, n. 10, p. 1405-1417, 2005. ISSN 0146-6380.

BIANCHI, T. S.; CANUEL, E. A. Chemical biomarkers in aquatic ecosystems. Princeton University Press, 2011. ISBN 1400839106.

BIRD, B. W. et al. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. **Proceedings of the National Academy of Sciences,** v. 108, n. 21, p. 8583-8588, 2011. ISSN 0027-8424.

BJORSETH, A.; RAMDAHL, T. Polycyclic aromatic hydrocarbons. 1985.

BLUMER, M.; EHRHARDT, M.; JONES, J. The environmental fate of stranded crude oil. Deep Sea Research and Oceanographic Abstracts, 1973, Elsevier. p.239-259.

BLUMER, M.; GUILLARD, R.; CHASE, T. Hydrocarbons of marine phytoplankton. Marine Biology, v. 8, n. 3, p. 183-189, 1971. ISSN 0025-3162.

BLUMER, M. et al. An Ocean of Oil: A Small Oil Spill. **Environment: Science and Policy for Sustainable Development,** v. 13, n. 2, p. 2-12, 1971. ISSN 0013-9157.

BLUNIER, T. et al. Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event. **Geophysical Research Letters**, v. 24, n. 21, p. 2683-2686, 1997. ISSN 1944-8007.

BOULOUBASSI, I.; SALIOT, A. Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). **Oceanologica Acta,** v. 16, n. 2, p. 145-161, 1993. ISSN 0399-1784.

BOURBONNIERE, R. A.; MEYERS, P. A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, v. 41, n. 2, p. 352-359, 1996. ISSN 1939-5590.

BRADLEY, R. Chapter 1-Paleoclimatic Reconstruction. **Paleoclimatology** (Third Edition), p. 1-11,

BRADLEY, R. S. **Paleoclimatology: reconstructing climates of the Quaternary**. Academic Press, 1999. ISBN 0080538347.

BRASSELL, S. Applications of biomarkers for delineating marine paleoclimatic fluctutations during the Pleistocene. **Organic Geochemistry: Principies and Applications**, p. 699-738, 1993.

BRAY, E.; EVANS, E. Distribution of n-paraffins as a clue to recognition of source beds. **Geochimica et Cosmochimica Acta**, v. 22, n. 1, p. 2-15, 1961. ISSN 0016-7037.

BUDZINSKI, H. et al. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts. **Geochimica et Cosmochimica Acta**, v. 59, n. 10, p. 2043-2056, 1995. ISSN 0016-7037.

BUDZINSKI, H. et al. Thermodynamic calculations on alkylated phenanthrenes: geochemical applications to maturity and origin of hydrocarbons. **Organic geochemistry**, v. 20, n. 7, p. 917-926, 1993. ISSN 0146-6380.

BUDZINSKI, H. et al. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. **Marine chemistry**, v. 58, n. 1, p. 85-97, 1997. ISSN 0304-4203.

CALDICOTT, A.; EGLINTON, G. Surface waxes. Phytochemistry, v. 3, p. 162-194, 1973.

CALLÉN, M. S. et al. PAH in airborne particulate matter. **Fuel Processing Technology**, v. 92, n. 2, p. 176-182, 2011. ISSN 03783820.

CALVERT, S.; PEDERSEN, T. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. **Marine geology**, v. 113, n. 1, p. 67-88, 1993. ISSN 0025-3227.

CALVERT, S. et al. Elemental settling and burial fluxes in the Cariaco Basin. Marine Chemistry, v. 177, p. 607-629, 2015. ISSN 0304-4203.

CAMPOS, E. J.; VELHOTE, D.; DA SILVEIRA, I. C. Shelf break upwelling driven by Brazil Current cyclonic meanders. **Geophysical Research Letters,** v. 27, n. 6, p. 751-754, 2000. ISSN 1944-8007.

CARRO, N.; COBAS, J.; MANEIRO, J. Distribution of aliphatic compounds in bivalve mollusks from Galicia after the Prestige oil spill: Spatial and temporal trends. **Environmental research**, v. 100, n. 3, p. 339-348, 2006. ISSN 0013-9351. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0013935105001271</u> >.

CARTER, L. et al. Southwest Pacific modulation of abrupt climate change during the Antarctic Cold Reversal–Younger Dryas. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 260, n. 1, p. 284-298, 2008. ISSN 0031-0182.

CASSANI, F. et al. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. **Organic Geochemistry**, v. 13, n. 1, p. 73-80, 1988. ISSN 0146-6380.

CASTRO, J. W. A. et al. Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. **Anais da Academia Brasileira de Ciências,** v. 86, n. 2, p. 671-683, 2014. ISSN 0001-3765.

CHANG, A. S.; PEDERSEN, T. F.; HENDY, I. L. Effects of productivity, glaciation, and ventilation on late Quaternary sedimentary redox and trace element accumulation on the Vancouver Island margin, western Canada. **Paleoceanography**, v. 29, n. 7, p. 730-746, 2014. ISSN 1944-9186.

CHANG, A. S. et al. New insights into productivity and redox - controlled trace element (Ag, Cd, Re, and Mo) accumulation in a 55 kyr long sediment record from Guaymas Basin, Gulf of California. **Paleoceanography**, v. 30, n. 2, p. 77-94, 2015. ISSN 1944-9186.

CHIESSI, C. M. et al. How different proxies record precipitation variability over southeastern South America. IOP Conference Series: Earth and Environmental Science, 2010, IOP Publishing. p.012007.

CHIESSI, C. M. et al. Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. **Geophysical Research Letters,** v. 36, n. 21, 2009. ISSN 1944-8007.

CHU, W.; CHAN, K.-H. The prediction of partitioning coefficients for chemicals causing environmental concern. **Science of the Total Environment**, v. 248, n. 1, p. 1-10, 2000. ISSN 0048-9697.

CLARK JR, R.; BLUMER, M. Distribution of n-paraffins in marine organisms and sediment. Limnology and Oceanography, v. 12, n. 1, 1967.

CLEMENS, S. C.; PRELL, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. **Marine Geology**, v. 201, n. 1, p. 35-51, 2003. ISSN 0025-3227.

CLOERN, J. E.; CANUEL, E. A.; HARRIS, D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. **Limnology and oceanography**, v. 47, n. 3, p. 713-729, 2002. ISSN 1939-5590.

COLLISTER, J. W. et al. Compound-specific δ 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. **Organic Geochemistry**, v. 21, n. 6-7, p. 619-627, 1994. ISSN 0146-6380.

COMMENDATORE, M.; ESTEVES, J. Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Marine pollution bulletin, v. 48, n. 9, p. 910-918, 2004. ISSN 0025-326X.

CONEDERA, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. **Quaternary Science Reviews,** v. 28, n. 5–6, p. 555-576, 3// 2009. ISSN 0277-3791. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0277379108003387</u> >.

CRANWELL, P. Decomposition of aquatic biota and sediment formation: organic compounds in detritus resulting from microbial attack on the alga Ceratium hirundinella. **Freshwater Biology**, v. 6, n. 1, p. 41-48, 1976. ISSN 1365-2427.

CRANWELL, P.; EGLINTON, G.; ROBINSON, N. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II. **Organic Geochemistry**, v. 11, n. 6, p. 513-527, 1987. ISSN 0146-6380.

CRUSIUS, J. et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, v. 145, n. 1, p. 65-78, 1996. ISSN 0012-821X.

CRUZ, A. P. S. Physical and geochemical properties of centennial marine sediments of the continental shelf of southeast Brazil. **Geochimica Brasiliensis**, v. 27, n. 1, p. 1-12, 2013. ISSN 2358-2812.

CRUZ, F. W. et al. Orbitally driven east-west antiphasing of South American precipitation. **Nature Geoscience**, v. 2, n. 3, p. 210-214, 2009. ISSN 1752-0894.

DAMSTÉ, J. S. S. et al. A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. **Earth and Planetary Science Letters**, v. 302, n. 1, p. 236-246, 2011. ISSN 0012-821X.

DE SOUZA, M. M. et al. EVOLUÇÃO PALEOAMBIENTAL HOLOCÊNICA DA PORÇÃO NORDESTE DO ESTADO DE SÃO PAULO, BRASIL. **REVISTA BRASILEIRA DE PALEONTOLOGIA,** v. 16, n. 2, p. 297-308, 2013.

DENIS, E. H. et al. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection. **Organic geochemistry**, v. 45, p. 7-17, 2012. ISSN 0146-6380.

DOMINGUEZ, J. M. Sea-Level History and Quaternary Evolution of River Mouth– Associated Beachridge Plains Along the East–Southeast Brazilian Coast: A Summary. 1987.

EGLINTON, G. et al. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. **Phytochemistry**, v. 1, n. 2, p. 89-102, 1962. ISSN 0031-9422.

EGLINTON, G.; HAMILTON, R. The distribution of alkanes. Chemical plant taxonomy, v. 187, p. 217, 1963.

EGLINTON, G.; HAMILTON, R. J. Leaf epicuticular waxes. Science, v. 156, n. 3780, p. 1322-1335, 1967. ISSN 0036-8075.

EGLINTON, T. I.; EGLINTON, G. Molecular proxies for paleoclimatology. **Earth and Planetary Science Letters**, v. 275, n. 1, p. 1-16, 2008. ISSN 0012-821X.

ELLWOOD, B. B.; BALSAM, W. L.; ROBERTS, H. H. Gulf of Mexico sediment sources and sediment transport trends from magnetic susceptibility measurements of surface samples. **Marine Geology,** v. 230, n. 3–4, p. 237-248, 8/24/ 2006. ISSN 0025-3227. Disponível em: < http://www.sciencedirect.com/science/article/pii/S002532270600123X >.

ELLWOOD, B. B. et al. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input versus carbonate productivity. **Geology**, v. 28, n. 12, p. 1135-1138, 2000. ISSN 0091-7613.

ELLWOOD, B. B. et al. Time series analysis of magnetic susceptibility variations in deep marine sedimentary rocks: A test using the upper Danian–Lower Selandian proposed GSSP, Spain. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 261, n. 3–4, p. 270-279, 5/1/ 2008. ISSN 0031-0182. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0031018208000783 >.

EPA. Sohxlet Extraction. Method 8270C: Semivolatile Organic Compounds by Gas Chromatography/Mas Spectrometry (GC/MS). DEVELOPMENT, O. O. R. A. Washington, DC: US Environmental Protection Agency 2003.

FAHL, K.; STEIN, R. Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input. **Organic Geochemistry**, v. 26, n. 5, p. 379-390, 1997. ISSN 0146-6380.

FARRINGTON, J. W.; TRIPP, B. W. Hydrocarbons in western North Atlantic surface sediments. **Geochimica et Cosmochimica Acta**, v. 41, n. 11, p. 1627-1641, 1977. ISSN 0016-7037.

FICKEN, K. et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. **Organic geochemistry**, v. 31, n. 7, p. 745-749, 2000. ISSN 0146-6380.

FIGUEIREDO JR, A. R. et al. Perfilador Multi-Sensor Geotek para Testemunhos (Aplicação em Análises Não-Destrutivas de Testemunhos Sedimentares). Anais do 44° Congresso Brasileiro de Geologia. Curitiba. CD-ROM.[Links], 2008.

FINKELSTEIN, D. B. et al. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south - eastern Arizona, USA. **Sedimentology**, v. 52, n. 3, p. 587-599, 2005. ISSN 1365-3091.

FLANNIGAN, M. D.; STOCKS, B. J.; WOTTON, B. Climate change and forest fires. Science of the total environment, v. 262, n. 3, p. 221-229, 2000. ISSN 0048-9697.

FLINT, A. L.; FLINT, L. E. 2.2 Particle Density. **Methods of Soil Analysis: Part 4 Physical Methods**, n. methodsofsoilan4, p. 229-240, 2002. ISSN 2163-2804.

GANESHRAM, R. et al. Large changes in oceanic nutrient inventories from glacial to interglacial periods. **Oceanographic Literature Review**, v. 2, n. 43, p. 143, 1996. ISSN 0967-0653.

GANOPOLSKI, A. et al. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. **Science**, v. 280, n. 5371, p. 1916-1919, 1998. ISSN 0036-8075.

GAO, X.; CHEN, S. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons. **Estuarine, Coastal and Shelf Science,** v. 80, n. 1, p. 95-102, 2008. ISSN 02727714.

GASPAR, M. D. Análise das datações radiocarbônicas dos sítios de pescadores, coletores e caçadores. **Boletim do Museu Paranaense Emilio Goeldi**, p. 81-91, 1996.

GILL, A.; BRADSTOCK, R. Extinction of biota by fires. Conserving biodiversity: threats and solutions, p. 309-322, 1995.

GOLDEWIJK, K. K.; BEUSEN, A.; JANSSEN, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. **The Holocene**, 2010. ISSN 0959-6836.

GONI, M. et al. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the Late Holocene. **Deep Sea Research Part I: Oceanographic Research Papers,** v. 56, n. 4, p. 614-640, 2009. ISSN 0967-0637.

GORDON, E. S.; GOÑI, M. A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. **Geochimica et Cosmochimica Acta**, v. 67, n. 13, p. 2359-2375, 2003. ISSN 0016-7037.

GOUCH, M. A.; RHEAD, M. M.; ROWLAND, S. J. Biodegradation studies of unresolved complex mixtures of hydrocarbons: model UCM hydrocarbons and the aliphatic UCM. **Organic Geochemistry,** v. 18, n. 1, p. 17-22, 1992/01/01 1992. ISSN 0146-6380. Disponível em: < http://www.sciencedirect.com/science/article/pii/0146638092901390 >.

GRANEY, J. et al. Isotopic record of lead pollution in lake sediments from the northeastern United States. Geochimica et Cosmochimica Acta, v. 59, n. 9, p. 1715-1728, 1995. ISSN 0016-7037.

GRICE, K. et al. New insights into the origin of perylene in geological samples. **Geochimica et Cosmochimica Acta,** v. 73, n. 21, p. 6531-6543, 2009. ISSN 0016-7037.

GRIMMER, G. Environmental Carcinogens, Polycyclic Aromatic Hydrocarbons: Chemistry, Occurrence, Biochemistry, Carcinogenicity. CRC Press Boca Raton, FL, 1983. ISBN 0849365619.

GYLLENCREUTZ, R. et al. Mid-to late-Holocene paleoceanographic changes on the southeastern Brazilian shelf based on grain size records. **The Holocene**, v. 20, n. 6, p. 863-875, 2010. ISSN 0959-6836.

HATCHER, P.; SIMONEIT, B.; GERCHAKOV, S. The organic geochemistry of a recent sapropelic environment: Mangrove Lake, Bermuda. In: (Ed.). Advances in Organic Geochemistry 1975: Enadimsa Madrid, 1977. p.469-484.

HAUG, G. H. et al. Southward migration of the intertropical convergence zone through the Holocene. **Science**, v. 293, n. 5533, p. 1304-1308, 2001. ISSN 0036-8075.

HEDGES, J.; OADES, J. M. Comparative organic geochemistries of soils and marine sediments. **Organic Geochemistry**, v. 27, n. 7-8, p. 319-361, 1997. ISSN 0146-6380.

HITES, R. A.; LAFLAMME, R.; WINDSOR JR, J. Polycyclic aromatic hydrocarbons in marine/aquatic sediments. **Prepr., Div. Pet. Chem., Am. Chem. Soc.;(United States),** v. 23, n. CONF-780902-P3, 1978.

HORIKAWA, K. et al. Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. **Quaternary Research**, v. 73, n. 3, p. 573-582, 2010. ISSN 0033-5894.

JIANG, C. et al. Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate. **Organic Geochemistry**, v. 29, n. 5, p. 1721-1735, 1998. ISSN 0146-6380.

_____. Origin of perylene in ancient sediments and its geological significance. **Organic Geochemistry**, v. 31, n. 12, p. 1545-1559, 2000. ISSN 0146-6380.

JOHNSON, R. W.; CALDER, J. A. Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment. **Geochimica et Cosmochimica Acta**, v. 37, n. 8, p. 1943-1955, 1973. ISSN 0016-7037.

JÜRGENS, A.; WEBBER, A. C.; GOTTSBERGER, G. Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. **Phytochemistry**, v. 55, n. 6, p. 551-558, 2000. ISSN 0031-9422.

KAUFMAN, D. S. et al. Holocene thermal maximum in the western Arctic (0–180 W). **Quaternary Science Reviews,** v. 23, n. 5, p. 529-560, 2004. ISSN 0277-3791.

KILLOPS, S.; AL-JUBOORI, M. Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. **Organic geochemistry**, v. 15, n. 2, p. 147-160, 1990. ISSN 0146-6380.

KILLOPS, S.; MASSOUD, M. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: evidence for Jurassic vegetation fires. **Organic Geochemistry**, v. 18, n. 1, p. 1-7, 1992. ISSN 0146-6380.

KILLOPS, S. D.; KILLOPS, V. J. Introduction to organic geochemistry. Second Edition. Blackwell Publishing Ltd, 2005. ISBN 9780632065042.

KOWSMANN, R. O. Sedimentação quaternária da margem continental brasileira e das áreas oceánicas adjacentes: relatorio final. 1979

LAFLAMME, R.; HITES, R. A. The global distribution of polycyclic aromatic hydrocarbons in recent sediments. **Geochimica et cosmochimica Acta**, v. 42, n. 3, p. 289-303, 1978. ISSN 0016-7037.

LAFLAMME, R. E.; HITES, R. A. Tetra-and pentacyclic, naturally-occurring, aromatic hydrocarbons in recent sediments. **Geochimica et Cosmochimica Acta**, v. 43, n. 10, p. 1687-1691, 1979. ISSN 0016-7037.

LAMMEL, G. et al. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales–II. Mass size distributions and gas-particle partitioning. **Atmospheric Environment,** v. 44, n. 38, p. 5022-5027, 2010. ISSN 1352-2310.

LAMY, F. et al. Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. **Earth and Planetary Science Letters,** v. 185, n. 3, p. 369-382, 2001. ISSN 0012-821X.

LEDRU, M.-P. Late Quaternary Environmental and Climatic Changes in Central Brazil. **Quaternary Research**, v. 39, n. 1, p. 90-98, 1// 1993. ISSN 0033-5894. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0033589483710112</u> >.

LEDRU, M.-P.; MOURGUIART, P.; RICCOMINI, C. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 271, n. 1–2, p. 140-152, 1/1/2009. ISSN 0031-0182. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0031018208005786 >.

LEDRU, M.-P. et al. Paleoclimate changes during the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. **Quaternary Research**, v. 64, n. 3, p. 444-450, 2005. ISSN 0033-5894.

LEDUC, G. et al. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific? **Quaternary Research**, v. 72, n. 1, p. 123-131, 2009. ISSN 0033-5894.

LEE, C.; GAGOSIAN, R. B.; FARRINGTON, J. W. Sterol diagenesis in recent sediments from Buzzards Bay, Massachusetts. **Geochimica et Cosmochimica Acta**, v. 41, n. 7, p. 985-992, 1977. ISSN 0016-7037.

LESSA, D. V. et al. Holocene oscillations of Southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, Southeastern Brazil). **The Holocene**, March 25, 2016 2016. Disponível em: < <u>http://hol.sagepub.com/content/early/2016/03/24/0959683616638433.abstract</u> >.

LIBES, S. Introduction to marine biogeochemistry. Academic Press, 2011. ISBN 0080916643.

LIMA, I. D.; GARCIA, C. A.; MÖLLER, O. O. Ocean surface processes on the southern Brazilian shelf: characterization and seasonal variability. **Continental Shelf Research**, v. 16, n. 10, p. 1307-1317, 1996. ISSN 0278-4343.

LIU, S. et al. Formation and distribution of polycyclic aromatic hydrocarbons (PAHs) derived from coal seam combustion: A case study of the Ulanqab lignite from Inner Mongolia, northern China. **International Journal of Coal Geology**, v. 90, p. 126-134, 2012. ISSN 0166-5162.

MACARIO, K. et al. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. **Journal of environmental radioactivity**, v. 143, p. 14-19, 2015. ISSN 0265-931X.

MAHIQUES, M. et al. Post-LGM sedimentation on the outer shelf–upper slope of the northernmost part of the São Paulo Bight, southeastern Brazil. **Marine Geology,** v. 181, n. 4, p. 387-400, 2002. ISSN 0025-3227.

MAHIQUES, M. et al. Radiocarbon geochronology of the sediments of the São Paulo Bight (southern Brazilian upper margin). **Anais da Academia Brasileira de Ciências,** v. 83, n. 3, p. 817-834, 2011. ISSN 0001-3765.

MAHIQUES, M. et al. Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. **Continental Shelf Research**, v. 24, n. 15, p. 1685-1697, 2004. ISSN 0278-4343.

MAHIQUES, M. et al. A high-resolution Holocene record on the Southern Brazilian shelf: paleoenvironmental implications. **Quaternary International**, v. 206, n. 1, p. 52-61, 2009. ISSN 1040-6182.

MAHIQUES, M. M. et al. Post-LGM sedimentation on the outer shelf–upper slope of the northernmost part of the São Paulo Bight, southeastern Brazil. **Marine Geology**, v. 181, n. 4, p. 387-400, 2002. ISSN 0025-3227.

MAHIQUES, M. M. et al. Sedimentary changes on the Southeastern Brazilian upper slope during the last 35,000 years. Anais da Academia Brasileira de Ciências, v. 79, n. 1, p. 171-181, 2007. ISSN 0001-3765.

MAHIQUES, M. M.; MISHIMA, Y.; RODRIGUES, M. Characteristics of the sedimentary organic matter on the inner and middle continental shelf between Guanabara Bay and São Francisco do Sul, southeastern Brazilian margin. **Continental Shelf Research**, v. 19, n. 6, p. 775-798, 1999. ISSN 0278-4343.

MAHIQUES, M. M. et al. Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. **Continental Shelf Research,** v. 24, n. 15, p. 1685-1697, 2004. ISSN 0278-4343.

MARENGO, J. et al. Recent developments on the South American monsoon system. **International Journal of Climatology**, v. 32, n. 1, p. 1-21, 2012. ISSN 1097-0088.

MARTIN, L.; DOMINGUEZ, J. M.; BITTENCOURT, A. C. Fluctuating Holocene sea levels in Eastern and Southeastern Brazil: evidence from multiple fossil and geometric indicators. **Journal of Coastal Research**, p. 101-124, 2003. ISSN 0749-0208.

MARTÍN-PUERTAS, C. et al. Geochemical processes in a Mediterranean Lake: a high-resolution study of the last 4,000 years in Zonar Lake, southern Spain. Journal of **Paleolimnology**, v. 46, n. 3, p. 405-421, 2011. ISSN 0921-2728.

MARTINS, C. D. Marcadores Orgânicos Geoquímicos em testemunhos de sedimento do Sistema Estuarino de Santos e São Vicente. SP: um registro histórico da introdução de hidrocarbonetos no ambiente marinho. 2005. Tese de doutorado, Instituto Oceanográfico, Universidade de São Paulo, 215p

MARYNOWSKI, L.; SIMONEIT, B. R. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. **Palaios**, v. 24, n. 12, p. 785-798, 2009. ISSN 0883-1351.

MATHIAS, G. L. et al. Magnetic fingerprint of the late Holocene inception of the Río de la Plata plume onto the southeast Brazilian shelf. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 415, n. 0, p. 183-196, 12/1/ 2014. ISSN 0031-0182. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0031018214001692</u> >.

MAYEWSKI, P. A. et al. Holocene climate variability. **Quaternary research**, v. 62, n. 3, p. 243-255, 2004. ISSN 0033-5894.

MEAD, R. et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. **Organic Geochemistry**, v. 36, n. 3, p. 363-370, 2005. ISSN 0146-6380.

MENDOZA, U. et al. Geoacoustic character, sedimentology and chronology of a cross-shelf Holocene sediment deposit off Cabo Frio, Brazil (southwest Atlantic Ocean). **Geo-Marine Letters**, v. 34, n. 4, p. 297-314, 2014. ISSN 0276-0460.

MEYERS, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. **Organic geochemistry**, v. 27, n. 5, p. 213-250, 1997. ISSN 0146-6380.

_____. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. **Organic geochemistry**, v. 34, n. 2, p. 261-289, 2003. ISSN 0146-6380.

MEYERS, P. A.; LALLIER-VERGÈS, E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. **Journal of Paleolimnology**, v. 21, n. 3, p. 345-372, 1999. ISSN 0921-2728.

MEYERS, P. A.; LEENHEER, M. J.; BOURBONNIERE, R. A. Diagenesis of vascular plant organic matter components during burial in lake sediments. Aquatic Geochemistry, v. 1, n. 1, p. 35-52, 1995. ISSN 1380-6165.

MEYERS, P. A. et al. Sedimentary record of sources and accumulation of organic matter in Pyramid Lake, Nevada, over the past 1,000 years. **Limnology and Oceanography**, v. 43, n. 1, p. 160-169, 1998. ISSN 1939-5590.

MILLIMAN, J. D.; SUMMERHAYES, C. P. Upper continental margin sedimentation off Brazil. 1975.

MOLISANI, M. et al. Heavy metals in sediments of the Lower Paraíba do Sul River and Estuary, RJ, Brazil. **Bulletin of environmental contamination and toxicology,** v. 63, n. 5, p. 682-690, 1999. ISSN 0007-4861.

MÖLLER JR, O. O. et al. The effects of river discharge and seasonal winds on the shelf off southeastern South America. **Continental Shelf Research**, v. 28, n. 13, p. 1607-1624, 2008. ISSN 0278-4343.

MORENO, A. et al. Millennial-scale variability in the productivity signal from the Alboran Sea record, Western Mediterranean Sea. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 211, n. 3, p. 205-219, 2004. ISSN 0031-0182.

MORFORD, J.; RUSSELL, A.; EMERSON, S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. **Marine Geology**, v. 174, n. 1, p. 355-369, 2001. ISSN 0025-3227.

NAGAI, R. et al. In-phase inter-hemispheric changes in two upwelling regions: The Southeast Brazilian and NW Iberian margins. Journal of Sedimentary Environments, v. 1, n. 1, p. 43-67, 2016. ISSN 2447-9462.

NAGAI, R. et al. Paleoproductivity changes during the Holocene in the inner shelf of Cabo Frio, southeastern Brazilian continental margin: Benthic foraminifera and sedimentological proxies. **Quaternary International**, v. 206, n. 1, p. 62-71, 2009. ISSN 1040-6182.

NAGAI, R. H. et al. Paleoproductivity changes during the Late Quaternary in the southeastern Brazilian upper continental margin of the Southwestern Atlantic. **Brazilian Journal of Oceanography**, v. 58, n. SPE1, p. 31-41, 2010. ISSN 1679-8759.

NAMEROFF, T.; CALVERT, S.; MURRAY, J. Glacial - interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox - sensitive trace metals. **Paleoceanography**, v. 19, n. 1, 2004. ISSN 1944-9186.

NEFF, J. M. Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates and biological effects. In: (Ed.). **Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates and biological effects**: Applied Science, 1979.

NRC, N. R. C. S. C. F. T. P. I. T. M. E. U. Oil in the sea: inputs, fates, and effects. National Academies, 1985. ISBN 0309034795.

O'MALLEY, V. P.; BURKE, R. A.; SCHLOTZHAUER, W. S. Using GC–MS/Combustion/IRMS to determine the 13 C/12 C ratios of individual hydrocarbons produced from the combustion of biomass materials—application to biomass burning. **Organic Geochemistry**, v. 27, n. 7, p. 567-581, 1997. ISSN 0146-6380.

OFFENBERG, J. H.; BAKER, J. E. Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect. **Environmental science & technology,** v. 36, n. 17, p. 3763-3771, 2002. ISSN 0013-936X.

OGRINC, N. et al. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. **Marine Chemistry**, v. 95, n. 3, p. 163-181, 2005. ISSN 0304-4203.

ORR, W. L.; GRADY, J. R. Perylene in basin sediments off southern California. **Geochimica et Cosmochimica Acta,** v. 31, n. 7, p. 1201-1209, 1967. ISSN 0016-7037.

OUYANG, X.; GUO, F.; BU, H. Lipid biomarkers and pertinent indices from aquatic environment record paleoclimate and paleoenvironment changes. **Quaternary Science Reviews**, v. 123, p. 180-192, 2015. ISSN 0277-3791.

PELEJERO, C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments. **Chemical Geology,** v. 200, n. 1, p. 89-103, 2003. ISSN 0009-2541.

PESSENDA, L. C. R. et al. Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. **Quaternary International,** v. 114, n. 1, p. 35-43, // 2004. ISSN 1040-6182. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S1040618203000405</u> >.

PETERS, K. E.; MOLDOWAN, J. M. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. 1993.

PETERSON, L. C.; HAUG, G. H. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 234, n. 1, p. 97-113, 5/3/ 2006. ISSN 0031-0182. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0031018205006115</u> >.

PIOLA, A. R. et al. Subtropical shelf front off eastern South America. Journal of Geophysical Research: Oceans (1978–2012), v. 105, n. C3, p. 6565-6578, 2000. ISSN 2156-2202.

POYNTER, J.; EGLINTON, G. 14. Molecular composition of three sediments from hole 717c: The Bengal fan. Proceedings of the Ocean Drilling Program: Scientific results, 1990. p.155-161.

PRADO, L. et al. A mid-Holocene climate reconstruction for eastern South America. **Climate of the Past,** v. 9, n. 5, p. 2117-2133, 2013. ISSN 1814-9324.

PRAHL, F. G.; CARPENTER, R. Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment. **Geochimica et Cosmochimica Acta**, v. 47, n. 6, p. 1013-1023, 1983. ISSN 0016-7037.

PUTNAM, A. E. et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. **Nature Geoscience**, v. 3, n. 10, p. 700-704, 2010. ISSN 1752-0894.

RAMASWAMY, V. et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. **Marine Chemistry**, v. 111, n. 3, p. 137-150, 2008. ISSN 0304-4203.

RAMDAHL, T. Retene—a molecular marker of wood combustion in ambient air. 1983.

RAVINDRA, K.; SOKHI, R.; VAN GRIEKEN, R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. **Atmospheric Environment,** v. 42, n. 13, p. 2895-2921, 2008. ISSN 1352-2310.

RAYMOND, A. C. et al. The influence of microbial degradation and volcanic activity on a Carboniferous wood. **Fuel**, v. 68, n. 1, p. 66-73, 1989. ISSN 0016-2361.

RAZIK, S. et al. Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14kyr. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 374, p. 28-40, 2013. ISSN 0031-0182.

REIMER, P. J. et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. 2013. ISBN 0033-8222|escape}. Disponível em: < https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16947 >.

REIS, A. et al. Origin of step-like and lobate seafloor features along the continental shelf off Rio de Janeiro State, Santos basin-Brazil. **Geomorphology**, v. 203, p. 25-45, 2013. ISSN 0169-555X.

RENSSEN, H. et al. Global characterization of the Holocene Thermal Maximum. **Quaternary Science Reviews,** v. 48, p. 7-19, 8/10/ 2012. ISSN 0277-3791. Disponível em: < <u>http://www.sciencedirect.com/science/article/pii/S0277379112002168</u> >.

ROBERTS, A. P. et al. Searching for single domain magnetite in the "pseudo single - domain" sedimentary haystack: implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. **Journal of Geophysical Research: Solid Earth,** v. 117, n. B8, 2012. ISSN 2156-2202.

ROHLING, E. et al. Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. **Climate Dynamics**, v. 18, n. 7, p. 587-593, 2002. ISSN 0930-7575.

RUDDIMAN, W. F. The anthropocene. Annual Review of Earth and Planetary Sciences, v. 41, p. 45-68, 2013. ISSN 0084-6597.

RULLKÖTTER, J. Organic matter: the driving force for early diagenesis. In: (Ed.). Marine geochemistry: Springer, 2006. p.125-168. ISBN 3540321438.

RUNDEL, P. Fire as an ecological factor. In: (Ed.). Physiological plant ecology I: Springer, 1981. p.501-538.

SACHS, J. P.; ANDERSON, R. F.; LEHMAN, S. J. Glacial surface temperatures of the southeast Atlantic Ocean. **Science**, v. 293, n. 5537, p. 2077-2079, 2001. ISSN 0036-8075.

SACHSE, D.; RADKE, J.; GLEIXNER, G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient–Implications for the sedimentary biomarker record. **Organic Geochemistry**, v. 37, n. 4, p. 469-483, 2006. ISSN 0146-6380.

SCHAEFER, J. M. et al. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. **science**, v. 324, n. 5927, p. 622-625, 2009. ISSN 0036-8075.

SCHEEL-YBERT, R. Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. **Review of Palaeobotany and Palynology,** v. 110, n. 1–2, p. 111-138, 6// 2000. ISSN 0034-6667. Disponível em: < http://www.sciencedirect.com/science/article/pii/S003466670000004X >.

_____. Man and Vegetation in Southeastern Brazil during the Late Holocene. Journal of Archaeological Science, v. 28, n. 5, p. 471-480, 5// 2001. ISSN 0305-4403. Disponível em: < http://www.sciencedirect.com/science/article/pii/S030544030090576 >.

SCHEEL-YBERT, R.; BEAUCLAIR, M.; BUARQUE, A. The forest people: landscape and firewood use in the Araruama region, southeastern Brazil, during the late Holocene. **Vegetation history and archaeobotany**, v. 23, n. 2, p. 97-111, 2014. ISSN 0939-6314.

SCHEEL-YBERT, R. et al. A new age to an old site: the earliest Tupiguarani settlement in Rio de Janeiro State? **Anais da Academia Brasileira de Ciências,** v. 80, n. 4, p. 763-770, 2008. ISSN 0001-3765.

SCHEFUS, E. et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. **Geochimica et Cosmochimica Acta**, v. 67, n. 10, p. 1757-1767, 2003. ISSN 0016-7037.

SCHELLEKENS, J. et al. Holocene vegetation and fire dynamics in central-eastern Brazil: Molecular records from the Pau de Fruta peatland. **Organic Geochemistry**, v. 77, p. 32-42, 2014. ISSN 0146-6380.

SCHMIDT, F.; HINRICHS, K.-U.; ELVERT, M. Sources, transport, and partitioning of organic matter at a highly dynamic continental margin. **Marine Chemistry**, v. 118, n. 1, p. 37-55, 2010. ISSN 0304-4203.

SCHMIDT, M. W.; NOACK, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. **Global biogeochemical cycles**, v. 14, n. 3, p. 777-793, 2000. ISSN 1944-9224.

SCHNEIDER, R. R.; SCHULZ, H. D.; HENSEN, C. Marine carbonates: their formation and destruction. In: (Ed.). Marine geochemistry: Springer, 2006. p.311-337. ISBN 3540321438.

SCHOEPFER, S. D. et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. **Earth-Science Reviews**, v. 149, p. 23-52, 2015. ISSN 0012-8252.

SCHULTHEISS, P.; WEAVER, P. Multi-sensor core logging for science and industry. OCEANS'92. Mastering the Oceans Through Technology. Proceedings., 1992, IEEE. p.608-613.

SCHULZ, H.; ZABEL, M. Marine geochemistry: 2 nd revised, updated and extended edition: Germany: Springer-Verlag Berlin Heidelberg. 574p 2006.

SEPÚLVEDA, J. et al. Late Holocene sea-surface temperature and precipitation variability in northern Patagonia, Chile (Jacaf Fjord, 44 S). **Quaternary Research**, v. 72, n. 3, p. 400-409, 2009. ISSN 0033-5894.

SIFEDDINE, A. et al. Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. **Palaeogeography, palaeoclimatology, palaeoecology,** v. 168, n. 3, p. 221-235, 2001. ISSN 0031-0182.

SILLIMAN, J. E.; MEYERS, P. A.; EADIE, B. J. Perylene: an indicator of alteration processes or precursor materials? **Organic Geochemistry**, v. 29, n. 5, p. 1737-1744, 1998. ISSN 0146-6380.

SILVEIRA, I. C. A. et al. A corrente do Brasil ao largo da costa leste brasileira. **Revista Brasileira de Oceanografia,** v. 48, n. 2, p. 171-183, 2000. ISSN 2358-2928.

SILVEIRA, I. C. A. D. et al. The Brazil Current off the eastern brazilian coast. **Brazilian** Journal of Oceanography, v. 48, n. 2, p. 171-183, 2000. ISSN 1679-8759.

SIMONEIT, B. Cyclic terpenoids of the geosphere. Methods in geochemistry and geophysics, v. 24, p. 43-99, 1986. ISSN 0076-6895.

SIMONEIT, B. R. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. **Geochimica et Cosmochimica Acta**, v. 41, n. 4, p. 463-476, 1977. ISSN 0016-7037.

_____. Biomass burning—a review of organic tracers for smoke from incomplete combustion. **Applied Geochemistry**, v. 17, n. 3, p. 129-162, 2002. ISSN 0883-2927.

_____. A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. **Mass Spectrometry Reviews,** v. 24, n. 5, p. 719-765, 2005. ISSN 1098-2787.

SIMONEIT, B. R. et al. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. **Environmental Science & Technology**, v. 27, n. 12, p. 2533-2541, 1993. ISSN 0013-936X.

SIMONEIT, B. R. T. Biomass burning — a review of organic tracers for smoke from incomplete combustion. **Applied Geochemistry**, v. 17, n. 3, p. 129-162, 3// 2002. ISSN 0883-2927. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0883292701000610 >.

SOUZA, R. B.; ROBINSON, I. S. Lagrangian and satellite observations of the Brazilian Coastal Current. **Continental Shelf Research**, v. 24, n. 2, p. 241-262, 2004. ISSN 0278-4343.

STEFFEN, W. et al. The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, v. 369, n. 1938, p. 842-867, 2011. ISSN 1364-503X.

STENNI, B. et al. An oceanic cold reversal during the last deglaciation. **Science**, v. 293, n. 5537, p. 2074-2077, 2001. ISSN 0036-8075.

SUMMONS, R. Biogeochemical cycles: a review of fundamental aspects of organic matter formation, preservation and composition. **Organic Geochemistry**, v. 11, 1993.

SUN, Y. et al. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle. **Chemical Geology,** v. 257, n. 3, p. 240-246, 2008. ISSN 0009-2541.

SUZUKI, N.; YESSALINA, S.; KIKUCHI, T. Probable fungal origin of perylene in Late Cretaceous to Paleogene terrestrial sedimentary rocks of northeastern Japan as indicated from stable carbon isotopes. **Organic geochemistry**, v. 41, n. 3, p. 234-241, 2010. ISSN 0146-6380.

SYLVESTRE, F. Moisture pattern during the last glacial maximum in South America. In: (Ed.). **Past Climate Variability in South America and Surrounding Regions**: Springer, 2009. p.3-27. ISBN 9048126711.

TAN, Y.; HEIT, M. Biogenic and abiogenic polynuclear aromatic hydrocarbons in sediments from two remote Adirondack lakes. **Geochimica et Cosmochimica Acta**, v. 45, n. 11, p. 2267-2279, 1981. ISSN 0016-7037.

TAN, Y. L.; KONG, A.; MONETTI, M. A. Biogenic polycyclic aromatic hydrocarbons in an Alaskan arctic lake sediment. **Polycyclic Aromatic Compounds**, v. 9, n. 1-4, p. 185-192, 1996. ISSN 1040-6638.

TAYLOR, S. R.; MCLENNAN, S. M. The continental crust: its composition and evolution. 1985.

THORNTON, S.; MCMANUS, J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. **Estuarine, Coastal and Shelf Science,** v. 38, n. 3, p. 219-233, 1994. ISSN 0272-7714.

TISSOT, B. et al. Influence of nature and diagenesis of organic matter in formation of petroleum. **AAPG Bulletin**, v. 58, n. 3, p. 499-506, 1974. ISSN 0149-1423.

TRIBOVILLARD, N. et al. Trace metals as paleoredox and paleoproductivity proxies: an update. **Chemical geology,** v. 232, n. 1, p. 12-32, 2006. ISSN 0009-2541.

VALDÉS, J. et al. Metals content in surface waters of an upwelling system of the northern Humboldt Current (Mejillones Bay, Chile). **Journal of Marine Systems,** v. 71, n. 1, p. 18-30, 2008. ISSN 0924-7963.

VAN DER WERF, G. R. et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. **Science**, v. 303, n. 5654, p. 73-76, 2004. ISSN 0036-8075.

VARNOSFADERANY, M. N. et al. Perylene as an indicator of land-based plant biomarkers in the southwest Caspian Sea. **Marine pollution bulletin**, v. 80, n. 1, p. 124-131, 2014. ISSN 0025-326X.

VENKATESAN, M. Occurrence and possible sources of perylene in marine sediments-a review. **Marine Chemistry**, v. 25, n. 1, p. 1-27, 1988. ISSN 0304-4203.

VENKATESAN, M.; DAHL, J. Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary. 1989.

VENKATESAN, M.; KAPLAN, I. Distribution and transport of hydrocarbons in surface sediments of the Alaskan Outer Continental Shelf. **Geochimica et Cosmochimica Acta**, v. 46, n. 11, p. 2135-2149, 1982. ISSN 0016-7037.

VERA, C. et al. Toward a unified view of the American monsoon systems. **Journal of Climate,** v. 19, n. 20, p. 4977-5000, 2006. ISSN 1520-0442.

VIMEUX, F.; SYLVESTRE, F.; KHODRI, M. Past climate variability in South America and surrounding regions: from the Last Glacial Maximum to the Holocene. Springer Science & Business Media, 2009. ISBN 904812672X.

VOLKMAN, J. K. et al. Microalgal biomarkers: a review of recent research developments. **Organic Geochemistry**, v. 29, n. 5, p. 1163-1179, 1998. ISSN 0146-6380.

VOLKMAN, J. K.; MAXWELL, J. R. Acyclic isoprenoids as biological markers. **Methods in geochemistry and geophysics,** v. 24, p. 1-42, 1986. ISSN 0076-6895.

WAKEHAM, S. G.; CANUEL, E. A. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation. **Environmental Science and Pollution Research**, p. 1-17, 2015. ISSN 0944-1344.

WAKEHAM, S. G.; SCHAFFNER, C.; GIGER, W. Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis. **Geochimica et Cosmochimica Acta**, v. 44, n. 3, p. 415-429, 1980. ISSN 0016-7037.

WAKEHAM, S. G. et al. Perylene in sediments from the Namibian Shelf. Geochimica et Cosmochimica Acta, v. 43, n. 7, p. 1141-1144, 1979. ISSN 0016-7037.

WANNER, H. et al. Mid-to Late Holocene climate change: an overview. **Quaternary** Science Reviews, v. 27, n. 19, p. 1791-1828, 2008. ISSN 0277-3791.

WATERS, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. **Science**, v. 351, n. 6269, p. aad2622, 2016. ISSN 0036-8075.

WELDEAB, S.; SCHNEIDER, R.; KÖLLING, M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. **Earth and Planetary Science Letters**, v. 241, n. 3, p. 699-706, 2006. ISSN 0012-821X.

WENTWORTH, C. K. A scale of grade and class terms for clastic sediments. **The Journal of Geology**, p. 377-392, 1922. ISSN 0022-1376.

WESTERLING, A. L. et al. Warming and earlier spring increase western US forest wildfire activity. science, v. 313, n. 5789, p. 940-943, 2006. ISSN 0036-8075.

WILCKE, W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. **Geoderma,** v. 141, n. 3–4, p. 157-166, 10/15/ 2007. ISSN 0016-7061. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0016706107002182 >.

WILCKE, W. et al. Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil. **Organic Geochemistry**, v. 34, n. 10, p. 1405-1417, 10// 2003. ISSN 0146-6380. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0146638003001372 >.

WILCKE, W. et al. Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian rain forest. **Journal of Plant Nutrition and Soil Science,** v. 163, n. 1, p. 27-30, 2000. ISSN 1522-2624.

WILCKE, W.; KRAUSS, M.; AMELUNG, W. Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments? **Environmental science & technology**, v. 36, n. 16, p. 3530-3535, 2002. ISSN 0013-936X.

WU, J.; BOYLE, E. A. Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS. **Analytical Chemistry**, v. 69, n. 13, p. 2464-2470, 1997. ISSN 0003-2700.

YBERT, J.-P. et al. Environmental and sea-level variations on the southeastern Brazilian coast during the Late Holocene with comments on prehistoric human occupation. **Palaeogeography, Palaeoclimatology, Palaeoecology,** v. 189, n. 1, p. 11-24, 2003. ISSN 0031-0182.

YUNKER, M. B.; MACDONALD, R. W. Composition and origins of polycyclic aromatic hydrocarbons in the Mackenzie River and on the Beaufort Sea shelf. Arctic, p. 118-129, 1995. ISSN 0004-0843.

ZALASIEWICZ, J. et al. The Anthropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, v. 369, n. 1938, p. 835-841, 2011. ISSN 1364-503X.

ZALASIEWICZ, J. et al. Are we now living in the Anthropocene? **Gsa Today**, v. 18, n. 2, p. 4, 2008. ISSN 1052-5173.

ZECH, M. et al. Late Quaternary environmental changes in Misiones, subtropical NE Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment sequence. **Quaternary International**, v. 196, n. 1, p. 121-136, 2009. ISSN 1040-6182.

ZEMBRUSCKI, S.; CHAVES, H. A. Geomorfologia da margem continental sul brasileira e das bacias oceânicas adjacentes. **Projeto REMAC**, v. 7, p. 129-177, 1979.

ZHANG, Z. et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170kyr. **Quaternary Science Reviews**, v. 25, n. 5, p. 575-594, 2006. ISSN 0277-3791.

9 Anexos

cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
1	0,006	170	0,164					
2	0,012	170	0,164					
3	0,018	170	0,164					
4	0,024	170	0,164					
5	0,029	170	0,164					
6	0,2	40	0,038				8,31	
7	0,2	40	0,038				8,74	
8	0,2	40	0,038				10,23	
9	0,2	40	0,038	1521			11,29	
10	0,3	40	0,038	1519		1665	12,13	
11	0,3	40	0,038	1516		1547	11,9	
12	0,3	43	0,042	1515		1264	11,46	
13	0,4	35	0,033	1520	1,44	1434	11,23	0,76
14	0,5	30	0,029	1516	1,49	1630	10,78	0,73

Taxa de sedimentação (SR), Taxa de acumulação de sedimento (SAR) e dados geofísicos (Vp, Dgama, ImpAc, SM e Porosidade) para o RJ13-01.

15	0,6	26	0,025	1513	1,51	1570	10,56	0,72
16	0,7	24	0,023	1543	1,57	1714	9,7	0,68
17	0,8	22	0,022	1521	1,61	2298	9,47	0,66
18	0,9	21	0,02	1523	1,64	2298	9,25	0,64
19	1,0	20	0,019	1522	1,65	2394	4,83	0,64
20	1,0	19	0,018	1531	1,65	2454	5,24	0,64
21	1,1	18	0,018	1528	1,61	2508	5,44	0,66
22	1,2	18	0,017	1526	1,66	2522	4,8	0,63
23	1,3	17	0,017	1532	1,65	2513	4,38	0,64
24	1,4	17	0,017	1539	1,68	2473	4,58	0,62
25	1,5	16	0,017	1549	1,56	2557	4,36	0,69
26	1,6	16	0,016	1553	1,61	2554	4,15	0,66
27	1,7	16	0,016	1542	1,6	2607	4,15	0,67
28	1,8	15	0,016	1551	1,68	2405	3,95	0,62
29	1,9	15	0,015	1552	1,67	2493	4,16	0,63
30	2,0	15	0,015	1561	1,67	2488	3,95	0,63
31	2,1	15	0,015	1562	1,69	2624	3,74	0,61
32	2,2	15	0,015	1558	1,65	2610	3,57	0,64
33	2,3	14	0,015	1561	1,65	2599	3,99	0,64
34	2,4	14	0,014	1560	1,63	2640	4,39	0,65
cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
35	2,5	14	0,014	1556	1,55	2581	4,18	0,7
36	2,6	14	0,014	1549	1,56	2564	3,98	0,69
36 37	2,6 2,7	14 14	0,014 0,014	1549 1542	1,56 1,57	2564 2520	3,98 3,83	0,69 0,69
36 37 38	2,6 2,7 2,8	14 14 14	0,014 0,014 0,016	1549 1542 1537	1,56 1,57 1,63	2564 2520 2393	3,98 3,83 3,41	0,69 0,69 0,65
36 37 38 39	2,6 2,7 2,8 2,9	14 14 14 14	0,014 0,014 0,016 0,016	1549 1542 1537 1537	1,56 1,57 1,63 1,65	2564 2520 2393 2397	3,98 3,83 3,41 4,65	0,69 0,69 0,65 0,64
36 37 38 39 40	2,6 2,7 2,8 2,9 3,0	14 14 14 14 13	0,014 0,014 0,016 0,016 0,016	1549 1542 1537 1537 1542	1,56 1,57 1,63 1,65 1,64	2564 2520 2393 2397 2409	3,98 3,83 3,41 4,65 3,84	0,69 0,69 0,65 0,64 0,64
36 37 38 39 40 41	2,6 2,7 2,8 2,9 3,0 3,1	14 14 14 13 13	0,014 0,014 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550	1,56 1,57 1,63 1,65 1,64 1,61	2564 2520 2393 2397 2409 2517	3,98 3,83 3,41 4,65 3,84 3,72	0,69 0,69 0,65 0,64 0,64 0,66
36 37 38 39 40 41 42	2,6 2,7 2,8 2,9 3,0 3,1 3,2	14 14 14 13 13 13	0,014 0,014 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539	1,56 1,57 1,63 1,65 1,64 1,61 1,63	2564 2520 2393 2397 2409 2517 2551	3,98 3,83 3,41 4,65 3,84 3,72 4,03	0,69 0,69 0,65 0,64 0,64 0,66 0,65
36 37 38 39 40 41 42 43	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3	14 14 14 13 13 13 13	0,014 0,014 0,016 0,016 0,016 0,016 0,016 0,017	1549 1542 1537 1537 1542 1550 1539 1538	1,56 1,57 1,63 1,65 1,64 1,61 1,63 1,66	2564 2520 2393 2397 2409 2517 2551 2551	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52	0,69 0,65 0,64 0,64 0,66 0,65 0,63
36 37 38 39 40 41 42 43 44	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4	14 14 14 13 13 13 13 13 13	0,014 0,014 0,016 0,016 0,016 0,016 0,016 0,017 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543	1,56 1,57 1,63 1,65 1,64 1,61 1,63 1,66 1,66	2564 2520 2393 2397 2409 2517 2551 2532 2482	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63
36 37 38 39 40 41 42 43 44 45	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5	14 14 14 13 13 13 13 13 13 13 13	0,014 0,014 0,016 0,016 0,016 0,016 0,017 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537	1,56 1,57 1,63 1,65 1,64 1,61 1,63 1,66 1,66 1,68	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62
36 37 38 39 40 41 42 43 44 45 46	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6	14 14 14 13 13 13 13 13 13 13 13 13	0,014 0,014 0,016 0,016 0,016 0,016 0,017 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1543	1,56 1,57 1,63 1,65 1,64 1,61 1,63 1,66 1,66 1,68 1,69	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62
36 37 38 39 40 41 42 43 44 45 46 47	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7	14 14 14 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493	1,56 1,57 1,63 1,65 1,64 1,64 1,66 1,66 1,66 1,68 1,69 1,68	2564 2520 2393 2397 2409 2517 2551 2551 2532 2482 2515 2550 2567	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62 0,62
36 37 38 39 40 41 42 43 44 45 46 47 48	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498	1,56 1,57 1,63 1,65 1,64 1,61 1,63 1,66 1,66 1,68 1,69 1,68 1,69	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550 2567 2501	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62 0,62 0,62 0,62 0,66
36 37 38 39 40 41 42 43 44 45 46 47 48 49	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507	1,56 1,57 1,63 1,65 1,64 1,61 1,63 1,66 1,66 1,68 1,69 1,68 1,61 1,61	2564 2520 2393 2397 2409 2517 2551 2551 2552 2482 2515 2550 2567 2501 2411	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62 0,62 0,62 0,62 0,66 0,66
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516	1,56 1,57 1,63 1,65 1,64 1,61 1,66 1,66 1,68 1,69 1,68 1,61 1,61 1,59	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550 2567 2501 2411 2421	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,63
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9 4,0	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515	1,56 1,57 1,63 1,64 1,64 1,61 1,66 1,66 1,66 1,68 1,69 1,68 1,61 1,61 1,59 1,59	2564 2520 2393 2397 2409 2517 2551 2551 2552 2482 2515 2550 2567 2501 2411 2411 2421 2413	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,66 0,66 0,66 0,667 0,67
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9 4,0 4,1	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515	1,56 1,57 1,63 1,65 1,64 1,61 1,66 1,66 1,68 1,69 1,68 1,61 1,59 1,59 1,6	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550 2567 2501 2411 2421 2421 2413 2415	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16 3,78	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,65 0,63 0,62 0,62 0,62 0,62 0,65 0,63 0,62 0,65 0,63 0,62 0,65 0,63 0,62 0,65 0,63 0,62 0,65 0,65 0,63 0,62 0,65 0,67 0,67 0,67 0,67 0,67
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9 4,0 4,1 4,2	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515 1515 1519	1,56 1,57 1,63 1,64 1,64 1,61 1,66 1,66 1,66 1,68 1,69 1,68 1,61 1,59 1,59 1,59 1,6 1,61	2564 2520 2393 2397 2409 2517 2551 2551 2552 2482 2515 2550 2567 2501 2411 2411 2421 2413 2415 2426	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16 3,78 3,56	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,63 0,62 0,62 0,62 0,62 0,62 0,66 0,66 0,66
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9 4,0 4,1 4,2 4,3	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515 1515 1515 1519 1530	1,56 1,57 1,63 1,65 1,64 1,61 1,66 1,66 1,68 1,69 1,68 1,61 1,59 1,59 1,59 1,6 1,61 1,62	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550 2567 2501 2411 2421 2413 2415 2426 2453	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16 3,78 3,56 3,77	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,66 0,66 0,67 0,67 0,67 0,67 0,67 0,65
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9 4,0 4,1 4,2 4,3 4,4	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515 1515 1519 1530 1538	1,56 1,57 1,63 1,64 1,64 1,61 1,63 1,66 1,66 1,68 1,69 1,68 1,61 1,59 1,59 1,59 1,6 1,61 1,62 1,66	2564 2520 2393 2397 2409 2517 2551 2552 2482 2515 2550 2567 2501 2411 2411 2413 2415 2426 2453 2481	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16 3,78 3,56 3,77 3,97	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,66 0,66 0,67 0,67 0,67 0,67 0,67 0,66 0,65 0,63
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,7 3,8 3,9 4,0 4,1 4,2 4,3 4,4 4,5	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515 1515 1515 1519 1530 1538 1536	1,56 1,57 1,63 1,65 1,64 1,61 1,66 1,66 1,68 1,69 1,68 1,61 1,59 1,59 1,59 1,6 1,61 1,62 1,62 1,64	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550 2567 2501 2411 2411 2411 2413 2415 2426 2453 2481 2551	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16 3,78 3,56 3,77 3,97 3,34	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,66 0,66 0,67 0,67 0,67 0,67 0,67 0,67 0,63 0,63 0,64
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	2,6 $2,7$ $2,8$ $2,9$ $3,0$ $3,1$ $3,2$ $3,3$ $3,4$ $3,5$ $3,6$ $3,7$ $3,7$ $3,8$ $3,9$ $4,0$ $4,1$ $4,2$ $4,3$ $4,4$ $4,5$ $4,6$	14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13	0,014 0,016	1549 1542 1537 1537 1542 1550 1539 1538 1543 1537 1546 1493 1498 1507 1516 1515 1515 1515 1519 1530 1538 1536 1536	1,56 1,57 1,63 1,65 1,64 1,61 1,66 1,66 1,68 1,69 1,68 1,61 1,59 1,59 1,59 1,6 1,61 1,59 1,6 1,61 1,62 1,66 1,64 1,65	2564 2520 2393 2397 2409 2517 2551 2532 2482 2515 2550 2567 2501 2411 2421 2413 2415 2426 2453 2481 2551 2551	3,98 3,83 3,41 4,65 3,84 3,72 4,03 4,52 3,95 4,07 3,85 3,62 3,6 3,8 3,58 3,16 3,78 3,56 3,77 3,97 3,34 3,76	0,69 0,65 0,64 0,64 0,66 0,65 0,63 0,62 0,62 0,62 0,62 0,62 0,62 0,66 0,67 0,67 0,67 0,67 0,67 0,67 0,63 0,63 0,64 0,64

59	4,8	12	0,015	1534	1,61	2499	2,92	0,66
60	4,9	12	0,015	1531	1,65	2475	2,92	0,64
61	5,0	12	0,015	1538	1,63	2520	2,69	0,65
62	5,1	12	0,015	1535	1,64	2514	2,28	0,64
63	5,2	12	0,015	1535	1,63	2516	2,48	0,65
64	5,3	12	0,015	1558	1,58	2509	2,48	0,68
65	5.4	12	0,015	1555	1,62	2463	2,49	0,66
66	5.5	12	0,015	1566	1,69	2515	2,28	0,62
67	5.6	12	0,015	1568	1,65	2646	1,86	0,64
68	5.7	12	0,015	1566	1,64	2581	1,86	0,64
69	5.8	12	0,015	1562	1,64	2575	2,49	0,64
70	5.9	12	0,015	1561	1,67	2566	2,07	0,63
71	6.0	12	0,014	1557	1,63	2607	2,07	0,65
72	6.1	12	0,014	1554	1,66	2543	1,86	0,63
73	6.2	12	0,014	1559	1,65	2575	2,28	0,64
74	6,3	12	0,014	1565	1,69	2575	1,66	0,61
75	6,4	12	0,014	1571	1,65	2650	1,86	0,64
76	6,4	12	0,014	1561	1,63	2590	1,87	0,65
77	6,5	12	0,014	1556	1,64	2542	2,07	0,64
78	6,6	12	0,014	1561	1,67	2555	2,07	0,63
cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
79	6,7	12	0,014	1562	1,64	2606	2,08	0,64
80	6,8	12	0,014	1559	1,65	2562	2,28	0,64
80 81	6,8 6,9	12 12	0,014 0,014	1559 1558	1,65 1,64	2562 2577	2,28 2,29	0,64 0,64
80 81 82	6,8 6,9 7,0	12 12 12	0,014 0,014 0,014	1559 1558 1565	1,65 1,64 1,69	2562 2577 2561	2,28 2,29 2,71	0,64 0,64 0,62
80 81 82 83	6,8 6,9 7,0 7,1	12 12 12 12	0,014 0,014 0,014 0,014	1559 1558 1565 1567	1,65 1,64 1,69 1,68	2562 2577 2561 2640	2,28 2,29 2,71 2,08	0,64 0,64 0,62 0,62
80 81 82 83 84	6,8 6,9 7,0 7,1 7,2	12 12 12 12 12	0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565	1,65 1,64 1,69 1,68 1,69	2562 2577 2561 2640 2626	2,28 2,29 2,71 2,08 2,08	0,64 0,64 0,62 0,62 0,62
80 81 82 83 84 85	6,8 6,9 7,0 7,1 7,2 7,3	12 12 12 12 12 12 12	0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567	1,65 1,64 1,69 1,68 1,69 1,71	2562 2577 2561 2640 2626 2642	2,28 2,29 2,71 2,08 2,08 1,67	0,64 0,62 0,62 0,62 0,62 0,61
80 81 82 83 84 85 86	6,8 6,9 7,0 7,1 7,2 7,3 7,4	12 12 12 12 12 12 12 12	0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563	1,65 1,64 1,69 1,68 1,69 1,71 1,66	2562 2577 2561 2640 2626 2642 2673	2,28 2,29 2,71 2,08 2,08 1,67 1,88	0,64 0,62 0,62 0,62 0,61 0,63
80 81 82 83 84 85 86 87	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5	12 12 12 12 12 12 12 12 12 12	0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63	2562 2577 2561 2640 2626 2642 2673 2597	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53	0,64 0,62 0,62 0,62 0,62 0,61 0,63 0,65
80 81 82 83 84 85 86 87 88	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6	12 12 12 12 12 12 12 12 12 12 12	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556 1553	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63	2562 2577 2561 2640 2626 2642 2673 2597 2542	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65
80 81 82 83 84 85 86 87 88 89	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7	12 12 12 12 12 12 12 12 12 12 12 12	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64
80 81 82 83 84 85 86 87 88 89 90	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8	12 12 12 12 12 12 12 12 12 12 12 12	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1554	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61
80 81 82 83 84 85 86 87 88 89 90 91	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1547 1557	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,63 1,65 1,7 1,72	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,65 0,64 0,61 0,6
80 81 82 83 84 85 86 87 88 89 90 91 92	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1554 1557 1557	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7 1,72 1,78	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,6 0,66
80 81 82 83 84 85 86 87 88 89 90 91 92 93	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1557 1557 1570 1587	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,63 1,65 1,7 1,72 1,78 1,75	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,65 0,64 0,61 0,6 0,56 0,58
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,017 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1557 1557 1570 1587 1577	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7 1,72 1,78 1,75 1,69	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,6 0,56 0,58 0,61
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1554 1553 1554 1547 1557 1570 1587 1577 1562	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,63 1,63 1,65 1,7 1,72 1,78 1,75 1,69 1,7	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,56 0,58 0,61 0,61
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,011 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1557 1577 1577 1577 1577 1562 1559	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7 1,72 1,78 1,75 1,69 1,7 1,73	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670 2654	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54 2,09	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,56 0,58 0,61 0,61 0,61 0,59
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,016 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1554 1553 1554 1557 1570 1587 1577 1562 1559 1564	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,63 1,63 1,65 1,7 1,72 1,78 1,75 1,69 1,7 1,73 1,76	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670 2654 2693	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54 2,09 2,81	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,56 0,58 0,61 0,61 0,59 0,57
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5 8,6	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,016 0,016 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1554 1553 1554 1557 1577 1570 1587 1577 1562 1559 1564 1563	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7 1,72 1,72 1,78 1,75 1,69 1,7 1,73 1,76 1,77	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670 2654 2693 2758	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54 2,09 2,81 2,32	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,66 0,58 0,61 0,61 0,61 0,61 0,59 0,57
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,016 0,016 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1556 1553 1554 1557 1570 1587 1577 1570 1587 1577 1562 1559 1564 1563 1726	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,63 1,63 1,63 1,63 1,6	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670 2654 2693 2758 2758	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54 2,09 2,81 2,32 1,43	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,65 0,64 0,61 0,56 0,58 0,61 0,58 0,61 0,59 0,57 0,57 0,37
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1554 1553 1554 1557 1577 1570 1587 1577 1562 1559 1564 1563 1726 1747	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7 1,72 1,72 1,78 1,75 1,69 1,7 1,73 1,76 1,77 2,11 2,11	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670 2654 2693 2758 2758 2758 2764 3694	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54 2,09 2,81 2,32 1,43 1,3	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,65 0,64 0,61 0,66 0,58 0,61 0,58 0,61 0,59 0,57 0,57 0,57 0,37
 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 	6,8 6,9 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9	12 12 12 12 12 12 12 12 12 12 12 12 12 1	0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,014 0,016 0,016 0,016 0,016 0,016 0,016 0,016	1559 1558 1565 1567 1565 1567 1563 1554 1553 1554 1557 1570 1587 1577 1562 1559 1564 1563 1726 1747 1763	1,65 1,64 1,69 1,68 1,69 1,71 1,66 1,63 1,63 1,65 1,7 1,72 1,78 1,75 1,69 1,7 1,73 1,76 1,77 2,11 2,13	2562 2577 2561 2640 2626 2642 2673 2597 2542 2530 2566 2635 2681 2791 2776 2670 2654 2693 2758 2758 2764 3694 3755	2,28 2,29 2,71 2,08 2,08 1,67 1,88 2,53 2,74 1,9 2,32 2,52 2,31 1,68 2,53 2,54 2,09 2,81 2,32 1,43 1,3 0,21	0,64 0,62 0,62 0,62 0,61 0,63 0,65 0,64 0,61 0,6 0,56 0,56 0,58 0,61 0,59 0,57 0,57 0,57 0,57 0,37 0,37 0,36

103	9,1	11	0,018	1757	2,05	3609	-0,64	0,4
104	9,1	11	0,018	1668	1,92	3197	0,21	0,48
105	9,2	11	0,018	1614	1,92	3104	1,07	0,48
106	9,3	11	0,018	1644	2,03	3330	0,43	0,42
107	9,4	11	0,018	1682	2,03	3410	0,64	0,42
108	9,5	11	0,018	1691	2,07	3494	1,28	0,4
109	9,6	11	0,018	1691	2,05	3466	1,49	0,41
110	9,7	11	0,018	1696	2,06	3492	1,71	0,4
111	9,8	11	0,018	1692	2,06	3477	1,92	0,4
112	9,9	11	0,02	1702	2,05	3497	1,92	0,4
113	10,0	11	0,02	1713	2,07	3549	1,71	0,39
114	10,1	11	0,02	1720	2,06	3540	1,49	0,4
115	10,2	11	0,02	1720	2,07	3556	1,49	0,4
116	10,3	11	0,02	1725	2,08	3593	1,49	0,39
117	10,4	11	0,02	1726	2,06	3563	1,28	0,4
118	10,5	11	0,02	1737	2,08	3616	1,06	0,39
119	10,6	11	0,02	1741	2,08	3625	1,05	0,39
120	10,7	11	0,02	1733	2,06	3569	0,84	0,4
121	10,8	11	0,02	1743	2,09	3640	0,84	0,38
122	10,9	11	0,02	1746	2,09	3640	0,63	0,39
cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
123	11.0	11	0.02	1741	2.08	3626	0.42	0.39
	11,0		- , -		_ ,00	2020	-)	- ,
124	11,0	11	0,02	1748	2,07	3611	0	0,4
124 125	11,0 11,1 11,2	11 11	0,02 0,02	1748 1755	2,00 2,07 2,1	3611 3687	0 0	0,4 0,38
124 125 126	11,0 11,1 11,2 11,3	11 11 11	0,02 0,02 0,02	1748 1755 1755	2,07 2,1 2,11	3611 3687 3702	0 0 -0,21	0,4 0,38 0,37
124 125 126 127	11,0 11,1 11,2 11,3 11,4	11 11 11 11	0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739	2,07 2,1 2,11 2,08	3611 3687 3702 3619	0 0 -0,21 -0,21	0,4 0,38 0,37 0,39
124 125 126 127 128	11,0 11,1 11,2 11,3 11,4 11,5	11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739	2,07 2,1 2,11 2,08 2,07	3611 3687 3702 3619 3609	0 0 -0,21 -0,21 0,21	0,4 0,38 0,37 0,39 0,39
124 125 126 127 128 129	11,0 11,1 11,2 11,3 11,4 11,5 11,6	11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1759 1739 1722	2,07 2,1 2,11 2,08 2,07 2,02	3611 3687 3702 3619 3609 3487	0 0 -0,21 -0,21 0,21 -0,21	0,4 0,38 0,37 0,39 0,39 0,39 0,42
124 125 126 127 128 129 130	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7	11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1722 1735	2,07 2,1 2,11 2,08 2,07 2,02 2,02	3611 3687 3702 3619 3609 3487 3557	0 0 -0,21 -0,21 0,21 -0,21 -0,21 -0,42	0,4 0,38 0,37 0,39 0,39 0,42 0,41
124 125 126 127 128 129 130 131	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8	11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1722 1735 1726	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06	3611 3687 3702 3619 3609 3487 3557 3551	0 0 -0,21 -0,21 0,21 -0,21 -0,42 0,21	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4
124 125 126 127 128 129 130 131 132	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8	11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1722 1735 1726 1726	2,07 2,1 2,11 2,08 2,07 2,02 2,02 2,05 2,06 2,05	3611 3687 3702 3619 3609 3487 3557 3551 3540	0 0 -0,21 -0,21 0,21 -0,21 -0,42 0,21 0	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41
124 125 126 127 128 129 130 131 132 133	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9	11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1755 1739 1739 1722 1735 1726 1726 1726 1726	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,07	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603	0 0 -0,21 -0,21 0,21 -0,21 -0,42 0,21 0 -0,42	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39
124 125 126 127 128 129 130 131 132 133 134	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0	11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1722 1735 1726 1726 1726 1737 1758	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,07 2,12	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722	0 0 -0,21 -0,21 0,21 -0,21 -0,42 0,21 0 -0,42 -0,63	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37
124 125 126 127 128 129 130 131 132 133 134 135	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1	11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1737 1758 1775	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,05 2,05 2,05 2,05 2,07 2,12 2,12	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771	0 0 -0,21 -0,21 0,21 -0,21 -0,42 0,21 0 -0,42 -0,63 -0,42	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36
124 125 126 127 128 129 130 131 132 133 134 135 136	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2	11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1722 1735 1726 1726 1726 1737 1758 1775 1791	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,06 2,05 2,07 2,12 2,12 2,12 2,15	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36 0,35
124 125 126 127 128 129 130 131 132 133 134 135 136 137	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3	11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1726 1737 1758 1775 1791 1793	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,05 2,05 2,05 2,05 2,05 2,05	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,35
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3 12,4	11 11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1737 1758 1775 1791 1793 1795	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,06 2,05 2,07 2,12 2,12 2,12 2,15 2,15 2,16	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,35 0,34
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5	11 11 11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1758 1758 1751 1791 1793 1795 1796	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,05 2,05 2,07 2,12 2,12 2,15 2,15 2,16 2,17	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -1,06\\ -0,63\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,35 0,34 0,34
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5 12,6	11 11 11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1737 1758 1775 1791 1793 1795 1796 1794	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,05 2,07 2,12 2,12 2,12 2,15 2,15 2,16 2,17 2,14	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891 3840	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -0,63\\ -0,21\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,35 0,34 0,34 0,35
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7	11 11 11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1748 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1737 1758 175 1791 1793 1795 1796 1794 1785	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,05 2,05 2,07 2,12 2,12 2,15 2,15 2,16 2,17 2,14 2,14	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891 3840 3817	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -1,06\\ -0,63\\ -0,21\\ -0,42\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,34 0,35 0,35 0,35
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7 12,8	11 11 11 11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1748 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1737 1758 175 1791 1793 1795 1796 1794 1785 1766	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,05 2,05 2,05 2,07 2,12 2,12 2,15 2,15 2,15 2,16 2,17 2,14 2,14 2,14 2,13	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891 3840 3817 3847	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -1,06\\ -0,63\\ -0,21\\ -0,42\\ -0,21\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,35 0,34 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,36
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7 12,8 12,9	11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1748 1755 1755 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1726 1726	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,05 2,05 2,05 2,07 2,12 2,12 2,15 2,15 2,16 2,17 2,14 2,14 2,13 2,15	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891 3840 3817 3840 3817 3754 3791	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -1,06\\ -0,63\\ -0,21\\ -0,21\\ -0,21\\ -0,21\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,34 0,35 0,35 0,35 0,36 0,35
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7 12,8 12,9 13,0	11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1748 1755 1755 1739 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1726 1737 1758 175 1791 1793 1795 1796 1794 1785 1766 1766	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,05 2,05 2,05 2,05 2,05 2,12 2,12 2,12 2,15 2,15 2,16 2,17 2,14 2,14 2,14 2,13 2,15 2,12	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891 3840 3817 3840 3817 3754 3791 3749	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -1,06\\ -0,63\\ -0,21\\ -0,42\\ -0,21\\ -0,21\\ -0,21\\ -0,21\\ -0,85\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,34 0,35 0,36 0,35 0,35 0,36 0,36 0,35 0,36 0,
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,9 12,0 12,1 12,2 12,3 12,4 12,5 12,6 12,7 12,8 12,9 13,0 13,1	11 11 11 11 11 11 11 11 11 11	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	1748 1748 1755 1755 1739 1739 1722 1735 1726 1726 1726 1726 1726 1726 1737 1758 1775 1791 1793 1795 1796 1794 1785 1766 1766 1766 1766	2,07 2,1 2,11 2,08 2,07 2,02 2,05 2,06 2,05 2,06 2,05 2,07 2,12 2,12 2,12 2,15 2,15 2,16 2,17 2,14 2,14 2,14 2,13 2,15 2,12 2,12 2,11	3611 3687 3702 3619 3609 3487 3557 3551 3540 3603 3722 3771 3845 3861 3870 3891 3840 3891 3840 3817 3754 3754 3791 3749 3710	$\begin{array}{c} 0\\ 0\\ -0,21\\ -0,21\\ 0,21\\ -0,21\\ -0,21\\ -0,42\\ 0,21\\ 0\\ -0,42\\ -0,63\\ -0,42\\ -0,63\\ -0,42\\ -0,85\\ -1,06\\ -1,06\\ -0,63\\ -0,21\\ -0,21\\ -0,21\\ -0,85\\ -0,21\\ -0,85\\ -0,21\\ \end{array}$	0,4 0,38 0,37 0,39 0,39 0,42 0,41 0,4 0,41 0,39 0,37 0,36 0,35 0,35 0,34 0,34 0,34 0,35 0,35 0,35 0,35 0,35 0,35 0,36 0,35 0,36 0,35 0,36 0,37

147	13,3	11	0,022	1767	2,1	3712	-0,63	0,38
148	13,4	11	0,022	1767	2,14	3772	-0,21	0,36
149	13,5	11	0,022	1755	2,11	3711	-0,21	0,37
150	13,6	11	0,022	1740	2,1	3646	0,21	0,38
151	13,7	11	0,022	1733	2,07	3581	0,21	0,4
152	13,8	11	0,022	1719	2,08	3575	-0,63	0,39
153	13,9	11	0,022				-0,85	
154	14,0	11	0,022				-0,92	
155	14,1	11	0,022					
156	14,2	11	0,022					
157	14,3	11	0,022					
158	14,4	11	0,022					
159	14,4	11	0,022					
160	14,5	11	0,022					

cm	cal kyr	SIVI E POIOSI SR	SAR	13-02. Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹	1	SI x 10 ⁻⁵	
1	0,006	170	0,215		0			
2	0,012	170	0,215					
3	0,018	170	0,215					
4	0,024	170	0,215					
5	0,029	170	0,215					
6	03	20	0,025					
7	0.4	20	0,025					
8	0.4	20	0,025					
9	0,4	20	0,025					
10	0,5	20	0,025					
11	0,5	20	0,025					
12	0,0 2 3	5	0,007	1577	1,66	2673		0,63
13	2,5	6	0,007	1584	1,66	2631		0,64
14	2,5	6	0,008	1596	1,67	2617		0,64
15	2,5	6	0,008	1600	1,65	2737		0,6
16	2,5	7	0,009	1594	1,65	2767	9,61	0,6
17	2,4	7	0.009	1587	1,71	2696	12	0,62
18	2,4	8	0.01	1598	1,72	2687	13,4	0,62
19	2,4	8	0.01	1605	1.68	2778	14.2	0.59
20	2,4	8	0.01	1602	1.69	2797	15.2	0.59
21	2,4	9	0.011	1591	1.73	2689	16	0.62
22	2,4	9	0.011	1603	1,74	2646	16	0,63
23	2,5	9	0.012	1607	1.68	2572	16	0.65
24	2,5	10	0.012	1603	1.66	2634	15.4	0.63
25	2,5	10	0.013	1593	1.63	2674	15.6	0.62
26	2,5	10	0.013	1582	1.66	2729	14.8	0.61
27	2,5	11	0.013	1589	1.68	2665	14	0.63
28	2,5	11	0.014	1596	1.71	2637	13.6	0.64
29	2,5	11	0.014	1600	1.67	2644	13	0.63
30	2,0	12	0.014	1600	1.65	2788	12	0.59
31	2,0	12	0.015	1594	1.66	2734	10.6	0.61
32	2,0	12	0.015	1593	1.73	2643	10.6	0.64
33	2,0	13	0.015	1611	1.7	2635	10.4	0.63
34	2,0	13	0.016	1613	1.65	2620	9.6	0.64
35	2,0	13	0.016	1600	1.66	2648	9.8	0.63
36	2,7	13	0.017	1589	1,65	2657	9.8	0.62
37	2,7	14	0.017	1583	1,67	2695	9.4	0.61
38	2,7	14	0.017	1583	1,67	2638	94	0.63
39	2,7	14	0.018	1584	1 7	2686	2,≓ 9.6	0.61
40	2,7	15	0.018	1583	1.67	2681	9.2	0.61
<u>4</u> 1	2,7	15	0.018	1581	1.07	2601	9.2	0.63
12	2,8	15	0.010	1579	1,7	2627	2,2 8 8	0,05
74	2,8	15	0,019	1570	1,/	2007	0,0	0,01

Taxa de sedimentação (SR), Taxa de acumulação de sedimento (SAR) e dados geofísicos (Vp, Dgama, ImpAc, SM e Porosidade) para o RJ13-02.

cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
43	2,8	15	0,019	1581	1,66	2697	8,61	0,61
44	2,8	16	0,019	1578	1,7	2685	8,44	0,61
45	2,8	16	0,02	1578	1,7	2725	8,66	0,6
46	2,8	16	0,02	1583	1,69	2711	8,06	0,61
47	2,8	17	0,02	1588	1,71	2730	8,06	0,6
48	2,9	17	0,021	1594	1,7	2706	7,88	0,61
49	2,9	17	0,021	1592	1,72	2620	8,09	0,63
50	2,9	17	0,021	1591	1,7	2661	7,47	0,62
51	2,9	18	0,022	1591	1,66	2631	8,08	0,62
52	2,9	18	0,022	1583	1,69	2575	8,26	0,64
53	2,9	18	0,022	1577	1,67	2640	7,64	0,63
54	3,0	18	0,022	1573	1,65	2552	7,64	0,6
55	3,0	19	0,021	1559	1,67	2540	7,23	0,62
56	3,0	19	0,022	1579	1,69	2585	7,23	0,63
57	3,0	19	0,022	1570	1,69	2589	7,03	0,61
58	3,0	19	0,022	1542	1,71	2645	6,63	0,62
59	3,0	19	0,022	1548	1,7	2634	6,63	0,6
60	3,1	20	0,023	1546	1,69	2610	6,65	0,61
61	3,1	20	0,023	1548	1,72	2670	6,46	0,62
62	3,1	20	0,023	1559	1,76	2744	6,08	0,59
63	3,1	20	0,023	1558	1,72	2685	6,11	0,57
64	3,1	21	0,024	1559	1,76	2740	6,18	0,6
65	3,1	21	0,024	1566	1,73	2710	6,05	0,58
66	3,1	21	0,024	1565	1,74	2727	6,51	0,59
67	3,2	21	0,024	1567	1,77	2776	6,05	0,58
68	3,2	21	0,025	1587	1,82	2887	4,07	0,57
69	3,2	22	0,025	1591	1,82	2893	4,19	0,54
70	3,2	22	0,025	1607	1,83	2943	4,4	0,54
71	3,2	22	0,025	1598	1,8	2878	4,59	0,53
72	3,2	22	0,026	1582	1,77	2805	4,58	0,55
73	3,3	22	0,026	1581	1,79	2834	4,58	0,57
74	3,3	23	0,026	1583	1,78	2825	4,98	0,56
75	3,3	23	0,026	1574	1,73	2722	4,56	0,56
76	3,3	23	0,036	1571	1,75	2755	4,56	0,59
77	3,3	23	0,036	1571	1,76	2768	4,97	0,58
78	3,3	23	0,036	1576	1,76	2781	4,75	0,57
79	3,3	24	0,036	1573	1,7	2667	5,16	0,57
80	3,4	24	0,037	1566	1,71	2683	5,37	0,61
81	3,4	24	0,037	1570	1,75	2744	5,16	0,6
82	3,4	24	0,037	1568	1,69	2654	5,77	0,58
83	3,4	24	0,038	1556	1,71	2662	5,15	0,61
84	3,4	25	0,038	1556	1,71	2663	5,35	0,6
85	3,4	25	0,038	1561	1,71	2675	5,35	0,6
86	35	25	0,038	1567	1,77	2773	5,35	0,6

cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
87	3,5	25	0,039	1574	1,76	2766	5,76	0,57
88	3,5	25	0,039	1576	1,78	2798	4,73	0,58
89	3,5	25	0,039	1571	1,72	2707	4,52	0,57
90	3,5	26	0,039	1562	1,74	2725	4,72	0,6
91	3,5	26	0,04	1569	1,76	2767	4,93	0,58
92	3,6	26	0,04	1571	1,75	2750	4,11	0,57
93	3,6	26	0,04	1569	1,74	2732	4,31	0,58
94	3,6	26	0,04	1571	1,75	2743	3,69	0,59
95	3,6	26	0,041	1571	1,76	2766	3,69	0,58
96	3,6	27	0,041	1569	1,75	2753	3,69	0,57
97	3,6	27	0,041	1572	1,74	2737	3,28	0,58
98	3,6	27	0,041	1573	1,74	2744	3,49	0,59
99	3,7	27	0,042	1572	1,75	2750	3,9	0,58
100	3,7	27	0,042	1571	1,74	2739	3,29	0,58
101	3,7	27	0,042	1573	1,77	2781	3,49	0,58
102	3,7	27	0,042	1573	1,75	2754	3,08	0,57
103	3,7	28	0,04	1573	1,76	2769	3,29	0,58
104	3,7	28	0,04	1573	1,76	2762	3,08	0,57
105	3,8	28	0,04	1575	1,77	2779	3,49	0,58
106	3,8	28	0,04	1574	1,76	2776	3,29	0,57
107	3,8	28	0,041	1575	1,76	2767	3,49	0,57
108	3,8	28	0,041	1576	1,74	2749	3,29	0,58
109	3,8	29	0,041	1579	1,76	2782	3,49	0,58
110	3,8	29	0,041	1579	1,76	2776	3,49	0,57
111	3,9	29	0,042	1579	1,76	2785	3,9	0,58
112	3,9	29	0,042	1579	1,75	2764	3,9	0,57
113	3,9	29	0,042	1580	1,76	2776	3,91	0,58
114	3,9	29	0,042	1584	1,76	2789	2,05	0,58
115	3,9	29	0,042	1587	1,76	2791	3,49	0,57
116	3,9	30	0,043	1585	1,76	2798	3,7	0,57
117	3,9	30	0,043	1585	1,78	2822	3,7	0,57
118	4,0	30	0,043	1582	1,77	2795	3,7	0,56
119	4,0	30	0,043	1580	1,77	2792	3,49	0,57
120	4,0	30	0,043	1577	1,77	2798	2,88	0,57
121	4,0	30	0,043	1535	1,74	2663	3,28	0,57
122	4,0	30	0,044	1533	1,76	2690	3,89	0,64
123	4,0	30	0,044	1534	1,75	2672	3,27	0,58
124	4,1	31	0,044	1540	1,76	2652	3,47	0,62
125	4,1	31	0,044	1543	1,74	2675	3,67	0,64
126	4,1	31	0,044	1542	1,73	2654	3,88	0,58
127	4,1	31	0,045	1539	1,75	2634	3,06	0,57
128	4,1	31	0,045	1536	1,73	2627	3,67	0,58
129	4,1	31	0,045	1535	1,73	2625	3,27	0,57
130	12	31	0,044	1538	1,72	2637	3,47	0.59
cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
-----	---------	----------------------	---------------------------------------	-------------------	---------------------------------	-------	-----------------------	------------
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
131	4,2	31	0,044	1540	1,72	2657	3,47	0,59
132	4,2	32	0,044	1542	1,73	2683	3,67	0,58
133	4,2	32	0,045	1542	1,74	2712	2,86	0,59
134	4,2	32	0,045	1545	1,75	2742	2,66	0,59
135	4,2	32	0,045	1545	1,77	2748	2,5	0,6
136	4,2	32	0,045	1549	1,78	2745	2,44	0,6
137	4,3	32	0,045	1551	1,78	2727	0	0,59
138	4,3	32	0,045	1553	1,78	2679	0,21	0,59
139	4,3	32	0,046	1554	1,77	2671	0,42	0,58
140	4,3	33	0,046	1554	1,74	2710	0,64	0,57
141	4,3	33	0,046	1547	1,74	2728	1,06	0,56
142	4,3	33	0,046	1544	1,76	2718	0,64	0,56
143	4,4	33	0,046	1542	1,77	2694	0,85	0,56
144	4,4	33	0,046	1544	1,76	2698	0,85	0,57
145	4,4	33	0,046	1550	1,75	2687	0,85	0,58
146	4,4	33	0,047	1552	1,75	2711	1,06	0,59
147	4,4	33	0,047	1550	1,74	2719	0,63	0,57
148	4,4	33	0,047	1548	1,75	2745	1,48	0,57
149	4,4	33	0,047	1543	1,75	2732	1,27	0,57
150	4,5	34	0,047	1541	1,77	2697	1,27	0,58
151	4,5	34	0,047	1521	1,76	2635	1,69	0,58
152	4,5	34	0,048	1527	1,74	2634	1,9	0,59
153	4,5	34	0,048	1530	1,7	2614	2,11	0,58
154	4,5	34	0,051	1529	1,71	2623	1,68	0,58
155	4,5	34	0,051	1529	1,7	2688	1,68	0,57
156	4,6	34	0,051	1532	1,7	2694	1,47	0,58
157	4,6	34	0,052	1534	1,73	2643	1,26	0,59
158	4,6	34	0,052	1529	1,74	2625	0,63	0,61
159	4,6	35	0,052	1532	1,7	2594	1,05	0,61
160	4,6	35	0,052	1535	1,7	2507	1,25	0,61
161	4,6	35	0,052	1537	1,68	2525	0,42	0,61
162	4,7	35	0,052	1535	1,63	2571	0,42	0,59
163	4,7	35	0,052	1536	1,66	2545	0,84	0,59
164	4,7	35	0,062	1542	1,68	2577	0,63	0,61
165	4,7	35	0,063	1546	1,66	2573	1,04	0,61
166	4,7	35	0,063	1544	1,69	2666	0,42	0,62
167	4,7	35	0,063	1545	1,68	2659	0,42	0,65
168	4,7	35	0,063	1547	1,74	2584	0	0,63
169	4,8	35	0,063	1549	1,73	2556	0,21	0,62
170	4,8	36	0,063	1549	1,69	2512	-0,21	0,63
171	4,8	36	0,064	1548	1,67	2496	0	0,62
172	4,8	36	0,064	1545	1,64	2511	-0,42	0,62
173	4,8	36	0,064	1550	1,62	2612	-0,42	0,59

cm	cal kyr	SR	SAR	Vp	Dgama	ImpAc	SM	Porosidade
	BP	cm kyr ⁻¹	kg cm ⁻² kyr ⁻¹	m s ⁻¹	cm ³ g ⁻¹		SI x 10 ⁻⁵	
175	4,9	36	0,064		1,7	2671	-0,83	0,62
176	4,9	36	0,064		1,73	2644	-1,06	0,63
177	4,9	36	0,065		1,73	2623	-0,84	0,65
178	4,9	36	0,065		1,71	2658	-0,63	0,65
179	4,9	36	0,065		1,7	2656	-1,27	0,65
180	4,9	36	0,065		1,72	2678	-0,84	0,61
181	5,0	37	0,065		1,71	2663	-0,84	0,59
182	5,0	37	0,065		1,73	2696	-1,05	0,59
183	5,0	37	0,065		1,72	2646	-0,84	0,6
184	5,0	37	0,066		1,74	2730	-0,42	0,61
185	5,0	37	0,066		1,71		-0,63	0,6
186	5,0	37	0,066		1,75		-1,04	0,6
187	5,0	37	0,066				-0,84	0,59
188	5,1	37	0,066				-0,21	0,6
189	5,1	37	0,066				-0,84	0,58
190	5,1	37	0,067				-0,21	0,6
191	5,1	37	0,067				0,21	0,58
192	5,1	37	0,067				0	
193	5,1	38	0,067				0,21	
194	5,2	38	0,067				0	
195	5,2	38	0,067				0,62	
196	5,2	38	0,067				0,62	
197	5,2	38	0,068				0,62	
198	5,2	38	0,068				0,21	
199	5,2	38	0,068				1,04	
200	5,2	38	0,068				0,46	
201	5,3	38	0,068				0,23	
202	5,3	38	0,068					
203	5,3	38	0,068					
204	5,3	38	0,068					
205	5,3	38	0,069					

cal kyr	Argila	Silte	Areia muito fina	Areia fina	Areia média	Areia grossa
BP	(%)	(%)	(%)	(%)	(%)	(%)
0,024	5,63	85,53	8,84			
0,3	7,16	86,00	6,84			
1,4	7,17	88,69	4,14			
2,1	5,41	87,34	7,25			
2,8	6,88	89,15	3,97			
3,1	8,52	91,48				
3,3	7,57	92,17	0,26			
4,4	6,89	86,16	6,95			
5,7	5,05	77,08	16,33	1,54		
5,9	5,54	77,77	15,25	1,44		
6,1	5,15	80,62	13,41	0,82		
6,7	4,72	70,28	22,80	2,20		
7,0	3,26	72,18	24,23	0,33		
7,1	1,49	30,94	61,12	6,45		
7,3	2,23	49,74	37,61	9,34	1,08	
7,8	3,70	56,64	34,23	5,43		
9,0	1,95	38,32	33,09	15,92	10,34	0,38
9,9	1,90	31,64	31,30	17,15	17,30	0,71
10,4	1,87	34,31	35,60	16,31	11,46	0,45
10,9	2,19	37,00	35,23	14,69	10,48	0,41

Granulometria para RJ13-01.

Gronul	lamatria noro	DI12 02	
(ranii	lometria para	LKJ13-02.	

cal kyr BP	Argila (%)	Silte (%)	Areia muito fina (%)	Areia fina (%)
2,3	4,82	77,72	17,13	0,33
2,3	5,72	72,23	21,63	0,42
2,5	5,00	72,86	21,72	0,42
2,9	4,91	65,68	27,74	1,67
3,0	5,13	72,9	21,06	0,91
3,3	5,51	74,59	19,52	0,38
3,3	5,54	66,63	26,23	1,60
3,7	5,67	75,06	18,91	0,36
4,0	4,81	75,59	19,25	0,35
4,3	4,96	72,35	22,27	0,42

cal kyr	TN	тос	CaCO ₃	C/N	TN	тос	CaCO ₃
BP	%	%	%	molar	g cm ⁻² kyr ⁻¹	g cm ⁻² kyr ⁻¹	g m ⁻² kyr ⁻¹
0,012	0,07	0,68	18,54	11,83	0,109	1,107	30,320
0,018	0,05	0,58	14,84	13,27	0,083	0,947	24,269
0,3	0,11	1,03	18,44	10,73	0,043	0,397	7,095
0,3	0,14	0,91	22,90	7,68	0,053	0,349	8,814
1,2	0,10	0,89	18,66	10,18	0,011	0,100	2,092
1,5	0,14	0,97	19,57	7,91	0,016	0,109	2,194
1,9	0,11	0,91	20,95	10,04	0,012	0,102	2,348
2,1	0,13	1,18	19,02	10,34	0,015	0,133	2,132
2,7	0,12	1,05	21,76	10,50	0,014	0,125	2,583
3,1	0,11	0,94	19,96	10,36	0,013	0,111	2,369
3,3	0,12	0,86	20,37	8,37	0,016	0,118	2,794
3,4	0,10	0,92	20,01	11,19	0,013	0,126	2,744
3,6	0,10	1,04	21,06	11,69	0,014	0,142	2,888
3,7	0,12	1,04	19,17	10,07	0,018	0,151	2,780
4,1	0,12	1,04	18,06	10,14	0,017	0,151	2,619
4,5	0,11	1,01	20,12	10,44	0,016	0,147	2,918
4,9	0,10	0,92	17,81	10,58	0,015	0,134	2,582
5,3	0,11	0,93	21,37	10,09	0,016	0,135	3,100
5,5	0,10	0,94	18,62	11,21	0,014	0,137	2,701
6,2	0,09	0,81	22,39	10,45	0,012	0,109	3,011
6,7	0,08	0,82	20,83	11,59	0,011	0,110	2,802
7,0	0,07	0,74	23,50	11,54	0,010	0,103	3,285
7,6	0,06	0,63	19,87	12,68	0,008	0,088	2,777
7,9	0,02	0,20	14,47	11,89	0,003	0,029	2,022
8,6	<ld< td=""><td>0,17</td><td>7,35</td><td><ld< td=""><td><ld< td=""><td>0,024</td><td>1,027</td></ld<></td></ld<></td></ld<>	0,17	7,35	<ld< td=""><td><ld< td=""><td>0,024</td><td>1,027</td></ld<></td></ld<>	<ld< td=""><td>0,024</td><td>1,027</td></ld<>	0,024	1,027
8,8	<ld< td=""><td>0,16</td><td>11,59</td><td><ld< td=""><td><ld< td=""><td>0,030</td><td>2,170</td></ld<></td></ld<></td></ld<>	0,16	11,59	<ld< td=""><td><ld< td=""><td>0,030</td><td>2,170</td></ld<></td></ld<>	<ld< td=""><td>0,030</td><td>2,170</td></ld<>	0,030	2,170
9,6	<ld< td=""><td>0,38</td><td>15,54</td><td><ld< td=""><td><ld< td=""><td>0,079</td><td>3,237</td></ld<></td></ld<></td></ld<>	0,38	15,54	<ld< td=""><td><ld< td=""><td>0,079</td><td>3,237</td></ld<></td></ld<>	<ld< td=""><td>0,079</td><td>3,237</td></ld<>	0,079	3,237
10,3	<ld< td=""><td>0,23</td><td>10,52</td><td><ld< td=""><td><ld< td=""><td>0,053</td><td>2,442</td></ld<></td></ld<></td></ld<>	0,23	10,52	<ld< td=""><td><ld< td=""><td>0,053</td><td>2,442</td></ld<></td></ld<>	<ld< td=""><td>0,053</td><td>2,442</td></ld<>	0,053	2,442
10,5	<ld< td=""><td>0,25</td><td>14,41</td><td><ld< td=""><td><ld< td=""><td>0,058</td><td>3,343</td></ld<></td></ld<></td></ld<>	0,25	14,41	<ld< td=""><td><ld< td=""><td>0,058</td><td>3,343</td></ld<></td></ld<>	<ld< td=""><td>0,058</td><td>3,343</td></ld<>	0,058	3,343
11,3	<ld< td=""><td>0,27</td><td>17,58</td><td><ld< td=""><td><ld< td=""><td>0,063</td><td>4,080</td></ld<></td></ld<></td></ld<>	0,27	17,58	<ld< td=""><td><ld< td=""><td>0,063</td><td>4,080</td></ld<></td></ld<>	<ld< td=""><td>0,063</td><td>4,080</td></ld<>	0,063	4,080
11,8	<ld< td=""><td>0,18</td><td>13,14</td><td><ld< td=""><td><ld< td=""><td>0,041</td><td>3,050</td></ld<></td></ld<></td></ld<>	0,18	13,14	<ld< td=""><td><ld< td=""><td>0,041</td><td>3,050</td></ld<></td></ld<>	<ld< td=""><td>0,041</td><td>3,050</td></ld<>	0,041	3,050
12,2	<ld< td=""><td>0,26</td><td>17,26</td><td><ld< td=""><td><ld< td=""><td>0,061</td><td>4,004</td></ld<></td></ld<></td></ld<>	0,26	17,26	<ld< td=""><td><ld< td=""><td>0,061</td><td>4,004</td></ld<></td></ld<>	<ld< td=""><td>0,061</td><td>4,004</td></ld<>	0,061	4,004
12,6	<ld< td=""><td>0,25</td><td>10,56</td><td><ld< td=""><td><ld< td=""><td>0,058</td><td>2,450</td></ld<></td></ld<></td></ld<>	0,25	10,56	<ld< td=""><td><ld< td=""><td>0,058</td><td>2,450</td></ld<></td></ld<>	<ld< td=""><td>0,058</td><td>2,450</td></ld<>	0,058	2,450
13,0	<ld< td=""><td>0,29</td><td>16,89</td><td><ld< td=""><td><ld< td=""><td>0,068</td><td>3,919</td></ld<></td></ld<></td></ld<>	0,29	16,89	<ld< td=""><td><ld< td=""><td>0,068</td><td>3,919</td></ld<></td></ld<>	<ld< td=""><td>0,068</td><td>3,919</td></ld<>	0,068	3,919
13,6	<ld< td=""><td>0,16</td><td>16,49</td><td><ld< td=""><td><ld< td=""><td>0,038</td><td>3,827</td></ld<></td></ld<></td></ld<>	0,16	16,49	<ld< td=""><td><ld< td=""><td>0,038</td><td>3,827</td></ld<></td></ld<>	<ld< td=""><td>0,038</td><td>3,827</td></ld<>	0,038	3,827
13,6	<ld< td=""><td>0,16</td><td>16,16</td><td><ld< td=""><td><ld< td=""><td>0,037</td><td>3,750</td></ld<></td></ld<></td></ld<>	0,16	16,16	<ld< td=""><td><ld< td=""><td>0,037</td><td>3,750</td></ld<></td></ld<>	<ld< td=""><td>0,037</td><td>3,750</td></ld<>	0,037	3,750

Dados de %TN, %TOC, %CaCO₃, C/N molar e fluxos (g cm⁻² kyr⁻¹) de TN, TOC e CaCO₃ para RJ13-01.

cal kyr	TN	тос	CaCO ₃	C/N	TN	тос	CaCO ₃
BP	%	%	%	molar	g cm ⁻² kyr ⁻¹	g cm ⁻² kyr ⁻¹	g m ⁻² kyr ⁻¹
2,3	0,10	0,92	12,50	10,75	0,007	0,065	0,887
2,4	0,10	0,82	10,67	9,73	0,010	0,082	1,063
2,5	0,09	0,74	13,82	9,92	0,010	0,087	1,625
2,5	0,08	0,70	11,73	10,72	0,010	0,088	1,480
2,5	0,10	0,77	11,48	9,07	0,013	0,103	1,541
2,6	0,11	0,94	16,58	10,02	0,017	0,145	2,546
2,6	0,08	0,77	11,90	11,21	0,013	0,121	1,872
2,7	0,08	0,85	11,45	12,29	0,014	0,152	2,045
2,8	0,10	0,93	14,93	11,02	0,019	0,176	2,818
2,9	0,07	0,71	12,01	11,30	0,016	0,151	2,573
2,9	0,09	0,84	15,11	10,99	0,020	0,185	3,329
3,0	0,07	0,67	12,22	11,27	0,015	0,143	2,611
3,1	0,08	0,75	13,86	10,78	0,019	0,176	3,253
3,1	0,08	0,80	10,87	12,32	0,018	0,189	2,578
3,3	0,08	0,72	14,75	11,10	0,020	0,187	3,819
3,3	0,06	0,59	11,09	10,96	0,022	0,208	3,928
3,4	0,07	0,81	12,12	13,92	0,026	0,305	4,540
3,6	0,08	0,81	16,49	12,17	0,031	0,326	6,613
3,7	0,05	0,65	10,01	14,45	0,022	0,270	4,187
3,7	0,07	0,72	15,49	11,37	0,029	0,287	6,205
3,8	0,06	0,60	12,35	11,60	0,025	0,244	5,026
3,9	0,07	0,67	15,83	10,72	0,031	0,284	6,675
3,9	0,03	0,64	12,48	22,80	0,014	0,274	5,312
4,0	0,07	0,73	14,68	11,38	0,033	0,322	6,477
4,2	0,07	0,72	11,64	12,01	0,031	0,317	5,118
4,2	0,08	0,80	14,49	11,52	0,036	0,357	6,446
4,4	0,08	0,98	14,60	13,94	0,038	0,452	6,730
4,5	0,08	0,77	16,18	10,72	0,040	0,367	7,701
4,5	0,06	0,61	12,38	11,25	0,032	0,310	6,292
4,7	0,09	0,87	17,27	11,18	0,047	0,453	9,008
4,7	0,06	0,66	12,02	12,35	0,039	0,411	7,524
4,8	0,09	0,82	17,86	11,02	0,056	0,525	11,455
4,8	0,06	0,65	12,29	12,24	0,040	0,416	7,899
4,9	0,07	0,68	11,88	11,44	0,045	0,444	7,730
5,0	0,07	0,69	12,02	11,35	0,046	0,452	7,875
5,0	0,09	0,77	18,04	10,48	0,057	0,509	11,851
5,0	0,06	0,65	12,34	11,78	0,043	0,430	8,162
5,2	0,07	0,80	15,37	12,95	0,048	0,536	10,343
5,2	0,07	0,71	12,54	11,35	0,050	0,484	8,531
5,3	0,08	0,77	15,51	11,86	0,052	0,526	10,634
5,3	0,07	0,69	12,61	11,84	0,047	0,472	8,675

Dados de %TN, %TOC, %CaCO₃, C/N molar e fluxos (g cm⁻² kyr⁻¹) de TN, TOC e CaCO₃ para RJ13-02

sensiver	pulu its	15 01.										
cal kyr	Si	Ca	Al	Fe	Si	Ca	Al	Fe	Al/Ca	Fe/Ca	Ca/Al	Fe/Al
BP	%	%	%	%	flux	flux	flux	flux				
0,012	21,92	13,08	7,12	2,61	35,85	21,40	11,65	4,26	0,54	0,20	1,84	0,37
0,2	21,87	12,37	7,33	2,97	8,42	4,76	2,82	1,14	0,59	0,24	1,69	0,40
0,2	22,49	12,72	7,63	3,10	8,65	4,89	2,94	1,19	0,60	0,24	1,67	0,41
0,3	21,64	11,93	7,35	3,03	8,33	4,59	2,83	1,17	0,62	0,25	1,62	0,41
0,5	22,22	13,74	7,16	2,97	6,37	3,94	2,05	0,85	0,52	0,22	1,92	0,41
0,7	20,55	12,25	7,15	2,85	4,77	2,84	1,66	0,66	0,58	0,23	1,71	0,40
0,9	21,90	12,52	7,48	3,08	4,43	2,53	1,51	0,62	0,60	0,25	1,68	0,41
1,0	22,28	12,74	7,59	3,11	4,09	2,34	1,39	0,57	0,60	0,24	1,68	0,41
1,2	23,00	13,26	7,78	3,18	3,92	2,26	1,33	0,54	0,59	0,24	1,70	0,41
1,4	22,71	12,11	8,12	3,40	3,86	2,06	1,38	0,58	0,67	0,28	1,49	0,42
1,8	21,89	12,29	7,58	3,14	3,42	1,92	1,18	0,49	0,62	0,26	1,62	0,41
2,0	21,54	12,68	7,51	3,14	3,26	1,92	1,14	0,48	0,59	0,25	1,69	0,42
2,2	22,76	12,94	8,02	3,19	3,35	1,91	1,18	0,47	0,62	0,25	1,61	0,40
2,4	21,39	12,52	7,69	3,13	3,08	1,80	1,11	0,45	0,61	0,25	1,63	0,41
2,6	22,82	13,61	7,72	3,17	3,22	1,92	1,09	0,45	0,57	0,23	1,76	0,41
2,8	22,82	13,31	7,84	3,17	3,66	2,13	1,26	0,51	0,59	0,24	1,70	0,40
3,0	22,76	13,53	7,90	3,13	3,59	2,14	1,25	0,49	0,58	0,23	1,71	0,40
3,3	22,71	12,34	8,16	3,36	3,75	2,04	1,35	0,55	0,66	0,27	1,51	0,41
3,6	21,40	11,75	7,69	3,11	3,47	1,91	1,25	0,50	0,65	0,26	1,53	0,40
3,8	19,63	11,34	7,10	3,00	3,14	1,81	1,14	0,48	0,63	0,26	1,60	0,42
4,1	23,03	12,17	8,33	3,27	3,63	1,92	1,31	0,52	0,68	0,27	1,46	0,39
4,4	21,59	11,61	7,81	3,09	3,37	1,81	1,22	0,48	0,67	0,27	1,49	0,40
4,7	21,11	11,97	7,83	3,11	3,26	1,85	1,21	0,48	0,65	0,26	1,53	0,40
5,0	21,73	12,06	7,67	3,05	3,32	1,84	1,17	0,47	0,64	0,25	1,57	0,40
5,3	22,70	12,94	8,00	3,08	3,44	1,96	1,21	0,47	0,62	0,24	1,62	0,38
5,9	21,78	12,89	7,97	3,04	3,26	1,93	1,19	0,45	0,62	0,24	1,62	0,38
6,4	21,32	13,42	7,71	2,99	2,91	1,83	1,05	0,41	0,57	0,22	1,74	0,39
6,7	20,57	13,60	7,23	2,87	2,79	1,85	0,98	0,39	0,53	0,21	1,88	0,40
7,0	21,99	15,09	7,88	2,97	3,10	2,13	1,11	0,42	0,52	0,20	1,91	0,38
7,3	18,96	14,21	7,00	2,80	2,66	2,00	0,98	0,39	0,49	0,20	2,03	0,40
7,6	22,08	15,41	7,59	2,79	3,09	2,16	1,06	0,39	0,49	0,18	2,03	0,37
7,9	20,54	15,40	7,43	2,72	2,86	2,15	1,04	0,38	0,48	0,18	2,07	0,37
8,2	20,64	17,48	7,14	2,72	3,40	2,88	1,17	0,45	0,41	0,16	2,45	0,38
8,5	21,55	15,94	7,14	2,69	3,54	2,62	1,17	0,44	0,45	0,17	2,23	0,38
8,8	27,38	10,65	4,93	1,84	4,48	1,74	0,81	0,30	0,46	0,17	2,16	0,37
9,1	23,68	15,74	5,32	1,96	4,34	2,89	0,98	0,36	0,34	0,12	2,96	0,37
9,3	26,15	13,35	5,56	1,89	4,78	2,44	1,02	0,35	0,42	0,14	2,40	0,34
9,6	24,19	13,96	6,46	2,33	4,41	2,55	1,18	0,43	0,46	0,17	2,16	0,36
9,9	26,27	12,55	5,76	2,11	5,31	2,54	1,16	0,43	0,46	0,17	2,18	0,37
10,7	25,69	12,82	5,94	2,17	5,16	2,58	1,19	0,44	0,46	0,17	2,16	0,37

Dados de ME em %wt, fluxos (g cm⁻² kyr⁻¹) e razões de input continental, biogênico e redoxsensível para RJ13-01.

sensiver	para KJ	13-02.										
cal kyr	Si	Ca	Al	Fe	Si	Ca	Al	Fe	Al/Ca	Fe/Ca	Ca/Al	Fe/Al
BP	%	%	%	%	flux	flux	flux	flux				
2,3	26,38	8,53	7,78	2,72	1,87	0,60	0,55	0,19	0,91	0,32	1,10	0,35
2,4	25,97	8,93	7,65	2,82	2,59	0,89	0,76	0,28	0,86	0,32	1,17	0,37
2,5	25,84	9,31	7,55	2,78	3,49	1,26	1,02	0,38	0,81	0,30	1,23	0,37
2,7	25,65	9,67	7,81	2,95	4,34	1,64	1,32	0,50	0,81	0,31	1,24	0,38
2,9	25,95	9,53	7,17	2,70	5,44	2,00	1,50	0,57	0,75	0,28	1,33	0,38
3,0	24,98	9,43	7,40	2,81	5,52	2,09	1,64	0,62	0,79	0,30	1,27	0,38
3,2	25,68	9,11	7,60	2,77	6,27	2,22	1,85	0,68	0,83	0,30	1,20	0,37
3,3	26,79	9,29	7,40	2,60	9,52	3,30	2,63	0,92	0,80	0,28	1,25	0,35
3,4	25,78	9,48	7,20	2,58	9,82	3,61	2,74	0,98	0,76	0,27	1,32	0,36
3,6	25,63	9,78	7,69	2,75	10,38	3,96	3,11	1,11	0,79	0,28	1,27	0,36
3,7	26,23	9,71	7,41	2,65	10,45	3,87	2,95	1,05	0,76	0,27	1,31	0,36
3,9	25,90	9,98	7,49	2,69	10,81	4,17	3,13	1,12	0,75	0,27	1,33	0,36
4,0	25,69	9,69	7,32	2,59	11,17	4,22	3,18	1,13	0,75	0,27	1,32	0,35
4,2	25,93	9,48	7,59	2,70	11,42	4,17	3,34	1,19	0,80	0,29	1,25	0,36
4,3	24,88	9,65	7,11	2,52	11,33	4,39	3,24	1,15	0,74	0,26	1,36	0,35
4,4	25,15	9.78	7.14	2.63	11.81	4.59	3.35	1.24	0.73	0.27	1.37	0.37

Dados de ME em %wt, fluxos (g cm⁻² kyr⁻¹) e razões de input continental, biogênico e redoxsensível para RJ13-02.

Dados de TE para RJ13-01.

cal kyr	v	Cr	Mn	Ni	Cu	Zn	As
BP	mg kg ⁻¹						
0,012	20,705	22,874	172,634	7,397	1,003	6,461	8,027
0,024	21,481	26,781	162,260	8,032	1,016	6,035	7,113
0,2	18,007	20,400	150,544	7,665	0,974	5,981	7,489
0,2	15,547	17,416	136,433	6,316	0,779	4,720	5,509
0,3	18,271	21,188	189,251	6,689	0,824	4,890	5,737
0,3	14,476	16,699	170,039	5,607	0,674	4,305	4,927
0,5	12,134	13,288	95,358	4,432	0,537	3,329	3,639
0,7	20,605	21,826	150,972	6,828	0,884	5,141	6,169
0,9	23,998	25,146	136,025	7,604	0,951	5,395	7,271
1,0	18,800	20,755	160,900	6,970	0,880	5,223	6,131
1,2	21,459	22,504	168,532	6,559	0,832	4,895	5,850
1,4	22,577	24,756	170,998	8,776	1,163	6,560	7,739
1,6	20,417	23,475	163,544	8,309	1,060	6,034	6,369
1,8	22,477	25,760	171,996	8,613	1,143	6,382	7,251
2,0	21,774	25,632	155,727	7,439	0,906	5,402	5,977
2,2	16,962	20,577	135,585	6,079	0,726	4,824	5,268
2,4	14,848	17,577	124,937	5,013	0,592	4,163	4,149
2,6	24,452	27,915	194,248	10,085	1,251	7,435	7,837
2,8	22,927	27,009	175,738	9,312	1,132	7,015	7,954
3,0	18,884	21,615	158,428	10,132	1,310	7,450	7,555
3,3	23,207	27,622	175,168	10,949	1,352	7,614	8,077
3,6	20,192	24,570	142,235	7,389	0,930	5,253	8,461
3,8	19,747	25,367	147,558	6,967	0,817	5,035	7,719
4,1	17,957	23,427	140,012	8,272	0,888	5,491	9,996
4,4	18,410	23,885	139,337	8,003	0,925	5,249	10,311
4,7	19,621	25,414	135,500	8,742	0,981	5,517	10,721
5,0	17,464	22,608	135,397	7,619	0,817	4,883	8,012

cal kyr	V	Cr	Mn	Ni	Cu	Zn	As
BP	mg kg ⁻¹						
5,3	16,964	21,446	107,344	10,255	1,032	6,008	10,533
5,6	16,360	22,398	125,177	9,583	0,888	5,719	9,163
5,9	13,957	18,210	93,402	8,450	0,729	4,758	10,041
6,2	13,731	18,540	100,348	8,273	0,732	4,760	10,048
6,4	12,683	17,009	83,979	7,476	0,597	4,225	9,950
6,7	11,984	16,737	73,354	6,337	0,512	3,642	9,301
7,0	10,123	14,310	75,240	4,623	0,373	4,176	7,486
7,3	6,874	11,400	50,305	2,576	0,172	2,698	5,658
7,6	11,791	15,994	67,439	6,657	0,578	4,225	10,271
7,9	8,894	12,873	56,152	4,842	0,360	3,428	9,277
8,2	7,212	11,101	48,142	4,016	0,290	2,758	7,568
8,5	7,831	11,669	44,427	4,030	0,288	3,075	7,851
8,8	8,219	11,567	53,133	3,607	0,261	2,929	7,898
9,1	6,414	10,023	49,300	2,977	0,202	2,311	7,057
9,3	7,137	10,783	48,544	2,738	0,174	2,228	6,496
9,6	6,751	9,929	44,977	2,434	0,156	2,058	6,159
9,9	7,325	10,958	48,873	3,732	0,226	2,991	8,818
10,2	7,396	10,638	50,563	3,756	0,237	3,058	9,261
10,5	6,904	10,706	47,256	3,409	0,205	2,823	9,242
10,8	6,871	10,241	47,619	3,073	0,184	2,602	8,501

Dados de TE para RJ13-01

cal kyr	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U
BP	mg kg ⁻¹							
0,012	241,169	0,012	0,064	1,284	6,589	0,102	8,837	1,389
0,024	232,483	0,011	0,054	1,201	5,969	0,096	8,370	1,289
0,2	210,241	0,010	0,054	1,112	6,020	0,092	11,360	1,124
0,2	193,834	0,007	0,042	0,809	4,652	0,073	6,020	0,954
0,3	285,819	0,007	0,047	0,891	4,748	0,085	8,033	1,005
0,3	237,132	0,007	0,044	0,646	4,432	0,067	5,536	0,847
0,5	140,503	0,006	0,039	0,538	3,541	0,053	4,394	0,756
0,7	215,252	0,010	0,067	0,875	4,759	0,088	6,543	1,411
0,9	202,718	0,012	0,073	0,988	5,204	0,104	7,431	1,719
1,0	236,099	0,008	0,053	0,884	5,651	0,078	7,174	1,589
1,2	250,981	0,009	0,054	0,864	5,237	0,079	6,992	1,519
1,4	244,881	0,011	0,080	1,196	5,681	0,093	8,201	1,514
1,6	227,809	0,010	0,072	1,063	6,369	0,082	7,499	1,114
1,8	256,737	0,011	0,064	1,121	6,618	0,091	7,269	1,082
2,0	250,136	0,008	0,063	0,896	5,375	0,079	6,403	0,998
2,2	237,462	0,008	0,062	0,693	4,429	0,069	5,467	0,877
2,4	228,371	0,006	0,042	0,581	4,054	0,056	4,599	0,752
2,6	288,619	0,011	0,101	1,246	8,442	0,108	8,314	1,286
2,8	280,829	0,011	0,069	1,087	6,656	0,100	7,653	1,308
3,0	210,459	0,011	0,068	1,313	7,292	0,094	8,768	0,838
3,3	245,673	0,014	0,068	1,436	8,273	0,094	8,619	1,270

cal kyr BP	Sr mg kg ⁻¹	Ag mg kg ⁻¹	Cd mg kg ⁻¹	Sn mg kg ⁻¹	Ba mg kg ⁻¹	Tl mg kg ⁻¹	Pb mg kg ⁻¹	U mg kg ⁻¹
3,6	231,506	0,013	0,088	1,044	5,641	0,123	6,945	1,403
3,8	267,672	0,011	0,078	1,059	5,798	0,126	6,965	1,585
4,1	288,949	0,011	0,080	1,071	5,620	0,147	6,484	1,563
4,4	280,067	0,014	0,110	1,117	5,546	0,143	6,580	2,423
4,7	280,121	0,015	0,127	1,238	5,891	0,157	6,673	3,139
5,0	291,838	0,011	0,081	1,028	6,083	0,153	6,156	2,841
5,3	256,203	0,014	0,126	0,943	6,076	0,122	5,832	2,344
5,6	336,176	0,011	0,093	0,917	6,074	0,117	5,572	2,327
5,9	294,975	0,010	0,101	0,677	5,481	0,116	4,226	2,461
6,2	312,771	0,010	0,099	0,660	4,934	0,113	4,500	3,143
6,4	294,454	0,008	0,069	0,545	4,144	0,097	3,969	3,973
6,7	283,508	0,008	0,069	0,491	3,689	0,082	3,785	3,669
7,0	216,266	0,005	0,047	0,406	3,576	0,091	3,498	1,535
7,3	179,046	0,003	0,028	0,243	3,123	0,065	1,926	1,411
7,6	222,287	0,010	0,086	0,631	5,292	0,105	3,611	3,028
7,9	207,664	0,007	0,085	0,425	4,103	0,084	2,670	2,099
8,2	188,454	0,005	0,046	0,321	3,027	0,067	2,402	1,785
8,5	160,327	0,005	0,066	0,348	3,326	0,075	2,373	1,777
8,8	193,924	0,005	0,060	0,360	3,744	0,072	2,606	1,765
9,1	179,356	0,004	0,041	0,270	3,396	0,058	1,979	1,335
9,3	172,717	0,003	0,037	0,271	3,127	0,060	2,191	1,462
9,6	179,468	0,003	0,036	0,263	3,084	0,059	2,034	1,426
9,9	178,420	0,004	0,049	0,370	4,403	0,078	2,288	1,523
10,2	181,715	0,004	0,048	0,351	4,097	0,077	2,218	1,510
10,5	173,278	0,004	0,044	0,332	4,103	0,075	1,997	1,457
10,8	169,797	0,004	0,040	0,295	3,352	0,070	2,168	1,617

Fluxos de TE (mg cm⁻² kyr⁻¹) para RJ13-01.

cal kyr	V	Cr	Mn	Mn Ni		Zn	As
BP	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo
0,012	3,387	3,741	28,237	1,210	0,164	1,057	1,313
0,024	3,513	4,380	26,540	1,314	0,166	0,987	1,163
0,2	0,693	0,785	5,794	0,295	0,037	0,230	0,288
0,2	0,598	0,670	5,251	0,243	0,030	0,182	0,212
0,3	0,703	0,815	7,283	0,257	0,032	0,188	0,221
0,3	0,603	0,695	7,080	0,233	0,028	0,179	0,205
0,5	0,348	0,381	2,732	0,127	0,015	0,095	0,104
0,7	0,478	0,507	3,506	0,159	0,021	0,119	0,143
0,9	0,486	0,509	2,753	0,154	0,019	0,109	0,147
1,0	0,345	0,381	2,953	0,128	0,016	0,096	0,113
1,2	0,366	0,384	2,874	0,112	0,014	0,083	0,100
1,4	0,384	0,421	2,906	0,149	0,020	0,111	0,132
1,6	0,331	0,381	2,654	0,135	0,017	0,098	0,103
1,8	0,351	0,402	2,687	0,135	0,018	0,100	0,113
2,0	0,330	0,388	2,357	0,113	0,014	0,082	0,090

cal kyr	V	Cr	Mn	Ni	Cu	Zn	As
BP	Fluxo						
2,2	0,250	0,303	1,998	0,090	0,011	0,071	0,078
2,4	0,214	0,253	1,799	0,072	0,009	0,060	0,060
2,6	0,345	0,394	2,740	0,142	0,018	0,105	0,111
2,8	0,368	0,433	2,817	0,149	0,018	0,112	0,128
3,0	0,298	0,341	2,500	0,160	0,021	0,118	0,119
3,3	0,383	0,456	2,892	0,181	0,022	0,126	0,133
3,6	0,328	0,399	2,307	0,120	0,015	0,085	0,137
3,8	0,316	0,405	2,358	0,111	0,013	0,080	0,123
4,1	0,283	0,370	2,208	0,130	0,014	0,087	0,158
4,4	0,287	0,372	2,172	0,125	0,014	0,082	0,161
4,7	0,303	0,392	2,091	0,135	0,015	0,085	0,165
5,0	0,267	0,346	2,071	0,117	0,012	0,075	0,123
5,3	0,257	0,325	1,628	0,156	0,016	0,091	0,160
5,6	0,246	0,337	1,885	0,144	0,013	0,086	0,138
5,9	0,209	0,272	1,397	0,126	0,011	0,071	0,150
6,2	0,188	0,254	1,377	0,113	0,010	0,065	0,138
6,4	0,173	0,232	1,146	0,102	0,008	0,058	0,136
6,7	0,163	0,227	0,996	0,086	0,007	0,049	0,126
7,0	0,143	0,202	1,061	0,065	0,005	0,059	0,106
7,3	0,097	0,160	0,706	0,036	0,002	0,038	0,079
7,6	0,165	0,224	0,943	0,093	0,008	0,059	0,144
7,9	0,124	0,179	0,782	0,067	0,005	0,048	0,129
8,2	0,119	0,183	0,793	0,066	0,005	0,045	0,125
8,5	0,128	0,191	0,729	0,066	0,005	0,050	0,129
8,8	0,134	0,189	0,869	0,059	0,004	0,048	0,129
9,1	0,118	0,184	0,904	0,055	0,004	0,042	0,129
9,3	0,131	0,197	0,888	0,050	0,003	0,041	0,119
9,6	0,123	0,181	0,820	0,044	0,003	0,038	0,112
9,9	0,148	0,221	0,988	0,075	0,005	0,060	0,178
10,2	0,149	0,215	1,020	0,076	0,005	0,062	0,187
10,5	0,139	0,215	0,951	0,069	0,004	0,057	0,186
10,8	0,138	0,206	0,956	0,062	0,004	0,052	0,171

Fluxos de TE (mg cm⁻² kyr⁻¹) para RJ13-01.

cal kyr	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U
BP	Fluxo	Fluxo (x10 ⁻²)	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo
0,012	39,447	0,198	0,011	0,210	1,078	0,017	1,445	0,227
0,024	38,026	0,179	0,009	0,196	0,976	0,016	1,369	0,211
0,2	8,091	0,040	0,002	0,043	0,232	0,004	0,437	0,043
0,2	7,460	0,025	0,002	0,031	0,179	0,003	0,232	0,037
0,3	11,000	0,028	0,002	0,034	0,183	0,003	0,309	0,039
0,3	9,873	0,031	0,002	0,027	0,185	0,003	0,231	0,035
0,5	4,026	0,016	0,001	0,015	0,101	0,002	0,126	0,022
0,7	4,999	0,023	0,002	0,020	0,111	0,002	0,152	0,033
0,9	4,103	0,024	0,001	0,020	0,105	0,002	0,150	0,035

cal kyr	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U
BP	Fluxo	Fluxo (x10 ⁻²)	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo
1,0	4,333	0,015	0,001	0,016	0,104	0,001	0,132	0,029
1,2	4,280	0,015	0,001	0,015	0,089	0,001	0,119	0,026
1,4	4,161	0,018	0,001	0,020	0,097	0,002	0,139	0,026
1,6	3,697	0,016	0,001	0,017	0,103	0,001	0,122	0,018
1,8	4,011	0,018	0,001	0,018	0,103	0,001	0,114	0,017
2,0	3,786	0,013	0,001	0,014	0,081	0,001	0,097	0,015
2,2	3,499	0,012	0,001	0,010	0,065	0,001	0,081	0,013
2,4	3,288	0,008	0,001	0,008	0,058	0,001	0,066	0,011
2,6	4,072	0,016	0,001	0,018	0,119	0,002	0,117	0,018
2,8	4,502	0,017	0,001	0,017	0,107	0,002	0,123	0,021
3,0	3,321	0,017	0,001	0,021	0,115	0,001	0,138	0,013
3,3	4,056	0,023	0,001	0,024	0,137	0,002	0,142	0,021
3,6	3,756	0,020	0,001	0,017	0,092	0,002	0,113	0,023
3,8	4,278	0,018	0,001	0,017	0,093	0,002	0,111	0,025
4,1	4,557	0,017	0,001	0,017	0,089	0,002	0,102	0,025
4,4	4,367	0,022	0,002	0,017	0,086	0,002	0,103	0,038
4,7	4,323	0,023	0,002	0,019	0,091	0,002	0,103	0,048
5,0	4,463	0,017	0,001	0,016	0,093	0,002	0,094	0,043
5,3	3,886	0,021	0,002	0,014	0,092	0,002	0,088	0,036
5,6	5,061	0,017	0,001	0,014	0,091	0,002	0,084	0,035
5,9	4,411	0,015	0,002	0,010	0,082	0,002	0,063	0,037
6,2	4,291	0,014	0,001	0,009	0,068	0,002	0,062	0,043
6,4	4,017	0,012	0,001	0,007	0,057	0,001	0,054	0,054
6,7	3,848	0,011	0,001	0,007	0,050	0,001	0,051	0,050
7,0	3,051	0,007	0,001	0,006	0,050	0,001	0,049	0,022
7,3	2,515	0,004	0,000	0,003	0,044	0,001	0,027	0,020
7,6	3,109	0,014	0,001	0,009	0,074	0,001	0,051	0,042
7,9	2,894	0,009	0,001	0,006	0,057	0,001	0,037	0,029
8,2	3,103	0,008	0,001	0,005	0,050	0,001	0,040	0,029
8,5	2,631	0,009	0,001	0,006	0,055	0,001	0,039	0,029
8,8	3,172	0,009	0,001	0,006	0,061	0,001	0,043	0,029
9,1	3,289	0,007	0,001	0,005	0,062	0,001	0,036	0,024
9,3	3,159	0,006	0,001	0,005	0,057	0,001	0,040	0,027
9,6	3,274	0,006	0,001	0,005	0,056	0,001	0,037	0,026
9,9	3,606	0,009	0,001	0,007	0,089	0,002	0,046	0,031
10,2	3,664	0,009	0,001	0,007	0,083	0,002	0,045	0,030
10,5	3,486	0,008	0,001	0,007	0,083	0,002	0,040	0,029
10,8	3.409	0.008	0.001	0.006	0.067	0.001	0.044	0.032

cal kyr	V/Ca	V/Al	Mn/Ca	Mn/Al
BP	x10 ⁻⁴	x10 ⁻⁴	x10 ⁻⁴	x10 ⁻⁴
0,012	1,583	2,908	13,196	24,247
0,2	1,222	2,037	10,728	17,872
1,0	1,476	2,478	12,632	21,208
1,2	1,618	2,757	12,707	21,655
1,4	1,864	2,781	14,115	21,067
2,0	1,717	2,899	12,278	20,734
2,2	1,311	2,115	10,476	16,906
2,6	1,796	3,169	14,267	25,178
2,8	1,722	2,925	13,200	22,423
3,0	1,396	2,390	11,709	20,053
3,3	1,881	2,845	14,197	21,474
3,6	1,719	2,625	12,106	18,489
3,8	1,742	2,779	13,015	20,769
4,1	1,476	2,155	11,507	16,807
4,4	1,585	2,358	11,998	17,845
4,7	1,639	2,507	11,322	17,315
5,0	1,448	2,278	11,225	17,662
5,3	1,310	2,120	8,292	13,412
5,9	1,083	1,751	7,247	11,720
6,4	0,945	1,644	6,259	10,885
6,7	0,881	1,659	5,394	10,152
7,0	0,671	1,284	4,985	9,546
7,3	0,484	0,983	3,541	7,190
7,6	0,765	1,553	4,376	8,883
8,2	0,412	1,011	2,753	6,746
8,5	0,491	1,096	2,787	6,221
8,8	0,772	1,667	4,989	10,775
9,1	0,408	1,206	3,133	9,270
9,3	0,535	1,285	3,636	8,737
9,6	0,484	1,044	3,222	6,958
9,9	0,584	1,272	3,894	8,487
10,8	0,536	1,157	3,714	8,020

Razões de TE para proxies redox-sensíveis para RJ13-01.

Razões de TE para proxies de produtividade para RJ13-	01	L
---	----	---

cal kyr	Sr/Ca	Sr/Al	Cd/Ca	Cd/Al	Ba/Ca	Ba/Al
BP	x10 ⁻⁴					
0,012	18,435	33,873	0,005	0,009	0,504	0,925
0,2	15,241	25,391	0,003	0,006	0,366	0,609
1,0	18,536	31,121	0,004	0,007	0,444	0,745
1,2	18,924	32,249	0,004	0,007	0,395	0,673
1,4	20,213	30,169	0,007	0,010	0,469	0,700
2,0	19,721	33,303	0,005	0,008	0,424	0,716
2,2	18,347	29,608	0,005	0,008	0,342	0,552
2,6	21,199	37,410	0,007	0,013	0,620	1,094
2,8	21,093	35,831	0,005	0,009	0,500	0,849
3,0	15,554	26,639	0,005	0,009	0,539	0,923
3,3	19,911	30,117	0,005	0,008	0,670	1,014
3,6	19,704	30,094	0,007	0,011	0,480	0,733
3,8	23,609	37,676	0,007	0,011	0,511	0,816
4,1	23,747	34,685	0,007	0,010	0,462	0,675
4,4	24,116	35,869	0,009	0,014	0,478	0,710
4,7	23,405	35,796	0,011	0,016	0,492	0,753
5,0	24,194	38,069	0,007	0,011	0,504	0,793
5,3	19,792	32,012	0,010	0,016	0,469	0,759
5,9	22,888	37,012	0,008	0,013	0,425	0,688
6,4	21,946	38,167	0,005	0,009	0,309	0,537
6,7	20,847	39,238	0,005	0,010	0,271	0,511
7,0	14,329	27,437	0,003	0,006	0,237	0,454
7,3	12,602	25,591	0,002	0,004	0,220	0,446
7,6	14,423	29,280	0,006	0,011	0,343	0,697
8,2	10,778	26,407	0,003	0,006	0,173	0,424
8,5	10,057	22,449	0,004	0,009	0,209	0,466
8,8	18,208	39,325	0,006	0,012	0,352	0,759
9,1	11,397	33,726	0,003	0,008	0,216	0,639
9,3	12,937	31,087	0,003	0,007	0,234	0,563
9,6	12,855	27,763	0,003	0,006	0,221	0,477
9,9	14,216	30,981	0,004	0,008	0,351	0,765
10,8	13,244	28,596	0,003	0,007	0,261	0,565

Dados de TE para RJ13-02.

cal kyr	\mathbf{V}	Cr	Mn	Ni	Cu	Zn	As
BP	mg kg ⁻¹						
2,3	22,516	29,737	131,372	10,864	1,436	8,875	9,298
2,4	24,645	32,943	131,459	10,369	1,350	8,529	9,661
2,4	28,696	38,715	122,337	10,107	1,315	7,898	10,097
2,5	25,065	34,883	133,865	9,155	1,144	7,391	9,051
2,5	24,890	36,051	134,541	9,248	1,153	7,539	8,799
2,5	27,292	36,833	136,020	9,924	1,298	8,592	8,196
2,6	25,197	36,006	113,476	9,037	1,139	8,471	8,087
2,6	23,800	34,091	100,530	8,901	1,171	8,243	8,029
2,7	24,743	35,546	101,008	8,640	1,103	8,378	8,064
2,7	24,988	36,763	123,515	8,676	1,101	8,079	7,606
2,8	25,608	34,489	120,323	8,896	1,075	7,973	7,965
2,8	23,198	33,410	110,886	8,631	1,046	7,694	7,320
2,9	24,423	35,165	114,257	8,138	1,017	7,614	7,659
2,9	21,146	32,217	102,079	7,673	0,890	7,251	7,273
3,0	21,079	28,674	132,287	9,871	1,284	8,505	8,545
3,0	18,381	27,404	114,643	8,337	1,016	7,721	8,041
3,1	19,908	28,601	112,129	7,916	0,988	7,237	7,177
3,1	19,863	30,205	115,573	7,402	0,925	6,897	6,501
3,2	18,011	26,230	109,347	7,851	1,009	7,162	6,341
3,2	18,983	29,282	113,086	8,175	1,028	7,302	6,732
3,3	18,934	27,794	123,380	9,185	1,172	10,061	6,895
3,3	16,456	24,953	116,672	8,672	1,079	13,136	8,107
3,3	16,848	26,256	117,567	7,789	0,983	13,139	6,031
3,4	16,845	25,860	108,867	7,895	1,127	9,646	8,392
3,4	19,354	29,065	103,235	7,733	1,025	8,514	8,553
3,5	17,434	25,722	105,484	8,103	1,103	8,093	9,429
3,5	19,937	28,527	114,188	8,308	1,211	9,198	8,273
3,6	18,957	27,408	115,663	8,723	1,253	9,007	9,044
3,6	21,883	29,707	124,036	10,495	1,578	10,043	9,754
3,7	20,266	27,206	117,184	9,872	1,471	9,271	9,414
3,7	23,911	31,128	126,257	10,684	1,601	10,655	10,436
3,8	20,442	25,692	123,865	10,956	1,650	9,731	10,643
3,8	20,030	26,922	115,249	11,156	1,614	9,349	11,889
3,9	16,691	22,459	99,124	9,335	1,291	8,095	9,022
3,9	17,047	26,877	108,824	7,825	1,084	8,734	8,088
4,0	18,651	25,599	116,494	8,216	1,212	9,382	8,569
4,0	21,632	28,264	133,728	8,760	1,293	10,220	9,161
4,1	18,327	24,530	112,425	7,763	1,134	9,086	7,646
4,1	17,409	22,574	103,838	6,695	0,985	8,354	6,052
4,2	18,947	25,308	112.399	7.177	1.060	9,808	6.468
4,2	20.558	26.917	121.703	8.594	1.262	10.140	8.230
4,2	18.875	25.044	114.270	7.737	1.132	9.237	7.718
4,3	14.504	22.208	89.463	6.798	0.947	7,949	7.214
4,3	19,756	27,039	119.088	7,975	1,158	9,767	8,531
4,4	17.696	24.696	116.711	7.613	1.112	- ,	7.948
4,4	19.155	25,162	122.357	7,430	1,113	9,872	7,971
4,5	21.821	28,154	120.379	8,256	1.251	10.408	8.326
4,5	20.407	27.734	125.953	8.544	1.250	10.446	8.633
4,6	17,366	24,004	110.332	6,912	0,981	9,091	8,158
4,6	21.053	26,496	118.235	8,637	1,216	16,155	10,082
4,7	22,125	27,738	119.546	7,878	1,163	10,065	7,962

Dados de TE para RJ13-02.

cal kyr	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U
BP	mg kg ⁻¹							
2,3	176,212	0,014	0,078	1,385	9,497	0,133	5,597	1,921
2,4	177,301	0,013	0,081	1,365	8,981	0,142	5,521	2,370
2,4	184,116	0,012	0,076	1,280	8,562	0,129	6,581	2,102
2,5	180,396	0,011	0,071	1,097	7,241	0,119	5,653	2,595
2,5	188,452	0,010	0,064	1,198	7,613	0,128	5,780	2,050
2,5	190,529	0,013	0,079	1,358	10,025	0,141	6,193	2,477
2,6	172,431	0,013	0,079	1,243	7,338	0,129	5,436	2,383
2,6	162,413	0,011	0,072	1,186	7,005	0,114	5,492	2,246
2,7	159,565	0,012	0,070	1,171	6,469	0,128	5,949	1,728
2,7	222,330	0,010	0,057	1,155	7,081	0,124	5,897	1,588
2,8	216,524	0,012	0,081	1,134	7,630	0,138	5,517	2,771
2,8	229,637	0,010	0,071	1,085	6,599	0,136	5,344	1,872
2,9	218,435	0,011	0,074	1,113	7,509	0,130	5,751	1,971
2,9	209,450	0,009	0,060	1,024	7,156	0,133	4,840	1,970
3,0	256,882	0,012	0,103	1,308	6,517	0,139	5,892	3,218
3,0	236,984	0,010	0,077	1,142	6,414	0,137	5,358	2,792
3,1	236,090	0,009	0,077	1,078	7,285	0,121	5,497	2,207
3,1	235,610	0,009	0,064	1,055	6,729	0,115	6,650	2,055
3,2	232,575	0,010	0,066	1,117	7,525	0,117	5,646	2,321
3,2	239,636	0,009	0,059	1,131	7,558	0,113	5,820	2,375
3,3	244,473	0,010	0,082	1,190	6,929	0,115	5,965	2,778
3,3	246,256	0,012	0,070	1,152	6,633	0,119	5,897	2,416
3,3	251,295	0,009	0,067	1,114	6,563	0,118	6,211	2,294
3,4	235,899	0,009	0,075	1,065	6,918	0,105	5,544	1,981
3,4	226,366	0,009	0,067	0,970	7,711	0,103	5,205	1,740
3,5	224,658	0,009	0,056	1,022	7,431	0,104	6,524	1,838
3,5	235,545	0,008	0,076	1,037	7,177	0,101	5,593	1,732
3,6	240,013	0,010	0,078	1,093	6,939	0,100	5,842	1,783
3,6	229,826	0,013	0,091	1,479	9,179	0,113	6,119	1,867
3,7	219,852	0,012	0,083	1,414	7,556	0,116	5,744	1,657
3,7	229,331	0,014	0,089	1,574	9,958	0,128	6,146	1,937
3,8	234,234	0,014	0,091	1,649	11,039	0,134	6,463	1,963
3,8	223,519	0,013	0,075	1,465	9,815	0,121	5,615	1,647
3,9	201,362	0,010	0,065	1,329	8,265	0,123	4,864	1,506
3,9	223,183	0,009	0,068	1,027	6,231	0,106	5,464	1,674
4,0	213,320	0,010	0,071	1,331	10,208	0,109	5,689	1,651
4,0	228,861	0,012	0,074	1,436	10,060	0,113	6,109	1,774
4,1	206,775	0,009	0,066	1,254	8,573	0,101	5,505	1,501
4,1	195,419	0,010	0,055	1,144	10,377	0,094	5,188	1,364
4,2	197,558	0,009	0,061	1,164	8,503	0,091	5,686	1,529
4,2	223,063	0,011	0,072	1,449	10,466	0,118	6,135	1,853
4,2	217,806	0,011	0,069	1,318	10,189	0,113	5,659	1,806
4,3	193,678	0,008	0,061	0,980	6,204	0,105	5,151	1,719
4,3	222,266	0,009	0,067	1,386	9,507	0,112	6,019	2,167
4,4	212,694	0,010	0,069	1,270	9,393	0,111	6,312	1,957
4,4	225,458	0,010	0,072	1,333	9,401	0,113	5,978	2,141
4,5	214,301	0,012	0,076	1,519	11,702	0,124	6,156	2,311
4,5	231,076	0,011	0,075	1,414	9,342	0,117	6,388	2,242
4,6	210,365	0,009	0,071	1,089	7,805	0,102	5,508	2,291
4,6	211,316	0,011	0,097	1,392	8,914	0,138	5,730	2,326
4,7	220.821	0,010	0,070	1,402	9,449	0,134	5,856	1,851

Fluxos de TE (mg cm⁻² kyr⁻¹) para RJ13-02.

cal kyr	V	Cr	Mn	Ni	Cu	Zn	As
BP	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo
2,3	0,160	0,211	0,932	0,077	0,010	0,063	0,066
2,4	0,211	0,282	1,125	0,089	0,012	0,073	0,083
2,4	0,286	0,386	1,219	0,101	0,013	0,079	0,101
2,5	0,284	0,395	1,515	0,104	0,013	0,084	0,102
2,5	0,314	0,455	1,697	0,117	0,015	0,095	0,111
2,5	0,369	0,498	1,839	0,134	0,018	0,116	0,111
2,6	0,370	0,529	1,668	0,133	0,017	0,125	0,119
2,6	0,377	0,540	1,592	0,141	0,019	0,131	0,127
2,7	0,419	0,602	1,710	0,146	0,019	0,142	0,137
2,7	0,449	0,661	2,222	0,156	0,020	0,145	0,137
2,8	0,487	0,656	2,287	0,169	0,020	0,152	0,151
2,8	0,464	0,668	2,217	0,173	0,021	0,154	0,146
2,9	0,512	0,737	2,394	0,170	0,021	0,160	0,160
2,9	0,463	0,705	2,233	0,168	0,019	0,159	0,159
3,0	0,449	0,611	2,818	0,210	0,027	0,181	0,182
3,0	0,407	0,606	2,535	0,184	0,022	0,171	0,178
3,1	0,456	0,655	2,568	0,181	0,023	0,166	0,164
3,1	0.470	0.715	2.735	0.175	0.022	0.163	0.154
3,2	0.440	0.640	2.669	0.192	0.025	0.175	0.155
3.2	0.477	0.736	2.841	0.205	0.026	0.183	0.169
3.3	0.489	0.718	3.186	0.237	0.030	0.260	0.178
3.3	0.585	0.887	4,145	0.308	0.038	0.467	0.288
3.3	0.613	0.956	4 281	0.284	0.036	0.478	0.220
3.4	0.628	0,964	4 058	0 294	0.042	0,360	0.313
3.4	0.738	1 108	3 934	0.295	0.039	0.324	0,326
3.5	0,750	1,100	4 105	0,225	0.043	0,324	0,367
3 5	0,0792	1,001	4 534	0,310	0.048	0,315	0,329
3,5	0,752	1,109	4 682	0,353	0.051	0,365	0,325
3.6	0,902	1,105	5 114	0,333	0.065	0,303	0,300
3,0	0,902	1,225 1 142	4 917	0,433	0.062	0,414	0,402
37	0,050	1,142	5,030	0,117	0.064	0,307	0,375
3.8	0,955	1,240	5,030	0,420	0.067	0,424	0.431
3,8	0,824	1,040	1 730	0,444	0,007	0,324	0,431
3.9	0,624	0.037	4,737	0,457	0.054	0,338	0,407
3.9	0,077	1 1 2 8	4,157	0,320	0,054	0,330	0.342
4.0	0,722	1,138	4,007 5,000	0,351	0,040	0,370	0,342
4,0	0,001	1,099	5,000	0,333	0,052	0,405	0,308
4,0	0,941	1,229	J,017 4 053	0,301	0,050	0,445	0,338
4,1	0,807	1,001	4,955	0,342	0,030	0,400	0,337
4,1	0,777	1,007	4,052	0,299	0,044	0,373	0,270
4,2	0,055	1,115	4,931 5 422	0,510	0,047	0,452	0,265
4,2	0,910	1,199	5,425	0,385	0,050	0,432	0,307
4,2	0,850	1,128	5,149	0,349	0,051	0,410	0,348
4,5	0,001	1,011	4,075	0,310	0,043	0,302	0,329
4,3 1 1	0,909	1,244	5,481	0,367	0,053	0,449	0,393
4,4	0,823	1,148	5,426 5,745	0,354	0,052	0,000	0,370
4,4	0,899	1,181	5,/45	0,349	0,052	0,463	0,374
4,5	1,034	1,554	5,706	0,391	0,059	0,493	0,395
4,5	1,043	1,418	6,439	0,437	0,064	0,534	0,441
4,0	0,896	1,238	5,691	0,357	0,051	0,469	0,421
4,6	1,095	1,379	6,152	0,449	0,063	0,841	0,525
4,7	1,161	1,456	6,273	0,413	0,061	0,528	0,418

Fluxos de TE (mg cm⁻² kyr⁻¹) para RJ13-02.

cal kyr	Sr	Ag	Cd	Sn	Ba	Tl	Pb	U
BP	Fluxo	Fluxo (x10 ⁻²)	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo	Fluxo
2,3	1,250	0,010	0,001	0,010	0,067	0,001	0,040	0,014
2,4	1,517	0,011	0,001	0,012	0,077	0,001	0,047	0,020
2,4	1,834	0,012	0,001	0,013	0,085	0,001	0,066	0,021
2,5	2,041	0,013	0,001	0,012	0,082	0,001	0,064	0,029
2,5	2,378	0,013	0,001	0,015	0,096	0,002	0,073	0,026
2,5	2.576	0.017	0.001	0.018	0.136	0.002	0.084	0.033
2,6	2.534	0.019	0.001	0.018	0.108	0.002	0.080	0.035
2,6	2.572	0.017	0.001	0.019	0.111	0.002	0.087	0.036
2,7	2.701	0.020	0.001	0.020	0.110	0.002	0.101	0.029
2,7	3.999	0.019	0.001	0.021	0.127	0.002	0.106	0.029
2,8	4,116	0.023	0.002	0.022	0.145	0.003	0.105	0.053
2.8	4,592	0.020	0.001	0.022	0.132	0.003	0.107	0.037
2.9	4 577	0.023	0.002	0.023	0.157	0.003	0.121	0.041
2.9	4 582	0.021	0.001	0.022	0.157	0.003	0.106	0.043
3.0	5 473	0.025	0.002	0.028	0.139	0.003	0.126	0.069
3.0	5 241	0.021	0.002	0.025	0.142	0.003	0.119	0.062
3.1	5 407	0.022	0.002	0.025	0.167	0,003	0.126	0.051
3.1	5 576	0.021	0.002	0.025	0,159	0,003	0,120	0.049
3.2	5,576	0.025	0.002	0,025	0,137	0,003	0.138	0.057
3.2	6.021	0,023	0,002	0.027	0,104	0,003	0,130	0,057
33	6 313	0.022	0,001	0.031	0,170	0,003	0,140	0.072
3 3	8 749	0.041	0.002	0.041	0,175	0,003	0,134	0.086
3 3	9,150	0,041	0,003	0.041	0,230	0,004	0,210	0.084
3.4	9,150 8 792	0,033	0,002	0.040	0,259	0,004	0,220	0.074
3.4	8.626	0,033	0,003	0,040	0,250	0,004	0,207	0,074
3,5	8 743	0,033	0,003	0,037	0,294	0,004	0,150	0,000
3,5	0,743	0,034	0,002	0,040	0,285	0,004	0,234	0,072
3,5	9,555	0,035	0,003	0,041	0,203	0,004	0,222	0,002
3,6	9.476	0,040	0,003	0,044	0,201	0,004	0,250	0.077
3,0	9 225	0,050	0,004	0,001	0,317	0,005	0,232	0,070
37	9,225	0,054	0,004	0.063	0,317	0,005	0,241 0.245	0,077
3.8	9.483	0,054	0,004	0.067	0,377	0,005	0,245	0,079
3.8	9,100	0.052	0,004	0,060	0,404	0,005	0,202	0,079
3.9	8 404	0.042	0,003	0.055	0,404	0,005	0.203	0.063
3.9	9 4 4 9	0,042	0,003	0.043	0,545	0,005	0,203	0,003
4.0	9 1 5 7	0.043	0,003	0.057	0.438	0,004	0.231	0.071
4.0	9 955	0.051	0.003	0.062	0.438	0,005	0,211	0.077
4.1	9 1 1 0	0.041	0,003	0.055	0,450	0,005	0.243	0,077
4.1	8 717	0.043	0.002	0.051	0.463	0.004	0,213	0.061
4.2	8 702	0,040	0.002	0.051	0,405	0,004	0,251	0.067
4.2	9,939	0,040	0,003	0.065	0,375	0,004	0,250	0.083
4.2	9,937	0,049	0,003	0,005	0,400	0,005	0,275	0,005
4.3	8 821	0,036	0,003	0.045	0,437	0,005	0,235	0.078
4.3	10,021	0,030	0,003	0,045	0,203	0,005	0,235	0,070
4.4	9 888	0.045	0,003	0.059	0.437	0.005	0.293	0,100
4.4	10 585	0,049	0,003	0.063	0.441	0.005	0.295	0 101
4 5	10,565	0,040	0,003	0,005	0,441	0,005	0,201	0,101
4 5	11 81/	0.055	0,004	0.072	0,355	0,000	0,292	0.115
4.6	10.851	0,035	0.004	0.056	0.403	0.005	0.284	0.118
4.6	10,001	0.057	0.004	0,050	0.464	0.007	0.204	0.121
4 7	11 587	0.053	0.003	0.074	0,404	0.007	0,290	0,121
• • • •	11,007	0,055	0,004	0,074	0,470	0,007	0,507	0,077

cal kyr	V/Ca	V/Al	Mn/Ca	Mn/Al	
BP	x10 ⁻⁴	x10 ⁻⁴	x10 ⁻⁴	x10 ⁻⁴	_
2,3	2,641	2,894	15,407	16,883	
2,4	3,212	3,751	13,694	15,993	
2,5	2,930	3,615	14,603	18,017	
2,7	2,559	3,168	10,447	12,934	
2,9	2,564	3,406	11,995	15,935	
3,0	1,949	2,483	12,158	15,486	
3,2	1,978	2,371	12,008	14,395	
3,3	1,772	2,223	12,563	15,763	
3,4	2,041	2,689	10,888	14,346	
3,6	1,938	2,466	11,823	15,043	
3,7	2,462	3,227	13,002	17,041	
3,9	1,672	2,227	9,930	13,227	
4,0	2,231	2,956	13,793	18,275	
4,2	1,999	2,496	11,860	14,808	
4,3	1,503	2,040	9,274	12,583	
4,4	1,960	2,684	12,517	17,146	

Razões de TE para proxies redox-sensíveis para RJ13-02.

Razões de TE para *proxies* de produtividade para RJ13-02.

cal kyr BP	Sr/Ca x10 ⁻⁴	Sr/Al x10 ⁻⁴	Cd/Ca x10 ⁻⁴	Cd/Al x10 ⁻⁴	Ba/Ca x10 ⁻⁴	Ba/Al x10 ⁻⁴
2,3	20,666	22,646	0,009	0,010	1,114	1,220
2,4	20,609	24,069	0,008	0,010	0,958	1,119
2,5	20,455	25,237	0,008	0,010	1,076	1,328
2,7	16,503	20,432	0,007	0,009	0,669	0,828
2,9	22,931	30,464	0,008	0,010	0,788	1,047
3,0	25,131	32,011	0,008	0,010	0,680	0,866
3,2	25,541	30,617	0,007	0,009	0,826	0,991
3,3	26,517	33,270	0,008	0,010	0,714	0,896
3,4	23,875	31,456	0,007	0,009	0,813	1,072
3,6	24,535	31,216	0,008	0,010	0,709	0,902
3,7	23,616	30,954	0,009	0,012	1,025	1,344
3,9	20,172	26,869	0,007	0,009	0,828	1,103
4,0	23,606	31,276	0,008	0,010	1,038	1,375
4,2	20,846	26,026	0,006	0,008	0,897	1,120
4,3	20,077	27,242	0,006	0,009	0,643	0,873
4,4	23,064	31,594	0,007	0,010	0,962	1,317

RJ13-01	Factor 1	Factor 2	Factor 3	RJ13-02	Factor 1	Factor 2	Factor 3
%TOC	0,74	0,26	-0,02	%TOC	-0,32	0,11	0,81
%Si	-0,77	0,30	0,02	%CaCO3	0,28	-0,06	0,85
Al/Ca	0,81	0,42	0,26	Al/Ca	-0,95	0,02	0,01
Fe/Ca	0,84	0,44	0,20	Fe/Ca	-0,95	0,07	-0,03
Ca/Al	-0,81	-0,40	-0,23	Ca/Al	0,95	-0,01	0,00
Fe/Al	0,78	0,40	-0,04	V/Al	-0,41	0,79	-0,09
V/Al	0,49	0,81	0,20	Sr/Al	0,73	0,06	-0,02
Mn/Al	0,46	0,85	0,07	Cd/Al	0,13	0,84	0,10
Sr/Al	0,04	0,24	0,82	Ba/Al	0,09	0,79	0,02
Cd/Al	0,19	0,16	0,88	Expl.Var	3,61	1,97	1,41
Ba/Al	0,05	0,87	0,32	Prp.Totl	0,40	0,22	0,16
Expl.Var	4,28	3,08	1,75				
Prp.Totl	0,39	0,28	0,16				

Factor scores dos multi-elementos	para os testemunhos RJ13-01 e RJ13-02.
-----------------------------------	--

actor score		elementos pe	uu os testenn		Easter 1	Eastan 2	Eastan 2
BP	Factor 1	Factor 2	Factor 3	BP	ractor 1	ractor 2	ractor 5
0,012	-0,81	1,57	0,02	2,3	-3,96	0,58	0,91
0,018	-0,15	0,02	0,07	2,4	0,00	0,00	0,00
0,2	0,67	0,37	-1,92	2,4	-2,99	1,44	-0,82
0,3	0,21	-0,03	-0,09	2,5	0,05	-0,02	0,00
0,3	0,11	-0,02	-0,05	2,5	0,00	0,02	-1,10
0,5	0,10	-0,01	-0,04	2,5	-1,20	2,64	-0,85
0,9	0,16	-0,02	-0,07	2,6	-0,06	-0,02	2,58
1,0	0,42	0,98	-0,99	2,6	-0,07	0,04	-0,54
1,2	0,37	1,08	-0,99	2,7	-2,01	-1,37	-0,09
1,4	1,31	0,85	-0,61	2,7	-0,19	0,08	-0,09
2,0	0,68	0,79	-0,47	2,8	-0,13	0,01	1,85
2,2	0,89	-0,05	-0,85	2,8	0,00	0,00	0,00
2,6	-0,36	2,20	0,97	2,9	0,90	1,28	-1,11
2,8	0,02	1,48	-0,03	2,9	-0,01	-0,02	1,24
3,0	0,01	1,40	-1,13	3,0	0,06	0,00	-1,12
3,2	0,21	-0,03	-0,09	3,0	0,18	-0,60	0,11
3,3	0,58	1,93	-0,87	3,1	0,04	-0,02	0,10
3,6	0,97	0,30	0,12	3,1	-0,15	0,07	-0,75
3,8	1,39	0,29	0,74	3,2	-1,23	-1,81	0,01
4,1	0,87	0,10	0,44	3,2	0,00	0,00	0,00
4,4	0,90	-0,24	1,67	3,3	0,11	-0,05	0,23
4,7	0,99	-0,33	2,08	3,3	0,62	-1,58	-2,08
5,0	0,65	0,19	1,04	3,3	0,00	0,00	0,00
5,3	0,38	-0,33	1,60	3,4	-0,12	0,05	-0,11
5,9	0,44	-0,93	1,79	3,4	1,26	-0,44	-0,05
6,1	0,03	0,00	-0,02	3,5	0,00	0,00	0,00
6,4	0,55	-1,31	1,01	3,5	0,00	0,00	0,00

_

6,7	0,64	-1,61	1,15	3,6	0,62	-0,82	1,70
7,0	0,20	-1,26	-1,07	3,6	0,00	0,00	0,00
7,3	1,04	-2,03	-1,83	3,7	-0,01	0,05	-2,18
7,6	-0,58	-0,84	0,49	3,7	1,60	3,58	0,56
8,2	-0,61	-1,84	-1,02	3,8	0,15	-0,03	-1,61
8,5	-0,10	-1,73	-1,00	3,8	0,00	0,00	0,00
8,8	-2,49	0,57	1,85	3,9	1,36	-1,56	0,38
9,1	-2,51	-0,45	0,03	3,9	0,10	-0,02	-1,24
9,3	-2,12	-0,21	-0,42	4,0	0,00	0,00	0,00
9,6	-0,89	-0,98	-1,07	4,0	1,63	1,80	-0,05
9,9	-2,08	0,35	0,00	4,1	0,10	-0,04	0,27
10,7	-0,42	0,06	0,19	4,1	0,00	0,00	0,00
10,8	-1,71	-0,29	-0,62	4,1	-0,59	-1,68	-1,03
				4,2	0,00	-0,02	0,74
				4,2	0,00	0,00	0,00
				4,3	1,64	-2,69	0,13
				4,3	-0,20	0,04	2,08
				4,4	0,00	0,00	0,00
				4,4	2,21	1,25	0,00
				4,5	0,12	-0,07	1,16
				4,5	0,14	-0,02	-1,52
				4,6	0,00	0,00	0,00

4,6

4,7

0,00

0,05

0,00

-0,07

0,00

2,30

n-alcanos para RJ13-01.										
cal kyr	nC12	nC13	nC14	nC15	nC16	nC17	Pri	nC18	Phy	nC19
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
0,012	<ld< td=""><td>0,007</td><td>0,007</td><td>0,012</td><td>0,012</td><td>0,010</td><td>0,007</td><td>0,008</td><td>0,016</td><td>0,010</td></ld<>	0,007	0,007	0,012	0,012	0,010	0,007	0,008	0,016	0,010
0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
0,3	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
0,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
0,9	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
1,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<>	0,005	<lq< td=""></lq<>
1,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><lq< td=""></lq<></td></ld<>	0,005	<lq< td=""></lq<>
2,2	<ld< td=""><td>0,005</td><td>0,005</td><td>0,006</td><td>0,006</td><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,006</td><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	0,005	0,005	0,006	0,006	0,005	<ld< td=""><td><ld< td=""><td>0,006</td><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><lq< td=""></lq<></td></ld<>	0,006	<lq< td=""></lq<>
2,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
2,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
3,0	<ld< td=""><td>0,008</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
3,2	<ld< td=""><td>0,007</td><td>0,009</td><td>0,015</td><td>0,009</td><td>0,009</td><td><ld< td=""><td>0,011</td><td>0,011</td><td>0,012</td></ld<></td></ld<>	0,007	0,009	0,015	0,009	0,009	<ld< td=""><td>0,011</td><td>0,011</td><td>0,012</td></ld<>	0,011	0,011	0,012
3,3	<ld< td=""><td><ld< td=""><td>0,011</td><td>0,014</td><td>0,009</td><td>0,010</td><td>0,006</td><td>0,017</td><td>0,014</td><td>0,019</td></ld<></td></ld<>	<ld< td=""><td>0,011</td><td>0,014</td><td>0,009</td><td>0,010</td><td>0,006</td><td>0,017</td><td>0,014</td><td>0,019</td></ld<>	0,011	0,014	0,009	0,010	0,006	0,017	0,014	0,019
3,7	<ld< td=""><td>0,010</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,010	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
4,1	<ld< td=""><td>0,005</td><td>0,005</td><td>0,005</td><td>0,007</td><td>0,005</td><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></ld<>	0,005	0,005	0,005	0,007	0,005	<lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<>	0,005	<lq< td=""></lq<>
4,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,005</td><td><lq< td=""></lq<></td></lq<>	0,005	<lq< td=""></lq<>
5,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<>	0,006	<lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
5,3	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
6,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<>	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
6,6	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
7,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
7,6	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
8,0	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
8,8	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><lq< td=""></lq<></td></ld<></td></ld<>	<ld< td=""><td><lq< td=""></lq<></td></ld<>	<lq< td=""></lq<>
9,9	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
12,4	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

n-alcanos para RJ13-01.										
cal kyr	nC20	nC21	nC22	nC23	nC24	nC25	nC26	nC27	nC28	nC29
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
0,012	0,009	0,013	0,014	0,028	0,017	0,081	0,009	0,053	0,009	0,091
0,3	<ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,021</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,021</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,021</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,021</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,019</td><td><ld< td=""><td>0,021</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<>	0,019	<ld< td=""><td>0,021</td><td><ld< td=""><td>0,056</td></ld<></td></ld<>	0,021	<ld< td=""><td>0,056</td></ld<>	0,056
0,3	<ld< td=""><td><lq< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,020</td><td>0,004</td><td>0,020</td><td><ld< td=""><td>0,054</td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,020</td><td>0,004</td><td>0,020</td><td><ld< td=""><td>0,054</td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,020</td><td>0,004</td><td>0,020</td><td><ld< td=""><td>0,054</td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td>0,020</td><td>0,004</td><td>0,020</td><td><ld< td=""><td>0,054</td></ld<></td></ld<>	0,020	0,004	0,020	<ld< td=""><td>0,054</td></ld<>	0,054
0,5	<ld< td=""><td><lq< td=""><td><ld< td=""><td>0,008</td><td>0,006</td><td>0,032</td><td>0,013</td><td>0,033</td><td>0,012</td><td>0,064</td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td>0,008</td><td>0,006</td><td>0,032</td><td>0,013</td><td>0,033</td><td>0,012</td><td>0,064</td></ld<></td></lq<>	<ld< td=""><td>0,008</td><td>0,006</td><td>0,032</td><td>0,013</td><td>0,033</td><td>0,012</td><td>0,064</td></ld<>	0,008	0,006	0,032	0,013	0,033	0,012	0,064
0,9	<ld< td=""><td><lq< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td><td><ld< td=""><td>0,031</td><td>0,007</td><td>0,089</td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td><td><ld< td=""><td>0,031</td><td>0,007</td><td>0,089</td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td><td><ld< td=""><td>0,031</td><td>0,007</td><td>0,089</td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,026</td><td><ld< td=""><td>0,031</td><td>0,007</td><td>0,089</td></ld<></td></ld<>	0,026	<ld< td=""><td>0,031</td><td>0,007</td><td>0,089</td></ld<>	0,031	0,007	0,089
1,2	<ld< td=""><td><lq< td=""><td><ld< td=""><td>0,007</td><td>0,005</td><td>0,032</td><td>0,013</td><td>0,038</td><td>0,016</td><td>0,082</td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td>0,007</td><td>0,005</td><td>0,032</td><td>0,013</td><td>0,038</td><td>0,016</td><td>0,082</td></ld<></td></lq<>	<ld< td=""><td>0,007</td><td>0,005</td><td>0,032</td><td>0,013</td><td>0,038</td><td>0,016</td><td>0,082</td></ld<>	0,007	0,005	0,032	0,013	0,038	0,016	0,082
1,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,030</td><td>0,005</td><td>0,031</td><td>0,007</td><td>0,073</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,030</td><td>0,005</td><td>0,031</td><td>0,007</td><td>0,073</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,030</td><td>0,005</td><td>0,031</td><td>0,007</td><td>0,073</td></ld<></td></ld<>	0,007	<ld< td=""><td>0,030</td><td>0,005</td><td>0,031</td><td>0,007</td><td>0,073</td></ld<>	0,030	0,005	0,031	0,007	0,073
2,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,009</td><td>0,009</td><td>0,033</td><td>0,016</td><td>0,037</td><td>0,017</td><td>0,076</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,009</td><td>0,009</td><td>0,033</td><td>0,016</td><td>0,037</td><td>0,017</td><td>0,076</td></ld<></td></ld<>	<ld< td=""><td>0,009</td><td>0,009</td><td>0,033</td><td>0,016</td><td>0,037</td><td>0,017</td><td>0,076</td></ld<>	0,009	0,009	0,033	0,016	0,037	0,017	0,076
2,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,064</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,064</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,064</td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td>0,023</td><td><ld< td=""><td>0,023</td><td><ld< td=""><td>0,064</td></ld<></td></ld<></td></ld<>	0,023	<ld< td=""><td>0,023</td><td><ld< td=""><td>0,064</td></ld<></td></ld<>	0,023	<ld< td=""><td>0,064</td></ld<>	0,064
2,8	<ld< td=""><td>0,006</td><td>0,009</td><td>0,013</td><td>0,011</td><td>0,027</td><td>0,009</td><td>0,024</td><td>0,007</td><td>0,058</td></ld<>	0,006	0,009	0,013	0,011	0,027	0,009	0,024	0,007	0,058
3,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,070</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,070</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,070</td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td>0,022</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,070</td></ld<></td></ld<></td></ld<>	0,022	<ld< td=""><td>0,024</td><td><ld< td=""><td>0,070</td></ld<></td></ld<>	0,024	<ld< td=""><td>0,070</td></ld<>	0,070
3,2	0,015	0,023	0,045	0,082	0,102	0,112	0,055	0,050	0,019	0,079
3,3	0,023	0,037	0,075	0,137	0,168	0,168	0,076	0,057	0,015	0,089
3,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,027</td><td>0,007</td><td>0,027</td><td>0,006</td><td>0,064</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,027</td><td>0,007</td><td>0,027</td><td>0,006</td><td>0,064</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,027</td><td>0,007</td><td>0,027</td><td>0,006</td><td>0,064</td></ld<></td></ld<>	0,006	<ld< td=""><td>0,027</td><td>0,007</td><td>0,027</td><td>0,006</td><td>0,064</td></ld<>	0,027	0,007	0,027	0,006	0,064
4,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,032</td><td>0,011</td><td>0,040</td><td>0,015</td><td>0,096</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,032</td><td>0,011</td><td>0,040</td><td>0,015</td><td>0,096</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,032</td><td>0,011</td><td>0,040</td><td>0,015</td><td>0,096</td></ld<></td></ld<>	0,007	<ld< td=""><td>0,032</td><td>0,011</td><td>0,040</td><td>0,015</td><td>0,096</td></ld<>	0,032	0,011	0,040	0,015	0,096
4,6	<ld< td=""><td>0,005</td><td>0,005</td><td>0,010</td><td>0,008</td><td>0,033</td><td>0,010</td><td>0,036</td><td>0,013</td><td>0,096</td></ld<>	0,005	0,005	0,010	0,008	0,033	0,010	0,036	0,013	0,096
5,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,038</td><td>0,015</td><td>0,045</td><td>0,019</td><td>0,096</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,038</td><td>0,015</td><td>0,045</td><td>0,019</td><td>0,096</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,038</td><td>0,015</td><td>0,045</td><td>0,019</td><td>0,096</td></ld<></td></ld<>	0,007	<ld< td=""><td>0,038</td><td>0,015</td><td>0,045</td><td>0,019</td><td>0,096</td></ld<>	0,038	0,015	0,045	0,019	0,096
5,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,026</td><td><ld< td=""><td>0,025</td><td>0,005</td><td>0,060</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,026</td><td><ld< td=""><td>0,025</td><td>0,005</td><td>0,060</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,026</td><td><ld< td=""><td>0,025</td><td>0,005</td><td>0,060</td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td>0,026</td><td><ld< td=""><td>0,025</td><td>0,005</td><td>0,060</td></ld<></td></ld<>	0,026	<ld< td=""><td>0,025</td><td>0,005</td><td>0,060</td></ld<>	0,025	0,005	0,060
6,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td><td>0,010</td><td>0,032</td><td>0,013</td><td>0,071</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td><td>0,010</td><td>0,032</td><td>0,013</td><td>0,071</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td><td>0,010</td><td>0,032</td><td>0,013</td><td>0,071</td></ld<></td></ld<>	0,005	<ld< td=""><td>0,026</td><td>0,010</td><td>0,032</td><td>0,013</td><td>0,071</td></ld<>	0,026	0,010	0,032	0,013	0,071
6,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,021</td><td>0,004</td><td>0,020</td><td>0,004</td><td>0,047</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,021</td><td>0,004</td><td>0,020</td><td>0,004</td><td>0,047</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,021</td><td>0,004</td><td>0,020</td><td>0,004</td><td>0,047</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,021</td><td>0,004</td><td>0,020</td><td>0,004</td><td>0,047</td></ld<></td></ld<>	<ld< td=""><td>0,021</td><td>0,004</td><td>0,020</td><td>0,004</td><td>0,047</td></ld<>	0,021	0,004	0,020	0,004	0,047
7,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td>0,006</td><td>0,027</td><td>0,011</td><td>0,028</td><td>0,012</td><td>0,057</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td>0,006</td><td>0,027</td><td>0,011</td><td>0,028</td><td>0,012</td><td>0,057</td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td>0,006</td><td>0,027</td><td>0,011</td><td>0,028</td><td>0,012</td><td>0,057</td></ld<>	0,006	0,006	0,027	0,011	0,028	0,012	0,057
7,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,008</td><td>0,007</td><td>0,020</td><td>0,005</td><td>0,016</td><td><ld< td=""><td>0,046</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,007</td><td>0,020</td><td>0,005</td><td>0,016</td><td><ld< td=""><td>0,046</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,007</td><td>0,020</td><td>0,005</td><td>0,016</td><td><ld< td=""><td>0,046</td></ld<></td></ld<>	0,008	0,007	0,020	0,005	0,016	<ld< td=""><td>0,046</td></ld<>	0,046
8,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,041</td></ld<></td></ld<>	0,015	<ld< td=""><td>0,041</td></ld<>	0,041
8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<>	<ld< td=""><td>0,007</td></ld<>	0,007
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,032</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,032</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,032</td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,024</td><td><ld< td=""><td>0,019</td><td><ld< td=""><td>0,032</td></ld<></td></ld<></td></ld<>	0,024	<ld< td=""><td>0,019</td><td><ld< td=""><td>0,032</td></ld<></td></ld<>	0,019	<ld< td=""><td>0,032</td></ld<>	0,032
10,7	0,006	0,010	0,021	0,031	0,030	0,041	0,011	0,015	<ld< td=""><td>0,020</td></ld<>	0,020
10,9	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,010</td><td>0,008</td><td>0,020</td><td>0,007</td><td>0,015</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,010</td><td>0,008</td><td>0,020</td><td>0,007</td><td>0,015</td><td><ld< td=""><td>0,025</td></ld<></td></ld<>	0,008	0,010	0,008	0,020	0,007	0,015	<ld< td=""><td>0,025</td></ld<>	0,025
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,008</td><td>0,007</td><td>0,024</td><td>0,006</td><td>0,018</td><td>0,005</td><td>0,030</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,007</td><td>0,024</td><td>0,006</td><td>0,018</td><td>0,005</td><td>0,030</td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,007</td><td>0,024</td><td>0,006</td><td>0,018</td><td>0,005</td><td>0,030</td></ld<>	0,008	0,007	0,024	0,006	0,018	0,005	0,030
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,010</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,010</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,010</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,010</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,010</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td>0,010</td><td><ld< td=""><td>0,017</td></ld<></td></ld<>	0,010	<ld< td=""><td>0,017</td></ld<>	0,017
13,3	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,006</td><td><ld< td=""><td>0,013</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,006</td><td><ld< td=""><td>0,013</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<>	0,005	0,006	<ld< td=""><td>0,013</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<>	0,013	<ld< td=""><td>0,008</td><td><ld< td=""><td>0,017</td></ld<></td></ld<>	0,008	<ld< td=""><td>0,017</td></ld<>	0,017
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,009</td><td>0,006</td><td>0,023</td><td>0,006</td><td>0,014</td><td>0,005</td><td>0,023</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,009</td><td>0,006</td><td>0,023</td><td>0,006</td><td>0,014</td><td>0,005</td><td>0,023</td></ld<></td></ld<>	<ld< td=""><td>0,009</td><td>0,006</td><td>0,023</td><td>0,006</td><td>0,014</td><td>0,005</td><td>0,023</td></ld<>	0,009	0,006	0,023	0,006	0,014	0,005	0,023
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,016</td><td>0,006</td><td>0,011</td><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,016</td><td>0,006</td><td>0,011</td><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,016</td><td>0,006</td><td>0,011</td><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,016</td><td>0,006</td><td>0,011</td><td><ld< td=""><td>0,016</td></ld<></td></ld<>	0,016	0,006	0,011	<ld< td=""><td>0,016</td></ld<>	0,016

n-alcanos para RJ13-01.										
cal kyr	nC30	nC31	nC32	nC33	nC34	nC35	nC36	nC37	nC38	nC39
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
0,012	0,034	0,078	0,016	0,024	0,038	0,038	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,3	0,010	0,051	<ld< td=""><td>0,025</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,025	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,3	0,011	0,049	<ld< td=""><td>0,023</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,023	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,5	0,015	0,049	<ld< td=""><td>0,018</td><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></ld<>	0,018	<ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,9	0,009	0,082	<ld< td=""><td>0,044</td><td><ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,044	<ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
1,2	0,022	0,073	0,006	0,040	<ld< td=""><td>0,010</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,010	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
1,4	0,012	0,054	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,2	0,023	0,069	0,006	0,038	<ld< td=""><td>0,010</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,010	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	0,012	0,061	<ld< td=""><td>0,033</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,033	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,8	0,015	0,062	<ld< td=""><td><lq< td=""><td><ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	0,014	0,064	<ld< td=""><td>0,034</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,034	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,2	0,023	0,073	0,005	0,040	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,3	0,020	0,079	<ld< td=""><td>0,042</td><td><ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,042	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,7	0,011	0,048	<ld< td=""><td>0,016</td><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></ld<>	0,016	<ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,1	0,024	0,082	<ld< td=""><td>0,047</td><td><ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,047	<ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,6	0,024	0,082	<ld< td=""><td>0,045</td><td><ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,045	<ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,1	0,026	0,084	0,007	0,046	<ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3	0,009	0,043	<ld< td=""><td>0,016</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,016	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
6,1	0,019	0,065	0,005	0,036	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
6,6	0,006	0,035	<ld< td=""><td>0,012</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,012	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
7,0	0,017	0,052	<ld< td=""><td>0,029</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,029	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
7,6	0,010	0,046	<ld< td=""><td>0,028</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,028	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
8,0	0,009	0,041	<ld< td=""><td>0,024</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,024	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
8,8	<ld< td=""><td>0,006</td><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<></td></ld<>	0,006	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,0	<ld< td=""><td>0,010</td><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<></td></ld<>	0,010	<ld< td=""><td><lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<></td></lq<>	<ld< td=""><td><lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<></td></ld<>	<lq< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></lq<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,9	0,005	0,033	<ld< td=""><td>0,021</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,021	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	<ld< td=""><td>0,016</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,016	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,9	0,008	0,034	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	0,008	0,031	<ld< td=""><td>0,021</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,021	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
12,4	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	0,005	0,022	<ld< td=""><td>0,016</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,016	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	<ld< td=""><td>0,020</td><td><ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,020	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<ld< td=""><td>0,014</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,014	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

cal kyr	nC40	Σn-alk	RP	UCM	ΣTerr	HTot	Recuperação (n-C30d ₆₂)
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	%
0,012	<ld< td=""><td>0,641</td><td>2,421</td><td>10,067</td><td>0,222</td><td>13,129</td><td>82,45</td></ld<>	0,641	2,421	10,067	0,222	13,129	82,45
0,3	<ld< td=""><td>0,187</td><td>0,795</td><td><ld< td=""><td>0,128</td><td>0,982</td><td>117,99</td></ld<></td></ld<>	0,187	0,795	<ld< td=""><td>0,128</td><td>0,982</td><td>117,99</td></ld<>	0,128	0,982	117,99
0,3	<ld< td=""><td>0,196</td><td>0,940</td><td><ld< td=""><td>0,124</td><td>1,136</td><td>130,58</td></ld<></td></ld<>	0,196	0,940	<ld< td=""><td>0,124</td><td>1,136</td><td>130,58</td></ld<>	0,124	1,136	130,58
0,5	<ld< td=""><td>0,249</td><td>1,010</td><td><ld< td=""><td>0,145</td><td>1,259</td><td>75,13</td></ld<></td></ld<>	0,249	1,010	<ld< td=""><td>0,145</td><td>1,259</td><td>75,13</td></ld<>	0,145	1,259	75,13
0,9	<ld< td=""><td>0,312</td><td>0,937</td><td><ld< td=""><td>0,203</td><td>1,248</td><td>126,08</td></ld<></td></ld<>	0,312	0,937	<ld< td=""><td>0,203</td><td>1,248</td><td>126,08</td></ld<>	0,203	1,248	126,08
1,2	<ld< td=""><td>0,354</td><td>1,163</td><td><ld< td=""><td>0,194</td><td>1,516</td><td>114,17</td></ld<></td></ld<>	0,354	1,163	<ld< td=""><td>0,194</td><td>1,516</td><td>114,17</td></ld<>	0,194	1,516	114,17
1,4	<ld< td=""><td>0,228</td><td>1,025</td><td><ld< td=""><td>0,159</td><td>1,253</td><td>73,45</td></ld<></td></ld<>	0,228	1,025	<ld< td=""><td>0,159</td><td>1,253</td><td>73,45</td></ld<>	0,159	1,253	73,45
2,2	<ld< td=""><td>0,377</td><td>1,295</td><td><ld< td=""><td>0,183</td><td>1,672</td><td>124,61</td></ld<></td></ld<>	0,377	1,295	<ld< td=""><td>0,183</td><td>1,672</td><td>124,61</td></ld<>	0,183	1,672	124,61
2,6	<ld< td=""><td>0,230</td><td>0,736</td><td><ld< td=""><td>0,147</td><td>0,966</td><td>123,05</td></ld<></td></ld<>	0,230	0,736	<ld< td=""><td>0,147</td><td>0,966</td><td>123,05</td></ld<>	0,147	0,966	123,05
2,8	<ld< td=""><td>0,250</td><td>0,843</td><td><ld< td=""><td>0,144</td><td>1,093</td><td>103,90</td></ld<></td></ld<>	0,250	0,843	<ld< td=""><td>0,144</td><td>1,093</td><td>103,90</td></ld<>	0,144	1,093	103,90
3,0	<ld< td=""><td>0,254</td><td>0,815</td><td><ld< td=""><td>0,157</td><td>1,068</td><td>121,38</td></ld<></td></ld<>	0,254	0,815	<ld< td=""><td>0,157</td><td>1,068</td><td>121,38</td></ld<>	0,157	1,068	121,38
3,2	<ld< td=""><td>0,816</td><td>1,801</td><td>2,090</td><td>0,202</td><td>4,706</td><td>125,72</td></ld<>	0,816	1,801	2,090	0,202	4,706	125,72
3,3	<ld< td=""><td>1,096</td><td>2,065</td><td>3,456</td><td>0,224</td><td>6,617</td><td>128,26</td></ld<>	1,096	2,065	3,456	0,224	6,617	128,26
3,7	<ld< td=""><td>0,223</td><td>0,706</td><td><ld< td=""><td>0,139</td><td>0,928</td><td>73,79</td></ld<></td></ld<>	0,223	0,706	<ld< td=""><td>0,139</td><td>0,928</td><td>73,79</td></ld<>	0,139	0,928	73,79
4,1	<ld< td=""><td>0,396</td><td>1,247</td><td><ld< td=""><td>0,218</td><td>1,643</td><td>129,33</td></ld<></td></ld<>	0,396	1,247	<ld< td=""><td>0,218</td><td>1,643</td><td>129,33</td></ld<>	0,218	1,643	129,33
4,6	<ld< td=""><td>0,382</td><td>1,330</td><td><ld< td=""><td>0,214</td><td>1,712</td><td>116,45</td></ld<></td></ld<>	0,382	1,330	<ld< td=""><td>0,214</td><td>1,712</td><td>116,45</td></ld<>	0,214	1,712	116,45
5,1	<ld< td=""><td>0,400</td><td>1,169</td><td><ld< td=""><td>0,225</td><td>1,569</td><td>126,79</td></ld<></td></ld<>	0,400	1,169	<ld< td=""><td>0,225</td><td>1,569</td><td>126,79</td></ld<>	0,225	1,569	126,79
5,3	<ld< td=""><td>0,199</td><td>0,826</td><td><ld< td=""><td>0,128</td><td>1,025</td><td>70,46</td></ld<></td></ld<>	0,199	0,826	<ld< td=""><td>0,128</td><td>1,025</td><td>70,46</td></ld<>	0,128	1,025	70,46
6,1	<ld< td=""><td>0,295</td><td>1,019</td><td><ld< td=""><td>0,168</td><td>1,314</td><td>109,68</td></ld<></td></ld<>	0,295	1,019	<ld< td=""><td>0,168</td><td>1,314</td><td>109,68</td></ld<>	0,168	1,314	109,68
6,6	<ld< td=""><td>0,155</td><td>0,751</td><td><ld< td=""><td>0,102</td><td>0,906</td><td>67,10</td></ld<></td></ld<>	0,155	0,751	<ld< td=""><td>0,102</td><td>0,906</td><td>67,10</td></ld<>	0,102	0,906	67,10
7,0	<ld< td=""><td>0,253</td><td>1,006</td><td><ld< td=""><td>0,137</td><td>1,259</td><td>118,42</td></ld<></td></ld<>	0,253	1,006	<ld< td=""><td>0,137</td><td>1,259</td><td>118,42</td></ld<>	0,137	1,259	118,42
7,6	<ld< td=""><td>0,197</td><td>0,734</td><td><ld< td=""><td>0,109</td><td>0,931</td><td>117,42</td></ld<></td></ld<>	0,197	0,734	<ld< td=""><td>0,109</td><td>0,931</td><td>117,42</td></ld<>	0,109	0,931	117,42
8,0	<ld< td=""><td>0,158</td><td>0,819</td><td><ld< td=""><td>0,097</td><td>0,977</td><td>116,47</td></ld<></td></ld<>	0,158	0,819	<ld< td=""><td>0,097</td><td>0,977</td><td>116,47</td></ld<>	0,097	0,977	116,47
8,8	<ld< td=""><td>0,023</td><td>0,229</td><td><ld< td=""><td>0,012</td><td>0,251</td><td>68,90</td></ld<></td></ld<>	0,023	0,229	<ld< td=""><td>0,012</td><td>0,251</td><td>68,90</td></ld<>	0,012	0,251	68,90
9,0	<ld< td=""><td>0,018</td><td>0,376</td><td><ld< td=""><td>0,018</td><td>0,394</td><td>97,84</td></ld<></td></ld<>	0,018	0,376	<ld< td=""><td>0,018</td><td>0,394</td><td>97,84</td></ld<>	0,018	0,394	97,84
9,9	<ld< td=""><td>0,151</td><td>0,687</td><td><ld< td=""><td>0,084</td><td>0,838</td><td>120,12</td></ld<></td></ld<>	0,151	0,687	<ld< td=""><td>0,084</td><td>0,838</td><td>120,12</td></ld<>	0,084	0,838	120,12
10,7	<ld< td=""><td>0,214</td><td>0,677</td><td><ld< td=""><td>0,051</td><td>0,892</td><td>69,30</td></ld<></td></ld<>	0,214	0,677	<ld< td=""><td>0,051</td><td>0,892</td><td>69,30</td></ld<>	0,051	0,892	69,30
10,9	<ld< td=""><td>0,148</td><td>0,547</td><td><ld< td=""><td>0,074</td><td>0,696</td><td>101,93</td></ld<></td></ld<>	0,148	0,547	<ld< td=""><td>0,074</td><td>0,696</td><td>101,93</td></ld<>	0,074	0,696	101,93
11,8	<ld< td=""><td>0,165</td><td>0,893</td><td><ld< td=""><td>0,080</td><td>1,059</td><td>118,48</td></ld<></td></ld<>	0,165	0,893	<ld< td=""><td>0,080</td><td>1,059</td><td>118,48</td></ld<>	0,080	1,059	118,48
12,4	<ld< td=""><td>0,068</td><td>0,855</td><td><ld< td=""><td>0,042</td><td>0,923</td><td>66,42</td></ld<></td></ld<>	0,068	0,855	<ld< td=""><td>0,042</td><td>0,923</td><td>66,42</td></ld<>	0,042	0,923	66,42
13,3	<ld< td=""><td>0,090</td><td>0,422</td><td><ld< td=""><td>0,046</td><td>0,512</td><td>99,86</td></ld<></td></ld<>	0,090	0,422	<ld< td=""><td>0,046</td><td>0,512</td><td>99,86</td></ld<>	0,046	0,512	99,86
13,8	<ld< td=""><td>0,120</td><td>0,571</td><td><ld< td=""><td>0,057</td><td>0,691</td><td>78,11</td></ld<></td></ld<>	0,120	0,571	<ld< td=""><td>0,057</td><td>0,691</td><td>78,11</td></ld<>	0,057	0,691	78,11
14,4	<ld< td=""><td>0,082</td><td>0,549</td><td><ld< td=""><td>0,042</td><td>0,630</td><td>74,01</td></ld<></td></ld<>	0,082	0,549	<ld< td=""><td>0,042</td><td>0,630</td><td>74,01</td></ld<>	0,042	0,630	74,01

n-alcanos para RJ13-01.

n-alcanos para RJ13

cal kyr	IA	TAR	ACL	Paq	Terr/n-alk	Terr/n-alk	IPC
BP						%	
0,012	0,460	6,975	29,586	0,392	0,347	34,68	3,50
0,3	0,480	<ld< td=""><td>30,044</td><td>0,148</td><td>0,686</td><td>68,57</td><td>16,76</td></ld<>	30,044	0,148	0,686	68,57	16,76
0,3	0,477	<ld< td=""><td>30,034</td><td>0,197</td><td>0,630</td><td>63,05</td><td>12,00</td></ld<>	30,034	0,197	0,630	63,05	12,00
0,5	0,431	<ld< td=""><td>29,632</td><td>0,265</td><td>0,584</td><td>58,45</td><td>4,66</td></ld<>	29,632	0,265	0,584	58,45	4,66
0,9	0,480	<ld< td=""><td>30,122</td><td>0,152</td><td>0,652</td><td>65,25</td><td>16,97</td></ld<>	30,122	0,152	0,652	65,25	16,97
1,2	0,471	<ld< td=""><td>29,984</td><td>0,200</td><td>0,548</td><td>54,80</td><td>4,52</td></ld<>	29,984	0,200	0,548	54,80	4,52
1,4	0,424	<ld< td=""><td>29,288</td><td>0,223</td><td>0,696</td><td>69,58</td><td>8,13</td></ld<>	29,288	0,223	0,696	69,58	8,13
2,2	0,476	15,619	29,987	0,222	0,484	48,45	3,82
2,6	0,489	<ld< td=""><td>30,155</td><td>0,194</td><td>0,640</td><td>63,97</td><td>16,63</td></ld<>	30,155	0,194	0,640	63,97	16,63
2,8	0,515	<ld< td=""><td>29,524</td><td>0,249</td><td>0,577</td><td>57,68</td><td>4,77</td></ld<>	29,524	0,249	0,577	57,68	4,77
3,0	0,480	30,624	30,128	0,173	0,621	62,08	14,76
3,2	0,479	5,551	29,840	0,561	0,248	24,82	2,61
3,3	0,472	5,254	29,801	0,646	0,205	20,48	2,73
3,7	0,426	<ld< td=""><td>29,675</td><td>0,226</td><td>0,625</td><td>62,52</td><td>7,51</td></ld<>	29,675	0,226	0,625	62,52	7,51
4,1	0,460	23,409	30,026	0,180	0,550	54,98	5,85
4,6	0,461	<ld< td=""><td>30,047</td><td>0,194</td><td>0,560</td><td>56,00</td><td>5,76</td></ld<>	30,047	0,194	0,560	56,00	5,76
5,1	0,465	<ld< td=""><td>29,963</td><td>0,198</td><td>0,564</td><td>56,37</td><td>4,62</td></ld<>	29,963	0,198	0,564	56,37	4,62
5,3	0,422	<ld< td=""><td>29,690</td><td>0,237</td><td>0,645</td><td>64,48</td><td>12,03</td></ld<>	29,690	0,237	0,645	64,48	12,03
6,1	0,476	<ld< td=""><td>30,021</td><td>0,185</td><td>0,569</td><td>56,89</td><td>4,90</td></ld<>	30,021	0,185	0,569	56,89	4,90
6,6	0,427	<ld< td=""><td>29,687</td><td>0,203</td><td>0,657</td><td>65,68</td><td>11,15</td></ld<>	29,687	0,203	0,657	65,68	11,15
7,0	0,477	<ld< td=""><td>29,983</td><td>0,235</td><td>0,540</td><td>54,00</td><td>4,46</td></ld<>	29,983	0,235	0,540	54,00	4,46
7,6	0,497	<ld< td=""><td>30,245</td><td>0,231</td><td>0,550</td><td>55,01</td><td>8,82</td></ld<>	30,245	0,231	0,550	55,01	8,82
8,0	0,501	<ld< td=""><td>30,211</td><td>0,158</td><td>0,617</td><td>61,66</td><td>15,93</td></ld<>	30,211	0,158	0,617	61,66	15,93
8,8	0,504	<ld< td=""><td>30,007</td><td>0,317</td><td>0,534</td><td>53,44</td><td><ld< td=""></ld<></td></ld<>	30,007	0,317	0,534	53,44	<ld< td=""></ld<>
9,0	0,582	<ld< td=""><td>30,164</td><td><ld< td=""><td>1,000</td><td>100,00</td><td><ld< td=""></ld<></td></ld<></td></ld<>	30,164	<ld< td=""><td>1,000</td><td>100,00</td><td><ld< td=""></ld<></td></ld<>	1,000	100,00	<ld< td=""></ld<>
9,9	0,506	<ld< td=""><td>30,073</td><td>0,309</td><td>0,555</td><td>55,53</td><td>24,60</td></ld<>	30,073	0,309	0,555	55,53	24,60
10,7	0,450	<ld< td=""><td>29,480</td><td>0,667</td><td>0,239</td><td>23,88</td><td>5,73</td></ld<>	29,480	0,667	0,239	23,88	5,73
10,9	0,583	<ld< td=""><td>29,838</td><td>0,342</td><td>0,499</td><td>49,86</td><td>5,66</td></ld<>	29,838	0,342	0,499	49,86	5,66
11,8	0,511	<ld< td=""><td>30,101</td><td>0,344</td><td>0,482</td><td>48,19</td><td>5,72</td></ld<>	30,101	0,344	0,482	48,19	5,72
12,4	0,469	<ld< td=""><td>29,733</td><td>0,314</td><td>0,617</td><td>61,69</td><td><ld< td=""></ld<></td></ld<>	29,733	0,314	0,617	61,69	<ld< td=""></ld<>
13,3	0,561	<ld< td=""><td>30,448</td><td>0,328</td><td>0,513</td><td>51,26</td><td>15,67</td></ld<>	30,448	0,328	0,513	51,26	15,67
13,8	0,458	<ld< td=""><td>29,703</td><td>0,427</td><td>0,477</td><td>47,67</td><td>6,85</td></ld<>	29,703	0,427	0,477	47,67	6,85
14,4	0,465	<ld< td=""><td>29,612</td><td>0,413</td><td>0,507</td><td>50,71</td><td>9,78</td></ld<>	29,612	0,413	0,507	50,71	9,78

Fluxos de n-alk (mg cm⁻² kyr⁻¹) para RJ13-01.

							1010
0,012 0	,00119	0,00115	0,00198	0,00204	0,00159	0,00108	0,00132
0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,3 0	,00019	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
0,9 0	,00014	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
1,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,00008	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
1,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,00008	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,2 0	,00008	0,00007	0,00009	0,00009	0,00008	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0 0	,00012	<ld< td=""><td>0,00008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,00008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,2 0	,00011	0,00014	0,00023	0,00015	0,00014	<ld< td=""><td>0,00017</td></ld<>	0,00017
3,3	<ld< td=""><td>0,00018</td><td>0,00023</td><td>0,00015</td><td>0,00016</td><td>0,00010</td><td>0,00028</td></ld<>	0,00018	0,00023	0,00015	0,00016	0,00010	0,00028
3,7 0	,00017	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,1 0	,00008	0,00007	0,00007	0,00010	0,00007	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,00009	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3 0	,00013	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
6,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,00006	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
6,6 0	,00011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
7,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
7,6 0	,00007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
8,0 0	,00010	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
8,8 0	,00008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,9 0	,00013	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7 0	,00014	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Fluxos de n-alk (mg cm⁻² kyr⁻¹) para RJ13-01.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	cal kyr BP	Phy	nC19	nC20	nC21	nC22	nC23	nC24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,012	0,00267	0,00165	0,00151	0,00219	0,00224	0,00456	0,00284
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00024</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00024</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00024</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00024</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00024</td><td><ld< td=""></ld<></td></ld<>	0,00024	<ld< td=""></ld<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00024</td><td>0,00016</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00024</td><td>0,00016</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00024</td><td>0,00016</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00024</td><td>0,00016</td></ld<></td></ld<>	<ld< td=""><td>0,00024</td><td>0,00016</td></ld<>	0,00024	0,00016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<>	0,00010	<ld< td=""></ld<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2	0,00008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td>0,00009</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td>0,00009</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00012</td><td>0,00009</td></ld<></td></ld<>	<ld< td=""><td>0,00012</td><td>0,00009</td></ld<>	0,00012	0,00009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4	0,00008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<>	0,00012	<ld< td=""></ld<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2	0,00008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00013</td><td>0,00013</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00013</td><td>0,00013</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00013</td><td>0,00013</td></ld<></td></ld<>	<ld< td=""><td>0,00013</td><td>0,00013</td></ld<>	0,00013	0,00013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<>	0,00009	<ld< td=""></ld<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td>0,00015</td><td>0,00020</td><td>0,00018</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td>0,00015</td><td>0,00020</td><td>0,00018</td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td>0,00015</td><td>0,00020</td><td>0,00018</td></ld<>	0,00010	0,00015	0,00020	0,00018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<>	0,00010	<ld< td=""></ld<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,2	0,00018	0,00019	0,00023	0,00035	0,00071	0,00128	0,00158
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,3	0,00023	0,00032	0,00038	0,00060	0,00124	0,00227	0,00278
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00009</td><td><ld< td=""></ld<></td></ld<>	0,00009	<ld< td=""></ld<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,1	0,00007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00011</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00011</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00011</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00011</td><td><ld< td=""></ld<></td></ld<>	0,00011	<ld< td=""></ld<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,6	0,00007	<ld< td=""><td><ld< td=""><td>0,00007</td><td>0,00007</td><td>0,00015</td><td>0,00012</td></ld<></td></ld<>	<ld< td=""><td>0,00007</td><td>0,00007</td><td>0,00015</td><td>0,00012</td></ld<>	0,00007	0,00007	0,00015	0,00012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<>	0,00010	<ld< td=""></ld<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<>	0,00010	<ld< td=""></ld<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00006</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00006</td><td><ld< td=""></ld<></td></ld<>	0,00006	<ld< td=""></ld<>
7,0 <ld< th=""> <ld< th=""> <ld< th=""> <ld< th=""> <ld< th=""> 0,00009 0,00009 7,6 <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> 0,00011 0,00011 8,0 <ld< td=""> 8,8 <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	6,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
7,6 <ld< th=""> <ld< th=""> <ld< th=""> <ld< th=""> 0,00011 0,00011 8,0 <ld< td=""> <</ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	7,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td>0,00009</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td>0,00009</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00009</td><td>0,00009</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00009</td><td>0,00009</td></ld<></td></ld<>	<ld< td=""><td>0,00009</td><td>0,00009</td></ld<>	0,00009	0,00009
8,0 <ld< th=""><ld< th=""><l< td=""><td>7,6</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00011</td><td>0,00010</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></l<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	7,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00011</td><td>0,00010</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00011</td><td>0,00010</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00011</td><td>0,00010</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00011</td><td>0,00010</td></ld<></td></ld<>	<ld< td=""><td>0,00011</td><td>0,00010</td></ld<>	0,00011	0,00010
8,8 <ld <<="" <ld="" td=""><td>8,0</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	8,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
	8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,0 <ld <<="" <ld="" td=""><td>9,0</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,9 <ld 0,00010="" <ld="" <ld<="" td=""><td>9,9</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td><ld< td=""></ld<></td></ld<>	0,00010	<ld< td=""></ld<>
10,7 <ld 0,00012="" 0,00021="" 0,00041="" 0,0005<="" 0,00063="" <ld="" td=""><td>10,7</td><td><ld< td=""><td><ld< td=""><td>0,00012</td><td>0,00021</td><td>0,00041</td><td>0,00063</td><td>0,00059</td></ld<></td></ld<></td></ld>	10,7	<ld< td=""><td><ld< td=""><td>0,00012</td><td>0,00021</td><td>0,00041</td><td>0,00063</td><td>0,00059</td></ld<></td></ld<>	<ld< td=""><td>0,00012</td><td>0,00021</td><td>0,00041</td><td>0,00063</td><td>0,00059</td></ld<>	0,00012	0,00021	0,00041	0,00063	0,00059
10,9 <ld 0,00016="" 0,0001<="" 0,00021="" <ld="" td=""><td>10,9</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00016</td><td>0,00021</td><td>0,00015</td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00016</td><td>0,00021</td><td>0,00015</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00016</td><td>0,00021</td><td>0,00015</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00016</td><td>0,00021</td><td>0,00015</td></ld<></td></ld<>	<ld< td=""><td>0,00016</td><td>0,00021</td><td>0,00015</td></ld<>	0,00016	0,00021	0,00015
11,8 <ld <<="" <ld="" td=""><td>11,8</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
12,4 <ld <<="" <ld="" td=""><td>12,4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3 <ld <<="" <ld="" td=""><td>13,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8 <ld <<="" <ld="" td=""><td>13,8</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4 <ld <<="" <ld="" td=""><td>14,4</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Fluxos de n-alk (mg cm⁻² kyr⁻¹) para RJ13-01.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cal kyr BP	nC25	nC26	nC27	nC28	nC29	nC30	nC31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,012	0,01328	0,00143	0,00869	0,00140	0,01494	0,00550	0,01275
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,3	0,00072	<ld< td=""><td>0,00081</td><td><ld< td=""><td>0,00214</td><td>0,00039</td><td>0,00198</td></ld<></td></ld<>	0,00081	<ld< td=""><td>0,00214</td><td>0,00039</td><td>0,00198</td></ld<>	0,00214	0,00039	0,00198
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,3	0,00081	0,00012	0,00084	<ld< td=""><td>0,00225</td><td>0,00046</td><td>0,00205</td></ld<>	0,00225	0,00046	0,00205
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,5	0,00092	0,00037	0,00093	0,00033	0,00184	0,00042	0,00139
1,2 $0,00054$ $0,00022$ $0,00065$ $0,00026$ $0,00111$ $0,00125$ $0,00020$ $0,00021$ $2,2$ $0,00048$ $0,00023$ $0,00054$ $0,00025$ $0,00112$ $0,00034$ $0,00102$ $2,6$ $0,00033$ $<$ LD $0,00032$ $<$ LD $0,00090$ $0,00017$ $0,00086$ $2,6$ $0,00033$ $<$ LD $0,00032$ $<$ LD $0,00090$ $0,00017$ $0,00086$ $2,8$ $0,00044$ $0,00014$ $0,00037$ $<$ LD $0,00110$ $0,00023$ $0,00111$ $3,0$ $0,00034$ $<$ LD $0,00037$ $<$ LD $0,00123$ $0,00036$ $0,00131$ $3,3$ $0,00278$ $0,0025$ $0,00146$ $0,00034$ $0,00131$ $3,7$ $0,00043$ $0,0011$ $0,00044$ $0,00025$ $0,00146$ $0,00037$ $4,1$ $0,00051$ $0,00015$ $0,00024$ $0,00152$ $0,00038$ $0,00177$ $4,6$ $0,00051$ $0,00056$ $0,00028$ $0,00147$ $0,00040$ $0,00128$ $5,3$ $0,00036$ $0,00024$ $0,00040$ $0,00017$ $0,00080$ $0,00027$ $6,6$ $0,00028$ $0,00004$ $0,00017$ $0,00080$ $0,00027$ $0,00089$ $6,6$ $0,00027$ $0,00066$ $0,00023$ $<$ LD $0,00067$ $0,00014$ $0,00064$ $8,0$ $0,00027$ $0,00066$ $0,00023$ $<$ LD $0,00067$ $0,00014$ $0,00064$ $8,0$ $0,00027$ $<$ LD $<$ LD $<$ LD $0,00067$ <	0,9	0,00052	<ld< td=""><td>0,00064</td><td>0,00014</td><td>0,00181</td><td>0,00019</td><td>0,00167</td></ld<>	0,00064	0,00014	0,00181	0,00019	0,00167
1,4 $0,00050$ $0,0009$ $0,00053$ $0,00011$ $0,00125$ $0,00012$ $0,00092$ $2,2$ $0,00048$ $0,00023$ $0,00054$ $0,00025$ $0,00112$ $0,00034$ $0,00102$ $2,6$ $0,00033$ $0,000320,000900,000170,000862,80,000440,000140,000390,000110,000930,000240,000993,00,000340,000370,001100,000230,001113,20,001740,000860,000780,000250,001460,000340,001133,30,002780,001250,000440,000100,00130,000180,000774,10,000510,000180,000260,001320,000370,001274,60,000510,000560,000280,001470,000400,001285,30,000510,000240,000530,000440,000170,000880,000276,60,000280,000140,000170,000800,000240,000737,60,000250,000250,000140,000648,80,0000250,000149,09,00,00440,000170,000650,000140,000661,20,000540,000220,000650,000260,001410,000380,00125$	1,2	0,00054	0,00022	0,00065	0,00026	0,00141	0,00038	0,00125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,4	0,00050	0,00009	0,00053	0,00011	0,00125	0,00020	0,00092
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2	0,00048	0,00023	0,00054	0,00025	0,00112	0,00034	0,00102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,6	0,00033	<ld< td=""><td>0,00032</td><td><ld< td=""><td>0,00090</td><td>0,00017</td><td>0,00086</td></ld<></td></ld<>	0,00032	<ld< td=""><td>0,00090</td><td>0,00017</td><td>0,00086</td></ld<>	0,00090	0,00017	0,00086
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,8	0,00044	0,00014	0,00039	0,00011	0,00093	0,00024	0,00099
3,2 $0,00174$ $0,00086$ $0,00078$ $0,00030$ $0,00123$ $0,00036$ $0,00113$ $3,3$ $0,00278$ $0,00125$ $0,00044$ $0,00025$ $0,00146$ $0,00034$ $0,00131$ $3,7$ $0,00043$ $0,00011$ $0,00044$ $0,00010$ $0,00103$ $0,00018$ $0,00077$ $4,1$ $0,00051$ $0,00018$ $0,00024$ $0,00152$ $0,00038$ $0,00127$ $4,6$ $0,00051$ $0,00015$ $0,00056$ $0,00020$ $0,00148$ $0,00037$ $0,00127$ $5,1$ $0,00058$ $0,00022$ $0,00069$ $0,00028$ $0,00147$ $0,00040$ $0,00128$ $5,3$ $0,00039$ $<$ LD $0,00038$ $0,00090$ $0,00014$ $0,00066$ $6,1$ $0,00036$ $0,00014$ $0,00044$ $0,00077$ $0,00088$ $0,00027$ $0,00089$ $6,6$ $0,00028$ $0,00017$ $0,00080$ $0,00027$ $0,00089$ $0,00073$ $7,6$ $0,00027$ $0,00066$ $0,00023$ $<$ LD $0,00065$ $0,00014$ $0,00064$ $8,0$ $0,00025$ $<$ LD $0,00067$ $0,00014$ $0,00068$ $8,8$ $0,00009$ $<$ LD $<$ LD $<$ LD $0,00017$ $0,00014$ $<$ LD $9,9$ $0,00048$ $<$ LD $<$ LD $<$ LD $0,00017$ $0,00017$ $0,00017$ $9,00048$ $<$ LD $9,00048$ $<$ LD $<$ LD $<$ LD $<$ LD $<$ LD $<$ LD <td>3,0</td> <td>0,00034</td> <td><ld< td=""><td>0,00037</td><td><ld< td=""><td>0,00110</td><td>0,00023</td><td>0,00101</td></ld<></td></ld<></td>	3,0	0,00034	<ld< td=""><td>0,00037</td><td><ld< td=""><td>0,00110</td><td>0,00023</td><td>0,00101</td></ld<></td></ld<>	0,00037	<ld< td=""><td>0,00110</td><td>0,00023</td><td>0,00101</td></ld<>	0,00110	0,00023	0,00101
3,3 $0,00278$ $0,00125$ $0,00094$ $0,00025$ $0,00146$ $0,00034$ $0,00131$ $3,7$ $0,00043$ $0,00111$ $0,00044$ $0,00110$ $0,00103$ $0,0018$ $0,00077$ $4,1$ $0,00051$ $0,00018$ $0,00063$ $0,00024$ $0,00152$ $0,00038$ $0,00129$ $4,6$ $0,00051$ $0,00015$ $0,00056$ $0,00020$ $0,00148$ $0,00037$ $0,00127$ $5,1$ $0,00058$ $0,00022$ $0,00069$ $0,00028$ $0,00147$ $0,00040$ $0,00128$ $5,3$ $0,00039$ $<$ LD $0,00038$ $0,00090$ $0,00014$ $0,000666$ $6,1$ $0,00036$ $0,00014$ $0,00044$ $0,00077$ $0,00089$ $6,6$ $0,00028$ $0,00017$ $0,00088$ $0,00027$ $0,00089$ $6,6$ $0,00027$ $0,00066$ $0,00017$ $0,00080$ $0,00024$ $0,00073$ $7,6$ $0,00027$ $0,00006$ $0,00023$ $<$ LD $0,00065$ $0,00014$ $0,00064$ $8,0$ $0,00025$ $<$ LD $0,00067$ $0,00014$ $0,00068$ $8,8$ $0,00009$ $<$ LD $<$ LD $<$ LD $0,00010$ $<$ LD $0,00017$ $9,00048$ $<$ LD $<$ LD $<$ LD $0,00017$ $0,00017$ $0,00066$ $10,7$ $0,00083$ $0,00022$ $0,00030$ $<$ LD $0,00017$ $0,00017$ $9,00048$ $<$ LD $<$ LD $<$ LD $<$ LD $<$ LD $<$ LD $9,9$ $0,00044$ $<$ LD $<$ LD	3,2	0,00174	0,00086	0,00078	0,00030	0,00123	0,00036	0,00113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3	0,00278	0,00125	0,00094	0,00025	0,00146	0,00034	0,00131
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,7	0,00043	0,00011	0,00044	0,00010	0,00103	0,00018	0,00077
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,1	0,00051	0,00018	0,00063	0,00024	0,00152	0,00038	0,00129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,6	0,00051	0,00015	0,00056	0,00020	0,00148	0,00037	0,00127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,1	0,00058	0,00022	0,00069	0,00028	0,00147	0,00040	0,00128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5,3	0,00039	<ld< td=""><td>0,00038</td><td>0,00008</td><td>0,00090</td><td>0,00014</td><td>0,00066</td></ld<>	0,00038	0,00008	0,00090	0,00014	0,00066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,1	0,00036	0,00014	0,00044	0,00017	0,00098	0,00027	0,00089
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,6	0,00028	0,00005	0,00028	0,00004	0,00063	0,00008	0,00047
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7,0	0,00038	0,00016	0,00040	0,00017	0,00080	0,00024	0,00073
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,6	0,00027	0,00006	0,00023	<ld< td=""><td>0,00065</td><td>0,00014</td><td>0,00064</td></ld<>	0,00065	0,00014	0,00064
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0	0,00025	<ld< td=""><td>0,00025</td><td><ld< td=""><td>0,00067</td><td>0,00014</td><td>0,00068</td></ld<></td></ld<>	0,00025	<ld< td=""><td>0,00067</td><td>0,00014</td><td>0,00068</td></ld<>	0,00067	0,00014	0,00068
9,0 <ld< th=""> <ld< th=""> <ld< th=""> <ld< th=""> 0,00014 <ld< th=""> 0,00019 9,9 0,00048 <ld< td=""> 0,00038 <ld< td=""> 0,00065 0,00011 0,00066 10,7 0,00083 0,00022 0,00030 <ld< td=""> 0,00040 <ld< td=""> 0,00033 10,9 0,00041 0,00013 0,00030 <ld< td=""> 0,00049 0,00017 0,00069 11,8 <ld< td=""> 12,4 <ld< td=""> 13,3 <ld< td=""> 14,4 <ld< td=""> <ld< td=""></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	8,8	0,00009	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""><td>0,00010</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00010</td><td><ld< td=""><td>0,00010</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00010</td><td><ld< td=""><td>0,00010</td></ld<></td></ld<>	0,00010	<ld< td=""><td>0,00010</td></ld<>	0,00010
9,9 0,00048 <ld< th=""> 0,00038 <ld< th=""> 0,00065 0,00011 0,00066 10,7 0,00083 0,00022 0,00030 <ld< td=""> 0,00040 <ld< td=""> 0,00033 10,9 0,00041 0,00013 0,00030 <ld< td=""> 0,00049 0,00017 0,00069 11,8 <ld< td=""> 12,4 <ld< td=""> 13,3 <ld< td=""> 13,8 <ld< td=""> 14,4 <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""> <ld< td=""></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""><td>0,00019</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""><td>0,00019</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""><td>0,00019</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00014</td><td><ld< td=""><td>0,00019</td></ld<></td></ld<>	0,00014	<ld< td=""><td>0,00019</td></ld<>	0,00019
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,9	0,00048	<ld< td=""><td>0,00038</td><td><ld< td=""><td>0,00065</td><td>0,00011</td><td>0,00066</td></ld<></td></ld<>	0,00038	<ld< td=""><td>0,00065</td><td>0,00011</td><td>0,00066</td></ld<>	0,00065	0,00011	0,00066
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,7	0,00083	0,00022	0,00030	<ld< td=""><td>0,00040</td><td><ld< td=""><td>0,00033</td></ld<></td></ld<>	0,00040	<ld< td=""><td>0,00033</td></ld<>	0,00033
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,9	0,00041	0,00013	0,00030	<ld< td=""><td>0,00049</td><td>0,00017</td><td>0,00069</td></ld<>	0,00049	0,00017	0,00069
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8 <ld< th=""><ld< th=""><</ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4 <ld <ld="" <ld<="" td=""><td>13,8</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld>	13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
	14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Fluxos de n-alk (mg cm⁻² kyr⁻¹) para RJ13-01.

		11055	11035	∠n-aik	Kľ	UCM	HidTot
0,012 (),00265	0,00386	0,00626	0,10492	0,39592	1,64664	2,14747
0,3	<ld< td=""><td>0,00095</td><td>0,00020</td><td>0,00720</td><td>0,03061</td><td><ld< td=""><td>0,03781</td></ld<></td></ld<>	0,00095	0,00020	0,00720	0,03061	<ld< td=""><td>0,03781</td></ld<>	0,03781
0,3	<ld< td=""><td>0,00098</td><td>0,00021</td><td>0,00816</td><td>0,03913</td><td><ld< td=""><td>0,04729</td></ld<></td></ld<>	0,00098	0,00021	0,00816	0,03913	<ld< td=""><td>0,04729</td></ld<>	0,04729
0,5	<ld< td=""><td>0,00051</td><td><ld< td=""><td>0,00712</td><td>0,02895</td><td><ld< td=""><td>0,03607</td></ld<></td></ld<></td></ld<>	0,00051	<ld< td=""><td>0,00712</td><td>0,02895</td><td><ld< td=""><td>0,03607</td></ld<></td></ld<>	0,00712	0,02895	<ld< td=""><td>0,03607</td></ld<>	0,03607
0,9	<ld< td=""><td>0,00089</td><td>0,00022</td><td>0,00630</td><td>0,01895</td><td><ld< td=""><td>0,02526</td></ld<></td></ld<>	0,00089	0,00022	0,00630	0,01895	<ld< td=""><td>0,02526</td></ld<>	0,02526
1,2 (),00010	0,00068	0,00017	0,00603	0,01983	<ld< td=""><td>0,02586</td></ld<>	0,02586
1,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00387</td><td>0,01741</td><td><ld< td=""><td>0,02128</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00387</td><td>0,01741</td><td><ld< td=""><td>0,02128</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00387</td><td>0,01741</td><td><ld< td=""><td>0,02128</td></ld<></td></ld<>	0,00387	0,01741	<ld< td=""><td>0,02128</td></ld<>	0,02128
2,2 (),00009	0,00056	0,00015	0,00555	0,01909	<ld< td=""><td>0,02464</td></ld<>	0,02464
2,6	<ld< td=""><td>0,00047</td><td>0,00011</td><td>0,00325</td><td>0,01038</td><td><ld< td=""><td>0,01362</td></ld<></td></ld<>	0,00047	0,00011	0,00325	0,01038	<ld< td=""><td>0,01362</td></ld<>	0,01362
2,8	<ld< td=""><td><ld< td=""><td>0,00014</td><td>0,00401</td><td>0,01351</td><td><ld< td=""><td>0,01752</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00014</td><td>0,00401</td><td>0,01351</td><td><ld< td=""><td>0,01752</td></ld<></td></ld<>	0,00014	0,00401	0,01351	<ld< td=""><td>0,01752</td></ld<>	0,01752
3,0	<ld< td=""><td>0,00053</td><td>0,00012</td><td>0,00400</td><td>0,01285</td><td><ld< td=""><td>0,01686</td></ld<></td></ld<>	0,00053	0,00012	0,00400	0,01285	<ld< td=""><td>0,01686</td></ld<>	0,01686
3,2 (),00008	0,00062	0,00014	0,01270	0,02802	0,03252	0,07324
3,3	<ld< td=""><td>0,00070</td><td>0,00016</td><td>0,01808</td><td>0,03410</td><td>0,05706</td><td>0,10924</td></ld<>	0,00070	0,00016	0,01808	0,03410	0,05706	0,10924
3,7	<ld< td=""><td>0,00026</td><td><ld< td=""><td>0,00358</td><td>0,01133</td><td><ld< td=""><td>0,01490</td></ld<></td></ld<></td></ld<>	0,00026	<ld< td=""><td>0,00358</td><td>0,01133</td><td><ld< td=""><td>0,01490</td></ld<></td></ld<>	0,00358	0,01133	<ld< td=""><td>0,01490</td></ld<>	0,01490
4,1	<ld< td=""><td>0,00074</td><td>0,00018</td><td>0,00625</td><td>0,01968</td><td><ld< td=""><td>0,02592</td></ld<></td></ld<>	0,00074	0,00018	0,00625	0,01968	<ld< td=""><td>0,02592</td></ld<>	0,02592
4,6	<ld< td=""><td>0,00070</td><td>0,00017</td><td>0,00592</td><td>0,02059</td><td><ld< td=""><td>0,02651</td></ld<></td></ld<>	0,00070	0,00017	0,00592	0,02059	<ld< td=""><td>0,02651</td></ld<>	0,02651
5,1 (),00011	0,00070	0,00017	0,00610	0,01782	<ld< td=""><td>0,02392</td></ld<>	0,02392
5,3	<ld< td=""><td>0,00024</td><td><ld< td=""><td>0,00302</td><td>0,01253</td><td><ld< td=""><td>0,01555</td></ld<></td></ld<></td></ld<>	0,00024	<ld< td=""><td>0,00302</td><td>0,01253</td><td><ld< td=""><td>0,01555</td></ld<></td></ld<>	0,00302	0,01253	<ld< td=""><td>0,01555</td></ld<>	0,01555
6,1 (),00007	0,00049	0,00013	0,00405	0,01400	<ld< td=""><td>0,01806</td></ld<>	0,01806
6,6	<ld< td=""><td>0,00017</td><td><ld< td=""><td>0,00211</td><td>0,01021</td><td><ld< td=""><td>0,01232</td></ld<></td></ld<></td></ld<>	0,00017	<ld< td=""><td>0,00211</td><td>0,01021</td><td><ld< td=""><td>0,01232</td></ld<></td></ld<>	0,00211	0,01021	<ld< td=""><td>0,01232</td></ld<>	0,01232
7,0	<ld< td=""><td>0,00041</td><td>0,00011</td><td>0,00357</td><td>0,01419</td><td><ld< td=""><td>0,01776</td></ld<></td></ld<>	0,00041	0,00011	0,00357	0,01419	<ld< td=""><td>0,01776</td></ld<>	0,01776
7,6	<ld< td=""><td>0,00039</td><td>0,00009</td><td>0,00276</td><td>0,01027</td><td><ld< td=""><td>0,01303</td></ld<></td></ld<>	0,00039	0,00009	0,00276	0,01027	<ld< td=""><td>0,01303</td></ld<>	0,01303
8,0	<ld< td=""><td>0,00039</td><td>0,00011</td><td>0,00260</td><td>0,01352</td><td><ld< td=""><td>0,01612</td></ld<></td></ld<>	0,00039	0,00011	0,00260	0,01352	<ld< td=""><td>0,01612</td></ld<>	0,01612
8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00037</td><td>0,00374</td><td><ld< td=""><td>0,00411</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00037</td><td>0,00374</td><td><ld< td=""><td>0,00411</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00037</td><td>0,00374</td><td><ld< td=""><td>0,00411</td></ld<></td></ld<>	0,00037	0,00374	<ld< td=""><td>0,00411</td></ld<>	0,00411
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00033</td><td>0,00690</td><td><ld< td=""><td>0,00722</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00033</td><td>0,00690</td><td><ld< td=""><td>0,00722</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00033</td><td>0,00690</td><td><ld< td=""><td>0,00722</td></ld<></td></ld<>	0,00033	0,00690	<ld< td=""><td>0,00722</td></ld<>	0,00722
9,9	<ld< td=""><td>0,00043</td><td>0,00011</td><td>0,00305</td><td>0,01389</td><td><ld< td=""><td>0,01694</td></ld<></td></ld<>	0,00043	0,00011	0,00305	0,01389	<ld< td=""><td>0,01694</td></ld<>	0,01694
10,7	<ld< td=""><td>0,00013</td><td><ld< td=""><td>0,00430</td><td>0,01361</td><td><ld< td=""><td>0,01791</td></ld<></td></ld<></td></ld<>	0,00013	<ld< td=""><td>0,00430</td><td>0,01361</td><td><ld< td=""><td>0,01791</td></ld<></td></ld<>	0,00430	0,01361	<ld< td=""><td>0,01791</td></ld<>	0,01791
10,9	<ld< td=""><td>0,00015</td><td>0,00011</td><td>0,00298</td><td>0,01098</td><td><ld< td=""><td>0,01396</td></ld<></td></ld<>	0,00015	0,00011	0,00298	0,01098	<ld< td=""><td>0,01396</td></ld<>	0,01396
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

cal kyr	nC12	nC13	nC14	nC15	nC16	nC17	Pri	nC18	Phy	nC19
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
2,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,4	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<>	0,006	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""></ld<></td></ld<>	0,007	<ld< td=""></ld<>
2,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<>	0,005	<ld< td=""></ld<>
2,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,6	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,9	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""></ld<></td></ld<>	0,005	<ld< td=""></ld<>
4,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,007</td><td>0,005</td><td>0,005</td><td>0,007</td><td>0,005</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,007</td><td>0,005</td><td>0,005</td><td>0,007</td><td>0,005</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,007</td><td>0,005</td><td>0,005</td><td>0,007</td><td>0,005</td></ld<></td></ld<>	0,006	<ld< td=""><td>0,007</td><td>0,005</td><td>0,005</td><td>0,007</td><td>0,005</td></ld<>	0,007	0,005	0,005	0,007	0,005
5,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<>	0,006	<ld< td=""></ld<>
5,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""></ld<></td></ld<>	0,006	<ld< td=""></ld<>

n-alcanos para RJ13-02.

cal kyr	nC20	nC21	nC22	nC23	nC24	nC25	nC26	nC27	nC28	nC29
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
2,3	<ld< th=""><th><ld< th=""><th><ld< th=""><th>0,005</th><th><ld< th=""><th>0,022</th><th><ld< th=""><th>0,023</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th>0,005</th><th><ld< th=""><th>0,022</th><th><ld< th=""><th>0,023</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th>0,005</th><th><ld< th=""><th>0,022</th><th><ld< th=""><th>0,023</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<></th></ld<>	0,005	<ld< th=""><th>0,022</th><th><ld< th=""><th>0,023</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<>	0,022	<ld< th=""><th>0,023</th><th><ld< th=""><th>0,064</th></ld<></th></ld<>	0,023	<ld< th=""><th>0,064</th></ld<>	0,064
2,4	<ld< th=""><th>0,007</th><th>0,011</th><th>0,015</th><th>0,011</th><th>0,031</th><th>0,007</th><th>0,026</th><th><ld< th=""><th>0,076</th></ld<></th></ld<>	0,007	0,011	0,015	0,011	0,031	0,007	0,026	<ld< th=""><th>0,076</th></ld<>	0,076
2,5	<ld< th=""><th><ld< th=""><th><ld< th=""><th><ld< th=""><th><ld< th=""><th>0,012</th><th><ld< th=""><th>0,014</th><th><ld< th=""><th>0,045</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th><ld< th=""><th><ld< th=""><th>0,012</th><th><ld< th=""><th>0,014</th><th><ld< th=""><th>0,045</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th><ld< th=""><th>0,012</th><th><ld< th=""><th>0,014</th><th><ld< th=""><th>0,045</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th>0,012</th><th><ld< th=""><th>0,014</th><th><ld< th=""><th>0,045</th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th>0,012</th><th><ld< th=""><th>0,014</th><th><ld< th=""><th>0,045</th></ld<></th></ld<></th></ld<>	0,012	<ld< th=""><th>0,014</th><th><ld< th=""><th>0,045</th></ld<></th></ld<>	0,014	<ld< th=""><th>0,045</th></ld<>	0,045
2,5	<ld< th=""><th><ld< th=""><th>0,007</th><th>0,007</th><th><ld< th=""><th>0,023</th><th>0,005</th><th>0,022</th><th><ld< th=""><th>0,067</th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th>0,007</th><th>0,007</th><th><ld< th=""><th>0,023</th><th>0,005</th><th>0,022</th><th><ld< th=""><th>0,067</th></ld<></th></ld<></th></ld<>	0,007	0,007	<ld< th=""><th>0,023</th><th>0,005</th><th>0,022</th><th><ld< th=""><th>0,067</th></ld<></th></ld<>	0,023	0,005	0,022	<ld< th=""><th>0,067</th></ld<>	0,067
2,5	<ld< th=""><th>0,005</th><th>0,006</th><th>0,006</th><th><ld< th=""><th>0,019</th><th><ld< th=""><th>0,020</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<></th></ld<>	0,005	0,006	0,006	<ld< th=""><th>0,019</th><th><ld< th=""><th>0,020</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<>	0,019	<ld< th=""><th>0,020</th><th><ld< th=""><th>0,064</th></ld<></th></ld<>	0,020	<ld< th=""><th>0,064</th></ld<>	0,064
2,6	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,010</td><td>0,008</td><td>0,027</td><td>0,012</td><td>0,029</td><td>0,012</td><td>0,064</td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,010</td><td>0,008</td><td>0,027</td><td>0,012</td><td>0,029</td><td>0,012</td><td>0,064</td></ld<>	0,005	0,010	0,008	0,027	0,012	0,029	0,012	0,064
2,6	<ld< th=""><th><ld< th=""><th>0,006</th><th>0,006</th><th><ld< th=""><th>0,020</th><th><ld< th=""><th>0,022</th><th><ld< th=""><th>0,069</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th>0,006</th><th>0,006</th><th><ld< th=""><th>0,020</th><th><ld< th=""><th>0,022</th><th><ld< th=""><th>0,069</th></ld<></th></ld<></th></ld<></th></ld<>	0,006	0,006	<ld< th=""><th>0,020</th><th><ld< th=""><th>0,022</th><th><ld< th=""><th>0,069</th></ld<></th></ld<></th></ld<>	0,020	<ld< th=""><th>0,022</th><th><ld< th=""><th>0,069</th></ld<></th></ld<>	0,022	<ld< th=""><th>0,069</th></ld<>	0,069
2,8	<ld< th=""><th><ld< th=""><th>0,005</th><th>0,007</th><th><ld< th=""><th>0,023</th><th><ld< th=""><th>0,025</th><th>0,006</th><th>0,070</th></ld<></th></ld<></th></ld<></th></ld<>	<ld< th=""><th>0,005</th><th>0,007</th><th><ld< th=""><th>0,023</th><th><ld< th=""><th>0,025</th><th>0,006</th><th>0,070</th></ld<></th></ld<></th></ld<>	0,005	0,007	<ld< th=""><th>0,023</th><th><ld< th=""><th>0,025</th><th>0,006</th><th>0,070</th></ld<></th></ld<>	0,023	<ld< th=""><th>0,025</th><th>0,006</th><th>0,070</th></ld<>	0,025	0,006	0,070
2,9	<ld< th=""><th><ld< th=""><th>0,008</th><th>0,009</th><th>0,007</th><th>0,025</th><th>0,006</th><th>0,022</th><th><ld< th=""><th>0,064</th></ld<></th></ld<></th></ld<>	<ld< th=""><th>0,008</th><th>0,009</th><th>0,007</th><th>0,025</th><th>0,006</th><th>0,022</th><th><ld< th=""><th>0,064</th></ld<></th></ld<>	0,008	0,009	0,007	0,025	0,006	0,022	<ld< th=""><th>0,064</th></ld<>	0,064
2,9	<ld< td=""><td><ld< td=""><td>0,006</td><td>0,010</td><td>0,007</td><td>0,024</td><td>0,006</td><td>0,023</td><td>0,006</td><td>0,060</td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td>0,010</td><td>0,007</td><td>0,024</td><td>0,006</td><td>0,023</td><td>0,006</td><td>0,060</td></ld<>	0,006	0,010	0,007	0,024	0,006	0,023	0,006	0,060
3,0	<ld< td=""><td>0,005</td><td>0,008</td><td>0,008</td><td>0,005</td><td>0,016</td><td><ld< td=""><td>0,011</td><td><ld< td=""><td>0,034</td></ld<></td></ld<></td></ld<>	0,005	0,008	0,008	0,005	0,016	<ld< td=""><td>0,011</td><td><ld< td=""><td>0,034</td></ld<></td></ld<>	0,011	<ld< td=""><td>0,034</td></ld<>	0,034
3,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,027</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,027</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,027</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,027</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,027</td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,027</td></ld<></td></ld<>	0,007	<ld< td=""><td>0,027</td></ld<>	0,027
3,1	<ld< td=""><td>0,008</td><td>0,014</td><td>0,019</td><td>0,017</td><td>0,034</td><td>0,014</td><td>0,028</td><td>0,010</td><td>0,063</td></ld<>	0,008	0,014	0,019	0,017	0,034	0,014	0,028	0,010	0,063
3,3	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,046</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,046</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,046</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,014</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,046</td></ld<></td></ld<></td></ld<>	0,014	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,046</td></ld<></td></ld<>	0,015	<ld< td=""><td>0,046</td></ld<>	0,046
3,4	<ld< td=""><td><ld< td=""><td>0,006</td><td>0,007</td><td>0,005</td><td>0,020</td><td>0,005</td><td>0,019</td><td><ld< td=""><td>0,047</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td>0,007</td><td>0,005</td><td>0,020</td><td>0,005</td><td>0,019</td><td><ld< td=""><td>0,047</td></ld<></td></ld<>	0,006	0,007	0,005	0,020	0,005	0,019	<ld< td=""><td>0,047</td></ld<>	0,047
3,6	0,007	0,020	0,006	0,008	<ld< td=""><td>0,022</td><td>0,005</td><td>0,022</td><td>0,005</td><td>0,055</td></ld<>	0,022	0,005	0,022	0,005	0,055
3,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,019</td><td>0,005</td><td>0,023</td><td>0,007</td><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,019</td><td>0,005</td><td>0,023</td><td>0,007</td><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,019</td><td>0,005</td><td>0,023</td><td>0,007</td><td>0,056</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,019</td><td>0,005</td><td>0,023</td><td>0,007</td><td>0,056</td></ld<></td></ld<>	<ld< td=""><td>0,019</td><td>0,005</td><td>0,023</td><td>0,007</td><td>0,056</td></ld<>	0,019	0,005	0,023	0,007	0,056
3,7	<ld< td=""><td><ld< td=""><td>0,007</td><td>0,009</td><td>0,006</td><td>0,023</td><td><ld< td=""><td>0,018</td><td><ld< td=""><td>0,048</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td>0,009</td><td>0,006</td><td>0,023</td><td><ld< td=""><td>0,018</td><td><ld< td=""><td>0,048</td></ld<></td></ld<></td></ld<>	0,007	0,009	0,006	0,023	<ld< td=""><td>0,018</td><td><ld< td=""><td>0,048</td></ld<></td></ld<>	0,018	<ld< td=""><td>0,048</td></ld<>	0,048
3,9	<ld< td=""><td>0,005</td><td>0,007</td><td>0,008</td><td><ld< td=""><td>0,017</td><td><ld< td=""><td>0,016</td><td><ld< td=""><td>0,042</td></ld<></td></ld<></td></ld<></td></ld<>	0,005	0,007	0,008	<ld< td=""><td>0,017</td><td><ld< td=""><td>0,016</td><td><ld< td=""><td>0,042</td></ld<></td></ld<></td></ld<>	0,017	<ld< td=""><td>0,016</td><td><ld< td=""><td>0,042</td></ld<></td></ld<>	0,016	<ld< td=""><td>0,042</td></ld<>	0,042
3,9	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,020</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,067</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,020</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,067</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td>0,020</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,067</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,020</td><td><ld< td=""><td>0,022</td><td><ld< td=""><td>0,067</td></ld<></td></ld<></td></ld<>	0,020	<ld< td=""><td>0,022</td><td><ld< td=""><td>0,067</td></ld<></td></ld<>	0,022	<ld< td=""><td>0,067</td></ld<>	0,067
4,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td>0,002</td><td><ld< td=""><td>0,025</td></ld<></td></ld<>	0,002	<ld< td=""><td>0,025</td></ld<>	0,025
4,7	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,005</td><td><ld< td=""><td>0,020</td><td>0,005</td><td>0,019</td><td><ld< td=""><td>0,051</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,005</td><td><ld< td=""><td>0,020</td><td>0,005</td><td>0,019</td><td><ld< td=""><td>0,051</td></ld<></td></ld<></td></ld<>	0,005	0,005	<ld< td=""><td>0,020</td><td>0,005</td><td>0,019</td><td><ld< td=""><td>0,051</td></ld<></td></ld<>	0,020	0,005	0,019	<ld< td=""><td>0,051</td></ld<>	0,051
4,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,040</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,040</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,040</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,040</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,014</td><td><ld< td=""><td>0,040</td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td>0,014</td><td><ld< td=""><td>0,040</td></ld<></td></ld<>	0,014	<ld< td=""><td>0,040</td></ld<>	0,040
4,9	<ld< td=""><td><ld< td=""><td>0,009</td><td>0,012</td><td>0,012</td><td>0,032</td><td>0,009</td><td>0,027</td><td><ld< td=""><td>0,067</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,009</td><td>0,012</td><td>0,012</td><td>0,032</td><td>0,009</td><td>0,027</td><td><ld< td=""><td>0,067</td></ld<></td></ld<>	0,009	0,012	0,012	0,032	0,009	0,027	<ld< td=""><td>0,067</td></ld<>	0,067
5,0	<ld< td=""><td>0,005</td><td>0,015</td><td>0,020</td><td>0,021</td><td>0,036</td><td>0,019</td><td>0,031</td><td>0,012</td><td>0,067</td></ld<>	0,005	0,015	0,020	0,021	0,036	0,019	0,031	0,012	0,067
5,2	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,010</td><td>0,010</td><td>0,027</td><td>0,010</td><td>0,024</td><td>0,006</td><td>0,058</td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,010</td><td>0,010</td><td>0,027</td><td>0,010</td><td>0,024</td><td>0,006</td><td>0,058</td></ld<>	0,008	0,010	0,010	0,027	0,010	0,024	0,006	0,058
5,3	<ld< td=""><td><ld< td=""><td>0,006</td><td>0,006</td><td><ld< td=""><td>0,022</td><td>0,004</td><td>0,019</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td>0,006</td><td><ld< td=""><td>0,022</td><td>0,004</td><td>0,019</td><td><ld< td=""><td>0,056</td></ld<></td></ld<></td></ld<>	0,006	0,006	<ld< td=""><td>0,022</td><td>0,004</td><td>0,019</td><td><ld< td=""><td>0,056</td></ld<></td></ld<>	0,022	0,004	0,019	<ld< td=""><td>0,056</td></ld<>	0,056

n-alcanos para RJ13-02.

n-alcanos	para RJ1	3-02.								
cal kyr	nC30	nC31	nC32	nC33	nC34	nC35	nC36	nC37	nC38	nC39
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
2,3	0,012	0,060	<ld< td=""><td>0,030</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,030	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,4	0,015	0,076	<ld< td=""><td>0,038</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,038	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	0,008	0,042	<ld< td=""><td>0,020</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,020	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	0,007	0,059	0,018	0,029	0,006	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	0,013	0,066	<ld< td=""><td>0,018</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,018	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	0,019	0,059	<ld< td=""><td>0,031</td><td><ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,031	<ld< td=""><td>0,011</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	0,006	0,060	0,019	0,031	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,8	0,015	0,067	<ld< td=""><td>0,034</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,034	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,9	0,008	0,058	0,018	0,031	0,006	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,9	0,014	0,059	<ld< td=""><td>0,032</td><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,032	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	0,007	0,039	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,1	<ld< td=""><td>0,032</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,032	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,1	0,019	0,071	0,005	0,018	<ld< td=""><td>0,010</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,010	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,3	0,009	0,046	<ld< td=""><td>0,023</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,023	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,4	0,012	0,045	<ld< td=""><td>0,023</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,023	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,6	0,013	0,052	<ld< td=""><td>0,030</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,030	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,7	0,014	0,052	<ld< td=""><td>0,027</td><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,027	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,7	0,009	0,044	<ld< td=""><td>0,022</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,022	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,9	0,008	0,039	<ld< td=""><td>0,020</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,020	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,9	0,007	0,059	0,016	0,031	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,2	<ld< td=""><td>0,022</td><td><ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,022	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,7	0,006	0,045	0,014	0,025	0,005	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,8	<ld< td=""><td>0,035</td><td>0,010</td><td>0,018</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,035	0,010	0,018	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	0,008	0,059	0,017	0,034	<ld< td=""><td>0,008</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,0	0,017	0,065	0,026	0,035	0,013	0,011	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,2	0,010	0,053	0,019	0,029	0,008	0,008	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3	0,005	0,044	0,014	0,023	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

cal kyr	nC40	Σn-alk	RP	UCM	ΣTerr	HidTot	Recuperação
	. 1	- 1	- 1	. 1	. 1	- 1	$(n-C30d_{62})$
BP	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	%
2,3	<ld< td=""><td>0,223</td><td>0,839</td><td>0,147</td><td>0,147</td><td>1,062</td><td>119,17</td></ld<>	0,223	0,839	0,147	0,147	1,062	119,17
2,4	<ld< td=""><td>0,328</td><td>0,774</td><td>0,177</td><td>0,177</td><td>1,103</td><td>128,11</td></ld<>	0,328	0,774	0,177	0,177	1,103	128,11
2,5	<ld< td=""><td>0,141</td><td>0,466</td><td>0,101</td><td>0,101</td><td>0,608</td><td>111,58</td></ld<>	0,141	0,466	0,101	0,101	0,608	111,58
2,5	<ld< td=""><td>0,263</td><td>0,522</td><td>0,148</td><td>0,148</td><td>0,785</td><td>104,76</td></ld<>	0,263	0,522	0,148	0,148	0,785	104,76
2,5	<ld< td=""><td>0,224</td><td>0,713</td><td>0,150</td><td>0,150</td><td>0,938</td><td>113,86</td></ld<>	0,224	0,713	0,150	0,150	0,938	113,86
2,6	<ld< td=""><td>0,287</td><td>0,911</td><td>0,153</td><td>0,153</td><td>1,198</td><td>120,25</td></ld<>	0,287	0,911	0,153	0,153	1,198	120,25
2,6	<ld< td=""><td>0,257</td><td>0,723</td><td>0,151</td><td>0,151</td><td>0,980</td><td>105,88</td></ld<>	0,257	0,723	0,151	0,151	0,980	105,88
2,8	<ld< td=""><td>0,259</td><td>0,775</td><td>0,162</td><td>0,162</td><td>1,035</td><td>122,47</td></ld<>	0,259	0,775	0,162	0,162	1,035	122,47
2,9	<ld< td=""><td>0,275</td><td>0,472</td><td>0,144</td><td>0,144</td><td>0,747</td><td>87,76</td></ld<>	0,275	0,472	0,144	0,144	0,747	87,76
2,9	<ld< td=""><td>0,254</td><td>0,753</td><td>0,143</td><td>0,143</td><td>1,007</td><td>117,00</td></ld<>	0,254	0,753	0,143	0,143	1,007	117,00
3,0	<ld< td=""><td>0,141</td><td>0,252</td><td>0,083</td><td>0,083</td><td>0,393</td><td>90,38</td></ld<>	0,141	0,252	0,083	0,083	0,393	90,38
3,1	<ld< td=""><td>0,075</td><td>0,236</td><td>0,065</td><td>0,065</td><td>0,311</td><td>68,35</td></ld<>	0,075	0,236	0,065	0,065	0,311	68,35
3,1	<ld< td=""><td>0,330</td><td>0,801</td><td>0,162</td><td>0,162</td><td>1,132</td><td>129,52</td></ld<>	0,330	0,801	0,162	0,162	1,132	129,52
3,3	<ld< td=""><td>0,163</td><td>0,660</td><td>0,107</td><td>0,107</td><td>0,823</td><td>106,98</td></ld<>	0,163	0,660	0,107	0,107	0,823	106,98
3,4	<ld< td=""><td>0,193</td><td>0,569</td><td>0,110</td><td>0,110</td><td>0,762</td><td>109,70</td></ld<>	0,193	0,569	0,110	0,110	0,762	109,70
3,6	<ld< td=""><td>0,251</td><td>0,841</td><td>0,129</td><td>0,129</td><td>1,092</td><td>126,73</td></ld<>	0,251	0,841	0,129	0,129	1,092	126,73
3,7	<ld< td=""><td>0,211</td><td>0,774</td><td>0,131</td><td>0,131</td><td>0,984</td><td>124,44</td></ld<>	0,211	0,774	0,131	0,131	0,984	124,44
3,7	<ld< td=""><td>0,191</td><td>0,648</td><td>0,109</td><td>0,109</td><td>0,839</td><td>123,02</td></ld<>	0,191	0,648	0,109	0,109	0,839	123,02
3,9	<ld< td=""><td>0,167</td><td>0,654</td><td>0,097</td><td>0,097</td><td>0,821</td><td>106,41</td></ld<>	0,167	0,654	0,097	0,097	0,821	106,41
3,9	<ld< td=""><td>0,240</td><td>0,558</td><td>0,149</td><td>0,149</td><td>0,798</td><td>91,82</td></ld<>	0,240	0,558	0,149	0,149	0,798	91,82
4,2	<ld< td=""><td>0,065</td><td>0,077</td><td>0,050</td><td>0,050</td><td>0,142</td><td>65,03</td></ld<>	0,065	0,077	0,050	0,050	0,142	65,03
4,7	<ld< td=""><td>0,207</td><td>0,623</td><td>0,115</td><td>0,115</td><td>0,830</td><td>86,21</td></ld<>	0,207	0,623	0,115	0,115	0,830	86,21
4,8	<ld< td=""><td>0,138</td><td>0,436</td><td>0,089</td><td>0,089</td><td>0,573</td><td>72,92</td></ld<>	0,138	0,436	0,089	0,089	0,573	72,92
4,9	<ld< td=""><td>0,329</td><td>0,890</td><td>0,153</td><td>0,153</td><td>1,219</td><td>93,47</td></ld<>	0,329	0,890	0,153	0,153	1,219	93,47
5,0	<ld< td=""><td>0,400</td><td>0,755</td><td>0,164</td><td>0,164</td><td>1,155</td><td>89,03</td></ld<>	0,400	0,755	0,164	0,164	1,155	89,03
5,2	<ld< td=""><td>0,280</td><td>0,856</td><td>0,135</td><td>0,135</td><td>1,136</td><td>90,26</td></ld<>	0,280	0,856	0,135	0,135	1,136	90,26
5,3	<ld< td=""><td>0,210</td><td>0,743</td><td>0,119</td><td>0,119</td><td>0,953</td><td>104,52</td></ld<>	0,210	0,743	0,119	0,119	0,953	104,52

n-alcanos para RJ13-02.

cal kyr	IA	TAR	ACL	Paq	Terr/n-alk	Terr/n-alk	IPC
BP						%	
2,3	0,486	<ld< td=""><td>30,107</td><td>0,179</td><td>0,658</td><td>65,784</td><td>16,176</td></ld<>	30,107	0,179	0,658	65,784	16,176
2,4	0,500	<ld< td=""><td>30,176</td><td>0,232</td><td>0,540</td><td>54,024</td><td>9,198</td></ld<>	30,176	0,232	0,540	54,024	9,198
2,5	0,484	<ld< td=""><td>30,129</td><td>0,123</td><td>0,714</td><td>71,430</td><td>15,654</td></ld<>	30,129	0,123	0,714	71,430	15,654
2,5	0,471	<ld< td=""><td>30,083</td><td>0,193</td><td>0,563</td><td>56,290</td><td>6,136</td></ld<>	30,083	0,193	0,563	56,290	6,136
2,5	0,505	<ld< td=""><td>29,972</td><td>0,162</td><td>0,669</td><td>66,883</td><td>14,877</td></ld<>	29,972	0,162	0,669	66,883	14,877
2,6	0,480	<ld< td=""><td>29,993</td><td>0,230</td><td>0,534</td><td>53,398</td><td>4,588</td></ld<>	29,993	0,230	0,534	53,398	4,588
2,6	0,465	29,453	30,096	0,166	0,589	58,865	8,001
2,8	0,491	<ld< td=""><td>30,126</td><td>0,179</td><td>0,627</td><td>62,652</td><td>10,484</td></ld<>	30,126	0,179	0,627	62,652	10,484
2,9	0,478	<ld< td=""><td>30,121</td><td>0,217</td><td>0,524</td><td>52,386</td><td>5,128</td></ld<>	30,121	0,217	0,524	52,386	5,128
2,9	0,497	<ld< td=""><td>30,139</td><td>0,221</td><td>0,562</td><td>56,199</td><td>6,828</td></ld<>	30,139	0,221	0,562	56,199	6,828
3,0	0,538	<ld< td=""><td>29,936</td><td>0,249</td><td>0,594</td><td>59,368</td><td>11,789</td></ld<>	29,936	0,249	0,594	59,368	11,789
3,1	0,540	<ld< td=""><td>29,987</td><td>0,083</td><td>0,868</td><td>86,753</td><td><ld< td=""></ld<></td></ld<>	29,987	0,083	0,868	86,753	<ld< td=""></ld<>
3,1	0,531	<ld< td=""><td>29,868</td><td>0,283</td><td>0,491</td><td>49,088</td><td>3,849</td></ld<>	29,868	0,283	0,491	49,088	3,849
3,3	0,500	<ld< td=""><td>30,175</td><td>0,132</td><td>0,657</td><td>65,700</td><td>16,696</td></ld<>	30,175	0,132	0,657	65,700	16,696
3,4	0,489	<ld< td=""><td>30,076</td><td>0,231</td><td>0,569</td><td>56,892</td><td>7,951</td></ld<>	30,076	0,231	0,569	56,892	7,951
3,6	0,489	<ld< td=""><td>30,128</td><td>0,221</td><td>0,513</td><td>51,270</td><td>7,947</td></ld<>	30,128	0,221	0,513	51,270	7,947
3,7	0,484	<ld< td=""><td>30,071</td><td>0,148</td><td>0,620</td><td>62,008</td><td>6,592</td></ld<>	30,071	0,148	0,620	62,008	6,592
3,7	0,481	<ld< td=""><td>30,076</td><td>0,256</td><td>0,574</td><td>57,354</td><td>13,510</td></ld<>	30,076	0,256	0,574	57,354	13,510
3,9	0,479	<ld< td=""><td>30,082</td><td>0,231</td><td>0,582</td><td>58,159</td><td>16,543</td></ld<>	30,082	0,231	0,582	58,159	16,543
3,9	0,468	<ld< td=""><td>30,113</td><td>0,135</td><td>0,618</td><td>61,815</td><td>8,505</td></ld<>	30,113	0,135	0,618	61,815	8,505
4,2	0,469	<ld< td=""><td>30,218</td><td>0,131</td><td>0,771</td><td>77,146</td><td><ld< td=""></ld<></td></ld<>	30,218	0,131	0,771	77,146	<ld< td=""></ld<>
4,7	0,465	<ld< td=""><td>30,067</td><td>0,205</td><td>0,557</td><td>55,709</td><td>5,696</td></ld<>	30,067	0,205	0,557	55,709	5,696
4,8	0,468	<ld< td=""><td>30,076</td><td>0,170</td><td>0,649</td><td>64,852</td><td>12,242</td></ld<>	30,076	0,170	0,649	64,852	12,242
4,9	0,467	8,493	30,060	0,258	0,465	46,492	5,484
5,0	0,490	<ld< td=""><td>30,042</td><td>0,298</td><td>0,408</td><td>40,842</td><td>2,574</td></ld<>	30,042	0,298	0,408	40,842	2,574
5,2	0,476	<ld< td=""><td>30,049</td><td>0,252</td><td>0,483</td><td>48,347</td><td>3,572</td></ld<>	30,049	0,252	0,483	48,347	3,572
5,3	0,438	<ld< td=""><td>29,984</td><td>0,223</td><td>0,569</td><td>56,858</td><td>7,467</td></ld<>	29,984	0,223	0,569	56,858	7,467

n-alcanos para RJ13-02.

Fluxos de n-alk (mg cm	⁻² kyr⁻	¹) para RJ13-02	(não foram incluídos	os fluxos de nC12 a nC20).
------------------------	--------------------	-----------------------------	----------------------	----------------------------

cal kyr BP	Phy	nC21	nC22	nC23	nC24	nC25	nC26
2.3	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0.00004</td><td><ld< td=""><td>0.00015</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0.00004</td><td><ld< td=""><td>0.00015</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0.00004</td><td><ld< td=""><td>0.00015</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0.00004	<ld< td=""><td>0.00015</td><td><ld< td=""></ld<></td></ld<>	0.00015	<ld< td=""></ld<>
2,4	<ld< td=""><td>0,00007</td><td>0,00010</td><td>0,00015</td><td>0,00011</td><td>0,00031</td><td>0,00007</td></ld<>	0,00007	0,00010	0,00015	0,00011	0,00031	0,00007
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00014</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00014</td><td><ld< td=""></ld<></td></ld<>	0,00014	<ld< td=""></ld<>
2,5	0,00008	<ld< td=""><td>0,00009</td><td>0,00009</td><td><ld< td=""><td>0,00029</td><td>0,00006</td></ld<></td></ld<>	0,00009	0,00009	<ld< td=""><td>0,00029</td><td>0,00006</td></ld<>	0,00029	0,00006
2,5	<ld< td=""><td>0,00007</td><td>0,00009</td><td>0,00009</td><td><ld< td=""><td>0,00025</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,00007	0,00009	0,00009	<ld< td=""><td>0,00025</td><td><ld< td=""></ld<></td></ld<>	0,00025	<ld< td=""></ld<>
2,6	<ld< td=""><td><ld< td=""><td>0,00008</td><td>0,00015</td><td>0,00012</td><td>0,00042</td><td>0,00018</td></ld<></td></ld<>	<ld< td=""><td>0,00008</td><td>0,00015</td><td>0,00012</td><td>0,00042</td><td>0,00018</td></ld<>	0,00008	0,00015	0,00012	0,00042	0,00018
2,6	0,00011	<ld< td=""><td>0,00009</td><td>0,00009</td><td><ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,00009	0,00009	<ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<>	0,00032	<ld< td=""></ld<>
2,8	<ld< td=""><td><ld< td=""><td>0,00009</td><td>0,00014</td><td><ld< td=""><td>0,00043</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00009</td><td>0,00014</td><td><ld< td=""><td>0,00043</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,00009	0,00014	<ld< td=""><td>0,00043</td><td><ld< td=""></ld<></td></ld<>	0,00043	<ld< td=""></ld<>
2,9	0,00011	<ld< td=""><td>0,00018</td><td>0,00020</td><td>0,00016</td><td>0,00053</td><td>0,00013</td></ld<>	0,00018	0,00020	0,00016	0,00053	0,00013
2,9	<ld< td=""><td><ld< td=""><td>0,00014</td><td>0,00023</td><td>0,00016</td><td>0,00053</td><td>0,00013</td></ld<></td></ld<>	<ld< td=""><td>0,00014</td><td>0,00023</td><td>0,00016</td><td>0,00053</td><td>0,00013</td></ld<>	0,00014	0,00023	0,00016	0,00053	0,00013
3,0	<ld< td=""><td>0,00011</td><td>0,00018</td><td>0,00017</td><td>0,00011</td><td>0,00034</td><td><ld< td=""></ld<></td></ld<>	0,00011	0,00018	0,00017	0,00011	0,00034	<ld< td=""></ld<>
3,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00012</td><td><ld< td=""></ld<></td></ld<>	0,00012	<ld< td=""></ld<>
3,1	<ld< td=""><td>0,00020</td><td>0,00034</td><td>0,00045</td><td>0,00039</td><td>0,00080</td><td>0,00033</td></ld<>	0,00020	0,00034	0,00045	0,00039	0,00080	0,00033
3,3	<ld< td=""><td>0,00015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00036</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,00015	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00036</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00036</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00036</td><td><ld< td=""></ld<></td></ld<>	0,00036	<ld< td=""></ld<>
3,4	<ld< td=""><td><ld< td=""><td>0,00023</td><td>0,00028</td><td>0,00018</td><td>0,00075</td><td>0,00020</td></ld<></td></ld<>	<ld< td=""><td>0,00023</td><td>0,00028</td><td>0,00018</td><td>0,00075</td><td>0,00020</td></ld<>	0,00023	0,00028	0,00018	0,00075	0,00020
3,6	<ld< td=""><td>0,00079</td><td>0,00024</td><td>0,00034</td><td><ld< td=""><td>0,00088</td><td>0,00021</td></ld<></td></ld<>	0,00079	0,00024	0,00034	<ld< td=""><td>0,00088</td><td>0,00021</td></ld<>	0,00088	0,00021
3,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00079</td><td>0,00022</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00079</td><td>0,00022</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00079</td><td>0,00022</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00079</td><td>0,00022</td></ld<></td></ld<>	<ld< td=""><td>0,00079</td><td>0,00022</td></ld<>	0,00079	0,00022
3,7	<ld< td=""><td><ld< td=""><td>0,00027</td><td>0,00035</td><td>0,00025</td><td>0,00091</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00027</td><td>0,00035</td><td>0,00025</td><td>0,00091</td><td><ld< td=""></ld<></td></ld<>	0,00027	0,00035	0,00025	0,00091	<ld< td=""></ld<>
3,9	<ld< td=""><td>0,00021</td><td>0,00030</td><td>0,00032</td><td><ld< td=""><td>0,00071</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,00021	0,00030	0,00032	<ld< td=""><td>0,00071</td><td><ld< td=""></ld<></td></ld<>	0,00071	<ld< td=""></ld<>
3,9	0,00020	<ld< td=""><td>0,00022</td><td><ld< td=""><td><ld< td=""><td>0,00084</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,00022	<ld< td=""><td><ld< td=""><td>0,00084</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00084</td><td><ld< td=""></ld<></td></ld<>	0,00084	<ld< td=""></ld<>
4,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00032</td><td><ld< td=""></ld<></td></ld<>	0,00032	<ld< td=""></ld<>
4,7	<ld< td=""><td><ld< td=""><td>0,00031</td><td>0,00029</td><td><ld< td=""><td>0,00126</td><td>0,00031</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00031</td><td>0,00029</td><td><ld< td=""><td>0,00126</td><td>0,00031</td></ld<></td></ld<>	0,00031	0,00029	<ld< td=""><td>0,00126</td><td>0,00031</td></ld<>	0,00126	0,00031
4,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<>	0,00099	<ld< td=""></ld<>
4,9	0,00048	<ld< td=""><td>0,00058</td><td>0,00078</td><td>0,00080</td><td>0,00205</td><td>0,00059</td></ld<>	0,00058	0,00078	0,00080	0,00205	0,00059
5,0	0,00042	0,00034	0,00099	0,00130	0,00138	0,00240	0,00123
5,2	<ld< td=""><td><ld< td=""><td>0,00051</td><td>0,00069</td><td>0,00068</td><td>0,00185</td><td>0,00065</td></ld<></td></ld<>	<ld< td=""><td>0,00051</td><td>0,00069</td><td>0,00068</td><td>0,00185</td><td>0,00065</td></ld<>	0,00051	0,00069	0,00068	0,00185	0,00065
5,3	0,00042	<ld< td=""><td>0,00042</td><td>0,00044</td><td><ld< td=""><td>0,00153</td><td>0,00025</td></ld<></td></ld<>	0,00042	0,00044	<ld< td=""><td>0,00153</td><td>0,00025</td></ld<>	0,00153	0,00025

Fluxos de n-alk (mg cm⁻² kyr⁻¹) para RJ13-02.

cal kyr BP	nC27	nC28	nC29	nC30	nC31	nC32
2,3	0,00016	<ld< td=""><td>0,00045</td><td>0,00009</td><td>0,00043</td><td><ld< td=""></ld<></td></ld<>	0,00045	0,00009	0,00043	<ld< td=""></ld<>
2,4	0,00026	<ld< td=""><td>0,00075</td><td>0,00015</td><td>0,00076</td><td><ld< td=""></ld<></td></ld<>	0,00075	0,00015	0,00076	<ld< td=""></ld<>
2,5	0,00016	<ld< td=""><td>0,00053</td><td>0,00010</td><td>0,00050</td><td><ld< td=""></ld<></td></ld<>	0,00053	0,00010	0,00050	<ld< td=""></ld<>
2,5	0,00028	<ld< td=""><td>0,00085</td><td>0,00009</td><td>0,00075</td><td>0,00023</td></ld<>	0,00085	0,00009	0,00075	0,00023
2,5	0,00028	<ld< td=""><td>0,00087</td><td>0,00017</td><td>0,00089</td><td><ld< td=""></ld<></td></ld<>	0,00087	0,00017	0,00089	<ld< td=""></ld<>
2,6	0,00045	0,00019	0,00100	0,00029	0,00092	<ld< td=""></ld<>
2,6	0,00034	<ld< td=""><td>0,00110</td><td>0,00010</td><td>0,00095</td><td>0,00030</td></ld<>	0,00110	0,00010	0,00095	0,00030
2,8	0,00048	0,00012	0,00133	0,00028	0,00128	<ld< td=""></ld<>
2,9	0,00047	<ld< td=""><td>0,00138</td><td>0,00018</td><td>0,00126</td><td>0,00038</td></ld<>	0,00138	0,00018	0,00126	0,00038
2,9	0,00052	0,00014	0,00133	0,00030	0,00132	<ld< td=""></ld<>
3,0	0,00023	<ld< td=""><td>0,00071</td><td>0,00015</td><td>0,00083</td><td><ld< td=""></ld<></td></ld<>	0,00071	0,00015	0,00083	<ld< td=""></ld<>
3,1	0,00015	<ld< td=""><td>0,00063</td><td><ld< td=""><td>0,00074</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,00063	<ld< td=""><td>0,00074</td><td><ld< td=""></ld<></td></ld<>	0,00074	<ld< td=""></ld<>
3,1	0,00067	0,00023	0,00149	0,00046	0,00168	0,00013
3,3	0,00040	<ld< td=""><td>0,00118</td><td>0,00022</td><td>0,00118</td><td><ld< td=""></ld<></td></ld<>	0,00118	0,00022	0,00118	<ld< td=""></ld<>
3,4	0,00070	<ld< td=""><td>0,00175</td><td>0,00044</td><td>0,00168</td><td><ld< td=""></ld<></td></ld<>	0,00175	0,00044	0,00168	<ld< td=""></ld<>
3,6	0,00088	0,00019	0,00220	0,00051	0,00210	<ld< td=""></ld<>
3,7	0,00095	0,00030	0,00234	0,00061	0,00220	<ld< td=""></ld<>
3,7	0,00071	<ld< td=""><td>0,00189</td><td>0,00036</td><td>0,00176</td><td><ld< td=""></ld<></td></ld<>	0,00189	0,00036	0,00176	<ld< td=""></ld<>
3,9	0,00065	<ld< td=""><td>0,00178</td><td>0,00034</td><td>0,00164</td><td><ld< td=""></ld<></td></ld<>	0,00178	0,00034	0,00164	<ld< td=""></ld<>
3,9	0,00093	<ld< td=""><td>0,00285</td><td>0,00030</td><td>0,00251</td><td>0,00069</td></ld<>	0,00285	0,00030	0,00251	0,00069
4,2	0,00011	<ld< td=""><td>0,00112</td><td><ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,00112	<ld< td=""><td>0,00099</td><td><ld< td=""></ld<></td></ld<>	0,00099	<ld< td=""></ld<>
4,7	0,00121	<ld< td=""><td>0,00320</td><td>0,00040</td><td>0,00278</td><td>0,00089</td></ld<>	0,00320	0,00040	0,00278	0,00089
4,8	0,00090	<ld< td=""><td>0,00256</td><td><ld< td=""><td>0,00226</td><td>0,00064</td></ld<></td></ld<>	0,00256	<ld< td=""><td>0,00226</td><td>0,00064</td></ld<>	0,00226	0,00064
4,9	0,00177	<ld< td=""><td>0,00434</td><td>0,00054</td><td>0,00380</td><td>0,00111</td></ld<>	0,00434	0,00054	0,00380	0,00111
5,0	0,00206	0,00081	0,00445	0,00115	0,00428	0,00172
5,2	0,00164	0,00041	0,00394	0,00067	0,00358	0,00127
5,3	0,00132	<ld< td=""><td>0,00386</td><td>0,00031</td><td>0,00301</td><td>0,00095</td></ld<>	0,00386	0,00031	0,00301	0,00095
Fluxos de n-alk (mg cm⁻² kyr⁻¹) para RJ13-02.

cal kyr BP	nC33	nC34	nC35	Σn-alk	RP	HidTot
2,3	0,00022	<ld< th=""><th>0,00005</th><th>0,00158</th><th>0,00595</th><th>0,00753</th></ld<>	0,00005	0,00158	0,00595	0,00753
2,4	0,00038	<ld< th=""><th>0,00008</th><th>0,00327</th><th>0,00772</th><th>0,01099</th></ld<>	0,00008	0,00327	0,00772	0,01099
2,5	0,00023	<ld< th=""><th><ld< th=""><th>0,00166</th><th>0,00548</th><th>0,00714</th></ld<></th></ld<>	<ld< th=""><th>0,00166</th><th>0,00548</th><th>0,00714</th></ld<>	0,00166	0,00548	0,00714
2,5	0,00037	0,00007	0,00008	0,00334	0,00663	0,00997
2,5	0,00025	<ld< th=""><th>0,00009</th><th>0,00303</th><th>0,00964</th><th>0,01268</th></ld<>	0,00009	0,00303	0,00964	0,01268
2,6	0,00047	<ld< th=""><th>0,00016</th><th>0,00444</th><th>0,01409</th><th>0,01852</th></ld<>	0,00016	0,00444	0,01409	0,01852
2,6	0,00048	<ld< th=""><th>0,00010</th><th>0,00407</th><th>0,01145</th><th>0,01552</th></ld<>	0,00010	0,00407	0,01145	0,01552
2,8	0,00065	<ld< th=""><th>0,00013</th><th>0,00493</th><th>0,01474</th><th>0,01966</th></ld<>	0,00013	0,00493	0,01474	0,01966
2,9	0,00066	0,00014	0,00016	0,00594	0,01018	0,01611
2,9	0,00070	<ld< th=""><th>0,00014</th><th>0,00564</th><th>0,01670</th><th>0,02234</th></ld<>	0,00014	0,00564	0,01670	0,02234
3,0	0,00015	<ld< th=""><th><ld< th=""><th>0,00299</th><th>0,00537</th><th>0,00837</th></ld<></th></ld<>	<ld< th=""><th>0,00299</th><th>0,00537</th><th>0,00837</th></ld<>	0,00299	0,00537	0,00837
3,1	0,00011	<ld< th=""><th><ld< th=""><th>0,00176</th><th>0,00551</th><th>0,00728</th></ld<></th></ld<>	<ld< th=""><th>0,00176</th><th>0,00551</th><th>0,00728</th></ld<>	0,00176	0,00551	0,00728
3,1	0,00042	<ld< th=""><th>0,00023</th><th>0,00782</th><th>0,01897</th><th>0,02678</th></ld<>	0,00023	0,00782	0,01897	0,02678
3,3	0,00060	<ld< th=""><th>0,00012</th><th>0,00421</th><th>0,01705</th><th>0,02125</th></ld<>	0,00012	0,00421	0,01705	0,02125
3,4	0,00085	<ld< th=""><th>0,00020</th><th>0,00725</th><th>0,02138</th><th>0,02863</th></ld<>	0,00020	0,00725	0,02138	0,02863
3,6	0,00119	<ld< th=""><th>0,00028</th><th>0,01010</th><th>0,03383</th><th>0,04393</th></ld<>	0,00028	0,01010	0,03383	0,04393
3,7	0,00115	<ld< th=""><th>0,00029</th><th>0,00884</th><th>0,03246</th><th>0,04130</th></ld<>	0,00029	0,00884	0,03246	0,04130
3,7	0,00089	<ld< th=""><th>0,00021</th><th>0,00760</th><th>0,02583</th><th>0,03343</th></ld<>	0,00021	0,00760	0,02583	0,03343
3,9	0,00084	<ld< th=""><th><ld< th=""><th>0,00701</th><th>0,02742</th><th>0,03442</th></ld<></th></ld<>	<ld< th=""><th>0,00701</th><th>0,02742</th><th>0,03442</th></ld<>	0,00701	0,02742	0,03442
3,9	0,00133	<ld< th=""><th>0,00030</th><th>0,01017</th><th>0,02363</th><th>0,03381</th></ld<>	0,00030	0,01017	0,02363	0,03381
4,2	0,00034	<ld< th=""><th><ld< th=""><th>0,00287</th><th>0,00337</th><th>0,00624</th></ld<></th></ld<>	<ld< th=""><th>0,00287</th><th>0,00337</th><th>0,00624</th></ld<>	0,00287	0,00337	0,00624
4,7	0,00155	0,00033	0,00038	0,01292	0,03886	0,05178
4,8	0,00118	<ld< th=""><th>0,00029</th><th>0,00882</th><th>0,02791</th><th>0,03673</th></ld<>	0,00029	0,00882	0,02791	0,03673
4,9	0,00219	<ld< th=""><th>0,00049</th><th>0,02132</th><th>0,05775</th><th>0,07907</th></ld<>	0,00049	0,02132	0,05775	0,07907
5,0	0,00229	0,00084	0,00075	0,02640	0,04976	0,07616
5,2	0,00194	0,00056	0,00056	0,01895	0,05805	0,07700
5,3	0,00155	<ld< th=""><th>0,00034</th><th>0,01440</th><th>0,05097</th><th>0,06537</th></ld<>	0,00034	0,01440	0,05097	0,06537

HPAs para RJ13-01.

cal kyr	Ν	C1N	C2N	C3N	C4N	Ace	F	C1F	C2F	C3F
BP	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹
0,012	0,595	0,441	0,985	0,859	0,732	0,149	1,258	1,184	0,988	0,587
0,3	0,850	0,318	0,382	0,222	<ld< td=""><td><ld< td=""><td>0,412</td><td>0,338</td><td>0,558</td><td>0,543</td></ld<></td></ld<>	<ld< td=""><td>0,412</td><td>0,338</td><td>0,558</td><td>0,543</td></ld<>	0,412	0,338	0,558	0,543
0,3	0,847	0,345	0,460	0,959	0,150	<ld< td=""><td>0,236</td><td>0,307</td><td>0,128</td><td>0,457</td></ld<>	0,236	0,307	0,128	0,457
0,5	1,201	0,661	2,440	1,858	2,476	0,149	0,560	0,863	0,979	5,760
0,9	1,104	0,487	0,591	0,251	<ld< td=""><td><ld< td=""><td>0,608</td><td>0,307</td><td>0,213</td><td>0,433</td></ld<></td></ld<>	<ld< td=""><td>0,608</td><td>0,307</td><td>0,213</td><td>0,433</td></ld<>	0,608	0,307	0,213	0,433
1,2	0,878	0,219	1,033	0,566	0,368	<ld< td=""><td>0,183</td><td>0,128</td><td>0,181</td><td>0,517</td></ld<>	0,183	0,128	0,181	0,517
1,4	1,585	0,670	3,050	1,749	1,652	<ld< td=""><td>0,487</td><td>0,619</td><td>0,310</td><td>1,739</td></ld<>	0,487	0,619	0,310	1,739
2,2	0,750	0,192	1,353	0,341	<ld< td=""><td><ld< td=""><td>0,489</td><td>0,209</td><td>0,420</td><td>0,263</td></ld<></td></ld<>	<ld< td=""><td>0,489</td><td>0,209</td><td>0,420</td><td>0,263</td></ld<>	0,489	0,209	0,420	0,263
2,6	0,700	0,152	0,275	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,333</td><td>0,277</td><td>0,137</td><td>0,517</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,333</td><td>0,277</td><td>0,137</td><td>0,517</td></ld<></td></ld<>	<ld< td=""><td>0,333</td><td>0,277</td><td>0,137</td><td>0,517</td></ld<>	0,333	0,277	0,137	0,517
2,8	0,442	0,134	0,223	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,251</td><td>0,128</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,251</td><td>0,128</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,251</td><td>0,128</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,251	0,128	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	1,073	0,495	0,498	0,210	<ld< td=""><td><ld< td=""><td>0,487</td><td>0,425</td><td>0,239</td><td>0,423</td></ld<></td></ld<>	<ld< td=""><td>0,487</td><td>0,425</td><td>0,239</td><td>0,423</td></ld<>	0,487	0,425	0,239	0,423
3,2	1,404	0,536	1,065	0,410	0,299	0,158	0,283	1,133	1,086	2,267
3,3	0,731	0,583	1,423	0,649	0,488	0,195	0,315	1,546	1,896	3,175
3,7	1,502	0,888	2,295	2,101	1,444	<ld< td=""><td>0,424</td><td>0,677</td><td>0,903</td><td>4,020</td></ld<>	0,424	0,677	0,903	4,020
4,1	0,874	0,228	0,768	0,559	0,351	<ld< td=""><td>0,192</td><td>0,218</td><td>0,261</td><td>0,453</td></ld<>	0,192	0,218	0,261	0,453
4,6	0,835	0,333	0,751	0,278	0,218	<ld< td=""><td><ld< td=""><td>1,293</td><td>0,628</td><td>0,554</td></ld<></td></ld<>	<ld< td=""><td>1,293</td><td>0,628</td><td>0,554</td></ld<>	1,293	0,628	0,554
5,1	1,057	0,329	0,783	0,516	0,302	<ld< td=""><td>0,284</td><td>0,138</td><td>0,227</td><td>0,137</td></ld<>	0,284	0,138	0,227	0,137
5,3	0,665	0,165	0,377	0,211	0,214	<ld< td=""><td>0,259</td><td>0,254</td><td>0,132</td><td>0,906</td></ld<>	0,259	0,254	0,132	0,906
6,1	0,974	0,313	0,977	0,570	0,304	<ld< td=""><td><ld< td=""><td>0,252</td><td>0,361</td><td>0,341</td></ld<></td></ld<>	<ld< td=""><td>0,252</td><td>0,361</td><td>0,341</td></ld<>	0,252	0,361	0,341
6,6	0,368	0,139	0,858	0,135	0,176	<ld< td=""><td>0,228</td><td>0,133</td><td>0,220</td><td>0,506</td></ld<>	0,228	0,133	0,220	0,506
7,0	0,678	<ld< td=""><td>0,469</td><td>0,249</td><td>0,163</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,311</td><td>0,285</td></ld<></td></ld<></td></ld<></td></ld<>	0,469	0,249	0,163	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,311</td><td>0,285</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,311</td><td>0,285</td></ld<></td></ld<>	<ld< td=""><td>0,311</td><td>0,285</td></ld<>	0,311	0,285
7,6	0,805	0,335	0,529	0,483	0,438	<ld< td=""><td>0,599</td><td>0,805</td><td>1,496</td><td>3,766</td></ld<>	0,599	0,805	1,496	3,766
8,0	0,490	<ld< td=""><td>0,219</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,177</td><td>0,125</td><td>0,152</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,219	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,177</td><td>0,125</td><td>0,152</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,177</td><td>0,125</td><td>0,152</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,177</td><td>0,125</td><td>0,152</td><td><ld< td=""></ld<></td></ld<>	0,177	0,125	0,152	<ld< td=""></ld<>
8,8	<ld< td=""><td><ld< td=""><td>0,181</td><td>0,232</td><td>0,286</td><td><ld< td=""><td><ld< td=""><td>0,255</td><td>0,363</td><td>0,848</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,181</td><td>0,232</td><td>0,286</td><td><ld< td=""><td><ld< td=""><td>0,255</td><td>0,363</td><td>0,848</td></ld<></td></ld<></td></ld<>	0,181	0,232	0,286	<ld< td=""><td><ld< td=""><td>0,255</td><td>0,363</td><td>0,848</td></ld<></td></ld<>	<ld< td=""><td>0,255</td><td>0,363</td><td>0,848</td></ld<>	0,255	0,363	0,848
9,0	0,274	<ld< td=""><td>0,138</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,137</td><td><ld< td=""><td><ld< td=""><td>0,319</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,138	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,137</td><td><ld< td=""><td><ld< td=""><td>0,319</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,137</td><td><ld< td=""><td><ld< td=""><td>0,319</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,137</td><td><ld< td=""><td><ld< td=""><td>0,319</td></ld<></td></ld<></td></ld<>	0,137	<ld< td=""><td><ld< td=""><td>0,319</td></ld<></td></ld<>	<ld< td=""><td>0,319</td></ld<>	0,319
9,9	0,190	<ld< td=""><td>0,191</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,188</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,191	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,188</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,188</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,188</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,188</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,188	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	0,155	<ld< td=""><td>0,461</td><td>0,133</td><td>0,182</td><td><ld< td=""><td><ld< td=""><td>0,381</td><td>0,208</td><td>0,865</td></ld<></td></ld<></td></ld<>	0,461	0,133	0,182	<ld< td=""><td><ld< td=""><td>0,381</td><td>0,208</td><td>0,865</td></ld<></td></ld<>	<ld< td=""><td>0,381</td><td>0,208</td><td>0,865</td></ld<>	0,381	0,208	0,865
10,9	0,375	<ld< td=""><td>0,168</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,152</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,168	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,152</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,152</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,152</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,152	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	0,665	<ld< td=""><td>0,405</td><td>0,178</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,583</td><td>0,175</td><td>0,210</td></ld<></td></ld<></td></ld<></td></ld<>	0,405	0,178	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,583</td><td>0,175</td><td>0,210</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,583</td><td>0,175</td><td>0,210</td></ld<></td></ld<>	<ld< td=""><td>0,583</td><td>0,175</td><td>0,210</td></ld<>	0,583	0,175	0,210
12,4	0,148	<ld< td=""><td>0,230</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,710</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,230	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,710</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,710</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,710</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,710</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,710</td></ld<></td></ld<>	<ld< td=""><td>0,710</td></ld<>	0,710
13,3	0,179	0,127	0,313	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,205</td><td>0,221</td><td><ld< td=""><td>0,666</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,205</td><td>0,221</td><td><ld< td=""><td>0,666</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,205</td><td>0,221</td><td><ld< td=""><td>0,666</td></ld<></td></ld<>	0,205	0,221	<ld< td=""><td>0,666</td></ld<>	0,666
13,8	0,577	0,152	0,206	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,191</td><td>0,172</td><td>0,133</td><td>0,169</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,191</td><td>0,172</td><td>0,133</td><td>0,169</td></ld<></td></ld<>	<ld< td=""><td>0,191</td><td>0,172</td><td>0,133</td><td>0,169</td></ld<>	0,191	0,172	0,133	0,169
14,4	0,531	<ld< td=""><td>0,230</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,149</td><td><ld< td=""><td>1,047</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,230	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,149</td><td><ld< td=""><td>1,047</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,149</td><td><ld< td=""><td>1,047</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,149</td><td><ld< td=""><td>1,047</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,149</td><td><ld< td=""><td>1,047</td></ld<></td></ld<>	0,149	<ld< td=""><td>1,047</td></ld<>	1,047

HPAs pa	ra RJ13	-01.								
cal kyr	Ph	C1Ph	C2Ph	C3Ph	C4Ph	Ret	Fl	Ру	C1Py	C2Py
BP	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹
0,012	3,079	1,899	3,404	3,635	1,499	0,768	0,836	0,494	0,637	0,844
0,3	1,103	0,343	0,417	0,804	2,921	0,177	0,668	0,167	0,128	0,262
0,3	0,438	0,231	0,460	0,713	1,019	0,218	0,417	0,174	0,201	0,203
0,5	1,092	0,337	0,976	0,703	1,417	<ld< td=""><td>0,387</td><td>0,170</td><td>0,318</td><td>0,397</td></ld<>	0,387	0,170	0,318	0,397
0,9	1,489	0,336	0,540	0,328	0,198	0,192	0,769	0,242	0,165	<ld< td=""></ld<>
1,2	1,065	0,398	0,354	0,314	0,389	<ld< td=""><td>0,300</td><td>0,205</td><td>0,314</td><td>0,520</td></ld<>	0,300	0,205	0,314	0,520
1,4	1,134	0,355	0,490	0,408	0,511	<ld< td=""><td>0,635</td><td>0,164</td><td>0,204</td><td>0,128</td></ld<>	0,635	0,164	0,204	0,128
2,2	1,724	0,354	0,486	0,343	1,808	<ld< td=""><td>0,378</td><td>0,250</td><td>0,279</td><td>0,141</td></ld<>	0,378	0,250	0,279	0,141
2,6	0,744	0,157	0,388	0,484	1,444	0,130	0,610	0,206	0,176	0,155
2,8	0,574	<ld< td=""><td>0,260</td><td>0,462</td><td>0,827</td><td><ld< td=""><td>0,447</td><td>0,128</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,260	0,462	0,827	<ld< td=""><td>0,447</td><td>0,128</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,447	0,128	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	1,063	0,325	0,383	0,300	0,504	0,156	0,569	0,250	0,169	<ld< td=""></ld<>
3,2	1,193	1,910	4,160	8,532	20,726	0,357	1,538	1,428	1,150	1,193
3,3	1,561	3,158	7,668	12,942	24,618	0,533	2,167	2,209	1,822	1,838
3,7	0,921	0,516	0,700	0,634	1,467	0,180	0,682	0,128	0,254	<ld< td=""></ld<>
4,1	1,025	0,319	0,317	0,469	2,092	<ld< td=""><td>0,384</td><td>0,233</td><td>0,258</td><td>0,587</td></ld<>	0,384	0,233	0,258	0,587
4,6	0,373	0,398	0,489	0,395	2,724	<ld< td=""><td>0,410</td><td>0,305</td><td>0,288</td><td><ld< td=""></ld<></td></ld<>	0,410	0,305	0,288	<ld< td=""></ld<>
5,1	1,092	0,458	0,281	0,165	<ld< td=""><td><ld< td=""><td>0,358</td><td>0,190</td><td>0,238</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,358</td><td>0,190</td><td>0,238</td><td><ld< td=""></ld<></td></ld<>	0,358	0,190	0,238	<ld< td=""></ld<>
5,3	0,684	0,344	0,294	0,441	1,046	<ld< td=""><td>0,536</td><td>0,163</td><td>0,156</td><td><ld< td=""></ld<></td></ld<>	0,536	0,163	0,156	<ld< td=""></ld<>
6,1	0,405	0,272	0,312	0,293	1,058	<ld< td=""><td>0,279</td><td>0,159</td><td>0,228</td><td><ld< td=""></ld<></td></ld<>	0,279	0,159	0,228	<ld< td=""></ld<>
6,6	0,939	0,455	0,207	0,179	0,912	<ld< td=""><td>0,562</td><td>0,153</td><td>0,161</td><td><ld< td=""></ld<></td></ld<>	0,562	0,153	0,161	<ld< td=""></ld<>
7,0	0,479	0,322	0,177	0,399	1,911	<ld< td=""><td>0,270</td><td>0,192</td><td>0,239</td><td>0,138</td></ld<>	0,270	0,192	0,239	0,138
7,6	1,330	1,215	3,207	6,017	9,112	0,489	0,739	0,393	1,043	1,743
8,0	0,419	0,150	0,278	0,217	0,225	<ld< td=""><td>0,296</td><td><ld< td=""><td>0,127</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,296	<ld< td=""><td>0,127</td><td><ld< td=""></ld<></td></ld<>	0,127	<ld< td=""></ld<>
8,8	0,268	0,316	0,422	0,487	0,348	0,126	0,217	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,0	0,317	0,163	0,520	0,673	1,280	<ld< td=""><td>0,127</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,127	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,308</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,308</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,308</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,308</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,308	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	0,574	0,823	1,357	2,150	3,180	0,346	0,321	0,219	0,286	0,200
10,9	0,606	<ld< td=""><td>0,224</td><td>0,227</td><td>0,446</td><td>0,150</td><td>0,126</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,224	0,227	0,446	0,150	0,126	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	0,496	0,141	0,126	0,184	<ld< td=""><td>0,132</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,280</td></ld<></td></ld<></td></ld<></td></ld<>	0,132	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,280</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,280</td></ld<></td></ld<>	<ld< td=""><td>0,280</td></ld<>	0,280
12,4	<ld< td=""><td>0,178</td><td>0,144</td><td>0,220</td><td>0,251</td><td>0,149</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,178	0,144	0,220	0,251	0,149	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	0,632	0,222	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	0,595	0,215	0,345	0,358	0,928	0,180	0,155	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<ld< td=""><td>0,182</td><td><ld< td=""><td>0,165</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,182	<ld< td=""><td>0,165</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,165	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
7				- 7						

cal kyr	$\frac{1}{Ch}$	C1Ch	C2Ch	BbjFl	BkFl	BePy	BaPy	Pe
BP	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	μg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	μg kg ⁻¹	µg kg ⁻¹
0,012	0,559	<ld< td=""><td>1,013</td><td>0,502</td><td>0,126</td><td>0,369</td><td>0,184</td><td>0,830</td></ld<>	1,013	0,502	0,126	0,369	0,184	0,830
0,3	0,238	0,139	0,180	0,630	<ld< td=""><td>0,163</td><td><ld< td=""><td>1,379</td></ld<></td></ld<>	0,163	<ld< td=""><td>1,379</td></ld<>	1,379
0,3	0,188	0,199	0,433	0,487	<ld< td=""><td>0,143</td><td><ld< td=""><td>1,208</td></ld<></td></ld<>	0,143	<ld< td=""><td>1,208</td></ld<>	1,208
0,5	<ld< td=""><td>0,201</td><td>0,231</td><td>0,465</td><td><ld< td=""><td>0,158</td><td><ld< td=""><td>0,914</td></ld<></td></ld<></td></ld<>	0,201	0,231	0,465	<ld< td=""><td>0,158</td><td><ld< td=""><td>0,914</td></ld<></td></ld<>	0,158	<ld< td=""><td>0,914</td></ld<>	0,914
0,9	0,247	<ld< td=""><td>0,152</td><td>0,670</td><td><ld< td=""><td>0,167</td><td><ld< td=""><td>1,638</td></ld<></td></ld<></td></ld<>	0,152	0,670	<ld< td=""><td>0,167</td><td><ld< td=""><td>1,638</td></ld<></td></ld<>	0,167	<ld< td=""><td>1,638</td></ld<>	1,638
1,2	0,362	<ld< td=""><td><ld< td=""><td>0,361</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,319</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,361</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,319</td></ld<></td></ld<></td></ld<></td></ld<>	0,361	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,319</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,319</td></ld<></td></ld<>	<ld< td=""><td>1,319</td></ld<>	1,319
1,4	<ld< td=""><td>0,172</td><td><ld< td=""><td>0,688</td><td><ld< td=""><td>0,158</td><td><ld< td=""><td>1,488</td></ld<></td></ld<></td></ld<></td></ld<>	0,172	<ld< td=""><td>0,688</td><td><ld< td=""><td>0,158</td><td><ld< td=""><td>1,488</td></ld<></td></ld<></td></ld<>	0,688	<ld< td=""><td>0,158</td><td><ld< td=""><td>1,488</td></ld<></td></ld<>	0,158	<ld< td=""><td>1,488</td></ld<>	1,488
2,2	0,250	<ld< td=""><td><ld< td=""><td>0,385</td><td>0,354</td><td><ld< td=""><td><ld< td=""><td>1,300</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,385</td><td>0,354</td><td><ld< td=""><td><ld< td=""><td>1,300</td></ld<></td></ld<></td></ld<>	0,385	0,354	<ld< td=""><td><ld< td=""><td>1,300</td></ld<></td></ld<>	<ld< td=""><td>1,300</td></ld<>	1,300
2,6	0,244	<ld< td=""><td><ld< td=""><td>0,635</td><td><ld< td=""><td>0,155</td><td><ld< td=""><td>1,348</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,635</td><td><ld< td=""><td>0,155</td><td><ld< td=""><td>1,348</td></ld<></td></ld<></td></ld<>	0,635	<ld< td=""><td>0,155</td><td><ld< td=""><td>1,348</td></ld<></td></ld<>	0,155	<ld< td=""><td>1,348</td></ld<>	1,348
2,8	0,128	<ld< td=""><td><ld< td=""><td>0,341</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,698</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,341</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,698</td></ld<></td></ld<></td></ld<></td></ld<>	0,341	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,698</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,698</td></ld<></td></ld<>	<ld< td=""><td>0,698</td></ld<>	0,698
3,0	0,250	<ld< td=""><td><ld< td=""><td>0,632</td><td><ld< td=""><td>0,161</td><td><ld< td=""><td>1,405</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,632</td><td><ld< td=""><td>0,161</td><td><ld< td=""><td>1,405</td></ld<></td></ld<></td></ld<>	0,632	<ld< td=""><td>0,161</td><td><ld< td=""><td>1,405</td></ld<></td></ld<>	0,161	<ld< td=""><td>1,405</td></ld<>	1,405
3,2	0,369	0,167	<ld< td=""><td>0,531</td><td><ld< td=""><td>0,162</td><td><ld< td=""><td>1,087</td></ld<></td></ld<></td></ld<>	0,531	<ld< td=""><td>0,162</td><td><ld< td=""><td>1,087</td></ld<></td></ld<>	0,162	<ld< td=""><td>1,087</td></ld<>	1,087
3,3	0,557	0,362	0,343	0,792	0,128	0,186	<ld< td=""><td>1,569</td></ld<>	1,569
3,7	0,280	0,148	<ld< td=""><td>0,580</td><td><ld< td=""><td>0,177</td><td><ld< td=""><td>1,130</td></ld<></td></ld<></td></ld<>	0,580	<ld< td=""><td>0,177</td><td><ld< td=""><td>1,130</td></ld<></td></ld<>	0,177	<ld< td=""><td>1,130</td></ld<>	1,130
4,1	0,336	<ld< td=""><td>0,188</td><td>0,455</td><td>0,129</td><td>0,159</td><td><ld< td=""><td>1,632</td></ld<></td></ld<>	0,188	0,455	0,129	0,159	<ld< td=""><td>1,632</td></ld<>	1,632
4,6	0,274	<ld< td=""><td><ld< td=""><td>0,470</td><td>0,150</td><td>0,155</td><td><ld< td=""><td>1,360</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,470</td><td>0,150</td><td>0,155</td><td><ld< td=""><td>1,360</td></ld<></td></ld<>	0,470	0,150	0,155	<ld< td=""><td>1,360</td></ld<>	1,360
5,1	0,278	<ld< td=""><td><ld< td=""><td>0,409</td><td><ld< td=""><td>0,170</td><td><ld< td=""><td>1,567</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,409</td><td><ld< td=""><td>0,170</td><td><ld< td=""><td>1,567</td></ld<></td></ld<></td></ld<>	0,409	<ld< td=""><td>0,170</td><td><ld< td=""><td>1,567</td></ld<></td></ld<>	0,170	<ld< td=""><td>1,567</td></ld<>	1,567
5,3	0,241	0,175	<ld< td=""><td>0,471</td><td>0,493</td><td>0,160</td><td><ld< td=""><td>0,961</td></ld<></td></ld<>	0,471	0,493	0,160	<ld< td=""><td>0,961</td></ld<>	0,961
6,1	0,172	<ld< td=""><td><ld< td=""><td>0,366</td><td><ld< td=""><td>0,158</td><td><ld< td=""><td>1,293</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,366</td><td><ld< td=""><td>0,158</td><td><ld< td=""><td>1,293</td></ld<></td></ld<></td></ld<>	0,366	<ld< td=""><td>0,158</td><td><ld< td=""><td>1,293</td></ld<></td></ld<>	0,158	<ld< td=""><td>1,293</td></ld<>	1,293
6,6	0,217	<ld< td=""><td><ld< td=""><td>0,547</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3,015</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,547</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3,015</td></ld<></td></ld<></td></ld<></td></ld<>	0,547	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3,015</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3,015</td></ld<></td></ld<>	<ld< td=""><td>3,015</td></ld<>	3,015
7,0	0,202	<ld< td=""><td><ld< td=""><td>0,326</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,027</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,326</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,027</td></ld<></td></ld<></td></ld<></td></ld<>	0,326	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,027</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,027</td></ld<></td></ld<>	<ld< td=""><td>1,027</td></ld<>	1,027
7,6	0,346	0,498	1,567	0,490	<ld< td=""><td>0,179</td><td><ld< td=""><td>0,960</td></ld<></td></ld<>	0,179	<ld< td=""><td>0,960</td></ld<>	0,960
8,0	0,156	<ld< td=""><td><ld< td=""><td>0,429</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,720</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,429</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,720</td></ld<></td></ld<></td></ld<></td></ld<>	0,429	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,720</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,720</td></ld<></td></ld<>	<ld< td=""><td>0,720</td></ld<>	0,720
8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,386</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,386</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,386</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,386</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,386</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,386</td></ld<></td></ld<>	<ld< td=""><td>0,386</td></ld<>	0,386
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,146</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,146</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,146</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,146</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,146</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,146</td></ld<></td></ld<>	<ld< td=""><td>0,146</td></ld<>	0,146
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,303</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,303</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,303</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,303</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,303</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,303</td></ld<></td></ld<>	<ld< td=""><td>0,303</td></ld<>	0,303
10,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,831</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,831</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,831</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,831</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,831</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,831</td></ld<></td></ld<>	<ld< td=""><td>0,831</td></ld<>	0,831
10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,306</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,306</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,306</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,306</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,306</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,306</td></ld<></td></ld<>	<ld< td=""><td>0,306</td></ld<>	0,306
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,336</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,336</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,336</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,336</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,336</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,336</td></ld<></td></ld<>	<ld< td=""><td>0,336</td></ld<>	0,336
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,274</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,274</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,274</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,274</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,274</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,274</td></ld<></td></ld<>	<ld< td=""><td>0,274</td></ld<>	0,274
13,3	0,193	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,194</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,194</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,194</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,194</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,194</td></ld<></td></ld<>	<ld< td=""><td>0,194</td></ld<>	0,194
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,288</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,288</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,288</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,288</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,288</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,288</td></ld<></td></ld<>	<ld< td=""><td>0,288</td></ld<>	0,288
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,193</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,193</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,193</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,193</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,193</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,193</td></ld<></td></ld<>	<ld< td=""><td>0,193</td></ld<>	0,193

HPAs para RJ13-01.

cal kyr	3-MeChl	IP	DBahA	BghiPe	DBalPy	ΣHPAs	Recuperação (Ch-d ₁₂)
BP	μg kg ⁻¹	µg kg ⁻¹	µg kg⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	%
0,012	0,820	0,455	0,197	0,466	0,269	30,661	79,55
0,3	0,198	0,651	0,128	0,388	0,414	15,121	71,43
0,3	0,455	0,457	0,204	0,322	0,186	12,246	64,45
0,5	0,541	0,346	<ld< td=""><td>0,195</td><td><ld< td=""><td>25,795</td><td>66,29</td></ld<></td></ld<>	0,195	<ld< td=""><td>25,795</td><td>66,29</td></ld<>	25,795	66,29
0,9	<ld< td=""><td>0,709</td><td>0,188</td><td>0,416</td><td>0,331</td><td>12,770</td><td>61,43</td></ld<>	0,709	0,188	0,416	0,331	12,770	61,43
1,2	<ld< td=""><td>0,585</td><td>0,182</td><td>0,392</td><td><ld< td=""><td>11,262</td><td>71,22</td></ld<></td></ld<>	0,585	0,182	0,392	<ld< td=""><td>11,262</td><td>71,22</td></ld<>	11,262	71,22
1,4	<ld< td=""><td>0,518</td><td><ld< td=""><td>0,215</td><td><ld< td=""><td>19,129</td><td>72,19</td></ld<></td></ld<></td></ld<>	0,518	<ld< td=""><td>0,215</td><td><ld< td=""><td>19,129</td><td>72,19</td></ld<></td></ld<>	0,215	<ld< td=""><td>19,129</td><td>72,19</td></ld<>	19,129	72,19
2,2	<ld< td=""><td>0,577</td><td>0,150</td><td>0,440</td><td>0,131</td><td>13,368</td><td>72,90</td></ld<>	0,577	0,150	0,440	0,131	13,368	72,90
2,6	0,164	0,648	0,177	0,360	0,320	10,940	67,78
2,8	<ld< td=""><td>0,254</td><td><ld< td=""><td>0,154</td><td>0,130</td><td>5,581</td><td>116,68</td></ld<></td></ld<>	0,254	<ld< td=""><td>0,154</td><td>0,130</td><td>5,581</td><td>116,68</td></ld<>	0,154	0,130	5,581	116,68
3,0	<ld< td=""><td>0,570</td><td>0,152</td><td>0,299</td><td>0,293</td><td>11,329</td><td>68,93</td></ld<>	0,570	0,152	0,299	0,293	11,329	68,93
3,2	<ld< td=""><td>0,464</td><td>0,133</td><td>0,311</td><td>0,242</td><td>54,295</td><td>63,86</td></ld<>	0,464	0,133	0,311	0,242	54,295	63,86
3,3	<ld< td=""><td>0,678</td><td>0,170</td><td>0,381</td><td>0,289</td><td>74,970</td><td>76,20</td></ld<>	0,678	0,170	0,381	0,289	74,970	76,20
3,7	0,267	0,364	<ld< td=""><td>0,245</td><td><ld< td=""><td>23,118</td><td>65,42</td></ld<></td></ld<>	0,245	<ld< td=""><td>23,118</td><td>65,42</td></ld<>	23,118	65,42
4,1	<ld< td=""><td>0,692</td><td>0,224</td><td>0,449</td><td>0,206</td><td>14,058</td><td>69,31</td></ld<>	0,692	0,224	0,449	0,206	14,058	69,31
4,6	<ld< td=""><td>0,599</td><td>0,260</td><td>0,426</td><td>0,198</td><td>14,165</td><td>79,95</td></ld<>	0,599	0,260	0,426	0,198	14,165	79,95
5,1	<ld< td=""><td>0,530</td><td>0,127</td><td>0,400</td><td>0,207</td><td>10,244</td><td>76,58</td></ld<>	0,530	0,127	0,400	0,207	10,244	76,58
5,3	0,159	0,398	<ld< td=""><td>0,235</td><td><ld< td=""><td>10,141</td><td>78,37</td></ld<></td></ld<>	0,235	<ld< td=""><td>10,141</td><td>78,37</td></ld<>	10,141	78,37
6,1	<ld< td=""><td>0,485</td><td><ld< td=""><td>0,410</td><td>0,143</td><td>10,126</td><td>69,91</td></ld<></td></ld<>	0,485	<ld< td=""><td>0,410</td><td>0,143</td><td>10,126</td><td>69,91</td></ld<>	0,410	0,143	10,126	69,91
6,6	<ld< td=""><td>0,404</td><td><ld< td=""><td>0,170</td><td><ld< td=""><td>10,685</td><td>85,80</td></ld<></td></ld<></td></ld<>	0,404	<ld< td=""><td>0,170</td><td><ld< td=""><td>10,685</td><td>85,80</td></ld<></td></ld<>	0,170	<ld< td=""><td>10,685</td><td>85,80</td></ld<>	10,685	85,80
7,0	<ld< td=""><td>0,401</td><td><ld< td=""><td>0,325</td><td>0,139</td><td>8,701</td><td>71,75</td></ld<></td></ld<>	0,401	<ld< td=""><td>0,325</td><td>0,139</td><td>8,701</td><td>71,75</td></ld<>	0,325	0,139	8,701	71,75
7,6	0,758	0,419	0,200	0,230	0,200	40,390	74,87
8,0	<ld< td=""><td>0,380</td><td>0,146</td><td>0,222</td><td>0,197</td><td>5,124</td><td>76,84</td></ld<>	0,380	0,146	0,222	0,197	5,124	76,84
8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>4,734</td><td>83,02</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>4,734</td><td>83,02</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>4,734</td><td>83,02</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>4,734</td><td>83,02</td></ld<></td></ld<>	<ld< td=""><td>4,734</td><td>83,02</td></ld<>	4,734	83,02
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>4,094</td><td>75,85</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>4,094</td><td>75,85</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>4,094</td><td>75,85</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>4,094</td><td>75,85</td></ld<></td></ld<>	<ld< td=""><td>4,094</td><td>75,85</td></ld<>	4,094	75,85
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,179</td><td>64,42</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,179</td><td>64,42</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,179</td><td>64,42</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,179</td><td>64,42</td></ld<></td></ld<>	<ld< td=""><td>1,179</td><td>64,42</td></ld<>	1,179	64,42
10,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>12,671</td><td>87,73</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>12,671</td><td>87,73</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>12,671</td><td>87,73</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>12,671</td><td>87,73</td></ld<></td></ld<>	<ld< td=""><td>12,671</td><td>87,73</td></ld<>	12,671	87,73
10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,782</td><td>82,03</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,782</td><td>82,03</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2,782</td><td>82,03</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2,782</td><td>82,03</td></ld<></td></ld<>	<ld< td=""><td>2,782</td><td>82,03</td></ld<>	2,782	82,03
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3,912</td><td>69,85</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3,912</td><td>69,85</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3,912</td><td>69,85</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3,912</td><td>69,85</td></ld<></td></ld<>	<ld< td=""><td>3,912</td><td>69,85</td></ld<>	3,912	69,85
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,304</td><td>83,19</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,304</td><td>83,19</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2,304</td><td>83,19</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2,304</td><td>83,19</td></ld<></td></ld<>	<ld< td=""><td>2,304</td><td>83,19</td></ld<>	2,304	83,19
13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,952</td><td>83,61</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,952</td><td>83,61</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2,952</td><td>83,61</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2,952</td><td>83,61</td></ld<></td></ld<>	<ld< td=""><td>2,952</td><td>83,61</td></ld<>	2,952	83,61
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>4,663</td><td>78,96</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>4,663</td><td>78,96</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>4,663</td><td>78,96</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>4,663</td><td>78,96</td></ld<></td></ld<>	<ld< td=""><td>4,663</td><td>78,96</td></ld<>	4,663	78,96
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,498</td><td>76,37</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2,498</td><td>76,37</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2,498</td><td>76,37</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2,498</td><td>76,37</td></ld<></td></ld<>	<ld< td=""><td>2,498</td><td>76,37</td></ld<>	2,498	76,37

HPAs para RJ13-01.

HPAs	para	RJ	13-	-01	•
пгАз	para	КJ	13.	-01	•

cal kyr BP	ΣΡуго	ΣPyro/ ΣHPAs	%ΣPyro/ ΣHPAs	ΣΒίο	ΣBio/ ΣHPAs	%ΣBio/ ΣHPAs	Pe/ ΣBFl+ BsPy+Pe	%Pe/ ΣBFl+ BsPy+Pe
	μg kg ⁻¹			µg kg ⁻¹				
0,012	4,261	0,139	13,898	18,723	0,611	61,064	0,413	41,251
0,3	3,320	0,220	21,956	8,916	0,590	58,964	0,635	63,474
0,3	2,374	0,194	19,389	7,049	0,576	57,563	0,657	65,709
0,5	1,721	0,067	6,670	14,076	0,546	54,569	0,595	59,469
0,9	3,550	0,278	27,799	7,154	0,560	56,023	0,662	66,188
1,2	2,205	0,196	19,578	6,904	0,613	61,303	0,785	78,529
1,4	2,379	0,124	12,436	13,091	0,684	68,439	0,637	63,736
2,2	2,765	0,207	20,685	8,651	0,647	64,716	0,638	63,781
2,6	3,179	0,291	29,055	5,823	0,532	53,223	0,630	63,049
2,8	1,582	0,283	28,344	3,620	0,649	64,866	0,672	67,197
3,0	3,023	0,267	26,688	6,412	0,566	56,595	0,639	63,920
3,2	5,046	0,093	9,293	41,680	0,768	76,766	0,611	61,061
3,3	7,387	0,099	9,853	55,921	0,746	74,591	0,587	58,659
3,7	2,455	0,106	10,621	13,777	0,596	59,597	0,599	59,880
4,1	3,044	0,217	21,651	8,633	0,614	61,413	0,687	68,695
4,6	2,987	0,211	21,087	8,155	0,576	57,571	0,637	63,697
5,1	2,542	0,248	24,815	6,550	0,639	63,941	0,730	73,025
5,3	2,698	0,266	26,601	5,403	0,533	53,275	0,461	46,083
6,1	2,172	0,214	21,447	6,771	0,669	66,872	0,712	71,173
6,6	2,054	0,192	19,227	7,383	0,691	69,101	0,846	84,639
7,0	1,855	0,213	21,318	5,874	0,675	67,505	0,759	75,894
7,6	2,996	0,074	7,418	24,919	0,617	61,697	0,589	58,906
8,0	1,680	0,328	32,792	2,717	0,530	53,032	0,627	62,684
8,8	0,217	0,046	4,575	3,051	0,644	64,449	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,0	0,127	0,031	3,097	3,511	0,858	85,760	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,9	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,992</td><td>0,841</td><td>84,076</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,992</td><td>0,841</td><td>84,076</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td>0,992</td><td>0,841</td><td>84,076</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<>	0,992	0,841	84,076	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	0,540	0,043	4,258	10,192	0,804	80,432	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,9	0,126	0,045	4,521	2,504	0,900	90,032	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	<ld< td=""><td><lq< td=""><td><lq< td=""><td>2,665</td><td>0,681</td><td>68,110</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<></td></ld<>	<lq< td=""><td><lq< td=""><td>2,665</td><td>0,681</td><td>68,110</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td>2,665</td><td>0,681</td><td>68,110</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<>	2,665	0,681	68,110	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
12,4	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,594</td><td>0,692</td><td>69,177</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,594</td><td>0,692</td><td>69,177</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td>1,594</td><td>0,692</td><td>69,177</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<>	1,594	0,692	69,177	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	0,193	0,066	6,553	1,667	0,564	56,448	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	0,155	0,033	3,326	3,844	0,824	82,430	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<lq< td=""><td>0,<lq< td=""><td><lq< td=""><td>1,301</td><td>0,521</td><td>52,093</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<></td></lq<>	0, <lq< td=""><td><lq< td=""><td>1,301</td><td>0,521</td><td>52,093</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<></td></lq<>	<lq< td=""><td>1,301</td><td>0,521</td><td>52,093</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></lq<>	1,301	0,521	52,093	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

cal kyr	N	C1N	C2N	C3N	C4N	Ace	F	C1F	C2F	C3F
BP										
0,012	0,097	0,072	0,161	0,140	0,120	0,024	0,206	0,194	0,162	0,096
0,3	0,033	0,012	0,015	0,009	<ld< td=""><td><ld< td=""><td>0,016</td><td>0,013</td><td>0,021</td><td>0,021</td></ld<></td></ld<>	<ld< td=""><td>0,016</td><td>0,013</td><td>0,021</td><td>0,021</td></ld<>	0,016	0,013	0,021	0,021
0,3	0,035	0,014	0,019	0,040	0,006	<ld< td=""><td>0,010</td><td>0,013</td><td>0,005</td><td>0,019</td></ld<>	0,010	0,013	0,005	0,019
0,5	0,034	0,019	0,070	0,053	0,071	0,004	0,016	0,025	0,028	0,165
0,9	0,022	0,010	0,012	0,005	<ld< td=""><td><ld< td=""><td>0,012</td><td>0,006</td><td>0,004</td><td>0,009</td></ld<></td></ld<>	<ld< td=""><td>0,012</td><td>0,006</td><td>0,004</td><td>0,009</td></ld<>	0,012	0,006	0,004	0,009
1,2	0,015	0,004	0,018	0,010	0,006	<ld< td=""><td>0,003</td><td>0,002</td><td>0,003</td><td>0,009</td></ld<>	0,003	0,002	0,003	0,009
1,4	0,027	0,011	0,052	0,030	0,028	<ld< td=""><td>0,008</td><td>0,011</td><td>0,005</td><td>0,030</td></ld<>	0,008	0,011	0,005	0,030
2,2	0,011	0,003	0,020	0,005	<ld< td=""><td><ld< td=""><td>0,007</td><td>0,003</td><td>0,006</td><td>0,004</td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td>0,003</td><td>0,006</td><td>0,004</td></ld<>	0,007	0,003	0,006	0,004
2,6	0,010	0,002	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td>0,004</td><td>0,002</td><td>0,007</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,004</td><td>0,002</td><td>0,007</td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,004</td><td>0,002</td><td>0,007</td></ld<>	0,005	0,004	0,002	0,007
2,8	0,007	0,002	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,004	0,002	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	0,017	0,008	0,008	0,003	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,007</td><td>0,004</td><td>0,007</td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,007</td><td>0,004</td><td>0,007</td></ld<>	0,008	0,007	0,004	0,007
3,2	0,022	0,008	0,017	0,006	0,005	0,002	0,004	0,018	0,017	0,035
3,3	0,012	0,010	0,023	0,011	0,008	0,003	0,005	0,026	0,031	0,052
3,7	0,024	0,014	0,037	0,034	0,023	<ld< td=""><td>0,007</td><td>0,011</td><td>0,015</td><td>0,065</td></ld<>	0,007	0,011	0,015	0,065
4,1	0,014	0,004	0,012	0,009	0,006	<ld< td=""><td>0,003</td><td>0,003</td><td>0,004</td><td>0,007</td></ld<>	0,003	0,003	0,004	0,007
4,6	0,013	0,005	0,012	0,004	0,003	<ld< td=""><td><ld< td=""><td>0,020</td><td>0,010</td><td>0,009</td></ld<></td></ld<>	<ld< td=""><td>0,020</td><td>0,010</td><td>0,009</td></ld<>	0,020	0,010	0,009
5,1	0,016	0,005	0,012	0,008	0,005	<ld< td=""><td>0,004</td><td>0,002</td><td>0,003</td><td>0,002</td></ld<>	0,004	0,002	0,003	0,002
5,3	0,010	0,003	0,006	0,003	0,003	<ld< td=""><td>0,004</td><td>0,004</td><td>0,002</td><td>0,014</td></ld<>	0,004	0,004	0,002	0,014
6,1	0,013	0,004	0,013	0,008	0,004	<ld< td=""><td><ld< td=""><td>0,003</td><td>0,005</td><td>0,005</td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td>0,005</td><td>0,005</td></ld<>	0,003	0,005	0,005
6,6	0,005	0,002	0,012	0,002	0,002	<ld< td=""><td>0,003</td><td>0,002</td><td>0,003</td><td>0,007</td></ld<>	0,003	0,002	0,003	0,007
7,0	0,010	<ld< td=""><td>0,007</td><td>0,004</td><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,004</td></ld<></td></ld<></td></ld<></td></ld<>	0,007	0,004	0,002	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,004</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td><td>0,004</td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td>0,004</td></ld<>	0,004	0,004
7,6	0,011	0,005	0,007	0,007	0,006	<ld< td=""><td>0,008</td><td>0,011</td><td>0,021</td><td>0,053</td></ld<>	0,008	0,011	0,021	0,053
8,0	0,008	<ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td>0,002</td><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td>0,002</td><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,003</td><td>0,002</td><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td>0,002</td><td>0,003</td><td><ld< td=""></ld<></td></ld<>	0,003	0,002	0,003	<ld< td=""></ld<>
8,8	<ld< td=""><td><ld< td=""><td>0,003</td><td>0,004</td><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,006</td><td>0,014</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td>0,004</td><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,006</td><td>0,014</td></ld<></td></ld<></td></ld<>	0,003	0,004	0,005	<ld< td=""><td><ld< td=""><td>0,004</td><td>0,006</td><td>0,014</td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td>0,006</td><td>0,014</td></ld<>	0,004	0,006	0,014
9,0	0,005	<ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
9,9	0,004	<ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	0,003	<ld< td=""><td>0,009</td><td>0,003</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td>0,008</td><td>0,004</td><td>0,017</td></ld<></td></ld<></td></ld<>	0,009	0,003	0,004	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,004</td><td>0,017</td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,004</td><td>0,017</td></ld<>	0,008	0,004	0,017
10,9	0,008	<ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	0,013	<ld< td=""><td>0,008</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td><td>0,003</td><td>0,004</td></ld<></td></ld<></td></ld<></td></ld<>	0,008	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td><td>0,003</td><td>0,004</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,012</td><td>0,003</td><td>0,004</td></ld<></td></ld<>	<ld< td=""><td>0,012</td><td>0,003</td><td>0,004</td></ld<>	0,012	0,003	0,004
12,4	0,003	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,016</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,016</td></ld<></td></ld<>	<ld< td=""><td>0,016</td></ld<>	0,016
13,3	0,004	0,003	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td>0,005</td><td><ld< td=""><td>0,015</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,005</td><td><ld< td=""><td>0,015</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,005</td><td><ld< td=""><td>0,015</td></ld<></td></ld<>	0,005	0,005	<ld< td=""><td>0,015</td></ld<>	0,015
13,8	0,013	0,003	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,004</td><td>0,003</td><td>0,004</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td><td>0,004</td><td>0,003</td><td>0,004</td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td>0,004</td><td>0,003</td><td>0,004</td></ld<>	0,004	0,004	0,003	0,004
14,4	0,012	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,023</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,023</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,023</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,023</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,023</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,023</td></ld<>	0,023

Fluxos de HPAs (µg cm⁻² kyr⁻¹) para RJ13-01

cal kyr	Ph	C1Ph	C2Ph	C3Ph	C4Ph	Ret	Fl	Ру	C1Py	C2Py
BP										
0,012	0,504	0,311	0,557	0,595	0,245	0,126	0,137	0,081	0,104	0,138
0,3	0,042	0,013	0,016	0,031	0,112	0,007	0,026	0,006	0,005	0,010
0,3	0,018	0,010	0,019	0,030	0,042	0,009	0,017	0,007	0,008	0,008
0,5	0,031	0,010	0,028	0,020	0,041	<ld< td=""><td>0,011</td><td>0,005</td><td>0,009</td><td>0,011</td></ld<>	0,011	0,005	0,009	0,011
0,9	0,030	0,007	0,011	0,007	0,004	0,004	0,016	0,005	0,003	<ld< td=""></ld<>
1,2	0,018	0,007	0,006	0,005	0,007	<ld< td=""><td>0,005</td><td>0,003</td><td>0,005</td><td>0,009</td></ld<>	0,005	0,003	0,005	0,009
1,4	0,019	0,006	0,008	0,007	0,009	<ld< td=""><td>0,011</td><td>0,003</td><td>0,003</td><td>0,002</td></ld<>	0,011	0,003	0,003	0,002
2,2	0,025	0,005	0,007	0,005	0,027	<ld< td=""><td>0,006</td><td>0,004</td><td>0,004</td><td>0,002</td></ld<>	0,006	0,004	0,004	0,002
2,6	0,011	0,002	0,005	0,007	0,020	0,002	0,009	0,003	0,002	0,002
2,8	0,009	<ld< td=""><td>0,004</td><td>0,007</td><td>0,013</td><td><ld< td=""><td>0,007</td><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,004	0,007	0,013	<ld< td=""><td>0,007</td><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,007	0,002	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
3,0	0,017	0,005	0,006	0,005	0,008	0,002	0,009	0,004	0,003	<ld< td=""></ld<>
3,2	0,019	0,030	0,065	0,133	0,323	0,006	0,024	0,022	0,018	0,019
3,3	0,026	0,052	0,127	0,214	0,406	0,009	0,036	0,036	0,030	0,030
3,7	0,015	0,008	0,011	0,010	0,024	0,003	0,011	0,002	0,004	<ld< td=""></ld<>
4,1	0,016	0,005	0,005	0,007	0,033	<ld< td=""><td>0,006</td><td>0,004</td><td>0,004</td><td>0,009</td></ld<>	0,006	0,004	0,004	0,009
4,6	0,006	0,006	0,008	0,006	0,042	<ld< td=""><td>0,006</td><td>0,005</td><td>0,004</td><td><ld< td=""></ld<></td></ld<>	0,006	0,005	0,004	<ld< td=""></ld<>
5,1	0,017	0,007	0,004	0,003	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,003</td><td>0,004</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,003</td><td>0,004</td><td><ld< td=""></ld<></td></ld<>	0,005	0,003	0,004	<ld< td=""></ld<>
5,3	0,010	0,005	0,004	0,007	0,016	<ld< td=""><td>0,008</td><td>0,002</td><td>0,002</td><td><ld< td=""></ld<></td></ld<>	0,008	0,002	0,002	<ld< td=""></ld<>
6,1	0,006	0,004	0,004	0,004	0,015	<ld< td=""><td>0,004</td><td>0,002</td><td>0,003</td><td><ld< td=""></ld<></td></ld<>	0,004	0,002	0,003	<ld< td=""></ld<>
6,6	0,013	0,006	0,003	0,002	0,012	<ld< td=""><td>0,008</td><td>0,002</td><td>0,002</td><td><ld< td=""></ld<></td></ld<>	0,008	0,002	0,002	<ld< td=""></ld<>
7,0	0,007	0,005	0,002	0,006	0,027	<ld< td=""><td>0,004</td><td>0,003</td><td>0,003</td><td>0,002</td></ld<>	0,004	0,003	0,003	0,002
7,6	0,019	0,017	0,045	0,084	0,127	0,007	0,010	0,005	0,015	0,024
8,0	0,007	0,002	0,005	0,004	0,004	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,002</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,002</td><td><ld< td=""></ld<></td></ld<>	0,002	<ld< td=""></ld<>
8,8	0,004	0,005	0,007	0,008	0,006	0,002	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,0	0,006	0,003	0,010	0,012	0,023	<ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,002	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
10,7	0,012	0,017	0,027	0,043	0,064	0,007	0,006	0,004	0,006	0,004
10,9	0,012	<ld< td=""><td>0,004</td><td>0,005</td><td>0,009</td><td>0,003</td><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,004	0,005	0,009	0,003	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
11,8	0,010	0,003	0,003	0,004	<ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
12,4	<ld< td=""><td>0,004</td><td>0,003</td><td>0,005</td><td>0,006</td><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,004	0,003	0,005	0,006	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,3	0,014	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
13,8	0,013	0,005	0,008	0,008	0,020	0,004	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
14,4	<ld< td=""><td>0,004</td><td><ld< td=""><td>0.004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td>0.004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0.004	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

cal kyr	Ch	C1Ch	C2Ch	BbjFl	BkFl	BePy	BaPy	Pe
BP								
0,012	0,091	<ld< td=""><td>0,166</td><td>0,082</td><td>0,021</td><td>0,060</td><td>0,030</td><td>0,136</td></ld<>	0,166	0,082	0,021	0,060	0,030	0,136
0,3	0,009	0,005	0,007	0,024	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,053</td></ld<></td></ld<>	0,006	<ld< td=""><td>0,053</td></ld<>	0,053
0,3	0,008	0,008	0,018	0,020	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,050</td></ld<></td></ld<>	0,006	<ld< td=""><td>0,050</td></ld<>	0,050
0,5	<ld< td=""><td>0,006</td><td>0,007</td><td>0,013</td><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td></ld<></td></ld<></td></ld<>	0,006	0,007	0,013	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,026</td></ld<></td></ld<>	0,005	<ld< td=""><td>0,026</td></ld<>	0,026
0,9	0,005	<ld< td=""><td>0,003</td><td>0,014</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,033</td></ld<></td></ld<></td></ld<>	0,003	0,014	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,033</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,033</td></ld<>	0,033
1,2	0,006	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,022</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,022</td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,022</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,022</td></ld<></td></ld<>	<ld< td=""><td>0,022</td></ld<>	0,022
1,4	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,012</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td>0,012</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,025</td></ld<></td></ld<></td></ld<>	0,012	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,025</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,025</td></ld<>	0,025
2,2	0,004	<ld< td=""><td><ld< td=""><td>0,006</td><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,019</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td>0,005</td><td><ld< td=""><td><ld< td=""><td>0,019</td></ld<></td></ld<></td></ld<>	0,006	0,005	<ld< td=""><td><ld< td=""><td>0,019</td></ld<></td></ld<>	<ld< td=""><td>0,019</td></ld<>	0,019
2,6	0,003	<ld< td=""><td><ld< td=""><td>0,009</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,019</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,009</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,019</td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td>0,002</td><td><ld< td=""><td>0,019</td></ld<></td></ld<>	0,002	<ld< td=""><td>0,019</td></ld<>	0,019
2,8	0,002	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,011</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,011</td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,011</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,011</td></ld<></td></ld<>	<ld< td=""><td>0,011</td></ld<>	0,011
3,0	0,004	<ld< td=""><td><ld< td=""><td>0,010</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,022</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,010</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,022</td></ld<></td></ld<></td></ld<>	0,010	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,022</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,022</td></ld<>	0,022
3,2	0,006	0,003	<ld< td=""><td>0,008</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<>	0,008	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,017</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,017</td></ld<>	0,017
3,3	0,009	0,006	0,006	0,013	0,002	0,003	<ld< td=""><td>0,026</td></ld<>	0,026
3,7	0,004	0,002	<ld< td=""><td>0,009</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,018</td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,018</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,018</td></ld<>	0,018
4,1	0,005	<ld< td=""><td>0,003</td><td>0,007</td><td>0,002</td><td>0,003</td><td><ld< td=""><td>0,026</td></ld<></td></ld<>	0,003	0,007	0,002	0,003	<ld< td=""><td>0,026</td></ld<>	0,026
4,6	0,004	<ld< td=""><td><ld< td=""><td>0,007</td><td>0,002</td><td>0,002</td><td><ld< td=""><td>0,021</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td>0,002</td><td>0,002</td><td><ld< td=""><td>0,021</td></ld<></td></ld<>	0,007	0,002	0,002	<ld< td=""><td>0,021</td></ld<>	0,021
5,1	0,004	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,024</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,024</td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,024</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,024</td></ld<>	0,024
5,3	0,004	0,003	<ld< td=""><td>0,007</td><td>0,007</td><td>0,002</td><td><ld< td=""><td>0,015</td></ld<></td></ld<>	0,007	0,007	0,002	<ld< td=""><td>0,015</td></ld<>	0,015
6,1	0,002	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,018</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,018</td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,002</td><td><ld< td=""><td>0,018</td></ld<></td></ld<>	0,002	<ld< td=""><td>0,018</td></ld<>	0,018
6,6	0,003	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,041</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,041</td></ld<></td></ld<>	<ld< td=""><td>0,041</td></ld<>	0,041
7,0	0,003	<ld< td=""><td><ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,014</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,014</td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,014</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,014</td></ld<></td></ld<>	<ld< td=""><td>0,014</td></ld<>	0,014
7,6	0,005	0,007	0,022	0,007	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,013</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,013</td></ld<>	0,013
8,0	0,003	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td></ld<></td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,012</td></ld<></td></ld<>	<ld< td=""><td>0,012</td></ld<>	0,012
8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,003</td></ld<></td></ld<>	<ld< td=""><td>0,003</td></ld<>	0,003
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
10,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,017</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,017</td></ld<></td></ld<>	<ld< td=""><td>0,017</td></ld<>	0,017
10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<>	<ld< td=""><td>0,007</td></ld<>	0,007
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
13,3	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td></ld<></td></ld<>	<ld< td=""><td>0,004</td></ld<>	0,004
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td></ld<></td></ld<>	<ld< td=""><td>0,006</td></ld<>	0,006
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0.004</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0.004</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0.004</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0.004</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0.004</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0.004</td></ld<></td></ld<>	<ld< td=""><td>0.004</td></ld<>	0.004

Fluxos de HPAs (µg cm ⁻² kyr ⁻¹) para RJ13-01.										
cal kyr	3-MeChl	IP	DBahA	BghiPe	DBalPy	ΣHPAs	ΣPyro	ΣΒίο		
BP										
0,012	0,134	0,074	0,032	0,076	0,044	5,015	0,697	3,062		
0,3	0,008	0,025	0,005	0,015	0,016	0,582	0,128	0,343		
0,3	0,019	0,019	0,009	0,013	0,008	0,510	0,099	0,294		
0,5	0,016	0,010	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,739</td><td>0,049</td><td>0,403</td></ld<></td></ld<>	0,006	<ld< td=""><td>0,739</td><td>0,049</td><td>0,403</td></ld<>	0,739	0,049	0,403		
0,9	<ld< td=""><td>0,014</td><td>0,004</td><td>0,008</td><td>0,007</td><td>0,258</td><td>0,072</td><td>0,145</td></ld<>	0,014	0,004	0,008	0,007	0,258	0,072	0,145		
1,2	<ld< td=""><td>0,010</td><td>0,003</td><td>0,007</td><td><ld< td=""><td>0,192</td><td>0,038</td><td>0,118</td></ld<></td></ld<>	0,010	0,003	0,007	<ld< td=""><td>0,192</td><td>0,038</td><td>0,118</td></ld<>	0,192	0,038	0,118		
1,4	<ld< td=""><td>0,009</td><td><ld< td=""><td>0,004</td><td><ld< td=""><td>0,325</td><td>0,040</td><td>0,222</td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td>0,004</td><td><ld< td=""><td>0,325</td><td>0,040</td><td>0,222</td></ld<></td></ld<>	0,004	<ld< td=""><td>0,325</td><td>0,040</td><td>0,222</td></ld<>	0,325	0,040	0,222		
2,2	<ld< td=""><td>0,008</td><td>0,002</td><td>0,006</td><td>0,002</td><td>0,197</td><td>0,041</td><td>0,127</td></ld<>	0,008	0,002	0,006	0,002	0,197	0,041	0,127		
2,6	0,002	0,009	0,002	0,005	0,005	0,154	0,045	0,082		
2,8	<ld< td=""><td>0,004</td><td><ld< td=""><td>0,002</td><td>0,002</td><td>0,089</td><td>0,025</td><td>0,058</td></ld<></td></ld<>	0,004	<ld< td=""><td>0,002</td><td>0,002</td><td>0,089</td><td>0,025</td><td>0,058</td></ld<>	0,002	0,002	0,089	0,025	0,058		
3,0	<ld< td=""><td>0,009</td><td>0,002</td><td>0,005</td><td>0,005</td><td>0,179</td><td>0,048</td><td>0,101</td></ld<>	0,009	0,002	0,005	0,005	0,179	0,048	0,101		
3,2	<ld< td=""><td>0,007</td><td>0,002</td><td>0,005</td><td>0,004</td><td>0,845</td><td>0,079</td><td>0,649</td></ld<>	0,007	0,002	0,005	0,004	0,845	0,079	0,649		
3,3	<ld< td=""><td>0,011</td><td>0,003</td><td>0,006</td><td>0,005</td><td>1,238</td><td>0,122</td><td>0,923</td></ld<>	0,011	0,003	0,006	0,005	1,238	0,122	0,923		
3,7	0,004	0,006	<ld< td=""><td>0,004</td><td><ld< td=""><td>0,371</td><td>0,039</td><td>0,221</td></ld<></td></ld<>	0,004	<ld< td=""><td>0,371</td><td>0,039</td><td>0,221</td></ld<>	0,371	0,039	0,221		
4,1	<ld< td=""><td>0,011</td><td>0,004</td><td>0,007</td><td>0,003</td><td>0,222</td><td>0,048</td><td>0,136</td></ld<>	0,011	0,004	0,007	0,003	0,222	0,048	0,136		
4,6	<ld< td=""><td>0,009</td><td>0,004</td><td>0,007</td><td>0,003</td><td>0,219</td><td>0,046</td><td>0,126</td></ld<>	0,009	0,004	0,007	0,003	0,219	0,046	0,126		
5,1	<ld< td=""><td>0,008</td><td>0,002</td><td>0,006</td><td>0,003</td><td>0,156</td><td>0,039</td><td>0,100</td></ld<>	0,008	0,002	0,006	0,003	0,156	0,039	0,100		
5,3	0,002	0,006	<ld< td=""><td>0,004</td><td><ld< td=""><td>0,154</td><td>0,041</td><td>0,082</td></ld<></td></ld<>	0,004	<ld< td=""><td>0,154</td><td>0,041</td><td>0,082</td></ld<>	0,154	0,041	0,082		
6,1	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,006</td><td>0,002</td><td>0,139</td><td>0,030</td><td>0,093</td></ld<></td></ld<>	0,007	<ld< td=""><td>0,006</td><td>0,002</td><td>0,139</td><td>0,030</td><td>0,093</td></ld<>	0,006	0,002	0,139	0,030	0,093		
6,6	<ld< td=""><td>0,005</td><td><ld< td=""><td>0,002</td><td><ld< td=""><td>0,145</td><td>0,028</td><td>0,100</td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td>0,002</td><td><ld< td=""><td>0,145</td><td>0,028</td><td>0,100</td></ld<></td></ld<>	0,002	<ld< td=""><td>0,145</td><td>0,028</td><td>0,100</td></ld<>	0,145	0,028	0,100		
7,0	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,005</td><td>0,002</td><td>0,123</td><td>0,026</td><td>0,083</td></ld<></td></ld<>	0,006	<ld< td=""><td>0,005</td><td>0,002</td><td>0,123</td><td>0,026</td><td>0,083</td></ld<>	0,005	0,002	0,123	0,026	0,083		
7,6	0,011	0,006	0,003	0,003	0,003	0,565	0,042	0,349		
8,0	<ld< td=""><td>0,006</td><td>0,002</td><td>0,004</td><td>0,003</td><td>0,085</td><td>0,028</td><td>0,045</td></ld<>	0,006	0,002	0,004	0,003	0,085	0,028	0,045		
8,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,077</td><td>0,004</td><td>0,050</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,077</td><td>0,004</td><td>0,050</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,077</td><td>0,004</td><td>0,050</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,077</td><td>0,004</td><td>0,050</td></ld<></td></ld<>	<ld< td=""><td>0,077</td><td>0,004</td><td>0,050</td></ld<>	0,077	0,004	0,050		
9,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,075</td><td>0,002</td><td>0,064</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,075</td><td>0,002</td><td>0,064</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,075</td><td>0,002</td><td>0,064</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,075</td><td>0,002</td><td>0,064</td></ld<></td></ld<>	<ld< td=""><td>0,075</td><td>0,002</td><td>0,064</td></ld<>	0,075	0,002	0,064		
9,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,020</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,020</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,020</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,024</td><td><ld< td=""><td>0,020</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,024</td><td><ld< td=""><td>0,020</td></ld<></td></ld<>	0,024	<ld< td=""><td>0,020</td></ld<>	0,020		
10,7	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,255</td><td>0,011</td><td>0,205</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,255</td><td>0,011</td><td>0,205</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,255</td><td>0,011</td><td>0,205</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,255</td><td>0,011</td><td>0,205</td></ld<></td></ld<>	<ld< td=""><td>0,255</td><td>0,011</td><td>0,205</td></ld<>	0,255	0,011	0,205		
10,9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,056</td><td>0,003</td><td>0,050</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,056</td><td>0,003</td><td>0,050</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,056</td><td>0,003</td><td>0,050</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,056</td><td>0,003</td><td>0,050</td></ld<></td></ld<>	<ld< td=""><td>0,056</td><td>0,003</td><td>0,050</td></ld<>	0,056	0,003	0,050		
11,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,078</td><td><ld< td=""><td>0,053</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,078</td><td><ld< td=""><td>0,053</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,078</td><td><ld< td=""><td>0,053</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,078</td><td><ld< td=""><td>0,053</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,078</td><td><ld< td=""><td>0,053</td></ld<></td></ld<>	0,078	<ld< td=""><td>0,053</td></ld<>	0,053		
12,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,051</td><td><ld< td=""><td>0,035</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,051</td><td><ld< td=""><td>0,035</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,051</td><td><ld< td=""><td>0,035</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,051</td><td><ld< td=""><td>0,035</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,051</td><td><ld< td=""><td>0,035</td></ld<></td></ld<>	0,051	<ld< td=""><td>0,035</td></ld<>	0,035		
13,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,065</td><td>0,004</td><td>0,037</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,065</td><td>0,004</td><td>0,037</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,065</td><td>0,004</td><td>0,037</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,065</td><td>0,004</td><td>0,037</td></ld<></td></ld<>	<ld< td=""><td>0,065</td><td>0,004</td><td>0,037</td></ld<>	0,065	0,004	0,037		
13,8	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,102</td><td>0,003</td><td>0,084</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,102</td><td>0,003</td><td>0,084</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,102</td><td>0,003</td><td>0,084</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,102</td><td>0,003</td><td>0,084</td></ld<></td></ld<>	<ld< td=""><td>0,102</td><td>0,003</td><td>0,084</td></ld<>	0,102	0,003	0,084		
14,4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,055</td><td><ld< td=""><td>0,029</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,055</td><td><ld< td=""><td>0,029</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,055</td><td><ld< td=""><td>0,029</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,055</td><td><ld< td=""><td>0,029</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,055</td><td><ld< td=""><td>0,029</td></ld<></td></ld<>	0,055	<ld< td=""><td>0,029</td></ld<>	0,029		

<u>Fluxos de HPAs (μg cm⁻² ky</u>r⁻¹) para RJ13-01

HPAs para	RJ13-02.								
cal kyr	Ν	C1N	C2N	C3N	C4N	F	C1F	C2F	C3F
BP	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹
2,3	1,705	0,213	0,395	0,167	0,354	0,187	0,256	0,269	0,800
2,4	1,289	0,405	0,433	0,125	<ld< td=""><td><ld< td=""><td>0,260</td><td>0,275</td><td>0,303</td></ld<></td></ld<>	<ld< td=""><td>0,260</td><td>0,275</td><td>0,303</td></ld<>	0,260	0,275	0,303
2,5	0,381	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,563</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,563</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,563</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,563</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,563</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,563</td></ld<></td></ld<>	<ld< td=""><td>0,563</td></ld<>	0,563
2,5	0,433	0,147	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,131</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,131</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,131</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,131</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,131	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	0,576	0,220	0,263	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,240</td><td>0,506</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,240</td><td>0,506</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,240</td><td>0,506</td></ld<></td></ld<>	<ld< td=""><td>0,240</td><td>0,506</td></ld<>	0,240	0,506
2,6	0,619	0,305	0,829	0,176	<ld< td=""><td><ld< td=""><td>0,294</td><td>0,474</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,294</td><td>0,474</td><td><ld< td=""></ld<></td></ld<>	0,294	0,474	<ld< td=""></ld<>
2,8	0,547	<ld< td=""><td>0,208</td><td><ld< td=""><td>0,142</td><td><ld< td=""><td>0,535</td><td>0,508</td><td>0,844</td></ld<></td></ld<></td></ld<>	0,208	<ld< td=""><td>0,142</td><td><ld< td=""><td>0,535</td><td>0,508</td><td>0,844</td></ld<></td></ld<>	0,142	<ld< td=""><td>0,535</td><td>0,508</td><td>0,844</td></ld<>	0,535	0,508	0,844
2,9	0,799	0,197	0,438	0,174	<ld< td=""><td>0,158</td><td>0,245</td><td>0,144</td><td>0,170</td></ld<>	0,158	0,245	0,144	0,170
2,9	0,763	0,302	0,331	0,134	0,134	<ld< td=""><td>1,122</td><td>0,461</td><td>0,651</td></ld<>	1,122	0,461	0,651
3,0	1,975	0,501	0,762	0,415	0,579	0,526	1,018	0,984	1,692
3,1	5,772	0,466	0,507	0,237	0,177	0,224	0,283	0,306	0,261
3,1	0,809	0,168	0,199	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,147</td><td>0,235</td><td>0,134</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,147</td><td>0,235</td><td>0,134</td></ld<></td></ld<>	<ld< td=""><td>0,147</td><td>0,235</td><td>0,134</td></ld<>	0,147	0,235	0,134
3,3	1,049	0,442	0,783	0,398	0,386	<ld< td=""><td>0,448</td><td>1,522</td><td>1,610</td></ld<>	0,448	1,522	1,610
3,4	0,709	0,377	0,693	0,242	0,234	0,131	0,689	0,963	1,222
3,6	0,722	0,383	0,595	0,391	0,236	0,143	0,794	1,636	2,572
3,7	0,794	0,259	0,335	0,137	0,232	<ld< td=""><td>0,740</td><td>0,225</td><td>0,379</td></ld<>	0,740	0,225	0,379
3,7	0,972	0,180	0,256	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,298</td><td>0,336</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,298</td><td>0,336</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,298</td><td>0,336</td></ld<></td></ld<>	<ld< td=""><td>0,298</td><td>0,336</td></ld<>	0,298	0,336
3,9	1,065	0,167	0,494	0,147	0,221	0,175	0,272	0,260	0,744
4,2	0,600	0,162	0,215	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,133</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,133</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,133</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,133	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,7	0,614	0,167	0,207	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,134</td><td>0,215</td><td>0,403</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,134</td><td>0,215</td><td>0,403</td></ld<></td></ld<>	<ld< td=""><td>0,134</td><td>0,215</td><td>0,403</td></ld<>	0,134	0,215	0,403
4,8	0,703	0,203	0,134	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,145</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,145</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,145</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,145	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	0,910	0,463	0,358	<ld< td=""><td><ld< td=""><td>0,142</td><td>0,254</td><td>0,147</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,142</td><td>0,254</td><td>0,147</td><td><ld< td=""></ld<></td></ld<>	0,142	0,254	0,147	<ld< td=""></ld<>
5,0	0,774	0,390	0,290	0,129	<ld< td=""><td><ld< td=""><td>0,363</td><td>0,268</td><td>0,674</td></ld<></td></ld<>	<ld< td=""><td>0,363</td><td>0,268</td><td>0,674</td></ld<>	0,363	0,268	0,674
5,3	0,442	0,127	0,223	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,204</td><td>0,136</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,204</td><td>0,136</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,204</td><td>0,136</td><td><ld< td=""></ld<></td></ld<>	0,204	0,136	<ld< td=""></ld<>

HPAs par	a RJ13-(02.								
cal kyr	Ph	C1Ph	C2Ph	C3Ph	C4Ph	Ret	Fl	Ру	C1Py	C2Py
BP	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	μg kg ⁻¹	μg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹
2,3	0,461	0,371	0,592	0,816	1,584	0,290	0,889	0,288	0,277	0,317
2,4	0,275	0,228	0,565	1,100	2,308	0,300	0,669	0,202	0,185	0,191
2,5	<ld< td=""><td><ld< td=""><td>0,195</td><td>0,157</td><td>0,452</td><td>0,267</td><td>0,304</td><td><ld< td=""><td><ld< td=""><td>0,166</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,195</td><td>0,157</td><td>0,452</td><td>0,267</td><td>0,304</td><td><ld< td=""><td><ld< td=""><td>0,166</td></ld<></td></ld<></td></ld<>	0,195	0,157	0,452	0,267	0,304	<ld< td=""><td><ld< td=""><td>0,166</td></ld<></td></ld<>	<ld< td=""><td>0,166</td></ld<>	0,166
2,5	0,259	0,207	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,397</td><td>0,174</td><td>0,128</td><td>0,128</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,397</td><td>0,174</td><td>0,128</td><td>0,128</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,397</td><td>0,174</td><td>0,128</td><td>0,128</td></ld<></td></ld<>	<ld< td=""><td>0,397</td><td>0,174</td><td>0,128</td><td>0,128</td></ld<>	0,397	0,174	0,128	0,128
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,156</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,156</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,156</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,156</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,156</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,156</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,156	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	<ld< td=""><td><ld< td=""><td>0,159</td><td>0,264</td><td><ld< td=""><td>0,223</td><td>0,278</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,159</td><td>0,264</td><td><ld< td=""><td>0,223</td><td>0,278</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,159	0,264	<ld< td=""><td>0,223</td><td>0,278</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,223	0,278	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	0,595	0,377	0,215	0,184	0,491	0,224	0,543	0,247	0,341	<ld< td=""></ld<>
2,8	0,170	0,154	0,427	0,580	4,133	3,668	0,473	0,144	0,212	0,223
2,9	0,312	0,268	<ld< td=""><td>0,417</td><td>1,044</td><td>0,248</td><td>0,497</td><td>0,190</td><td>0,152</td><td><ld< td=""></ld<></td></ld<>	0,417	1,044	0,248	0,497	0,190	0,152	<ld< td=""></ld<>
2,9	0,158	0,184	0,460	0,673	19,743	18,854	0,439	0,130	0,175	0,206
3,0	1,097	0,346	0,543	0,743	1,189	0,204	1,535	0,361	0,216	0,133
3,1	0,770	0,246	0,379	0,262	0,135	0,267	0,652	0,168	0,129	0,179
3,1	0,144	<ld< td=""><td>0,221</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,468</td><td>0,140</td><td>0,128</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,221	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,468</td><td>0,140</td><td>0,128</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,468</td><td>0,140</td><td>0,128</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,468</td><td>0,140</td><td>0,128</td><td><ld< td=""></ld<></td></ld<>	0,468	0,140	0,128	<ld< td=""></ld<>
3,3	0,237	0,324	0,814	1,165	0,971	0,492	0,517	0,161	0,187	0,320
3,4	0,202	0,387	0,691	0,719	22,961	25,861	0,602	0,129	0,166	0,135
3,6	0,313	0,458	1,110	0,679	19,595	22,346	0,746	<ld< td=""><td>0,174</td><td>0,219</td></ld<>	0,174	0,219
3,7	0,164	0,159	0,179	0,172	0,251	<ld< td=""><td>0,232</td><td><ld< td=""><td>0,127</td><td>0,204</td></ld<></td></ld<>	0,232	<ld< td=""><td>0,127</td><td>0,204</td></ld<>	0,127	0,204
3,7	0,222	0,131	0,230	0,377	0,719	0,133	0,408	0,125	0,127	0,126
3,9	0,450	0,165	0,511	0,406	0,661	0,191	0,299	0,242	0,242	0,364
4,2	0,509	0,433	0,138	0,145	0,525	0,231	0,676	0,224	0,165	<ld< td=""></ld<>
4,7	0,371	0,342	0,198	0,127	0,213	0,174	0,480	0,156	0,128	<ld< td=""></ld<>
4,8	0,308	0,243	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,414</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,414</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,414</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,414</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,414	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	0,383	0,376	0,128	0,383	1,156	0,187	0,207	0,207	0,132	<ld< td=""></ld<>
5,0	0,370	0,391	0,149	0,236	1,257	0,930	0,359	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3	0,285	0,320	<ld< td=""><td>0,224</td><td>0,611</td><td>0,279</td><td>0,383</td><td>0,144</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,224	0,611	0,279	0,383	0,144	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

cal kyr	Ch	BbjFl	BePy	Pe	3-MeChl	IP	DBahA	BghiPe	DBalPy
BP	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹	µg kg ⁻¹
2,3	0,333	0,680	0,348	0,921	0,313	0,758	0,293	0,656	0,293
2,4	0,214	0,451	<ld< td=""><td>1,095</td><td><ld< td=""><td>0,476</td><td>0,157</td><td>0,305</td><td>0,244</td></ld<></td></ld<>	1,095	<ld< td=""><td>0,476</td><td>0,157</td><td>0,305</td><td>0,244</td></ld<>	0,476	0,157	0,305	0,244
2,5	0,143	0,436	0,141	0,771	0,365	0,338	0,150	0,260	0,207
2,5	0,170	0,340	0,145	1,020	<ld< td=""><td>0,243</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,243	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,487</td><td><ld< td=""><td>0,209</td><td><ld< td=""><td>0,157</td><td>0,126</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,487</td><td><ld< td=""><td>0,209</td><td><ld< td=""><td>0,157</td><td>0,126</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,487</td><td><ld< td=""><td>0,209</td><td><ld< td=""><td>0,157</td><td>0,126</td></ld<></td></ld<></td></ld<>	0,487	<ld< td=""><td>0,209</td><td><ld< td=""><td>0,157</td><td>0,126</td></ld<></td></ld<>	0,209	<ld< td=""><td>0,157</td><td>0,126</td></ld<>	0,157	0,126
2,6	0,154	0,436	<ld< td=""><td>0,913</td><td>0,143</td><td>0,472</td><td>0,177</td><td>0,299</td><td>0,295</td></ld<>	0,913	0,143	0,472	0,177	0,299	0,295
2,6	0,172	0,475	<ld< td=""><td>2,684</td><td><ld< td=""><td>0,245</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	2,684	<ld< td=""><td>0,245</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,245	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,8	0,209	0,477	<ld< td=""><td>1,039</td><td>0,226</td><td>0,431</td><td>0,212</td><td>0,269</td><td>0,254</td></ld<>	1,039	0,226	0,431	0,212	0,269	0,254
2,9	0,197	0,436	0,145	0,892	<ld< td=""><td>0,279</td><td><ld< td=""><td>0,136</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,279	<ld< td=""><td>0,136</td><td><ld< td=""></ld<></td></ld<>	0,136	<ld< td=""></ld<>
2,9	0,192	0,417	<ld< td=""><td>0,893</td><td>0,144</td><td>0,344</td><td>0,138</td><td>0,219</td><td>0,268</td></ld<>	0,893	0,144	0,344	0,138	0,219	0,268
3,0	0,323	0,514	0,145	0,944	<ld< td=""><td>0,442</td><td>0,145</td><td>0,266</td><td>0,210</td></ld<>	0,442	0,145	0,266	0,210
3,1	0,198	0,459	<ld< td=""><td>0,884</td><td>0,203</td><td>0,429</td><td>0,180</td><td>0,296</td><td>0,243</td></ld<>	0,884	0,203	0,429	0,180	0,296	0,243
3,1	0,196	0,481	0,128	0,962	<ld< td=""><td>0,492</td><td>0,162</td><td>0,294</td><td>0,259</td></ld<>	0,492	0,162	0,294	0,259
3,3	0,137	0,467	0,128	0,806	0,188	0,365	<ld< td=""><td>0,287</td><td>0,926</td></ld<>	0,287	0,926
3,4	0,141	0,426	<ld< td=""><td>0,771</td><td>0,281</td><td>0,362</td><td>0,308</td><td>0,354</td><td>0,942</td></ld<>	0,771	0,281	0,362	0,308	0,354	0,942
3,6	0,155	0,421	<ld< td=""><td>0,782</td><td>0,218</td><td>0,414</td><td>0,307</td><td>0,270</td><td>0,827</td></ld<>	0,782	0,218	0,414	0,307	0,270	0,827
3,7	<ld< td=""><td>0,296</td><td><ld< td=""><td>0,947</td><td><ld< td=""><td>0,385</td><td><ld< td=""><td>0,291</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,296	<ld< td=""><td>0,947</td><td><ld< td=""><td>0,385</td><td><ld< td=""><td>0,291</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,947	<ld< td=""><td>0,385</td><td><ld< td=""><td>0,291</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,385	<ld< td=""><td>0,291</td><td><ld< td=""></ld<></td></ld<>	0,291	<ld< td=""></ld<>
3,7	0,158	0,362	<ld< td=""><td>0,849</td><td>0,133</td><td>0,333</td><td><ld< td=""><td>0,197</td><td>0,193</td></ld<></td></ld<>	0,849	0,133	0,333	<ld< td=""><td>0,197</td><td>0,193</td></ld<>	0,197	0,193
3,9	0,211	0,544	0,129	0,973	0,174	0,397	0,211	0,276	0,125
4,2	0,202	0,462	<ld< td=""><td>0,861</td><td><ld< td=""><td>0,202</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,861	<ld< td=""><td>0,202</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,202	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,7	0,188	0,463	0,136	1,624	<ld< td=""><td>0,243</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,243	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,8	0,194	0,389	<ld< td=""><td>0,906</td><td><ld< td=""><td>0,240</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,906	<ld< td=""><td>0,240</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,240	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	0,163	0,506	<ld< td=""><td>0,923</td><td><ld< td=""><td>0,229</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,923	<ld< td=""><td>0,229</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,229	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,0	0,170	0,386	<ld< td=""><td>0,821</td><td><ld< td=""><td>0,206</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,821	<ld< td=""><td>0,206</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,206	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3	<ld< td=""><td>0,442</td><td>0,169</td><td>0,786</td><td><ld< td=""><td>0,192</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,442	0,169	0,786	<ld< td=""><td>0,192</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,192	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

HPAs para RJ13-02. HPAs para RJ13-02.

HPAs para	a RJ13-02.				
cal kyr	ΣΗΡΑs	ΣΡуго	ΣPyro/ΣHPAs	%ΣPyro/ΣHPAs	Recuperação (Ch-d ₁₂)
BP	µg kg ⁻¹	µg kg ⁻¹			%
2,3	15,507	4,489	0,289	28,949	77,526
2,4	12,055	2,560	0,212	21,233	66,191
2,5	5,296	1,830	0,345	34,544	73,995
2,5	3,922	1,469	0,375	37,465	66,752
2,5	1,135	0,648	0,571	57,072	114,812
2,6	5,617	1,933	0,344	34,412	72,052
2,6	9,893	2,083	0,211	21,059	60,975
2,8	16,085	2,257	0,140	14,033	66,203
2,9	7,535	1,879	0,249	24,932	73,191
2,9	48,006	2,482	0,052	5,169	65,605
3,0	17,807	3,795	0,213	21,312	72,083
3,1	14,471	2,445	0,169	16,896	72,558
3,1	5,767	2,459	0,426	42,633	69,968
3,3	15,129	2,987	0,197	19,746	75,273
3,4	60,702	2,957	0,049	4,871	74,488
3,6	56,506	2,834	0,050	5,016	77,220
3,7	6,507	1,203	0,185	18,492	75,822
3,7	6,866	1,777	0,259	25,877	74,422
3,9	10,712	2,362	0,221	22,053	65,377
4,2	5,884	1,766	0,300	30,020	69,085
4,7	7,032	2,116	0,301	30,087	73,101
4,8	3,878	1,237	0,319	31,894	69,834
4,9	7,668	1,726	0,225	22,510	68,138
5,0	8,163	1,122	0,137	13,742	77,356
5,3	4,966	1,330	0,268	26,779	72,421

cal kyr	ΣΒίο	ΣBio/ΣHPAs	%ΣBio/ΣHPAs	Pe/BsFl+BsPy+Pe	%Pe/BsFl+BsPy+Pe
BP	µg kg ⁻¹				
2,3	7,871	0,508	50,756	0,420	41,996
2,4	8,124	0,674	67,397	0,708	70,837
2,5	2,223	0,420	41,974	0,572	57,191
2,5	2,065	0,527	52,660	0,678	67,772
2,5	0,487	0,429	42,928	1,000	100,000
2,6	2,617	0,466	46,587	0,677	67,684
2,6	6,700	0,677	67,729	0,754	75,381
2,8	11,068	0,688	68,806	0,685	68,545
2,9	4,788	0,635	63,544	0,606	60,580
2,9	42,629	0,888	88,799	0,681	68,143
3,0	9,298	0,522	52,214	0,589	58,879
3,1	10,103	0,698	69,812	0,659	65,851
3,1	2,503	0,434	43,400	0,612	61,239
3,3	7,868	0,520	52,007	0,576	57,557
3,4	53,849	0,887	88,711	0,644	64,397
3,6	47,609	0,843	84,254	0,650	65,007
3,7	3,630	0,558	55,780	0,762	76,185
3,7	4,068	0,593	59,259	0,701	70,111
3,9	5,450	0,509	50,879	0,591	59,115
4,2	3,820	0,649	64,927	0,651	65,057
4,7	4,037	0,574	57,409	0,608	60,778
4,8	2,496	0,644	64,372	0,700	69,972
4,9	5,268	0,687	68,700	0,501	50,069
5,0	5,736	0,703	70,274	0,680	68,024
5,3	3.297	0.664	66.387	0.563	56.279

Fluxos de HPAs (µg cm⁻² kyr⁻¹) para RJ13-02.

cal kyr BP	N	C1N	C2N	C3N	C4N	F	C1F	C2F	C3F
2,3	0,012	0,002	0,003	0,001	0,003	0,001	0,002	0,002	0,006
2,4	0,013	0,004	0,004	0,001	<ld< td=""><td><ld< td=""><td>0,003</td><td>0,003</td><td>0,003</td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td>0,003</td><td>0,003</td></ld<>	0,003	0,003	0,003
2,5	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td></ld<></td></ld<>	<ld< td=""><td>0,007</td></ld<>	0,007
2,5	0,006	0,002	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,002	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,6	0,009	0,003	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,008</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td>0,008</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td><td>0,008</td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td>0,008</td></ld<>	0,004	0,008
2,6	0,010	0,005	0,013	0,003	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,008</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,008</td><td><ld< td=""></ld<></td></ld<>	0,005	0,008	<ld< td=""></ld<>
2,8	0,010	<ld< td=""><td>0,004</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,010</td><td>0,010</td><td>0,016</td></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,010</td><td>0,010</td><td>0,016</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,010</td><td>0,010</td><td>0,016</td></ld<>	0,010	0,010	0,016
2,9	0,017	0,004	0,009	0,004	<ld< td=""><td>0,003</td><td>0,005</td><td>0,003</td><td>0,004</td></ld<>	0,003	0,005	0,003	0,004
2,9	0,017	0,007	0,007	0,003	0,003	<ld< td=""><td>0,025</td><td>0,010</td><td>0,014</td></ld<>	0,025	0,010	0,014
3,0	0,042	0,011	0,016	0,009	0,012	0,011	0,022	0,021	0,036
3,1	0,135	0,011	0,012	0,006	0,004	0,005	0,007	0,007	0,006
3,1	0,019	0,004	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,003</td><td>0,006</td><td>0,003</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,003</td><td>0,006</td><td>0,003</td></ld<></td></ld<>	<ld< td=""><td>0,003</td><td>0,006</td><td>0,003</td></ld<>	0,003	0,006	0,003
3,3	0,027	0,011	0,020	0,010	0,010	<ld< td=""><td>0,012</td><td>0,039</td><td>0,042</td></ld<>	0,012	0,039	0,042
3,4	0,027	0,014	0,026	0,009	0,009	0,005	0,026	0,036	0,046
3,6	0,029	0,015	0,024	0,016	0,009	0,006	0,032	0,066	0,103
3,7	0,033	0,011	0,014	0,006	0,010	<ld< td=""><td>0,031</td><td>0,009</td><td>0,016</td></ld<>	0,031	0,009	0,016
3,7	0,039	0,007	0,010	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td><td>0,013</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,012</td><td>0,013</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,012</td><td>0,013</td></ld<></td></ld<>	<ld< td=""><td>0,012</td><td>0,013</td></ld<>	0,012	0,013
3,9	0,045	0,007	0,021	0,006	0,009	0,007	0,011	0,011	0,031
4,2	0,026	0,007	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,7	0,038	0,010	0,013	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,008</td><td>0,013</td><td>0,025</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,008</td><td>0,013</td><td>0,025</td></ld<></td></ld<>	<ld< td=""><td>0,008</td><td>0,013</td><td>0,025</td></ld<>	0,008	0,013	0,025
4,8	0,045	0,013	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	0,059	0,030	0,023	<ld< td=""><td><ld< td=""><td>0,009</td><td>0,016</td><td>0,010</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,009</td><td>0,016</td><td>0,010</td><td><ld< td=""></ld<></td></ld<>	0,009	0,016	0,010	<ld< td=""></ld<>
5,0	0,051	0,026	0,019	0,008	<ld< td=""><td><ld< td=""><td>0,024</td><td>0,018</td><td>0,044</td></ld<></td></ld<>	<ld< td=""><td>0,024</td><td>0,018</td><td>0,044</td></ld<>	0,024	0,018	0,044
5,3	0,030	0,009	0,015	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,014</td><td>0,009</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,014</td><td>0,009</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,014</td><td>0,009</td><td><ld< td=""></ld<></td></ld<>	0,014	0,009	<ld< td=""></ld<>

Fluxos de HP.	Fluxos de HPAs (µg cm ⁻² kyr ⁻¹) para RJ13-02.											
cal kyr BP	Ph	C1Ph	C2Ph	C3Ph	C4Ph	Ret	Fl	Ру	C1Py	C2Py		
2,3	0,003	0,003	0,004	0,006	0,011	0,002	0,006	0,002	0,002	0,002		
2,4	0,003	0,002	0,006	0,011	0,023	0,003	0,007	0,002	0,002	0,002		
2,5	<ld< td=""><td><ld< td=""><td>0,002</td><td>0,002</td><td>0,005</td><td>0,003</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td>0,002</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,002</td><td>0,002</td><td>0,005</td><td>0,003</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td>0,002</td></ld<></td></ld<></td></ld<>	0,002	0,002	0,005	0,003	0,004	<ld< td=""><td><ld< td=""><td>0,002</td></ld<></td></ld<>	<ld< td=""><td>0,002</td></ld<>	0,002		
2,5	0,003	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td>0,002</td><td>0,002</td><td>0,002</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,005</td><td>0,002</td><td>0,002</td><td>0,002</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,005</td><td>0,002</td><td>0,002</td><td>0,002</td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,002</td><td>0,002</td><td>0,002</td></ld<>	0,005	0,002	0,002	0,002		
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,002</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,002	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>		
2,6	<ld< td=""><td><ld< td=""><td>0,002</td><td>0,004</td><td><ld< td=""><td>0,003</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,002</td><td>0,004</td><td><ld< td=""><td>0,003</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,002	0,004	<ld< td=""><td>0,003</td><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,003	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>		
2,6	0,009	0,006	0,003	0,003	0,008	0,004	0,009	0,004	0,005	<ld< td=""></ld<>		
2,8	0,003	0,003	0,008	0,011	0,079	0,070	0,009	0,003	0,004	0,004		
2,9	0,007	0,006	<ld< td=""><td>0,009</td><td>0,023</td><td>0,005</td><td>0,011</td><td>0,004</td><td>0,003</td><td><ld< td=""></ld<></td></ld<>	0,009	0,023	0,005	0,011	0,004	0,003	<ld< td=""></ld<>		
2,9	0,004	0,004	0,010	0,015	0,438	0,418	0,010	0,003	0,004	0,005		
3,0	0,023	0,007	0,012	0,016	0,025	0,004	0,033	0,008	0,005	0,003		
3,1	0,018	0,006	0,009	0,006	0,003	0,006	0,015	0,004	0,003	0,004		
3,1	0,003	<ld< td=""><td>0,005</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,011</td><td>0,003</td><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,011</td><td>0,003</td><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,011</td><td>0,003</td><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,011</td><td>0,003</td><td>0,003</td><td><ld< td=""></ld<></td></ld<>	0,011	0,003	0,003	<ld< td=""></ld<>		
3,3	0,006	0,008	0,021	0,030	0,025	0,013	0,013	0,004	0,005	0,008		
3,4	0,008	0,015	0,026	0,027	0,862	0,971	0,023	0,005	0,006	0,005		
3,6	0,013	0,018	0,045	0,027	0,788	0,899	0,030	<ld< td=""><td>0,007</td><td>0,009</td></ld<>	0,007	0,009		
3,7	0,007	0,007	0,008	0,007	0,011	<ld< td=""><td>0,010</td><td><ld< td=""><td>0,005</td><td>0,009</td></ld<></td></ld<>	0,010	<ld< td=""><td>0,005</td><td>0,009</td></ld<>	0,005	0,009		
3,7	0,009	0,005	0,009	0,015	0,029	0,005	0,016	0,005	0,005	0,005		
3,9	0,019	0,007	0,021	0,017	0,028	0,008	0,013	0,010	0,010	0,015		
4,2	0,022	0,019	0,006	0,006	0,023	0,010	0,030	0,010	0,007	<ld< td=""></ld<>		
4,7	0,023	0,021	0,012	0,008	0,013	0,011	0,030	0,010	0,008	<ld< td=""></ld<>		
4,8	0,020	0,016	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,027</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,027	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>		
4,9	0,025	0,024	0,008	0,025	0,075	0,012	0,013	0,013	0,009	<ld< td=""></ld<>		
5,0	0,024	0,026	0,010	0,016	0,083	0,061	0,024	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>		
5,3	0,020	0,022	<ld< td=""><td>0,015</td><td>0,042</td><td>0,019</td><td>0,026</td><td>0,010</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,015	0,042	0,019	0,026	0,010	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>		

-² k r^{-1} de HPAs (i R113 02

Fluxos de HPAs (µg cm⁻² kyr⁻¹) para RJ13-02.

Fluxos de HP	$\frac{As}{C}$) para r	N N N N N N N N N N N N N N N N N N N		TD		D 1 'D	
cal kyr BP	Ch	BbjFl	BePy	Pe	3-MeChl	<u>IP</u>	DBahA	BghiPe	DBalPy
2,3	0,002	0,005	0,002	0,007	0,002	0,005	0,002	0,005	0,002
2,4	0,002	0,004	<ld< td=""><td>0,011</td><td><ld< td=""><td>0,005</td><td>0,002</td><td>0,003</td><td>0,002</td></ld<></td></ld<>	0,011	<ld< td=""><td>0,005</td><td>0,002</td><td>0,003</td><td>0,002</td></ld<>	0,005	0,002	0,003	0,002
2,5	0,002	0,005	0,002	0,009	0,004	0,004	0,002	0,003	0,002
2,5	0,002	0,004	0,002	0,013	<ld< td=""><td>0,003</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,003	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,002</td><td>0,002</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,007</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,002</td><td>0,002</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,007</td><td><ld< td=""><td>0,003</td><td><ld< td=""><td>0,002</td><td>0,002</td></ld<></td></ld<></td></ld<>	0,007	<ld< td=""><td>0,003</td><td><ld< td=""><td>0,002</td><td>0,002</td></ld<></td></ld<>	0,003	<ld< td=""><td>0,002</td><td>0,002</td></ld<>	0,002	0,002
2,6	0,002	0,007	<ld< td=""><td>0,014</td><td>0,002</td><td>0,007</td><td>0,003</td><td>0,005</td><td>0,005</td></ld<>	0,014	0,002	0,007	0,003	0,005	0,005
2,6	0,003	0,008	<ld< td=""><td>0,042</td><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,042	<ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
2,8	0,004	0,009	<ld< td=""><td>0,020</td><td>0,004</td><td>0,008</td><td>0,004</td><td>0,005</td><td>0,005</td></ld<>	0,020	0,004	0,008	0,004	0,005	0,005
2,9	0,004	0,009	0,003	0,019	<ld< td=""><td>0,006</td><td><ld< td=""><td>0,003</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td>0,003</td><td><ld< td=""></ld<></td></ld<>	0,003	<ld< td=""></ld<>
2,9	0,004	0,009	<ld< td=""><td>0,020</td><td>0,003</td><td>0,008</td><td>0,003</td><td>0,005</td><td>0,006</td></ld<>	0,020	0,003	0,008	0,003	0,005	0,006
3,0	0,007	0,011	0,003	0,020	<ld< td=""><td>0,009</td><td>0,003</td><td>0,006</td><td>0,004</td></ld<>	0,009	0,003	0,006	0,004
3,1	0,005	0,011	<ld< td=""><td>0,021</td><td>0,005</td><td>0,010</td><td>0,004</td><td>0,007</td><td>0,006</td></ld<>	0,021	0,005	0,010	0,004	0,007	0,006
3,1	0,005	0,011	0,003	0,023	<ld< td=""><td>0,012</td><td>0,004</td><td>0,007</td><td>0,006</td></ld<>	0,012	0,004	0,007	0,006
3,3	0,004	0,012	0,003	0,021	0,005	0,009	<ld< td=""><td>0,007</td><td>0,024</td></ld<>	0,007	0,024
3,4	0,005	0,016	<ld< td=""><td>0,029</td><td>0,011</td><td>0,014</td><td>0,012</td><td>0,013</td><td>0,035</td></ld<>	0,029	0,011	0,014	0,012	0,013	0,035
3,6	0,006	0,017	<ld< td=""><td>0,031</td><td>0,009</td><td>0,017</td><td>0,012</td><td>0,011</td><td>0,033</td></ld<>	0,031	0,009	0,017	0,012	0,011	0,033
3,7	<ld< td=""><td>0,012</td><td><ld< td=""><td>0,040</td><td><ld< td=""><td>0,016</td><td><ld< td=""><td>0,012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,012	<ld< td=""><td>0,040</td><td><ld< td=""><td>0,016</td><td><ld< td=""><td>0,012</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,040	<ld< td=""><td>0,016</td><td><ld< td=""><td>0,012</td><td><ld< td=""></ld<></td></ld<></td></ld<>	0,016	<ld< td=""><td>0,012</td><td><ld< td=""></ld<></td></ld<>	0,012	<ld< td=""></ld<>
3,7	0,006	0,014	<ld< td=""><td>0,034</td><td>0,005</td><td>0,013</td><td><ld< td=""><td>0,008</td><td>0,008</td></ld<></td></ld<>	0,034	0,005	0,013	<ld< td=""><td>0,008</td><td>0,008</td></ld<>	0,008	0,008
3,9	0,009	0,023	0,005	0,041	0,007	0,017	0,009	0,012	0,005
4,2	0,009	0,020	<ld< td=""><td>0,038</td><td><ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,038	<ld< td=""><td>0,009</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,009	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,7	0,012	0,029	0,008	0,101	<ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,8	0,012	0,025	<ld< td=""><td>0,058</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,058	<ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
4,9	0,011	0,033	<ld< td=""><td>0,060</td><td><ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,060	<ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,0	0,011	0,025	<ld< td=""><td>0,054</td><td><ld< td=""><td>0,014</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,054	<ld< td=""><td>0,014</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,014	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
5,3	<ld< td=""><td>0,030</td><td>0,012</td><td>0,054</td><td><ld< td=""><td>0,013</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,030	0,012	0,054	<ld< td=""><td>0,013</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,013	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Fluxos de HPAs (µg cm⁻² kyr⁻¹) para RJ13-02.

cal kyr BP	ΣHPAs	ΣPyro	ΣΒίο
2,3	0,110	0,032	0,056
2,4	0,120	0,026	0,081
2,5	0,062	0,022	0,026
2,5	0,050	0,019	0,026
2,5	0,015	0,009	0,007
2,6	0,087	0,030	0,040
2,6	0,157	0,033	0,106
2,8	0,306	0,043	0,210
2,9	0,163	0,041	0,103
2,9	1,065	0,055	0,945
3,0	0,379	0,081	0,198
3,1	0,339	0,057	0,237
3,1	0,136	0,058	0,059
3,3	0,391	0,077	0,203
3,4	2,279	0,111	2,022
3,6	2,273	0,114	1,915
3,7	0,273	0,050	0,152
3,7	0,273	0,071	0,162
3,9	0,449	0,099	0,229
4,2	0,259	0,078	0,168
4,7	0,439	0,132	0,252
4,8	0,248	0,079	0,160
4,9	0,497	0,112	0,342
5,0	0,538	0,074	0,378
5,3	0,341	0,091	0,226

	Factor	Factor	Factor		Factor	Factor	Factor	Factor
RJ13-01	1	2	3	RJ13-02	1	2	3	4
MS	0,80	0,02	0,14	SM	-0,15	-0,03	0,85	-0,16
%TOC	0,89	0,24	-0,09	%TOC	0,27	0,07	0,87	0,08
∑N	0,61	0,16	-0,51	%CaCO ₃	0,41	0,03	0,32	0,34
$\sum Ph$	0,06	0,97	-0,04	ACL	0,39	-0,17	0,11	-0,62
Ret	0,04	0,90	0,08	$\sum N$	0,04	0,87	-0,08	0,13
Pe	0,79	0,17	-0,06	$\sum Ph$	0,95	0,09	0,08	0,01
∑pyro (4anéis)	0,31	0,90	0,03	Ret	0,94	-0,01	0,04	0,03
∑pyro (5-6anéis)	0,20	0,40	0,68	Pe	-0,22	0,15	0,01	-0,74
IA	-0,61	-0,07	0,58	∑pyro (4anéis)	-0,04	0,84	0,08	-0,23
ACL1	-0,09	-0,03	0,88	∑pyro (5-6anéis)	0,38	0,60	0,49	0,09
Expl.Var	2,95	2,85	1,88	Expl.Var	2,41	1,89	1,85	1,17
Prp.Totl	0,29	0,29	0,19	Prp.Totl	0,24	0,19	0,19	0,12

Factor loadings dos hidrocarbonetos para os testemunhos RJ13-01 e RJ13-02.

Factor scores dos hidrocarbonetos para os testemunhos RJ13-01 e RJ13-02.

cal kyr	Factor	Factor	Factor	cal kyr	Factor	Factor	Factor	Factor
BP	1	2	3	BP	1	2	3	4
0,3	1,62	-0,23	1,56	2,3	-0,29	1,66	2,12	-0,27
0,3	1,24	-0,35	0,83	2,4	-0,36	0,30	1,13	-1,44
0,5	1,33	-0,69	-1,62	2,5	-0,46	-1,04	1,32	-0,04
0,9	1,52	-0,12	1,62	2,5	-0,67	-0,98	0,51	-0,63
1,2	0,58	-0,28	0,01	2,5	-0,61	-1,84	0,67	1,22
1,4	1,24	-0,29	-2,21	2,6	-0,51	-0,73	2,06	1,55
2,2	0,63	-0,09	0,41	2,6	-0,77	0,35	0,37	-3,20
2,6	0,68	-0,23	1,36	2,8	0,28	-0,43	1,55	-0,14
2,8	-0,49	-0,77	-1,23	2,9	-0,39	-0,30	-0,12	-0,48
3,0	0,66	-0,18	0,85	2,9	2,26	-0,47	0,41	-0,20
3,2	-0,04	2,49	-0,49	3,0	-0,83	2,91	-0,53	0,45
3,3	0,19	4,16	0,04	3,1	-0,59	2,31	-0,27	1,36
3,7	0,80	-0,01	-1,74	3,1	-1,12	0,25	0,37	1,31
4,1	0,98	-0,06	0,78	3,3	0,32	0,56	0,05	0,03
4,6	0,70	-0,05	0,67	3,4	2,76	0,43	-0,13	0,07
5,1	0,53	-0,20	0,03	3,6	2,80	0,34	0,16	0,36
5,3	0,32	-0,42	-0,78	3,7	-0,30	-0,62	-1,04	-0,17
6,1	0,15	-0,27	-0,14	3,7	-0,12	-0,44	-0,22	0,65
6,6	0,92	-0,59	-1,18	3,9	-0,01	0,17	-0,22	0,50
7,0	-0,21	-0,30	-0,41	3,9	0,18	0,04	-0,87	-0,41
7,6	-0,55	1,68	0,51	4,1	-0,06	-0,48	-0,59	-1,29
8,0	-0,74	-0,63	0,44	4,7	-0,39	0,00	-1,01	-1,14
8,8	-1,07	-0,38	0,26	4,8	-0,32	-0,64	-1,37	0,01
9,0	-1,58	-0,48	1,02	4,9	-0,19	-0,26	-1,18	0,24
9,9	-0,83	-0,63	0,53	5,0	-0,24	-0,47	-1,47	0,48
10,7	-1,12	0,74	-1,22	5,3	0,08	0,15	-0,75	0,18
10,9	-1,53	-0,25	0,41	5,4	-0,47	-0,78	-0,96	1,01
11,8	-1,10	-0,14	0,37					
12,4	-1,38	-0,26	-0,63					
13,3	-1,35	-0,45	1,40					
13,8	-1,20	-0,08	-0,78					

-0,88

14,4

-0,62

-0,66