
Rodrigo Nunes Laigner

Cataloging Dependency Injection Anti-Patterns
in Software Systems

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Marcos Kalinowski

Rio de Janeiro
February 2020

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Rodrigo Nunes Laigner

Cataloging Dependency Injection Anti-Patterns
in Software Systems

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Marcos Kalinowski
Advisor

Departamento de Informática – PUC-Rio

Prof. Alessandro Fabricio Garcia
Departamento de Informática – PUC-Rio

Prof. Leonardo Gresta Paulino Murta
Instituto de Computação – UFF

Rio de Janeiro, February 10th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

All rights reserved.

Rodrigo Nunes Laigner
The author received his Bachelor degree in Information Sys-
tems from the Instituto de Computação (IC) of Universidade
Federal Fluminense (UFF) in 2017, in cooperation with Uni-
versity of Colorado Denver (UCD). Previously to graduate
studies, he led several projects in industry related to software
engineering and data management. During the course of the
graduate studies, he participated in several projects in acade-
mic settings focused in the areas of software architecture and
design. His main research interests are: Software Architecture,
Software Design, and Big Data Software Engineering.

Bibliographic data
Laigner, Rodrigo Nunes

Cataloging Dependency Injection Anti-Patterns in
Software Systems / Rodrigo Nunes Laigner; advisor: Marcos
Kalinowski. – Rio de janeiro: PUC-Rio , Departamento de
Infor-mática, 2020.

v., 140 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. injeção de dependência;. 3.
inversão de dependência;. 4. inversão de controle;. 5. anti-
padão;. 6. java;. 7. catálogo;. 8. design;. 9. arquitetura;.
10. modularização;. 11. acoplamento;. 12. refatoração.. I.
Kalinowski, Marcos. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Acknowledgments

First and foremost, I would like to thank God, the Father Almighty,
Maker of heaven and earth and of all things visible and invisible.

I would also like to thank my family, specially my mom, my grand aunt,
my sister, and my uncle. Without your support, this journey would not be
possible. You are everything to me. I extend this gratitude to my two respected
cousins, which I get really inspired, Brunno and Rondinelli.

A special thanks to my friends Julio, Gabriel, Max, Pedro, Rafael,
Philipe, Isadora, Lauro, Asher, Vitor, and Arthur. Your friendship are very
special to me.

A very special gratitude goes to my advisor Marcos Kalinowski. I would
like to thank Marcos for guiding me into the marvelous academic path. Your
wisdom, humbleness, hard work, and motivation are encouraging.

My sincere thanks also go to the members of my thesis defense, Alessan-
dro Garcia and Leonardo Murta. Your commitment to software engineering
research and education are inspiring. I would like to thank you a lot for the
contributions on this thesis. I would also like to thank all professors from
PUC-Rio for their contribution to my education. A special thanks to Sérgio
Lifschitz, Noemi Rodriguez, Darlan Arruda, and Marco Vaz Salles, for their
support throughout this journey.

I extend my gratitude to my colleagues and friends from PUC-Rio,
Tecgraf and OPUS. In particular, I would like to thank Amadeu, Waldir,
Rogério, Daniel, Gustavo, Julio, Angelo, Luiz, Diogo, Anderson, Hugo, Alan,
Tassio, Marx, and Paulo for all giving support and friendship.

I am very grateful for the opportunity to work at Tecgraf/PUC-Rio in
one of the most exciting projects of my life. A special thanks to Processamento
de Eventos Complexos group. I extend my gratitude to Leonardo Barros for
the support and patience throughout this journey.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

For last, I gratefully acknowledge PUC–Rio for the financial support.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Abstract

Laigner, Rodrigo Nunes; Kalinowski, Marcos (Advisor).
Cataloging Dependency Injection Anti-Patterns in
Software Systems. Rio de Janeiro, 2020. 140p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
Background Dependency Injection (DI) is a commonly applied

mechanism to decouple classes from their dependencies in order to provide
better modularization of software. In the context of Java, the availability
of a DI specification and popular frameworks, such as Spring, facilitate
DI usage in software projects. However, bad DI implementation practices
can have negative consequences, such as increasing coupling, hindering the
achievement of DI’s main goal. Even though the literature suggests the
existence of DI anti-patterns, there is no detailed documentation of such bad
practices. Moreover, there is no evidence on their occurrence and perceived
usefulness from the developer’s point of view. Aims Our goal is to review
the reported DI anti-patterns in order to analyze their completeness and to
propose and evaluate a novel catalog of Java DI anti-patterns. Method We
propose a catalog containing 12 Java DI anti-patterns. We selected 4 open-
source and 2 closed-source software projects that adopt a DI framework and
developed a tool to statically analyze the occurrence of the candidate DI
anti-patterns within their source code. Also, we conducted a survey through
face to face interviews with three experienced developers that regularly
apply DI. We extended the survey in order to gather the perception of
a set of 15 expert and novice developers through an online questionnaire.
Results At least 9 different DI anti-patterns appeared frequently in the
analyzed projects. In addition, the feedback received from the developers
confirmed the relevance of the catalog. Besides, the respondents expressed
their willingness to refactor instances of anti-patterns from source code.
Conclusions The catalog contains Java DI anti-patterns that occur in
practice and are useful. Sharing it with practitioners may help them to
avoid such anti-patterns.

Keywords
dependency injection; dependency inversion; inversion of control;

anti-pattern; java; catalog; design; architecture; modularization; cou-
pling; refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Resumo

Laigner, Rodrigo Nunes; Kalinowski, Marcos. Catalogando Anti-
Padrões de Injeção de Dependência em Sistemas de Soft-
ware. Rio de Janeiro, 2020. 140p. Dissertação de Mestrado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.
Contexto Injeção de Dependência (DI) é um mecanismo comumente

aplicado para desacoplar classes de suas dependências com o objetivo de
prover uma melhor modularização do software. No contexto de Java, a exis-
tência de uma especificação de DI e frameworks populares, como o Spring,
facilitam o emprego de DI em projetos de software. Entretanto, más práti-
cas de implementação de DI podem trazer más consequências, como maior
acoplamento, dificultando alcançar o principal objetivo de DI. Apesar de
a literatura sugerir a existência de anti-padrões de DI, não há uma do-
cumentação detalhada de tais más práticas. Em adição, não há evidência
da ocorrência e da percepção de utilidade dos mesmos do ponto de vista
de desenvovedores. Objetivos Nosso objetivo é revisar os anti-padrões de
DI reportados com o objetivo de analisar sua completude e propor um novo
catálogo de anti-padrões de DI para Java. Método Nós propomos um catá-
logo contendo 12 anti-padrões de DI para Java. Nós selecionamos 4 projetos
open-source e 2 projetos closed-source que adotam um framework de DI e
desenvolvemos uma ferramenta que analisa estaticamente a ocorrência dos
anti-padrões de DI candidatos no código fonte das aplicações. Em adição,
nós conduzimos uma pesquisa por meio de entrevistas face a face com três
desenvolvedores experientes que regularmente aplicam DI em seus projetos.
Nós estendemos a pesquisa com o objetivo de obter a percepção de um
conjunto de 15 desenvolvedores experientes e novatos por meio de um ques-
tionário online Resultados Ao menos 9 anti-padrões de DI apareceram
frequentemente nos projetos de software analisados. Em adição, a avalia-
ção recebida dos desenvolvedores confirmaram a relevância do catálogo. Por
fim, os respondentes expressaram o desejo de refatorar as instâncias de anti-
padrões de DI propostas. Conclusões O catálogo contém anti-padrões de
DI que ocorrem na prática e são úteis. Compartilhar com praticantes da
indústria os permitirá evitar a introdução de anti-padrões em seus projetos
de software.
Palavras-chave

injeção de dependência; inversão de dependência; inversão de controle;
anti-padão; java; catálogo; design; arquitetura; modularização; aco-
plamento; refatoração.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Table of contents

1 Introduction 14
1.1 Context and Motivation 14
1.2 Problem Statement, Goal, and Research Questions 16
1.3 Research Methodology 18
1.3.1 Proposing an initial catalog of DI anti-patterns 18
1.3.2 Investigating practical occurrence of the proposed catalog 18
1.3.3 Investigating acceptance and usefulness of the proposed catalog 19
1.4 Outline 19

2 Background 20
2.1 Introduction 20
2.2 Design Principles 20
2.2.1 Inversion of Control 20
2.2.2 Dependency Inversion 21
2.2.3 Open-closed 22
2.2.4 GRASP 22
2.3 Dependency Injection 24
2.3.1 Concept 24
2.3.2 Forms of Dependency Injection 25
2.3.3 Java Dependency Injection Specification 29
2.3.4 The Process of Injecting a Concrete Implementation 30
2.3.5 Dependency Injection Best Practices 35
2.4 Structural Problems 36
2.4.1 Code Smells 36
2.4.2 Anti-Patterns 37
2.5 Concluding Remarks 38

3 Related Work 40
3.1 Introduction 40
3.2 Dependency Injection Forms 40
3.3 Dependency Injection and Web Services 41
3.4 Dependency Injection and Maintenance 41
3.5 Dependency Injection Bad Smells 41
3.6 Dependency Injection Anti-Patterns 43
3.7 Catalogs of Anti-Patterns in Software Engineering 44
3.8 Concluding Remarks 45

4 Proposing a Catalog of Java Dependency Injection Anti-Patterns 47
4.1 Introduction 47
4.2 Method 48
4.3 Candidate Catalog of Java DI Anti-Patterns 49
4.3.1 Intransigent injection 50
4.3.2 Concrete class injection 51
4.3.3 Long producer method 53

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

4.3.4 God DI class 54
4.3.5 Non used injection 56
4.3.6 Static dependence provider 56
4.3.7 Direct container call 58
4.3.8 Open window injection 60
4.3.9 Framework coupling 60
4.3.10 Open door injection 64
4.3.11 Multiple assigned injection 64
4.3.12 Multiple forms of injection 65
4.4 Concluding Remarks 65

5 Assessing Practical Occurrence of the Proposed Catalog 68
5.1 Introduction 68
5.2 Developing an automatic detection tool 69
5.2.1 Designing DI anti-patterns detection tool 69
5.2.2 Evaluating DI anti-patterns detection tool 72
5.3 Detecting DI anti-patterns 74
5.3.1 Open-source software systems 74
5.3.2 Closed-source software systems 76
5.4 Results 79
5.5 Threats to Validity 80
5.6 Concluding Remarks 81

6 Investigating Perceived Usefulness of Proposed Catalog 82
6.1 Introduction 82
6.2 Interview-Based Survey 83
6.2.1 Design 83
6.2.2 Execution 84
6.2.3 Results 86
6.3 Online Survey 87
6.3.1 Design 87
6.3.2 Execution 90
6.3.3 Results 92
6.3.3.1 Preliminary Online Survey 92
6.3.3.2 Openly Available Online Survey 99
6.4 Reflection 104
6.5 Threats to Validity 104
6.6 Concluding Remarks 105

7 Concluding Remarks 108
7.1 Introduction 108
7.2 Summary of Conclusions 108
7.3 Limitations 109
7.4 Future Work 110
7.5 Research Publications 110

Bibliography 112

Appendices 117

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

A Responses over fixing DI anti-patterns 118

B Updated catalog of DI anti-patterns 132

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

List of figures

Figure 2.1 Abstract Layers (extracted from Martin [21]) 22
Figure 2.2 Dependence provision without DI (a) and using DI (b)

(extracted from Crasso et al. [9]) 25
Figure 2.3 Attribute injection 27
Figure 2.4 Set method injection 27
Figure 2.5 Constructor injection 28
Figure 2.6 Method injection 28
Figure 2.7 Direct container call 29
Figure 2.8 XML injection definition 31
Figure 2.9 Example of different bindings to an interface 32
Figure 2.11 Example of provider method 33
Figure 2.10 XML-based instantiation through factory method 33

Figure 4.1 Intransigent injection 52
Figure 4.2 Concrete class injection 54
Figure 4.3 Long producer method 55
Figure 4.4 God DI class 57
Figure 4.5 Non used injection 58
Figure 4.6 Static dependence provider 59
Figure 4.7 Direct container call 61
Figure 4.8 Open window injection 62
Figure 4.9 Framework coupling 63
Figure 4.10 Open door injection 64
Figure 4.11 Multiple assigned injection 66
Figure 4.12 Multiple forms of injection 67

Figure 5.1 Schematic overview of DIAnalyzer 72

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

List of tables

Table 2.1 Annotations defined in JSR-330 29

Table 3.1 Summary of DI bad smells from Roubtsov et al. [31] 42
Table 3.2 DI anti-patterns extracted from Seemann [32] 43

Table 4.1 Catalog of Java DI Anti-Patterns (Part 1) 50
Table 4.2 Catalog of Java DI Anti-Patterns (Part 2) 51

Table 5.1 Rules for anti-patterns detection 70
Table 5.2 Precision results of DIAnalyzer 74
Table 5.3 Selected projects 75
Table 5.4 Occurrence of DI Anti-Patterns in open-source projects 76
Table 5.5 Selected projects 77
Table 5.6 Occurrence of DI Anti-Patterns in closed-source projects 78

Table 6.1 Background of respondents 85
Table 6.2 Perception over the DI anti-patterns in interview-based

survey 87
Table 6.3 TAM questions index 88
Table 6.4 Respondents perception over the catalog of DI anti-patterns 88
Table 6.5 Background information required for online survey 89
Table 6.6 Background of respondents of the preliminary online survey 91
Table 6.7 DI Anti-patterns distribution over two online surveys 91
Table 6.8 Background of respondents of the openly online survey 92
Table 6.9 Perception over the DI anti-patterns in preliminary online

survey 93
Table 6.10 Respondents perception over the catalog of DI anti-

patterns (I1-I6) 99
Table 6.11 Perception over the DI anti-patterns in openly online

survey 1 100
Table 6.12 Perception over the DI anti-patterns in openly online

survey 2 102
Table 6.13 Respondents perception over the catalog of DI anti-

patterns (I7-I10) 103
Table 6.14 Respondents perception over the catalog of DI anti-

patterns (I11-I15) 104
Table 6.15 Summary of updates in the catalog (Part 1) 106
Table 6.16 Summary of updates in the catalog (Part 2) 107

Table 7.1 Publications derived from this Master’s thesis 110
Table 7.2 Other publications derived throughout the master’s period 111

Table A.1 I1 Perception over fixing DI anti-patterns in preliminary
survey (part 1) 119

Table A.2 I1 Perception over fixing DI anti-patterns in preliminary
survey (part 2) 120

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Table A.3 I2 Perception over fixing DI anti-patterns in preliminary
survey (part 1) 121

Table A.4 I2 Perception over fixing DI anti-patterns in preliminary
survey (part 2) 122

Table A.5 I3 Perception over fixing DI anti-patterns in preliminary
survey 123

Table A.6 I4 Perception over fixing DI anti-patterns in preliminary
survey 124

Table A.7 I5 Perception over fixing DI anti-patterns in preliminary
survey 125

Table A.8 I6 Perception over fixing DI anti-patterns in preliminary
survey (part 1) 126

Table A.9 I6 Perception over fixing DI anti-patterns in preliminary
survey (part 2) 127

Table A.10 I7 Perception over fixing DI anti-patterns in preliminary
survey 127

Table A.11 I8 Perception over fixing DI anti-patterns in preliminary
survey 128

Table A.12 I9 Perception over fixing DI anti-patterns in preliminary
survey 128

Table A.13 I10 Perception over fixing DI anti-patterns in preliminary
survey 129

Table A.14 I11 Perception over fixing DI anti-patterns in preliminary
survey 129

Table A.15 I12 Perception over fixing DI anti-patterns in preliminary
survey 130

Table A.16 I13 Perception over fixing DI anti-patterns in preliminary
survey 130

Table A.17 I14 Perception over fixing DI anti-patterns in preliminary
survey 131

Table A.18 I15 Perception over fixing DI anti-patterns in preliminary
survey 131

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

List of Abreviations

AOP – Aspect-Oriented Programming
DI – Dependency Injection
IoC – Inversion of Control
DIP – Dependency Inversion Principle
OOP – Object-Oriented Programming
OOD – Object-Oriented Design
LOC – Lines of Code
AST – Abstract Syntax Tree
TAM – Technology Acceptance Model
API – Application Programming Interface
IDE – Integrated development environment

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

1
Introduction

In this chapter, we provide the context of the work presented in this
dissertation, along with our motivation to tackle the problem herein described.
Next, we present our problem statement and the methodology followed in order
to answer our research questions.

1.1
Context and Motivation

Software engineering research have been investigating several approaches
for decreasing coupling in software systems over time, such as design patterns
[12] and aspect-oriented programming (AOP) [15]. Coupling is a quality
attribute of a module in an application. As higher the level of coupling to
another modules of the system, the likelihood of increased efforts when it
comes to introduce change is expected in this module [12]. In other words,
a software system that holds higher coupling levels will probably incur in an
increased maintenance effort. A particular mechanism that has been explored
in a lesser extent towards the same end, it is, decreasing coupling levels in an
application, is Dependency injection (DI), a mechanism for improving software
modularity.

DI enables less coupling among modules by refraining them from being
aware of implementation details of each other [31]. DI is built upon two design
principles: dependency inversion principle (DIP) and inversion of control (IoC).
The first suggests a design oriented to abstractions, while IoC relies refraining
the control of the application to a third-party module or framework.

DI has become a common practice in the software industry, as charac-
terized by the existence of DI frameworks and industry-oriented publications
[24] [32]. For instance, Spring [29], one of the most popular Java frameworks,
and Google AdWords1, a large-scale web application, have its components in-
terconnected through DI. Furthermore, Java defines a specification targeted at
DI and Microsoft .NET Core provides native DI capabilities.

DI frameworks are usually employed in software systems in order to
support practitioners to achieve lower coupling levels among modules, by

1https://github.com/google/guice/wiki/AppsThatUseGuice

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 1. Introduction 15

capturing the needed dependencies of a module in run-time and providing
the module with concrete implementations that fulfill the given dependencies.
In order to accomplish this task, DI frameworks often employ a component
called DI container in order to autonomously handle dependency provision at
run-time.

Despite the existence of well designed frameworks, such as Spring [29]
and Guice [13], that provide programming mechanisms to support achieving
the benefits DI is supposed to supply, such as code element annotations,
the implementation of DI is not trivial and demands in-depth knowledge
on object-oriented design. Hence, while DI might support providing a better
modularization, once system modules do not need to concern about dependence
resolution, improper DI usage may hinder the effective achievement of this goal.

Although the technical literature [32][36] conjectures the existence of DI
anti-patterns, these propositions do not provide a comprehensive analysis over
the state of the practice of such bad DI implementation characteristics in source
code. For instance, it is unknown if these propositions are generic (most are
presented in the context of a programming language or framework) enough to
port its ideas to other contexts (if they are broad) and its practical relevance
(occurring within a broad range of software projects). Most importantly, there
is no evidence acceptance and perceived usefulness from developers’ point of
view.

It is worthy to mention the words of Jim Couplin [8] on anti-patterns:

The study of AntiPatterns is an important research activity. The
presence of ’good’ patterns in a successful system is not enough;
you also must show that those patterns are absent in unsuccessful
systems. Likewise, it is useful to show the presence of certain
patterns (AntiPatterns) in unsuccessful systems, and their absence
in successful systems

Furthermore, as asserted by Brown et al. [2], anti-patterns decidedly lead
to negative consequences. For instance, in the context of DI, consequences vary
from high coupling to potential overuse of memory. Consequently, it is unknown
if these proposals effectively support practitioners on their development activ-
ities that involves the employment of DI in industrial settings.

This overall scenario motivates further empirical evaluations to properly
document a catalog of DI anti-patterns in software systems.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 1. Introduction 16

1.2
Problem Statement, Goal, and Research Questions

There is an assumption raised in industrial settings that as long as the
source code implements DI through applying DI frameworks, the structural
quality of the program is improved. However, this assumption might not
always hold. By scattering bad implementation practices related to DI through
source code, developers might unconsciously introduce design, architectural,
performance, and standardization problems that make the source code more
susceptible to contain bugs, depending on the complexity of the DI code
element involved, and more difficult to change. For instance, not properly
implementing DI interferes in quality attributes of the source code, such as
coupling [25].

Unfortunately, there is limited guidelines about how to avoid bad im-
plementation practices related to DI in software systems. Industry related lit-
erature focused on the .NET Framework (e.g., books written for industrial
developers, such as [32], [36]) suggests some DI anti-patterns. However, they
do not include any kind of evaluation of their suggested anti-patterns. Hence,
there is no evidence on their relevance (e.g., the rate of occurrence and the
negative effects on source code are not evaluated). Furthermore, reports on DI
anti-patterns in the context of Java are lacking. While there are some mentions
of problems and anti-patterns (e.g. [24] and [32]) related to DI implementation
in industrial publications, current research is not properly addressing the topic.
The lack of a comprehensive catalog of DI anti-patterns may also undermine
this specific technique to be better applied together with other techniques that
also aim at reducing coupling in a software system, such as AOP. Thus, the
general problem is described as follows.

General Problem: While properly employing DI is an important step
towards improving structural quality of software systems, there is a lack of
guidance on how to effectively detect, analyze, and remove DI anti-patterns
from elements of source code.

Based on this problem, using the design science [46] template, our
research goal can be defined as follows:

Improve the structural quality of software systems that employ DI
by proposing and evaluating a catalog of DI anti-patterns that satisfies
providing comprehensive guidance on detecting, analyzing, and removing DI
related problems in software systems in order to support practitioners in
their development activities.

In our case, we had some idealized assumptions drawn up from our
previous industrial experience and knowledge on design principles and patterns

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 1. Introduction 17

in software engineering and its related literature. Our assumptions at this early
time were: (1) bad implementation practices associated to DI usage form DI
anti-patterns (2) DI anti-patterns are not directly associated with a given DI
framework, but rather, concerns mainly the violations of the principles behind
DI, DIP and IoC, and (3) each specific DI anti-pattern occurs several times
throughout the source code.

To address our goal and also investigate whether our assumptions hold,
we derived three Research Questions (RQs), which are detailed hereafter.

RQ1. Are there problem candidates associated with DI im-
plementation that are not properly covered by the currently doc-
umented DI anti-patterns?

Although industry-oriented publications address DI anti-patterns [32]
[36], little is known about their practical relevance, i.e., if the suggested anti-
patterns occur in practice and if they are relevant by the point of view of
developers. Moreover, investigating the completeness of documented DI anti-
patterns will enable us to uncover the main gaps in current literature. Besides,
such analysis will allow us to reason over characteristics of source-code elements
that potentially lead to problems, such as architectural violations and code
smells. Lastly, the product of this investigation will enable us to propose a
catalog of DI anti-patterns.

RQ2. Do the proposed DI anti-patterns occur in practice?
By answering RQ2 we will be able to understand whether the proposed DI

anti-patterns are relevant to the state of the practice. In other words, we seek
to understand if the proposed catalog of DI anti-patterns represents problems
that are introduced by developers in practice. Otherwise, the catalog could be
considered useless. Lastly, RQ2 will allow us to advance to a more in-depth
analysis of the conjectured catalog, this time by gathering the opinion of expert
developers about the proposed DI anti-patterns catalog.

RQ3. What is the acceptance and perceived usefulness from the
point of view of experienced developers?

Obtaining feedback from experienced developers about the proposed cat-
alog is an important validation step before sharing it with the community. An-
swering RQ3 will allow us to conclude if the proposed catalog is comprehensive
enough to support developers in their day by day development activities work-
ing with software systems that employ DI mechanisms.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 1. Introduction 18

1.3
Research Methodology

The research methodology was designed based on the research questions
and involves uncovering gaps in current documentation of DI anti-patterns and
proposing an initial catalog of DI anti-patterns (RQ1), investigating whether
the instances of DI anti-patterns proposed catalog occur in practice (RQ2),
and investigating the acceptance and perceived usefulness of the catalog from
the point of view of developers (RQ3). The methodology employed for each of
these steps is detailed hereafter.

1.3.1
Proposing an initial catalog of DI anti-patterns

First, we start by reviewing reported DI anti-patterns and other instances
of problems related to DI employment in software systems. The objective is
to analyze their completeness with the objective of uncovering gaps in current
propositions in order to to come up with an initial catalog of DI anti-patterns.
While industry-oriented publications mainly focus on .NET, we opted to target
at the Java platform due to the following reasons: (a) the lack of documentation
regarding bad DI implementation practices; (b) the existence of a myriad of DI
frameworks (such as Guice [13] and Spring [29]); (c) large industrial adoption
; (d) the existence of a Java DI specification (JSR-330) [26]; (e) and the large
number of open source software repositories written in Java.

We employ two methodological approaches to derive an initial proposi-
tion of DI anti-patterns, inductive and deductive. The inductive approach was
primarily based on our experience in industrial settings. For the deductive ap-
proach, we conjectured on possible DI anti-patterns based on design principles,
such as General Responsibility Assignment Software Patterns (GRASP) and
SOLID. At the end of this process, RQ1 is answered.

1.3.2
Investigating practical occurrence of the proposed catalog

Next, after coming up with an initial catalog of DI anti-patterns, it is
important to investigate the feasibility of our proposition. In other words,
we seek to verify the practical relevance of the catalog by gathering the rate
of occurrence of each anti-pattern instance in the context of both open and
closed-source software projects. Therefore, we have developed a static analysis
tool to automatically detect instances of the proposed anti-patterns from
the source code of software systems. We have selected a set of open-source

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 1. Introduction 19

software repositories from GitHub and two closed-source projects to perform
our analysis on them. At the end of this process, RQ2 is answered.

1.3.3
Investigating acceptance and usefulness of the proposed catalog

Finally, we assess the acceptance and usefulness of our proposal from
expert developers by designing an expert survey. Although investigating the
rate of occurrence of such proposed anti-patterns may lead to practical
relevance of the proposition, we still need to gather developers’ perceptions
over the proposed catalog. Specifically, we aim at gathering their perception
over each proposed anti-pattern instance to verify if they can be characterized
as anti-patterns. Besides, we assess whether the developers are willing to use
our catalog to guide their development process. At the end of this process,
RQ3 is answered.

1.4
Outline

The remainder of this work is organized as follows. Chapter 2 provides the
background on principles behind DI, design principles, and structural problems
in software engineering.

Chapter 3 briefly introduces related work about DI and DI anti-patterns.
Chapter 4 presents our initial effort on cataloging Java DI anti-patterns.

We describe our method to come up with instances of anti-patterns and also
explain their negative consequences and code transformations to remove such
anti-patterns from source code.

Chapter 5 introduces our initial effort on identifying instances of DI anti-
patterns in software systems through a manual approach. Then, it introduces
a static analysis tool developed to automatically identify DI anti-patterns.
Lastly, it presents the results of the occurrence of each DI anti-pattern in
software projects.

Chapter 6 presents the investigation and results on the acceptance and
perceived usefulness of the proposed catalog of DI anti-pattern instances from
the point of view of developers.

Finally, Chapter 7 presents the concluding remarks of this Master’s thesis
and discusses future work.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

2
Background

2.1
Introduction

DI has become a common practice in the software industry, character-
ized by the existence of a reference specification, such as Java JSR-330 [26],
DI frameworks, such as Spring [29], and industry-oriented publications, such
as [24]. However, the principles behind DI and the concept of DI are heteroge-
neously defined in the literature.

Thus, this section provides a comprehensive background on design prin-
ciples, comprising the principles behind DI and general design principles used
in this work.

Thereafter, we describe the DI concept and forms of using DI based on
current programming languages and frameworks. Besides, a subtle analysis of
best practices on applying DI based on the work of [24] is presented. Then, we
introduce the Java specification for DI (JSR-330).

Finally, the terminology on code smells and anti-patterns are introduced
to better position the reader on understanding related work.

2.2
Design Principles

2.2.1
Inversion of Control

In the eighties, object-oriented programming (OOP) was in the midst of
an increasing trend of interest from the research community. At that point, the
Smalltalk programming language emerged as the main object of attention from
industry and academia, mainly due to the object-oriented paradigm. In this
context, Johnson and Foote [14] work influenced software reuse in OOP, by
introducing fundamental concepts to design reusable classes, such as Inversion
of Control (IoC).

The term IoC was first introduced by Johnson and Foote [14] in the
context of software frameworks. To make use of functionalities provided by a
framework, it is usually required to extend a set of classes. Meanwhile, this

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 21

extension often refrains the system from controlling its execution, incurring in
an inversion of control. This behavior is exemplified by Johnson and Foote [14]
as follows.

One important characteristic of a framework is that the methods
defined by the user to tailor the framework will often be called from
within the framework itself, rather than from the user’s application
code. The framework often plays the role of the main program in
coordinating and sequencing application activity

Thus, by extending a set of classes of the framework, a framework
oftentimes departs the system from controlling part of its execution life cycle.
This concept is fundamental to understand the role of a DI framework plays
in a software system.

2.2.2
Dependency Inversion

The dependency inversion principle (DIP) was introduced by Martin [21]
and is part of the SOLID [20], a set of module design principles. The DIP states
that modules should not depend on the details of another module. Instead,
abstractions should be used in place of direct dependencies to enable reuse
[21]. Through Figure 2.1, Martin [21] exemplifies this concept as follows.

Each of the lower level layers are represented by an abstract class.
The actual layers are then derived from these abstract classes. Each
of the higher level classes uses the next lowest layer through the
abstract inter-face. Thus, none of the layers depends upon any of
the other layers.

In other words, Martin [21] states that a module must not directly ref-
erence a module from another layer of an application. Rather, every module
should be a realization of an abstraction. This way, modules from lower layers
won’t be able to be coupled to details of higher layers, thus abstracting imple-
mentation details and enforcing a transitive dependency chain. By enforcing
this pattern, a system may be more susceptible to less efforts when it comes
to changes over time. Lastly, based on Martin’s [21] description, Yang et al.
[38] assert that in Java, DIP means that "a class should depend on interface
or abstract types, not on concrete types".

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 22

Figure 2.1: Abstract Layers (extracted from Martin [21])

2.2.3
Open-closed

Meyer [22] asserts that "a module should be open for extension but
closed for modification," sentence which characterizes the Open-closed principle
(OCP). By stating that a module should be open for extension, Meyer [22]
means that in case of the necessity of different behaviors in a given module, a
design that is oriented to extension must be enforced in this given module. In
other words, different behaviors must take place when it comes to requirements
change or meeting new needs of the application.

On the other side, by "closed for modification," [22] it is important to
recognize that exposing internal information of a module to external modules
may allow the modification of behavior that should not change, incurring in a
risk to the application.

2.2.4
GRASP

General Responsibility Assignment Software Patterns, a.k.a. GRASP, are
principles that govern the assignment of responsibility to classes in object-
oriented design (OOD), which are also known as patterns of assigning respon-
sibilities. According to Larman [17], responsibility in the context of OOD is the
"obligations of an object in terms of its behavior." Responsibilities are divided
in two types: (a) knowing and (b) doing.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 23

Larman [17] asserts that knowing responsibilities concern knowing about
private encapsulated data or related objects, as well "knowing about things
it can derive or calculate." In other words, knowing is about being aware of
information and computation that can be done by the object itself. Moreover,
doing responsibilities concern "doing something itself" and "initiating action
in other objects." In addition, doing is about "controlling and coordinating
activities in other objects." In other words, doing is about holding information
on who to call in order to receive the results of a computation. A subtle example
of such division of responsibilities is provided by Larman [17] as follows.

I may declare that "a Sale is responsible for creating SalesLinel-
tems" (a doing), or "a Sale is responsible for knowing its total" (a
knowing)

Although GRASP presents in total 9 patterns [17], we will present the
ones that are related to this work.

Information Expert, also known as Expert, is centered on reasoning
over the assignment of responsibility to the class that has the information to
fulfill it. The information may be a computation composed of a set of fields
(private encapsulated data) or the aggregated result of a set of actions initiated
in other objects.

Creator primarily reasons on which class has the responsibility to create
an instance of another class. Based on Larman’s example [17], let’s consider
class B and A. Thus, if B aggregates, contains, has initializing data, or records
instances of A, then B may be responsible for the creation of A instances.

Next, according to Larman [17], coupling "is a measure of how strongly
one element is connected to, has knowledge of, or relies on other elements."
Also, he adds that "a class with high [...] coupling relies on many other classes."

Thus, Low Coupling is a principle that aims at avoiding the conse-
quences of high coupling, such as forcing changes in related classes due to
local changes, complexity in the process of comprehending the behavior of a
class, refrain the achievement of reuse. Indeed, Low Coupling principle is about
assigning responsibilities effectively, "so that (unnecessary) coupling remains
low."

Besides, Larman [17] asserts that "cohesion is a measure of how strongly
related and focused the responsibilities of an element are." In other words, if
several unrelated responsibilities are placed in a given class, we may consider
this a class with low cohesion. It is possible to assert that low cohesion is
related to the presence of high coupling, because the negative consequences are
somewhat close, as stated by Larman [17], on which he argues that low cohesion

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 24

classes are "hard to comprehend," "hard to reuse," and "hard to maintain."
Thus, the principle of High Cohesion is about assigning responsibilities so
that cohesion remains high.

Pure Fabrication concerns assigning "a highly cohesive set of respon-
sibilities to an artificial or convenience "behavior" class that does not represent
a problem domain concept — something made up, in order to support high
cohesion, low coupling, and reuse." There are cases where subjective objects,
the ones that are not directly related to the problem domain of the applica-
tion, must be created on run time. For instance, objects that support database-
centric operations, such as obtaining a pool of connections or persisting a tuple
in the database management system. In order to do not couple your domain
and logic classes to database operations, abstracting these operations in fab-
ricated objects may support the achievement of high cohesion, low coupling,
and reuse in the application.

Indirection is related to the problem of "where to assign a responsibility
to avoid direct coupling between two (or more) things" [17]. Larman [17] asserts
that Indirection regards the assignment of "responsibility to an intermediate
object to mediate between other components or services, so that they are not
directly coupled."

2.3
Dependency Injection

2.3.1
Concept

IoC and DIP form a basis for comprehending DI. According to Crasso
et al. [9], DI is a programming mechanism that "builds on the decoupling
given by isolating components behind interfaces, and focuses on delegating
the responsibility for component [or module] creation and binding to a DI
container". As noted by Yang et al. [38], DI is a specific structural form of
DIP. Indeed, DI implements the DIP principle, once components are decoupled
through an interface oriented design.

However, although we achieve better modularity through abstractions,
we still have to deal with instantiation of concrete classes, as noted by the
Gamma et al. [12]. In the context of DI, Crasso et al. [9] assert that the
responsibility for component creation is given to a DI container, as depicted
in 2.2. In particular, the DI container is usually employed in order to enable
the IoC principle in DI. A DI container is the component of a DI framework
responsible for dependency provision at run time, acting as a mediator in cases

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 25

where a given dependence is needed by a class.
Furthermore, in the context of DI, IoC is about delegating responsibilities

that are outside of the scope of a given class to other classes of the system, the
ones that can actually be accountable for these given responsibilities, such as
instance provision. Although it is possible to achieve IoC in DI without a DI
container, such container is typically employed by DI frameworks to ease the
instantiation of classes.

Figure 2.2 presents an example of the role of a DI container in a
software system. On the left side (a) of Figure 2.2, the class BookSearcher is
responsible for the creation of an instance of the FTPBookRepository class to
make use of the BookRepository interface. This scheme introduces a coupling
between BookSearcher and FTPBookRepository, a concrete implementation.
It is worthy to mention that, in case of changes to FTPBookRepository
constructor, for example, it will trigger changes to BookSearcher, incurring
a greater maintenance effort.

Besides, on the right side (b) of Figure 2.2, instead of BookSearcher, the
DI container (represented by the module Assembler) is the one responsible for
acknowledging the coupling of BookSearcher to BookRepository interface, and
providing a concrete implementation (FTPRepository) to BookSearcher.

Figure 2.2: Dependence provision without DI (a) and using DI (b) (extracted
from Crasso et al. [9])

2.3.2
Forms of Dependency Injection

As mentioned earlier, the main component of a DI framework that
handles dependency provision is the DI container. However, there are different
ways to let the DI container know how to provide a given dependence. This
acknowledgment is expressed through program elements, such as constructors
and set methods. Fowler [11] describes that the characteristic on which a

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 26

dependency is provided as form of DI, although other author [24] describes the
same as Injection idioms. Fowler [11] defines three main forms of dependency
injection, depicted as follows.

Interface injection: Based on defining and implementing interfaces,
analogous to Figure 2.2 (b) example.

Setter injection (or set method injection): Relies on set methods to
receive and assign a concrete implementation to an attribute of the class.

Constructor injection: Analogous to setter injection, however, it re-
ceives concrete implementations on constructor method.

At first, Spring framework 1.0 version relied on XML files for configuring
the concrete implementation classes to be instantiated on run time. This
form of configuration was considered error-prone and with the introduction
of annotations on Java platform, frameworks, such as Guice [13], turned
to rely solely on annotations in order to configure dependence provision in
an application. The annotations follow the JSR-330 specification [26] and
introduced alternative forms of DI, as described below.

Attribute injection (or Field injection): Injection occurs directly on an
attribute annotated with @Inject (as defined by JSR-330 [26]) or @Autowired
(Spring specific annotation for injection). This pattern removes the need to
create a set method for the attribute or inserting a parameter with same type
(interface) in class constructor (for posterior assignment to a class variable).

Method injection: Although a setter and constructor are methods,
this form of injection is explicit on JSR-330 [26], where an ordinary method
annotated with @Produces (in Spring, the @Bean annotation is also used) let
the DI container aware that some of its parameters need an injected instance.
Lastly, it is important to mention that direct container calls can provide a
concrete implementation (if correctly configured) at any point of the system.

Figure 2.3 depicts a simple injection occurring in an attribute of a class,
where the attribute is annotated with @Inject. This injection is usually per-
formed on class initialization, although some frameworks adopt lazy initializa-
tion (only when the attribute is actually referenced in run time) for injecting
an instance.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 27

Figure 2.3: Attribute injection

public class A {

@Inject

private ExampleType exampleTypeAttr;

// code omitted for brevity

}

Figure 2.4 depicts an injection occurring through a set method for a given
attribute of a class. The set method is annotated with @Inject to let the DI
container aware the class needs a proper instance (of the type expressed in
the parameter of the set method). This injection is usually performed on class
initialization.

Figure 2.4: Set method injection

class B {

private ExampleType exampleTypeAttr;

@Inject

public void setExampleTypeAttr(ExampleType exampleParam) {

this.exampleTypeAttr = exampleParam;

}

}

Figure 2.5 depicts an injection occurring in the constructor of a class. The
constructor is annotated with @Inject to let the DI container aware that the
parameters of the constructor should be injected. This injection is decidedly
performed on class initialization.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 28

Figure 2.5: Constructor injection

class C {

private ExampleType exampleTypeAttr;

@Inject

public void C(ExampleType exampleParam) {

this.exampleTypeAttr = exampleParam;

}

}

Figure 2.6 depicts an injection occurring in the context of a method that
provides an instance of a given class type. Thus, the method is annotated with
@Provides to let the DI container aware that the parameters of the method
should be injected. This injection is decidedly performed when an instance of
AnotherExampleType is requested by another class instance.

Figure 2.6: Method injection

class D {

@Provides

public AnotherExampleType ordinaryMethod(ExampleType

exampleParam) {

// do something with exampleParam

// returns an instance of AnotherExampleType

}

}

Lastly, Figure 2.7 shows an excerpt of a direct call to DI container (in
Spring, this is fulfilled through ApplicationContext class) with the objective to
request a given dependence on run time. In this case, a concrete implementa-
tion of IDataSource is requested through method getRepository.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 29

Table 2.1: Annotations defined in JSR-330
Annotation Description
Singleton A type annotated with @Singleton will be instantiated only

once across the run-time of the application
Scope Scopes are rules applied to the life-cycle of a given object.

Depending on the framework, the default implementation
varies from retaining the instance for reuse or providing a
new instance every time a dependence is requested

Qualifier The value associated with a Qualifier annotation is used to
distinguish which concrete implementation should be pro-
vided

Named Used to identify an object instance. It aims at assigning a
specific name to a dependence

Inject Defines an injection point for which a DI container must
provide an object instance. It can be placed in constructors,
methods, and fields

Resource Same purpose of @Inject annotation. The Resource annota-
tion marks a resource that is needed by the application.

Figure 2.7: Direct container call

public class E {

@Inject

private ApplicationContext context;

protected IDataSource getRepository() {

return (IDataSource) context.getBean("ftpDataSource");

}

}

2.3.3
Java Dependency Injection Specification

With the widespread of DI frameworks for Java, such as Dagger1, an effort
to conceptualize a standardization gave birth to JSR-330 [26], a specification
for DI implementation. The specification is adopted by Guice [13] and Spring
[29], and defines a set of annotations, which are described in Table 2.1.

1https://google.github.io/dagger/

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 30

According to the specification [26], a Singleton "identifies a type that the
injector only instantiated once. Not inherited." A type (i.e., a class) annotated
with @Singleton will be instantiated once a time across all the execution run
time of the application. It means that, every time an object needs an instance
of a class annotated with @Singleton, excluding the first call for instantiation,
the same instance of the class will be provided over time.

An example of a class that is a feasible Singleton is a class that provides
logging capabilities. Once instantiated, it is possible to assert that more than
one class in an application will require logging capabilities. This way, as a
singleton, it avoids the replication of different instances of the same class over
the run time.

Scopes were first defined by the JSR-299 specification [27] and are used in
the context of web applications to support communication between client and
server. Scope infers a level of restriction, so in the context of web applications,
scopes are rules applied to the life cycle of a given object. Furthermore, the
JSR-330 [26] specification details that

By default, if no scope annotation is present, the injector creates an
instance (by injecting the type’s constructor), uses the instance for
one injection, and then forgets it. If a scope annotation is present,
the injector may retain the instance for possible reuse in a later
injection."

In the context of DI, a Qualifier annotation is "applied to injection points
to distinguish which implementation is required by the client" [38]. An example
is the type of protocol used to send a message, such as UDP or TCP, which
can be defined on run time by a qualifier annotation.

Named is a string based qualifier that can be used to provide more
granularity on dependence provision process. It can be used in an analogous
way to Qualifier annotation.

Lastly, Inject annotations defines an injection point for which a DI
container must provide an object instance. It can identified in constructors,
methods, and fields, as already addressed. The same applies for Resource
annotation.

2.3.4
The Process of Injecting a Concrete Implementation

As mentioned in Section 2.3.1, when employing DI, even though a
software project follows an interface-oriented design, there is still the task

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 31

to instantiate a concrete implementation. In general, DI frameworks delegate
this responsibility to the DI container, as shown in Figure 2.2.

Most often, software systems design a specific concrete implementation
and the work of the DI container is facilitated. However, it may occur that
an interface is implemented by two or more concrete classes. In this case, the
container must be advised about which concrete implementation to inject.

In this section we provide a brief explanation on how Java DI frameworks
deal with the instantiation of concrete implementations. Also, we explain
some language constructs that allow for defining which specific concrete
implementation must be instantiated for a given injection point.

At first, DI frameworks, such as Spring, tied a concrete class to a given
dependence via external XML file. A simplified example extracted from the
project Broadleaf is shown in Figure 2.8, where the interface AdminPermission
is binded to the concrete implementation named AdminPermissionImpl.

In Spring, the annotation @Component is employed in a class to let the
container aware this class must be provisioned in injection points. However,
by using XML injection definition, concrete implementations do not need to
be annotated with @Component, since the injection is explicitly defined in the
XML file.

Figure 2.8: XML injection definition

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- Entity mappings - override for extensibility -->

<bean

id="org.broadleafcommerce.openadmin.server.security.domain.AdminPermission"

class="org.broadleafcommerce.openadmin.server.security.domain.AdminPermissionImpl"

scope="prototype"/>

</beans>

However, developers often claimed this approach was error-prone and
led to rework in the case of software evolution. This context limited a broader
adoption of Spring framework at the time. Pushed by the Java DI specification,
explained in Section 2.3.3, frameworks (e.g., Google Guice) opted to allow the

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 32

definition of injection points through annotations, such as @Inject (see Section
2.3.2).

Although configuring the bindings to each interface through XML bring
concerns, they offer a flexible constructs to allow binding different concrete im-
plementations to an interface requested in different injection points. Based on
the example retrieved from Broadleaf project (2.8), we extend this example to
accommodate the exhibition of different concrete implementations (AdminPer-
missionImpl and AdminPermissionImpl2) that implement the same interface
(AdminPermission) being injected into different injection points of the system
(class ExampleClassDefault and ExampleClass2).

Figure 2.9: Example of different bindings to an interface

<bean

id="implDefault"

class="org.broadleafcommerce.openadmin.server.security.domain.

AdminPermissionImpl" />

<bean

id="impl2"

class="org.broadleafcommerce.openadmin.server.security.domain.

AdminPermissionImpl2" />

<bean

id="exampleDefault"

class="com.example.ExampleClassDefault" >

<property name="service" ref="implDefault" />

</bean>

<bean

id="example2"

class="com.example.ExampleClass2" >

<property name="service" ref="impl2" />

</bean>

Besides, through the Qualifier annotation (mentioned in Table 2.1) it is
also possible to assign a given concrete implementation to a specific injection
point. The semantics are similar to the one provided in Figure 2.9. However,
some can contest this approach, once the annotation is an element of the
source code, explicitly couples an element of an injection point to a concrete
implementation.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 33

Figure 2.11: Example of provider method

@Produces
public IDataSource provideDataSource(){

IDataSource dataSource = null;
// assign an instance of concrete implementation to dataSource
return dataSource;

}

There may exist cases where the developer cannot bind a specific im-
plementation to an injection point. For instance, an example case is where
the instantiation to be provided by the DI container is directly dependent on a
given state or business rules of the application. This context calls for a dynamic
instantiation of concrete implementations.

Through XML-based configuration, a factory method can be employed
to deal with such dynamic instantiation. As shown in Figure 2.10, the instance
to be injected in the property dataSource in class ExampleBean is fulfilled by
the method getDataSource in class IDataSourceFactory.

Figure 2.10: XML-based instantiation through factory method

public class IDataSourceFactory {

public IDataSource getDataSource() {

// code ommitted

}

}

<bean id="dataSourceFactory"

class="com.example.IDataSourceFactory" />

<bean id="dataSourceRef"

class="com.example.IDataSourceFactory"

factory-method="getDataSource" factory-bean="dataSourceFactory" />

</bean>

<bean id="exampleBean" class="com.example.ExampleBean">

<property name="dataSource" ref="dataSourceRef" />

</bean>

In addition, through annotation-based configuration, the annotations
@Provides (for Google Guice) and @Bean (for Spring framework) can also
be used to provide dynamic instantiation of dependencies. These methods are
often called provider methods. An excerpt of a provider method is shown in
Figure 2.11, where an instance of IDataSource is returned.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 34

Lastly, it is important to explain (i) how the DI container actually
acknowledges the components to bind. In this manner, a brief description on
how Spring framework manages the provision of dependencies is provided as
follows. In case of XML-based configuration, the application must explicitly
point out to Spring framework which set of files contain the configuration of
the bindings to be realized by the DI container. Then, each XML file is parsed
and the bindings retrieved from the XML file are consecutively processed and
stored in memory, in data structures that provide fast lookup of components,
such as Hash Tables. Next, the DI framework verifies, for each component
scanned from the XML files, if the necessary dependencies can be provisioned
based on the configuration provided.

Besides, there are two cases of bindings: (i) components that are lazy-
loaded and (ii) components that are instantiated at the start of the application.
The first regards bindings that are only consumed when the component
requesting the instantiation is actually loaded by the application. The second
class of binding is about loading every component (and their dependencies)
that is not marked as lazy-loading at the start of application. In this cases, there
are typically two types of component, singleton and prototype. The first type
regards keeping the same instance of the component for each injection point
for the whole application life cycle. The second regards creating a different
instance of the component each time it is referred.

On the other side, on annotation-base configuration, instead of parsing
XML files, at the start of the application, the source code is inspected,
class by class, and each component information (its name and its respective
dependencies) is stored in data structures in memory. Then, the same process
observed in the XML-based configuration is also employed in this case. The
DI framework verifies, for each component, if the necessary dependencies can
be provided (if there is a concrete implementation that fulfills it). If at least
one component does not have the necessary dependencies, an error is throw
by the framework when the application starts.

In general, the DI container initializes at application startup all wired
components, it is, components that are marked as ’managed’ by the DI
container. In case of lazy-loaded components, at runtime, when it comes to
fulfill this type of dependence request, the DI container tries to instantiate
it with its respective dependencies. If it is not possible to instantiate such
lazy-loaded component, an exception is often raised by the framework.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 35

2.3.5
Dependency Injection Best Practices

To the best of our knowledge, although there is not a catalog of DI pat-
terns in literature, there are propositions of design considerations concerning
DI adoption. Prassana [24] argues that the problem on choosing an injection
idiom must take into consideration aspects about testing and maintainability.
Also, he argues that "there are such important consequences to either choice [of
injection idiom] that potentially lead to difficult, underperformant, and even
broken applications." In this section, we assert about some considerations over
choosing an injection idiom.

As mentioned earlier, the problem of breaking an application can take
place in the context of state management of attributes in a class. For instance,
favoring set method injection may incur in two classes of problem, as explained
by Prassana [24]. First, by using setter injection, the attribute receiving the
instance provided by the DI container cannot be declared as final. It opens up
the possibility of a direct call to this same set method, possibly incurring in
the overwrite of the instance provided by the DI container. Second, once setter
method is preferred in a given application, usually other form of injection is
not used. However, by not enforcing the assignment of value to an attribute
on construction time, unit tests that make use of this specific attribute might
be compromised.

Prassana [24] asserts that "[c]onstructor injection affords us the ability to
create immutable dependencies by declaring fields as final". Indeed, constructor
injection decidedly enable a design oriented to immutable fields, as opposed
to setter injection. A simple tentative on changing the value of the assigned
injected instance on source-code won’t enable the compilation of the class.
On the other hand, Prassana [24] argues that "a constructor-injected object
cannot be created unless all dependencies are available," which does not enable
the introduction of lazy injected instances in order to accelerate construction
time. Moreover, Prassana [24] asserts that "the explicitness of setter injection
can itself be an advantage, as [c]onstructors that take several arguments are
difficult to read."

Thus, there is a not a perfect injection idiom, since each one of them
provides singular benefits and drawbacks, as explained earlier. Moreover, we
would like to assert that the injection idiom must be chosen per use case,
taking into consideration aspects related to concurrency, maintenance, testing,
and performance.

Moreover, Prassana [24] discuss that singleton-scoped objects are differ-
ent from singleton objects (a.k.a singleton pattern). A singleton-scoped object

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 36

is instantiated by the DI container once (and is active throughout all ap-
plication life cycle) for each injection point. For instance, let’s consider the
singleton-scoped class B. Also, let’s consider class A with a constructor in-
jection providing an instance of type B as the first parameter. If the second
parameter of the constructor method is also from type B, a different instance
is provided by the DI container.

Prassana [24] asserts that singleton-scoped objects has advantages over
objects with no scope: (a) "objects can be created at startup [...], saving
on construction and wiring overhead", and (b) "there is a single point of
reference when stepping through a debugger." Moreover, Prassana [24] argues
that "business objects are perfect candidates for singleton scoping. They hold
no state but typically require data-access dependencies." In addition, he [24]
asserts that "if an external resource is designed to be held open over a
long period, then yes, it may warrant singleton scoping." Lastly, Prassana
argues that some reasoning over the use of singleton-scoped objects must take
place, since "object graphs that have several dependencies, which themselves
have dependencies, and so on, are not necessarily expensive to construct and
assemble."

On the other side, a singleton object (originated from singleton pattern),
although its instance is also active through the entire application life cycle,
the life of a singleton object is tied to the life of the application (and not to
an injection point). Prassana [24] argues that singleton objects often brings
difficulties in the testing process, where "any object created and maintained
outside an injector [i.e. managed by a DI container] does not benefit from its
other powerful features, particularly life cycle [management] and interception"

For instance, a singleton-scoped object often refrains the developer from
binding different instances of a particular object in different test cases, as
argued by Prassana: "[DI allows you to] quickly bind a key to a different scope
simply by changing a line of configuration."

2.4
Structural Problems

2.4.1
Code Smells

Code smell is a suspect of high level about a problem found in one or
more elements of the source code that usually leads into a structural problem
in the system. Literature agrees that although a code smell does not decidedly
yield a deeper structural problem, the odds on incurring in a problem are

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 37

generally higher than the opposite [4]. One of the most prominent code smells
covered in literature is God Class [23]. According to Cedrim [4], a God Class is
characterized by holding several responsibilities, introducing difficulties in the
process of comprehending the class when it comes to read, modify, and evolve
the same. In addition, according to Lanza and Marinescu [16], a God Class
"refers to those classes that tend to centralize the intelligence of the system.
An instance of a god class performs most of the work, delegating only minor
details to a set of trivial classes and using the data from other classes".

Another code smell that is often found in software systems is Long
Method. This smell concerns an increased complexity entailed in a given
method. This complexity is often derivative from multiple lines of code and
extensive use of foreign attributes.

2.4.2
Anti-Patterns

Patterns in software engineering have its origin in the work of of Jim
Coplien [7]. According to Brown et al. [2], Coplien’s paper titled "A generative
development-process pattern language" set a startpoint "for the patterns
movement to incorporate not just software design patterns, but analysis,
organizational, instructional, and other issues as well."

Coplien’s work has preceded the influential work on software design
patterns, Design Patterns: Elements of Reusable Object-Oriented Software
[12]. Brown et al. [2] asserts that a design pattern is a "common, practical
software design constructs that could be easily applied to most software
projects." Another important definition is given by Larman [17], where "a
pattern is a named problem/solution pair that can be applied in new context,
with advice on how to apply it in novel situations and discussion of its trade-
offs." In other words, a design pattern is a solution construct to a recurring
problem observed in software systems.

On the other hand, the antithesis of a pattern is often referred to an
anti-pattern. According to Brown et al. [2], an anti-pattern is a "description of
a commonly occurring solution to a problem that generates decidedly negative
consequences." A more compelling description of an anti-pattern comes from
the same work Brown et al. [2], as follows.

AntiPatterns provide real-world experience in recognizing recurring
problems in the software industry and provide a detailed remedy for
the most common predicaments. AntiPatterns highlight the most
common problems that face the software industry and provide the
tools to enable you to recognize these problems and to determine

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 38

their underlying causes. Furthermore, AntiPatterns present a de-
tailed plan for reversing these underlying causes and implementing
productive solutions.

An additional definition is provided by Arnaoudova et al. [1], where an
anti-pattern is recognized as "the opposite to design patterns," identifying "poor
solutions to recurring design problems." Moreover, Arnaoudova et al. [1] assert
that anti-patterns "are generally introduced by developers not having sufficient
knowledge and–or experience in solving a particular problem, or misusing good
solutions, i.e., design patterns."

In line with these definitions, differently from a design pattern, anti-
patterns are effective ways to communicate to practitioners how to avoid bad
implementation practices in source code. Thus, we can understand a DI anti-
pattern as a recurring DI usage pattern in source code that degrades aspects
that DI is supposed to improve, such as coupling, or other quality aspects,
such as performance.

2.5
Concluding Remarks

The concept of DI is not uniformly defined in the literature. This way,
this chapter addresses the terminology adopted throughout this dissertation
by presenting the design concepts behind DI and formalizing the concept of
DI. This formalization is important so next chapters are motivated without
ambiguity.

As explained, DI is a particular mechanism for applying inversion of
control in an application, once an auxiliary element (DI container) takes on
the responsibility for solving a module’s dependencies on run time, which are
concrete implementations.

In the context of DI, it is noteworthy to mention that the DI container is
an instance of Creator pattern depicted in GRASP, since he is responsible for
binding instances of dependencies to classes on run time, thus allowing lower
coupling among modules, since modules do not need to acknowledge depen-
dencies or additional information in order to create external dependencies.

Critics over the indirection of responsibility that the DI container brings
may exist. For instance, the DI container removes from system modules their
responsibility to provide the necessary dependencies its own dependencies
required in order to be instantiated.

However, it is noteworthy to mention that DI container is further
employed in the context of service classes and utilitary classes [24], such as

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 2. Background 39

logging, database connectivity, and framework coupling in general, as can be
identified ahead in some analyzed projects.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

3
Related Work

3.1
Introduction

In this chapter, we present studies that are similar to our own. This effort
enables the identification of gaps in the literature that we aim to fill by this
dissertation. As discussed before, there is not a comprehensive guide to identify
anti-patterns related to the use of DI in software projects. Although technical
literature suggests the existence of DI anti-patterns, there is no validation over
the documented instances. Consequently, practitioners have little or no support
on how to effectively identify DI anti-patterns in source code.

As this work is carried out in the intersection of anti-patterns and DI,
we complemented informal searches by submitting a generic search string
("dependency injection"), applied to title, abstract, and keywords, to Scopus
digital library. Most of the 110 retrieved studies do not focus on DI or DI anti-
patterns. Only two academic studies were somehow related to our work. Their
description is presented in the following paragraphs. We also applied backward
and forward snowballing on these two studies, but identified no other studies
with this focus.

Thus, in this section, we present related work distributed on five topics:
the forms to use DI, DI and web services, DI and maintenance, DI bad smells,
and DI anti-patterns. Additionally, we also present related work on building
catalogs of anti-patterns in software engineering.

3.2
Dependency Injection Forms

Yang et al. [38] conducted an empirical study concerning the use of DI
in Java applications. This study was focused on analyzing projects that do not
rely on a specific DI framework. In order to measure the use of DI, the authors
defined four forms of employing DI: constructor and method dependency
injection with and without default implementation. They employed a static
analysis tool for finding these forms of DI in 34 open source projects. The
results show no evidence on the use of investigated forms of DI and indicate

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 3. Related Work 41

that, instead, other mechanisms, such as service locators, were employed by
the developers of the analyzed projects.

3.3
Dependency Injection and Web Services

Crasso et al. [9] investigated the impact of DI on the development of
web service applications in the context of DI4WS, a development model that
allows for service discovery and consumption. Crasso et al. [9] found out that
DI enables faster development, cleaner code, looser coupling and simplifies
service discovery, even though the overhead on memory allocation is higher
compared to other design alternatives.

3.4
Dependency Injection and Maintenance

Razina and Janzen [25] conducted a study to measure the effects of the
use of DI on software maintainability. In particular, the authors [25] focused
on investigating the coupling and cohesion level of modules that apply the DI
mechanism. They [25] selected a set of 20 open source systems, where each
set contains a pair of software systems. The pair is composed by a project
that employs DI mechanism and one similar project that does not employ DI.
The authors [25] relied on three metrics to uncover the maintainability level
of the projects: coupling between objects [3], response for class [3], and lack of
cohesion in metrics [5] .

The authors [25] found that "[t]here does not appear to be a trend in
lower coupling or higher cohesion measures with or without the presence of
dependency injection." However, "a trend of lower coupling in projects with
higher dependency injection percentage (more than 10%) was evident."

Although the results exposed relevant findings, the validity of the work
is questioned due to: (a) how the pairs of software systems were composed
and (b) the characteristic (in terms of LOC and type of application) of the
applications selected for the study.

3.5
Dependency Injection Bad Smells

Roubtsov et al. [31] claim that overuse of annotations can potentially lead
to violations of modularity principles. They propose a catalog of "bad smells"
over dependencies injected in the context of Java annotations. A summary
of the proposition is shown in Table 3.1. The first column represents the

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 3. Related Work 42

Table 3.1: Summary of DI bad smells from Roubtsov et al. [31]
Principle Annotations

Configuration should be separated
from functionality

Application server:
@Install and @Startup
Web server:
@Path and @RequestMapping
Database Server:
@Table and @Column

Information should not be duplicated Principle violated by interface an-
notations mentioning the interface
implementation (@ImplementedBy,
@ProvidedBy)

Information should not be duplicated Annotations duplicating the
database structure (@Id, @One-
ToOne, @OneToMany, @Many-
ToOne, and @ManyToMany)

Interfaces should not be explicit Java interceptor annotations (@In-
terceptors, @AroundInvoke)

modularity principle behind the bad smell and the second column exhibits
the annotations involved in the respective violation.

The authors [31] assert that annotation @ImplementedBy triggers a
potential inconsistency due to maintenance. It is important to address that this
impact is only achieved in case of the introduction of another implementation
possibility. In addition, Roubtsov et al. [31] argue that circular dependency can
be achieved between interface and its implementation. Although the authors
[31] did not provide an example, design patterns, such as Factory, can be used
as mechanisms for solving circular dependencies.

Regarding configuration annotations, such as @Install and @Startup, [26]
address that separating application server configuration and build files is a
feasible resolution. It is important to observe that configuration annotations
are mechanisms by which frameworks can introduce its own behavior in the
application on run time. Then, coupling in this context cannot be excluded.
However, it is possible to provide an interface oriented design, isolating classes
annotated with these configuration annotations, on which the binding of the
instance is accomplished by a DI container. Isolating these classes in a different
component is in charge of developer, being a pure architectural choice.

Over dependence on the web-server violation, on which the authors [31]
claim that "redeployment of the software on a new server is hindered by
presence of explicit dependencies on web-pages", web-deployment descriptors

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 3. Related Work 43

(configuration files) is not the only solution. It is noteworthy that annotations
mainly goal is to diminish the need for configuration files.

Lastly, about annotations concerning database structure, I would assert
that due to Java Persistence API, a programming interface specification,
Roubtsov et al. [31] argument over the impact of redeploying the Java system
on a new server due to presence of explicit dependencies on the database tables,
is not conceivable. As a pattern on the Java platform (Java persistence API),
redeployment in a new server is unlikely to require the removal of persistence
API annotations.

3.6
Dependency Injection Anti-Patterns

The only explicit proposal of DI anti-patterns is the one described by
Seemann [32] and Deursen and Seemann [36], which contains a set of four DI
anti-patterns, shown in Table 3.2.

Table 3.2: DI anti-patterns extracted from Seemann [32]

Name Description

Control Freak Dependencies are controlled directly, as op-
posed to IoC

Bastard Injection Foreign defaults are used as default values for
dependencies

Constrained Construction Constructors are assumed to have a particular
signature

Service Locator An implicit service can serve dependencies to
consumers but isn’t guaranteed to do so

In Control Freak anti-pattern, the principle of IoC is not achieved,
since a dependency is obtained through directly creating an instance of a
concrete implementation. This behavior introduces high coupling into the
system through modules that make use of direct creation of instances.

Bastard Injection concerns specifying a default constructor with the
objective of creating a default dependence instance. Usually implemented
aiming at supporting unit testing, the class with a bastard injection incurs in
high coupling with the default dependence created by its default constructor.

Constrained Construction regards introducing an implicit constraint on
a dependency, i.e., a constructor with a particular signature. This behavior

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 3. Related Work 44

represents a problem when late binding is needed due to application require-
ments.

Finally, Service Locator, a design pattern introduced by Martin Fowler
[11], is described by Seemann [32] as an anti-pattern in the context of DI
applications, since it implies in widespread coupling to a static factory (in this
case, the Service Locator class) throughout source code.

3.7
Catalogs of Anti-Patterns in Software Engineering

As mentioned in Section 2.4.2, software engineering literature has ex-
plored catalogs with the objective to clearly communicate to practitioners best
practices when it comes to the codification of software. Soon, software engi-
neering researchers and practitioners realized that although there were clear
guidelines on promoting good object-oriented design, applications still suffered
from several problems, such as poor design, technical debts, and bugs.

In line with the words of Arnaoudova et al. [1], researchers became aware
that, more than patterns, practitioners should be warned about what not to
do or what practices to avoid when it comes to design software projects.
Thus, catalogs of anti-patterns have been designed in order to overcome
these aforementioned problems. A set of works that introduce anti-patterns
in software engineering and were very influential to this work is presented
afterward.

In "A New Family of Software Anti-Patterns: Linguistic Anti-Patterns,"
Arnaoudova et al. [1] introduce software linguistic anti-patterns, which repre-
sents "recurring, poor naming and commenting choices" on source code. For
instance, some consequences entailed by linguistic anti-patterns are misunder-
standing the main proposal of a method, confounding the return type of a
method base on its name, and unexpected allocation of new objects.

Next, in "Characterizing and Detecting Anti-patterns in the Logging
Code," Chen and Jiang [6] conduct a study to to address the problem of
anti-patterns in the logging code, which they define as "recurrent mistakes
which may hinder the understanding and maintainability of the logs." Although
previous work focused on where-to-log and what-to-log, Chen and Jiang [6]
tackled the problem from the perspective of how-to-log. According to the
authors [6], this problem concerns the development and maintenance of high-
quality logging code, specifically those related to performance issues. Chen and
Jiang [6] asserts that "excessive logging may cause unexpected side-effects like
performance slow-down or high disk I/O bandwidth."

Then, they [6] examined three open source software systems in order to

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 3. Related Work 45

uncover bad practices related to logging code. Thus, they were able to find
64 representative instances of logging code anti-patterns and most of them
were accepted by developers that maintained the aforementioned open source
systems examined.

3.8
Concluding Remarks

Software engineering researchers have carried out many studies on im-
proving structural quality of software systems [4]. However, we observe that
existing empirical and mining studies on structural quality lack in-depth dis-
cussion over DI anti-patterns. The studies analyze aspects related to the use of
forms of DI [38], and the effects of DI on development [9] and maintainability
[25] of software systems. In this chapter, we presented studies that are similar
to our own. This effort enables the identification of gaps in the literature that
we aim to fill by this dissertation.

The results found by Yang et al. [38] stating that forms of DI are not
commonly used in software systems make room for a systematic investigation
of violations of principles behind DI in source code.

Regarding the work of Roubtsov et al. [31], even though the authors pro-
vide means for resolving each smell, they provide no comprehensive discussion
concerning the validity of the proposed "code smells". It is important to note
that, from thirteen annotations analyzed, only two are related to DI (@Im-
plementedBy, @ProvidedBy), which are annotations introduced by the Guice
framework. Moreover, they recognize that the cataloged smells heavily focused
on annotations related to the J2EE persistence model, which are based upon
Java Persistence API (JPA), a specification for persistence in Java.

The DI anti-patterns addressed by Seemann [32] and Deursen and
Seeman [36] correspond to generic rules of thumb when it comes to DI adoption
in software projects. For instance, regarding Control Freak, the author suggests
that the presence of the new keyword and static factories as indicative of high
level of coupling in source code. However, Control Freak can also be considered
an anti-pattern in projects that do not implement DI. The DI anti-patterns
proposed in this paper address more specific DI related problems in Java source
code, such as misuse of specification annotations.

As discussed before, although technical literature suggests the existence
of DI anti-patterns, there is no validation over the documented instances.
Consequently, practitioners have little or no support on how to effectively
identify DI anti-patterns in source code.

Therefore, it is important to characterize elements of source code that

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 3. Related Work 46

are hindering the proper employment of DI in software projects. This work,
through a proposal of a catalog of Java DI anti-patterns and subsequent
investigation of its occurrence, intends to fill this gap. In this way, there is an
opportunity to research in these topics. The next chapters present the efforts
to fulfill these identified gaps.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

4
Proposing a Catalog of Java Dependency Injection Anti-
Patterns

4.1
Introduction

As mentioned in Chapter 3, previously reported DI anti-patterns aim
at generic problems. For instance, Control Freak can also be found in other
contexts where IoC is adopted without DI. In addition, we were not able to
identify existing literature regarding DI anti-patterns in the context of Java.
In summary, reported DI anti-patterns and DI code smells fail to depict their
application context scenario, and most importantly, fail to present evidence on
their practical relevance.

In order to address such limitations, in this chapter we report on our
efforts in documenting a candidate catalog of Java DI anti-patterns. As
previously mentioned, in this proposal, we focused on the Java platform due
to the following reasons: (a) the lack of documentation regarding this specific
platform, (b) the existence of a myriad of DI frameworks (such as Guice [13]
and Spring [29]), (c) industrial large adoption (i.e. it is easier to find developers
to contribute with opinions over the catalog), (d) a specification aimed to DI
(JSR-330) [26], (e) and the large number of open source software repositories
written in Java available.

The anti-patterns were derived from two criteria: First, based on the
observation of the recurrence of bad characteristics of DI code elements, such
as the violation of DIP or IoC principles. These were observed in industry
projects by the author while maintaining software in practice and evolved
through discussions with researchers. Second, as DI is supposed to improve
structural quality of object-oriented applications, we also explored a set of DI
anti-patterns that could be present in source code, harming design principles,
such as GRASP [17].

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns48

4.2
Method

From a methodological point of view, there are typically two approaches
for coming up with new propositions: inductive and deductive [40].

The inductive approach relies on observation of a phenomena to uncover
a pattern (or set of patterns) that might lead to a theory. According to Lodico
et al. [18], "the researcher [, through inductive reasoning,] uses observations to
build an abstraction or to describe a picture of the phenomenon that is being
studied." In this context, we have observed the state of the practice while
maintaining software projects that adopts DI framework in industrial settings.

On the other side, deductive approach concerns "developing a hypothesis
[...] based on existing theory, and then designing a research strategy to test the
hypothesis" [39]. It means that existing theory is used as a basis for establishing
a proposal so that evidence can be gathered based on a strategy developed to
evaluate the proposal. For this matter, we relied on the mapping of violations
of design principles (theory) , i.e. GRASP and SOLID, in the context of the
employment of DI in software projects. This mapping would enable us to
hypothesize over possible anti-patterns (hypothesis).

Through maintaining software projects in industry, in efforts related to
corrective and evolutionary software maintenance, the author was able to pre-
liminarily identify patterns in elements of the source code that violated design
principles behind DI, namely, IoC and DIP, and also some of the design prin-
ciples presented in GRASP and SOLID. The experience maintaining software
projects lasted 7 months, and 3 closed-source projects from an industrial part-
ner were maintained in the period. All 3 projects were information systems
developed in Java aimed at supporting business processes in different organi-
zations. Due to the disclosure agreement on exposing information about the
closed-source projects maintained at the time, we cannot described further
details about code elements involved.

Rather than the inductive approach, deductive reasoning relies on theory
to hypothesize about a phenomenon that might occur in real-world. In our
context, we rely on the theory of GRASP and SOLID design principles to
complement the proposition of the DI anti-patterns that might occur in
practice. Some excerpts of reasoning over the existence of DI anti-patterns
are provided hereafter.

In regard to GRASP, the Creator pattern advocates for reasoning upon
which class (A) is responsible for instantiation of another class (B). A factor
that drives the assignment of responsibility in the Creator pattern is the
presence of dependencies in A that B needs in order to be instantiated by

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns49

A. Thus, the presence of a direct container call harms the Creator pattern,
once the container is a generic class provided by the DI framework in order to
support instantiation of objects in scenarios where injection of elements is not
possible, such as testing integration with third party libraries.

Next, GRASP introduces the Indirection principle, which concerns the
introduction of a mediator object in the context of two communicating objects.
Indirection is achieved in DI by means of IoC and the employment of the
DI container. It is worthy to note that any tentative to swipe the control of
the framework, refraining the DI container from the responsibility to provide
instances on run time, to mediate the communication between modules may
be defined as an anti-pattern.

Besides, in the JSR-330 specification, the annotation @Provides is re-
sponsible for letting the DI container aware that a given dependency must be
provided by the method annotated. Thus, it is inferred that these methods are
very cohesive, it is, it should enforce the principle of Low Coupling.

In addition, by receiving an injected element (it does not matter in
which form), opening this specific code element for modification entails in
the violation of the OCP. The violation occurs because it is not guaranteed
that the correctness of the program is maintained. Also, enforcing a design not
oriented to abstractions causes the violation of the DIP. Lastly, fabricating
instances of objects in domain classes may incur in the violation of the Pure
Fabrication principle.

4.3
Candidate Catalog of Java DI Anti-Patterns

Brown et al. [2] advocates for a structural definition of a pattern through
a template, because it "assures that important questions are answered about
each pattern". Thus, similarly to Arnaoudova et al. [1], we describe each of
the candidate DI anti-patterns with the following elements: name, description,
negative consequences, pattern of occurrence, and solution. As Gamma et al.
[12] argues, a name "is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two". The description defines the
problem and the context on which it is applied. The description also depicts
the structure of the anti-pattern in form of source code. Negative consequences
concern the observed drawbacks. Pattern of occurrence depicts a representation
of the anti-pattern in source code. The solution describes the means on which
the anti-pattern is removed and also presents a snippet that illustrates the
source code without the anti-pattern.

Furthermore, we classify the proposed DI anti-patterns into four different

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns50

Table 4.1: Catalog of Java DI Anti-Patterns (Part 1)
Identifier Name Description Category

AP1 Intransigent
injection

Dependencies that are not
needed on construction time,
however, are provided by the
DI container, introducing ad-
ditional workload and memory
consumption

Performance

AP2 Concrete
class injec-
tion

Reference on concrete class for
injection

Design

AP3 Long Pro-
ducer
method

Method that performs activities
that are out of the scope of pro-
viding a dependence, which is
its main objective

Design

AP4 God DI
class

Related to code smell God
Class, however, applied to de-
pendencies provided by a DI
container

Design

AP5 Non used
injection

Dependency requested via DI
that is not used

Performance

AP6 Static de-
pendence
provider

Usage of static fabrics or Service
Locator to obtain a dependence

Architecture

classes of problems: Architecture, Design, Performance, and Standardization.
Architecture concerns architectural violation, such as the the violation of
IoC and DIP principles. Design problems are related to the presence of
design issues, such as design smells. Performance problem concerns impact on
memory usage or response time, such as useless dependency provision. Finally,
Standardization is related to sticking to a DI coding style, such as following
the specification (JSR-330).

In total, our candidate catalog contains twelve proposed DI anti-patterns,
which are summarized in Tables 4.1 and 4.2. In subsections ahead, we describe
each DI anti-pattern, addressing its respective category, negative consequences,
and suggested resolution.

4.3.1
Intransigent injection

Intransigent injection concerns dependencies that are not needed on
construction time, however, they are decidedly provided by the DI container on
construction time. This scheme introduces additional workload and memory
consumption on construction time. In other words, overuse of object allocation

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns51

Table 4.2: Catalog of Java DI Anti-Patterns (Part 2)
Identifier Name Description Category

AP7 Direct con-
tainer call

Relying on DI container in order
to obtain a dependence

Architecture

AP8 Open win-
dow injec-
tion

An injected instance is passed
as parameter to another class
method or opened for external
accessing (e.g. get method)

Design

AP9 Framework
coupling

Elements on source code that
are dependent on a given DI
framework implementation

Standardization

AP10 Open door
injection

An injection request is fulfilled
by a DI container, however, the
instance is opened for modifica-
tion by an external element (e.g.
set method)

Design

AP11 Multiple
assigned
injection

An injected instance is assigned
to multiple attributes (may in-
clude external attributes)

Design

AP12 Multiple
forms of
injection

Refers to the use of multiple
forms of injection to a given ele-
ment, such as attribute and con-
structor

Standardization

in memory during construction time is entailed. It is worse scenario is observed
if it’s not a lightweight object, impacting on performance. Thus, this anti-
pattern is categorized as a performance problem. Figure 4.1 presents the
structure of occurrence followed by an example solution, separated by a dashed
line. In the occurrence example, the injected attribute example1 is not used
in construction time, thus, the process of injecting a given instance in this
attribute might require additional workload to DI container. The example
resolution provided concerns relying on a Provider, an interface type defined by
JSR-330 that is responsible for providing a given instance when it is requested.
Thus, in the example resolution, an instance for the injected attribute example1
is only provided when its use is required.

4.3.2
Concrete class injection

Concrete class injection concerns a dependence requested via dependency
injection on which the element type of the dependence is a concrete class.
As a design problem, this anti-pattern produces the following negative conse-
quences: first, this solution yields a violation of IoC principle, once the class
requesting its dependence acknowledges an implementation detail, i.e. the con-

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns52

Figure 4.1: Intransigent injection

public class A {

@Inject
private IExampleInterface0 example0;
@Inject
private IExampleInterface1 example1;

public A() {
example0.doSomething();

}

public void foo() { /* omitted code */ }

public void bar() {
example1.doSomething();
/* omitted code */

}
}

public class A_Without_Intransigent_Injection {

@Inject
private IExampleInterface0 example0;
@Inject
private Provider<IExampleInterface1> example1Provider;

public A() {
example0.doSomething();

}

public void foo() { /* omitted code */ }

public void bar() {
IExampleInterface1 example1 = example1Provider.get();
example1.doSomething();
/* omitted code */

}

}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns53

crete class; second, this solution introduces less flexibility on testing, once a
mock object would need to be an inherited class of the given concrete class
in order to modify desired behavior; finally, according to Gamma et al. [12],
coupling to a concrete class can increase maintenance efforts.

Gamma et al. [12] advocates for programming to an interface, which
is a natural solution to this anti-pattern. Figure 4.2 presents the structure
of occurrence together with a solution, separated by a dashed line. The
example solution concerns following an interface oriented design when it
comes to request a dependence. Further, the resolution example depicts a
code transformation, on which an interface (see IExampleInterface) is created
so that the class ConcreteExample implements it. Then, rather than relying
on a concrete class injection (which configures a high coupling to class
ConcreteExample), the class B_Without_Concrete now follows dependency
inversion principle, once it depends on an interface (IExampleInterface).

4.3.3
Long producer method

Long producer method concerns a method that performs activities that
are out of the scope of providing a dependency, which must be its main
objective. This context defines this anti-pattern as a design problem. A
negative consequence entailed is undermining the ability of the software to
adapt to change when requirements change. Figure 4.3 depicts an example of
long producer method occurrence along with an example of solution, separated
by a dashed line.

The example problem shows a high complex method that should be sim-
ple, once the main concern of a Producer method (see @Produces annotation)
is to a provide a given dependency. The DI container, when it identifies the
existence of a Producer method for a given type, transfer the responsibility for
dependence provision to the Provider method.

On the other hand, in solution part, in case where business logic is
necessary in order to obtain a dependence, rather than relying on a Producer
method, a business method is desirable. In other words, the @Provision
annotation is removed, so the dependence provision process of the class holding
the old Provision method is shortened. Also, refactoring the method in order
to decrease cyclomatic complexity is another important step. In addition, a
suitable code transformation is employing aspect-oriented programming in
order to trigger important tasks based on the life-cycle of the Provider method.
For instance, an example code transformation is defining a pointcut on the
Provider method, so the Provider method is intercepted and the logic is

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns54

Figure 4.2: Concrete class injection

public class B {

@Inject
private ConcreteClassExample example;

private void foo(){
example.doSomething();
// code omitted for brevity

}
}

public class ConcreteClassExample

implements IExampleInterface {

@Override
public void doSomething() {

// code omitted for brevity
}

}

public class B_Without_Concrete {

@Inject
IExampleInterface example;

private void foo(){
example.doSomething();
// code omitted for brevity

}
}

executed prior or after the dependence provision. Particularly, we aimed to
provide an excerpt of a Producer method without high cyclomatic complexity
and fewer responsibilities.

4.3.4
God DI class

As mentioned in Chapter 2, a God class often embrace a multiple set of
responsibilities that would be better handled if distributed properly. A signal
of a God DI Class may be in the form of a class with poor modularity, possibly
indicating a deeper problem.

This pattern in source code can also occurs in the context of dependencies
provided by a DI container. Therefore, this anti-pattern concerns the injection
of a substantial number of dependencies in a class. This anti-pattern is

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns55

Figure 4.3: Long producer method

public class C {
// omitted code
@Produces
public ProducedBean generateReport(){

Set<Integer> selectedBacklogIds = this.getSelectedBacklogs();
if(selectedBacklogIds == null) {

Collection<Product> products = new ArrayList<Product>();
productBusiness.storeAllTimeSheets(products);
for (Product product: products) {

selectedBacklogIds.add(product.getId());
}
return Action.PROCESS;

}
// omitted code
Workbook wb = this.timesheetExportBusiness.

generateTimesheet(this, selectedBacklogIds, startDate,
endDate, timeZone, userIds);

this.exportableReport = new ByteArrayOutputStream();
try {

wb.write(this.exportableReport);
} catch (IOException e) {

return Action.ERROR;
}
return Action.SUCCESS;

}
}

public class C_Without_Long_Producer {

// omitted code
@Produces
public ProducedBean generateReport(){

if(selectedBacklogIds == null) {
processSelectedBacklogs();
return Action.PROCESS;

}
if (selectedBacklogIds.contains(0)) {

processSelectedBacklogIds();
}
writeToLog();
return Action.SUCCESS;

}
}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns56

primarily concerned over injected instances that are often inconsequentially
introduced by developers without reasoning over the increased dependence of
the class with other components.

Negative consequences entailed by this anti-pattern concerns a possible
increased effort on maintenance tasks in the class. As derived from a design
smell, it is configured as a design problem.

Figure 4.4 depicts the pattern of occurrence of a God DI class. The
example depicts an excerpt of a class with high level of complexity, in terms
of number of injected element instances, and number of methods.

Also, below the dashed line, Figure 4.4 exhibits a suggestion of a
refactoring that removes the anti-pattern, dividing dependencies and behavior
into different classes. The resolution example depicts a code transformation
applied to previous class D, on which a refactoring type called "Extract Class"
[4] was employed three times in order to reduce the complexity of class D.

4.3.5
Non used injection

This anti-pattern regards a dependency requested via dependency in-
jection that is actually not used in the class. It overloads the DI container
with the incumbency to provide the non used dependency on run time. Worst
case scenario if it is not a lightweight object, or if it is not a singleton scope,
impacting on performance. This way, non used injection is categorized as a
performance problem.

Figure 4.5 presents the structure of occurrence together with an example
solution, separated by a dashed line. The example shows a class (E) with an
injected instance that is not used though any method of the class. Next, the
solution concerns removing the non used injection element.

4.3.6
Static dependence provider

Static dependence providers are related to Fabrics and Service Locators.
The first refers to a class that has the objective to provide a given concrete
implementation, not being a Provider class. On the other side, Service Locator
pattern also applies to this context, since it is a class that has the responsibility
for serving all dependencies that might be required on run time.

Negative consequences entailed by this anti-pattern are high dependence
on fabric in source code, configuring a high coupling to a fabric class. In case
of Service Locator, the dependency on this pattern is even worse due to its
widespread usage in the project. Indeed, inversion of control is not achieved

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns57

Figure 4.4: God DI class

public class D {
@Inject private IExample1 one;
@Inject private IExample2 two;
@Inject private IExample3 three;
@Inject private IExample4 four;
@Inject private IExample5 five;
// other several dependencies injected
@Inject private IExampleN n;

void methodOne() { /* reference to several dependencies */ }
void methodTwo() { /* reference to several dependencies */ }
// other several methods
void methodThree() { /* reference to several dependencies */ }

}

public class D_Part_1 {

@Inject private IExample1 one;
@Inject private IExample2 two;
@Inject private IExample3 three;

void methodOne() { /* code omitted */ }
}
public class D_Part_2 {

@Inject private D_Part_1 dPartOne;
@Inject private IExample4 four;
@Inject private IExample5 five;
@Inject private IExample6 six;

void methodTwo() { /* code omitted */ }
}
public class D_Part_3 {

@Inject private D_Part_2 dPartTwo;
@Inject private IExample7 seven;
@Inject private IExample8 eight;
@Inject private IExample9 nine;
@Inject private IExampleN n;

void methodThree() { /* code omitted */ }
}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns58

Figure 4.5: Non used injection

public class E {

@Inject
private ExampleType one;

public void foo() { /* no reference to one */ }
public void bar() { /* no reference to one */ }

}

public class E_Without_Non_Used {

public void foo() {
// code omitted for brevity

}
public void bar() {

// code omitted for brevity
}

}

in both cases. Both classes of problem concerns architectural problems, since
both violate DIP and IoC principle.

Figure 4.6 depicts an example of Service Locator occurrence and an
example resolution, separated by a dashed line. The occurrence example
exhibits the class (E) with a dependence provision made by a service locator. In
other words, rather than relying on the DI container for injecting an instance of
IDataSource type on dataSource attribute, the code relies on a service locator.

On the other side, the example resolution on Figure 4.6 enforces the
use of DI container for dependency injection at run time by relying on a
Producer method in order to provide an instance of IDataSource. Particularly,
the resolution example above shows a code transformation, in which the logic
for creating an instance of IDataSource is modularized within a Producer
method. This way, the class E_Without_Service_Locator is not coupled to
a service locator class anymore.

4.3.7
Direct container call

Direct container calls can provide a concrete implementation at any point
of the system. The nature of this anti-pattern is similar to using a static fabric
or a Service Locator. Indeed, negative consequences include high coupling to
framework specifics, since it relies directly on the framework to provide the
dependency. In addition, again, inversion of control principle is not achieved
in this context. Once DI is chosen as an architectural standard for the project,

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns59

Figure 4.6: Static dependence provider

public class E {

@Inject
private Parser parser;

public void execute(List<String> files) throws Exception {
IDataSourcedataSource dataSource = (IDataSource)

ServiceLocator.getInstance()
.getBeanInstance("IDataSource");

for(String file : files){
Object parsedObject = parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

public class ProjectConfigBeans {

@Bean
public IDataSource provideDataSource(){

// logic for creating an instance of IDataSource
}

}

public class E_Without_Service_Locator {
@Inject
private Parser parser;
@Inject
private IDataSource dataSource;

public void execute(List<String> files) throws Exception {
for(String file : files){

Object parsedObject = parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns60

employing container call for dependence resolution conveys an architectural
violation. A suggested solution relies on applying DI to occurrences of container
calls aimed at providing a dependence.

The Figure 4.7 shows an example of container call in the Spring frame-
work and a suggested solution, separated by a dotted line. The occurrence
example shows the class (E) with a dependence provision made by a direct
container call. In other words, rather than relying on the DI container for
injecting an instance of IDataSource type on dataSource attribute, the code
relies on a direct container call. Next, the suggested resolution concerns re-
moving the element that performs a container call and enforcing the use of a
DI container for dependence provision.

4.3.8
Open window injection

This anti-pattern is applied when an injected instance is not used, but
passed as parameter to another class method or opened for external accessing
(e.g. by get method or public/protected access modifier). Two negative conse-
quences are observed. In the first case, it adds a useless intermediary element
between the class that needs a given concrete implementation and the DI con-
tainer. On the second case, it opens a door for external modification, which
could possibly yield the introduction of bugs. A suggested resolution concerns
the following actions: (a) on the given class, remove the method that pro-
vides the injected dependence to external classes; (b) In addition, remove the
injected dependence from the parameter list of the external method; (c) For
last, in the external class, add the dependency injection request as parameter
list earlier.

Figure 4.8 show an example of open window injection occurrence, on
which the parser object is passed as parameter to another method. Following
to that, the resolution example depicts a code transformation where the
injected element parser is not passed as parameter to method doSomething
of the interface IExampleInterface anymore. The concrete implementation of
IExampleInterface is now responsible for defining its dependence on an instance
of Parser type.

4.3.9
Framework coupling

It refers to elements on source code that are dependent on a given
framework implementation. As the name of the anti-pattern expose, it can be
represented as annotations or method calls to framework configuration classes

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns61

Figure 4.7: Direct container call

public class F {

@Inject
private Parser parser;

@Inject
private ApplicationContext context;

protected IDataSource getRepository() {
return (IDataSource) context.getBean("ftpDataSource");

}

public void execute(List<String> files) {

IDataSource dataSource = getRepository();

for(String file : files){
Object parsedObject = parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

public class F_Without_Container_Call {

@Inject
private Parser parser;

@Inject
private IDataSource dataSource;

public void execute(List<String> files) {
for(String file : files){

Object parsedObject = parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns62

Figure 4.8: Open window injection

public class F {

@Inject
private Parser parser;
@Inject
private IExampleInterface one;

public Parser getParser() {
return parser;

}
public void execute(List<String> files) throws Exception {

for(String file : files){
Object parsedObject = parser.parse(file);
one.doSomethingWithParsed(

parser, parsedObject);
}

}
}

public class F_Without_Passing {

@Inject
private Parser parser;
@Inject
private IExampleInterface one;

public void execute(List<String> files) throws Exception {
for(String file : files){

Object parsedObject = parser.parse(file);
one.doSomethingWithParsed(parsedObject);

}
}

}

public class ConcreteExample
implements IExampleInterface {

@Inject
private Parser parser;

@Override
public void doSomethingWithParsed(Object parsedObject) {

// omitted code
}

}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns63

Figure 4.9: Framework coupling

public class J {

@Autowired
private Parser parser;

@Autowired
private IDataSource dataSource;

public void execute(List<String> files) {
for(String file : files){

Object parsedObject = parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

public class J_Without_Framework_Coupling {

@Inject
private Parser parser;

@Inject
private IDataSource dataSource;

public void execute(List<String> files) {
for(String file : files){

Object parsedObject = parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

along the source code. In the context of Java, which presents a specification for
DI, a framework specific annotation, for example, incurs in high coupling to the
framework. This way, we categorize this anti-pattern as part of standardization
category. In addition, in case where compatibility is a requirement, this anti-
pattern can lead to greater effort in maintenance activities, framework change
or framework version update. A suitable option for removing coupling from a
given DI framework is relying on the adoption of annotations presented in the
specification.

Figure 4.9 depicts a class that employs Spring framework @Autowired
annotation and, below the dashed line, the same class, now employing JSR-
330 @Inject annotation.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns64

Figure 4.10: Open door injection

public class H {
@Inject
private Parser parser;

public void setParser(Object parser) {
this.parser = parser;

}

// code omitted for brevity

}

public class H_Without_Anti_Pattern {

@Inject
private Parser parser;

// code omitted for brevity
}

4.3.10
Open door injection

This anti-pattern is applied when an inject request is provided by a DI
container, however, the instance requested is open for modification by an exter-
nal element. It usually happens when the developer lacks sufficient knowledge
about DI. Open door injection can configure a hard to follow traceability,
hindering program comprehension. Also, bugs are another possibility, since
concrete implementation is open to chance by an external class.

Figure 4.10 depicts the presence of a public set method that allows
changing of the injected instance of parser in runtime. In details, the example
depicts a public set method ("setParser"), which allows for modification of the
instance of an injected element ("parser") by an external class. The resolution
shown below the dashed line is the removal of the element on source code (e.g.
public set method) that enables changing injected element.

4.3.11
Multiple assigned injection

This anti-pattern occurs when the reference to an injected instance is
spread among multiple attributes. This anti-pattern is correlated to Open door
injection, since it opens a gap for an undesirable modification of the injected
object at run time. Figure 4.11 provides an example of occurrence of such
anti-pattern. The example depicts the assignment of an injected instance of

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns65

ExampleDAO to an attribute of a parent class ("GenericBusinessImpl").
In the case of injection instance being assigned to an attribute of super-

class, a better approach would be overriding an abstract method. This way, the
overridden abstract method would provide the instance injected, not incurring
on reference duplication. Thus, the resolution example shown below the dashed
line on Figure 4.11 depicts a code transformation that removes the assignment
of an injected instance to an attribute presented in a parent class. The removal
makes room for an abstract method in the parent class, which still allow the
reference to the original injected instance.

4.3.12
Multiple forms of injection

This anti-pattern refers to the use of multiple forms of injection to
a given element. It leads to misunderstanding of injection process for less
experienced developers. Figure 4.12 provides an excerpt of the occurrence of
this anti-pattern, where there are two forms of injection for the same element
("exampleDAO"). The first is an attribute injection. The second is a constructor
injection. Then, the example resolution depicts only one form of injection
(constructor) for the element exampleDAO.

4.4
Concluding Remarks

Documented DI anti-patterns do not directly consider the design princi-
ples behind DI, namely, IoC and DIP, and the existence of design principles
that guide good object-oriented design, such as GRASP and SOLID. In addi-
tion, even with such importance in industrial settings, existing catalogs do not
focus on Java platform.

Considering this scenario, we address our RQ1 by applying two method-
ological approaches to derive an initial catalog of Java DI anti-patterns. First,
based on observations of bad characteristics in source code, i.e., characteris-
tics of implementation in source code that violates design principles, such as
IoC and DIP. Second, as a deductive approach, we have listed a set of anti-
patterns such that instances could appear in software systems that adopt DI
as a mechanism to decrease coupling.

An initial set of 12 anti-patterns related to the employment of DI in
software systems are derived from such process. Each one of them provides a
name, a description, negative consequences and a suggestion of resolution in
order to guide practitioners’ in their day to day development activities.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns66

Figure 4.11: Multiple assigned injection

class ExampleBusiness
extends GenericBusinessImpl{

private IDAOexampleDAO exampleDAO;

@Inject
public void setExampleDAO(ExampleDAO exampleDAO) {

this.genericDAO = exampleDAO;
this.exampleDAO = exampleDAO;

}

}

abstract class GenericBusinessImpl {

abstract IDAO getGenericDAO();

}

class ExampleBusiness
extends GenericBusinessImpl{

private IDAOexampleDAO exampleDAO;

@Inject
public void setExampleDAO(ExampleDAO exampleDAO) {

this.exampleDAO = exampleDAO;
}

@Override
protected IDAO getGenericDAO() {

return this.exampleDAO;
}

}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 4. Proposing a Catalog of Java Dependency Injection Anti-Patterns67

Figure 4.12: Multiple forms of injection

class ExampleBusiness
extends GenericBusinessImpl {

@Inject
private IDAOexampleDAO exampleDAO;

@Inject
public void setExampleDAO(ExampleDAO exampleDAO) {

this.exampleDAO = exampleDAO;
}

}

class ExampleBusiness

extends GenericBusinessImpl{

private IDAOexampleDAO exampleDAO;

@Inject
public void setExampleDAO(ExampleDAO exampleDAO) {

this.exampleDAO = exampleDAO;
}

}

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

5
Assessing Practical Occurrence of the Proposed Catalog

5.1
Introduction

Although existing studies have suggested DI anti-patterns, none of them
have explored the practical occurrence of the anti-pattern instances. In other
words, it is unknown if such instances occur within software systems. Without
this knowledge, it is not possible to effectively assess the relevance of anti-
patterns in practice. Besides, under the light of the principles behind DI,
namely, IoC and DIP, we found that existing studies fail to present anti-
patterns targeted at the DI principles. For instance, most suggested anti-
patterns may also be applied in a context where a DI framework and DI
principles are not employed, such as Control Freak [32].

Thus, in Section 4, we conjectured a set of DI anti-patterns aimed at
the Java platform. Even though the proposed DI anti-patterns have focused
on properly addressing violations of the principles behind DI and patterns
present in GRASP, they might not matter in practice, incurring the same
problem of existing documentation. Hence, it is important to understand
if the proposed DI anti-patterns represent problems that are introduced by
developers in practice. Otherwise, the catalog would be considered useless.
To address RQ2, we selected a set of open and closed-source software projects
that adopt a DI framework. Next, we developed a tool to statically analyze the
occurrence of the DI anti-patterns within their source code. By answering this
question, we will be able to reveal the degree of occurrence of the candidate
catalog of DI anti-patterns in software projects, thus, opening a window for
further efforts towards validation.

Thus, Section 5.2 introduces our initial efforts towards validating the
proposed catalog of DI anti-patterns, describing the steps taken to develop a
static analysis tool to automatically detect instances of DI anti-patterns. In
addition, Section 5.2 describes the results of the detection of DI anti-patterns
in several software systems. Section 5.5 provides the threats of validity incurred
by this method. Lastly, we explain the results from this study in Section 5.4.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 69

5.2
Developing an automatic detection tool

At the time we were investigating feasible approaches to enable a fast
process of identification of the proposed DI anti-pattern instances on source
code, we did not find any tool that would easily allow us expressing the rules
that flag elements of code as positive or negative regarding being an instance
of anti-pattern.

Although no tool was able to automatize all steps per se, (namely, query-
ing a repository of software project through a query language, cloning the
repositories queried, submitting rules to identify anti-patterns in a project’s
source code, outputting the results), we found that Repodriller [30], a frame-
work for mining software repositories, would enable the identification of an-
notations in source code. Thus, we started with a manual analysis aimed at
providing initial evidence that the candidate DI anti-patterns have instances
on real open source projects. Repodriller [30] was used to filter the occurrence
of DI injection point annotations (such as @Inject and @Autowired) and DI
container references (e.g. direct container calls) in the preliminary selected
projects. After filtering, classes and its associations were manually analyzed
in order to verify if DI elements on source code incurred in an anti-pattern
instance.

Although we were able to identify some instances of anti-patterns in
the source code of randomly selected projects, we realized that the manual
procedure was error-prone and not cost-effective in terms of time. Thus, in
order to support the automatic detection of each proposed DI anti-pattern in
source code, a software tool called DIAnalyzer was developed. The source code
of DIAnalyzer is available on GitHub 1.

5.2.1
Designing DI anti-patterns detection tool

Based on the proposed catalog of DI anti-patterns presented in Section
4, this section aims at describing the development of a software system called
DIAnalyzer that automatically identifies every anti-pattern proposed. The tool
is a static code analyzer implemented using the JavaParser [33] library, which
relies on an Abstract Syntax Trees (AST) in order to flag elements of code
that represent DI anti-patterns candidates. The requirements of the tool are
explained hereafter.

Functional Requirements
1https://github.com/rnlaigner/dianalyzer

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 70

Table 5.1: Rules for anti-patterns detection
Identifier Rule

AP1 AP1 is applied when an injected attribute is not referenced in
all methods of a class

AP2 AP2 is applied when an attribute that receives an injection is
a concrete implementation

AP3 AP3 is applied when the sum of the cyclomatic complexity of
the Producer method is greater than 8

AP4 AP4 is applied when the sum of the cyclomatic complexity of
all methods of the class being inspected is greater than 46 and
the number of attributes injected in class being inspected is
greater or equal 5

AP5 AP5 is applied in an attribute if this attribute is an injected
attribute, however, the same is not used in the class

AP6 A heuristic was used to detect these instances, as follows: An
attribute instance is obtained by calling a dependence on which
its name or class name contains fabric or factory

AP7 AP7 is applied when an instance of ApplicationContext class
calls the method getBean

AP8 AP8 is applied when an injected instance is passed as parameter
to another class method or opened for external accessing by a
method

AP9 AP9 is applied when the annotation @Autowired is employed
in order to inject dependence instances

AP10 AP10 is applied when an injected instance is allowed to be
changed on a public set method

AP11 AP11 is applied when more than one class attribute receives
exact same injected instance

AP12 AP12 is applied when a class attribute is registered to receive
an injected instance by more than one form of injection (e.g.
constructor and attribute)

– FR1. The tool must identify instances of anti-patterns given a set of
rules (the rules are shown in Table 5.1)

– FR2. The user can provide the project to be analyzed

– FR3. The user can provide the output path of the results provided by
the tool

– FR4. The tool must provide as output an spreadsheet with the following
information: For each DI anti-pattern detected, the class, element, and
DI anti-pattern must be shown in each line

– FR5. The user must be able to download open source projects from
GitHub given an query provided as input

Non Functional Requirements

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 71

– NF1. An analysis process cannot take more than 10 minutes

– NF2. The system must be able to execute on Windows, MacOS and
Linux distributions - Portability

– NF3. The user must be able to start an analysis in less than 1 minute -
Usability

Figure 5.1 shows a schematic overview of DIAnalyzer. The design of
the project followed an orientation to abstraction, as suggested by Martin
[21]. Thus, the system architecture is decomposed in a set of subsystems.
The subsystems are: repository extractor, data model extractor, analysis, and
report. The description of each subsystem is provided as follows.

The Repository Extractor subsystem is responsible for submitting a
request (in form of a query) to GitHub API in order to clone a set of open
source projects into user’s file system.

As mentioned earlier, to support the identification of the DI anti-
patterns, the JavaParser framework was employed. The Data Model Extractor
subsystem converts each file of the project under analysis into a model that can
be manipulated by the system. The Data Model Extractor Subsystem is built
as a layer above the JavaParser framework, abstracting its internals in order to
ease reuse and diminish coupling to JavaParser from other subsystems of the
architecture. JavaParser relies on constructing an AST for a given compilation
unit (i.e. Java class) and represents object oriented elements, such as methods,
attributes, and classes in form of a vertex in a tree.

A rule-based strategy approach was employed to identify the DI anti-
patterns. For example, to check whether a class contains the AP7 anti-pattern,
in the case of a project employing the Spring framework, we first identify the
presence of a coupling to ApplicationContext class. Then, based on an attribute
declaration of type ApplicationContext, we identify method calls to getBean
from this attribute, passing a string as a parameter. This string identifies
either a desirable concrete class or an interface. If there are at least one method
invocation of this nature, this code snippet is flagged as containing AP7. The
rules applied in order to detect each DI anti-pattern are found on Table 5.1.
It is worth of mention that the detection strategies applied to AP3 and AP4
were based on Lanza and Marinescu [16].

The Analysis subsystem is the core part of the architecture, since it
contains the logic that verifies if an anti-pattern is applied in the context
of a class. Basically, each anti-pattern is modeled as a class in the Analysis
subsystem. An anti-pattern class is composed by a set of rules. Each rule is
also modeled as a class, being responsible for identification of injected elements

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 72

Figure 5.1: Schematic overview of DIAnalyzer

that obey the characteristics of given rule. Some rules also have as dependence
a data source, which is implemented as a class that provide additional source
code information on run time.

Lastly, the Report subsystem is responsible for handling requests related
to convert the results of the Analysis Subsystem into a report.

5.2.2
Evaluating DI anti-patterns detection tool

Although building a static analysis tool would allow us to efficiently mine
software repositories, threats of validity could be risen against the effectiveness
of the tool. Works that present propositions in form of catalogs (such as
Chen and Jiang [6]) usually rely on an oracle data-set in order to conduct an
evaluation of tools that are built with the objective to flag instances present
in the catalog.

However, as there is no available oracle data-set which contains the
verified instances of the DI anti-patterns we propose in this work, in order
to evaluate DIAnalyzer, we built an oracle by ourselves. The first author
of this paper randomly selected a set of classes from latest releases of two
projects (Agilefant and Libreplan). These projects were randomly selected
among projects with representative usage of JSR-330 annotations. Then, the
first author manually identified 141 occurrences of DI anti-patterns (89 from
Agilefant and 52 from Libreplan) related to 83 different classes (43 from
Agilefant and 40 in Libreplan), concerning eight different DI anti-patterns.
Thereafter, the instances identified were handed over to a second researcher

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 73

that performed a double check on the manually detected instances. Then, the
second researcher randomly selected a set of instances for each DI anti-pattern
in both projects. In total, 43 manually detected instances were reviewed,
confirming them as correctly identified anti-patterns. Nevertheless, we are
aware that this activity is naturally error-prone and that our oracle may still
miss some instances.

We have conducted a relative recall analysis of DIAnalyzer considering
the manually generated oracle. During this analysis, our tool was able to
retrieve 130 out of the 141 manually identified instances, including instances of
all eight DI anti-patterns contained in the oracle, resulting in a relative recall
of 92.19%. Hence, we were confident that the tool can effectively detect anti-
pattern instances. A more detailed analysis on the precision identifying each
DI anti-pattern follows.

In order to calculate the precision, we have manually examined every DI
anti-pattern detected by DIAnalyzer in a randomly selected scope of classes
(43 from Agilefant and 39 from Libreplan). Table 5.2 shows the precision
results. Each row corresponds to an anti-pattern and each column refers to the
precision. DIAnalyzer detected 835 instances of DI anti-patterns, with precision
between 80 to 100% for AP1, AP2, AP4, AP5, AP6, AP8, AP9, AP10, AP11,
and AP12. The reason for the 40% precision on Libreplan regarding AP7 is
due to a malformed output of the tool, which duplicates the instance found.
As a consequence, several DI anti-patterns were informed more than once,
harming the precision results. We have also calculated the average precision of
DIAnalyzer per project. The average precision for Agilefant was 97.78% and
the average precision for Libreplan was 89.80%. We considered these precision
results to be sufficient for our purpose of evaluating the occurrence of the DI
anti-patterns in Java projects.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 74

Table 5.2: Precision results of DIAnalyzer
DI

Anti-Pattern
Project

Agilefant Libreplan

AP1 100% (152/152) 100% (145/145)

AP2 - (0/0) 100% (24/24)

AP4 100% (7/7) 80% (4/5)

AP5 100% (19/19) 90% (18/20)

AP6 - (0/0) 100% (5/5)

AP7 100% (2/2) 40% (2/5)

AP8 80% (4/5) 88% (30/34)

AP9 100% (152/152) 100% (144/144)

AP10 100% (84/84) 100% (2/2)

AP11 100% (25/25) - (0/0)

AP12 100% (1/1) 100% (4/4)

5.3
Detecting DI anti-patterns

With a satisfactory result in the precision and recall evaluation carried
out in DIAnalyzer, we are confident that DIAnalyzer can effectively flag
instances of DI anti-patterns from source code. Then, we have divided the
process of detecting instances of candidate anti-patterns in software projects
in two steps: open-source and closed-source applications.

5.3.1
Open-source software systems

Mining open-source software repositories constitute a common research
practice in the software engineering field. For instance, studies on code smells
[23] and refactoring [4] often rely on source code repositories to support their
analysis. In line with this method, we found worthy to start the analysis of DI
anti-pattern instances with open-source repositories.

Since we have a tool that automatically identifies anti-pattern instances
on source code, no manual analysis is required. Therefore, the first step is to
choose a suitable set of software projects. GitHub was chosen as the repository
source of software projects. Our study selected four GitHub projects that

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 75

meet the following quality criteria: (i) Dependency injection usage within the
project, i.e., employing a DI framework, such as the one provided by Spring;
(ii) historical developer engagement with several commits; (iii) source code
repository mainly written in Java. The list of selected projects is in Table 5.3,
presenting the (i) name, (ii) Java lines of code, and (iii) number of commits
for each project.

Table 5.3: Selected projects
Index Name LOC Commits

P1 Agilefant 58.171 5.166
P2 BroadleafCommerce 327.058 9.146
P3 Libreplan 284.090 9.659
P4 Shopizer 109.792 305

We applied DIAnalyzer on the latest releases of the four selected projects.
The detection results are depicted in Table 5.4. It is possible to observe that
AP1, AP2, AP4, AP5, AP7, AP8, AP9, and AP10 have instances in all four
projects. Additionally, all four projects present anti-pattern instances for each
DI anti-pattern category (cf. Chapter 4).

The large number of instances for AP1 and AP9 for almost all of
the analyzed projects (except for the occurrences of AP9 in project P4) is
noteworthy. We believe that the large number of AP1 occurrences is due to
the lack of judgment by developers over the need of introducing extra injections
in a class. Regarding the large number of AP9 occurrences, it can be explained
by a wide adoption of a Spring specific annotation @Autowired. On the other
hand, AP11 only had instances in P1, suggesting a design choice that led to
this anti-pattern in this specific project. AP3 was not found in any project,
suggesting that developers of the analyzed systems are aware that dependency
provision methods must be highly cohesive and present low complexity.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 76

Table 5.4: Occurrence of DI Anti-Patterns in open-source projects
DI

Anti-Pattern
Project

P1 P2 P3 P4

AP1 366 1127 1149 854

AP2 3 277 52 185

AP3 0 0 0 0

AP4 11 20 22 22

AP5 41 215 101 161

AP6 6 21 35 0

AP7 4 45 20 3

AP8 13 122 167 110

AP9 367 152 1102 3

AP10 114 90 2 15

AP11 37 0 0 0

AP12 1 0 5 1

5.3.2
Closed-source software systems

An important step in the software engineering field is making sure propo-
sitions reflect on the practice of software engineering. Without such validation,
it is unknown whether the candidate anti-patterns are relevant in industrial
settings. However, researchers often rely on mining open-source repositories
due to the complexities involved in obtaining closed-source software reposi-
tories. Legal issues concerning strategic processes a software supports are an
example of such impedance.

At this point, we were already aware that the proposed instances of DI
anti-patterns occur within popular open-source software systems. However, we
would like to investigate whether the proposed DI anti-patterns also occur in
industrial settings. Besides, in the case of verified occurrences, we would like
to comprehend if the same trends found in open-source repositories are also
found in closed-source repositories.

Thus, intending to obtain the source code of industrial software systems,
we identified two candidate companies that the author has had previous
working experience in software development and maintenance. We designed a

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 77

consent term safeguarding the companies against any misuses of the source
code provided. We sent them the term along May and June, 2019. The
companies responded positively and expressed their willingness to support the
research being conducted. Both firms provided one software for analysis. It
is important to mention that the projects obtained from the firms were not
developed or maintained by the author of this work.

In total, 2 projects from two different industry partners were obtained.
Table 5.5 shows the characteristics of both projects. In this work, we cannot
expose details about the software due to non-disclosure agreement restrictions,
so we cannot give full details about the closed-source projects under analysis.
In short, both software projects are web-based systems written in Java and
present approximately 30K LOCs.

The first (CS1) adopts Spring [29], a framework that already provides DI
capabilities. CS1 is a shorter (in LOC) Java project compared to open-source
projects we previously analyzed. By analyzing the project, we observed and
confirmed with the firm that the project was mainly developed and maintained
by a senior developer, who was already experienced in development with the
Java platform.

The second closed-source project (CS2) employs Guice framework to
support DI capabilities. Again, CS2 is shorter in LOC compared to open-
source projects. As confirmed with the firm, CS2 was also mainly developed
by a senior developer.

Due to the use of Guice framework on CS2, we have adapted DIAnalyzer
to support annotations present in Guice (e.g. @Produces) and Guice direct
container calls. In addition, we have fixed the bug reported in Section 5.2.2
about the malformed output of the tool in AP7. Then, we have applied DI
Analyzer to automatically detect instances of candidate anti-patterns in the
closed-source projects obtained. The results are shown in Table 5.6.

Table 5.5: Selected projects
Index LOC Framework

CS1 29.405 Spring
CS2 32.204 Guice

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 78

Table 5.6: Occurrence of DI Anti-Patterns in closed-source projects
DI

Anti-Pattern
Project

CS1 CS2

AP1 68 265

AP2 2 12

AP3 0 0

AP4 1 4

AP5 15 86

AP6 1 3

AP7 0 0

AP8 64 35

AP9 68 0

AP10 3 0

AP11 0 0

AP12 0 0

Overall, the patterns observed in closed-source repositories are closely
related to the findings of the previously analyzed open-source projects. For
instance, AP1, AP2, AP4, AP5, and AP8 have instances in both projects.
Regarding AP3, no instances were verified again. In line with the open-source
projects, both closed-source projects present anti-pattern instances for each DI
anti-pattern category (cf. Chapter 4).

Anti-patterns AP1, AP2, AP4, AP5, and AP8 have instances in both
closed-source projects. Hence, although expert developers tend to follow an
interface-oriented design and avoid classes that centralize the intelligence of
the system, they may introduce some anti-pattern instances in source code.
This can be explained by fast prototyping sprints in the software life cycle
and lack of attention (in case of AP5). Instances of AP9 solely found in CS1
is explained by a wide adoption of the Spring annotation @Autowired. Since
CS2 employs Guice, a framework that follows JSR-330 convention of @Inject
annotation, no instances of AP9 are verified in CS2.

Besides, it is observed that, in opposition to the findings in open-source
repositories, AP7, AP11, and AP12 have no instances in CS1 and CS2. In
addition, AP10 are verified only three times (CS1). We believe these results

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 79

are related to three main factors: (i) the LOC of the closed-source repositories,
which are smaller compared to the analyzed open-source projects, (ii) the
number of developers involved in development activities, which is also smaller
compared to the open-source projects analyzed, and (iii) the expertise of the
developers involved in the development of the closed-source projects.

In other words, we suggest that the expert developers involved in devel-
opment activities of the closed-source projects analyzed are aware of the risks
entailed to the software architecture by: the introduction of direct container
calls (AP7); opening injected fields to external modification (AP10); the as-
signment of instances provided by the DI container to several fields (AP11);
the introduction of multiple forms of injection for a given element (AP12).

5.4
Results

The characteristics of the open-source and closed-source projects ana-
lyzed differ profoundly. For instance, the number of lines of code and the
number of developers involved in the development process vary greatly. In
open-source projects, the smallest project (P1) has 58.171 LOCs and a high
number of developers are involved, as investigated in the commit history. In
opposite, in the closed-source projects, we were not able to gather and ana-
lyze projects with similar characteristics to the open-source ones. Both closed-
source projects analyzed are small (in terms of LOC) in comparison with the
open-source projects and were mainly developed and maintained by one ex-
pert developer each, which we believe is the reason why some anti-patterns
occurrences were not observed.

Some DI anti-patterns are prominent in both open and closed-source,
such as AP1, AP2, AP4, AP5, AP6, AP8, and AP10. We believe this pattern
occurs due to fast development sprints (AP4, AP6), lack of knowledge about
principles behind DI (AP2, AP6, AP7, AP10), and misuse of DI framework
and lack of attention (AP1, AP5). In addition, AP7, AP10, AP11, and AP12
are mostly observed in open-source projects. We believe that lack of proper
knowledge of DI hinders avoiding these instances in source code. As expected,
since CS2 employs Guice, AP9 did not appear in its source code. Guice
framework relies solely on JSR-330 specification to define injection points and
does not have annotations different from the definition as Spring does. Lastly,
in closed-source projects, AP3 again does not have any instance as found in
open-source projects. Also, AP7, AP11, and AP12 does not occur in closed-
source projects. As mentioned earlier, we believe this trend is influenced by
three factors: (i) smaller size and (ii) smaller number of developers involved,

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 80

and (iii) expertise of the main developers involved.
By reviewing the historical commits of open-source projects, we verified

that anti-patterns progressively scatter around source code during the devel-
opment process. One of the possible reasons is that novice developers tend to
base their code on previously committed code. Another characteristic found in
projects that have a significant number of anti-patterns instances is the num-
ber of developers that actively contributed to the code base. In other words,
projects with multiple developers tend to show more anti-patterns instances
compared to those with less contributing developers.

In the closed-source analysis, we observed that the presence of a expert
developers being mainly responsible for the project code base highly affected
the number of anti-pattern occurrences.

Although we cannot suggest that expert developers tend to avoid bad
DI implementation practices, once the open-source projects analyzed may also
present commits of expert developers, we are confident that DIAnalyzer can
support developers in the process of identifying bad implementation practices
related to DI in software projects.

5.5
Threats to Validity

Internal Validity. The tool built to flag instances of anti-patterns may
miss some instances in the source code, once every software project may show
different implementation characteristics. To mitigate this threat we evaluated
the DIAnalyzer tool regarding relative recall and precision. We believe we have
identified most of the DI anti-patterns in source code of the analyzed software
projects. In addition, we double-checked the findings with the support of an
independent researcher.

External Validity. Albeit selecting projects with different number of
LOC and commits, most of them are implemented using the Spring framework.
However, the risk of leaning the findings towards a specific framework is
mitigated because one of the closed-source projects analyzed employs Guice
as DI framework. In addition, our findings were verified in open-source and
closed-source systems from industrial settings, which strengthen the practical
relevance of the catalog of DI anti-patterns.

Construct Validity and Reliability. Since there is no benchmarking
dataset for DI anti-patterns, we built an oracle data-set by ourselves in order to
evaluate DIAnalyzer. The data-set was built and verified by two independent
researchers. The process for building the oracle is similar to Chen and Jiang [6]
work. Lastly, the oracle does not contain instances of AP3. We believe this does

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 5. Assessing Practical Occurrence of the Proposed Catalog 81

not undermine our findings, since this specific anti-pattern did not appeared
in any analyzed project.

5.6
Concluding Remarks

In this chapter we have provided a comprehensive evaluation of the
practical occurrence of our candidate catalog of Java DI anti-patterns.

We have started by stating the difficulties found in the process of
manually detecting instances of DI anti-patterns in source code. Then, we
proceed to the description of the development of a static analysis tool to
support the process of identification of anti-patterns in source code. We
described the specification and the architecture of the solution. Next, we
explained the process of validating the tool in regard to recall and precision.
The tool showed an average precision of 97.78% in Agilefant and 89.80% in
Libreplan. In addition, a relative recall analysis demonstrated that 92.19% of
the instances were identified by the tool.

With the confidence brought by the developed static analysis tool, we
divided the process of identifying instances of anti-patterns in two parts: open-
source and closed-source projects. The detection results suggests that the anti-
patterns occur frequently in software systems.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

6
Investigating Perceived Usefulness of Proposed Catalog

6.1
Introduction

In the last Section (cf. 5), we verified that the conjectured anti-patterns
occur within software systems. Although instances of our candidate anti-
patterns are retrieved from both closed and open-source software systems, an
important step towards strengthening the validation of the proposed catalog of
anti-patterns is gathering the perception of experienced practitioners. In other
words, we aim to understand if industry practitioners consider the catalog
useful and are willing to apply our catalog in their working environment.

Thus, in this chapter, we document our efforts to investigate the accep-
tance of our catalog among industry practitioners by the application of the
Technology Acceptance Model (TAM) [10] in its three dimensions: ease of use,
usefulness, and intention of use. Hence, besides investigating the occurrence of
each DI anti-pattern in software projects as explored in the previous chapter,
we have designed and conducted an interview-administered survey and an on-
line survey to assess the acceptance and perception of usefulness from expert
developers regarding the proposed catalog.

Obtaining the perception of experienced developers over the candidate
catalog proposed is an important validation step prior to sharing it with
the software engineering community. Using the GQM (Goal Question Metric)
definition template described by Wohlin et al. [37], our goal can be further
defined as: Analyze the proposed catalog of DI anti-patterns for the purpose
of characterization with respect to the acceptance and perceived usefulness
from the point of view of software developers with large industrial experience
applying DI in the context of Java software projects.

As TAM is employed to assess a given technology (in our case, the
candidate catalog), we want to assess the willingness of the expert developers
to adopt the catalog as a tool in their development activities. Also, we aim
to gather a preliminary assessment of difficulties found by developers on
understanding our catalog. The rate of answers a certain facet might indicate
opportunities for improving the catalog.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 83

To achieve the goals, this study designed two classes of surveys to gather
the opinion of developers over the candidate catalog. As mentioned at the
beginning of this chapter, we first designed an interview-based questionnaire
to allow an in-depth analysis of the instrumentation and each candidate
anti-pattern proposed. Then, with the lessons learned interview-based and
corrections leveraged by opinions of expert developers, an online survey was
designed to obtain a wider range of views regarding the proposed catalog.
Lastly, the results, lessons learned, and threats of validity are explained.

6.2
Interview-Based Survey

This section presents the details of an interview-based survey conducted
in order to obtain preliminary results about the usefulness of our proposed
catalog.

6.2.1
Design

Towards achieving our goals, we first designed a descriptive survey. Ac-
cording to Linaker et al. [19], a descriptive survey supports claiming or asser-
tions about a particular subject. Thus, as we are claiming that our candidate
catalog provides a comprehensive set of DI anti-patterns, a descriptive survey
meets our goal. Regarding the target population, for this preliminary study, we
followed the recommendation to select developers that are most appropriate
for our goal in order to provide accurate answers, rather than expecting that a
random target population would allow an effective analysis of our subject [34].
Indeed, we targeted at a population of practitioners with large expertise on
applying design principles, frameworks, and dependency injection in software
systems.

An interviewer-administrated questionnaire was designed in order to
avoid threats of validity, such as doubts that could arise during the process,
then leading to a wrong answer by the respondent. Linaker et al. [19] assert
that employing thus questionnaire type enables clarifying ambiguous questions.
Thus, we aimed to further support the interviewees in comprehending the
context, purpose, and consequences of each candidate anti-pattern proposed
during the interview.

The questionnaire is divided in three parts, as explained as follows. The
first part concerned gathering information about the respondents’ academic
background and industrial experience. For instance, questions included years
of experience developing software and current position in industry. Regarding

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 84

technical skills, we inquiry about object-oriented analysis and design, design
principles and patterns, anti-patterns, source code inspection, dependency in-
jection, and Java programming language. In addition, we collected information
about English reading and comprehension skills.

The second part of the questionnaire consisted of questions regarding the
candidate catalog. For each DI anti-pattern proposed, following the pattern
structure mentioned in chapter 4, the information provided concerns: (i)
the name of the DI anti-pattern, (ii) a short description of the DI anti-
pattern, (iii) a characterization of occurrence in form of source code, (iv) the
negative consequences, (v) a description of a possible resolution, and (vi) a
characterization of resolution in form of source code.

Based on the information provided, the interviewees were inquired to
answer the following question: "Can the proposed DI anti-pattern actually
be characterized as an anti-pattern?" The question is responded based on a
five-point Likert scale (1- Agree, 2- Partially Agree, 3- Neutral, 4- Partially
Disagree, and 5-Disagree). For this specific design survey, the interviewees were
also invited to include comments over the general structure of the analyzed DI
anti-pattern and possible disagreements with the anti-pattern or even about
the resolution example provided.

The final part of the questionnaire concerned the application of the Tech-
nology Acceptance Model (TAM) [10]. According to Turner et al. [35], TAM is
a suitable tool to capture the user’s acceptance of a given technology. The tech-
nology, in our case, is the candidate catalog and the anti-patterns proposed
within it. TAM questions aim to assess three acceptance model constructs:
usefulness, ease of use, and intention to use. The complete instrumentation
employed in our survey can be accessed online1.

6.2.2
Execution

The execution of the survey followed the strategy of identifying a sample
of the population according to the survey design. Thus, we prioritized experts
in software development, those with extensive experience in industry on
developing and maintaining software systems, particularly with source code
inspection, design patterns, and software design and architecture skills.

Then, we identified three interviewees from three different organizational
units of two different industrial partners. The identified interviewees are further
described in Table 6.1. It is observed that the interviewees have long-lasting
experience in industry and a strong background in software development, being

1https://zenodo.org/record/3066339

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 85

Table 6.1: Background of respondents

Information Respondent
I1 I2 I3

Academic back-
ground

Master Bachelor PhD

English reading
and comprehen-
sion skills

Advanced Advanced Advanced

Experience de-
veloping software

> 10 years > 10 years > 10 years

Current position Project Manager Tech Leader Tech Leader
Object-oriented
analysis and
design

Several projects
in industry

Several projects
in industry

Several projects
in industry

Design principles
and patterns

Several projects
in industry

Several projects
in industry

Several projects
in industry

Anti-patterns Several projects
in industry

A project in in-
dustry

A project in in-
dustry

Source code in-
spection

Several projects
in industry

Several projects
in industry

Several projects
in industry

Dependency in-
jection

Several projects
in industry

Several projects
in industry

A project in in-
dustry

Java Several projects
in industry

A project in in-
dustry

Several projects
in industry

a reliable source when it comes to evaluating the candidate catalog. It is
noteworthy to mention that we intentionally opted for selecting a small sample
of experts to conduct in-depth interviews, allowing qualitative discussions
about our initial DI anti-patterns catalog.

Table 6.1 presents background information of the interviewees, in which
it is possible to observe that they indeed have a strong background in
object-oriented analysis and design, being a suitable source when it comes
to evaluating the proposed catalog. Although I3 does not possess a strong
experience in DI, I3 was able to assess the proposed anti-patterns due to
having strong software design skills. Due to the format of the questions and
the questionnaire type, the survey was provided through a printed document.
The interviewees were informed that there was no limit of time. The interviews
took place in April 2019, and lasted 80, 85, and 100 minutes, respectively for
interviewees I1, I2, and I3.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 86

6.2.3
Results

The results of the survey are presented in Tables 6.2 and 6.4.
The results of the perception on the proposed DI anti-patterns are shown

in Table 6.2. It is noteworthy to mention that from 39 inquiries over DI
anti-patterns, we observed only 2 (partial) disagreements (AP1 and AP9).
AP1 is the only anti-pattern proposed that does not have any full agreement
response. I1 mentions that "AP1 does not yield an anti-pattern when it comes
to lightweight objects." In addition, I2 asserts that "dependencies that are not
needed on construction time should be moved to another class in order to
save resources." For AP9, I2 argues that "most projects do not change the
chosen DI framework" and I3 argues that "the anti-pattern applies only when
compatibility is defined as a requirement."

On the other hand, 37 responses concerned "Agree" (31) and "Partially
Agree" (6) responses, which yields 94.8% of the total answers. In addition,
from the 13 proposed anti-patterns, 11 contain at least two full agreements.
Most of these are from the architecture and design problems categories.
Regarding the partially agree responses, in AP3, I1 agreed the occurrence
is bad, but argued that "it is not directly related to DI." Also, in relation
to AP11, I1 did not agree with the example solution provided, arguing that
"the problem exposed in the structure of occurrence is a poorly implemented
refactoring." The comments provided by the respondents suggest that the
partial agreements regard context-based situations (e.g., situations in which
the code structure represents a problem depending on the requirements). We
believe that this result reflects the fact the complete context information of the
anti-patterns was not included in the survey. Overall, given the experience of
the respondents on design principles and patterns, these observations provide
a positive perception of the catalog.

The adapted TAM questions and their results are shown in Tables Ta-
ble 6.3 and 6.4. Due to space restrictions, the index of each question in depicted
in Table 6.3. It is possible to observe a strong positive perception, once 25 from
27 questions yield an agreement response. Only T2 and T6 present neutral re-
sponses. The positive results on perceived usefulness, ease of use and intention
to use indicate that our proposed catalog is helpful and that developers would
show willingness to apply it.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 87

Table 6.2: Perception over the DI anti-patterns in interview-based survey
DI

Anti-Pattern
Respondent

I1 I2 I3

AP1 Partially
disagree

Partially
agree

Partially
agree

AP2 Agree Agree Agree
AP3 Partially agree Agree Agree
AP4 Agree Agree Agree
AP5 Agree Agree Agree
AP6 Agree Agree Agree
AP7 Agree Agree Agree
AP8 Agree Agree Agree

AP9 Agree Partially
disagree

Partially
agree

AP10 Agree Agree Agree
AP11 Partially agree Agree Agree
AP12 Agree Agree Agree

6.3
Online Survey

With the lessons learned and the preliminary evidence collected from the
application of an interview-based survey described in Section 6.2, we decided to
pursue further evidence on the usefulness of the proposed catalog by collecting
the opinions of a wider range of developers. Although the interview-based
survey provided an in-depth assessment of every aspect of the catalog, the
process is not time-effective, taking on average two hours of interview to
collect the necessary evidence. Thus, to decrease the time spent on collecting
evidence about the usefulness, ease of use, and acceptance of the catalog, but
also supporting the respondents with a suitable questionnaire-based survey, a
Google forms 2 survey was used to implement an online questionnaire.

6.3.1
Design

We basically converted the survey provided in a form of document to
respondents to an online version. Again, the first part of the questionnaire
is responsible to gather background information of the respondent. As the

2www.google.com/forms/about

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 88

Table 6.3: TAM questions index
Dimension Index Question

Usefulness

T1 Being aware of the proposed DI anti-patterns
would improve my performance in preventing
DI related problems in software systems (i.e.
preventing faster)

T2 Being aware of the proposed DI anti-patterns
would improve my productivity in preventing
DI related problems in software systems (i.e.
preventing more and faster)

T3 Being aware of the proposed DI anti-patterns
would enhance my effectiveness in preventing
DI related problems in software systems (i.e.
preventing more)

T4 I would find the proposed catalog of DI anti-
patterns useful in my job

Ease of use

T5 Learning to use the proposed catalog of DI anti-
patterns would be easy for me

T6 I would find it easy to use the proposed catalog of
DI anti-patterns to prevent DI related problems
in software systems

T7 It would be easy for me to become aware of the
proposed catalog of DI anti-patterns

T8 I would find the proposed catalog of DI anti-
patterns easy to apply

Intention to use T9 I intend to apply the proposed catalog of DI anti-
patterns regularly at work

Table 6.4: Respondents perception over the catalog of DI anti-patterns
Index Respondent

I1 I2 I3
T1 Strongly Agree Strongly Agree Strongly Agree
T2 Agree Strongly Agree Neutral
T3 Strongly Agree Strongly Agree Strongly Agree
T4 Strongly Agree Strongly Agree Strongly Agree
T5 Strongly Agree Agree Agree
T6 Strongly Agree Strongly Agree Neutral
T7 Strongly Agree Strongly Agree Agree
T8 Strongly Agree Strongly Agree Agree
T9 Strongly Agree Strongly Agree Neutral

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 89

Table 6.5: Background information required for online survey
Information Identifier

Academic background B1
Experience developing software B2

Current position B3
Dependency injection employment B4

Experience with dependency injection B5

respondent has no support from researchers, i.e., it is self-administered, we
have decreased the number of information required by summarizing specific
questions in a unique one. For instance, instead of inquiring about object-
oriented technical skills, we require information about experience in software
development. Also, we inquire about expertise in dependency injection in terms
of years and level of experience, particularly in the industry. As we aimed to
secure that respondents complete the questionnaire, these changes diminish
the burden of responding to such a long questionnaire. The background
information for the online surveys conducted ahead are shown in Table 6.5.

For the second part of the questionnaire, we have maintained the same
structure. However, differently from the previous survey described in Section
6.2, we have included the following information for each anti-pattern:

– A text describing the example of occurrence of the anti-pattern, including
the main elements involved, such as attributes and methods

– A text describing the suggested resolution, including information about
the code transformations performed

The descriptions about the examples of source code provided were
important to allow a further and faster understanding of the code snippets.
In the earlier survey (described in Section 6.2), we have provided these
descriptions as requested by the interviewees. Furthermore, as we also aim
to understand the applicability of a refactoring process in each anti-pattern,
a new question was added, which is "Would you fix the anti-pattern on source
code? Why?"

The new question added aims to collect the willingness of the developer
to perform an anti-pattern fix on source code. We particularly introduced this
question in order to investigate the prospects of future work towards patterns
for refactoring DI anti-patterns in source code. Lastly, in the final part of the
questionnaire, TAM questions were maintained exactly as the first survey.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 90

Again, the final part of the questionnaire concerned the application of
the TAM. The complete instrumentation employed in the online survey can
be accessed online3.

6.3.2
Execution

In order to verify the applicability of the new designed survey to be
openly available online, we have run a pilot study. The pilot study aimed
at comprehending if the form was sufficient to be openly available without
guidance and support from researchers conducting the study.

Again, we have relied on the strategy of identifying a sample of the pop-
ulation that would meet our survey design. Extensive experience in industry
and software engineering were pre-requisites we addressed. The preliminary
online survey was openly available from July, 10th until October, 29th. In this
preliminary assessment, a total of 11 respondents were contacted and 6 com-
pleted the online questionnaire. We informally contacted the respondents to
gather feedback. Most of them described the online survey as "easy to under-
stand and fill", however, filling the survey was described as "time-consuming"
due to the extension of the questionnaire. The background of the respondents
of the preliminary online survey is shown in Table 6.6. As can be observed, the
respondents have strong expertise in software development and applying de-
pendency injection. I3 does not posses a strong experience in DI, however, we
consider I3 a valuable respondent due to his extensive experience in industry.

Due to the perception that the preliminary survey was large in extension,
in order to increase the likelihood of having complete answers on the survey
in an openly available online version, we divided the questionnaire into two
parts. Both parts provide distinct anti-patterns and contain the same amount
of anti-patterns per category. Table 6.7 shows the distribution of anti-patterns
in two distinct online surveys. After the pilot study and these adjustments,
we were more confident that the online survey could be made available to any
respondent.

The online survey was openly available from October, 20th until Novem-
ber, 15th. A total of 9 respondents have provided their opinion on the catalog.
The background of the respondents of the openly available online survey is
shown in Table 6.8. It is possible to observe that the respondents of this sur-
vey are less experienced. This is important because this difference in expertise
may provide us different insights on how developers with shorter experience
evaluate the catalog.

3https://zenodo.org/record/3610177

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 91

Table 6.6: Background of respondents of the preliminary online survey

Information Respondent
I1 I2 I3

B1 Master Master Master
B2 16 years 20 years 23 years
B3 Systems Analyst Professor Systems Analyst
B4 Several projects

in industry
Several projects
in industry

A project in in-
dustry

B5 12 years 15 years 1 year
Respondent

I4 I5 I6
B1 PhD Master Master
B2 20 years 19 years 10 years
B3 Professor Project Leader Team Leader
B4 Several projects

in industry
Several projects
in industry

Several projects
in industry

B5 9 years 7 years 5 years

Table 6.7: DI Anti-patterns distribution over two online surveys

Category Open Online Survey
1 2

Performance AP1 AP5

Design
AP2
AP3
AP4

AP8
AP10
AP11

Architecture AP6 AP7
Standardization AP9 AP12

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 92

Table 6.8: Background of respondents of the openly online survey

Information
Respondent

I7 I8 I9

B1 Master Bachelor Master

B2 7 years 11 years 10 years

B3 PhD Student Developer Project Manager

B4 For my own use Several projects
in industry

Several projects
in industry

B5 2 years 3 years 3 years

Respondent
I10 I11 I12

B1 Bachelor Bachelor Bachelor

B2 10 years 3 years 3 years

B3 Developer Developer Developer

B4 Several projects
in industry

Several projects
in industry

Several projects
in industry

B5 3 years 2 years 3 years

Respondent
I13 I14 I15

B1 Bachelor Bachelor Bachelor

B2 4 years 5 years 3 years

B3 Developer Developer Master’s Student

B4 Several projects
in industry

Several projects
in industry

Several projects
in industry

B5 4 years 1 year 1 year

6.3.3
Results

6.3.3.1
Preliminary Online Survey

The results of the first six respondents, which were previously selected to
participate in the online survey, on the proposed DI anti-patterns, are exhibited

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 93

in Table 6.9.

Table 6.9: Perception over the DI anti-patterns in preliminary online survey
DI

Anti-Pattern
Respondent

I1 I2 I3 I4 I5 I6

AP1 Agree
Partially
disagree

Partially
agree

Agree
Partially
agree

Partially
disagree

AP2 Agree Agree
Partially
agree

Agree Agree
Partially
agree

AP3 Agree Neutral Agree Agree Agree Agree

AP4
Partially
agree

Neutral Agree Agree Agree Agree

AP5 Agree Agree Agree Agree Agree Agree

AP6
Partially
disagree

Agree Agree Agree Agree Agree

AP7
Partially
disagree

Partially
agree

Partially
agree

Agree Agree Agree

AP8
Partially
agree

Partially
agree

Agree Agree Agree Agree

AP9
Partially
agree

Partially
agree

Disagree Agree Agree Agree

AP10
Partially
agree

Agree Agree Agree Agree Agree

AP11 Agree Agree Agree Agree Agree Agree

AP12 Agree Agree Agree Agree Agree Agree

It is important to highlight that only 4 anti-patterns (AP1, AP6, AP7,
and AP9) present disagreements. However, AP6 and AP7 present disagree-
ments from a respondent with the highest rate of disagreements (I1). By con-
ducting a qualitative analysis on his responses, we have observed that he con-
siders the Service Locator pattern a good practice when it comes to integrate
several frameworks in a software system, although he considers the strong de-
pendence on these types of classes a drawback (AP6). We argue that there
are better approaches to refrain the system to be coupled to a singleton ob-
ject, such as the use of Provider classes and Producer methods, which were

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 94

explained along the instrumentation. Also, he asserts that the use of direct
container calls does not yield drawbacks to the application, since he "never
experienced the change of the framework of a project in production." We ar-
gue that the proposal on addressing direct container call as an anti-pattern is
related to the increased effort in future maintenance activities on the applica-
tion. Besides, the disagreements on AP1 and AP9 are results that we already
expected, since the interview-based survey provided the same insights.

On the other side, we observed a positive perception over the DI anti-
pattern instances. From 72 enquiries, only 4 disagreements and only 2 neutral
responses are observed. It is noteworthy to mention that some neutral and dis-
agreements responses do not come from the anti-pattern instance conjectured,
but rather the resolution provided. The qualitative analysis as follows will go
over these instances.

Regarding the answers on the willingness of the respondents on fixing
the candidate DI anti-pattern, because of the format of open-ended question, a
qualitative analysis was conducted over each response. The overall perceptions
are described hereafter. Some respondents (I1 and I5) have provided their
opinion in Portuguese, so in order to explain the results, we translated
some sentences to formal English. The complete responses can be found in
Appendices 7.5.

AP1 have shown a result that is very close to the result found in the
interview-based survey. In this preliminary online survey, 2 responses for each
"Agree", "Partially agree", and "Partially disagree" option were collected. There
is a pattern observed in the responses over fixing AP1 that suggests this anti-
pattern should only be enforced in a specific case. For instance, performance
is the main subject of attention, exemplified by the following opinions:

– I3: "I would only fix it if [the instance to be injected] is too heavy to be
loaded eagerly"

– I4: "[T]he injection of unnecessary dependencies demands computing
time"

– I5: "I would agree if the given instance is characterized as a bottleneck
in the performance of the system"

– I6: "Probably yes, [however, if] I could measure the performance impacts
first"

Besides, I1 and I2 expressed concerns over the risks entailed by a
refactoring process of such instance in a stable source code and unresolved
instances at construction time, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 95

Next, as in the previous survey, AP2 is largely understood as a problem,
as 4 respondents agree and 2 partially agree with this anti-pattern. In regard
to fixing AP2, respondents primarily agreed that this instance hurt DIP, which
is exemplified by the following quotes:

– I2: "Yes, the injection being based on interfaces allows for dynamic
proxing, and automation of transactional control and similar transversal
requirements."

– I6: "Yes. Because of DIP (Dependency Inversion Principle)."

However, I3 would only remove this instance if strictly necessary, stating
that he "would only fix it if there is a real need for interface decoupling." Also,
I1 states that he would only fix if there is the need to introduce a new feature
in the given class.

Next, although AP3 did not show any instances in both open and closed-
source repositories, the respondents were unanimous in agreeing AP3 is an
anti-pattern.

Regarding AP4, a high rate of agreements were observed again. The
respondents stated the following opinions:

– I3: "Yes. The code should be simpler and modularized."

– I4: "yes, as it does not follow the low coupling principle"

– I5: "God classes tend to hide business concepts that should be better
explicit in properly different classes."

– I6: "Yes, it seems [God DI class] is doing to much and it will be hard to
maintain."

On the other side, I1 and I2 expressed concerns over this anti-pattern
instance. Although I1 generally agrees, he argues that in some circumstances
AP4 may be necessary. For instance, I1 argues that in cases where a system
must support calls from external system to an internal Application Program-
ming Interface (API), it is a better approach to maintain a unique point of
integration for the sake of avoiding a complex documentation for external de-
velopment teams. In addition, I2 argues that this problem is not specific to
DI, but rather "an architectural design flaw, already addressed by basic object
orientation practices and most common pattern catalogs."

In regard to AP5, the respondents were unanimous in agreeing this entails
an anti-pattern.

Next, AP6 also demonstrates a high rate of agreement. The opinions of
the expert developers are expressed as follows:

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 96

– I2: "The fix on AP6 shows the most decoupled organization of code."

– I3: "Yes. If one uses DI, one should rely on it."

– I4: "yes, as the resulting code becomes more flexible and generic"

– I6: "Yes. Would fix it. But, it may be very hard on existing code of
medium to large projects."

Again, I1 expressed concerns over decidedly defining AP6 as an DI anti-
pattern. I1 asserts that there are cases where it is necessary to integrate several
frameworks in a software project. Then, he asserts that although a strong
dependence on a singleton which provides dependencies on run time is a bad
characteristic in the source code, he often introduces ways to customize it and
change the singleton behavior in an unit test, for example.

Although the negative consequences of AP7 is very related to AP6, AP7
demonstrates a lower acceptance in comparison with AP6. Most concerns are
related to the need to resolving dependencies on run time that would not be
possible through the DI container. For example, I2 asserts that "there are cases
[...] in which dependencies may be dynamically resolved at run time, and even
if a provider is created to proxy the resolution, somewhere, someone is going
to have direct access to the container." In addition, I3 argues that "there are
cases where you can only do what you need if you access the bean context."
These comments are important because they explicitly tackles at limitations
of current solutions in dependency injection. We assert that these gaps should
be properly handled by current DI frameworks.

In addition, other respondents positively argued about fixing AP7, as
shown by the following quotes:

– I4: "yes, as it violates the low coupling principle"

– I5: "Yes, [...] because of changing specific solutions in source code, the
strong dependence of the application code brought difficulties to the
process."

– I6: "Yes, the main goal of using DI is not depending directly on the
injected objects. Also, depending on a framework would create the same
kinds of problems."

Next, AP8 also have shown a high rate of positive responses. The main
reasons for fixing this anti-pattern are explicit by the following quotes:

– I2: "I would fix it because it doesn’t make sense to pass injections along as
parameters. Unless, of course, you are supplying the injection to objects
that live outside the container."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 97

– I3: "Yes. Again one should rely on DI container when appropriate."

– I4: "yes, as it eliminates unnecessary code"

– I6: "Yes. No need for a class to receive one object just to pass it forward."

I1 argues that he agrees with the anti-pattern, however, in a case where
the application relies on a library that does not provide mechanisms for
injecting instances in its internal code, this anti-pattern actually becomes a
solution. We do agree, but we suggest a better caveat is modularizing the
dependence on this library, once in a newer version, this library could also
enable injecting mechanisms in its internal modules.

Regarding AP9, although respondents agreed that enforcing the specifi-
cation is a better choice, half of them expressed concerns over this anti-pattern
applicability. The following sentences summarizes the concerns.

– I2: "I would fix whatever can be generic. However some frameworks have
more resources than the oracle api. That said, I have been in projects
that having access to specific resources of the framework was a greater
benefit than maintaining the Api in specification level."

– I3: "No. If you choose a DI container implementation, and if it is a well
informed and discussed choice, there is no reason not to go all the way
through. One always gains and looses by making such a choice, but that’s
life."

– I4: "yes, as it makes the code less dependant of technology specifics"

– I6: "Yes, for me it makes no sense to depend on the DI framework. We
use DI to reduce coupling so depending on a framework all around the
code does not make sense."

AP10 is also unanimously agreed. The respondents expressed different
reasons regarding the motivation for removing this anti-pattern from source
code, as shown hereafter:

– I1: "Normally, I would not change. However, I can see cases where it is
useful to change a default implementation to another one."

– I2: "I would fix AP10 to protect the injection and the whole architectural
integrity"

– I3: "Yes. Rely on the DI container whenever it’s possible, simpler and
addresses the issue."

– I4: "yes, as it would prevent negative effects to ripple to other parts of
the system."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 98

– I5: "Yes, [...] it requires attention because it can be hard to detect such
instances. It would be great if a static analysis tool could indicate such
instances"

– I6: "Yes, exactly the same reason written in the negative consequence
section."

AP11 is also unanimously agreed. The main reasons mentioned are: "it
simplifies the code" (I4) and it "avoid[s] unnecessary duplicity."

Lastly, AP12 is also unanimously agreed. The main reason regards code
comprehension. Opinions are summarized as follows:

– I2: "I would fix ap12 to maintain overall convention and organization of
the project."

– I3: "Yes. There is no reason to have two inject annotations."

– I4: "yes, as it makes the code easier to understand and maintain."

– I6: "Yes. Very confusing having two ways of doing the same thing. I would
prefer the chosen standard way of doing and follow it everywhere."

Although several responses showed a partial agreement, by verifying
their responses on the willingness of fixing the anti-pattern, the respondents
expressed an agreement with the anti-pattern, only expressing concerns over
a conjectured scenario. Thus, the qualitative analysis was very important to
uncover this kind of pattern in the responses. In addition, adding the question
over fixing the anti-patterns also allowed the collection of responses of this
nature. The results strengthen our confidence that the proposed catalog is
important for development activities involving the application of DI.

After responding on the DI anti-patterns, the respondents were enquired
about the utility of the catalog based on TAM facets. The adapted TAM
questionnaire and the results are exhibited in the Table 6.10. These were
ordered and positioned according to the results previously depicted. The Index
column of both tables address the same questions depicted in Table 6.3.

In the preliminary survey, a strong positive perception is observed. 31 of
36 yield an agreement response, on which 3 of the 5 neutral responses comes
from a specific respondent.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 99

Table 6.10: Respondents perception over the catalog of DI anti-patterns (I1-I6)

Index Respondent
I1 I2 I3

T1 Strongly Agree Agree Agree
T2 Strongly Agree Agree Agree
T3 Strongly Agree Agree Agree
T4 Strongly Agree Neutral Agree
T5 Strongly Agree Agree Agree
T6 Strongly Agree Neutral Agree
T7 Strongly Agree Agree Agree
T8 Strongly Agree Agree Agree
T9 Neutral Neutral Neutral

I4 I5 I6

T1 Strongly Agree Agree Agree
T2 Strongly Agree Agree Strongly Agree
T3 Strongly Agree Agree Strongly Agree
T4 Strongly Agree Agree Strongly Agree
T5 Strongly Agree Agree Strongly Agree
T6 Strongly Agree Agree Agree
T7 Strongly Agree Agree Neutral
T8 Strongly Agree Agree Agree
T9 Strongly Agree Agree Agree

6.3.3.2
Openly Available Online Survey

The results of the openly available online survey are exhibited in Ta-
bles 6.11 and 6.12. We preferred to separate the exhibition of these results
because the previous surveys targeted respondents previously selected with
strong expertise in software development and object-oriented programming.
In the openly available survey, any respondent over the internet could intro-
duce their perceptions on the catalog.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 100

Table 6.11: Perception over the DI anti-patterns in openly online survey 1
DI

Anti-Pattern
Respondent

I7 I8 I9 I10

AP1 Agree
Partially
disagree

Partially
agree

Agree

AP2 Agree Agree
Partially
disagree

Agree

AP3 Neutral
Partially
agree

Agree
Partially
agree

AP4
Partially
disagree

Agree Agree
Partially
agree

AP6 Agree Agree
Partially
agree

Neutral

AP9 Agree Agree Agree Neutral

For the first openly online survey, which covers anti-patterns AP1-AP4,
AP6, and AP9, only 3 (partial) disagreements are observed. In general, from
24 enquiries, 18 responses provided agreements over the instances. Again, we
observed that some partial disagreements aimed at the resolution provided and
not the instance of anti-pattern presented.

Due to the lack of expertise of the respondents, as expected, the com-
ments regarding the anti-patterns were not as substantial as the ones provided
by the expert developers in the previous survey. Besides, we assert that it is
worthy to consider their points to strengthen our evidence on the validity of
the proposed DI anti-pattern instances.

Although I8 partially disagrees with AP1, he contradicts himself by
stating that "it’s better to use the provider to lazy load the injected objects."
In addition, he argues that the resolution provided is "a rather improvement
than an anti pattern [fix]." In other words, it is inferred that he agrees with the
anti-pattern but he does not agree with the provided resolution. In line with
the answers from expert developers, I9 does not agree with the AP1 resolution
because "the overload is small and should not be a problem." Again, impact
on performance is cited by I7 and I10 on AP1. I7 asserts that he would fix it
"due to the possible negative impact on the performance." I10 argues that "if
it is a heavy object I would use AP1 solution."

Regarding AP2, I9 asserts that "there is no need to make an interface

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 101

for small systems." I9 concludes with: "If it is needed you can generate the
interface afterwards upon needing." It is worthy to mention that the author of
this work agrees with this assertion, however, testability of the class must be
used as a parameter for avoiding an interface-oriented design. In other words,
the testability of the class should be taken into consideration when defining
an interface-oriented design or not. For instance, if an instance of this class is
necessary in a unit test that primarily deals with a class that is coupled to it,
a mock object could be used in order to avoid instantiation of all dependence
chain of the first. The other respondents agreed that refraining modules to
know concrete implementations is a design to target.

I10 suggested a different solution to AP3, on which he argues that a
"point that would make me fix AP3 is that calling Provider methods instead
of just have all complexity in his life-cycle make me feel I have more control of
my code." I9 argues that AP3 "can generate performance issues in the system."

Regarding AP4, although I7 partially disagrees, he assert that "it is clear
that a god class can produce negative consequences in maintenance," suggesting
that he may agree that AP4 is an anti-pattern. In addition, I10 agrees with
the resolution, however he warns about "creat[ing] so many classes with the
same responsibilities." I8 and I9 agree with the resolution provided, arguing
over "dividing responsibilities" and "improv[ing] maintainability", respectively.

On AP6, I10 argues that "you don’t need to use the ServiceLocator to get
the IDataSource each time you have to use it. You can create a global object
and you can control it to call just once. In this case, DI doesn’t bring such a
huge difference for me." We argue that enforcing a global object won’t enable
the management of a scope different from a singleton. In addition, a global
object may incur in the same drawbacks entailed by AP8. I9 argues that he
would not fix it, "because ... [it is] not a big problem."

Lastly, in AP9, I10 argues that "in this specific case, we are talking about
a huge framework that brings lots of benefits to the application (Spring). So,
for me it worth even if it brings higher coupling to framework specifics." In
opposition, I7 and I8 argues over "keep[ing] the code complied to JSR-300 and
not to a specific framework" and "avoid[ing] hard code framework into abstract
code," respectively.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 102

Table 6.12: Perception over the DI anti-patterns in openly online survey 2
DI

Anti-Pattern
Respondent

I11 I12 I13 I14 I15

AP5
Partially
disagree

Agree Agree Agree Agree

AP7 Agree
Partially
agree

Disagree Neutral
Partially
agree

AP8 Agree Agree Disagree Agree
Partially
agree

AP10
Partially
agree

Agree Agree Agree Agree

AP11 Agree Neutral Agree Agree Agree

AP12 Agree Disagree Agree Agree Agree

For the second openly online survey, which covers anti-patterns AP5,
AP7, AP8, and AP10-AP12, again, only 3 disagreements are observed. From
30 enquiries, 25 responses provided agreements over the instances.

Again, AP5 shows a high rate of agreement. Although I11 partially
disagrees, he asserts that he would "apply the suggested solution."

Next, AP7 responses vary drastically. Although most responses (4) range
from agree to partially agree, a disagreement appears. I13 argues that he
would stick with the direct container call: "This may be used to improve
performance, only loading some dependency when it is absolutely needed.
The extra provider will add unnecessary complexity, only hiding the original
intention." Also, I12 is not sure about the resolution, by stating: "Maybe. In this
case I would’ve used a service locator, or at least encapsulate the dependency
in a method of the provider object." It is important to state that we suggested
in the instrumentation that encapsulation over a provider method is a feasible
solution too.

Regarding AP8, the only disagreement is expressed by I13, which states
that "this situation is necessary when integrating third-party code that will not
have access to the DI container. It also allows a function or method to receive
different implementations of a parameter." We agree with the first statement,
however, the second statement incur in a violation of DIP and IoC principle.

AP10 and AP11 do not present any disagreement. For instance, for AP10,
I15 states that "it is quite obvious that is wrong. In addition, frameworks

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 103

documentation do not provides this example."
Lastly, through analyzing I12 response on AP12, we found that he

actually agrees with the anti-pattern. I12 disagreement on AP12 comes from
the fact that he does not know that set method is a form of injection, as
stated as follows: "I know that having two ways of injecting an object is wrong,
however, this set method is wrong too. If you wanna create an object I would to
this with spring injection or constructor injection, so it would only be created
at the start of the object, and not with a set method."

Regarding the openly online survey, the adapted TAM questionnaires
and their results are exhibited in the Tables 6.13 and 6.14. Again, these were
ordered and positioned according to previous results and the Index column of
both tables address the same questions depicted in Table 6.3. From 81 TAM
questions, only 17 does not yield an agreement response. We consider the
results positive and strengthen our confidence on the usefulness, ease of use
and intention to use of the proposed catalog. Most importantly, the results
suggests that the catalog is helpful and that developers show willingness to
apply it.

Table 6.13: Respondents perception over the catalog of DI anti-patterns (I7-
I10)

Index Respondent
I7 I8 I9 I10

T1 Strongly Agree Strongly Agree Agree Strongly Agree
T2 Strongly Agree Strongly Agree Agree Strongly Agree
T3 Strongly Agree Strongly Agree Agree Strongly Agree
T4 Agree Strongly Agree Strongly Agree Strongly Agree
T5 Disagree Neutral Strongly Agree Strongly Agree
T6 Disagree Neutral Strongly Agree Strongly Agree
T7 Strongly Agree Neutral Agree Strongly Agree
T8 Disagree Agree Strongly Agree Strongly Agree
T9 Neutral Agree Agree Strongly Agree

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 104

Table 6.14: Respondents perception over the catalog of DI anti-patterns (I11-
I15)

Index Respondent
I11 I12 I13 I14 I15

T1 Agree Agree Strongly Agree Agree Strongly Agree
T2 Agree Agree Strongly Agree Agree Strongly Agree
T3 Agree Agree Strongly Agree Agree Agree
T4 Strongly Agree Neutral Neutral Neutral Strongly Agree
T5 Agree Neutral Neutral Agree Agree
T6 Agree Agree Agree Agree Agree
T7 Agree Agree Neutral Agree Agree
T8 Strongly Agree Disagree Neutral Agree Agree
T9 Strongly Agree Neutral Disagree Neutral Agree

6.4
Reflection

Based on the opinion of the respondents collected throughout the ap-
plication of the three surveys (interview-based expert survey on Section 6.2,
online expert survey on Section 6.3.3.1, and openly available online survey on
Section 6.3.3.2) covered in this chapter, along with comments gathered from
the evaluation members, we realized the catalog needed a new version. Thus,
the new version of the catalog of DI anti-patterns must embrace the reflections
made from the point of view of developers over the catalog. Therefore, the up-
dated version of the catalog is found in Appendix B. The main change points
are summarized in Tables 6.15 and 6.16.

6.5
Threats to Validity

The threats of validity are organized according to Wohlin et al. [37]
proposition.

Internal Validity. Regarding the first survey, the interview-based ap-
proach was used specifically to clarify any doubts regarding the questions and
the proposed catalog, not biasing respondents towards their agreement. It
served as a preliminary assessment of the structure of the catalog and the
instrumentation employed. Regarding the online survey, we provided more in-
formation regarding the source code examples to assist the respondents towards
fulfilling the online questionnaire.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 105

Construct Validity. Our qualitative analysis relies simple Likert scale
agreements on the anti-patterns and the TAM statements. We reinforce the
interpretation of the results providing argumentation based on open text
answers. TAM is a widely employed tool to measure the perceived acceptance
of technology propositions.

External Validity. Regarding the interview-based survey, as we planned
to conduct a limited amount of interviews with a limited amount of subjects,
the instrumentation is available for external replications. Regarding subject
representatives, we selected experienced developers from three different orga-
nizational units. Regarding the instrumentation, we peer-reviewed the material
before presenting it to the subjects. Regarding the preliminary online survey,
although representatives that answered our survey are from the same institu-
tion, we assert that this does not yield a threat since they are lecturers and do
not work closely. For the online instrumentation, we also used a peer-review
process to employ the division of the survey into two distinct surveys.

6.6
Concluding Remarks

In this chapter, we described our performed strategy to evaluate our
candidate catalog of DI anti-patterns. We designed three different surveys to
gather the perception over the proposed catalog from industry practitioners
and experts in object-oriented design and software development. In summary,
the proposed anti-patterns were broadly accepted by the respondents. However,
we observed that the context on which they are applied contributes to
their acceptance. Besides, most of the disagreements did not come from the
anti-pattern per se, but rather from the provided resolution example. Thus,
introducing the question over the willingness of removing the anti-pattern from
source code gave us important insights from the respondents. Nevertheless, we
found that our candidate catalog yields instances of anti-patterns related to
the employment of DI in software systems, opening a window for investigating
feasible code transformations to remove these instances from source code.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 106

Table 6.15: Summary of updates in the catalog (Part 1)
Source Problem/Proposition Argument/Solution
AP1 - Intransigent in-
jection

Whether AP1 is depen-
dent of the problem be-
ing solved

Reinforce the problem
context where this anti-
pattern is applied.

AP2 - Concrete class in-
jection

In cases of small sys-
tems, an interface can
be created afterwards
upon needing

Smalls systems might
not benefit from an
interface-oriented de-
sign in some cases.
The updated catalog
reinforces this aspect.

AP3 - Long Producer
method

Whether AP3 is just an
instance of long method
bad smell

Long method bad smell
is applied to any generic
method. AP3, however,
is applied only when
the provider method
performs activities out-
side the its core scope,
which is providing a de-
pendence instance. The
updated catalog rein-
forces this aspect.

AP4 - God DI class Whether AP4 is just an
instance of God class
bad smell

AP4 concerns the in-
jection of a substan-
tial number of depen-
dencies in a class. This
anti-pattern is primar-
ily concerned over in-
jected instances that
are often inconsequen-
tially introduced by de-
velopers without rea-
soning over the in-
creased dependence of
the class with other
components. The up-
dated catalog reinforces
this aspect.

AP5 - Non used injec-
tion

Whether AP5 is an
anomaly in regard to DI
specifically

The problem is more
related to current in-
tegrated development
environments (IDEs)
which, once annotated,
even the though the
attributed is not used,
do not warn the devel-
oper about the issue.
The updated catalog
reinforces this aspect.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 6. Investigating Perceived Usefulness of Proposed Catalog 107

Table 6.16: Summary of updates in the catalog (Part 2)
Source Problem/Proposition Argument/Solution
AP6 - Static depen-
dence provider

In cases where differ-
ent frameworks must
be integrated in a sin-
gle project, a "true"
singleton can be used
to provide dependen-
cies, even though incur-
ring in strong coupling
observed in classes of
the project

The anti-pattern does
not assert about these
type of situations. The
updated catalog rein-
forces this aspect.

AP7 - Direct container
call

There are cases that de-
pendencies may be dy-
namically resolved at
runtime with the sup-
port of the DI container

In these cases, the cat-
alog advocates to wrap
the container call in a
provider class

AP8 - Open window in-
jection

In case where an in-
jected object needs to
be passed to a compo-
nent (or third-party so-
lution) that lives out-
side the container, the
anti-pattern is a solu-
tion

Reinforce the problem
context.

AP9 - Framework cou-
pling

The likelihood of chang-
ing a previously defined
framework in a project
is low, customers may
not be willing to cover
the costs of such change

Reinforce the decision
of relying on the specifi-
cation is better applied
in the context of new
software projects

Structural definition The lack of explicitly
arguing about the con-
text of an anti-pattern
made respondents skep-
tical about its applica-
bility

Introduce the context
element in the struc-
tural definition

Access modifiers on
code snippets

The lack of private ac-
cess modifier lead to
open door injection

Perform the changes on
snippets

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

7
Concluding Remarks

7.1
Introduction

The goal of this dissertation concerns addressing the lack of guidance on
how to effectively detect, analyze, and remove DI anti-patterns from elements
of source code.

Academic literature does not properly cover DI anti-patterns in source
code. Industry-oriented publications, on the other hand, fail to provide em-
pirical evidence on the practical relevance of their propositions. Therefore, we
present a novel catalog of Java DI anti-patterns built upon object-oriented de-
sign principles. Furthermore, we provide empirical evidence on their practical
occurrence, and usefulness and acceptance by enquiring practitioners from in-
dustry. In the following, we summarize our conclusions and discuss practical
relevance of our research.

7.2
Summary of Conclusions

First, we investigated the literature on DI with the aim of identifying
existing documentation on DI anti-patterns. Our focus was on understanding
the completeness of propositions of DI anti-patterns and smells. Then, based
on the gaps uncovered, such as lack of empirical evidence over the practical
relevance on existing propositions, we applied two methodological approaches
to derive an initial catalog of Java DI anti-patterns. Based on observations of
bad implementation practices related to the employment of DI in closed-source
projects in past work experiences (inductive approach) and conjecturing over
a set of instances that harm the principles behind DI (deductive approach),
namely, DIP and IoC, and object-oriented design principles, such as GRASP
and SOLID, an initial effort towards documenting a catalog of Java DI anti-
patterns was taken.

Second, motivated by our proposition over a candidate set of DI anti-
patterns, we designed a static analysis tool called DIAnalyzer to automatically
flag and report instances of anti-patterns from source code. An evaluation

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 7. Concluding Remarks 109

carried out on DIAnalyzer revealed that the tool is reliable and can effectively
retrieve instances of DI anti-patterns from the source code. Then, we applied
the tool to a set of software systems, both open and closed-source. The
investigation revealed that the DI anti-patterns are general and occur within
different projects.

Lastly, we designed a study to analyze the acceptance and usefulness of
the catalog from the point of view of expert developers. In order to allow an
initial in-depth evaluation of our proposed catalog, an interview-based survey
was undertaken to mitigate risks related to the design of the instrumentation
and description of each anti-pattern. Feedback gathered from the expert
developers regarding the instrumentation was used as input for the next step.
Then, in order to scale our experiments, we have designed an online version of
our survey. Before making it openly available, we have made it available to a
set of selected representatives of experienced developers in order to understand
possible gaps related to the instrumentation and the size of the survey. After
minor adaptations, we have made it openly available online. After gathering the
perception of developers on the proposed catalog, the results indicate that the
catalog is perceived as relevant and useful. Lastly, after gathering the feedback
of the evaluation members of this work, along with the collected point of view
of developers over the instances of anti-patterns presented in this dissertation,
we built an updated catalog of DI anti-patterns. The updated version of the
catalog can be found in the Appendix B.

7.3
Limitations

Although we aimed to cover a wide range of anti-patterns distributed in
different characteristics, namely, performance, design, architecture, and stan-
dardization, our catalog may miss some other DI related problems. Therefore,
different researchers have reviewed the composition and completeness of the
catalog. In addition, our approach may miss some instances of DI anti-patterns
in the source code. This is due to the fact that every software system has its
own characteristics, even though is written in a specific programming language
and making use of a given framework.

We targeted Java software projects for characterizing and detecting DI
anti-patterns. Some of the DI anti-patterns proposed may not be directly
applicable to projects implemented in other programming languages. However,
although we focused on Java-based systems, we believe the catalog is generic
enough to port its ideas to another object-oriented programming language (e.g.
C#).

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 7. Concluding Remarks 110

Lastly, although we invested efforts to appropriately select representative
software projects that employ DI, we are aware that including a wider range
of software projects would improve external validity of our results.

7.4
Future Work

Although existing studies reported the existence of DI smells and DI
anti-patterns, there is no study that investigates its completeness and how
to effectively remove such bad implementation practices from source code.
By tackling the gathered perceptions from expert developers described in this
dissertation, we are able to better support developers on removing bad DI anti-
patterns from source code. Furthermore, we consider important to explore a
catalog of refactorings to support practitioners to effectively remove DI anti-
patterns from source code. The catalog would map patterns of refactoring and
offer a set of guidelines (i.e. code transformations) that developers can follow
in order to improve the structural quality of Java applications that employ DI.

7.5
Research Publications

Table 7.1 lists the accepted and submitted publications derived from this
dissertation.

Table 7.1: Publications derived from this Master’s thesis
Paper Title Venue Status
Towards a Catalog of
Java Dependency Injec-
tion Anti-Patterns [41]

SBES 2019 Accepted
(3rd best paper)

Unveiling Java Depen-
dency Injection Anti-
Patterns

JSERD
(invited paper)

Submitted

Table 7.2 lists other accepted and submitted publications derived
throughout the master’s period.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Chapter 7. Concluding Remarks 111

Table 7.2: Other publications derived throughout the master’s period
Paper Title Venue Status
A Systematic Mapping
of Software Engineering
Approaches to Develop
Big Data Systems [43]

SEAA 2018 Accepted

Desmistificando
Blockchain: Con-
ceitos e Aplicações
[44]

Computação e So-
ciedade (SBC)

Accepted

Towards a Technique
for Extracting Re-
lational Actors from
Monolithic Applica-
tions [45]

SBBD 2019 Accepted

From a Monolithic
Big Data System to a
Microservices Event-
Driven Architecture

SEAA 2020 To submit

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Bibliography

[1] ARNAOUDOVA, V.; DI PENTA, M.; ANTONIOL, G. ; GUEHENEUC, Y.-G..
A new family of software anti-patterns: Linguistic anti-patterns.
In: PROCEEDINGS OF THE 2013 17TH EUROPEAN CONFERENCE ON
SOFTWARE MAINTENANCE AND REENGINEERING, CSMR ’13, p. 187–
196, Washington, DC, USA, 2013. IEEE Computer Society. https://doi.
org/10.1109/CSMR.2013.28.

[2] BROWN, W. J.; MALVEAU, R. C.; III, H. W. M. ; MOWBRAY, T. J..
AntiPatterns Refactoring Software, Architectures, and Projects
in Crisis. John Wiley & Sons, 1998.

[3] L. BRIAND, J. D.; WUST., J.. A unified framework for coupling
measurement in object-oriented systems. IEEE Transactions on
Software Engineering, 24(1):91–121, 1999.

[4] CEDRIM, D.. Understanding and Improving Batch Refactoring in
Software Systems. PhD thesis, PUC-Rio, 2018.

[5] CHIDAMBER, S. R.; KEMERER., C. F.. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering, 20(6):476–
493, 1994.

[6] CHEN, B.; JIANG, Z. M. J.. Characterizing and detecting anti-
patterns in the logging code. In: INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING, September 2017.

[7] COPLIEN, J.. A generative development-process pattern language.
ACM Press/Addison-Wesley Publishing Co. New York, NY, USA, 1995.

[8] COPLIEN, J.; SCHMIDT, D.. Pattern Languages of Program Design.
Leanpub, 1995.

[9] CRASSO, M.; MATEOS, C.; ZUNINO, A. ; CAMPO, M.. Empirically
assessing the impact of di on the development of web service
applications. Journal of Web Engineering, 9:66–94, 2010.

[10] DAVIS, F. D.. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. JSTOR, 13(3):319–340, 1989.

https://doi.org/10.1109/CSMR.2013.28
https://doi.org/10.1109/CSMR.2013.28
DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Bibliography 113

[11] FOWLER, M.. Inversion of control containers and the de-
pendency injection pattern, 2004. http://martinfowler.com/
articles/injection.html. Last accessed 2004-01-23.

[12] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J.. Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., 1995.

[13] GOOGLE; GUICE. Guice framework, 2019. https://github.com/
google/guice. Last accessed 2019-11-01.

[14] JOHNSON, R. E.; FOOTE, B.. Designing reusable classes. Journal of
Object-Oriented Programming, 1(2):22–35, 1988.

[15] KICZALES, G.; LAMPING, J.; MENDHEKAR, A.; MAEDA, C.; LOPES, C.;
LOINGTIER, J.-M. ; IRWIN, J.. Aspect-oriented programming. In:
ECOOP’97 — OBJECT-ORIENTED PROGRAMMING, p. 220–242, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[16] LANZA, M.; MARINESCU, R.. Object-Oriented Metrics in Practice.
Springer, 2006.

[17] LARMAN, C.. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development
(3rd Edition). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[18] LODICO, M.G., S. D. V. K.. Methods in Educational Research: From
Theory to Practice. John Wiley & Sons, 2010.

[19] LINAKER, J.; SULAMAN, S. M.; MAIANI DE MELLO, R. ; HÖST, M..
Guidelines for conducting surveys in software engineering. Tech-
nical report, Lund University, 2015. [Publisher Information Missing].

[20] MARTIN, R. C.. Design principles and design patterns,
2000. https://web.archive.org/web/20150906155800/http:
//www.objectmentor.com/resources/articles/Principles_and_
Patterns.pdf. Last accessed in 2009-01-01.

[21] MARTIN, R. C.. The dependency inversion principle. Report.,
8(6):61–66, 1996.

[22] MEYER, B.. Object-Oriented Software Construction. Prentice Hall,
1988.

http:// martinfowler.com/articles/injection.html
http:// martinfowler.com/articles/injection.html
https://github.com/google/guice
https://github.com/google/guice
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Bibliography 114

[23] OLBRICH, S. M.; CRUZES, D. ; SJØBERG, D. I. K.. Are all code smells
harmful? A study of god classes and brain classes in the evolu-
tion of three open source systems. In: 26TH IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE (ICSM 2010), SEPTEM-
BER 12-18, 2010, TIMISOARA, ROMANIA, p. 1–10, 2010.

[24] PRASANNA, D. R.. Dependency Injection. Manning Publications Co.,
Greenwich, CT, USA, 2009.

[25] RAZINA, E.; JANZEN, D.. Effects of dependency injection on main-
tainability. In: INTERNATIONAL CONFERENCE SOFTWARE ENGI-
NEERING AND APPLICATIONS, November 2007.

[26] REQUESTS, J. J. S.. Jsr 330: Dependency injection for java, 2015.
https://www.jcp.org/en/jsr/detail?id=330. Last accessed 2004-01-
23.

[27] REQUESTS, J. J. S.. Jsr-299: Contexts and dependency injection
for the java ee platform, 2004. http://docs.jboss.org/cdi/spec/
1.0/html. Last accessed 2004-01-23.

[29] PIVOTAL. Spring framework, 2019. https://spring.io/. Last ac-
cessed 2019-11-01.

[30] ANICHE, M.. Repodriller framework, 2019. https://github.com/
mauricioaniche/repodriller. Last accessed 2019-11-01.

[31] ROUBTSOV, S.; SEREBRENIK, A. ; VAN DEN BRAND, M.. Detecting
modularity smells in dependencies injected with java annota-
tions. In: SOFTWARE MAINTENANCE AND REENGINEERING EURO-
PEAN CONFERENCE, p. 244–247, March 2010.

[32] SEEMANN, M.. Dependency Injection in .NET. Manning Publications
Co., Shelter Island, NY, 2012.

[33] SMITH, N.; VAN BRUGGEN, D. ; TOMASSETTI, F.. JavaParser: Vis-
ited. Leanpub, 2018. https://leanpub.com/javaparservisited.

[34] TORCHIANO, M.; FERNÁNDEZ, D. M.; TRAVASSOS, G. H. ; DE MELLO,
R. M.. Lessons learnt in conducting survey research. In: PROCEED-
INGS OF THE 5TH INTERNATIONAL WORKSHOP ON CONDUCTING
EMPIRICAL STUDIES IN INDUSTRY, p. 33–39. IEEE Press, 2017.

https://www.jcp.org/en/jsr/detail?id=330
http://docs.jboss.org/cdi/spec/1.0/html
http://docs.jboss.org/cdi/spec/1.0/html
https://spring.io/
https://github.com/mauricioaniche/repodriller
https://github.com/mauricioaniche/repodriller
https://leanpub.com/javaparservisited
DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Bibliography 115

[35] TURNER, M.; KITCHENHAM, B.; BRERETON, P.; CHARTERS, S. ; BUD-
GEN, D.. Does the technology acceptance model predict actual
use? a systematic literature review. Information and Software Tech-
nology, 52:463–479, 2010.

[36] VAN DEURSEN, S.; SEEMANN, M.. Dependency Injection Principles,
Practices, Patterns. Manning Publications Co., Shelter Island, NY, 2018.

[37] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M.; REGNELL, B. ;
WESSLÉN, A.. Experimentation in software engineering. Springer,
2012.

[38] YANG, H. Y.; TEMPERO, E. ; MELTON, H.. An empirical study into
use of dependency injection in java. In: AUSTRALIAN CONFERENCE
ON SOFTWARE ENGINEERING, March 2008.

[39] WILSON, J.. Essentials of Business Research: A Guide to Doing
Your Research Project. SAGE Publications, 2010.

[40] SJØBERG D.I.K., DYBÅ T., A. B. H. J.. Building Theories in Software
Engineering, In: Shull F., Singer J., Sjøberg D.I.K. (eds) Guide
to Advanced Empirical Software Engineering. Springer, 2008.

[41] LAIGNER, R.; KALINOWSKI, M.; CARVALHO, L.; MENDONÇA, D. S.
; GARCIA, A.. Towards a catalog of java dependency injection
anti-patterns. In: PROCEEDINGS OF THE XXXIII BRAZILIAN SYMPO-
SIUM ON SOFTWARE ENGINEERING, SBES 2019, SALVADOR, BRAZIL,
SEPTEMBER 23-27, p. 104–113, 2019.

[43] LAIGNER, R.; KALINOWSKI, M.; LIFSCHITZ, S.; MONTEIRO, R. S. ;
DE OLIVEIRA, D.. A systematic mapping of software engineering
approaches to develop big data systems. In: 2018 44TH EUROMI-
CRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED
APPLICATIONS (SEAA), p. 446–453. IEEE, 2018.

[44] ALVES, P.; LAIGNER, R.; NASSER, R.; ROBICHEZ, G.; LOPES, H. ; KALI-
NOWSKI, M.. Desmistificando blockchain: Conceitos e aplicações.
es). Computação e Sociedade. Rio de Janeiro: Sociedade Brasileira de Com-
putação, p. 1–24, 2018.

[45] LAIGNER, R.; LIFSCHITZ, S.; KALINOWSKI, M.; POGGI, M. ; SALLES, M.
A. V.. Towards a technique for extracting relational actors from
monolithic applications. In: ANAIS DO XXXIV SIMPÓSIO BRASILEIRO
DE BANCO DE DADOS, p. 133–144. SBC, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Bibliography 116

[46] WIERINGA, R. J.. Design Science Methodology for Information
Systems and Software Engineering. Springer, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendices

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

A
Responses over fixing DI anti-patterns

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 119

Table A.1: I1 Perception over fixing DI anti-patterns in preliminary survey
(part 1)

DI
Anti-Pattern

Respondent
Perception

AP1 "Nao. Apesar das consequencias negativas, dependendo do
tamanho do projeto e das classes envolvidas o impacto nao
chega a ser tao grande e nao vale o esforco de tempo e o
risco de adicao de bug que o refactory ira trazer ."

AP2 "Depende. Se eu for na classe que possua esse antes pattern
para adicionar uma nova feature ou funcionalidade, sim. Se
apenas tiver usando essa classe e me deparar com ela nao."

AP3 "Nao. Opiniao muito particular, nao acredito que pe-
gar um metodo grande e separar em metodos pequenos
(famoso diminuir a complexidade ciclomatica) seja algo que
diminua a complexidade de entendimento do codigo. Acho
que a correcao disso vem de uma refactory mais profunda
que nao eh simples de ser feita e cara quando se fala de
um sistema legado. Deixaria como esta. Faria esta refac-
tory se fosse extremamente necessario, como necessidade
de correcao de um bug, por exemplo."

AP4 "De modo geral, concordo que seja um anti-pattern, mas
consigo ver casos onde isso e necessario. Quando trabal-
hamos com componentizacao e modularizacao, principal-
mente com chamadas de sistemas extermos para API in-
terna, as vezes eh melhor pagar um preco de um facade
como esse grande e ter um ponto focal unico de integracao
externa (simplicidade de explicacao para uma equipe de
fora, simplicidade de documentacao, por exemplo)."

AP5 "Sim. Mesmo se nao estiver fazendo nada na classe costumo
remover. E importante so observar as classes que possuem
atributos publicos ou package, pois podem estar sendo
usados por uma classe filha."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 120

Table A.2: I1 Perception over fixing DI anti-patterns in preliminary survey
(part 2)

DI
Anti-Pattern

Respondent
Perception

AP6 "Em geral costumo nao usar esse tipo de service locator,
porem existem casos, onde e necessario integrar diversos
frameworks num mesmo projeto (ja passei por isso) em que
ele se torna necessario. Esse tipo de singleton considero
como um "singleton verdadeiro", pois apesar de ter uma
dependencia forte com ele, eh customizado e possivel de
ter comportamento alterado durante um teste unitario por
exemplo."

AP7 "Por coerencia com a respostas de cima, coloquei como
discordo parcialmente. Alem disso, nunca vi na pratica
trocar o framework de um projeto em producao. Eh lenda
urbana isso."

AP8 "Concordo, mas no caso de ter uma biblioteca que vc nao
tem como injetar dentro dela, nao eh um problema e a
solucao."

AP9 "Concordo que se tiver como usar facilmente a especifica-
cao, nao precisamos usar o framework. mas acredite (como
disse em cima) ninguem vai trocar o framework. O cliente
nao vai pagar por isso e vc nao vai querer tirar do bolso da
sua empresa essa mudanca."

AP10 "Nao faria comumente, mas consigo ver casos onde possa
ser util dar a possibilidade de trocar a implementacao
default injetada por uma outra."

AP11 "Sim, mas apenas quando estou adicionando uma nova
funcionalidade a esta classe ou alterando .Se eu apenas
olhar o codigo mas nao tiver q mexer nela, eu nao altero."

AP12 "Sim. Seguindo a mesma linha de so altrar quando for criar
uma funcionallidade ou modificar essa classe."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 121

Table A.3: I2 Perception over fixing DI anti-patterns in preliminary survey
(part 1)

DI
Anti-Pattern

Respondent
Perception

AP1 "No. I think the principle of depency injection is to wire
the architecture. To create a resolver seems to me like just
injecting a factory, and then the whole point of inversion
of control is lost. To me this is a bad pratice, as the
application can start with unresolved injections which may
be potentially broken, leveraging the problem to runtime
instead of startup time."

AP2 "Yes, the injection being based on interfaces allows for
dinamyc proxing, and automation of transactional control
and similar transversal requirements."

AP3 "The problem decipted on ap3 seems to me to be caused
by bad architetural design, and not a bad pratice of depen-
dency injection itself. Dependency injection and Inversion
of Control have been created just to avoid this cause of
programming. Doing something like that seems more like a
bad design or a misunderstanding of dependency injection
itself, than a common bad pattern."

AP4 "In the same manner as ap3, this doesnt seem to me as a
dependency injection problem, but really an architectural
design flaw, already adressed by basic object orientation
practices and most common pattern catalogs."

AP5 "I would fix ap5 because it burdens the container in provid-
ing an unused dependency, and also because it prejudices
the understanding of the code."

AP6 "The fix on ap6 shows the most decoupled organization of
code."

AP7 "In the case depicted it makes sense to apply the fix.
There are cases, although, in which dependencies may be
dinamycally resolved at run time, and even if a provider
is created to proxy the resolution, somewhere, someone is
going to have direct access to the container."

AP8 "I would fix it because it doesnt make sense to pass in-
jections along as parameters. Unless, of course, you are
supplying the injection to objects that live outside the con-
tainer."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 122

Table A.4: I2 Perception over fixing DI anti-patterns in preliminary survey
(part 2)

DI
Anti-Pattern

Respondent
Perception

AP9 "I would fix whatever can be generic. However some frame-
works have more resources than the oracle api. That said,
I have been in projects that having access to specific re-
sources of the framework was a greater benefit than main-
taining the Api in specification level."

AP10 "I would fix ap10 to protect the injection and the whole
architectural integrity"

AP11 "I would fix it to avoid unecessary duplicity."
AP12 "I would fix ap12 to maintain overall convention and orga-

nization of the project."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 123

Table A.5: I3 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "I would only fix it if example1 is too heavy to be loaded
eagerly."

AP2 "I would only fix it if there is a real need for interface
decoupling. I see no point in having a lot of interfaces and
only one concrete class for each one of them."

AP3 "Yes. It makes sense and simplifies the code."
AP4 "Yes. The code should be simpler and modularized."
AP5 "Yes. A good well configured IDE can do this or warn me

to do it."
AP6 "Yes. If one uses DI, one should rely on it."
AP7 "There are cases where you can only do what you need if

you access the bean context. Specially if you use spring
boot, which hides a lot of the framework complexities
and does not necessarily covers all issues. For instance:
centralized error handling with async methods. These cases
should be, in anyway, exceptions."

AP8 "Yes. Again one should rely on DI container when appro-
priate."

AP9 "No. If you choose a DI container implementation, and if it
is a well informed and discussed choice, there is no reason
not to go all the way through. One always gains and looses
by making such a choice, but that’s life."

AP10 "Yes. Rely on the DI container whenever it’s possible,
simpler and addresses the issue."

AP11 "Yes. It’s more adequate."
AP12 "Yes. There is no reason to have two inject annotations."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 124

Table A.6: I4 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "yes, as the injection of unnecessary dependencies demands
computing time"

AP2 "yes"
AP3 "yes, as it does not follow the low cohesion principle"
AP4 "yes, as it does not follow the low coupling principle"
AP5 "yes, because the resulting code if easier do understand and

more performatic"
AP6 "yes, as the resulting code becomes more flexible and

generic"
AP7 "yes, as it violates the low coupling principle"
AP8 "yes, as it eliminates unnecessary code"
AP9 "yes, as it makes the code less dependant of technology

specifics"
AP10 "yes, as it would prevent negative effects to ripple to other

parts of the system"
AP11 "yes, as it simplifies the code without loosing flexibility"
AP12 "yes, as it makes the code easier to understand and main-

tain"

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 125

Table A.7: I5 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "Sim, se fosse caracterizado como causa de um gargalo no
desempenho do sistema."

AP2 "Fico na dúvida se eu refatoraria. Teria uma prioridade
baixa."

AP3 "Sim, se fosse identificado como um ponto de gargalo do
desempenho"

AP4 "Sim, sem dúvida. God classes tendem a esconder conceitos
do negócio que poderiam estar mais explícitos em classes
próprias."

AP5 "Sim, para evitar que os desenvolvedores fiquem confusos
(por que isto está aqui se não está sendo usado?) e, com
isso, demorem mais para implementar novas features ou
corrigir bugs."

AP6 "Não. Como não uso um framework/lib de DI atualmente,
teria dificuldade para ver esta falta de padronização na
solução para obter a dependência por duas formas difer-
entes."

AP7 "Sim, trabalho em um projeto com mais de 10 anos e já
tivemos que mudar soluções específicas uma ou duas vezes
e tivemos dificuldade de fazê-lo pela grande dependência do
código da aplicação com o código da solução a ser trocada"

AP8 "Sim, mas teria baixa prioridade."
AP9 "Sim, pelo menos motivo de AP7"
AP10 "Sim, mas poderia ser difícil identificar. Requer uma

atenção e conhecimento de DI diferenciados. Seria ótima
se uma ferramenta de análise estática indicasse isso."

AP11 "Sim, porque essa situação pode levar a erros confusos para
debugar."

AP12 "Uma implementação dessas se não tiver um efeito colateral
perceptível é possível que passe batido. Se fosse indicado
por uma ferramenta de análise, sim, corrigiria."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 126

Table A.8: I6 Perception over fixing DI anti-patterns in preliminary survey
(part 1)

DI
Anti-Pattern

Respondent
Perception

AP1 "Probably yes, if using Java, but: 1- I could measure the
performance impacts first. 2- If not using a native solution
(or not a native solution in a different language), would we
still be able to use a Provider? wouldn’t it be like a service
locator? 3- If we are using the provider, why not using it all
the time, even on the constructor, and maybe that being
the default? 4- If not using Java, the constructor signature
would have the parameters and would save the objects so
they could be used by all instance methods. Even though
the constructor is not actually using them, it does not seem
that strange that they receive the objects to construct the
class."

AP2 "Yes. Because of DIP (Dependency Inversion Principle).
But with one caveat: Dependency Injection became a com-
plex subject but if we are talking about manual depen-
dency injection and the most simple definition, one object
providing dependencies to another object, one could inject
a concrete object that does not need an interface into an-
other object. Like passing an entity to a DAO as in Clean
Architecture. It would depend of the different policy levels
in the architecture.
So I think of it as an anti-pattern in most cases, where it
violates DIP."

AP3 Yes. It seems the code below @Produce is doing more than
expected so the programmers need to do more investigation
than needed to understand it.

AP4 Yes, it seems class D is doing to much and it will be hard
to maintain.

AP5 I usually set the compiler/IDE to treat warnings as errors
and that would be one. Even without a performance prob-
lem, for cleaner code.

AP6 Yes. Would fix it. But, it may be very hard on existing code
of medium to large projects.

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 127

Table A.9: I6 Perception over fixing DI anti-patterns in preliminary survey
(part 2)

DI
Anti-Pattern

Respondent
Perception

AP7 Yes, the main goal of using DI is not depending directly
on the injected objects. Also, depending on a framework
would create the same kinds of problems.

AP8 "Yes. No need for a class to receive one object just to pass
it forward.
But, the AP8 definition is saying ""Anti-pattern is applied
when an injected instance is not used..."", even though
parser is being used in the first example. So, there are worse
cases when the first class does not even use the injected
object."

AP9 Yes, for me it makes no sense to depend on the DI frame-
work. We use DI to reduce coupling so depending on a
framework all around the code does not make sense.

AP10 Yes, exactly the same reason written in the negative con-
sequence section.

AP11 Yes, same as AP10.
AP12 Yes. Very confusing having two ways of doing the same

thing. I would prefer the chosen standard way of doing
and follow it everywhere.

Table A.10: I7 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "Yes, due to the possible negative impact on the perfor-
mance."

AP2 "Yes, in order to fix a misuse of the Dependency Injection."
AP3 "Yes, but mainly in order to reduce the cyclomatic com-

plexity."
AP4 "Yes. It is clear that a god class can produce negative

consequences in maintenance."
AP6 "Yes, in order to remove the direct dependency from E to

ServiceLocator."
AP9 "Yes, in order to keep the code complied to JSR-300 and

not to a specific framework."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 128

Table A.11: I8 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "It’s better to use the provider to lazy load the injected
objects. However, I see this a reather improvement than
an anti pattern"

AP2 "Yes, creating interfaces to avoid coupling of the implemen-
tation."

AP3 "Yes, but it can be solved in a simpler way in my view.
By creating small methods with single responsibility on
appropriate classes"

AP4 "Yes, dividing responsibilities "
AP6 "Yes, because the ap6 doesn’t mention that this is the

only place that a implementation is being chosen like the
suggested fix (projectconfigbeans). However, I’m not sure If
the method getbeaninstance is controlled by the developer
or it’s a from a internal library - I don’t develop in Java.
If it is controlled by the debelopers, then it’s not that bad
- because the control over the factory looks similar to the
fix for me."

AP9 "Yes, avoid hardcode framework into abstract code"

Table A.12: I9 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "No, the overload is small and should not be a problem"
AP2 "No, there is no need to make an interface for small systems.

If it is needed you can generate the interface afterwards
upon needing"

AP3 "Yes, this can generate perfomance issues in the system"
AP4 "Yes, to improve maintainability"
AP6 "No, because its not a big problem"
AP9 "No, it is not a big problem for small projects where it

highly improbable changing the farework"

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 129

Table A.13: I10 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP1 "It depends on how complex is the example1 object. If it is
a heavy object I would use AP1 solution. Other point that
would influence in my decision is how often the example1
object is needed in my class code."

AP2 "Yes. Because it makes codification more formal avoiding
refactoring. The concrete class has to obey the interface
structure, so my B_Without_Concrete class doesn’t need
to know about concrete implementation."

AP3 "Yes, but for me it is not just a DI problem. It is more
about methods with so many responsibility that makes
the code more complex and unreadable. Other point that
would make me fix AP3 is that calling Provider methods
instead of just have all complexity in his life-cycle make me
feel I have more control of my code."

AP4 "Yes, but it depends on how can you group the responsibil-
ity of injected classes. Worse than have so many injection in
one single class is to create so many classes with the same
responsibilities. I agree that it should be implemented in
most of cases but It can be weird somethings."

AP6 "You don’t need to use the ServiceLocator to get the
IDataSource each time you have to use it. You can create
a global object and you can control it to call just once. In
this case, DI doesn’t bring such a huge difference for me."

AP9 "In this specific case, we are talking about a huge frame-
work that brings lots of benefits to the application (Spring).
So, for me it worth even if it brings higher coupling to
framework specifics."

Table A.14: I11 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP5 "Yes. I will apply the suggested solution"
AP7 "Yes. I will apply the suggested solution"
AP8 "Yes. I will apply the suggested solution"
AP10 "No. This kind of occurrence may be a problem or not, can

vary according with arctheture"
AP11 "Yes. I will apply the suggested solution"
AP12 "Yes. I will apply the suggested solution"

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 130

Table A.15: I12 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP5 "Yes, because if its not used we dont need to maintain."
AP7 "Maybe. In this case i would’ve used a service locator, or

at least incapsulate the dependency in a method of the
provider object."

AP8 "I would fix this, but I don’t think that the suggested solu-
tion is right, because it depends in many factors. We have
to know why the developer thinks that the dependency is
needed by other objects to provide a good solution for him."

AP10 "Y"
AP11 "I don’t understood why the solution is right, both of them

look wrong."
AP12 "I know that having two ways of injecting an object is

wrong, however, this set method is wrong too. If you
wannna create an object I would to this with spring injec-
tion or constructor injection, so it would only be created
at the start of the object, and not with a set method."

Table A.16: I13 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP5 "Yes"
AP7 "No. This may be used to improve performance, only

loading some dependency when it is absolutely needed. The
extra provider will add unnecessary complexity, only hiding
the original intention."

AP8 "No. This situation is necessary when integrating third-
party code that will not have access to the DI container.
It also allows a function or method to receive different
implementations of a parameter."

AP10 "Yes"
AP11 "Yes"
AP12 "Yes"

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Appendix A. Responses over fixing DI anti-patterns 131

Table A.17: I14 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP5 "Yes, the class should be as clean as possible."
AP7 "Yes, as we are using DI this can be handled better."
AP8 "Yes, the class who has the dependency is not the one being

injected."
AP10 "Yes, this increases complexity with no benefit. Probably

this results from bad architecture."
AP11 "Yes, looks like bad architecture."
AP12 "Yes, because it increases complexity "

Table A.18: I15 Perception over fixing DI anti-patterns in preliminary survey
DI

Anti-Pattern
Respondent
Perception

AP5 "Yes, because the IDE probably will provide some warnings
about the unused injection."

AP7 "I believe that I wouldn’t write the EP7 code since it would
give to the framework (e.g., spring) to manage it."

AP8 "Yes, refactoring decreases the coupling."
AP10 "Because it is quite obvious that is wrong. In addition,

frameworks documentation do not provides this example."
AP11 "Because it violates one of the principles of OOP"
AP12 "For me, no make sense repeat the same injection twice."

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

B
Updated catalog of DI anti-patterns

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Catalog of Dependency Injection Anti-Patterns

Rodrigo Laigner

Coupling is a quality attribute of a module in an ap-
plication. As higher the level of coupling to another
modules of the system, the likelihood of increased ef-
forts when it comes to introduce change is expected in
this module [1]. A particular programming mechanism
that is employed to decrease coupling levels in an ap-
plication is Dependency injection (DI), a mechanism for
improving software modularity.
Jim Coplin [2] asserts that the study of anti-patterns

is an important research activity, on which only showing
the presence of ’good’ patterns in a successful system is
not enough. Thus, this material shows the result of 2
years research [3] [4] on cataloging instances of depen-
dency injection anti-patterns. The instances of the cat-
alog were observed and conjectured based on the experi-
ence of the author while maintaining software in industry
settings. Also, the catalog evolved through discussions
with researchers.
Each anti-pattern provides the following structural el-

ements: a name, description, context where it is applied,
drawbacks observed, pattern of occurrence, and resolu-
tion. Furthermore, we classify the DI anti-patterns into
four different classes of problems: Architecture, Design,
Performance, and Standardization. Architecture con-
cerns architectural violation, such as the the violation
of IoC and DIP principles. Design problems are related
to the presence of design issues, such as design smells.
Performance problem concerns impact on memory us-
age or response time, such as useless dependency provi-
sion. Finally, Standardization is related to sticking to a
DI coding style, such as following the specification (JSR-
330). In addition, each anti-pattern shows the pattern of
occurrence and a resolution separated by a dashed line.

Intransigent injection

Description: Intransigent injection concerns dependen-
cies that are not needed on construction time, however,
they are decidedly provided by the DI container on con-
struction time.

Figure 1: Intransigent injection

public class A {
@Inject
private IExampleInterface0 example0;
@Inject
private IExampleInterface1 example1;
public A() {

example0.doSomething();
}
public void foo() { /* omitted code */ }
public void bar() {

example1.doSomething();
/* omitted code */

}
}

public class A_Without_Intransigent_Injection {

@Inject
private IExampleInterface0 example0;
@Inject
private Provider<IExampleInterface1>

example1Provider;
public A() {

example0.doSomething();
}
public void foo() { /* omitted code */ }
public void foo() {

IExampleInterface1 example1 =
example1Provider.get();

example1.doSomething();
/* omitted code */

}
}

1

Appendix B. Updated catalog of DI anti-patterns 133

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Figure 2: Concrete class injection

public class B {
@Inject
private ConcreteClassExample example;
private void foo(){

example.doSomething();
// code omitted for brevity

}
}

public class ConcreteClassExample

implements IExampleInterface {
@Override
public void doSomething() {

// code omitted for brevity
}

}

public class B_Without_Concrete {
@Inject
private IExampleInterface example;
private void foo(){

example.doSomething();
// code omitted for brevity

}
}

Context: Objects that do not need to be instantiated
on construction time and might not require additional
effort or latency impediments if instantiated in a later
time.
Drawbacks: This scheme introduces additional work-
load and memory consumption on construction time.
It is a worse scenario if the instance provided is not
a lightweight object, impacting on performance. Thus,
this anti-pattern is categorized as a performance prob-
lem.
Pattern of occurrence: Figure 1 shows that the in-
jected attribute example1 is not used in construction
time, thus, the process of injecting a given instance in
this attribute might require additional workload to DI
container.
Resolution: The resolution concerns the use of a
Provider, an interface type defined by JSR-330 that al-
lows for obtaining a given dependence when necessary.
Thus, the resolution provided in Figure 1 concerns rely-
ing on a Provider to obtain from the DI container the
given instance when its use is requested (see example1).

Concrete class injection

Description: Concrete class injection concerns a depen-
dence requested via dependency injection on which the

element type of the dependence is a concrete class.
Context: This anti-pattern is not applied on small sys-
tems (e.g., < 50K). Once small systems present a smaller
number of components in comparison with larger sys-
tems (e.g., > 100K), they often do not benefit from an
interface-oriented design.
Drawbacks: As a design problem, this anti-pattern
yields the following negative consequences: (i) violation
of IoC principle, once the class requesting its dependence
acknowledges an implementation detail (i.e., the concrete
class); (ii) Less flexibility on testing, once a mock object
would need to be an inherited class of the given concrete
class in order to modify desired behavior; (iii) According
to Gamma et al. [1], coupling to a concrete class can
increase maintenance efforts.
Pattern of occurrence: A class relies on a concrete
class injection to request a dependence. Figure 2 exhibits
the class B depending on the concrete class ConcreteEx-
ample, configuring a high coupling.
Resolution: Gamma et al. [1] advocates for program-
ming to an interface, which is a natural solution to this
anti-pattern. The resolution shows a code transforma-
tion, on which an interface (see IExampleInterface) is
created so that the class ConcreteExample implements
it.

Long producer method

Description: Long producer method concerns a
method that performs activities that are out of the scope
of providing a dependence, which must be its main ob-
jective. This context defines this anti-pattern as a design
problem.
Context: This anti-pattern is only applied to Producer
methods that do tasks outside of the scope of providing
a dependence.
Drawbacks: This anti-pattern undermines the ability
of the software to adapt to change when requirements
change.
Pattern of occurrence: Figure 3 shows a high complex
method that should be simple, once the main concern of
a Producer method (see @Produces annotation) is to a
provide a given dependency. The DI container, when it
identifies the existence of a Producer method for a given
type, transfer the responsibility for dependence provision
to the Provider method.
Resolution: The code for providing the dependence and
for doing tasks related to business logic should be de-
parted. We provide an excerpt of a Producer method
without high cyclomatic complexity and fewer responsi-
bilities.

Appendix B. Updated catalog of DI anti-patterns 134

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Figure 3: Long producer method

public class C {
// omitted code
@Produces
public ProducedBean generateReport(){

Set<Integer> selectedBacklogIds =
this.getSelectedBacklogs();

if(selectedBacklogIds == null) {
Collection<Product> products = new

ArrayList<Product>();
productBusiness.

storeAllTimeSheets(products);
for (Product product: products) {

selectedBacklogIds.
add(product.getId());

}
return Action.PROCESS;

}
// omitted code
Workbook wb = this.timesheetExportBusiness.

generateTimesheet(this,
selectedBacklogIds, startDate,
endDate, timeZone, userIds);

this.exportableReport = new
ByteArrayOutputStream();

try {
wb.write(this.exportableReport);

} catch (IOException e) {
return Action.ERROR;

}
return Action.SUCCESS;

}
}

public class C_Without_Long_Producer {

// omitted code
@Produces
public ProducedBean generateReport(){

Set<Integer> selectedBacklogIds =
this.getSelectedBacklogs();

if(selectedBacklogIds == null) {
return Action.PROCESS;

} else
if(this.exportableReportIsWritten()){
return Action.ERROR;

}
return Action.SUCCESS;

}
}

Figure 4: God DI class

public class D {
@Inject private IExample1 one;
@Inject private IExample2 two;
@Inject private IExample3 three;
@Inject private IExample4 four;
@Inject private IExample5 five;
// other several dependencies injected
@Inject private IExampleN n;
void methodOne() { /* reference to several

dependencies */ }
void methodTwo() { /* reference to several

dependencies */ }
// other several methods
void methodThree() { /* reference to several

dependencies */ }
}

public class D_Part_1 {

@Inject private IExample1 one;
@Inject private IExample2 two;
@Inject private IExample3 three;
void methodOne() { /* code omitted */ }

}
public class D_Part_2 {

@Inject private D_Part_1 dPartOne;
@Inject private IExample4 four;
@Inject private IExample5 five;
@Inject private IExample6 six;
void methodTwo() { /* code omitted */ }

}
public class D_Part_3 {

@Inject private D_Part_2 dPartTwo;
@Inject private IExample7 seven;
@Inject private IExample8 eight;
@Inject private IExample9 nine;
@Inject private IExampleN n;
void methodThree() { /* code omitted */ }

}

Appendix B. Updated catalog of DI anti-patterns 135

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Figure 5: Unused injection

public class E {
@Inject private ExampleType one;
public void foo() { /* no reference to one */ }
public void bar() { /* no reference to one */ }

}

public class E_Without_Unused {

public void foo() {
// code omitted for brevity

}
public void bar() {

// code omitted for brevity
}

}

God DI class

Description: This anti-pattern concerns the injection
of a substantial number of dependencies in a class.
This anti-pattern is primarily concerned over injected
instances that are often inconsequentially introduced by
developers without reasoning over the increased depen-
dence of the class with other components. Thus, it is
configured as a design problem.
Context: Along with a substantial number of injected
dependencies, the class also shows a multiple set of re-
sponsibilities that would be better handled if distributed
properly.
Drawbacks: Increased efforts on maintenance tasks op-
erated in the class.
Pattern of occurrence: Figure 4 depicts an excerpt of
a class with high level of complexity, in terms of number
of injected element instances, and number of methods.
Resolution: Figure 4 depicts a refactoring that re-
moves the anti-pattern, dividing dependencies and be-
havior into different classes. The resolution example de-
picts a code transformation applied to previous class D,
on which a refactoring type called Extract Class [5] was
employed three times in order to reduce the complexity
of class D.

Unused injection

Description: This anti-pattern regards a dependency
requested via dependency injection that is actually not
used in the class. This way, unused injection is catego-
rized as a performance problem.
Context: Only applied if the unused injection is not
used by any inherited class. The problem is more related
to current integrated development environments (IDEs)
which, once annotated, even the though the attributed

Figure 6: Static dependence provider

// ServiceLocator import ommitted
public class E {

@Inject private Parser parser;
public void execute(List<String> files) throws

Exception {
IDataSourcedataSource dataSource =

(IDataSource)
ServiceLocator.getInstance()

.getBeanInstance("IDataSource");

for(String file : files){
Object parsedObject =

parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

public class ProjectConfigBeans {

@Bean
public IDataSource provideDataSource(){

// logic for creating an instance of
IDataSource

}
}

public class E_Without_Service_Locator {
@Inject private Parser parser;
@Inject private IDataSource dataSource;
public void execute(List<String> files) throws

Exception {
for(String file : files){

Object parsedObject =
parser.parse(file);

dataSource.insert(key, parsedObject);
}

}
}

is not used, do not warn the developer about the issue.

Drawbacks: It overloads the DI container with the in-
cumbency to provide the non used dependency on run
time. Worst case scenario if it is not a lightweight ob-
ject, or if it is not a singleton scope, impacting on per-
formance.

Pattern of occurrence: The Figure 5 shows a class
(E) with an injected instance that is not used though
any method of the class.

Resolution: The solution concerns removing the un-
used injection element.

Appendix B. Updated catalog of DI anti-patterns 136

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Static dependence provider

Description: Static dependence providers are related to
Fabrics and Service Locators. The first refers to a class
that has the objective to provide a given concrete im-
plementation, not being a Provider class. On the other
side, Service Locator pattern also applies to this context,
since it is a class that has the responsibility for serving all
dependencies that might be required on run time. Both
classes of problem concerns architectural problems, since
both violate DIP and IoC principle.
Context: The use of static dependence providers in
projects that employ a DI framework where the depen-
dence provision is not related to fulfill a third-party com-
ponent or a class outside the container.
Drawbacks: It incurs a high coupling to a fabric class
in the source code. In case of Service Locator, the depen-
dence on this pattern is even worse due to its widespread
usage in the project. Indeed, inversion of control is not
achieved in both cases.
Pattern of occurrence: Figure 6 exhibits the class (E)
with a dependence provision made by a service locator.
In other words, rather than relying on the DI container
for injecting an instance of IDataSource type on data-
Source attribute, the code relies on a service locator.
Resolution: Figure 6 enforces the use of DI con-
tainer for dependency injection at run time by rely-
ing on a Producer method in order to provide an in-
stance of IDataSource. Particularly, the resolution ex-
ample above shows a code transformation, in which the
logic for creating an instance of IDataSource is modu-
larized within a Producer method. This way, the class
E_Without_Service_Locator is not coupled to a service
locator class anymore.

Direct container call

Description: Direct container calls can provide a con-
crete implementation at any point of the system. The
nature of this anti-pattern is similar to using a static
fabric or a Service Locator. Once DI is chosen as an ar-
chitectural standard for the project, employing container
call for dependence resolution conveys an architectural
violation.
Context: The use of static dependence providers in
projects that employ a DI framework where the depen-
dence provision is not related to fulfill a third-party com-
ponent or a class outside the container. In cases where
dependencies must be dynamically resolved at runtime
with the support of the DI container, this anti-pattern
is not applied.
Drawbacks: High coupling to framework specifics, since
it relies directly on the framework to provide the depen-

Figure 7: Direct container call

public class F {
@Inject private Parser parser;
@Inject private ApplicationContext context;

protected IDataSource getRepository() {
return (IDataSource)

context.getBean("ftpDataSource");
}

public void execute(List<String> files) {
IDataSource dataSource = getRepository();
for(String file : files){

Object parsedObject =
parser.parse(file);

dataSource.insert(key, parsedObject);
}

}
}

public class F_Without_Container_Call {

@Inject private Parser parser;
@Inject private IDataSource dataSource;
public void execute(List<String> files) {

for(String file : files){
Object parsedObject =

parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

Appendix B. Updated catalog of DI anti-patterns 137

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Figure 8: Open window injection

public class F {
@Inject private Parser parser;
@Inject private IExampleInterface one;
public Parser getParser() {

return parser;
}
public void execute(List<String> files) throws

Exception {
for(String file : files){

Object parsedObject =
parser.parse(file);

one.doSomethingWithParsed(
parser, parsedObject);

}
}

}

public class F_Without_Passing {

@Inject private Parser parser;
@Inject private IExampleInterface one;
public void execute(List<String> files) throws

Exception {
for(String file : files){

Object parsedObject =
parser.parse(file);

one.doSomethingWithParsed(parsedObject);
}

}
}

public class ConcreteExample
implements IExampleInterface {
@Inject private Parser parser;
@Override
public void doSomethingWithParsed(Object

parsedObject) {
// omitted code

}
}

dency. In addition, inversion of control principle is not
achieved in this context.

Pattern of occurrence: The Figure 7 shows the class
(E) with a dependence provision made by a direct con-
tainer call. In other words, rather than relying on the DI
container for injecting an instance of IDataSource type
on dataSource attribute, the code relies on a direct con-
tainer call.

Resolution: The resolution concerns removing the el-
ement that performs a container call and enforcing the
use of a DI container for dependence provision.

Figure 9: Framework coupling

public class J {
@Autowired private Parser parser;
@Autowired private IDataSource dataSource;
public void execute(List<String> files) {

for(String file : files){
Object parsedObject =

parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

public class J_Without_Framework_Coupling {

@Inject private Parser parser;
@Inject private IDataSource dataSource;
public void execute(List<String> files) {

for(String file : files){
Object parsedObject =

parser.parse(file);
dataSource.insert(key, parsedObject);

}
}

}

Open window injection

Description: This anti-pattern is applied when an in-
jected instance is not used, but passed as parameter to
another class method or opened for external accessing
(e.g. by get method or public/protected access modi-
fier).

Context: In case where an injected object needs to
be passed to a component (or third-party solution) that
lives outside the container, the anti-pattern is a solution.
Thus, the anti-pattern does not apply to this context.

Drawbacks: Two negative consequences are observed.
In the first case, it adds a useless intermediary element
between the class that needs a given concrete implemen-
tation and the DI container. On the second case, it opens
a door for external modification, which could possibly
yield the introduction of bugs.

Pattern of occurrence: Figure 8 show an example of
occurrence, on which the inject element parser is passed
as parameter to another method.

Resolution: The resolution depicts a code transforma-
tion where the injected element parser is not passed as
parameter to method doSomething of the interface IEx-
ampleInterface anymore. The concrete implementation
of IExampleInterface is now responsible for defining its
dependence on an instance of Parser type.

Appendix B. Updated catalog of DI anti-patterns 138

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Figure 10: Open door injection

public class H {
@Inject private Parser parser;
public void setParser(Object parser) {

this.parser = parser;
}
// code omitted for brevity

}

public class H_Without_Anti_Pattern {

@Inject private Parser parser;
// code omitted for brevity

}

Framework coupling

Description: It refers to elements on source code that
are dependent on a given framework implementation. As
the name of the anti-pattern expose, it can be repre-
sented as annotations or method calls to framework con-
figuration classes along the source code. We categorize
this anti-pattern as part of standardization category.
Context: Avoiding this anti-pattern is better applied in
the context of new software projects. In legacy systems,
the complexity entailed by removing this anti-pattern
may not be worthy the effort.
Drawbacks: In the context of Java, which presents a
specification for DI, a framework specific annotation, for
example, incurs in high coupling to the framework. In
addition, in case where compatibility is a requirement,
this anti-pattern can lead to greater effort in mainte-
nance activities, framework change or framework version
update.
Pattern of occurrence: Figure 9 depicts a class that
employs Spring framework @Autowired annotation.
Resolution: A suitable option for removing coupling
from a given DI framework is relying on the adoption of
annotations presented in the specification.

Open door injection

Description: This anti-pattern is applied when an in-
ject request is provided by a DI container, however, the
instance requested is open for modification by an exter-
nal element. It usually happens when the developer lacks
appropriate knowledge about DI.
Context: Any context.
Drawbacks: Open door injection can configure a hard
to follow traceability, hindering program comprehension.
Also, bugs are another possibility, since concrete imple-
mentation is open to chance by an external class.

Figure 11: Multiple assigned injection

class ExampleBusiness
extends GenericBusinessImpl{

private IDAOexampleDAO exampleDAO;
@Inject
public void setExampleDAO(ExampleDAO

exampleDAO) {
this.genericDAO = exampleDAO;
this.exampleDAO = exampleDAO;

}
}

abstract class GenericBusinessImpl {

abstract IDAO getGenericDAO();
}

class ExampleBusiness
extends GenericBusinessImpl{

private IDAOexampleDAO exampleDAO;
@Inject
public void setExampleDAO(ExampleDAO

exampleDAO){
this.exampleDAO = exampleDAO;

}
@Override
protected IDAO getGenericDAO() {

return this.exampleDAO;
}

}

Pattern of occurrence: Figure 10 depicts the pres-
ence of a public set method that allows changing of the
injected instance of parser in runtime. In details, the
example depicts a public set method (setParser), which
allows for modification of the instance of an injected el-
ement (parser) by an external class.
Resolution: The resolution concerns the removal of the
element on source code (e.g., public set method) that
enables changing injected element.

Multiple assigned injection

Description: This anti-pattern occurs when the refer-
ence to an injected instance is spread among multiple
attributes.
Context: This anti-pattern is not applied in cases where
the class receiving an injection also assigns it to an el-
ement of its superclass (which is not managed by the
DI container), thus, forcing the assignment to multiple
attributes.
Drawbacks: This anti-pattern is correlated to Open
door injection, since it opens a gap for an undesirable
modification of the injected object at run time.
Pattern of occurrence: Figure 11 provides an example

Appendix B. Updated catalog of DI anti-patterns 139

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

Figure 12: Multiple forms of injection

class ExampleBusiness
extends GenericBusinessImpl {

@Inject private IDAOexampleDAO exampleDAO;
@Inject
public void setExampleDAO(ExampleDAO

exampleDAO) {
this.exampleDAO = exampleDAO;

}
}

class ExampleBusiness

extends GenericBusinessImpl{
private IDAOexampleDAO exampleDAO;
@Inject
public void setExampleDAO(ExampleDAO

exampleDAO) {
this.exampleDAO = exampleDAO;

}
}

of occurrence, where the assignment of an injected in-
stance of ExampleDAO to an attribute of a parent class
(GenericBusinessImpl).
Resolution: In the case of injection instance being as-
signed to an attribute of super-class, a better approach
would be overriding an abstract method. This way, the
overridden abstract method would provide the instance
injected, not incurring on reference duplication. Thus,
the resolution shown in Figure 11 depicts a code trans-
formation that removes the assignment of an injected
instance to an attribute presented in a parent class. The
removal makes room for an abstract method in the par-
ent class, which still allow the reference to the original
injected instance.

Multiple forms of injection

Description: This anti-pattern refers to the use of mul-
tiple forms of injection to a given element (e.g., set
method and by constructor).
Context:
Drawbacks: It leads to misunderstanding of injection
process for less experienced developers. In some frame-
works, it can lead to duplicate injection work.
Pattern of occurrence: Figure 12 provides an ex-
cerpt of the occurrence of this anti-pattern, where there
are two forms of injection for the same element (exam-
pleDAO). The first is an attribute injection and the sec-
ond is a constructor injection.
Resolution: The resolution depicts only one form of
injection (constructor) for the element exampleDAO.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman
Publishing Co., 1995.

[2] James Coplien and Douglas Schmidt. Pattern Lan-
guages of Program Design. Leanpub, 1995.

[3] Rodrigo Laigner, Marcos Kalinowski, Luiz Carvalho,
Diogo S. Mendonça, and Alessandro Garcia. To-
wards a catalog of java dependency injection anti-
patterns. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, SBES 2019,
Salvador, Brazil, September 23-27, pages 104–113,
2019. doi: 10.1145/3350768.3350771.

[4] Rodrigo Laigner. Cataloging dependency injection
anti-patterns in software systems, 2020. PUC-Rio.
Master’s dissertation.

[5] Diego Cedrim. Understanding and Improving Batch
Refactoring in Software Systems. PhD thesis, PUC-
Rio, 2018.

This document was created on and last up-
dated on February 19, 2020. Source files are at
https://www.overleaf.com/read/xmyythnqhymz.

Appendix B. Updated catalog of DI anti-patterns 140

DBD
PUC-Rio - Certificação Digital Nº 1813319/CA

	Cataloging Dependency Injection Anti-Patterns in Software Systems
	Resumo
	Table of contents
	Introduction
	Background
	Related Work
	Proposing a Catalog of Java Dependency Injection Anti-Patterns
	Assessing Practical Occurrence of the Proposed Catalog
	Investigating Perceived Usefulness of Proposed Catalog
	Concluding Remarks
	Bibliography
	Appendices
	Responses over fixing DI anti-patterns
	Updated catalog of DI anti-patterns

