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Abstract 

Gottin, Vinícius Michel; Furtado, Antonio Luz (Advisor). Discovery, 

Conformance and Enhancement of Educational Processes via Typical 

Plans. Rio de Janeiro, 2019, 209p. Tese de Doutorado – Departamento de 

Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

In this thesis we propose the application of an automated planning paradigm 

based on a conceptual modeling discipline for the Process Mining tasks. We posit 

that the presented approach enables the process discovery, conformance checking 

and model enhancement tasks for educational domains, comprising  characteristics 

of unstructured processes – with intertask dependencies, multiple dependencies, 

concurrent events, failing activities, repeated activities, partial traces and knock-out 

structures. We relate the concepts in both areas of research, and demonstrate the 

approach applied to an academic domain example, implementing the algorithms as 

part of a Library for Typical Plans for Process Mining that leverages the extensive 

prior art in the literature. 

Keywords 

Process Mining; Automated Planning; Conceptual Modeling; Educational 

Process Mining; Plan-Recognition. 
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Resumo 

Gottin, Vinícius Michel; Furtado, Antonio Luz. Descoberta, Conformidade 

e Aprimoramento de Processos Educacionais via Planos Típicos. Rio de 

Janeiro, 2019, 209p. Tese de Doutorado – Departamento de Informática, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Nesta tese propomos a aplicação de um paradigma de planejamento baseado 

em uma disciplina de modelagem conceitual para as tarefas de Mineração de 

Processos. Postulamos que a abordagem apresentada habilita as tarefas de 

descoberta de processos, checagem de conformidade e melhoria de modelos em 

domínios educacionais, que tem características de processos não-estruturados – 

dependências entre tarefas, múltiplas dependências, eventos concorrentes, 

atividades que falham, atividades repetidas, traços parciais e estruturas de nocaute. 

Relacionamos os conceitos em ambas as áreas de pesquisa e demonstramos a 

abordagem aplicada a um exemplo em um domínio acadêmico, implementando os 

algoritmos como parte de uma Biblioteca de Planos Típicos para Mineração de 

Processos que constrói sobre a extensa literatura prévia.  

 

Palavras-chave 

Mineração de Processos; Planejamento Automatizado; Modelagem 

Conceitual; Mineração de Processos Educacionais; Reconhecimento de Planos. 
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1 Introduction 

1.1 Context 

Process mining is a research discipline concerned with reasoning about 

processes in order “to provide fact-based insights and to support process 

improvement” (VAN DER AALST, 2011). In a general sense, this is achieved by 

the extraction of knowledge from event logs and relying on executable process 

models.  

The field of Process Mining defines three main tasks: discovery of processes, 

the conformance checking of process models to reality, and enhancement of process 

models (VAN DER AALST, 2011). All of these tasks relate to the goal of 

understanding the domain in order to make informed decisions, and to the potential 

improvement of the process itself (VAN DER AALST, DE BEER e VAN 

DONGEN, 2005; VAN DER AALST, ADRIANSYAH , et al., 2011).  

Typical approaches of process mining applications rely on graphical models, 

such as Business Model Process Networks (BPMN) or Petri Nets. However, certain 

processes possess characteristics not easily captured by such models. Unstructured 

processes yield very large graphs in these representations, even with low-frequency 

behavior filtered out (VAN DER AALST, 2011). The problem is aggravated as 

processes typically tend to be less structured than stakeholders expect (BOSE, 

VERBEEK e VAN DER AALST, 2011). Furthermore, these graphical models are 

typically ‘flat’ representations (BOSE, VERBEEK e VAN DER AALST, 2011; 

GOEDERTIER, 2008) which pose inherent limitations to the flexibility (HEINL, 

HORN, et al., 1999; SCHONENBERG, MANS, et al., 2007) in the representation 

of complex behaviors. Pesic (PESIC, 2008) describes this as a primary source of 

incomprehensibility of models. 

One aspect related to the flexibility of models and that causes difficulties for 

model comprehension is the representation of intertask dependencies: “constraints 

on the occurrence and temporal order of events” (ATTIE, SINGH, et al., 1993). 
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Intertask dependencies are common in real-world processes, in which the 

order of execution of activities can vary significantly between cases. The process 

discovery task in a domain with intertask dependencies must be able to recognize 

partial-orderings as well as pre-requisites between activities. Furthermore, we 

consider another aspect of intertask dependencies – that operations can have several 

alternative sets of dependencies. We refer to this as the multiple dependency aspect.  

Another class of models figures in the literature. Van der Aalst (VAN DER 

AALST, 2011) lists as “partial approaches” for process discovery those that rely on 

the identification of rules or frequent patterns, among which figure the declarative 

approaches for process modeling (SOWA, 1999; PESIC, 2008; PICHLER e ET 

AL., 2011; GOEDERTIER, 2008). The declarative approach can represent 

characteristics that are difficult to capture in graphical models, or that cause those 

graphical models to become unwieldy, such as concurrent events.  

The declarative approach is also fitting for the representation of failing and 

repeating activities: in a process in which the cases may fail the execution of 

activities, and try them again a number of times, the results of the activities must be 

accounted for in the discovery, conformance checking and enhancement tasks. In 

the literature, the concept of failing activities relates to knock-out structures – 

processes in which cases can terminate in failure upon an activity-failure event 

(VAN DER AALST, 2001), or the absence of a success-termination event. We 

consider domains with knock-out structures based on repeated activity-failures. 

The representation of failing activities and knock-out structures suggests a set 

of analyses related to the success of the case, particularly the mining of the de facto 

models from event logs and the success ratio obtained by the cases that follow each 

of those models, and the comparison of those models to the normative pattern. It 

also lends itself to the exploration, prediction and recommendation operational 

support activities, which relates to online process mining. In online process mining 

we consider not only historic information of completed cases, but also the “pre 

mortem” events, the partial traces, of ongoing cases (VAN DER AALST, 2011, p. 

243). 
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1.2 Scope and Hypothesis 

Our main hypothesis is that we are able to perform the typical Process Mining 

tasks in a domain with challenging characteristics via automated planning and a 

conceptual modeling paradigm. 

1.3 Objectives 

In this work we aim to explore a declarative approach for Process Mining, and 

to leverage extensive prior research on conceptual modeling (FURTADO, 

CASANOVA e BARBOSA, 2014; CASANOVA, BARBOSA, et al., 2012) and a 

planning paradigm for performing the Process Mining tasks.  

We particularly posit that plan-verification and plan-recognition techniques 

applied over a domain expressed in a conceptual model allow or support the process 

discovery, the conformance checking and the model enhancement.  

We further posit that models defined in this conceptual model are flexible, 

executable, and do not suffer from the typical representational limitations imposed 

by representational bias (VAN DER AALST, 2011, p. 159-160). The goal, as 

typical in process mining approaches, is to obtain a model with an adequate 

representative power for the kinds of analyses desired but striving for simplicity – 

keeping the model as simple as possible – as well as for the other quality aspects of 

process models.  

Hence, we don’t aim to explore all of the representative power of the 

conceptual model or all of the features of automated planning approaches. Rather, 

we rely on the features and techniques that support our goal of performing the 

Process Mining tasks. 

In regard to characteristics of the domain, we hypothesize that the application 

of automated planning techniques adequately enables the online process mining 

tasks for domains that comprise unstructured processes with intertask 

dependencies, multiple dependencies, concurrent events, failing activities, repeated 

activities and knock-out structures.  

We instantiate and exemplify the approach in an academic domain, in which 

certain disciplines require the completion of others; students may fail at disciplines 

but take them again – possibly succeeding – in a future term; and can drop out from 
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the academic program after certain events, including repeated failings of 

disciplines. We consider the students still enrolled in the program, as well as 

students that have graduated and dropped out. Details on the domain are given in 

the Appendix. 

1.4 Contributions 

In conciliating the research on conceptual modeling and automated planning 

with process mining, our work primarily extends the approach in (FURTADO e 

CIARLINI, 2001) for the recognition of typical plans. We enable the mining of 

typical plans to additionally mine constraints over attributes of events and to collect 

the cases of plans in the domain (ZAKI, LESH e OGIHARA, 2000). The cases are 

leveraged to compute interest metrics, which guide the model enhancement task. 

The model enhancement task is also guided by the discrepancies evidenced by the 

conformance checking, which relies on a plan-verification method. 

The main contribution of this thesis is the enablement of the process mining 

tasks in domains with unstructured processes and challenging characteristics via 

automated planning and a conceptual modeling paradigm.  

As specific contributions, we highlight: 

• A comprehensive overview of the literature and a discussion of the 

links between process mining and automated planning that motivate 

this research, as well as other related fundamental topics; 

• Defining methods for the process discovery of a three-schemata 

conceptual model; 

• Proposing a method and developing algorithms for the plan mining 

approach applied to the process discovery task; 

• Proposing a method and developing algorithms for the plan-

verification approach applied to the conformance checking task; 

• Defining and implementing algorithms for the computation of support 

and other interest metrics for the analysis of typical plans; 

• Proposing and exploring approaches for the Model Enhancement task 

in the context of automated planning and a conceptual modeling 

paradigm. 

1.5 Thesis Structure 

In Chapter 2 we discuss the related work. In Section 2.1 we contextualize the 

field of Process Mining, discussing the seminal literature and positioning our work 
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in relation to works that deal with similar challenges and objectives. In Section 2.2 

we relate the vast body of work on the conceptual modeling of information systems. 

We discuss these works and the general automated planning approach in Section 

2.3. In Section 2.4 we discuss works in abductive reasoning, a concept that 

fundaments the approaches and techniques for both automated planning and process 

mining, particularly regarding the process discovery task. 

In Chapter 3 we discuss and present our approach for the Process Mining tasks 

in educational processes domains. In Section 3.1 we discuss the scope of our 

approach,  defining the characteristics of unstructured processes that we aim to 

capture and manage in a Process Mining fashion. In that discussion, we identify 

links between process mining and automated planning that partly motivate our 

work. In Section 3.2 we discuss the event logs in educational domains, particularly 

in our example domain, and we also present the formalism that fundaments Process 

Mining approaches, upon which we rely to discuss concepts in the following 

sections of the chapter. 

In Sections 3.3, 3.3.5, 3.4 and 3.5 we present our approach for the Process 

Mining tasks via automated planning over a conceptual model. The concepts 

discussed fundament the implementation of the Library of Typical Plans for Process 

Mining, described in Chapter 4, which we use to exemplify the applicability of the 

process mining via planning in an academic program domain. In Section 3.3 we 

discuss the definition of the conceptual model, in a three-schemata specification, 

and its relation to the Process Discovery task. We also provide a discussion on the 

domain-dependent definitions for this task. In Section 3.3.5 we discuss the mining 

of typical plans as part of the Process Discovery task. Section 3.4 contains the 

definitions of methods for the Conformance Checking task of Process Mining via 

plan-verification and the computation of model fitness metrics. Section 3.5 deals 

with the Model Enhancement task. We discuss several possible approaches, 

defining exemplary approaches with examples in the same academic domain. 

In Chapter 4 we discuss the implementation of the Library for Typical Plans 

for Process mining, in which the methods discussed in the previous sections are 

defined as algorithms and examples in a smaller domain are given. 

In Chapter 5 we present our conclusions. In Section 5.1 we perform an 

evaluation of our goals and hypothesis, recapitulating the discussion of prior 
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sections. In Section  5.2  we evaluate or results against our proposed objectives and 

our main hypothesis. Finally, in Section 5.3 we lay out the possibilities for future 

developments in the topics covered by this thesis.
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2 Related Work 

 

In this chapter we investigate the literature related to the concepts in this 

thesis. In this thesis we discuss how we enable and support Process Mining via 

automated planning techniques, in particular regarding plan-verification and plan-

recognition methods. Our motivation stems from the observation that these two 

areas share goals and techniques. We start by contextualizing our discussion, with 

respect to the kind of domain for our intended applications. We also relate works in 

the literature that allude to possible links between the Process Mining tasks and 

aspects of our approach for unstructured processes domains. 

First, we provide the background on process mining, model representations 

and declarative approaches. Next, we describe the conceptual modeling discipline 

and the planning paradigm that supports our approach of mining of typical plans. 

Finally, we briefly discuss the literature respective to abductive reasoning 

approaches, which relates to both fields. 

2.1 Process Mining  

Process mining originates from both process model-driven approaches 

(Business Process Management – BPM, and Business Intelligence – BI), as well as 

from traditional data mining approaches. Seminal related work in the workflow 

domain was done by Agrawal (AGRAWAL, GUNOPOULOS e LEYMANN, 

1998). A thorough discussion on the main concepts and applications of process 

mining developed since is given by (VAN DER AALST, 2011) and (VAN DER 

AALST, ADRIANSYAH , et al., 2011).  

Process mining differs from both BPM and BI in objective – it aims to provide 

understanding of the actual process, and not of idealized versions – and in method 

– it relies on process-centric techniques. One of the main inspirations for the field 

of process mining is that the advent of computers not only contributed to changes 

in organizations and processes (making them more complex), but also drastically 
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increased the available event data (VAN DER AALST, 2011). In (VAN DER 

AALST e WEIJTERS, 2004) research agendas for the area are given. The same 

works provide an in-depth description of the three main process mining tasks: the 

discovery, the conformance and the enhancement of process models.  

All the Process Mining tasks relate to process models, widely used in every 

sort of organization for their assistance on documenting, understanding and 

managing complex real-world systems. Van der Aalst describes several alternative 

process model representations and relates them to event logs, establishing a 

terminology that we adopt throughout this work (VAN DER AALST, 2011, p. 97-

103). We highlight the following: 

• A process is a collection of activities in terms of which the lifecycle 

of a single process instance is described; 

• A process instance is also referred to as a case; 

• An event log is assumed to contain event data related to a single 

process; 

• Each event in the log refers to a single case; 

• Each event can have many attributes, typically related to time, costs 

and resources. 

Thus, for the purposes of the process mining tasks van der Aalst explicitly 

defines the following assumptions:  

“* A process consists of cases. 

 * A case consists of events such that each event relates to precisely 

one case, 

 * Events within a case are ordered, 

 * Events can have attributes. (…)” 

  (VAN DER AALST, 2011, p. 99) 

A case is thus a process instance, and each event corresponds to the execution 

of one activity in the process regarding one such process instance.  

One particularly useful aspect of process models is that they are executable. 

This typically means that they are implemented as computational simulation models 

that can be run to generate the modeled behavior. A relevant definition of 

computational models and their relation to simulation is given by (SOWA, 1999): 

every computational model is a surrogate for some real or hypothetical system; and, 

in that model, the significant entities are each assigned to variables as surrogates 
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for that entity in the system. The values of those variables are procedurally or 

declaratively transformed to simulate the behavior of the system.  

Given the relation between process models and event logs, the first task of 

Process Mining is the process discovery task. It consists of building a process model 

from an event log such that the model is representative of the behavior of the process 

that generated the log.  

The task of conformance checking “relates events in a log to the activities 

observed in a process model” and compares them, with the goal of finding 

“commonalities and discrepancies between the modeled behavior and the observed 

behavior” (VAN DER AALST, 2011). This task highlights the need for executable 

models, so that activities representative of the processes can be observed on 

demand. 

The task of enhancement extends or improves the process model using 

additional information recorded in event logs (VAN DER AALST, 2011). The 

enhancement of the model may be, for example, the repair of the model to correctly 

reflect the executions of the process as given by the log, as opposed to what a 

domain specialist expects. The enhancement may also comprise extending the 

model with additional perspectives, leveraging additional information from the 

process logs other than the control flow of the process.  

Typically, Process Mining techniques are devised with graphical 

representations such as Business Model Process Networks (BPMN) and Petri Nets 

in mind (VAN DER AALST, 2011; VAN DONGEN, DE MEDEIROS, et al., 2005; 

VERBEEK, BUIJS, et al., 2010). These models are executable, capable of 

representing complex behavior (such as concurrency, for example), and are 

domain-independent. These models also lend themselves to algorithmic verification 

of several interesting properties, such as safeness, boundedness and the inexistence 

of ‘deadlocks’ (VAN DER AALST, 2011, p. 37-38). There are techniques for 

building such models that capture common execution patterns (BOSE, VERBEEK 

e VAN DER AALST, 2011), as well data-oriented models, and models of agents 

and theirs relations (like social networks or organization models (PESIC, 2008, p. 

200).  
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A thorough discussion on various notations for process models is given by 

(VAN DER AALST, 2011, p. 31-57). A discussion on the quality of such models 

is also given (p. 128). The intrinsic tradeoff between the fitness, precision, 

generalization and simplicity of process models is discussed, including a discussion 

of behavioral equivalence (p. 141-144), and useful metrics for conformance 

checking. One additional important aspect of such models is the flexibility (HEINL, 

HORN, et al., 1999; SCHONENBERG, MANS, et al., 2007) of the representation 

of certain behaviors.  

Since all techniques are based in some level on the event logs, the format and 

quality of the data contained in it are of the utmost importance. There are myriad 

formats for event logs – standard formats such as MXML and XES (VERBEEK, 

BUIJS e VAN DONGEN, 2010) have been proposed. In order to be generalizable, 

the techniques are often defined in relation to a more general logic formalism rather 

than a concrete format. We do the same under the formalism proposed by (VAN 

DER AALST, 2011), as discussed in Section 3.2. 

Regarding the quality aspect, the completeness of the available data is 

important. The minimal information required in the log for Process Mining is that 

the (ordered) events include the activity. However, more information may be 

required for more complex representations (that is the case of our approach – also 

discussed in Section 3.2). The extraction of the log may typically require 

preprocessing steps. The literature relates several practical challenges for 

systematically extracting event logs from real-world data (VAN DER AALST, 

2011, p. 112-114). 

2.1.1 Declarative process mining 

Declarative process models have been also proposed for process mining 

(PESIC, 2008; CHESANI, LAMMA, et al., 2009). One of the main reasons for the 

utilization of declarative process models is to cope with the limited flexibility of 

more imperative approaches (PICHLER e ET AL., 2011). For example, 

(CHESANI, LAMMA, et al., 2009) present a method for the discovery of 

declarative constraints. 

Many works on declarative process mining figure in the literature. Sowa 

contrasts a procedural and a declarative approach to the executions of executable 
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models: the “procedural approach uses programs or rules that operate on the 

variables of model M”, while the “declarative approach is based on constraints or 

axioms that define the preconditions, postconditions, and transformations for each 

event that may occur in the model” (SOWA, 1999, p. 135).  

Goerdertier (2008) describes a method for the declarative process discovery 

in which negative events are generated for inductive learning, as in (FERREIRA e 

FERREIRA, 2006). Pèsic (2008) describes the Declare system. Declare comprises 

a workflow management system, using a graphical notation for models, and a 

declarative process modeling language for defining linear temporal logic (LTL) 

constraints. The system allows for mining and verification of constraints, and draws 

from the SCIFF framework (ALBERTI, CHESANI, et al., 2006) for abductive 

logic-programming (CHRISTIANSEN, 2009; KAKAS, KOWALSKI e TONI, 

1998). We relate the literature in abductive reasoning and the abductive logic 

programming paradigm in Section 2.4. 

Different taxonomies for the characterization of flexibility in process models 

exist in the literature (HEINL, HORN, et al., 1999; SCHONENBERG, MANS, et 

al., 2007). In the taxonomy proposed by Schonenberg two important aspects are 

flexibility by design and flexibility by under specification. Flexibility by design 

relates to the “ability to specify execution alternatives in the process model” 

(PESIC, 2008, p. 22). This characteristic is present in the rule-based and constraint-

based process modeling languages (DOURISH, HOLMES, et al., 1996; GLANCE, 

PAGANI e PARESCHI, 1996; WAINER e DE LIMA BEZERRA, 2003). 

Flexibility by under specification relates to the model’s ability to leave parts of 

execution alternatives unspecified, to be defined later (via late modeling) during 

execution. Chesani et al. additionally present a constraint-based declarative process 

mining approach. Their approach relies on Inductive Logic Programming 

(CHESANI, LAMMA, et al., 2009) to mine models expressed in the ConDec 

notation proposed by Pèsic (PESIC, 2008).  

2.1.2 Frequent itemsets and sequence mining 

Process mining also closely relates to the field of frequent sequence mining 

(VAN DER AALST, 2011, p. 77-81), particularly regarding the approaches for 
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episode mining (MANNILA, TOIVONEN e VERKAMO, 1997). These approaches 

stem from the frequent itemset literature and shares algorithmic implementations.  

The approach for defining frequent itemsets (AGRAWAL e SRIKANT, 1994) 

is typically described in terms of a database of transactions from a multitude of 

consumers, each transaction in turn comprising one or more items bought in that 

transaction. This constitutes the so-called ‘market basket analysis’ problem, in 

which we aim at the discovery of items that are frequently bought together (ZAKI 

e MEIRA JR., 2014). Under this interpretation, the support of an itemset is defined 

as the proportion of all transactions in the database containing that itemset. The 

itemset is considered frequent if its support is higher than a predefined minimum 

support threshold value.  

The identification of all frequent itemsets in a database enables the generation 

of association rules among those itemsets. An association rule relates two itemsets, 

A and B, expressing that whenever a transaction contains the items in A, it most 

likely contains the items in B. More formally, An association rule A
𝑠,𝑐
→ B is a binary 

relationship between two disjoint itemsets, A and B, determining a support 𝑠 and a 

confidence 𝑐 relating to the transactions in which A and B appear (HORNIK, 

GRÜN e HAHSLER, 2005). The support 𝑠 of the rule comprises the count of 

transactions in which A and B co-occur (that is, the support of itemset A∪B). The 

confidence 𝑐, on the other hand, determines the conditional probability that a 

transaction in the database contains A given that it contains B (that is, the support 

of itemset A∪B divided by the support of itemset A). Like in the case of itemsets, 

the association rule is frequent if its support is higher than a predefined minimum 

support threshold value. Conversely, the rule is strong if its confidence is higher 

than predefined minimum confidence threshold value. Typically, we’re interested 

in rules that are both frequent and strong, but this depends on the domain. More 

thorough formal definitions are given by (ZAKI e MEIRA JR., 2014, p. 217-220). 

A plethora of techniques and algorithms have been proposed for the task of 

association rule mining (and, by extension, frequent itemset mining). Most 

prominently in the literature, the Apriori algorithm (AGRAWAL e SRIKANT, 

1994) is based on exploring the downward closure property – which guarantees that 

frequent itemset has an infrequent subset – for generating increasing candidate 
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itemsets. Apriori spawned a family of algorithms, including variations on how 

itemsets and transactions are represented (AprioriTID and AprioriHybrid 

(AGRAWAL e SRIKANT, 1994), SETM (HOUSTMA e SWAMI, 1995)); on 

intertwining the candidate generation and support counting steps (DIC, (BRIN, 

MOTWANI, et al., 1997)); and on how the database is loaded in memory, 

concerning size limitations (Partition, (SAVASERE, OMIECINSKI e NAVATHE, 

1995)). Besides Apriori, depth-first search approaches have been developed as in 

the FP-growth algorithm (HAN, PEI e YIN, 2000) , which does not require an 

explicit candidate generation step, and the Eclat approach (ZAKI, 

PARTHASARATHY, et al., 1997), which combines the depth-first search 

approach with the tidlist representation from AprioriTID. 

2.1.3 Educational process mining 

The domain use case for the empirical demonstration and evaluation of our 

approach is an academic program. Thus, we relate the prior art in educational 

process mining, a subset of the process mining literature that deals with this specific 

domain. We refer to our previous work regarding typical conformance checking 

over an academic curriculum as a process (GOTTIN, JIMÉNEZ, et al., 2017). 

Further work on this area, relating to the same use cases, figures in (JIMÉNEZ, 

2017).  

The representation of curricula and academic processes as graphical process 

models (Petri Nets, specifically) is explored by (JUHÁSOVA, KAZLOV, et al., 

2016). They propose to deal with the complexity that originates from “curriculum 

rules, mandatory courses, prerequisites and causal dependencies between courses, 

minimal number of credits needed to earn a degree” by creating “subnets” (idem). 

However, the resulting models, as exemplified in the paper, can become very 

complex, comprising dozens of places at the top-level even when ordering 

constraints are omitted for the sake of simplicity. The example Petri Net by 

Juhásova et al. does not cover failures and re-attempts at disciplines, for example. 

Constraint-based and integer linear programming (ILP) approaches are 

considered for the representation of curricula by (HNICH, KIZILTAN e WALSH, 

2002) in the context of the “balanced academic curriculum problem”. The problem 

is defined as “to design a balanced academic curriculum by assigning periods to 
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courses in a way that the academic load of each period is balanced i.e. as similar as 

possible” while still “following administrative rules and academic regulations” 

(HNICH, KIZILTAN e WALSH, 2002, p. 2)). Constraint-based, ILP and hybrid 

solutions are considered for this problem, regarding the ease of representation, the 

optimality and the provability of the solution. 

A thorough recent survey on Educational Process Mining is given by Bogarín 

et al. (2018). Many related works are concerned with activities in a granular scope, 

e.g. regarding Learning Management Systems (LMS): “Log files generated by these 

systems provide an insight into how people follow the course, when they watch 

videos or lectures, and when they hand in tasks, among others.” (BOGARÍN, 

CEREZO e ROMERO, 2018, p. 9)). Chesani et al. (2009) posit the discovery of 

declarative (constraint-based) models in an educational domain as possible future 

work. Bellodi et al. tackle this (BELLODI e LAMMA, 2010) in the same context, 

considering dropped-out students as negative examples for the discovery of 

integrity constraints. These works also introduce the terminology of a student’s 

career as the trace of the student case in the academic process. 

Also related to our approach are the works on Curriculum Mining. The goal 

of curriculum mining as defined by Bogarín et al. is to “gain a better understanding 

of the underlying educational processes” (2018, p. 12). This relates directly to our 

goal of discovering the typical plans adopted by students, and somewhat relates to 

the comparison of these plans to the recommended curriculum. A first paper 

concerned with curriculum mining and conformance testing is (TRCKA e 

PECHENIZKIY, 2009). They rely on the representation of Colored Petri Nets 

(ZIMMERMANN, 2008), defining ‘basic curricular constraint patterns’ based on 

pre-authored pattern templates. They state that they were able: to check for known 

constraints; to analyze “how much time and effort a particular activity takes”; and 

to “predict student dropout”. However, they do not state how they obtain the 

curriculum templates other than relying on domain knowledge. Meanwhile, they 

list as ‘ongoing work’:  

“(…) finding most common types of behavior and clustering them, 

finding emerging patterns that capture significant differences in the 

behavior of students who graduated vs. those students who did not 

or significant changes in behavior of students from one generation 
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and the other; finding frequent patterns that describe a bottleneck in 

the curriculum, i.e. patterns explaining for which students it is the 

bottleneck and why.”  

(PECHENIZKIY, TRCKA, et al., 2012). 

Finally, Wang and Zaïane also aim at discovering a curriculum process, and 

similarly to our approach, to “compare cohorts of students, successful and less 

successful” and present an opportunity to “adjust the requirements for the 

curriculum by applying enhancement of process mining.” (WANG e ZAÏANE, 

2015). However, they also rely on a Colored Petri Net. Interestingly, Wang and 

Zaïane evidence the problems with intertask dependencies in the representation of 

curricula as processes: “other requirements include the first and the last course a 

student must take, mandatory courses, and non-coexisting courses, i.e. if the student 

takes one course in the group then they cannot take any other course belonging to 

the same group” (idem). Due to the inherent complexity of the representation, they 

generate separate models for each class of interest, covering only the ‘most frequent 

activity paths’, as “the model map would be too dense and cluttered to recognize 

patterns if we present all of them” (idem, p 518). 

Van der Aalst (VAN DER AALST, 2011, p. 290) briefly discusses 

opportunities of process mining applications in the education sector, highlighting 

the difficulties that rise from students having very different study patterns. The 

aspect of failing activities is also considered: “the design of a curriculum should not 

only focus on the “ideal student” (that passes all courses the first time), but also 

anticipate problems encountered by other students” (idem). 

2.2 Conceptual modeling and the Three-schemata specification 

We refer to (FURTADO, CASANOVA e BARBOSA, 2014; CASANOVA, 

BARBOSA, et al., 2012) for a survey of this and multiple related research topics: 

“Our understanding of information systems comprises facts, events 

and agents. Everywhere the Entity-Relationship model is used. The 

existing entity instances and their properties, i.e., their attributes and 

the relationships among them, are the facts that characterize a state of 

the world. States are changed by the occurrence of events caused by 

operations defined by pre-conditions and post-conditions that are in 
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turn expressed in terms of such facts. The event-producing operations 

are performed by certain agents, in an attempt to satisfy their goals, 

once again expressed by facts. Accordingly, our specifications are 

divided into three schemas to introduce, respectively, the classes of 

facts (static schema), events (dynamic schema) and agents 

(behavioural schema).” 

(FURTADO, CASANOVA e BARBOSA, 2014) 

Here, we focus on describing the three-schemata specification – 

encompassing the facts, the events and the agents in the system - and its main 

concepts that fundament the application of automated planning techniques. A 

formal definition of the three-schemata representation is given in (CIARLINI, 

CASANOVA, et al., 2010). 

The static aspect of a system can be typically captured by a factual database. 

Denoting the facts that characterize the entities and their properties as predicates, a 

state is the set of all predicate instances holding at a given instant of time. Thus, a 

state is a description of the world underlying the database at that instant. The 

dynamic aspect of the system characterizes the actions performed in the world. 

These actions are denoted as operations, defined in regard to their pre- and post-

conditions, as in the STRIPS formalism (FIKES e NILSSON, 1971). In that 

formalism, pre-conditions indicate the facts that must hold in the state at which the 

operation is executed - the prerequisites for the action that operation represents. 

Conversely, the post-conditions indicate the facts (affirmed or negated) that hold in 

the state following the operation – that is, the effects of the operation. Finally, the 

behavioural aspect captures the agents and their motivations. These motivations are 

modeled through goal-inference rules associated with each agent or class of agents, 

modeling their predicted behavior under certain circumstances. Each such rule 

indicates a goal (expressed as facts that should hold or cease to hold in a goal state) 

that said agent is motivated to reach when a certain situation (also expressed as facts 

holding or not holding, at a current state) is encountered.  

A concept related to goal-inference rules is that of ECA (Event Condition 

Action) rules that take the form “ON Event IF Condition DO Action” 

(PAPAMARKOS, POULOVASSILIS e WOOD, 2007). However, goal-inference 

rules differ in that they model the intention of the agent or class of agents, instead 
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of 'trigger rules’, by representing the goal state rather than explicitly the actions to 

be performed. Furthermore, in order to achieve the goal state, a goal-inference rule 

potentially ‘fires’ sequences of operations, instead of a single atomic action. 

Particularly regarding narrative contexts, many works have been published on 

the interpretation and generation of plots, both for entertainment and serious games 

domains (CIARLINI, CASANOVA, et al., 2010; CIARLINI, BARBOSA, et al., 

2007; GOTTIN, DE LIMA e FURTADO, 2015). It should be noted that the serious 

games aspects of that work were initial steps towards process mining applications.  

Other works in conceptual modeling relate to the semiotic approach described 

in (FURTADO, CASANOVA e BARBOSA, 2014). Others still relate to database 

prototype and (re-)design, additionally regarding temporal databases and planning 

(FURTADO e CASANOVA, 1990) and their relation to narratives (FURTADO, 

1999). A method to construct running conceptual level specifications, all the way 

to an implementation in a database management system is described in (GOTTIN, 

DE LIMA e FURTADO, 2015). 

The schema definitions, when represented as Prolog clauses, configure an 

executable conceptual specification. This specification lends itself to the 

applications of algorithms for planning and for the simulated execution of plots: the 

representation of the domain in three-schemata is “integrated through the 

application of a plan-recognition / plan-generation paradigm.” (CASANOVA, 

BARBOSA, et al., 2012, p. 24). We will focus our discussion throughout this thesis 

on the plan-recognition that we leverage in this work (CIARLINI e FURTADO, 

2002). The executable aspect of the specification allows its use as a simulation 

model (CIARLINI, 1999) and for the replay of plans. 

The plan mining approach leveraging the goal-inference rules is based on 

plan-recognition and as such characterizes an abductive mode of reasoning. We 

discuss related works in Section 2.4. 

2.3 Automated planning 

Research and applications in automated planning (GHALLAB, NAU e 

TRAVERSO, 2004) are numerous. Here, we focus on the relevant that is closely 

related to our work.  
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We represent operations in the STRIPS representation. That representation, 

along with other so-called classical representations, inspired and guided the 

development of PDDL (Planning Domain Definition Language) as a common 

formalism for expressing “the ‘physics’ of a domain, that is, what predicates there 

are, what actions are possible, what the structure of the compound action is, and 

what the effects of the actions are” (MCDERMOTT, GHALLAB, et al., 1998). 

Notice, however, that in the literature related to PDDL the term process is used with 

a different meaning than that of Process Mining – rather than sequences of activities 

in general, a process is ‘autonomous’, i.e. activities that go on independent of the 

executor of plans’ actions (MCDERMOTT, 2003). 

The seminal work of Kautz in plan recognition (1991), as well as Yang et al.’s 

Abtweak (YANG, TENENBERG e WOODS, 1996), are leveraged by Ciarlini et 

al. for modeling interactive storytelling genres as application domains (CIARLINI, 

CASANOVA, et al., 2010). Developments in this area regarding plan recognition 

are further described in (FURTADO e CIARLINI, 2001), (CIARLINI, 1999) 

(including goal recognition techniques) and (FURTADO e CIARLINI, 2000). 

These works are also related and based partly on the conceptual modeling 

definitions by (FURTADO, CASANOVA e BARBOSA, 2014) and (CIARLINI, 

CASANOVA, et al., 2010) described above.  

The plan-generation process relies on the inference of goals from agents, as 

given by the behavioral schema. All such rules are evaluated at a predetermined 

initial state, in order to infer the agent’s goals in the situation that state represents. 

In (CIARLINI, 1999) a plan-generation algorithm, based on the same conceptual 

model that we use in this thesis, is employed to generate possible sequences of 

operations that lead to a state in which the goal is attained. The plan-generation is 

part of the IPG system and is based on Abtweak (YANG, TENENBERG e 

WOODS, 1996).  

The plan-recognition process, on the other hand, concerns the identification 

of possible plans agents are trying to perform (KAUTZ, 1991; CIARLINI, 1999). 

That is, from the observation of a non-necessarily consecutive series sequence of 

events, plan-recognition algorithms can identify the plans being executed by agents 

in the system. Relying on goal-inference rules, as described above, it is possible to 

further hypothesize and reason about the possible goals being pursued by the agents 
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(CIARLINI, 1999). At each intermediate state (from the initial state to the goal 

state, after each operation) further goal-inference rules can be evaluated. This can 

be used to represent interactions (such as collaboration or competition) between 

agents in the system. As usual in planning applications, constraints set by the initial 

state and the applied operations are enforced. 

The literature in automated planning raises several topics that relate to our 

approach. One approach that relates to the mining of a planning domain from event 

logs, similar to a process discovery task, is the automatic domain knowledge 

acquisition (CRESSWELL, MCCLUSKEY e WEST, 2013): “The prevalent idea 

in Automated Planning research and development is that there is a logical separation 

of planning engine and domain model representing the application and problem at 

hand. However, these domain models are invariably hand crafted”. In that approach 

a planner aims to learn, from an incomplete definition, a full definition of the 

planning domain by experimentation (GHALLAB, NAU e TRAVERSO, 2004). 

The relationship between graphical models (such as petri nets or business process 

model networks) and classical planning domains is explored in (HICKMOTT, 

2006; STRYCZEK, 2008; GONÇALVES e BITTENCOURT, 2005). There is also 

prior work on the relationship between graphical models and other planning domain 

formulations, such as Hierarchical Task Networks (GONZÁLEZ-FERRER, 

FERNÁNDEZ-OLIVARES e CASTILLO, 2013). Finally, the work on derivational 

analogy (VELOSO e CARBONELL, 1993) relates to the building of a library of 

typical plans. 

As previously mentioned, our work is based on prior research in conceptual 

modeling which has been applied to several other contexts. Several planning 

techniques have been specialized for adoption in these contexts (CIARLINI, 1999; 

DA SILVA, CIARLINI e SIQUEIRA, 2010; ABELHA, GOTTIN, et al., 2013). 

Some of these works concern the presentation of plots in graphical, textual and 

multimedia format (RODRIGUES, POZZER, et al., 2015; DE LIMA, 2014).  

There are some works relating aspects of the automated planning literature 

and the field of process mining. In (CRESSWELL, MCCLUSKEY e WEST, 2013) 

a method for the discovery of a planning domain from examples is given. A similar 

approach is taken by de Leoni and Marrella (2017) who define a method to build a 

planning domain and problem instance via the encoding of an alignment problem 
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in Petri Nets (VAN DER AALST, 2011). Heinrich and Schon (2015) tackle process 

environmental factors in planning for BPMN. Awad et al. (2009) employ automated 

planning to address the semi-automatic resolution of violations in execution 

ordering compliance rules. Our work differs from these in that we leverage a known 

schema of the domain, known a priori, and also perform the discovery of typical 

plans of classes of cases for conformance testing and model enhancement. Our 

approach is thus able to perform the three main tasks in Process Mining, considering 

domains with generalized knock-out structure as well as other interesting and 

challenging characteristics. 

2.4 Abductive Reasoning 

The term abduction originates from the works of Peirce, circa 1900, who 

characterized it as one of three forms of logical inference, along with induction and 

deduction (CONSOLE, DUPRÉ e TORASSO, 1991; MCILRAITH, 1998; 

ESHGHI e KOWALSKI, 1988). Contrary to the deductive modality of reasoning, 

both abduction and induction are not completely certain – induction being the 

production of a rule from many observations, and abduction being the production 

of an explanation given rules and observations. The abductive modality of 

reasoning is characterized, in the field of Artificial Intelligence (AI), as the process 

of forming explanatory hypothesis. As such, it is intrinsically related to the methods 

employed in the plan-recognition approaches. It is also related to the task of process 

discovery, since it derives a model from observations – in the form of an event log. 

Since the introduction of the concept by Peirce, circa 1900, as the selection of 

a preferred explanation for an observed occurrence, it was popularized within the 

field of AI in the 1970s, a number of research groups have dedicated efforts to the 

production of engines of abductive reasoning, with the goal of providing the 

mechanization of the explanation and prediction capabilities of the abductive 

modality of reasoning. Kakas et. al state that “over the last two decades it has 

become clear that abduction can play a central role in addressing a variety of 

problems in Artificial Intelligence” (KAKAS, A. C.; NUFFELEN, B. V.; 

DENECKER, M., 2001). A thorough account of Peirce’s thoughts on the topic of 

abduction is given in (FANN, 1970). Peirce’s work has influenced many fields of 

study, with applications in philosophy, history, anthropology and medicine, as well 

as in computer science, predominantly regarding artificial intelligence (LLERA, 
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1997; KAKAS, KOWALSKI e TONI, 1998; GABBAY e WOODS, 2005; 

PAAVOLA, 2004; POOLE, GOEBEL e ALELIUNAS, 1987; PENG e REGGIA, 

1990) after the popularization of the term by Pople (POPLE, 1973).  

McIlraith (MCILRAITH, 1998) identifies three categorizations of the topic of 

abduction. The first one is the set covering account, wherein the association of 

explanation primitives and manifestations (observations) is represented in a 

mathematical framework (REGGIA, 1983; ALLEMAND, TANNER, et al., 1987). 

In this characterization, abduction is defined over sets of observations and 

hypothesis (KAKAS, KOWALSKI e TONI, 1992). This approach is used for the 

explanation of diagnostic problems, although with limited expressive power 

(MCILRAITH, 1998; REGGIA, 1983; EITER, GOTTLOB e LEONE, 1997).The 

second account is probabilistic, wherein the plausibility (likelihood) of an 

explanation – a means of preference between distinct explanations - is computed 

based on prior knowledge of the probabilities of all abducible explanations for 

observations (PEARL, 1998; PENG e REGGIA, 1990). Probabilistic frameworks 

for abductive reasoning integrate this notion of plausibility with causal networks, 

where the probabilistic relationships are explicitly stated. This of course configures 

the problem of estimating these probabilities, which can be unfeasible in many 

domains. Regardless, this account has considerably grown in importance with the 

advent of big data applications of machine learning, wherein massive causal 

networks with associated probabilities can be mined from real-world processes 

(MOONEY, 2000; VAN DER AALST, 2011). Finally, the third account of 

abductive reasoning according to, established in the field of artificial intelligence, 

is that of theory formation, a formalization of the concepts of a theory as premises, 

observations and abducibles as sentences in a language ℒ (KAKAS, MICHAEL e 

MOURLAS, 2000; POOLE, GOEBEL e ALELIUNAS, 1987; CONSOLE, DUPRE 

e TORASSO, 1986). Several systems implement mechanism of abductive 

reasoning, typically within the framework of Logic programming systems. 
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3 Process Mining via Typical Plans 

In this chapter we describe our proposed application of an automated planning 

paradigm based on a conceptual modeling discipline for the process mining  tasks 

of Process Discovery, Conformance Checking and Model Enhancement in 

educational processes domains. In this chapter we define and formalize the 

methods, whose implementation is discussed - in the next chapter – as part of the 

Library of Typical Plans for Process Mining. 

3.1 Unstructured processes and Automated Planning 

Academic processes are unstructured, with challenging characteristics (see 

Chapter 1). We aim, leveraging our conceptual modeling discipline, to adequately 

capture the domain of such processes. As shown in many related works, this 

conceptual model can be leveraged for automated planning techniques that provide 

a high level of flexibility in the reasoning and representation of the domain. We 

extend the approach in (FURTADO e CIARLINI, 2001) towards the application of 

these techniques for Process Mining tasks. 

We explore the planning paradigm motivated by a high level of flexibility by 

design it provides. In that paradigm the description of operations via their 

preconditions and effects naturally represents dependencies between activities 

without constraining a specific order – rather, it establishes partial-order 

dependencies. This is similar to the motivation behind declarative model 

specifications, such as (WAINER e DE LIMA BEZERRA, 2003), that represent 

dependencies between events via sets of conditions that must hold before and after 

each activity. While not related specifically to declarative process mining, the 

approach by (FERNANDES, CIARLINI, et al., 2007) also relates to this type of 

flexibility, relying on incremental planning.  

The concept of flexibility by under-specification also relates to the 

characteristic of the automated planning paradigm of allowing for the selection of 

the most appropriate alternative at runtime. This corresponds to the concept of an 
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executable model, allowing for the simulation of the process, in the Process Mining 

literature. Many prior works have highlighted the simulation aspect supported by 

plan-generation automated planning techniques (FURTADO, CASANOVA, et al., 

2007; CIARLINI e FURTADO, 2002). The plan-verification task that we employ 

is also supported by the executable aspect of the planning model.  

This “executable” characteristic also relates to Goedertier’s definitions of 

state- versus goal-driven approaches: 

“Unlike procedural process modeling, declarative process modeling 

does not involve the pre-computation of task control flows, 

information flows and work allocation schemes. Whereas procedural 

process models inherently contain pre-computed activity 

dependencies, these activity dependencies remain implicit in 

declarative process models. An explicit enumeration of all activity 

dependencies is often not required – and often even difficult to obtain 

(HEINL, HORN, et al., 1999). For model checking (verification) 

purposes, execution trajectories can still be obtained from implicit 

process models. During the execution of a declarative process model, 

a suitable execution scenario is constructed (either by a human or 

machine coordinator) that realizes the business goals of the process 

model. The latter is called goal-driven execution and its 

automation is akin to planning in the domain of Artificial 

Intelligence (GHALLAB, NAU e TRAVERSO, 2004). In contrast, 

the execution mechanism of procedural process modeling languages 

is called state-driven.” 

(GOEDERTIER, 2008, p. 15) 

The flexibility of models in the automated planning paradigm is evidenced by 

the fact that it naturally avoids typical representational limitations, as posited by 

(VAN DER AALST, 2011, p. 159-160), typically associated with the discovery, 

and thus the representation, of process models. 

Automated planning models are able to represent concurrency via the 

representation of time in the definition of operations and the ability to deal with 

partial orders in plans. In the educational domain we use as examples, it is typical 

for students to perform several activities in the same academic term. The models 

can also deal with skipped activities, which are naturally accounted for in the plan 
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recognition mechanisms. In the educational domain example, it is typical for 

students to skip optional disciplines, or to choose between alternative disciplines 

when both satisfy pre-requisites for advancing in the program. 

Recall from Chapter 1 that we are concerned with domains with repeated 

activities. The representation of failing activities is naturally captured by the proper 

definition of operations’ effects in planning approaches. The same, along with the 

proper definitions of operations’ preconditions, is true for the representation of OR-

splits and joins, and of non-free-choice behavior. Furthermore, planning techniques 

are naturally suited for the representation – and reasoning about – high level 

operations. Techniques for handling hierarchical task networks in automated 

planning, and the complex plans, as in (FURTADO e CIARLINI, 2001) and herein, 

are both examples of how these high-level tasks can be accounted for in planning 

applications. 

Several prior works have raised issues, indicated therein as possible future 

works, that relate to our approach. In (CIARLINI, 1999) the discovery of typical 

plans as a knowledge discovery task, relying on plan-recognition, is initially 

posited. Later works that developed this concept (FURTADO e CIARLINI, 2001; 

FURTADO e CIARLINI, 2000) provide the fundamental approach over which we 

build our Library of Typical Plans for Process Mining, and raise the issue of 

determining typical plans based on frequency of occurrence. The usage of the 

frequency of occurrence of plans as a “confirmation criterion” is also envisioned, 

as discussed in Section 3.4. Another aspect envisioned in these seminal works is the 

automatic generation of goal-inference rules. We discuss that in Section 3.5.  

In (FURTADO, CASANOVA, et al., 2007) figures a thorough discussion on 

how plot analysis over database logs that register the actions of individual agents 

can provide “a rich source of knowledge about the agent’s behavior”. This 

highlights that the analysis of plots as sequences of events extracted from logs was 

already contemplated in the literature. That work also considers how the goal-

inference rules in the behavioral schema provide insight into agent’s behaviors: 

“Plots involving a given agent provide one significant indicator of the agent's 

behaviour, and, as such, can be used for characterization and comparison purposes”. 

We relate that work to our developments in process model enhancement, 

particularly regarding decision mining. 
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Finally, we have explored the analysis of academic programs (degree 

curricula) through Frequent Itemset analysis and Process Mining analysis 

(GOTTIN, JIMÉNEZ, et al., 2017). Our conclusion regarding typical Process 

Mining application, using the tools offered by the PROM software, mostly geared 

towards graphical models, was that these were not ideal. We noticed that the 

characteristics of partial-order between the disciplines generates too much 

variability in the traces of students to easily capture in graphical models. Also, the 

knock-out structure, with failing activities and non-successfully terminating 

processes, makes it hard to reason about the domain without separating success and 

failure cases a priori. Enabling the Process Mining tasks over such a domain is the 

main goals of our approach. 

Our goal in this work is to support the enactment of the Process Mining tasks 

via the planning paradigm that has been extensively explored in the literature. To 

that end, we rely on plan-recognition and plan-verification. We will provide the 

definitions that support the enactment of the Process Discovery task in Section 3.3 

and 3.3.5; of Conformance Checking in Section 3.4; and Model Enhancement in 

Section 3.5. In those sections, we seek a good tradeoff between representing details 

of the domain to and adequate level and providing a simpler, more general, 

definition of the approach. Hence, in several aspects, our formulation – at least 

initially – is simpler than the conceptual modeling discipline allows. Recall our 

discussion from Chapter 2 - this is in line with the simplicity quality criterion of 

process models, which states that “the discovered model should be as simple as 

possible” (VAN DER AALST, 2011, p. 128). Regardless, the Library of Typical 

Plans for Process Mining that is implemented retains the capabilities of the prior 

work, as discussed in Chapter 4. We provide a discussion on several domain-

dependent aspects of our general formulation in Section 3.3.4. Finally, we 

increment the behavior captured by the model through the Model Enhancement task 

in Section 3.5. 

3.2 Event logs and the example educational domain 

Process mining is intrinsically related to logs and how they are defined. In 

order to compose an executable model with which to reason about, Process Mining 

tasks require information on relevant events and their order. The seminal literature 

(VAN DER AALST, 2011, p. 97-99) defines a series of chrematistics of the process 
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and the required information in the log; we now relate these definitions to our 

educational domain example. A detailed description of our use case domain and its 

terminology is given in the Appendix.  

The academic program constitutes the process. Each student is a case in the 

process, performing disciplines as the activities: 

• “A process consists of cases” – 

The academic program process consists of student cases. 

• Scoping: “one event in the log corresponds to one process. Only 

relevant events are in the data”: 

Each event in our log corresponds to a single student. 

• “All mainstream process modeling notations (…) specify a process as 

a collection of activities such that the lifecycle of a single instance is 

described”: 

The academic program is a collection of disciplines required for 

graduation. The performance of a single student across disciplines is 

the lifecycle of the student. 

•  “A case consists of events such that each event relates to precisely one 

case” – 

This relates to the “scoping” of the log. An event in the academic 

program process describes the (attempted) completion of a 

discipline (a course) by one student. The disciplines correspond to 

the activities in the process. 

• “Events within a case are ordered” – 

The disciplines performed by a student are ordered. However, 

typically a student typically performs several disciplines in each 

academic term (semesters, in our case domain). 

• “Events can have attributes” – 

The attributes of the events include the timestamp (the year and 

academic term), the result of the activity – success or failure, the 

grade obtained by the student, the professor, and others.  

The minimal information required in each event in the log for the Process 

Mining tasks are the case id and the activity. The case id links the event uniquely 

to a case instance. The activity is required to characterize the control flow 

perspective of the process. The sequence of unique events for a case comprises a 

trace.  
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We show a fragment of the log of our educational domain example in Table 

1. This particular (anonymized) dataset originates from the database of an actual 

educational process, with data comprising the traces of students in the Computer 

Science program at PUC-RIO. Its preparation required preprocessing steps, as is 

typical in process mining (see Section 2.1). The preprocessing stages performed to 

obtain this event log, including anonymization, filtering, grouping and scoping, are 

given in references listed in the Appendix. Here, we focus on the relevant concepts 

relating to the event log definitions for our case. 

Table 1 A fragment of the event log. 

Event 

id 

Case 

id 

Event Attributes 

timestamp activity credits class lecturer grade 

77273 2368 8 INF1413 4 3WA Jessica Leon 57 

77417 2370 7 INF1636 4 3WA Crystal Landry 57 

78755 2389 6 INF1406 4 3WA Crystal Landry 100 

78829 2390 4 FIS1033 4 33A Jonathan Jacobson 17 

… … … … … … … … 

To begin with, in the Process Mining fashion, we must uniquely identify the 

cases. We uniquely identify our students (cases) by the Case id – the student’s 

unique enrollment number. In this domain, an event is the attempt by a student to 

complete one of the activities (disciplines). As typical in Process Mining fashion, 

the log is prepared such that each row comprises an event – with a unique Event id, 

generated in the data extraction process. Thus, each row contains the description of 

an event - an activity instance of a student (our case) performing a ‘discipline’ in 

the Computer Science program (the process) at a certain timestamp (the academic 

term). The timestamp of the event is the time associated with the event – not 

necessarily corresponding the timestamp of the ‘recording operation’ in the 

information system that records the event, e.g. the timestamp of a database 

transaction. 

The event log initially considered contains the traces of 23 students that share 

the academic term of first enrollment. Later, in Section 3.5, we will consider an 
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additional set of students. The Appendix also describes the terminology and 

concepts of the domain in more detail. 

In the most general formulation of Process Mining, an Event id is not 

explicitly available, and the events must be uniquely identified by the event 

attributes. The minimum set of event attributes that uniquely identifies events 

defines the event classifier.  

In simple processes where each activity is executed at most once, it is typical 

to refer directly to the event by the activity name. Consider, for example, a simple 

process where activities ‘a’, ‘b’ and ‘c’ are involved, and every case performs 

exactly two of those activities, without repetitions. For a particular case ‘X’ that 

performs activity ‘a’ followed by ‘b’, we can refer to the first event in the trace 

<a,b> of case X by the activity name unambiguously. Consider, in contrast, a 

similar domain where activities can be repeated. A particular case ‘Y’ that performs 

activity ‘a’ twice and then ‘b’ twice yields a trace <a,a,b,b>. Now, in order to refer 

to one of the events unambiguously we must use additional information other than 

just the activity name. In this case, we could use the ‘order’ of the events in the log 

– “the first execution of activity ‘a’”, for example.  

In our educational domain, a student (case) may attempt to complete a 

discipline (activity) but fail. Then, the same student may enroll in the same 

discipline again in a future semester. This highlights that in our domain, we need to 

refer to events not only by the activity name, but also by the timestamp, the 

academic term – i.e. the semester – in which that activity instance took place. Notice 

also that many events of a same student (case) may have the same timestamps, as 

it is typical for a student to take many classes in the same semester - however, the 

student cannot attempt the same discipline twice at the same academic term. Hence, 

the discipline (activity) and the academic term (timestamp) are both required and 

sufficient to uniquely identify events in our domain. We recapitulate this example 

below, when formalizing the concept of the event classifier, which yields the unique 

names for each event in the event log. 

Similarly, as for the Event id, an explicit Case id for each event is not a hard 

requirement for Process Mining approaches. If the cases can be uniquely identified, 

these unique identifiers can be “generated when extracting the data from different 
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data sources” (VAN DER AALST, 2011, p. 105). For ease of representation, in the 

discussion on the formalization of our approach, we assume that identifier values 

are available. 

Besides the timestamp and the activity, the credits, class, lecturer and grade 

are also event attributes. In the Process Mining literature these additional event 

attributes are typically used for the tasks of process enhancement. 

We highlight a special kind of event attribute that relates to the result of the 

activities. Since we aim at representing successful and failed attempts at disciplines 

by students, we incorporate these attributes in the formalism of our conceptual 

model. This is further discussed in the formalization below, and in Sections 3.3 and 

subsections. 

In the educational domain, the Grade constitutes such an attribute of special 

interest to our analysis. Clearly, the final grade obtained by the student determines 

success or failure. The event log above does not show the available case attributes. 

We assume a single case attribute 𝑠𝑡𝑎𝑡𝑢𝑠 that determines, for the students that have 

already left the academic program, whether they graduated, dropped out or are 

currently enrolled in the program. This is the case termination status. We will 

consider additional case termination statuses in Section 3.5. 

One particularly interesting aspect of event logs is the possibility of extracting 

them from ordinary database management systems. Many approaches for the 

extraction of logs from databases for process mining figure in the literature 

(RODRIGUEZ, ENGEL, et al., 2012; VAN DER AALST, 2015) – these require a 

history of the database: “the “regular tables" in a database only provide the current 

state of the information system. It may be impossible to see when a record was 

created or updated. Moreover, deleted records are generally invisible. Taking the 

viewpoint that the database reflects the current state of one or more processes, we 

define all changes of the database to be events.” (VAN DER AALST, 2015).  

The approach on which we base our work also considers the extraction of 

sequences of events from logs (CIARLINI e FURTADO, 2002). Alternative 

methods for semi-automatic conceptual model definition, which are not based on 

event logs, can be found in the literature, involving in particular the composition of 
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schemas from previously available schemas. One such proposal, relying on analogy 

and generalization, is given in (FURTADO, BREITMAN, et al., 2008).  

In the following, we adopt and extend the formal definitions from (VAN DER 

AALST, 2011). 

Let  

• ℰ be the set of event identifiers in the domain; 

• Let 𝒞 be the set of all possible case identifiers; 

• 𝐴𝑁 be the set of all attribute names. 

Both events and cases are characterized by attributes.  

For each event 𝑒 ∈ ℰ we define #𝑛(𝑒) to be the value of attribute 𝑛 ∈ 𝐴𝑁 for 

event 𝑒. 

Similarly, for each case 𝑐 ∈ 𝒞 we also define #𝑛(𝑐) to be the value of attribute 

𝑛 for case 𝑐. Let 𝑐𝑎𝑠𝑒_𝑖𝑑 be an attribute that uniquely identifies the case. 

An absent (null value) attribute is given by ⊥.  

The values for the attributes of an event typically include #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒) and 

#𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑒) attributes, but only 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is mandatory. The 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute 

can be absent in some domains since the event log is ordered. It is typically required, 

however, to reason about concurrent events, or events with a complex activity 

lifecycle.  

In our case, we assume that the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute is present. It is used to 

disambiguate between distinct attempts at the same activity, as we discuss next. 

We also assume that the 𝑐𝑎𝑠𝑒_𝑖𝑑 is present, as in typical Process Mining 

fashion. 

Events are identified in the log by a unique identifier – a name. A classifier 

determines a name 𝑒 for each event 𝑒 ∈ ℰ. Recall that the bare minimum 

information for an event typically includes only the activity - this corresponds to 

the default classifier 𝑒 = #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒), which allows to refer to the event simply by 

the activity performed. 

Besides the 𝑐𝑎𝑠𝑒_𝑖𝑑, each case has a mandatory non-null attribute 𝑡𝑟𝑎𝑐𝑒. 

Traces are defined over the set ℰ∗ of all finite sequences over ℰ. 
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The mandatory trace attribute �̂� = #𝑡𝑟𝑎𝑐𝑒(𝑐) of a case is a finite sequence of 

events 𝜎 ∈ ℰ∗ such that each event appears only once in 𝜎. It is generally assumed 

that traces are non-empty sequences, i.e., they contain at least one event. 

With these definitions at hand, we define an event log as set of traces ℒ such 

that each event appears at most once in the log. Formally, 𝑠𝑒𝑡(�̂�1) ∩ 𝑠𝑒𝑡(�̂�2) = ∅ 

for any �̂�1, �̂�2 ∈ ℒ ; where 𝑠𝑒𝑡(�̂�) denotes the set of events in �̂�. 

Finally, let 𝒜 be the set of unique activity names in the log. That is, 𝒜 is the 

set of #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒) in all 𝑒 ∈ ℒ.  

 

3.3 Process Discovery 

 

The first task in Process Mining is the process discovery. The goal of the 

process discovery task is to obtain a process model from an event log. The resulting 

process model is typically executable to allow the reasoning over the identified 

process. Additionally, since the logs contain the events that actually took place, the 

resulting process model represents actual behavior in the system – rather than an 

imagined, idealized designed version of the process.  

In the plan-recognition and plan-verification tasks that we apply we rely on a 

three-schemata conceptual model definition of the domain – see the discussion on 

Chapter 2. The static schema captures the entities of the domain, their attributes and 

relationships. An instance – a grounding - of the concepts defined by the static 

schema determines a state of the domain. The dynamic schema captures the 

operations that change the state of the world. The generic operator definitions refer 

to the concepts in the static schema. An operator instance refers to instances of those 

concepts. Finally, the behavioral schema captures the intention and high-level rules 

of the agents in the domain – including the administrator of the system or automated 

management rules. This very same paradigm has been shown to be useful for 

modeling literary genres as well environments that support serious games domains 

(CIARLINI, CASANOVA, et al., 2010; GOTTIN, CASANOVA, et al., 2015).  

We now describe how each of these schemata can be derived from an event 

log. Here, we focus on the standard notation for a conceptual model schemata based 
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on Prolog clauses that closely follow (FURTADO e CIARLINI, 2001) – with the 

exception of one particular abuse of notation in the static schema, the Library of 

Typical Plans for Process Mining is compatible with the Library of Typical Plans 

presented in that work with respect to the definition of the conceptual model. We 

discuss this in Section 4.1.5.  

Recall that the default classifier in the literature is 𝑒 = #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒). We 

require a more complex classifier, however, due to the characteristic of repeated 

activities in the domains we represent. Since each case may execute (or attempt to 

execute) the same activity multiple times the activity name does uniquely identify 

an event. With many instances of the same activity in each case’s trace, we must 

use additional event attributes to compose unique names. We identify the events 

not only by the name of the activity but also by the timestamp. This is necessary – 

and suffices – to uniquely identify events because cases can repeat activities, but 

never perform the same activity more than once concomitantly. We assume the 

timestamp event attribute is available for the events and define a classifier 𝑒 =

(#𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒), #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑒)). 

Recall also that activities may fail. We assume a set 𝒱 of all the event 

attributes associated to the results of the activity instances. This set may be empty, 

but in the formulation below we generally assume that it comprises at least one 

attribute, since we are dealing with domains with failed attempts at activities. We 

expect the set of attributes 𝒱 to be necessary and sufficient to determine whether 

the activity instance represented by the event succeeded or failed. In our academic 

domain example, 𝒱 = {𝑔𝑟𝑎𝑑𝑒}, given by the “grade” column in the log. 

In the formalization of the concepts, we assume a domain mapping 𝑄 from 

attributes to atoms in the standard Prolog notation. For example, we map the 

attribute 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 to the atom semester and the attribute 𝑔𝑟𝑎𝑑𝑒 to the grade atom.  

We also assume a mapping 𝐴 from activity names to atoms. For example, 

𝐴[𝐼𝑁𝐹1015] = inf1015, for a discipline “INF1015” in our educational domain. We 

discuss these and other domain dependent definitions in Section 3.3.4. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



43 

 

3.3.1 Static schema 

The static schema definition follows the entity-relationship model with 

extensions for practical utility.  

When relating an event log to a domain, we must determine what are the 

relevant entities. The entity clauses in the static schema, as meta data, define the 

classes of entities that figure in a given domain, whereas the entity instances 

belonging to these classes constitute the data level. 

In the definition of event logs we find that all events relate uniquely to a case 

– each event represents the change in a case’s story by the execution of an activity. 

Hence, our operations refer to the cases, but also to certain event attributes. The 

arguments in the operations, as described in the next section, refer to the defined 

entity classes. These event attributes must also be defined as part of the static 

schema. 

In summary, the approach adopted in the present work defines: 

• one entity clause to represent the case entity, the “class” of all cases; 

• one additional clause to represent each of the event attributes that are 

relevant for identifying the events in the domain (that is, for each of 

the event attributes that are part of the event classifier); 

• one additional clause to represent each of the event attributes that 

determine whether an activity instance succeeds or fails (that is, for 

each of the event attributes in 𝒱 that relate to the result of the activity 

instance). 

Some (or all) of these event attributes may be defined by strictly numerical 

values. We define these to be represented by value clauses, instead of entity 

clauses. This is leveraged later for the Plan Mining approach - when mining typical 

plans, we intend to effectively capture the interval constraints of these kinds of 

numerical attributes (see the formal description below and Section 3.3.5). 

Relating this to our educational domain, we have: 

 

% The case entity 

entity(student). 

% Additional event-identifying attribute (part of the classifier) 

value(semester).  

% Activity-instance result attribute (part of set ~V) 

value(grade). 
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That is: 

• one entity(student) clause to represent the students in the domain; 

• one value(semester) clause to represent the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute that 

is part of the event classifier; 

• one value(grade) clause to represent the 𝑔𝑟𝑎𝑑𝑒 event attribute that 

determines success or failure of the activity instance. 

We now describe a general procedure for generating a static schema from the 

event log information. We formalize it in relation to standard Prolog notation and 

relate it to our educational domain example. 

We define entity clauses of the form: 

 

<entity-clause> ::= <entity-functor>(<entity-arguments>) 

<entity-functor> ::= entity | quantity 

<entity-arguments> ::= <case-class> | <case-class>, <attribute-list>  

<attribute-list> ::= <attribute> | <attribute>, <attribute-list> 
  

where <case-class> is the general identifier – the “class” – of the cases in the 

domain. In our educational domain, that is the student case class; the default 

<entity-functor> is entity – we describe the definition of quantity entity clauses 

below. 

The optional attributes in the <attribute-list> are case attributes that can be 

used to identify characteristic of the cases. Formally, for each attribute 𝑛 ∈ 𝐴𝑁 such 

that all cases 𝑐 ∈ 𝒞 have #𝑛(𝑐) ≠ ⊥ we can define an additional argument 

<attribute> for the case entity predicate. In our example, since the only available 

case attribute is the termination 𝑠𝑡𝑎𝑡𝑢𝑠 of the student – and not all students have a 

termination status – we define no case entity arguments. We discuss more about the 

case entity arguments below and show an example of a case argument incorporated 

into the model in Section 3.5.6. A note on this formulation with respect to the 

formulation in (FURTADO e CIARLINI, 2001): we choose to represent the entity 

arguments as part of the entity clause, instead of separate attribute clauses. We 

discuss this in Section 4.1.5. 

Notice that our approach assumes that we have a uniform set of cases – they 

all belong to a same ‘class’. This is true in our educational domain: all cases 

comprise students, with the same attributes and performing the process with similar 

goals. Assuming a single class of cases present in the log we define a single entity 
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clause. We refer to this single entity as the ‘case entity’ in the static schema. In our 

educational domain, the case entity is defined by entity(student). 

We now define additional clauses for the event attributes that are part of the 

classifier 𝑒; and for the event attributes that are in 𝒱, i.e., determine the result of the 

activity instance. In both cases the <entity-functor> is value if the attribute is strictly 

numerical, and entity otherwise. Also in both cases we assume that the <entity-

arguments> comprise only the <case-class>. 

In the general formulation, given the domain classifier 𝑒 =

(#𝑛1(𝑒), #𝑛2(𝑒),… , #𝑛𝑧(𝑒)), each attribute 𝑛𝑖 ∈ 𝐴𝑁 such that 𝑛𝑖 ≠ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and 

that #𝑛𝑖(𝑒) is part of the classifier yields one additional <entity-clause> clause 

where the <case-class> is given by 𝒬[𝑛𝑖]. Notice that even though we have the 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 event attribute as a part of the classifier, we explicitly disregard it when 

generating entities from the event classifier attributes. This is because the activity 

names naturally correspond to the names of the operations in the domain, as 

discussed in the next section. 

Recall that in the example of our educational domain we use a classifier 𝑒 =

(#𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒), #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑒)) such the events are identified both by the discipline 

code (the 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 name) but also by the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝. With 𝒬[𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝] =

 semester the attribute 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 defines one additional semester entity clause. 

Since the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute is strictly numerical we define the <entity-functor> 

as value. 

Finally, we define entities for the event attributes related to the result of the 

activity instance. Recall the set 𝒱 of such event attributes. Similarly as to the event 

classifier attributes, for each attribute 𝑛 ∈ 𝒱 we define one additional clause where 

<entity-name> is given by 𝒬[𝑛].  

In our educational domain the 𝑟𝑒𝑠𝑢𝑙𝑡 attribute is the only member of 𝒱 and 

is also strictly numerical. This follows straightforwardly from the column of the 

event log from which the data originates – the “grau” column contains numerical 

values exclusively. With the identity mapping 𝒬[𝑔𝑟𝑎𝑑𝑒] = grade we define an 

entity value(grade).  

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



46 

 

We now provide some final considerations regarding the static schema and its 

definition for Process Mining approaches. 

Recall from the definition above that entity clauses may contain attributes. 

This is not the case for the clauses in the above domain example, but the static 

schema makes allowance for these entity-attributes, and our Library of Typical 

Plans for Process Mining (Chapter 4) accounts for them in its implementation, 

guaranteeing full retro-compatibility with the BLIB introduced in (FURTADO e 

CIARLINI, 2001). We also discuss entity-attributes in the model enhancement task. 

Entity-attributes are not the only feature of the Library of Typical Plans for 

Process Mining that are supported but not intrinsically required for the Process 

Mining tasks. The static schema also allows hierarchy (is_a) and relationship 

clauses representing connections between entity classes. It is hard, however, to 

extract hierarchical aspects of the static schema directly from the event logs. Hence, 

we shall assume that hierarchy detection is not required for the Process Mining tasks 

in our approach.  

The same holds both for entity-attributes and relationship definitions. These 

can be provided by a domain specialist to enrich and guide the plan-recognition and 

plan-verification tasks but are not strictly required for our intended Process Mining 

application.  

3.3.2 Dynamic schema 

The set of operations declared in the dynamic schema restrict what are the 

changes possible in the domain – the repertoire of actions and events that can take 

place is entirely represented by the operations. They are defined in terms of their 

preconditions and effects, following the STRIPS representation. In the following 

we describe how the dynamic schema can be discovered from an event log. We 

present one approach for extracting the domain operations from log, given known 

activities and their dependencies. 

The STRIPS formalism separates the processes of theorem proving from those 

of searching through a space of world models such that “theorem-proving methods 

are used only within a given world model to answer questions about it concerning 

which operators are applicable and whether or not goals have been satisfied” 

(FIKES e NILSSON, 1971). Thus, operations are formulated as conjunctions of 
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positive or negative facts – the preconditions must hold at a certain state for the 

operation to be applicable; and the effects assert and retract facts as consequences 

of the execution of the operation. Our planning paradigm conforms to what is 

described in the literature as classical planning (GHALLAB, NAU e TRAVERSO, 

2004; GHALLAB, NAU e TRAVERSO, 2016). Formal definitions for the classical 

representation operators are given in (GHALLAB, NAU e TRAVERSO, 2004, p. 

27-33). A planning operator is a triple o =(name(o), preconditions(o), effects(o)).  

A formal specification of a behavior schema is given in (CIARLINI, 

CASANOVA, et al., 2010). We define added clauses, corresponding to the effects, 

and precond clauses, corresponding to the preconditions. We define an operation 

clause that is composed by an operator signature, corresponding to the operation 

name, and an accompanying operator frame that restricts the objects that can be 

used to instantiate operators as actions (idem, (p. 33)). Notice that in the most 

general formulation the effects of operations may also include deleted clauses. As 

will become clear, in the simplest configuration that is necessary for Process Mining 

these are not strictly necessary for the activity operations. That is the case in the 

initial modeling of our domain. We discuss how model extensions could require 

negative effects from operation in Section 3.5. Notice also that the planning 

mechanisms described herein account for deleted facts as effects of operations, as 

evidenced by the compatibility of the Library of Typical Plans for Process Mining 

with previous works (see Chapter 4). 

In the dynamic schema in our conceptual model does not account for external, 

or exogenous, events. We assume the repertoire of operations to be the only ways 

through which changes happen in the world. In the Process Mining context, we are 

especially concerned with the execution of activities by the cases – hence we 

assume it is possible to extract from an event log the operations that are the actions 

of agents in the domain. 

We have previously discussed that the disciplines correspond to the activities 

in the process. Hence, in our educational domain example, we expect to extract 

from the log a dynamic schema definition of the operations performed only by 

students. In defining the dynamic schema, our goal is to represent the traces in the 

event log as plots in our conceptual model definition. Recall that a trace is a finite 
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sequence of events associated to a case. A plot, in our definition, comprises a 

sequence of operations related to an entity. We discuss this further in Section 3.3.5. 

Other than the general activities in the domain, we define operations relating 

to the successful and unsuccessful termination of cases. We relate this to the 

definition of processes with a knock-out structure. Van der Aalst defines a knock-

out process as “a business situation where for each case a pre-specified set of tasks 

needs to be executed” where “the processing of a task stops immediately if in one 

of the tasks a reason for rejection is detected” (2001, p. 452). Notice that in this 

definition it takes but one activity-failure event for the case to be classified as a 

failure. In our case (of an educational domain), we generalize that definition to 

include other, more complex rules for a knock-out. Hence, we must also define 

operations relating to the drop out and completion of cases.  

The definition of the operator signatures and frames, as well as the 

preconditions and effects, leverages the fact that the activities in the domain are 

known. Typically, there is available information, in some readily available data 

source, that allows the automatic definition of the dependencies between activities 

in standard Prolog notation. That is the case of our educational domain example, in 

which we obtain from the available documentation the ‘pre-requisite’ relationships 

between disciplines. Otherwise, the dependencies between activities should be 

provided manually, from domain knowledge (see Section 3.3.4).  

Alternatively, we could resort to techniques described in the literature of 

(planning) domain knowledge acquisition (see Chapter 2). Our assumption of 

modeling the activities in terms of intertask dependencies also resembles the 

discovery procedures for graphical models discussed at length in the Process 

Mining literature. Many algorithms, like the seminal Alpha algorithm (VAN DER 

AALST, 2011) and the HeuristicsMiner (WEIJTERS, VAN DER AALST e DE 

MEDEIROS, 2006; WEIJTERS e RIBEIRO, 2011), for example, rely on the 

patterns of orderings between activities in the event log to determine dependency 

relations (the footprint matrix and dependency graph, respectively). There are 

several issues with these approaches related to the completeness of the log, noise in 

the log and frequency thresholds, for example, but under certain assumptions these 

have been demonstrated to be able to reliably extract the dependencies between 

activities in the domain. We posit that such approaches could be used to determine 
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preconditions and effects as well. In fact, there are works in the literature that extract 

planning domain operators from graphical models such as the Petri nets (see Section 

2.3).  

For the definition of the operator signatures and frames, and the preconditions 

and effects, we leverage activity clauses obtained from the domain describing the 

intertask dependencies. Recall that we consider the possibility of multiple 

dependencies for activities. This means some activities may have zero, one, or 

several alternative sets of dependencies. For example, in our educational domain:  

• discipline INF1406 does not have any prerequisites; 

• discipline INF1022 requires both INF1007 and INF1009; and 

• discipline INF1007 requires either INF1005 or INF1025. 

In Prolog notation: 

 

activity( inf1406, [] ). 

activity( inf1022, [ [inf1007, inf1009 ]). 

activity( inf1007, [ [inf1005] , 

                     [inf1025]). 
 

Formally, for each activity 𝑎 ∈ 𝒜 we define one activity clause of the format: 

 

<activity-clause> ::= activity(<operation-name>,<activity-dependencies>). 

<activity-dependencies> ::= [] | [<activity-dependencies>] 

<dependency-setlist>::= <dependency-set> | <dependency-set>,<dependency-setlist> 

<dependency-set> ::= <activity-dep> | <activity-dep>, <dependency-set> 
 

The <operation-name> is an atom that corresponds to the activity name, given 

by the mapping 𝒜[𝑎]. The <activity-dep> terms are of the same format. 

3.3.2.1 Operator signatures and frames 

3.3.2.1.1 Activity operations 

We start by defining the operation clauses – comprising the operator 

signature and the operator frame, and how they can be derived from the event log 

and the activity clauses.  

The operator signature corresponds to the operator name, in the classical 

planning representation definitions. The operator frame restricts the values of the 

arguments in the operator signature to certain entities defined in the static schema 
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– it defines typed variables, in the terminology of planning domain analysis 

(GHALLAB, NAU e TRAVERSO, 2004, p. 534). 

We define the first argument of each operation to be related to the case entity 

since activity instances are performed by a single case (recall that every single event 

in the log is linked to exactly one case in the log). Recall that the operations are the 

activities of the domain – hence, we determine the remaining parameters of the 

operations based on the relevant event attributes in the event log. There are two 

kinds of relevant parameters:  

• Event-identifying attributes: those that identify the event, (that is, 

those that compose the event classifier 𝑒 for the domain);  

• Activity instance result attributes: those that determine the outcome of 

the activity instance captured by the event (that, is those that belong to 

the set 𝒱). 

These are reminiscent, and in fact defined, in terms of the entities defined in 

the static schema.  

The most general definition of an operation corresponding to a domain 

activity is given as follows: 

operation( activity(Student,Discipline,Timestamp,Grade),    %operator signature 

           [student/a, discipline/o, semester/in, grade/with] %operator frame 

         ). 

In this definition the discipline and timestamp arguments are given by the 

classifier, and the grade argument is related to the result of the activity instance. We 

adopt a different notation, however, for convenience purposes. Since the plots of 

the student comprise mostly discipline activities (only disciplines and at most one 

case termination operation per case), we ‘highlight’ the discipline code and use it 

as the functor of the activity operation signatures, in an abuse of the notation. This 

makes the plots (and later the mined plans) easier to read, with minor impact on the 

implementation of the mechanisms. The method and the algorithms implemented 

as part of the Library of Typical Plans for Process Mining could be adapted to the 

more general representation with reasonable effort. 

An example of an operation in the adopted notation is given: 

operation( inf1005(Student,Timestamp,Grade),    %operator signature 

           [student/o, semester/in, grade/with] %operator frame 

         ). 
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This example denotes that an event of discipline INF1005 performed by a 

student that in the semester, obtaining a resulting grade. A grounding of the 

operator signature inf1005(‘X’,2,85) means “Discipline INF1005 was completed by 

student X in semester 2, she completes it with grade 85”.  

In the definition of the operator signature the arguments are unbound 

variables. The relation between arguments and entities is comprehended by the 

operator frame. In our educational domain, the student entity relates to the first 

argument because it is the case entity. The semester and grade entities compose the 

operator frame because they identify the event and determine the outcome of the 

activity instance, respectively. 

A general procedure for determining the operation(<op-signature>, <op-

frame>) clause is as follows. We exemplify the steps of the procedure with a 

restricted example of our educational domain. 

 Recall the set 𝒜 of unique activity names in the log. For each 𝑎 ∈ 𝒜 – and, 

therefore, for each activity clause - we define one operation clause of the format: 

 

<operation-clause> ::= operation(<op-signature>,<op-frame>) 
 

That is, the operation is defined by an operator signature and a matching 

operator frame: 

 

<op-signature> ::= <operation-name>(<op-case>, <op-arglist>) 

<op-arglist> ::= <op-id-arglist> |  <op-id-arglist>, <op-res-arglist> 

<op-id-arglist> ::= <op-id-arg> | <op-id-arg>, <op-id-arglist> 

<op-res-arglist> ::= <op-res-arg> | <op-res-arg>, <op-res-arglist> 
 

<op-frame> ::= [<case-entity>/o, <frame-arglist>] 

<frame-arglist> ::= <frame-id-arglist> | <frame-id-arglist>, <frame-res-arglist> 

<frame-id-arglist> ::= <frame-id-arg> | <frame-id-arg>, <frame-id-arglist> 

<frame-res-arglist> ::= <op-res-arg> | <frame-res-arg>, <frame-res-arglist> 

<frame-id-arg> ::= <frame-entity>/<frame-role> 

<frame—res-arg> ::= <frame-entity>/<frame-role> 
 

The operation signature is a term with the <operation-name> functor, and with 

a set of arguments given by <op-case>,<op-arglist>. The operation frame is a list 

[<case-entity>/o, <frame-arglist>].  

The arguments of the <op-signature> always include as the first argument a 

variable to represent the case entity in the static schema, the <op-case>. This matches 

the first element <case-entity>/o in the <op-frame>. That is: the first element of the 
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frame is the case entity and the role 𝑜, denoting that the case is the object of the 

operation (this relates to the representation of the operation instances in natural 

language – we choose to represent the case as the ‘object’ in our adopted notation, 

rather than the ‘agent’ in the most general formulation).  

In the educational domain, for each discipline we define one operator 

signature. That is, the activity name is the discipline name (via the mapping 𝐴[𝑎]) 

and the student case entity is the first element of the operator frame. At this stage, 

an informal (and incomplete) representation of the operation clauses for the 

activities figuring in Table 1 is: 

 

operation( inf1413(Student, … ), [ student/o, …  ] ). 

operation( inf1636(Student, … ), [ student/o, …  ] ). 

operation( inf1406(Student, … ), [ student/o, …  ] ). 

operation( fis1033(Student, … ), [ student/o, …  ] ). 
 

We now define the <op-arglist> and the <frame-arglist> that complete the ‘…’ 

in the informal representations of the operation signature and operation frames, 

respectively.  

Each of the arguments in the list <op-arglist> is a variable, matching an 

element in the <frame-arglist> that relates to one entity (possibly a value) defined 

in the static schema. These are the agents or values involved in the action that the 

operation represents. Each of the arguments in the operator signature matches an 

element of the form entity/role in the same relative position in the <op-frame>. 

The role is used to compose natural language representations of plots and does 

not directly impact the planning algorithms. We discuss this in Section 3.3.4. 

The <op-arglist> is comprised by <op-id-arglist> and, optionally, by <op-res-

arglist>. Respectively, the <frame-arglist> is comprised by <frame-id-arglist> 

and, optionally, by the <frame-res-arglist>.  

The <op-id-arglist> arguments and their matching <frame-id-arglist> 

arguments are derived from the event attributes that, along with the activity name, 

identify the event. The <op-res-arglist> arguments and their matching <frame-res-

arglist> arguments are derived from the event attributes that, along with the activity 

name, relate to the results of the activity instance in the event.  
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Given the domain classifier 𝑒 = (#𝑛1(𝑒), #𝑛2(𝑒),… , #𝑛𝑧(𝑒)), each attribute 

𝑛𝑖 ∈ 𝐴𝑁 such that 𝑛𝑖 ≠ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and that #𝑛𝑖(𝑒) is part of the classifier yields one 

variable in the <op-id-arglist>. For each such attribute 𝑛𝑖 we define one element 

<classifier-entity>/<role> term in the operator frame, where <classifier-entity> 

is given by 𝒬[𝑛𝑖] and <role> must be defined with domain knowledge. Since a 

similar procedure is used to determine entities in the static schema, we can safely 

assume that for each such argument, there exists one corresponding entity such that 

the <classifier-entity>/<role> term that can be added to the operation frame. 

In the example of our educational domain, the events are identified both by 

the discipline code (the activity name) but also by the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝. That is, we use 

a classifier 𝑒 = (#𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒), #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑒)). With 𝒬[𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝] = semester the 

attribute 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 yields one element semester/in in the operator frame. A 

corresponding variable argument is added to the operator signature. The role in for 

the semesters is defined with domain knowledge. Hence, at this point we have 

(informally represented) operation clauses like: 

 

operation( inf1413(Student, Semester, … ), [ student/o, semester/in, …  ] ). 

operation( inf1636(Student, Semester, … ), [ student/o, semester/in, …  ] ). 

operation( inf1406(Student, Semester, … ), [ student/o, semester/in, …  ] ). 

operation( fis1033(Student, Semester, … ), [ student/o, semester/in, …  ] ). 
 

Recall the set 𝒱 of event attribute names that determine the result of the 

activity – success or failure. Each attribute 𝑛 ∈ 𝒱 yields one element in the <op-res-

arglist>. Similarly, as above, for each such attribute 𝑛 we define one element 

<result-entity>/<role> term in the operator frame, where <result-entity> is given 

by 𝒬[𝑛𝑖] and the <role> is given by domain knowledge (see again Section 3.3.4). 

In our domain example the set 𝒱 = {𝑟𝑒𝑠𝑢𝑙𝑡}, and 𝑄[𝑟𝑒𝑠𝑢𝑙𝑡] = grade, so only 

the grade entity is added to the operator frame. A corresponding variable argument 

is added to the operator signature. We obtain the complete operation clauses: 

 

operation( inf1413(Student, Semester, Grade),  

           [ student/o, semester/in, grade/with ] 

         ). 

operation( inf1636(Student, Semester, Grade), 

           [ student/o, semester/in, grade/with ] 

         ). 

operation( inf1406(Student, Semester, Grade), 

           [ student/o, semester/in, grade/with ] 
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         ). 

operation( fis1033(Student, Semester, Grade),  

           [ student/o, semester/in, grade/with ] 

         ). 
 

In practice, we don’t define one operation clause for each activity. Rather, 

we define a generic operation predicate that represents all the activity operations in 

the domain, relying on the activity clauses. 

3.3.2.1.2 Case termination operations 

The other operations defined in the dynamic schema are related to the 

successful completion of cases and the unsuccessful termination of cases 

(knockout). We call these the case termination operations.  

We require case termination operations to distinguish partial traces from 

knockout cases in the domain. Hence, we assume at least one case termination 

operation representing the successful completion of the case, and at least one 

termination operation representing the halting or aborting of the event. 

As examples in our educational domain, we define case termination 

operations: 

 

operation( graduate(Student, Semester), [student/o, semester/in] ). 

operation( dropout(Student, Semester), [student/o, semester/in] ). 
 

They are defined in the same format – an operation clause comprising an 

operation signature <op-signature> and an operation frame <op-frame>. For ease of 

representation we allow these operations to have to have domain-defined 

<operation-name> terms (hence graduate and dropout). These names are also used to 

determine the effects of these case termination operations. The choice of names is 

briefly discussed in Section 3.3.4. 

In the definition of case termination operations, we do not include the event 

attributes that relate to the results of activities. Hence, the <op-arglist> in the <op-

signature> comprises only the <op-id-arglist>, referring to the event attributes in 

the event classifier. Similarly, the <frame-arglist> in the <op-frame> comprises only 

the <frame-id-arglist>.  

In our educational domain example, this means that the case termination 

operations include one argument for the semesters (part of the event classifier) but 
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do not contain one argument not for the grade (which relates to the results obtained 

in the disciplines). 

An important aspect of the case termination operations is that they may not be 

explicitly available in the log. The termination information may be missing or 

associated to another data source. In this discussion, we assume that the case 

attribute #𝑠𝑡𝑎𝑡𝑢𝑠(𝑐) is available, from which we can determine the appropriate 

termination operation for the case’s trace. Not all students have a termination 

𝑠𝑡𝑎𝑡𝑢𝑠 value, which impeded the use of that attribute as a case entity argument. 

However, the missing information does not stop us from leveraging it to define the 

case termination operations – we simply do not generate case termination 

operations for ongoing traces. 

Furthermore, there may be several ways in which a case may terminate, and 

these ways must be accounted for by one case termination operation each. Hence, 

there may be a strong domain-dependent component in the definition of these 

operations. Here we assume the simpler case where only one of which is defined. 

This is also discussed in Section 3.3.4. 

3.3.2.2 Preconditions and effects 

In order to complete the repertoire of operations we must define their 

preconditions and effects (also called in literature post-conditions).  

In the definition of preconditions and effects we leverage the fact that, for the 

purposes of Process Mining, we are mostly interested in the dependency relations 

between activities. In general, we aim to represent the intertask dependencies and 

the multiple dependencies between activities in terms of preconditions.  

The preconditions of the operations will mainly refer to the successful 

completion of other operations. Conversely, the effects of operations will typically 

comprise the results (success or failure) of the activity instances. Hence, we 

leverage the activity clauses and the explicit dependencies they contain to define 

the preconditions and effects of the operations. We discuss how more general 

preconditions and effects are incorporated to our approach for process mining in 

Section 3.5. That discussion also considers the use of negative effects given by 

deleted clauses.  
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Recall that in our intended application domains the activities may fail. The 

effects and preconditions of the operations will be given in terms of the results of 

the activity instance represented by the operation. Thus, we define success and 

failure clauses <op-success> and <op-failure>. We will then compose the added and 

precond clauses in relation to clauses in this format: 

 

<op-success> ::= <success-functor>(<op-case>,<activity-attr>,<op-id-arglist>). 

<op-failure> ::= <failure-functor>(<op-case>,<activity-attr>,<op-id-arglist>). 
 

Notice that, for ease of representation, we allow the success and failure terms 

to have domain-defined functors (<success-functor> and <failure-functor>). In this 

discussion we will use success and failure, respectively - in examples in the next 

Sections we may use app and rep, respectively, but this will be pointed out in those 

examples (see Section 3.3.4). 

Similarly to the definition of the operation signature, the first argument of the 

success and failure clauses is always a variable related to the case in the static 

schema, given by <op-case>, as informally represented below: 

 

success(Case, … ). 

failure(Case, … ) . 
 

The second argument of the success and failure clauses is a variable that 

relates to the activity name: 

success(Student, Discipline, … ). 

failure(Student, Discipline, … ) . 

The <op-id-arglist> arguments correspond are similarly composed as in the 

definition of the operator signature: given the domain classifier 𝑒 =

(#𝑛1(𝑒), #𝑛2(𝑒),… , #𝑛𝑧(𝑒)), each attribute 𝑛𝑖 ∈ 𝐴𝑁 such that 𝑛𝑖 ≠ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and 

that #𝑛𝑖(𝑒) is part of the classifier will yield one element in the <op-id-arglist>.  

In our educational domain, besides the 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, the events are also identified 

by the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute. Hence: 

 

success(Student, Discipline, Semester ). 

failure(Student, Discipline, Semester ) . 
 

Notice that unlike the definition of the operation signature, there is no frame 

for the success and failure clauses – the first argument Student is a variable, e.g, 

and it will only refer to instances of the case entity in the static schema due to the 
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context in which the success and failure clauses are used, within the added and 

precond clauses. The same is true for the other arguments. Hence why we are free 

to change the variable names and choose to use Student, Discipline and Semester – 

as per the terminology of the domain. 

3.3.2.2.1 Activity operations 

A general formulation for the preconditions and effects clauses given known 

intertask dependency relations is given below in Prolog notation. We rely on the 

representation of activities and their dependencies in the activity clauses, and in 

the success and failure clauses defined above. Since we have one operation clause 

for each 𝑎 ∈ 𝒜, we will be able to define the precond clause(s) for all operations 

based on the <activity-dependencies> of the corresponding activity. 

We define two clauses to represent the effects of each activity - one to reflect 

the success and the other to reflect the failure of the activity instance. For each 

activity 𝑎, we define two added clauses: 

 

added( <op-signature>, <op-success> ):- <conditions>. 

added( <op-signature>, <op-failure> ). 
 

The term <op-success> or <op-failure> will match the <op-signature> with 

respect to the case variable and the event-identifying attributes. We will have, for 

example, for discipline INF1413: 

 

added( inf1413(Student, Semester, Grade), success(Student,inf1413,Semester)):- 

       passing_grade(Grade). 

added( inf1413(Student, Semester, Grade), failure(Student,inf1413,Semester)). 
 

The first added clause is a rule whose body <conditions> comprises domain-

dependent goals that determine whether the operation succeeds, typically related to 

the event attributes in 𝒱. We provide further discussion in Section 3.3.4. In our 

example above we have defined a predicate passing_grade/1 that succeeds when the 

Grade obtained by the student is sufficient, according to domain rules. 

We now define the preconditions of the operations, leveraging the activity 

dependencies of the activity corresponding to the operation. Preconditions are given 

by precond clauses. 

We will determine zero, one, or many precond clauses for each operation; 

depending on the sets of dependencies of the corresponding activity clause. If the 
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activity is without dependencies, with <activity-dependencies> as an empty list, we 

define no precond clauses for that operation. That is the case of INF1406 in our 

domain (see above). For operations whose matching activity have a one or more 

sets of dependencies we generate one precond clause for each set of dependencies.  

In the case of activity INF1022 in our example, we generate a single precond 

clause for the requirement of both INF1077 and INF1009: 

 

precond( inf1022(Student, SemesterA, _Grade),     %operator signature 

         ( success(Student, inf1077, SemesterB), SemesterB < SemesterA), 

           success(Student, inf1009, SemesterC), SemesterC < SemesterA) )  

). 
 

For activity INF1007, we will generate two precond clauses – one to represent 

the pre-requisite INF1005 and the other to represent the alternative pre-requisite 

INF1025:  

 

precond( inf1007(Student, SemesterA, _Grade),      

         ( success(Student, inf1005, SemesterB), SemesterB < SemesterA).  

 

precond( inf1007(Student, SemesterA, _Grade),      

         ( success(Student, inf1025, SemesterB), SemesterB < SemesterA).  
 

Notice in the examples above that we add dependencies between the 

‘semester’ of the discipline and its pre-requisite(s). This is a particular instance of 

additional dependencies that is relevant to our domain. We provide a general 

formalization below, and further discussion in Section 3.3.4. Notice also that the 

‘Grade’ in the operation signature is forcibly a singleton variable. Event attributes 

that relates to the results of the operation intuitively have no effect in the 

preconditions of that operation. 

Formally, for activity 𝑎 ∈ 𝒜 we obtain the corresponding <activity-

dependencies> from the activity clause activity(A, <activity-dependencies>), where 

A is the atom given by 𝐴[𝑎]. Let 𝑜 be the operation defined from activity 𝑎 (recall 

that we have defined one operation clause for each 𝑎 ∈ 𝒜 also). In 𝑜, the atom A is 

the functor of the operation signature. 

Each 𝑑 in the <activity-dependencies> of activity 𝑎 defines a precondition 

conjunction 𝜋, such that if 𝜋 holds the operation is applicable in that situation. Let 

Π be the set of all alternative precondition conjunctions of 𝑜. We will define one 

precond clause of operation 𝑜 for each 𝜋 ∈ Π: 
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precond(<op-signature>, (<op-preconds>)).  
 

 

Recall that each element 𝑑 in the <activity-dependencies> is a list of activity 

names. In our example of INF1022, the <activity-dependencies> contains a single 

list [inf1077, inf1009]. Thus we generate a single precondition conjunction for the 

single precond clause of the operation representing INF1022 (as exemplified above). 

Conversely, for INF1007, it contains two lists: [inf1005] and [inf1025] – and so we 

generate two precond clauses for the operation representing that discipline (also 

exemplified above). 

Each list 𝑑 of activity names defines a precondition conjunction 𝜋 given in 

Prolog notation as a term <op-preconds>: 

 

<op-preconds> ::= <op-prec> | <op-prec>, <op-preconds> 
 

<op-prec> ::= <op-success>, <op-id-depslist> 

<op-id-depslist> ::= <op-id-dep> | <op-id-dep>, <op-id-depslist> 
 

The precondition conjunction is given by one or many terms <op-prec>, 

depending on the number of activities in 𝑑. Each such term is composed of a success 

clause in conjunction with additional dependencies over the event-identifying 

attributes.  

In the example of INF1022, the single element 𝑑 = [inf1077, inf1009] defines 

an <op-preconds> conjunction of two <op-prec> terms, one referring to inf1077 and 

one referring to inf1009. 

We determine each <op-success> term in the <op-prec> such that the <op-case> 

matches the <op-case> case in the operation signature. Notice in the examples above 

that the Student variable is the first argument in the operation signature and in each 

of the success clauses.  

 We determine the <activity-attr> in the success clause with the atoms in 𝑑. 

In the examples above, this is the name of the pre-requisite disciplines. 

Finally, each argument of the <op-id-arglist> is a new variable. In the 

examples above, the semesters in which the student must have completed the pre-

requisite discipline(s) are intuitively different. 

The terms <op-id-depslist> define the additional dependencies between the 

event identifying attributes (in the example, the precedence requirements between 
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the “semester” of the discipline and the pre-requisite(s)). This dependency depends 

on semantics of the attribute in the domain but will typically relate to the event 

identifying attributes. We discuss this briefly in Section 3.3.4. 

3.3.2.2.2 Case termination operations 

Finally, other than the operations defined by activities we have the case 

termination operations, related to the completion and knockout of cases. These case 

termination operations will typically have simple effect – in our example, asserting 

that the operation took place and that the case is over. 

Recall that we allow domain-specific names for these operations - for our 

educational domain we defined operations graduate and dropout, for example. We 

similarly assume that for each such operation a unary <case-termination> is defined:  

 

<case-termination>::= <termination>(<op-case>). 
 

We define for the graduate and dropout operations the terms graduated and 

dropped, respectively. We define the effects of the case termination operations with 

the respective case termination terms: 

 

added(graduate(Student, Semester), graduated(Student)). 

deleted(graduate(Student, Semester), student(Student)). 

added(dropout(Student, Semester), dropped(Student)). 

deleted(dropout(Student, Semester), student(Student)). 
 

The case termination operations may have more complex preconditions, 

however. For example, in our educational domain, one way in which students drop 

from the program is the compulsory dismissal due to to repeated failures in the same 

activity.  

 

precond( dropout(Student, Semester), 

         ( failure(Student, Discipline, SemesterA),  

           failure(Student, Discipline, SemesterB),  

           failure(Student, Discipline, SemesterC),  

           failure(Student, Discipline, SemesterD), 

           failure(Student, Discipline, SemesterE), 

        SemesterA #< SemesterB, SemesterB #< SemesterC, 

     SemesterC #< SemesterD, SemesterD #< SemesterE ) ). 
 

In the example above we represent the precondition to the dropout case 

termination operation as the student failing several times in the same discipline. 

This is a simplified version (a more relaxed requirement, even) of the rule in the 
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actual domain, as discussed in the Appendix. As we’ll discuss in future examples 

even this relaxed configuration is typically not satisfied in the domain. 

We also define simplified criteria for graduation: 

precond( graduate(Student,Sem),  

    ( % 1st semester 
      app(Student,fis1033,_), app(Student,fis1034,_), app(Student,inf1005,_),  
      app(Student,mat1161,_), app(Student,mat1200,_),  
 

      % 2nd semester 

      app(Student,cre1100,_), app(Student,inf1007,_), app(Student,inf1009,_),  
      app(Student,inf1008,_), app(Student,inf1403,_), app(Student,mat1162,_),  
       

      % 3rd semester 

      app(Student,cre0700,_), app(Student,eng1029,_), app(Student,inf1010,_), 
      app(Student,inf1012,_), app(Student,inf1018,_), app(Student,mat1154,_), 
 

      % 4th semester 

      app(Student,ele1030,_), app(Student,inf1301,_), app(Student,inf1383,_), 
      app(Student,inf1626,_), app(Student,inf1019,_), app(Student,inf1631,_), 
 

      % 5th semestre 

      app(Student,cre1141,_), app(Student,inf1011,_), app(Student,inf1377,_), 
      app(Student,inf1608,_), app(Student,inf1636,_), app(Student,inf1721,_), 
      app(Student,inf1715,_), 
 

      % 6th semester 

      app(Student,cre1172,_), app(Student,fil0300,_), app(Student,inf1013,_), 
      app(Student,inf1016,_), app(Student,inf1640,_), app(Student,inf1771,_),  
 

      % 7th semester 

      app(Student,inf1612,_), app(Student,inf1950,_),  
      app(Student,inf1014,_), app(Student,inf1413,_), 
       

      % 8th semester 

      app(Student,inf1015,_), app(Student,let0310,_),  
      app(Student,inf1920,_), app(Student,inf1951,_) ) ).  
 

The above represents a simplified set of the actual requirements for graduation 

in the domain, comprising the set of ‘required’ disciplines. In actuality, the criteria 

for graduating comprises the obtention of credits in predetermined disciplines and 

groups of disciplines in the curricula (see the Appendix). We revisit this discussion 

in Section 3.5.1. Nonetheless, we will consider the preconditions above for the 

examples in the following examples. These examples illustrate how the pre-

conditions for case termination operations depend on the domain rules –we discuss 

more about the precond clauses for these operations in Section 3.3.4. 

3.3.3 Behavioral schema 

The behavioral schema defines a set of goal-inference rules that capture the 

behavior and the motivations of agents in the domain. The definition of goal-

inference rules is paramount to the plan-recognition algorithms.  
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Goal-inference rules are defined in terms of an agent, a situation, and a goal: 

“a goal-inference rule has, as antecedent, some situation which, if observed at a 

database state, will arouse in a given agent the impulse to act in order to reach some 

goal” (FURTADO e CIARLINI, 2001). Goal-inference rules are defined in our 

standard Prolog notation as follows: 

 

gi_rule(<rule-id>, <rule-agent>, <rule-situation>, <rule-goal>). 
 

Where <rule-id> is a unique rule identifier. The <rule-agent> is, by default, 

the case entity that the rule refers to. The <rule-situation> and <rule-goal> are 

conjunctions of terms that represent, respectively, the current state of a case in 

which a rule is applicable and the goal state to be sought by the plan-recognition 

procedure. These will typically comprehend terms defined in the static schema, plus 

the success and failure terms that are preconditions and effects of the operations in 

the domain. In these terms, the <rule-agent> will always unify with the <op-case>. 

In a Process Mining application there are two sets of rules: those known a 

priori, which can be modelled with domain knowledge, and those that are unknown 

and cannot be determined by domain specialists. We assume that the set of goal-

inference rules known a priori will include at least one rule, representing a 

normative pattern. A normative pattern determines a “de jure model” that “specifies 

how things should be done or handled” (VAN DER AALST, 2011, p. 243). That is, 

a (typically idealized) version of the process as defined by the domain specialists 

and administrators. This definition is intrinsically tied to the domain knowledge. 

In our educational domain, for example, we define custom rules for 

representing the recommended order of disciplines that the program suggests 

students should follow, plus others. Some details are given in the Appendix. The 

following rule exemplifies the normative pattern of the students, from the initial 

enrollment, performing with success the exact order of recommended disciplines: 

gi_rule( 2, 

  student(Student), 

  ( student(Student), not success(Student, _, _), not 
rep(Student,_, _) ), 

  ( not rep(Student,_, _),  
 success(Student, inf1403, S1), success(Student, inf1005, S1), 
 success(Student, mat1200, S1), success(Student, mat1161, S1), 
 success(Student, fis1033, S1), success(Student, fis1034, S1), 
 success(Student, inf1008, S2), success(Student, inf1009, S2), 
 success(Student, inf1007, S2), success(Student, mat1162, S2),  
 success(Student, cre1100, S2), success(Student, inf1012, S3),   
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 success(Student, inf1010, S3), success(Student, inf1018, S3), 
 success(Student, eng1029, S3), success(Student, mat1154, S3),  
 success(Student, cre0700, S3), success(Student, inf1383, S4),  
 success(Student, inf1301, S4), success(Student, inf1631, S4),  
 success(Student, inf1626, S4), success(Student, inf1019, S4),  
 success(Student, eng1400, S4), success(Student, inf1377, S5),  
 success(Student, inf1636, S5), success(Student, inf1721, S5), 
 success(Student, inf1011, S5), success(Student, inf1715, S5),  
 success(Student, inf1608, S5), success(Student, cre1141, S5), 
 success(Student, inf1013, S6), success(Student, fil0300, S6),  
 success(Student, inf1771, S6), success(Student, inf1016, S6), 
 success(Student, inf1640, S6), success(Student, cre1172, S6),  
 success(Student, inf1413, S7), success(Student, inf0310, S7), 
 success(Student, inf1950, S7), success(Student, inf1014, S7),  
 success(Student, inf1015, S8), success(Student, let0310, S8),  
 success(Student, inf1951, S8), success(Student, inf1920, S8),   
 S1 #< S2, S2 #< S3, S3 #< S4,  S4 #< S5, S5 #< S6, S6 #< S7, S7 #< S8) ). 
 

The following rule, for example, determines that students at the beginning of 

the program should aim to complete the recommended disciplines for the first 

semester, without any failures, in their first semester: 

 

gi_rule( 3,  

 % Agent 

 student(Student), 

 % Situation 

 ( student(Student)  

         not success(Student, _, _), not failure(Student,_, _) ), 

 % Goal  

 ( not failure(Student,_, _),  
   success(Student, inf1403, 1), success(Student, inf1005, 1), 
   success(Student, mat1200, 1), success(Student, mat1161, 1), 
   success(Student, fis1033, 1), success(Student, fis1034, 1) ) ). 
 

Notice that the goal-inference rules determine a higher-level “de jure model” 

than a strict graphical model. There may be countless combinations of activities that 

the cases perform to achieve a goal. The mining of typical plans over the normative 

pattern rules will indicate not only if but also how the cases perform that pattern.  

The actual plans followed by cases correspond to the “de facto models” (VAN 

DER AALST, 2011, p. 243) that capture the reality of the domain. Discovering 

these from the event log is the core concern of the process discovery task. We will 

discuss how our approach deals with the discovery of plans from goal-inference 

rules in Section 3.3.5. 

The analysis of how the plots of the cases conform with (or deviate from) the 

normative pattern rules may highlight issues with the patterns. We discuss these 

kinds of analysis, with examples of discovered issues, in Section 3.4. The discovery 

of these issues may shift the interest of the analysis towards other patterns that are 
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hypothesized to be more frequent, more relevant, or more interesting. In Section 3.5 

we will explore how new rules can be (semi-)automatically derived from normative 

pattern rules. We discuss the implementation of the mechanism in our Library of 

Typical Plans for Process Mining in Chapter 4. 

3.3.4 Three-Schemata domain dependent definitions 

In this section we recapitulate and discuss in more detail some domain 

dependent aspects of the Process Discovery of the three-schemata conceptual model 

from event logs. 

The first domain dependent definition is the set of attributes that identify the 

event. Recall that the most basic classifier for our approach is 𝑒 =

(#𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒), #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑒)). In our educational domain, we use that default 

classifier. If there are additional event attributes that are necessary to uniquely 

identify the event, they must also be included in the classifier. We discuss the effects 

of these additional attributes in the following. 

Including additional attributes in the event classifier incurs in additional 

entity clauses in the static schema. If these attributes are strictly numerical, they 

are defined by value clauses instead. In the definition of the dynamic schema, each 

additional attribute also incurs in one more argument in the operation signatures 

and, correspondingly, in the operation frames. Finally, the <op-success> and <op-

failure> terms in the definition of preconditions and effects will also have one more 

corresponding argument. 

Another domain dependent definition is the set of attributes 𝒱 that relates to 

event attributes that represent the result of the activity instances. If the domain does 

not contain activities that may fail, this set may be empty. In our educational domain 

we assume that the result of the activity is dictated by the attribute 𝑔𝑟𝑎𝑑𝑒, from the 

column ‘grau’ in the event log. Similarly, as for the additional attributes in the 

classifier, additional attributes in 𝒱 will incur in additional entity (or value) clauses 

in the static schema. They also similarly incur in additional arguments in the 

operation signature, operation frame and the op-success> and <op-failure> terms. 

Recall that we allow for domain-defined functors for the op-success> and <op-

failure> terms. Throughout Section 3.3 we have used success and failure, for 
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clarity, but in the remainder of this thesis we use the domain-defined app and rep, 

respectively. We recall this decision in the examples. 

We also define mappings from names in the event log to atoms in the Prolog 

notation. Mapping 𝑄 maps from attribute names, comprehending both event and 

case attributes, to Prolog atoms. That is, for each attribute 𝑛 ∈ 𝐴𝑁 the mapping 

𝑄[𝑛] yields a unique atom.  

We also define mapping 𝐴 from activity names to atoms. For any 𝑎 ∈ 𝒜 the 

mapping 𝐴[𝑎] yields a lowercase atom that can be used as a functor. Since each 

activity 𝑎 ∈ 𝒜 has a unique name we trust it is straightforward to define this 

mapping such that 𝐴[𝑎] is uniquely related to 𝑎. 

A domain-dependent definition that typically will not require domain 

knowledge input from an expert is the definition of which entities are given by value 

entities, in the static schema. It typically suffices to verify that these are derived 

from numerical-valued columns in the log. The same is not true for the definition 

of roles, in the operation frames. The role of the case entity can typically be default 

to the object of the operation. We could define default roles for typical event 

attributes, such as the timestamp. Other attributes will invariably require input from 

a domain expert. This is not a limitation to the automatic discovery of the dynamic 

schema, however, since the roles are only used for the natural language generation 

aspect and are not required for the plan-recognition and plan-verification tasks. 

Also in the definition of operations, there are domain dependent definitions 

for the case termination operations. We allow for domain-defined names for these 

operations. In our educational domain, we use graduate and dropout, respectively, 

for the mandatory completion and knockout operations.  

Recall also that we define one case termination operation for each way in 

which the case may terminate. That is, if there are several ways in which the case 

may be knocked-out, we could define one knockout operation for each of those 

ways. Even though we initially choose to represent only one general knockout 

operation dropout for our educational domain, we could define one operation to 

represent a student that is remove from the program due to repeating a same 

discipline five times; and another to represent a student that exceeds the maximum 

amount of semesters before graduating; and another to represent students that 
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transfer from PUC to another higher-education institutions. We will discuss more 

about this when leveraging information in the log to increment the process model 

with respect to case termination operations in Section 3.5.  

In the definition of the effects of operations, we determined a predicate added 

with an arbitrary body <conditions> to represent the success cases. The definition of 

the conditions will be dependent on domain knowledge as well. These conditions 

should typically be defined over the set of event attributes 𝒱, however, since those 

are the event attributes related to the results of operations in the domain.  

In our educational domain example, for example, we define a predicate 

passing_grade/1 such that determines if the student is approved or fails the discipline 

based on the grade obtained. This simple requirement is a simplification of the rules 

for approval in disciplines in the academic program.  

We also define domain dependent dependencies <op-id-depslist> in the 

preconditions of the operations. These will require input from domain knowledge 

but are typically related to the event identifying attributes in the event classifier 𝑒. 

In our domain, for the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute, we presume a straightforward 

precedence relationship.  

In our educational domain example, this is the case of dependencies over the 

semester of the disciplines – that is, a student must have been approved in the pre-

requisite discipline(s) before enrolling in a discipline. In Chapter 4 we discuss how 

we adapt the plan-verification and plan-recognition mechanisms to consider the 

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 information.  

Another domain-dependent aspect of the conceptual model is that “pre-

conditions and effects are usually tuned in a combined fashion, aiming at the 

enforcement of integrity constraints” of the domain (FURTADO e CIARLINI, 

2001). We could add, for example, to each preconditions clause an additional fact 

to ensure that a student that has been approved in a discipline cannot perform it 

again, as such: 

 

precond( inf1022(Student, SemesterA, _Grade),          %operator signature 

           not success(Student, inf1022, SemesterB),   % cannot repeat  

  (...)                                          %remaining definitions 

). 
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We choose not to do so for simplicity of representation – we have previously 

verified that this does not happen in any of our example cases. 

The case termination operations assert that the case is over. We define unary 

predicates with the same name as the case termination operations to indicate that 

those operations were executed. For example, in our educational domain, having 

defined the graduate and dropout operations, we define the corresponding case 

termination terms graduated/1 and dropped/1.  

The preconditions of case termination operations are also domain-dependent 

definitions. Unlike the conditions in the activity operations, they will not relate to 

activity result event attributes. They will instead typically relate to rules of the 

process, to exogenous events, and to the success and failures of sequences of 

activities and to time limits. The latter two are easier to represent. The former two 

are even mode domain dependent.  

For example, in our educational domain, we determine domain rules for the 

graduate and dropout events with simplifications with respect to the actual domain 

rules. The consequences of the simplifications we assumed in the modeling of these 

preconditions are discussed, and partially amended, in Section 3.5. Finally, the 

discovery of additional goal-inference rules – which relates to the discovery of the 

Behavioral Schema – is also dependent on the domain. We discuss some general 

methods that can automatically extract new rules in Section 3.5, but the design of 

these methods is performed with the needs and characteristics of the domain in 

mind. 

3.3.5 Mining of Typical Plans 

In this section we discuss how plan-recognition allows the mining of typical 

plans and how that relates to the Process Discovery task. We leverage and extend 

the approach defined in (FURTADO e CIARLINI, 2001). The plan mining 

approach employs the goal-inference rules to seek for relevant patterns in the plots. 

Here, we give an overview of the plan mining approach and how it relates to the 

Process Discovery task. In Chapter 4 we describe the Library of Typical Plans for 

Process Mining and how it implements the approach, with examples in a simplified 

educational domain. 
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The plan mining method relies on the goal-inference rules to determine how 

agents (the cases) proceed from determined situations towards relevant goals. The 

mechanism of mining of typical plans relates to the Process Discovery task: it 

collects plans that are actually executed by cases in the domain, as opposed to ideal 

plans, dictated by domain specialist(s). The typical plans executed correspond to 

the de facto models of what is actually performed by the cases, regardless of the 

process envisioned by the domain administrators. In our educational domain we 

aim to understand what are the sequences of disciplines that students are 

performing. 

The plan mining algorithm mines plans from plots. We obtain plots from the 

cases’ traces. 

Recall Table 1 (p. 37). Van der Aalst projects the case and the classifier 

attributes (only the activity name, in his case) to obtain a table of traces (VAN DER 

AALST, 2011, p. 14). In our educational example domain, with the classifier 

including both the activity name and the timestamp, we have traces comprising 

tuples, as can be seen in Table 2. 

Table 2 A trace. 

Case id Trace 

2368 

fis1033(2368,1), fis1034(2368,1), inf1005(2368,1), 
inf1403(2368,1), mat1161(2368,1), mat1200(2368,1),  

…,   

inf1021(2368,14), inf1408(2368,14), inf1640(2368,14), 
inf1951(2368,14) 

2501 
(cre1100, 1), (fis1033, 1), (fis1034, 1), (inf1009, 1), (inf1012, 

1), (inf1403, 1), …, (inf1190, 6), (inf1406, 6), (let1296, 6) 

… … 

We suppress parts of the traces for ease of representation. Recall that �̂� is the 

trace of the case 𝑐.  

In our conceptual model, we compose plots from the traces of cases as 

predicates plot/2 of the format: 

 

plot( <case-id>, [s0, <plot-opslist>] ). 
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<plot-opslist> ::= [<op-signature>, <plot-opslist>] 
 

This represents the trace of case <case-id> as a sequence of operations given 

by <plot-opslist>. The operations that compose the plot are ordered, respecting the 

timestamp. All operations with the same timestamp are simultaneous in the plot. 

The special operation annotation s0 that starts each plot represents the initial state 

of the case - the state of the world at the beginning of the trace, before any 

operations take place. 

Each element of the list is an operation signature, grounded to represent the 

activity instance performed by the case in an event. Recall that the event attributes 

in 𝒱 determine the result of the activity instance and are part of the operation 

signatures. Hence, our plots correspond to the traces, with the additional attributes 

related to the activity instance results. 

An example of a plot corresponding to the trace of case of student 2368 in 

Table 2 is shown below, in informal notation that suppresses a part of the plot: 

 

plot(2368, [s0, 

   fis1033(2368,1,71), fis1034(2368,1,84), 

   inf1005(2368,1,81), inf1403(2368,1,43), 

   mat1161(2368,1,64), mat1200(2368,1,63), 

   …, 

   inf1021(2368,14,81), inf1408(2368,14,97), 

   inf1640(2368,14,68), inf1951(2368,14,100)]). 

It is straightforward to obtain the operation signature including the event 

attributes in 𝒱 because the traces contain information to uniquely identify the 

events. In the example above, there is only one instance of student 2368 performing 

the discipline fis1033 in semester 1 – hence, it is straightforward to obtain from the 

event log that his grade was (unambiguously) 71. 

Notice that the plots composed from cases traces will refer only to the case. 

This is not a restriction of our conceptual model – the Library of Typical Plans for 

Process Mining retains the ability to mine plans from plots involving actions of 

multiple agents, as described in (FURTADO e CIARLINI, 2001). This is discussed 

in Chapter 4. The special operation annotation s0 refers to the initial state – the state 

of the work before the plot. In (FURTADO e CIARLINI, 2001) this could configure 

complex scenarios, of on-going domains, involving multiple agents. Since our plots 

refer to a single case, and all cases start in a similar manner, it suffices to define in 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



70 

 

the initial state only the entity related to the plot. We define a clause 

initial_database of the format: 

 

initial_database( <case-id>, <entity-clause> ). 
 

Where the <entity-clause> is the clause defining the case entity. In our 

educational domain, the initial_database of each case is given by the student 

clause: 

 

initial_database( 2367, student(2367) ). 
 

In Section 3.5 we extend the entity clause definition to account for case 

attributes. This will also reflect in the definition of the initial_database clauses. 

The goal of the plan mining approach is to obtain plans from the plots, 

following the indications of behavior given by the goal-inference rules. The 

approach relies on a plan-recognition method that identifies a part of a plot as 

potential plan.  

Notice that the plan, if it exists, is a grounded plan, composed by grounded 

operations [𝑠0, 𝑜1, 𝑜2, … , 𝑜𝑘] and with the support of a single case. Because all the 

operations in each plot refer to the same case, all operations 𝑜𝑖 in the plan refer to 

the same agent (they all have the same argument, a case instance). The Library of 

Typical Plans for Process Mining retains the capabilities of (FURTADO e 

CIARLINI, 2001) for dealing with general domains, which includes a (backwards-

chaining) mechanism for extracting from the plan only the operations that are 

necessary for the plan’s execution. This is also discussed in Chapter 4. 

If the resulting plan is composed of a single operation already defined in the 

dynamic schema, we record it as a simple plan. However, if the plan comprises a 

partially ordered set of multiple operations, we define a complex plan that is a 

composite operation. This operation is defined as part of the mining process– hence, 

we generate an operation signature and operation frame to represent it. We discuss 

the automatic generation of operations in Section 3.5.5. 

The mining of typical plans will perform the plan-recognition described above 

for all cases in the domain. Hence, several alternative plans can be found. For both 

simple plans and complex plans of composite operations we attempt to generalize 

the plans. We resort to two methods of generalization. The first one is based on the 
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most specific generalization of plans with similar structure (FURTADO, 1992). The 

second one is based on the definition of generic operations. 

The most specific generalization of plans is performed when two (or more) of 

the plans recognized for a same rule are similar. In that case, we can store a general 

version of the plan that accounts for both (or several) plans. We update the cases 

associated to the plan accordingly, to reflect the plan’s increased support.  

Assume, for example that for rule 𝑅 we recognize plan 𝑝1 from case 𝑐1. 

Assume that we also recognize plan 𝑝2 from case 𝑐2. If it is possible to determine 

that 𝑝1 and 𝑝2 are similar, we store a generalized plan 𝑝1,2 that supports cases 𝑐1 

and 𝑐2. If we later identify an additional plot 𝑝3 from case 𝑐3 that is similar to 𝑝1,2, 

we produce a plan 𝑝1,2,3 that supports all three cases. 

Notice that the method above relies on the definition of what are similar plans. 

We consider two plans similar if they are similar in structure – with respect to the 

operations that compose them, and the order requirements between those operations 

– and if it is possible to unify the lifted versions of those plans. This includes the 

enforcement of co-designation and non-co-designation of variables in the 

generalized operations.  

We now consider the case when multiple plans are recognized for a rule but 

are not similar. Assume the scenario in which, for rule 𝑅, we recognize plan 𝑝1 from 

case 𝑐1 and plan 𝑝2 from case 𝑐2 and we determine that 𝑝1 and 𝑝2 are not similar. 

This happens when the plans have a different number of operations, are composed 

by a different set of operations, or fail the co-designation/non-co-designation 

restrictions. In this scenario, we generate a new operation 𝑔1,2 to represent the 

generic operation of performing either 𝑝1 or 𝑝2. Generic operations can represent 

both simple and composite operations.  

Hence, a plan is ultimately defined as an operation – either simple (a single 

operation in the dynamic schema) or a complex operation (a composite operation 

or a generic operation, defined during the mining process). We represent a plan as 

follows: 

 

% A plan is either simple or complex 

<plan> ::= <simple-plan> | <complex-plan> 
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% Simple plans are given by a single operation – defined in the dynamic schema – 

% plus plan cases and constraints (see below) 

<simple_plan> ::= simple:(single:<op-signature>,  

                          cases:[<case-list>], 

                          constraints:[<ctr-list>]) 
 

%Complex plans are given a complex operation - either a composite or a generic operation 

<complex_plan> ::= complex:(<composite-op>) | complex:(<generic-op>)  
 

% A composite operation is defined by components and the order dependencies between them, 

% plus plan cases and constraints (see below) 

<composite-op> ::= composite:<op-signature>, 

                   frame:<op-frame>, 

                   components:[ <comps-list> ], 

                   dependencies:[ <deps-list ], 

                   cases:[ <case-list> ], 

                   constraints:[<ctr-list>] 
 

<comps-list> ::= <comp-def> | <comp-def>,<comps-list> 

<comp-def> ::= <fid>:<op-signature>  

<deps-list> ::= <fid>-<fid> | <fid>-<fid>, <deps-list> 
 

% A generic operation is defined by its specializations  

% plus cases (see below) 

<generic-op> ::= generic:<op-signature>,  

                 frame:<op-frame>,  

                 specializations:[<specs-list>], 

    cases:[ <case-list> ] 

<specs-list> ::= <op-signature> | <op-signature>, <specs-list> 
 

% Plan definitions: lists of cases and lists of constraints, respectively 

<plan-defs> ::= cases:[<case-list>], constraints:[<ctr-list>] 

<case-list> ::= <case-id> | <case-id>,<case-list> 

<ctr-list> ::= <ctr> | <ctr>,<ctr-list> 
 

Notice that single operations are defined in the dynamic schema and therefore 

do not contain the frame of the operation.  

For the simple plans and the complex plans given by composite operations we 

mine the constraints over the arguments that are given by value clauses in the static 

schema. In the current implementation of the Library of Typical Plans for Process 

Mining, these constraints are given as ranges of numerical values.  

The complex plans given by generic operations are simplified to refer only to 

the case – with no other arguments – and hold no explicit constraints. In the 

representation above and in all other representations of plans we show an explicit 

list of constraints for the variables. As we discuss in Section 4.1.2, the 

manipulations of the constrained variables are all reliant on annotated variables via 

the CLP(FD) library. We define a mechanism for extracting an explicit 
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representation of the constraints to store them as part of the Library Index structure, 

assert them as facts in the Prolog database. This is discussed in Section 4.1.3. 

All plans contain the lists of cases that perform that plan. This is later used to 

determine the support of the plan for decision making and analysis. This can later 

be used for the conformance checking with respect to ‘how frequently’ a plan aligns 

with another, or with a normative pattern. It also enables the decision mining, based 

on characteristics of the cases, as discussed in Section 3.5.  

The complex operations are defined in the mining process, and as such the 

plans will also contain a definition of the operation frame. The simple operations 

correspond to the operations defined in the static schema – hence only the operation 

signature suffices. 

For composite operations we follow the definitions in (FURTADO e 

CIARLINI, 2001): We define a list of components (representing part-of links) tagged 

with atoms <fid> such as f1,f2,…, and a list of dependencies whose elements <fid>-

<fid>, such as f1-f2, denote order dependency requirements. These dependencies 

are determined based on the satisfaction of the preconditions and effects. The list 

of dependencies will not include transitive dependencies. Eg, if the list contains f1-

f2 and f2-f3 the element f1-f3 is omitted – it can be derived by transitivity from the 

other dependency requirements. This standard format is leveraged for comparing 

the similarity of composite operations, since similar operations must have similar 

order dependencies of their components. 

Below, we provide examples of a simple plan, a complex plan given by a 

composite operation, and a complex plan given by a generic operation in our 

educational domain. These are arbitrary plans, mined from an arbitrary goal-

inference rule, just for the purposes of demonstration. 

 

simple:(single: ctc1002(2368,1,87),  

 cases:[2368], 

 constraints:[]). 
 

The above plan means that student 2368 reached the goal 𝑔 from situation 𝑠 

by performing only the discipline CTC1002, in his first semester, obtaining a grade 

of 87. The plan definitions relate that 2368 is the only case following this plan – 

hence why it is a grounded operation.  
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Assuming that the mining process later finds that another student, 2390, also 

reaches the goal with a similar plan, it will generalize this simple plan. That is, 

instead of keeping both plans, it will consider the following generalized plan: 

 

simple:(single: ctc1002(S,1,A),  

 cases:[2368, 2390], 

 constraints:[ (A in 81..87)]). 
 

The resulting plan is given by an operation signature that is not grounded - in 

this case, with respect to the first argument (the case id) nor the third argument (the 

grade). Since students 2368 and 2390 had different grades in the discipline, the 

range of grades is kept as a constraint over the variable A, representing both their 

grades.  

Below we see an example of a complex plan given by a composite operation. 

 

complex:( composite:      c1(S),  

          frame:          [student/o], 

          components:     [f1: mat1161(S,1,A), 

                           f2: mat1162(S,B,C) ], 

          dependencies:   [f1-f2], 

    cases:          [2371, 2387, 2388], 

    constraints:    [(A in 81..89), 

                           (B in 2..3), 

                           (C in 61..98) ] ). 
 

The composite operation c1 is defined with only the case id as a single 

argument, and a matching operator frame. This plan represents that students 2371, 

2387 and 2388 reached the goal from the situation by passing discipline MAT1161 

in the first semesters, with a grade varying between 81 and 89. They also passed 

discipline MAT1162 either in the second or third semester (as given by the interval 

constraint over variable B). The order dependencies between the execution of these 

operations are explicitly given by the dependencies term. 

Assume that both plans above are recognized as plans for the same rule. Since 

they are not similar plans – as per our definition above – we add a generic operation 

to represent both as alternative plans: 

 

complex:( generic:        g1(S),  

          frame:          [ student/o], 

          specializations:[ ctc1002(S,1,A), 

                            c1(S) ], 

    cases:          [2368, 2371, 2387, 2388, 2390]). 
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The generic operation g1(S) means that there are two distinct plans to reach 

the goal – one is the plan given by the single operation of discipline CTC1002 in 

the first semester; and the other is the complex plan given by the composite 

operation c1. Notice that in the definition of the generic operations the arguments 

are variables – we follow the design decision from (FURTADO e CIARLINI, 

2001), which relieves us from having to propagate changes in variables in view of 

future detections of similar plans. 

As a concrete example in our educational domain, recall the goal-inference 

rule described in Section 3.3.3. Notice that we use the app and rep functors for the 

op-success> and <op-failure> terms in place of success and failure, respectively, as 

previously discussed in Section 3.3.4. 

 

gi_rule( 3, student(Student),                                   % Agent 

 ( student(Student),  

         not app(Student, _, _), not rep(Student,_, _) ),       % Situation 

 ( not rep(Student,_, _),                                 % Goal 

   app(Student, inf1403, 1), app(Student, inf1005, 1), 

   app(Student, mat1200, 1), app(Student, mat1161, 1), 

   app(Student, fis1033, 1), app(Student, fis1034, 1) ) ). 
 

That rule represents the goal of students who just enrolled in the program to 

complete the recommended disciplines for the first semester in their first academic 

term. For a set of students in the domain we obtain the following complex plan: 

 

complex : (composite : c1(A),  

           frame: [student/o],  

           components: [ f1 : fis1033(A,1,B), 

                         f2 : fis1034(A,1,C), 

                         f3 : inf1005(A,1,D), 

                         f4 : inf1403(A,1,E), 

                         f5 : mat1161(A,1,F), 

                         f6 : mat1200(A,1,G) 

                       ], 

           dependencies: [], 

           cases: [2388,2387,2371], 

           constraints: [ (B in 68 .. 90), 

                          (C in 81 .. 100), 

                          (D in 93 .. 99), 

                          (E in 69 .. 85), 

                          (F in 81 .. 89), 

                          (G in 68 .. 72) 

                        ] 

          ). 
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This means that only three case 2388, 2387 and 2371 – out of the set of 23 

cases considered - achieved this goal following this plan. In the next section we 

discuss how the cases recorded in the plans are used to reason about the support of 

plans. In Chapter 4 we discuss the implementation of the Plan Mining mechanism 

in the Library of Typical Plans for Process Mining. 

As an additional example, consider the goal-inference rule with a <rule-id> 

identifier 8-1: 

 

gi_rule( 8-1, student(Student), 

     ( student(Student),  

             rep(Student, D1, S),  

             not app(Student, D2, S)  

            ), 

            graduated(Student) ). 
 

This rule captures the plans of graduated students from a semester with failed 

disciplines and no successful disciplines until graduation. For this rule, in the same 

set of students we obtain the following plans: 

 

complex : ( generic: g1(A), 

            frame: [student/o], 

            specializations: [c2(A),c1(A)], 

            cases : [2389,2387,2371] ), 
 

complex : ( composite: c2(2389),  

            frame: [student/o],  

            components:[...],                       %suppressed for the example 

            dependencies:[...],                     %suppressed for the example 

            cases: [2389],  

            constraints: []), 
 

complex : ( composite: c1(B), 

            frame: [student/o], 

            components: [f1:inf1951(B,C,D), f2:graduate(B,14)], 

            dependencies: [f1-f2],  

            cases : [2387,2371], 

            constraints : [ (C in 13..14), (D in 75..100)]) 
 

Notice that the plans of students 2371 and 2387 are captured in a single 

composite operation via most specific generalization. We suppress the components 

and dependencies of the plan c2 of student 2389 due to its size (it contains 30 

operations). Given both plans relate to the same goal-inference rule, we compose a 

generic operation in which each of the composite operations figure as 

specializations. This mechanism is described in Section 4.1.2. 
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3.4 Conformance Checking 

The second main task of Process Mining approaches is the conformance 

checking. This task relates a process model (an executable model) to an event log. 

The goal is to find the commonalities and discrepancies between the modeled 

behavior and the behavior in the event log. In this section we discuss how plan-

verification over the typical plans obtained from the mining described in Section 

3.3.5 can be used to achieve the goals of conformance checking. 

In the literature the technique is described in terms of token replay (as opposed 

to the play-out, or simulation, and play-in, process discovery). That terminology is 

derived from the tokens in the graphical models such as Petri Nets. We use the plan-

verification mechanisms to replay the plots according to the operations in our 

conceptual model.  

The literature also describes how conformance checking can be used to 

compare an event log against a descriptive model, or against a normative model. In 

the first case, the goal is to identify discrepancies that indicate how the process 

model must be improved to adequately capture that behavior. In the case of 

normative models, the deviations indicate desirable (or undesirable) deviations 

from the process as it is originally designed. 

Accordingly, in this section we will discuss the conformance checking in two 

levels. The first level is the conformance checking of the conceptual model 

discovered from the event log (and domain knowledge), as described in the Section 

3.3. We show how the planning approach allows us to reason about the 

discrepancies in insightful ways. We draw correspondences between this level and 

the conformance checking via replay, as well as the task of business alignment or 

auditing. This is discussed in depth in Section 3.4.1. The consequences of the 

auditing may motivate the model repair as a model enhancement task (see Section 

3.5.1). 

The second level consists of the conformance checking of the typical plans, 

discovered via the plan mining techniques discussed in Section 3.3.5 and 

implemented in the Library of Typical Plans for Process Mining. We show how the 

reasoning of the support of the plans – and related metrics - in relation to the rules 

can provide insights of the conformance of the model with respect to the normative 
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patterns. We relate the support to the fitness of the model. This is discussed in 

Section 3.4.2. 

The conformance checking approaches described here are directly tied to the 

approaches described in the literature. However, the conceptual model formalism 

and the planning mechanisms lend themselves to other approaches that could also 

achieve the goals of conformance checking. As stated in (FURTADO, 1992) 

“formalisms are useful in verification tasks even when they have to be 

complemented by the expert’s intuition in tasks that involve discovery”. We could 

leverage the approaches for formal verification to find deviations and discrepancies 

between the event logs, the domain specifications, and the plans. 

One such approach is the model checking approach (GOTTIN, 2013). Model 

checking is a technique for determining whether a property holds in a formally 

specified system – typically, a transition system or a Kripke structure (BROWNE, 

CLARKE e GRÜMBERG, 1988). Model checking algorithms explore the state 

space that is defined by the system specification to determine the logical restrictions 

are satisfied. The properties to be verified are typically temporal, that is, logical 

formulae that express constraints about the properties of the events over time. 

Despite the problems related to state-space explosion, there are practical 

applications of model checking for planning domains, including in partially 

observable domains (DÓRIA, CIARLINI e ANDREATTA, 2008). In our 

conformance checking approach we could leverage that model checking is typically 

applicable to planning domains to verify hypotheses about complex properties of 

the system over time. 

The conformance checking approaches described below also provide insights 

for the definition of additional goal-inference rules, both for the analysis of the 

domain as well as for ‘model repair’. We recapitulate this discussion in Section 3.5. 

3.4.1 Plot replay 

In this section we discuss how the planning techniques allow for the 

conformance checking of the process models as represented by the conceptual 

modeling discipline. Van der Aalst (2011, p. 193) discusses a “concrete technique 

for quantifying conformance and diagnosing non-conformance” on graphical 

models based on token replay. This technique is performed re-executing the traces 
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in the log, comparing them to the possible firings in a Petri Net model. In a first 

approach the replay is stopped upon detecting a problem (i.e. a case event that 

cannot be captured by the model). That, however, hides the issues in later parts of 

the model, especially when many of the cases cannot be ‘parsed’ completely. The 

approach proposed is then to continue replaying the trace on the model while 

recording the problems. In a Petri Net model this accounts for keeping a record of 

‘missing tokens’ (VAN DER AALST, 2011, p. 195) . 

We implement a replay mechanism based on plan-verification, and used the 

operations defined in the dynamic schema to detect the preconditions of operations 

that are not met.  

Like in the token replay approach, we do not stop replaying a plot upon 

finding a problem. Rather, in a kind of counter-factual analysis, we allow the failed 

preconditions to hold, recording that that is so, and propagating the effects of the 

failed operation forwards. 

For the replay of plots, we rely on a forward-chaining of operations – that is, 

a mechanism similar to simulation – in which the preconditions of each operation 

are tested for satisfiability given the previous operations in the plot.  

Like in van der Aalst’s token replay, we don’t stop replaying the trace upon 

encountering a problem. Rather, we collect the discrepant operations (along with 

their preconditions) and continue checking the remainder of the plot. At the end of 

the conformance checking via replay, we obtain all of the discrepant operations 

(along with the respective sets of preconditions of the discrepant operations, for 

further analysis). 

As an example, in our educational domain, we consider the case of student 

2368 (from Table 2 and previous examples). The plot consists of 61 operations. The 

process finds almost all of them to be conformant. However, one of the disciplines 

performed in the student’s last semester is found to be discrepant. The process 

reports the following: 

 

% The allowed operations  

[] 

%The failed operations 

[inf1640(2368,14,68)]  

%The preconditions that could not be met 

[ inf1640(2368,14,68), 
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 [ [ (app(2368,eng1400,A), A #< 14, app(2368,inf1019,B), B #< 14,) 

     (app(2368,eng1400,C), C #< 14, app(2368,inf1316,D), D #< 14) 

 ] ] 

] 
 

Meaning that the noncoformance of the discipline INF1640 does not affect 

further operations. We can also see that neither of the two alternative preconditions 

for the operation were met. Upon examining the student’s plot, we verify that 

indeed he did not perform the discipline ENG1400, required in both alternative 

preconditions.  

And also, via the recursive invocation in which we allow the failed operation: 

% The allowed operations  

[inf1640(2368,14,68)] 

%The failed operations 

[ ] 

%The preconditions that could not be met 

[ ] 

Meaning that if we disregard that nonconformance, no additional problems 

with the plot can be found. 

Notice that in this example, student’s 2368 plot is a partial trace. It does not 

include a case termination operation and represents that the student is still 

performing the process. Hence, the conformance checking mechanism can be used 

within the context of online process mining. This characteristic of the conformance 

checking task is highlighted by van der Aalst : “all events in a business process can 

be evaluated and this can be done while the process is still running. The availability 

of log data and advanced process mining techniques enable new forms of auditing 

(…). Process mining in general, and conformance checking in particular, provide 

the means to do so.” (VAN DER AALST, 2011, p. 194). 

As another example, consider the case of student 2371.  

 

% The allowed operations  

[] 
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%The failed operations 

[ inf1640(2371,5,72),  psi1849(2371,7,100),  

  psi1847(2371,8,100), inf1416(2371,9,62), graduate(2371,14) ] 

%The preconditions that could not be met 

[ inf1640(2371,5,72), 

  [ [ app(2371, eng1400, A), A #< 5, 

      app(2371, inf1019, B), B #< 5 

          ], 

    [ app(2371, eng1400, C), C #< 5, 

            app(2371, inf1316, D), D #< 5 

          ] 

        ], 

  psi1849(2371,7,100), 

  [ [ app(2371, psi1848, E), E#<7 ]  

  ], 

  psi1847(2371,8,100), 

  [ [ app(2371, psi1840, F), F#<8 ], 

    [ app(2371, psi1848, G), G#<8 ] 

        ], 

  (...) %Suppressed for ease of representation 

] 
 

In this case, several operations are found to be discrepant. We find that 

typically disciplines of other departments are discrepant. For example, PSI1849 and 

PSI1847 above are disciplines offered by another department, as indicated by the 

code ‘PSI’ (see the Appendix). Since the students in the program typically only 

perform a small number of such disciplines, it is common to find that their pre-

requisites, which tend to be for disciplines of the same area, are not met. 

In this example above we suppress part of the sets of preconditions that could 

not be met, for clarity. In the examples below they are suppressed entirely. In one 

of the recursive invocations (we’re skipping some of the results for ease of 

representation) of the conformance checking replay, we obtain: 

 

% The allowed operations  

[ psi1849(2371,7,100)] 

%The failed operations 

[ inf1640(2371,5,72), psi1847(2371,8,100),  

  inf1416(2371,9,62), graduate(2371,14) ] 

%The preconditions that could not be met are suppressed in this example 
 

That is, by allowing the operation PSI1849 (as if it were conformant), we still 

verify that the other operations are discrepant. In another of the recursive 

invocations we obtain: 
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% The allowed operations  

[ inf1640(2371,5,72) ] 

%The failed operations 

[ psi1849(2371,7,100), psi1847(2371,8,100), graduate(2371,14) ] 

%The preconditions that could not be met are suppressed in this example 
 

Notice that by allowing INF1640, the discipline INF1416 would no longer be 

considered discrepant. This means that the execution of INF1640 satisfies the 

missing requirements of INF1416. Furthermore, consider the results of yet another 

recursive invocation in this case: 

 

% The allowed operations  

[ inf1640(2371,5,72), psi1849(2371,7,100), psi1847(2371,8,100)] 

%The failed operations 

[ graduate(2371,14) ] 

%The preconditions that could not be met are suppressed in this example 
 

This example illustrates how several operations can be ‘allowed’ for the 

conformance checking replay to go on. In this particular example, we observe that 

even if we allowed the three discrepant operations, the student still should not have 

been able to graduate, according to the requirements determined in the case 

termination operation preconditions for this example.  

This motivates the model repair, as we will discuss in Section 3.5.1. We 

provide additional discussion on the implementation of the conformance checking 

replay method in 4.2.  

3.4.2 Model fitness 

One of the four main quality criteria defined for the quality of process models 

is the fitness, related to the capacity of the model of representing the behavior 

observed in the domain – that is, the behavior reflected in the event log. The fitness 

of a model measures “the proportion of behavior in the event log possible according 

to the model” (VAN DER AALST, 2011, p. 194). 

The goal of this verification is to assert the reliability or confidence of the 

model. In our case, we relate this to the verification of how the plots conform to the 

goal-inference rules and, by extension, to each typical plan, since the goal-inference 

rules implicitly define a set of plans that reach a goal from a certain situation. We 

will rely on metrics related to the support of the rules (and plans), deriving the 

concepts from association rule mining. 
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3.4.2.1 Support and confidence of goal-inference rules 

We will leverage the information of the cases that are identified for each of 

the typical plans to determine the support of the plan in the domain, as well as other 

metrics of interest, drawing from the literature in frequent itemsets and association 

rules. 

Recall that an association rule is defined as an implication of the form X⇒Y, 

where the antecedent X and consequent Y (also called the left-hand-side, or LSH, 

and right-hand-side, RSH, respectively) are itemsets. The support(X∪Y) (also 

represented as supp(XUY)) is the ratio between the number of cases that satisfy the 

rule (with both the antecedent and consequent) over the total items in the domain. 

We define a notion of support for our goal-inference rules. Our goal-inference 

rules are given by an agent 𝑎, a situation 𝑠, and a goal 𝑔. Considering the situation 

𝑠 as the antecedent and the goal 𝑔 as consequent, we define the support(𝑠 ⇒ 𝑔) of 

the rule as the ratio between the number of cases that follow the plans in the rule 

and the total number of cases in the domain. 

Recall 𝒞 is the set of all cases in the domain. Let 𝑘𝑟 be the number of cases 

that perform a plan in rule 𝑟 = (𝑎, 𝑠, 𝑔) – that is, 𝑘𝑟 is the number of cases that 

reach the goal 𝑔 after the reaching the situation 𝑠 via any of the plans in the goal-

inference rule 𝑟. That number is the count of the union of all cases found in all plans 

of the goal-inference rule. Then, the support(𝑠 ⇒ 𝑔) = 
𝑘𝑟

|𝒞| 
 . 

Figure 1 shows a visual representation. The representation introduced in this 

Figure will be used for later examples. 

 

Figure 1 - A visual interpretation of the support. 

In this figure the rectangle box comprises the set of 100 cases in the domain. 

The dark portion represents the cases that perform a plan of the rule – in this case, 

20. The number of those cases divided by the total number of cases in the domain 

straightforwardly, yields the support(𝑠 ⇒ 𝑔) = 0.2. The support is also called the 
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coverage in the literature – it represents the proportion of the domain covered by 

the set. In our case, one-fifth of the students in the domain perform a plan in this 

rule. 

Recall the goal-inference with <rule-id> 2 described in Section 4.3 – with the 

approval in all required disciplines in the recommended order and no failures. We 

find in the typical plan mining that no students ever perform a plan under those 

restrictions. Hence, the support(𝑠 ⇒ 𝑔) of rule 2 is zero. 

Recall the goal-inference 3 originally described in that same section and again 

in the example of Section 3.3.5, as well as the typical plan mined using that rule, 

also from the same example.  

gi_rule( 3, student(Student),                                   % Agent 

 ( student(Student),  

         not app(Student, _, _), not rep(Student,_, _) ),       % Situation 

 ( not rep(Student,_, _),                                 % Goal 

   app(Student, inf1403, 1), app(Student, inf1005, 1), 

   app(Student, mat1200, 1), app(Student, mat1161, 1), 

   app(Student, fis1033, 1), app(Student, fis1034, 1) ) ). 
 

% A composite plan (simplified) 

complex : (composite : c1(A), (...), 

           cases: [2388,2387,2371], (... )  ). 

The plan describes how three students (2388, 2387, and 2371) are the only 

ones that, from the initial enrollment, succeed in the disciplines recommended for 

the first semesters. These are the students whose plot reach the goal’s situation and 

the goal’s rule. Assuming in this and the following examples that there are 23 cases 

in the set of students considered. Thus, the support(𝑠 ⇒ 𝑔) of rule 3 is 0.1304.  

The support of the rule is a metric of how frequently agents have followed 

plans for that rule in the domain. The support(𝑠 ⇒ 𝑔) captures the relevance of the 

rule 3 above nicely because the situation 𝑠 of that rule – being a student at the 

beginning of the academic program - is met by all students in the domain. 

Consider the case of goal-inference with <rule-id> 8-1, also from Section 

3.3.5: 

 

gi_rule( 8-1, student(Student), 

     ( student(Student), rep(Student, D1, S), not app(Student, D2, S) ), 

            graduated(Student) ). 
 

Consider the mined plan’s cases, in a short informal representation: 
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complex : ( generic:  g1(A), (...),      cases : [2389,2387,2371] ), 
 

complex : ( composite: c2(2389), (...), cases:  [2389], (...) ), 
 

complex : ( composite: c1(A), (...),    cases : [2387,2371], (...) ). 
 

 

The union of cases that performs plans g1, c2 and c1 is {2389, 2387,2371}. 

Hence, the support of this rule is also 0.1304. 

However, in this case, the rule’s situation is not something that happens for 

all cases. It only applies to students that had a semester without any successful 

disciplines (and are seeking to graduate). In this case, it is interesting to know how 

often the plan is performed given that the situation that defines the rule holds.  

We relate this to the concept of confidence in the literature of association rule 

mining. The confidence(X⇒Y) can be interpreted as an “estimate of the probability 

P(Y|X), the probability of finding the RHS of the rule in transactions under the 

condition that these transactions also contain the LHS” (HORNIK, GRÜN e 

HAHSLER, 2005). It is computed as the ratio support(X∪Y)/support(X), where 

support(X) is the number of cases that contain the antecedent over the total items in 

the domain. 

In our approach, let C(s) be the set of cases in the domain whose plot’s reach 

the situation 𝑠 – but not necessarily the goal 𝑔. Let also support(𝑠)= 
C(𝑠)

|𝒞|
 . 

 We define the confidence(𝑠 ⇒ 𝑔) of the rule as support(𝑠 ⇒ 𝑔)/support(𝑠). 

This gives an indication of how many of the students that could follow a plan in 

that rule successfully do so.  

Figure 2 shows a visual representation.  

 

Figure 2 A visual representation of the confidence of a goal-inference 

rule. 

In this figure again the box represents the domain with 100 cases. The hashed 

portion represents the set of cases C(s). As before, the dark area represents the set 
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cases that perform a plan of the rule, from the situation to the goal. The latter set is 

intuitively a subset of the first. The confidence of the rule is proportional to the size 

of the latter set in contrast to the first.  

We implement a mechanism for computing the support of a situation 𝑠, 

described in Section 4.2.2. There are eleven cases in the domain that reach the 

situation of rule 8-1 – that is, 11 out of the 23 students perform a semester without 

any successful disciplines. With the support(𝑠 ⇒ 𝑔) = 0.1304 and the support(𝑠) = 

0.4782 we have the confidence(𝑠 ⇒ 𝑔) = 0.2727. This is a low value of confidence 

– we cannot rely on the situation as a predictor of the goal. 

Notice again that the confidence metric for the rules, like rule 3, whose 

situation is reached by the plots of all cases, is uninteresting. In those cases, the 

support(𝑠)=1 and, by definition, the confidence(𝑠 ⇒ 𝑔) will be equal to the 

support(𝑠 ⇒ 𝑔). 

3.4.2.2 Support and confidence of plans 

So far, we have only discussed the support and confidence of goal-inference 

rules. We can also compute the above metrics per plan. For goal-inference rules that 

yield several plans, we typically define a generic operation - the support and 

confidence of those rule will typically correspond to the support and confidence of 

that plan given by a generic operation. With the information of the support(𝑠) at 

hand, we define a recursive procedure that computes the support and confidence of 

each of the plans. For the example of goal-inference 8-1, we have: 

 

Support of Rule 8-1: 

        support:    0.13043478260869565  

        confidence: 0.2727272727272727 

        >g1(A): 

                support:    0.13043478260869565  

                confidence: 0.2727272727272727 

        >c2(2389): 

                support:    0.043478260869565216  

                confidence: 0.0909090909090909 

        >c1(A): 

                support:    0.08695652173913043  

                confidence: 0.1818181818181818 

Again the low support scores mean that the plans are not frequent in the 

domain – very few students perform the plans from situation to goal. The low 

confidence values mean that most of the students that could perform the plan – that 
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reach the goal-inference rule’s situation – do not reach the goal. Take the plan given 

by operation c2: we have a support of 0.0434 and a confidence of 0.0909. This 

means that plan is only performed by 1 out of the 23 students, and that 10 out of the 

11 students that could – that were in the situation of having a semester with no 

successful activities – did not follow this plan for graduating.  

Operation c1 has double the support and confidence of c2; it was a plan 

followed by two students (as opposed to a single one). Given that generic operations 

are composed to represent the union of the plans mined from a goal-inference rule, 

it is straightforward to realize that the support and confidence of the generic 

operations will comprise the sum of the support of its specializations. This is a 

rather simple example, but illustrates how different plans within the same rule can 

have different support and confidence metrics. 

We further discuss the implementation of the mechanisms for computing 

support and confidence of plans in the Library of Typical Plans for Process Mining 

in Section 4.2.2. 

The reporting of support and confidence of plans also applies to simple plans. 

Consider the goal-inference rule 9 below: 

 

gi_rule( 9, student(Student), 

 ( student(Student), rep(Student, _D1, 1)), 

        rep(Student, _D2, 2) 

). 
 

This rule captures the behavior of students that start the program failing one 

discipline and proceed to fail in a discipline in the following semester. For this rule, 

we obtain the plans: 

 

complex : (generic :         g6(2384), 

           frame :           [student/o], 

           specializations : [ mat1157(_,_,_), c19(2384), inf1008(2384,_,_),  

                               fis1033(2384,_,_), inf1009(2384,_,_) ], 

           cases :           [2390,2385,2384,2377,2376,2370,2368] 
 

simple : (single :       mat1157(2390,2,20),  

           cases :       [2390],  

           constraints : []), 
 

complex : (composite :   c1(A), 

           frame :       [student/o], 

           components :  [f1:inf1005(A,1,B),f2:inf1007(A,2,C)], 

           dependencies :[f1-f2], 
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           cases :       [2385,2384], 

           constraints : [(B in 69..71), (C in 11..17)]), 
 

simple : (single :       inf1008(_,2,_),  

          cases :        [2382,2381,2379,2377],  

          constraints :  []), 
 

simple : (single :       fis1033(2376,2,0), 

          cases :        [2376], 

          constraints :  []), 
 

simple : (single :      inf1009(_,2,_), 

          cases :       [2383,2370,2368], 

          constraints : []) 
 

And the following interest metrics: 

 

Support of Rule 9: 

        support:    0.4782608695652174  

        confidence: 0.7333333333333334 

        >mat1157(2390,2,20): 

                support:    0.043478260869565216  

                confidence: 0.06666666666666667 

        >c1(A): 

                support:    0.08695652173913043  

                confidence: 0.13333333333333333 

        >inf1008(A,2,B): 

                support:    0.17391304347826086  

                confidence: 0.26666666666666666 

        >fis1033(2376,2,0): 

                support:    0.043478260869565216  

                confidence: 0.06666666666666667 

        >inf1009(A,2,B): 

                support:    0.13043478260869565  

                confidence: 0.19999999999999998 
 

This result indicates that the about half of the students in the dataset fail a 

discipline in both the first and second semesters. The two most common disciplines 

to fail in the second semester in this situation are INF1008 and INF1009. Both are 

disciplines without any pre-requisites recommended for the second semester. 

Perhaps modifying the rules in the domain to require appropriate pre-requisites for 

these disciplines could positively impact the performance of students. 

This example highlights the kinds of insights that the discipline of Process 

Mining aims to provide process administrators and managers. We further discuss 

concrete examples in the educational domain in the next chapter. 
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3.4.2.3 Additional interest metrics 

We posit that with the mechanisms used to compute the support and 

confidence of rules described above could be used to compute other metrics of 

interest and relevance. In the literature of association rules, one such typical 

measure is the lift, used to determine the strength of the association rule. We will 

define the concept of lift for goal-inference rules and discuss other possible metrics. 

In association rule mining the lift is the ratio between the rule’s confidence 

and the expected confidence, with the assumption that there is no statistic relation 

between the LHS and RHS. Formally, “the lift of a rule is defined as lift(X⇒Y) = 

supp(X∪Y)/(supp(X)supp(Y)) and can be interpreted as the deviation of the support 

of the whole rule from the support expected under independence given the supports 

of the LHS and the RHS". (HORNIK, GRÜN e HAHSLER, 2005). An alternative 

(and equivalent) way to compute the lift is lift(X⇒Y) = supp(Y)/confidence(X⇒Y)/ 

 A lift value of 1 indicates that the antecedent and consequent are independent 

of each other; a value higher than 1 indicates that the antecedent has a positive effect 

on the consequent, and a value lower than one indicates a negative effect (that is, 

the lower the lift, the more we expect to not observe Y given X). 

Intuitively, we reason: if X e Y were independent sets, we would expect a 

supp(X∪Y)= Q. If the actual support is greater than Q, then the lift will be greater 

than 1. If the actual support is lower than Q, the lift will be smaller than one. 

In our approach we define the lift(𝑠 ⇒ 𝑔) of the goal-inference rule as 

support(𝑠⇒𝑔)

(support(𝑠)support(𝑔))
 , where the support(𝑔) is defined similarly to the support(𝑠). 

That is, with C(𝑔) as the set of cases that reach the goal – but not necessarily the 

situation - and support(𝑔)=|  
C(𝑔)

𝒞
|. An alternative (and equivalent) way to compute 

it is lift(𝑠 ⇒ 𝑔)= 
confidence(𝑠⇒𝑔)

support(𝑔)
. 

The mechanism implemented in the Library of Typical Plans for Process 

Mining for computing the support of goal 𝑔 is the same as for computing the support 

of situation 𝑠. Hence, we obtain an additional measure of how relevant the relation 

between the situation and goal is. We expect to find lift values greater than one for 
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goals that positively correlate with the situation in the domain. A visual 

representation of this interpretation is given in Figure 3.  

 

Figure 3 - A visual representation of the lift of goal inference rules. 

In this Figure 3 each example is again a domain with 100 cases (the box), the 

set of cases reaching the situation C(𝑠) is given by the left-leaning (\\\) hashed lines, 

and the set of cases reaching the goal C(𝑔) is given by the right-leaning (///) hash 

lines. In all scenarios the support(𝑠)=0.20, and we vary the values of the support(𝑔). 

The examples on the left are the ones with a larger support(𝑔)=0.85. The examples 

on the right are the ones with a smaller support(𝑔)=0.20.  

In the middle row we have lift(𝑠 ⇒ 𝑔) = 1 for both cases. This means the 

support of the rule is exactly as we would expect in that scenario. Notice that when 

the support(𝑔) is larger we require a proportionally larger support(𝑠 ⇒ 𝑔) to obtain 

a lift of 1. It’s easy to see that the same is true for the support(𝑠) (both support(𝑔) 

and support(𝑠) are in the denominator of the computation). 

In the bottom row we have the maximum lift achievable with the support(𝑠) 

for both cases. The maximum lift is obtained when the confidence is maximum, 

support(𝑠)=support(𝑠 ⇒ 𝑔). On the left, we see that the maximum lift is 1.1764. On 
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the right, the maximum lift 5. The latter case easily reflects the intuition: a support 

of 0.2 is 5 times greater than the expected support 0.04. 

In the example above the goal of rule 8-1 – to graduate – is achieved by 5 out 

of the 23 students in the domain. Hence, the support(𝑔) is 0.2173. Given that 

supp(𝑠 ⇒ 𝑔)=0.1304 and that support(𝑠) = 0.4782, we have a lift(𝑠 ⇒ 𝑔) = 1.25. 

The value a little higher than 1 indicates that the goal is (weakly) positively 

correlated with the situation – this is unexpected, as the situation is a ‘negative’ 

situation. This insight is used in Section 3.5 to drive the generation of additional 

goal-inference rules. We will discuss this rule again in the model enhancement, 

when repairing the model to account for additional cases (see Section 3.5.3). 

The literature describes many other metrics of interest for frequent itemsets, 

association rules and frequent sequences. We discuss the implementation of the 

mechanism for computing the ones discussed in (ZAKI e MEIRA JR., 2014, p. 301-

309) in Section 4.2.2. 

Consider the additional example below. 

 

gi_rule( 3-3, student(Student),                                        %Agent  

           ( student(Student), app(Student,inf1403,_),               %Situation 

             app(Student,inf1005,_), app(Student,mat1200,_),   

             app(Student,mat1161,_), app(Student,fis1033,_), 

             app(Student,fis1034,_) ),  

         grad(Student)                                               %Goal 

). 
 

This rule relates to students that eventually complete the first recommended 

semester, and how they proceed to graduate. The plans mined from this rule include 

the plan with a generic operation, and the respective cases, as follows: 

 

complex : (generic : g2(S),  

           frame : [student/o], 

           specializations : [c19(S),c16(S),c9(_),c4(_)], 

           cases : [2388,2387,2375,2371]) 

 

In this case: 

Support of Rule 3-3: 

    support:    0.17391304347826086 

    confidence: 0.8 

    lift:       3.6799999999999997 

    leverage:   0.1266540642722117 % Additional interest metrics  

    conviction: 3.9130434782608705 %  

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



92 

 

The support(𝑠 ⇒ 𝑔) of the rule is 0.1739. The situation 𝑠 in this rule is reached 

by 5 out of the 23 students in the domain – hence, support(𝑠) = 0.2173. Thus, the 

confidence(𝑠 ⇒ 𝑔)=0.8, and the lift(𝑠 ⇒ 𝑔) =3.6799. This means that although the 

rule is infrequent, we have a high confidence that students that eventually complete 

the disciplines recommended for the first semester will graduate, and also find that 

reaching that situation (strongly) positively influences the goal of graduating. 

3.5 Model Enhancement  

The third task in Process Mining is the model enhancement. The goal of this 

task is to adapt the model to the needs for analysis and reasoning about the domain. 

It may comprise making the model more representative of reality, either by 

generalizing or extending the model. It may also comprise repairing the model to 

make it more accurate or precise  

There are many possible model enhancement approaches. We select a few, 

based on the characteristics of our example educational domain, to showcase the 

flexibility and power of representation of the planning approach based on a 

conceptual model. A useful classification of enhancement tasks is that of model 

repair tasks (for a more faithful model) and model extension tasks (for a model that 

represents more kinds of behaviors). These are related, and there are intersections 

in goals and methods among them.  

Typically, the repair approaches are motivated by issues identified in the 

conformance checking. The goal of the model repair tasks is to align process model 

with the actual events in the domain. In our example domain the conformance 

checking task detects the inability of the model to replay plots, as discussed in 

Section 3.4.1. We repair the model to account for the discrepancies between the 

plots and the model. These discrepancies can happen due to incomplete, missing, 

or erroneous information in the log – see the discussion on log quality in Section 

2.1. Assuming that the information in the log is correct and that the plots (the traces) 

are sound, the discrepancies may indicate the model is incorrect and/or incomplete. 

In our approach, these issues are dealt with by amending the conceptual model. 

The model extension approaches are motivated for the need of more general 

representation of behavior in the domain, and for the addition of perspectives to the 

model. Typically, these approaches motivated from domain-dependent analyses 
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and, in the case of additional perspectives, are reliant on additional case and event 

attributes from the event log (VAN DER AALST, 2011). 

3.5.1 Model repair 

The task of model repair relates to the discrepant or deviant behavior between 

the event log and the process model, typically identified via the conformance 

checking task.  

There are several possible explanations for deviations between the traces and 

the model. One of them is that the logging process is incorrect, e.g. with noise, 

missing or incorrect data. We will not consider that scenario, but it is discussed in 

the literature (LY, INDIONO, et al., 2012; SURIADI, ANDREWS, et al., 2017). 

Another possibility is that the model is incomplete or describes events in the 

wrong level of detail, and thus is incapable of replaying the trace. In that scenario 

we are concerned with the representative power of the model. We discuss the 

generalization, simplification or extension of the model in the next sections. 

Finally, the deviations may indicate that the cases are performing the process 

in ways that are outside of the boundaries determined by regulations or systems. 

These deviations between the event log and process model represent forbidden 

behavior that should not have been allowed. Capturing such behavior is the goal of 

the auditing task. Van der Aalst defines the auditing of process:  

“The term auditing refers to the evaluation of organizations and their 

processes. Audits are performed to ascertain the validity of and 

reliability of information about these organizations and associated 

processes. This is done to check whether business processes are 

executed within certain boundaries set by managers, governments 

and other stakeholders. For instance, specific rules may be enforced 

by law or company policies and the auditor should check whether 

these rules are followed or not. Violation of these rules may indicate 

fraud, malpractice, risks, and inefficiencies. Traditionally, auditors 

can only provide reasonable assurance that business processes are 

executed within the given set of boundaries. They check the operating 

effectiveness of controls that are designed to ensure reliable 

processing. When these controls are not in place, or otherwise not 
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functioning as expected, they typically only only check samples of 

factual data, often in the ‘paper world’”. 

(VAN DER AALST, 2011, p. 193) 

Thus, the auditing provides actionable insights for domain stakeholders to act. 

For example, detecting the deviations for ongoing traces can raise alarms. 

Alternatively, management may wish to visualize reports of discrepancies over time 

to pinpoint the reasons, culprits or resources responsible for the deviant behaviors. 

Finally, the process designers may wish to amend the model, “promoting” the 

deviant behavior to become the new normative pattern. In any case, these are 

domain-dependent decisions and will require domain knowledge input from 

specialists and stakeholders. 

Finally, the discrepancies may occur due to the inability of the model to 

represent the actual behavior in the domain – that is, due to the model being 

incorrect. In this case, we fix the mode by making the appropriate changes.  

In our approach, this will comprise identifying the operations that are most 

commonly discrepant in the cases’ plots, and amending their definitions, 

preconditions and effect accordingly.  

Recall our example from Section 6.1 in which we identified that a number of 

disciplines in the student’s plots that are of other departments (such as PSI1849 and 

PSI1847 in our example) are discrepant. Assume that in the analysis of this cases 

we find that they are exceptions to the rule of pre-requisites of disciplines.  

Hence, in this example our repair task consists of removing, for disciplines 

of other departments, the preconditions of disciplines from that department. For 

example, we would retract the clause: 

 

precond( psi1849 (Student, SemesterA, _Grade),     

         ( success(Student, psi1848, SemesterB), SemesterB < SemesterA).  
 

A consequence of the way we model the operations based on activity clauses 

is that this kind of repair can be performed a priori by altering the activity clauses 

of these operations. Recall that we define the operations based on the set of activity 

clauses 𝒜. We could remove each discipline 𝑑 from the list of pre-requisites of 

each activity 𝑎 ∈ 𝒜 when 𝒜[𝑎] and 𝒜[𝑑] start with that department code. Re-
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generating the dynamic schema from this repaired set of activity clauses would fix 

the problem by construction. 

Recall also from Section 3.4.1 that we identified that, for several cases, the 

requirements for the case termination operation graduate were not being met. This 

happened even when we ‘allowed’ all other discrepant operations in the replay.  

Assume that we are able to verify that is due to a mismatch between the 

process model and the actual process. In the educational domain, the rules for 

graduation are much more flexible than a concrete and predefined set of disciplines. 

They involve elective disciplines organized in groups, such that the student must be 

successful in one (or several) disciplines of the group before graduating. This 

motivates the generalization of the model to capture this additional behavior. In the 

Section 3.5.2 we will demonstrate how this generalization (with respect to the 

groups of disciplines) can be performed. We will also discuss other kinds of model 

repair and generalization by modeling additional behavior. 

Finally, consider the following cases from the replay of our cases: 

 

%With the failed preconditions --suppressed 
 

Case 2369 

% Allowed > Failed Operations 

[]  >  [dropout(2369,1)] 
 

Case 2372 

[inf1761(2372,6,57)]  >  [dropout(2372,8)] 
 

Case 2373 

% Allowed > Failed Operations 

[]  >  [dropout(2373,4)] 
 

Case 2379 

% Allowed > Failed Operations 

[inf1771(2379,8,50)]  >  [dropout(2379,10)] 
 

This is a subset of the students that drop out without failing the same discipline 

several times (the precondition we determined for the dropout operation). As for the 

graduation operation, we verify that this is due to a mismatch between the process 

model and the actual process. In Section 3.3.4 we discussed the definition of the 

case termination operations’ preconditions as domain dependent and how they 

might relate to exogenous events. These are harder to capture than those based on 

failures and successes in activities and time limits. This is the case for the dropout 

operation.  
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Upon analysis of the domain, we find that students that abandon the program 

are indistinguishable from the ones that are terminated due to domain rules. This 

highlights the importance of having more granular and accurate information of the 

case terminations for the modeling. We will discuss the addition of new case 

termination operations in Section 3.5.3. 

3.5.2 Model generalization and additional behavior 

Recall that the tradeoff between fitness, precision, generalization and 

simplicity of the model. In this section we discuss incrementing the model to 

represent more complex activities, promoting the generalization of the model at the 

cost of the simplicity (the model becomes intrinsically more complex). 

As we introduced in the previous section, one characteristic of the academic 

program domain that is not represented in the formulation used so far is that of 

elective disciplines. These are groups of disciplines from which the student must be 

approved in one or several of them in order to graduate. The graduation 

requirements involve a system for assigning credits to the student based on 

successful completion of disciplines, and the grouping of elective disciplines in 

groups dictates how many of those disciplines are required (but not a specific 

subset). 

We’ll deal with the modeling of groups of disciplines in an example. Assume 

that in the analyses of the typical plans the program administrators find that it is 

important to represent this behavior. For the purposes of exemplifying the extension 

of the conceptual model we will model a simplified mechanism of group 

disciplines, in which the student must choose a single discipline from the group 

(instead of possible several).  

Recall our definition of activity clauses obtained from the domain. We 

additionally obtain, in a similar fashion, a set of group clauses of the format: 

 

<group-clause> ::= group(<group-name>,[<group-activities>]). 

<group-activities> ::= <activity-name> | <activity-name>,<group-activities> 
 

For example, with several disciplines suppressed for the first two groups: 

 

group(cre0700,[cre1112, cre1113, ..., teo1802]). %17 suppressed 

group(fil0300,[fil1000, fil1002, ..., fil1814]). %21 suppressed 

group(inf0310,[inf1624, inf1629]). 
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group(let0310,[let1011, let1113, let1910]). 

group(inf0300,[inf1600, in1612]). 
 

The group names are added to the set of activy name 𝒜 and thus will figure 

as activities in the result and failure clauses. For example: 

 

app(2368, inf0310,2) %Student 2368 completed discipline of group inf0300 in semester 2 
 

The groups will not appear as operations in the student’s plots. However, they 

may appear as part of situation and goals in goal-inference rules. Consider the 

following goal-inference rule: 

 

gi_rule(12,  

        student(Student), 

        (   student(Student), app(Student,inf0310, _) ), 

        dropped(Student) ). 
 

This rule represents the students that complete the group INF0310 and later 

dropout. The approval in the group can be achieved via the approval in any 

discipline in the group, in this simple formulation. Hence, we define the approval 

in the group as an additional effect of the activities. We define additional added 

clauses to represent this. In the example, the approval in group INF03010 can be 

achieved via the approval in either discipline INF1624 or in INF1629. The mining 

of the plans with this rule yields a single plan, for student 2372: 

 

simple: ( single: dropout(2372,8), 

          cases:[2372], 

          constraints:[] ) 
 

The rule has low support (it is infrequent in the domain); low confidence (it 

is uncommon among students that are approved in the group); and low lift (dropping 

out is inversely correlated with completing the group): 

 

Support of Rule 12: 

    support:    0.041666666666666664 

    confidence: 0.16666666666666666 

    lift:       0.26666666666666666 
 

Although the mechanism is simple, it enables interesting additional results. 

For example, the following goal-inference rule: 

 

gi_rule(13,  

        student(Student), 

        student(Student), 
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        ( app(Student,cre0700,_), app(Student,fil0300,_) )  

        ). 
 

This rule represents the students that eventually complete both groups 

CRE0700 and FIL0300 of optative disciplines (see the Appendix). The mining of 

typical plans using this rule yields the following plans: 

 

complex : (generic : g1(A), 

             frame : [student/o], 

   specializations : [c4(A),c3(A),c2(_),c1(_)], 

             cases : [2389,2388,2387,2375,2372,2371,2370,2368], 

       constraints : []), 
  

complex : (composite : c4(2389), (... )), % suppressed, 1 case 
 

complex : (composite : c3(2371), (... )), % suppressed, 1 case 
 

complex : (composite : c2(B),  

               frame : [student/o], 

          components : [ f1 : cre1100(B,2,C), 

                         f2 : cre1127(B,D,E), 

                         f3 : fil1000(B,F,G) ], 

        dependencies : [f1-f2], 

               cases : [2388,2375,2372,2370], 

         constraints : [ (C in 91 .. 100), (D in 3 .. 6), (E in 90 .. 100), 

                         (F in 6 .. 10),   (G in 50 .. 88) ] ), 
 

complex : (composite : c1(H),  

               frame : [student/o], 

          components : [ f1 : cre1100(H,2,I), 

                         f2 : cre1116(H,J,K), 

                         f3 : fil1000(H,L,M) ], 

         dependencies : [f1-f2], 

               cases : [2387,2368], 

         constraints : [ (I in 70 .. 87), (J in 3 .. 5), (K in 90 .. 100), 

                         (L in 7 .. 9),  (M in 57 .. 95) ] ) 
 

Although there are several typical plans, one of them (c2) is much more 

common than the others. This is further highlighted by the analysis of the metrics 

of interest: 

 

Support of Rule 13: 

    support:    0.34782608695652173 

    confidence: 0.34782608695652173 

    lift:       1.0 

        >g1(A): 

                support:    0.34782608695652173  

                confidence: 0.34782608695652173 

         

       >c4(2389): 

                support:    0.043478260869565216  
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                confidence: 0.043478260869565216 

        >c3(2371): 

                support:    0.043478260869565216  

                confidence: 0.043478260869565216 

        >c2(A): 

                support:    0.17391304347826086  

                confidence: 0.17391304347826086 

        >c1(A): 

                support:    0.08695652173913043  

                confidence: 0.08695652173913043 
 

This is an example of how the model repair task can be performed by adding 

functionalities to the domain.  

Suppose that we found necessary to model the system of credits obtained by 

the students. We could capture that behavior in our the model by modifying the 

representation of discipline operations, their pre-requisites and their effects, and by 

leveraging negative effects (the deletion of facts from the state): the effect of 

successfully completing a discipline would comprise deleting a fact that states the 

current number of credits obtained by the student and adding a fact that states the 

new number of credits. For ease of representation, we won’t deal with that scenario 

in our educational domain examples, but similar behavior is captured in the 

examples in a domain with similar characteristics in (GOTTIN, DE LIMA e 

FURTADO, 2015). 

3.5.3 Model generalization and additional cases 

Model generalization is especially important when considering that additional 

cases can be observed as the event log progresses. Recall that in our approach we 

consider partial traces. Hence, the event log may be periodically incremented. 

Some cases will have new operations appended to their plot; some cases will 

terminate; and some entirely new cases will be admitted in the process.  

Here we will consider a different example – recall that our previous examples 

have dealt with a domain of 23 students. These are students that share a 

characteristic (the same academic term of first enrollment). We will now consider 

an additional set of 24 students (admitted, i.e., first enrolled, in a following 

academic term). Regardless, the modifications of the model that incur are 

exemplary of the kinds of the generalization tasks that are useful for the online 

admission of new cases. 
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In this example the set of cases 𝒞 will be updated. We will refer to the original 

set of student as 𝒞1 and the new set of students as 𝒞2, so that 𝒞 = 𝒞1 ∪ 𝒞2. 

Furthermore, we define a new case attribute 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 such that 

#𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡(𝑐) = 𝑎 for all 𝑐 ∈ 𝒞1, and #𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡(𝑐) = 𝑏 for all 𝑐 ∈ 𝒞2.  

Recall our discussion from Section 3.3. We originally defined the <entity-

clause> for the case entity as entity(student), with no entity attributes. Recall, 

however, that the conceptual model allows for such attributes in its formulation. 

Even though we leveraged the 𝑠𝑡𝑎𝑡𝑢𝑠 case attribute for the definition of the case 

termination operations in Section 3.3.2.1.2 we didn’t consider it for defining an 

attribute of the case entity since not all cases have a status value (some are still 

ongoing traces). 

We have an 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 value for each student. Hence, with the additional 

cases, we will consider the 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 attribute to compose the <attribute-list> 

of the case entity clause. Instead of a unary predicate, the case entity will be 

extended to include one argument. In this case: 

 

% The case entity with attribute 

entity(student, enroll). 
 

Where the atom enroll is given by the mapping 𝑄[𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡]. 

The change in the definition of the case entity in the definition of the static 

schema will reflect in the assertions of the initial state of plots (see Section 3.3.5). 

The plots still refer to a single case each, so it suffices to define the initial state with 

the additional enroll attribute. The general formulation is still: 

 

initial_database( <case-id>, <entity-clause> ). 
 

But now the example of the initial state for the plot of student 2367 is: 

 

initial_database( 2367, student(2367, a) ). % Student 2367 from the original set 
 

Similarly, the definitions of the goal-inference rules must change accordingly 

with respect to the agent, situation and goal terms. Wherever the case entity is used 

in the rule we add the additional argument to the clause. For example, the goal-

inference rule with id 3 introduced in Section 3.3.3: 

 

% Also updated to use the app and rep functors for the success and failure terms 

gi_rule( 3,   
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 student(Student, Enroll),                                 % Agent 

 ( student(Student, Enroll)                                % Situation 

         not app(Student, _, _), not rep(Student,_, _) ),  

 ( not failure(Student,_, _), app(Student, inf1403, 1),    %Goal 

         app(Student,inf1005,1), app(Student,mat1200,1), app(Student,mat1161,1), 

   app(Student,fis1033,1), app(Student,fis1034,1) ) ). 
 

The log ℒ is also extended to contain the traces �̂� for all 𝑐 ∈ 𝒞2. Recall 

TABLE from Section 3.2 representing the log with the traces of students 𝒞1. We 

show a sample of the traces of the appended log 𝒞 below in TABLE: 

Table 3 An excerpt from the extended event log 

Event 

id 

Case 

id 

 Event Attributes Case Attributes 

timestamp activity credits class lecturer grade enroll status 

77273 2368 8 INF1413 4 3WA Jessica 

Leon 

57 a  

77417 2370 7 INF1636 4 3WA Crystal 

Landry 

57 a dropped 

… … … … … … … … … … 

79665 2402 3 FIS1033 4 33V Caitlin 

Andrews 

5 b halted 

80879 2419 10 INF1951 2 3WE Ryan 

Gallagher 

100 b graduated 

Notice that we choose to represent the case attributes 𝑒𝑛𝑟𝑜𝑙𝑙 and 𝑠𝑡𝑎𝑡𝑢𝑠 

explicitly in the Table. This is just a notation convenience – in any case, the Process 

Mining approach assumes, since a case can be uniquely identified for each event, 

that the case attributes can be associated to the event without issues. 

The addition of these cases to the domain also introduces a new value for the 

𝑠𝑡𝑎𝑡𝑢𝑠 attribute. This can be seen in the example of student 2402, who has halted 

the academic program. We additionally revise the entire dataset (including the 

original cases) and assign the 𝑠𝑡𝑎𝑡𝑢𝑠 attribute of the transferred students to halted 

as well. 
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In Section 3.3.2.1.2 we defined the case termination operations based on this 

attribute. In the original dataset, besides ongoing traces, we had only graduated and 

dropped out students. Now we also have halted students.  

Thus, the extension of the model with the additional cases incurs in the 

definition of a new case termination operation, a <case-termination> term and the 

operations preconditions and effects. In this case, the operation does not have any 

preconditions. 

 

operation( halt(Student, Semester), [student/o, semester/in] ). 

% <case-termination> = halted/1 

added( halt(Student, Semester), halted(Student) ). 
 

The new case termination operation can be used as goal in goal-inference 

rules. An example is given below: 

 

gi_rule(20, student(Student,Enroll), 

           ( student(Student,Enroll), 

             rep(Student,_D1, 1 

           ), 

           ( halted(Student), 

             rep(Student,D,N1), 

             rep(Student,D,N2), 

             N2 #= N1+1 ) ). 
 

This rule aims to capture the plans of students who started the course with a 

failing discipline, who later halted the course having at least two consecutive 

semesters with failed activities. The results of the mining of plans for this rule in 

the extended model are given below. 

 

complex : (generic : g1(S), 

           frame : [student/o], 

           specializations : [c2(_),c1(_)], 

           cases : [2417,2382] ), 
 

complex : (composite : c2(2417), 

           frame : [student/o], 

           components : [ f1:inf1626(2417,9,0),  

                          f2:inf1626(2417,10,26),  

                          f3:halt(2417,10) ],  

           dependencies : [],  

           cases : [2417], 

           constraints : []), 
 

complex : (composite : c1(2382), 

           frame : [student/o], 

           components : [f1: adm1019(2382,11,16),  
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                         f2:adm1019(2382,12,39),  

                         f3:halt(2382,12)], 

           dependencies : [], 

           cases : [2382], 

           constraints : []) 
 

This identifies disciplines INF1626 and ADM1019 as the disciplines the 

students failed repeatedly before leaving the program or transferring. 

The results of the interest metrics are as follows. 

Support of Rule 20: 

    support:    0.0425531914893617 

    confidence: 0.06451612903225806 

    lift:       1.5161290322580645 
 

Which shows this is infrequent behavior (support of 0.04) in the domain, but 

somewhat interesting (a lift of 1.5). 

Another consequence of adding more cases is that the support, and therefore 

the other fitness metrics, of the rules and plans are changed.  

For example, recall the rule 8-1 originally introduced in Section 3.4.2.2. and 

the results obtained for the interest metrics in the original cases. We discussed in 

Section 3.4.2.3 that the lift higher than 1 was an unexpected find, since it indicates 

a (weakly) positive correlation between a ‘bad’ situation (a semester without any 

approvals in disciplines) and a ‘good’ outcome (graduation): 

Support of Rule 8-1: % Over the original set of cases C1 

        support:    0.13043478260869565  

        confidence: 0.2727272727272727 

        lift:       1.2545454545454546 % <- unexpectedly high 

After the addition of the cases in 𝒞2 and the repair discussed above, we mine 

the typical plans for this rule again. We obtain the following  

Support of Rule 8-1: % Over the complete set of cases C = C1 U C2 

    support:    0.06382978723404255 

    confidence: 0.13636363636363635 

    lift:       0.712121212121212 % expectedly lower 

The support of the rule still indicates that the mined plan is very infrequent – 

still only one student performs that plan. With the additional cases considered, 

however, we have more graduated students – more students whose plots reach the 

rule’s goal – and the resulting lift is substantially lower, which is intuitively 

expected. This case illustrates how the evaluation of process models is susceptible 

to infrequent behavior. The generalization of the model will tend to include more 
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frequent behavior, making the fitness metrics ‘converge’ towards well-behaved 

values. In the next section we discuss possible approaches for model simplification. 

3.5.4 Model simplification 

Recall again the tradeoff between fitness, precision, generalization and 

simplicity of the model. Suppose that, contrary to the scenario in Section 3.5.3 we 

find that the process model is representing behavior in too much detail. Perhaps too 

much infrequent behavior, a well-known issue in the literature (LEEMANS, 

FAHLAND e VAN DER AALST, 2013; MANHARDT, DE LEONI, et al., 2009), 

dominates the analyses. This motivates the simplification of the model, promoting 

the simplicity and, in some cases, the precision (the model will generate less 

infrequent behavior that is not present in the event log) at the cost of the 

generalization and, in some cases, the fitness of the model. 

In graphical models, the simplification of the mode typically incurs in 

removing paths that are not taken by a representative amount of cases. In our 

approach, the simplification of the model can be achieved via filtering of the 

infrequent or irrelevant behavior. For example, we may remove infrequent behavior 

by removing from the model the operations that are used sparsely (or not at all) used 

by students and don’t figure in typical plans. This implies filtering the traces of the 

cases and simplifying the model itself.  

In our domain, this filtering impacts on the removal of the operation clauses 

corresponding to these activities from the students’ plots. Furthermore, it leads to 

simplifying the dynamic schema by retracting the operation definition clauses. In 

the latter case, this includes the retraction of the effects and preconditions of the 

operations as well. Finally, the result clauses referring to these operations in the 

preconditions and effects of all other operations must also be removed.  

For example, consider operation INF1006. It does not figure in any of the 

plots and typical plans, hence it is infrequent and can be filtered out. It has three 

sets of alternative preconditions, so we retract all the following the clauses: 

 

operation( inf1006(Student,Timestamp,Grade),     

           [student/o, semester/in, grade/with] ). 

 

precond( inf1006(Student, SemesterA, _Grade),      

         ( success(Student, inf1001, SemesterB), SemesterB < SemesterA).  
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precond( inf1006(Student, SemesterA, _Grade),      

         ( success(Student, inf1004, SemesterB), SemesterB < SemesterA).  
 

precond( inf1006(Student, SemesterA, _Grade),      

         ( success(Student, inf1381, SemesterB), SemesterB < SemesterA).  

 
 

added( inf1006(Student, Semester, Grade), app(Student,inf1006,Semester)):- 

       passing_grade(Grade). 

added( inf1006(Student, Semester, Grade), rep(Student,inf1006,Semester)). 
 

 

Finally, the discipline is a pre-requisite for several other disciplines, such as 

INF1018 which depends on either INF1006 or INF1007. Hence, we remove the 

clause: 

 

precond( inf1018(Student, SemesterA, _Grade),      

         ( success(Student, inf1006, SemesterB), SemesterB < SemesterA).  

 

It easy to see that the filtering of operations will allow for more behavior in 

the domain, hence generalizing the model, given that it removes pre-conditions of 

operations.  

Earlier we discussed the repair of the set of activity clauses to remove certain 

pre-requisites from certain disciplines, and how the re-generation of the dynamic 

schema from that repaired model would reflect the changes. A similar reasoning 

applies here. This simplification of the dynamic schema can be performed a priori 

by removing the activity clauses of infrequent operations. Since we define the 

operations based on the set of activity clauses 𝒜, a process for filtering the atoms 

𝒜[𝑥] for every infrequent activity 𝑥, and re-generating the dynamic schema would 

reflect the changes in the entire model by construction. 

3.5.5 Model extension and the generation of Goal-Inference Rules 

We discussed in Section 3.3.3 how the goal-inference rules originally defined 

represent normative patterns in the domain. The rules represent expected behavior, 

and the mining of typical plans based on the rules shows how the cases conform to 

the pattern. In Section 3.3.4 we discussed how the definition of this rules depends 

on domain knowledge and how the (semi-)automatic discovery could be leveraged 

for the process discovery. In (FURTADO e CIARLINI, 2001) the task of 

discovering rules is anticipated as a difficult knowledge-discovery task.  
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In our approach we will perform this discovery by manipulating the 

conformant patterns, typically by relaxing, splitting and combining the rule(s) 

situation(s) and goal(s). This will take into account the fitness metrics computed for 

the rules, as well as other domain-dependent insights. 

Recall that goal-inference rules are defined with the agent 𝑎, situation 𝑠 and 

goal 𝑔. Since we refer to rules about agents in the domain, we typically define the 

rules with the case entity as the agent. The situation and goal are defined as a term 

or conjunction of terms that must hold in the plot. Each term 𝑠1, 𝑠2, … , 𝑠𝑛 in the 

conjunction that is 𝑠 can be totally or partially lifted – that is, with variables as 

arguments. The same holds for each of the terms 𝑔1, 𝑔2, … , 𝑔𝑚. These terms 

typically refer to the effects of operations, either success or failure terms for the 

activity operations or the termination effects given by case termination operations. 

In the success or failure terms, the first argument is typically a variable matching 

the variable in the first argument of the case entity. 

In our formulation, the relaxation of a goal-inference rule may comprise lifting 

arguments of one or more terms with grounded arguments in the situation or goal; 

or removing one or more terms from the situation or goal.  

The variables introduced in the terms by lifting can be co-designated. Since 

we defined the arguments of the success and failure clauses based on the event 

attributes that identify events (that are in the classifier, like the timestamp in our 

example), we may use that information for the co-designation of variables 

The removal of terms from the conjunctions is straightforward. We choose 

one or more terms from the situation or goal of a goal-inference rule and delete 

them, generating a new rule. There will be many possible combinations of removal, 

and thus, to avoid an exponential number of new goal-inference rules we propose 

that the removing of terms from the situation and/or goal may be subject to 

preference assertions that limit that number of combinations.  

One possible assertion is to not remove terms with co-designated variables in 

the situation or goal. Another one is not removing the terms referring to the results 

of case termination operations. Notice that removing constraints over the variables 

does not guarantee that the rule will be more general, hence, we do not consider 

constraint terms for removal.  
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With these assertions, the number of possible combinations is reduced but still 

possibly impractical. It is important to apply restrictions and to guide the generation 

of rules by lifting and removal of terms such that a reasonable, small yet 

representative, set of rules is generated. We discuss the implementation of some 

mechanisms above in our Library of Typical Plans for Process Mining in Section 

4.3.  

A third type of automatic goal-inference rule composition relates to the plots 

of interesting students. When we identify an interesting case of a student, we can 

use the state reached by that student’s plot as a hypothetical situation for new goal-

inference rules. For example, if we determine a rule 𝑎, 𝑠, 𝑔 where 𝑠 is the situation 

resulting from student 2368’s plot and the goal 𝑔 is grad(Student), the process of 

plan-mining with that rule will capture the plans used by other students, when they 

were in 2368’s situation, for graduation. 

So far, we’ve only discussed the general mechanisms. We’ll now show 

examples in our educational domain. In Section 4.3 we describe the implementation 

of some of the algorithms discussed here. 

A first reasoning is that infrequent rules are not capturing the behavior of 

many cases. If the pattern is normative – such as the recommended order of 

disciplines, in our domain – we’d expect to find reasonable support for rules 

(depending, of course, on the analysis). For example, recall rule with <rule-id> 3 as 

originally discussed in Section 3.4.2.1. We find that only three students perform a 

plan following this rule in the original set of cases, and we obtained the following 

metrics for the plans mined with this rule: 

 

Support of Rule 3: 

    support:    0.13043478260869565 

    confidence: 0.13043478260869565 

    lift:       1.0 
 

Assume that we, as domain stakeholders, find that the rule is too infrequent. 

We hypothesize that by relaxing the requirements for the application of the rule we 

would find more students that follow potentially similar plans. One way to perform 

this relaxation is to lift the situation and/or goal clauses – or parts of the 

conjunctions that comprise them. We generate a rule 3-1: 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



108 

 

 

% Original rule – normative pattern –  

% Student approved in all 1st-semester-disciplines, without any failures, in the 
recommended first semester 

gi_rule( 3, student(Student), 

 ( student(Student), not app(Student, _, _), not rep(Student,_, _) ), 

 ( not rep(Student,_, _), app(Student, inf1403, 1),  

 app(Student, inf1005, 1), app(Student, mat1200, 1),  

 app(Student, mat1161, 1), app(Student, fis1033, 1),  

 app(Student, fis1034, 1)  ) ). 
 

% Derived rule –  

% Student _eventually_ approved in 1st-semester-disciplines, with potential delays but  

% still no failed disciplines 
 

gi_rule( 3-1, student(Student), 

 ( student(Student), not app(Student, _, _), not rep(Student,_, _) ), 

 ( not rep(Student,_, _), app(Student, inf1403, _),  

 app(Student, inf1005, _), app(Student, mat1200, _),  

 app(Student, mat1161, _), app(Student, fis1033, _),  

 app(Student, fis1034, _)  ) ). 
 

Rule 3-1 will capture the plans of students, from their original enrollment, 

until they are approved in the disciplines recommend for the first semesters – not 

necessarily in the first semester. 

Notice that we lifted all of the timestamp variables in the rule at once. We 

could have chosen to lift others parts of the goal – perhaps only the semesters of 

disciplines from the mathematics department (MAT1161 and MAT1200), and still 

requiring approval in the student’s first semester for the others. We also lifted the 

terms in the goal independently – the singleton variables for the semesters may all 

assume distinct values. We could have lifted a subset of the success clauses 

semester argument with the same variable, forcing the concomitant approval of 

disciplines. There are many combinations of these possibilities – which highlights 

the need for domain input, since exhaustively exploring the relaxation of rules 

would generate a huge number of combinations and comprise a significant 

computational cost. 

In the case of this example, the relaxation of the semesters in the goal clauses 

still does not improve the support: 

 

Support of Rule 3-1: 

    support:    0.13043478260869565 

    confidence: 0.13043478260869565 

    lift:       1.0 
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This is unexpected - but can be verified in the original data – in the set of 

students 𝐶1 only the students that are approved in the 1st-semester-disciplines in the 

first semester are eventually approved in all of them without failing a discipline. In 

other words, all other students either don’t ever successfully complete the 1st-

semester-disciplines, or fail at least one discipline before doing so. 

Hence, the support of the rule is still the same – and low. We continue to relax 

the rule, this time by removing clauses from the situation and goal conjunctions. In 

our current example, the situation is already general – it represents the initial 

enrollment, reached by all students. Hence, we continue to relax the goal of rule 3-

1 by removing terms from the goal. We illustrate below the goal 3-2, resulting from 

removing the requirement of not failing a discipline: 

 

% Student eventually completes the 1st-semester-disciplines 

gi_rule( 3-2, student(Student), 

 ( student(Student), not app(Student, _, _), not rep(Student,_, _) ), 

 ( app(Student, inf1403, _), app(Student, inf1005, _),  

         app(Student, mat1200, _), app(Student, mat1161, _),  

   app(Student, fis1033, _), app(Student, fis1034, _)  ) ). 
 

The plans mined from this rule show that indeed there are more students that 

follow plans under these conditions: 

 

complex : (composite : c1(_), 

           frame : [student/o], 

           components : [ f1 : fis1033(H,I,J), f2 : fis1034(H,1,K), 

                          f3 : inf1005(H,1,L), f4 : mat1161(H,1,M), 

                          f5 : mat1200(H,N,O), f6 : inf1403(H,P,Q)   ],  

           dependencies : [], 

           cases : [2388,2387,2375,2371,2368], 

           constraints : [  (I in 1 .. 3),    (J in 54 .. 90), 

                            (K in 81 .. 100), (L in 81 .. 99),  

                            (M in 64 .. 89),  (N in 1 .. 2),  

                            (O in 57 .. 72),  (P in 1 .. 5), 

                            (Q in 69 .. 85)   ] )  
 

The constraints over the semesters in the mined plan show that students 

typically are approved in the first semester in disciplines FIS1034, INF1005 and 

MAT1161, and delay the others. The metrics for this rule are: 

 

Support of Rule 3-2: 

    support:    0.21739130434782608 

    confidence: 0.21739130434782608 

    lift:       1.0 
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The support 0.2173 indicates that a little over a fifth of students ever obtain 

approval in the 1st-semester-disciplines. Consider another example of relaxation via 

the removal of clauses. In Section 3.4.1 we discussed how the rule with <rule-id> 2 

was too restrictive, and that we found no plans of students to perform the ‘perfect’ 

recommended order of disciplines. Consider the simpler rule below: 

 

gi_rule(10,  

        student(Student), 

        ( student(Student), not app(Student, _, _) ), 

  (   not rep(Student,_,_), grad(Student)  ) ). 
 

This rule will capture the plans of just-enrolled students until graduation  

without any failed disciplines. We find, for the original set of students: 

 

Support of Rule 10: 

    support:    0.043478260869565216 

    confidence: 0.043478260869565216 

    lift:       1.0 
 

This rule is almost as restrictive as the one that implies the ‘perfect’ order of 

recommended disciplines – only 1 out of the 23 students performs a plan that 

satisfies these requirements. Hence, we’re motivated to relax the rule: 

 

gi_rule(10-1,  

        student(Student), 

        ( student(Student), not app(Student, _, _) ), 

  grad(Student) ). 
 

Now, the rule will capture the plans of all students that graduate. We obtain a 

higher support for the rule: 

 

Support of Rule 11: 

    support:    0.21739130434782608 

    confidence: 0.21739130434782608 

    lift:       1.0 
 

While still a fraction of the students, the similar support of the rules 3-2 and 

11 motivate us to investigate the relation between them further. Since the rule 3-2 

represents students that eventually obtain approval in 1st-semester-disciplines, we 

indeed expect all of the students that perform a plan for rule 11 to perform a pan 

for 3-2.  
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To investigate that, we define a rule by combining rules 3-2 and rule 11. That 

rule is rule 3-3, already used in an example in Section 3.4.2.3: 

 

gi_rule( 3-3, student(Student),                                        %Agent  

           ( student(Student), app(Student,inf1403,_),               %Situation 

             app(Student,inf1005,_), app(Student,mat1200,_),   

             app(Student,mat1161,_), app(Student,fis1033,_), 

             app(Student,fis1034,_) ),  

         grad(Student)                                               %Goal 

). 
 

By combining the goal of rule 3-2 (as the situation) and the goal of rule 11 , 

this rule relates to students that eventually complete the first recommended 

semester, and how they proceed to graduate. Recall also from the previous example 

that we obtain the following metrics for this rule: 

 

Support of Rule 3-3: 

    support:    0.17391304347826086 

    confidence: 0.8 

    lift:       3.6799999999999997 
 

As expected, the rule has a high confidence – and a high lift. However, we 

can identify that the support is lower than that of rules 3-2 and 11. By investigating 

the plans mined with this rule, and comparing the cases that perform plans for the 

three rules: 

 

Cases of Rule 3-2 

 [      2388, 2387, 2375, 2371, 2368] 
  

Cases of Rule 10 

 [2389, 2388, 2387, 2375, 2371] 
  

Cases of Rule 3-3 

 [      2388, 2387, 2375, 2371] 
 

 we identify that student 2389 performed a plan for rule 10 but not for rule 3-2, which 

is not normal in the domain. We explore the student 2389 and verify, via the replay 

of plots, that his plot is particularly problematic: 

 

%With the failed preconditions --suppressed 
 

Case 2389 

% Allowed > Failed Operations 

[]   

> 

[ mat1154(2389,-6,55), inf1631(2389,2,67),  inf1721(2389,4,13),  

  inf1721(2389,6,52),  inf1405(2389,7,85),  inf1015(2389,8,85),   
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  inf1413(2389,9,70),  inf1640(2389,10,11), inf1640(2389,11,60),    

  graduate(2389,12) ] 
 

% (...) 
 

% Allowed > Failed Operations 

[ mat1154(2389,-6,55), inf1631(2389,2,67),  inf1405(2389,7,85),  

  inf1413(2389,9,70),  inf1640(2389,10,11), inf1640(2389,11,60) ] 

> 

[ graduate(2389,12) ] 
 

While some of the discrepant disciplines in the original plot are satisfied by 

allowing others (i.e. INF1721, which the student attempted twice, and INF1015), 

we find that even by allowing all of the other discrepant operations the student still 

should not have been able to graduate. Notice also that the student’s plot contains a 

discipline with a negative timestamp. Upon investigation of the plot and data 

sources we identify this student as a re-enrolled student. The identification that this 

student is very particular in behavior could further motivate the simplification of 

the model by removing his plot from the domain, for example. 

Regardless, in the example of the cases following plans for rules 3-2, 10 and 

3-3, we also identify that 2368 is the only student that eventually completes the 1st-

semester-disciplines that does not graduate.  

We verify the plot and observe the reason is the student is currently enrolled 

in the program. Hence, we are able to use the fact that he has performed a plan for 

rule 3-2 as a strong indication that he will eventually graduate. We may also suggest 

to her the plans mined with rule 3-3, evidencing the possibilities of the application 

of our approach for recommendation purposes as part of the recommendation task 

of online process mining (VAN DER AALST, 2011, p. 256-257).  

This motivates us to define rules based on the situations of the students. We 

select student 2368 as an interesting case – our only student that is not a terminated 

case seems to be poised for graduation. We compose a situation 𝑠𝑐 that is comprised 

of the approvals in disciplines shared by 2368 and the students that graduate. We 

define rule: 

 

gi_rule(3-17, student(Student), 

  ( student(Student),  app(Student, inf1007, _),app(Student, 
inf1403, _),app(Student, inf1951, _),app(Student, inf1377, _),app(Student, 
inf1010, _),app(Student, inf1950, _),app(Student, cre1100, _),app(Student, 
inf1636, _),app(Student, inf1013, _),app(Student, inf1014, _),app(Student, 
inf1771, _),app(Student, inf1721, _),app(Student, cre1141, _),app(Student, 
inf1626, _),app(Student, mat1162, _),app(Student, inf1640, _),app(Student, 
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inf1413, _),app(Student, inf1008, _),app(Student, inf1301, _),app(Student, 
fis1033, _),app(Student, mat1161, _),app(Student, inf1009, _),app(Student, 
inf1015, _),app(Student, inf1012, _),app(Student, eng1029, _),app(Student, 
inf1631, _),app(Student, inf1383, _),app(Student, inf1011, _),app(Student, 
let1113, _),app(Student, inf1016, _),app(Student, mat1200, _),app(Student, 
inf1005, _),app(Student, inf1018, _),app(Student, fis1034, _),app(Student, 
cre1172, _),app(Student, mat1154, _),app(Student, inf1019, _)  ), 

  grad(Student) ). 
   

And mine the plans from the other students: 

 

plans : [ simple : (single : graduate(_,_) ',' cases : [2388,2387,2375,2371] ',' 
constraints : []) 
 

These plans should configure a suggestion of the disciplines to perform for 

graduation – however, from 2368’s situation, the students that graduated did not 

perform any more disciplines, as evidenced by the plan being composed of just the 

case termination operation graduate. Hence, we hypothesize that student 2368 has 

not yet graduated due to exogenous conditions not captured by our model. 

In this example, the plan we extracted was not helpful. Also, we defined a 

goal inference rule that considers all students as agents – this is because, so far, we 

haven’t explored the characteristics of agents. We will explore the addition of 

characteristics of cases for the generation of goal-inference rules in the next section. 

We consider another case in our original dataset. Consider students 2370 and 

2382 – these are two students that performed disciplines for many semesters but 

eventually dropped out. Suppose that they had not dropped out of the program. We 

apply the same reasoning as above under that hypothetical scenario. We compose a 

situation 𝑠𝑐 that is comprised of the approvals in disciplines shared by them and the 

students that graduate. We define the rule: 

 

gi_rule(3-36, student(Student), 

        ( student(Student),  app(Student, inf1009, _),app(Student, 
inf1005, _),app(Student, inf1804, _),app(Student, fil1000, _),app(Student, 
inf1007, _),app(Student, inf1018, _),app(Student, inf1012, _),app(Student, 
fis1034, _),app(Student, cre1100, _),app(Student, inf1010, _),app(Student, 
inf1383, _),app(Student, inf1631, _),app(Student, let1113, _),app(Student, 
inf1008, _),app(Student, inf1301, _),app(Student, inf1636, _) ), 

  grad(Student) ). 
 

And mine the typical plans from the domain: 

 

complex : (composite : c3(2388), frame : [student/o], 

           components : [ f1 : cre1172(2388,8,85),  f2 : inf1015(2388,8,80), 

   f3 : inf1016(2388,8,87),  f4 : inf1920(2388,8,100), f5 : inf1950(2388,8,100), 

   f6 : inf1951(2388,9,100), f7 : graduate(2388,10) ], 
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           dependencies : [f1-f7,f2-f7,f3-f7,f4-f7,f5-f7,f6-f7], 

           cases : [2388], 

           constraints : []), 
 

complex : (generic : g1(A), frame : [student/o], 

           specializations : [c3(A),c2(_),c1(_)], cases : [2388,2387,2375] ), 
 

complex : (composite : c2(2387), frame : [student/o], 

          components : [ f1 : cre1172(2387,9,92), f2 : inf1013(2387,9,80), 

  f3 : inf1608(2387,9,57), f4 : inf1715(2387,10,50), f5 : inf1920(2387,10,100), 

  f6 : inf1950(2387,10,90),f7 : inf1951(2387,14,75), f8 : graduate(2387,14) ], 

          dependencies : [f1-f8,f2-f8,f3-f8,f4-f8,f5-f8,f6-f8,f7-f8], 

          cases : [2387], 

          constraints : [] ), 
 

complex : (composite : c1(2375), frame : [student/o], 

          components : [ f1 : inf1013(2375,10,69), f2 : inf1014(2375,10,98), 

  f3 : inf1951(2375,10,80),f4 : graduate(2375,10) ], 

        dependencies : [f1-f4,f2-f4,f3-f4], 

               cases : [2375], 

         constraints : [] ) 
 

With interest metrics: 

 

Support of Rule 3-36: 

    support:    0.13043478260869565 

    confidence: 0.5 

    lift:       2.3000000000000003 

    leverage:   0.07372400756143667 

    conviction: 1.565217391304348 
 

In this case, we obtain more interesting plans. Although each one was 

performed by only one student, we can interpret each one as a suggestion for the 

(hypothetically non-dropped out) students 2370 and 2382. We can observe, for 

example, that the plan performed by student 2375 is much shorter than the other 

ones – it comprises only three additional disciplines. If time to graduation is a 

criteria, we could choose to suggest that plan instead of the others. We discuss the 

implementation of the mechanisms for generating goal-inference rules, with simple 

examples, in Section 4.3.1.  

3.5.6 Model extension and Decision Mining 

The model extension relates to adding perspectives to the model. This is done 

by cross-correlating additional information in the event log to the process model.  

 The general process mining approach is mostly concerned with the ordering 

of activities. In graphical models that is the “control-flow” perspective. Another 
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perspective discussed in the literature is the time perspective, concerned with “the 

timing and frequency of events” (VAN DER AALST, 2011, p. 11). The modeling 

of activities with timestamps, accounting for intertask and multiple dependencies, 

achieves some of the goals of this perspective. 

In this section we will discuss the addition of the case perspective to the model 

in our approach, and how it can be accomplished by enriching the conceptual 

model. The case perspective focuses on properties of the cases, to understand 

decision-making and analyze differences among them (VAN DER AALST, 2011, 

p. 215). Intuitively, the case perspective is added to the process model by using 

information of additional case attributes. 

 In particular, we will discuss the decision mining approach that aims to 

provide insights on the activities performed with respect to characteristics of the 

cases. As an example, (VAN DER AALST, 2011, p. 234-235) shows how an 

external classification model (a decision tree) can be used to provide insights on 

how to model certain behaviors in a graphical model. 

Recall our example of an additional case attribute 𝑒𝑛𝑟𝑜𝑙𝑙 for our example 

domain. We will explore the differences between students from one enrollment and 

another. We’ll explore the decision mining to find the influence of the 

𝑒𝑛𝑟𝑜𝑙𝑙 attribute in the execution of activities. In our domain, the plans are 

intrinsically a record of the behavior of students. Hence, we will not use external 

models, and will instead reason about the characteristics of the students that follow 

each plan. We will, for example, identify plans that are uniquely or mostly 

performed by students from a single enrollment. 

Recall the extended model, with additional cases, from the example in Section 

7.3. We will consider two additional sets of cases 𝒞3 with 5 cases and 𝒞4 with 4 

cases , so that our complete set 𝒞 = 𝒞1 ∪ 𝒞2 ∪ 𝒞3 ∪ 𝒞4 for the following examples 

comprises 56 total cases. Like before, the additional sets of cases define the 

𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 of the students in the set - #𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡(𝑐) = 𝑐 for all 𝑐 ∈ 𝒞3, and 

#𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡(𝑐) = 𝑑 for all 𝑐 ∈ 𝒞4.  

We’ll discuss the general method here and provide details on the formulation 

in Section 4.3. 
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We define a set Ψ of attributes that will be used for decision mining. In our 

domain, since we only have the 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 attribute in the set Ψ = {𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡}. 

Each relevant combination of attribute values in Ψ determines a characteristic 

class. In our example, since the 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 attribute has four distinct values a, b, 

c and d, we have four distinct characteristic classes in 𝕎. We abuse the notation 

and name classes A, B, C and D, respectively. 

Each characteristic class implicitly defines a unique set of cases by the values 

of the attributes of those cases. We call them A-cases, B-cases, C-cases and D-cases 

in our example. A-cases are the cases of our original set of students 𝒞1, for which 

the 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 attribute value is a.  

Our first approach for the decision mining is to compute metrics of interest 

for each characteristic class performing plans of a rule.  

Consider for example rule 9, that captures the behavior of students that fail in 

a discipline in the first and second semesters: 

 

gi_rule( 9, student(Student,Enroll), 

     ( student(Student,Enroll), rep(Student, _D1, 1) ), 

           rep(Student, _D2, 2) ). 
 

The plan mining yields several plans, among which the generic operation 

plan: 

complex: (generic: g1(S), frame: [student/o], 

    specializations: [ fis1034(S,_,_), geo1116(S,_,_), inf1403(S,_,_), 

                       cre1100(S,_,_), inf1007(S,_,_), dsg1421(S,_,_),  

                       mat1162(S,_,_), mat1157(S,_,_), c1(S),          

                       nf1008(S,_,_), fis1033(S,_,_), inf1009(S,_,_) ], 

    cases: [ 2421,2395,2418,2417,2416,2414,2412,2411,2407,2405,2403,2397, 

             2390,2385,2384,2383,2382,2381,2379,2377,2376,2370,2368 ] 
 

And the interest metrics of the rule and the plans: 

 

 

Support of Rule 9: 

    support:    0.4107142857142857 

    confidence: 0.6571428571428571 

    lift:       1.1870967741935483 

    lift2:      1.187096774193548 

    leverage:   0.0647321428571428 

    conviction: 1.3020833333333333 

 % Support of each plan (confidence --suppressed) 

 % In descending order of   %Support 

        >g1(2384):             0.41071 
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        >inf1008(A,2,B):       0.07142 
        >mat1157(A,2,B):       0.07142  

        >inf1009(A,2,B):       0.05357  

        >fis1033(A,2,B):       0.03571  
        >inf1007(A,2,B):       0.03571  
        >c1(A):                0.03571 

        >fis1034(2421,2,44):   0.01785  
        >geo1116(2395,2,19):   0.01785  
        >inf1403(2418,2,19):   0.01785  
        >cre1100(2414,2,15):   0.01785  
        >dsg1421(2403,2,0):    0.01785  
        >mat1162(2397,2,21):   0.01785        
 

The information above gives us insight on how representative the plans of rule 

9 are in the domain. We can see that some operations are more frequent than others 

by the comparative plan support. It does not consider the characteristics of the cases 

that performed the plans, however.  

To that end, we will compute the number of cases of each 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 that 

perform the plans shown above.  

For the case of rule 9 we have: 

 

Characteristic of Cases in Rule 9:  

  Characteristic enroll_a: 11 cases 

  Characteristic enroll_b: 10 cases  

  Characteristic enroll_c: 1 cases 

  Characteristic enroll_d: 1 cases 
 

With this information at hand, we are able to compute metrics that can be of 

interest for the analysis of the case perspective. 

First, we compute the relevance of the characteristic for performing a plan of 

this rule. We call this the in-rule support. The in-rule support for a characteristic 

class is given by the number of cases in that class that perform a plan in the rule 

divided by the number of cases that perform a plan in the rule. For example, the in-

rule support for enrollment a is 11 (the number of cases of enrollment a that perform 

a plan in the rule) divided by 23 (the number of cases that perform a plan in the 

rule): 

 

  enroll_a in-rule      : 0.4783 

  enroll_b in-rule      : 0.4348 

  enroll_c in-rule      : 0.0435 

  enroll_d in-rule      : 0.0435 
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The example above shows that the in-rule support represents the proportion 

of the cases that follow the rule that have each 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡. Notice that 

characteristic classes A and B are dominant – each responsible for little less than 

half the cases that follow plans of this rule. At first sight, we might discard this rule 

(when suggesting plans, for example) for students 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡s c and d. 

However, the number of students in each characteristic class are very 

different. In fact, classes A and B are much more frequent in the domain – 23 and 

24 students, respectively, in contrast to 3 and 4 students of class C and D. 

In order to take with this class imbalance into account we define more metrics. 

We also compute the relevance of the goal inference rule for the characteristic class. 

We call this the in-characteristic support, or in-char for short. That is given by the 

number of cases with the characteristic that perform the rule divided by the total 

number of cases with that characteristic. For example, the in-char support of 

enrollment b is 10 (the number of cases with that characteristic performing a plan 

in rule 9) divided by the number of total students with that characteristic (24). 

 

  enroll_a in-char      : 0.4783 

  enroll_b in-char      : 0.4167 

  enroll_c in-char      : 0.2000 

  enroll_d in-char      : 0.250 
 

The results above mean that although C-cases and D-cases do not account for 

many of the cases that follow plans of rule 9, they are significantly representative 

of the behavior of the characteristic classes: 20% and 25% of the C-cases and D-

cases, respectively, perform a plan of this rule. Notice that the in-rule and in-char 

support of A-cases is the same – by coincidence, there are 23 A-cases and there are 

also 23 cases in total following plans of rule 9. 

As in the computation of the interest metrics for the rules, we find that we can 

also compute the metrics for the individual plans of the rule.  

Below we see the metrics for the plans mined from rule 9 and the B-cases: 

 

Characteristic of Cases in Rule 9:  
  Characteristic enroll_b: 10 cases  
 

|                               in-plan   in-char    
inf1403(2418,2,19)              0.0435    0.0417     
cre1100(2414,2,15)              0.0435    0.0417     
inf1007(A,2,B)                  0.0870    0.0833     
dsg1421(2403,2,0)               0.0435    0.0417     
mat1162(2397,2,21)              0.0435    0.0417     
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mat1157(A,2,B)                  0.1304    0.1250     
fis1033(A,2,B)                  0.0435    0.0417     
   

Contrasting these results with the interest metrics obtained for these plans, 

shown above, we can see that the one of the most frequent plans (performing 

discipline INF1008) is not performed by any of the B-cases. Conversely, the other 

frequent plan (MAT1157) is even more relevant when we account for the 

𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 characteristic of these cases. 

 The analysis so far gives us an idea of the frequency and relevance of the 

characteristic classes for the rules and plans. The in-rule (or in-plan) and in-char 

metrics show how representative the rule (or the plan) and the characteristic classes 

are to each other.  

As in the discussion about interest metrics of plans, there are several other 

types of metrics that could be computed. As an example, assume that it would also 

be interesting to assess the similarity of W-cases and rule cases. To that end we 

could rely on a measure like the Jaccard set similarity. A full representation of the 

metrics for the current example is given below. 

 

Characteristic of Cases in Rule 9: | 
  Characteristic enroll_a: 11 cases  
    in-rule      : 0.4783 
    in-char      : 0.4783 
    jaccard      : 0.3143 
|                               in-plan  in-char    
mat1157(A,2,B)                  0.0435    0.0435     
c1(A)                           0.0870    0.0870     
inf1008(A,2,B)                  0.1739    0.1739     
fis1033(A,2,B)                  0.0435    0.0435     
inf1009(A,2,B)                  0.1304    0.1304     
 
  Characteristic enroll_b: 10 cases  
    in-rule      : 0.4348 
    in-char      : 0.4167 
    jaccard      : 0.2703 
|                               in-plan  in-char    
inf1403(2418,2,19)              0.0435    0.0417     
cre1100(2414,2,15)              0.0435    0.0417     
inf1007(A,2,B)                  0.0870    0.0833     
dsg1421(2403,2,0)               0.0435    0.0417     
mat1162(2397,2,21)              0.0435    0.0417     
mat1157(A,2,B)                  0.1304    0.1250     
fis1033(A,2,B)                  0.0435    0.0417     
 
  Characteristic enroll_c: 1 cases  
    in-rule      : 0.0435 
    in-char      : 0.2000 
    jaccard      : 0.0370 
|                               in-plan  in-char    
geo1116(2395,2,19)              0.0435    0.2000     
 
  Characteristic enroll_d: 1 cases  
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    in-rule      : 0.0435 
    in-char      : 0.2500 
    jaccard      : 0.0385 
|                               in-plan  in-char    
fis1034(2421,2,44)              0.0435    0.2500 
 

Notice that this analysis may also be used to fundament the suggestion of 

plans for cases based on their characteristic class. We define a basic suggestion 

mechanism as follows. For a case 𝑐, we obtain the characteristic class W by the 

checking the values of the attribute 𝕎 in c. Given a rule 𝑟, we suggest the plans 

with the highest or lowest in-char support, depending on the scenario. 

Suppose that we identify a new student 2500, a B-case – that is, a student with 

characteristic class 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 b – that has failed in a student in his first semester. 

Hence, his situation applies to the situation of goal 9. Suppose that at the time in 

which he has to choose the disciplines for the 2nd semester he has access to the 

recommendation tool:  

 

?- case_characteristic_similarity(2500, 9). 
 

To obtain the recommendations, via backtracking: 

 

Ratio :0.43478260869565216 

Suggestion of plan in Rule: inf1403(2418,2,19); 

Suggestion of plan in Rule: cre1100(2414,2,15); 

Suggestion of plan in Rule: dsg1421(2403,2,0); 

Suggestion of plan in Rule: mat1162(2397,2,21); 

Suggestion of plan in Rule: fis1033(A,2,B); 

Suggestion of plan in Rule: inf1007(A,2,B); 

Suggestion of plan in Rule: mat1157(A,2,B). 
 

Notice that in this case the mechanism recommends the plan of operation 

INF1403 because that is the plan with the lowest in-char support for the rule that 

has been performed by a B-case. Finally, the insights and information obtained in 

the decision mining can also be leveraged for the generation of goal-inference rules. 

3.6 Summary of the chapter 

In this chapter we discuss the motivation for leveraging automated planning 

for the Process Mining of unstructured processes. We also relate the Process 

Discovery task of Process Mining to the definition of a Conceptual Model domain 

representation, and how it can be extracted from a log. We show an example in our 

educational domain use case. With the discovered Conceptual Model representation 
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at hand, we proceed to perform the discovery of typical patterns via typical plan 

mining (Section 3.3.5). This completes the process discovery task, with the 

capturing of actual executions of the process. Furthermore, we relate the 

conformance checking task to plot replay and model fitness metrics approaches in 

the planning paradigm.  Finally, we investigate possibilities of model enhancement 

and how they relate to our approach based on a plan-verification and plan-

recognition over a conceptual model. The implementations of the algorithms 

described in this chapter are part of the Library of Typical Plans for Process Mining, 

discussed in the next chapter. 
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4 Library of Typical Plans for Process Mining 

In this chapter we describe the Library of Typical Plans for Process Mining in 

which we implement the methods described in the previous chapter1. We will 

discuss the algorithms, referring to parts of the code that implement them when 

necessary, with examples from simplified domains, custom built to showcase and 

clarify the workings of the algorithms. 

The first section of this chapter describes the plan mining and the composition 

of the Library Index structure used for the process discovery discussed in Section 

3.3.5. The second section describes the algorithms for replay and conformance 

checking described in Section 3.4. The third section describes experiments 

implementing the approaches for model enhancement described in Section 3.5. 

For the following sections we will use a simplified example domain, with the 

following configuration: 

 

% discipline(Cod, LPrereqs). % Registers a discipline 

% Activity clauses 

discipline(i1, []). 
discipline(j1, []). 
discipline(i2, [[i1]]). 
discipline(j2, [[j1]]). 
discipline(i3, [[i2, j2]]). 
discipline(k, []). 
discipline(l, []). 
discipline(m, [  [i1], [j1] ]).  
discipline(n, []). 
discipline(z, []). 
group(group_nz, [n, z]).  
 

The operations are defined as discussed in Section 4.3. The case termination 

operations are as follows: 

 

operation(  grad(Student,Sem), [student/o, semestre/in]). 
added(  grad(Student,Sem), grad(Student) ). 
deleted( grad(Student,Sem), student(Student)). 
precond(grad(Student,Sem), (  app(Student,i1,Si1),  Si1 #=< Sem , 
                              app(Student,j1,Sj1),  Sj1 #=< Sem , 

                                                 

1 The Prolog code implementing the Library of Typical Plans for Process Mining is available at the author’s 

academic page at PUC-Rio (http://www.inf.puc-rio.br/~vgottin/thesis.html) also freely upon request. 
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                              app(Student,i2,Si2),  Si2 #=< Sem , 
                              app(Student,j2,Sj2),  Sj2 #=< Sem , 
                              app(Student,i3,Si3),  Si3 #=< Sem , 
                              app(Student,k,Sk),     Sk #=< Sem , 
                              app(Student,l,Sl),     Sl #=< Sem , 
                              app(Student,m,Sm),     Sm #=< Sem , 
                              app(Student, 
                                group_nz,Sg_nz),  Sg_nz #=< Sem  ) ). 
 

operation( drop(Student, Sem),  [student/o, semestre/in]). 
added(drop(Student, Sem), dropped(Student) ). 
deleted( grad(Student,Sem), student(Student)). 
precond(drop(Student,Sem), (  rep(Student,D,S1), 
                              rep(Student,D,S2),     S1 #< S2, 
                              rep(Student,D,S3),     S2 #< S3    ) ). 
 

A visual representation of the relation of pre-requisites among disciplines and 

the case termination operations is given in Figure 4: 

 

Figure 4 A visual representation of the pre-requisites for disciplines and 

case termination operations in the short example. 

The blue lines represent the success; and the dashed red lines represent 

discipline failures. In each of the subsections we will consider different sets of plots 

and goal-inference rules. 

4.1 Plan mining algorithms 

In this section we discuss the implementation of the plan-mining mechanism 

via plan-recognition. The methods described here extend the methods in 

(FURTADO e CIARLINI, 2001), without loss of functionality. We’ll start 

discussing the most basic mechanisms and proceed to discuss how they are used to 

compose the Library of Typical Plans for Process Mining. We discuss in Section 

4.1.5 the characteristics of the Library of Typical Plans for Process Mining that are 

not used for the process mining tasks and implement features and capabilities of the 

methods in (FURTADO e CIARLINI, 2001). 
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4.1.1 Plan-recognition 

The method for plan recognition examines a plot in relation to a goal-

inference rule.  

Assume a plot �̂� of case 𝑐, and a goal-inference rule 𝑅 defined by its agent 𝑐, 

a situation 𝑠 and a goal 𝑔. Our goal is to identify a plan 𝑝 that is a subsequence of 

�̂� such that the situation 𝑠 holds before 𝑝 and the goal 𝑔 holds after 𝑝. This is achived 

by the algorithm get_plan. 

In order to define the get_plan algorithm we start by defining an auxiliary 

algorithm holds_plot that relates a plot and a plot state to a subplot.  

A plot is a sequence of ground operations [s0, 𝑜1, … , 𝑜𝑘], 𝑘 ≥ 1. A plot state 

is a term or conjunction of terms representing a plot state 𝜋, comprised of positive 

or negative facts. A subplot is sequence [s0, … , 𝑜𝑗], 1 ≤  𝑗 ≤ 𝑘 such that 𝜋 holds at 

the state brought by the execution of the operations in 𝜎.  

A few notes on the notation we use in the following discussion: the state 𝜋𝜎 

is the state reached by executing a sequence of operations 𝜎. The sequence 𝜎𝜋 is a 

sequence of operations that reach state 𝜋. The sequence �⃖� is the reverse sequence 

of 𝜎. 

The algorithm leverages a version of a conventional holds meta-predicate - as 

in (FURTADO e CIARLINI, 2001). A fact 𝑓 holds after an operation 𝑜 executed at 

a state 𝜋𝜎 if either: 

 (1) 𝑜 is the pseudo-operation s0 and 𝑓 belongs to the initial state; 

 (2) the preconditions of 𝑜 hold at 𝜋𝜎 and 𝑓 is a positive effect of 𝑜; or 

 (3) 𝑓 already held at 𝜋𝜎 and 𝑓 is not a negative effect of 𝑜.  

The holds meta-predicate relies on the definitions of the operations (and their 

added and deleted clauses). For the examples, consider the following plots: 

plot(a50, [s0, % Student a50 

     i1(a50, 1, 0), j1(a50, 1, 100), k(a50, 1, 100),       % 1st semester 

     m(a50, 2, 0),  i1(a50, 2, 100), l(a50, 2, 100)  ]).   % 2nd semester 

plot(a51, [s0, % Student a51  

     i1(a51, 1, 0),   j1(a51, 1, 100), k(a51, 1, 100),     % 1st semester 

     i1(a51, 2, 100), l(a51, 2, 100),  m(a51, 2, 100) ]).  % 2nd semester  

plot(a52, [s0, % Student a52  
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     i1(a52, 1, 0),   j1(a52, 1, 100), k(a52, 1, 100),      % 1st semester 

     m(a52, 2, 100),  i1(a52, 2, 100), l(a52, 2, 100)  ]).  % 2nd semester  
 

A visual representation of the plots of these students is given in Figure 5: 

 

Figure 5 A visual representation of a set of students' plots. 

In this representation each box represents a discipline attempt by a student. 

We highlight failed disciplines in red. The grades obtained by the student in the 

discipline are shown in square attached to the box. The disciplines are horizontally 

aligned by semester; and vertically aligned within each semester by the order in 

which they appear in the event log (and, by consequence, in the trace and in the 

plot). 

As an example, consider the plot given by trace �̂� of student a50. For plot state 

𝜋:  

 

student(S), app(S, j1, 1)  
 

the holds_plot algorithm will determine a subplot:  

 

[s0, i1(a50, 1, 0), j1(a50, 1, 100) ] % Subplot of a50 
 

Notice that the holds_plot algorithm may not find – and therefore, not 

determine - any suitable subplots. In our Prolog implementation that means the 

predicate implementing the algorithm simply fails without results, as typical in the 

logic programming paradigm. 

Consider for example the case of student a50 and the plot state 𝜋: 

 

 app(S,i1,Semester), not rep(S,_Disc,Semester) 
 

The algorithm will check all operations in the plot and find that the state does 

not hold. Upon considering the operation i1(a50,2,100) that satisfies the first fact in 

the plot state, the Semester variable will unify with value 2 – and the second part of 

the conjunction will fail, since a50 has indeed failed discipline m. 
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The holds_plot algorithm also accounts for the ‘clobbered’ and ‘undone’ facts 

from operations representing events with the same 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 argument. The 

operations in the plot are ordered with respect to the timestamp, but our 

implementation accounts for multiple concurrent operations in the same time. 

Consider the plot given by the trace of student a51, identical to the one of 

student a50 but with operations recorded in another order – discipline m is now 

recorded last. 

In the straightforward implementation of the algorithm the plot state 𝜋 holds 

at the time when operation i1(a51, 2, 100) is considered – at that point, the failing 

operation m(a51, 2, 100) has not yet been considered.  

Hence, we adapt the method to consider the following.  

• We check if the last operation 𝑜𝑗 in the candidate subplot �̇� has an 

argument related to a 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 attribute.  

o If it does not, the subplot 𝜎 = �̇�. This guarantees compatibility 

of the Library of Typical Plans for Process Mining for non-

process mining applications. 

o If the last operation 𝑜𝑗 in the candidate subplot �̇� has a 

timestamp, we check the remaining operations [𝑜𝑗+1, … 𝑜𝑘] in 

the plot and compose a sequence [𝑜𝑗+1, … 𝑜𝑡] such that 𝑜𝑡 is the 

last operation in the remaining operations with that same 

timestamp.  

o Then, for each term in the conjunction 𝜋, we check operations 

[𝑜𝑗+1, … 𝑜𝑡] to see if any of them have positive effects that 

‘clobber’ a negated fact in 𝜋 or negative effects that ‘undo’ 

positive facts in 𝜋.  

▪ If that is the case, the candidate subplot �̇� is discarded.  

In our example of student a51 above, we obtain [s0, i1(a51, 1, 0), j1(a51, 

1, 100), k(a51, 1, 100), i1(a51, 2, 100)] as a candidate subplot. The last operation 

i1(a51, 2, 100) is timestamped, so we check the remaining operations [l(a51, 2, 

100), m(a51, 2, 100)] in the plot. We find that m(a51, 2, 100) clobbers the negative 

fact app(S,i1,Semester), not rep(S,_Disc,Semester), at this point unified as 

app(a51,i1,2), not rep(a51,_Disc,2). Hence the candidate subplot is discarded. 

With the holds_plot algorithm we define the get_plan algorithm as follows. 

 Given: 
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• a plot (from a trace �̂� = [𝑠0, 𝑜1, 𝑜2, … , 𝑜𝑘] of case 𝑐) and  

a goal inference rule 𝑅 = 𝑎, 𝑠, 𝑔  

• we obtain a subplot 𝜎𝑠 to the situation 𝑠 and a subplot 𝜎𝑔 to the goal 𝑔 

with the holds_plot algorithm.  

o We consider a candidate plan �̇� composed by the operations in 

the subplot to 𝑔 that are not in the subplot to 𝑠. That is,  

�̇� = [𝑜𝑗+1, … , 𝑜𝑙] when 𝜎𝑠 = [𝑠0,… , 𝑜𝑗] and 𝜎𝑔 = [𝑠0, … , 𝑜𝑙], 

for 1 ≤ 𝑗 < 𝑙 ≤ 𝑘. 

o The candidate plan is refined to yield a representative plan by 

a filtering process, as in (FURTADO e CIARLINI, 2001), in 

which only the operations that are relevant to the goal 𝑔.  

Consider the example of goal-inference rule 5 below, representing the goal of 

students that failed in a discipline in the first semester of succeeding in that 

discipline without failing in any others in the second: 

% Rule 5 – correct early failure 

gi_rule( 5, student(Student), 

        (   student(Student), rep(Student,Disc1, 1) ), 

        (   app(Student, Disc1, 2), 

            not rep(Student, _Disc2, 2) 

        ) ). 
 

For student a50 and a51 we will obtain no plans – notice that the situation in 

the goal-inference rule is the situation of our previous examples, for which no 

subplots were found for these students. Consider however student a52, identical to 

student a50 but more successful, passing in discipline i1 in the second semester. 

In this case we obtain the candidate plan [j1(a52,1,100), k(a52,1,100), 

m(a52,2,100), i1(a52,2,100)].  

We refine the candidate plan via an invocation of the auxiliary algorithm 

extract_plan., straightforwardly reimplemented from (FURTADO e CIARLINI, 

2001). That algorithm receives as input a sequence of operations 𝜎 and a plot state 

𝜋. In this case, we invoke the algorithm passing the candidate plan �̇� and the goal 

𝑔 as input. 

The algorithm extract_plan  operates backwards.  

• For each operation 𝑜 in �⃖� we check: 

(1) if one of the positive effects of 𝑜 is a positive fact in 𝜋; or  

(2) if one of the negative effects of 𝑜 is a negative fact in 𝜋.  

o If not, 𝑜 is discarded from the plan and the remaining 

operations of �⃖� are checked against 𝜋.  
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o Otherwise, 𝑜 is kept as part of the plan, the preconditions of 𝑜 

are added to 𝜋 to obtain a new conjunction of facts 𝜋′, and the 

remaining operations of �⃖� are checked against 𝜋′. 

 Consider again the example of student a52 above. We extract from the 

candidate plan the operations that are relevant to the goal: 

 

app(a52, i1, 2), not rep(a52, _Disc2, 2)                      % The goal 

[j1(a52,1,100), k(a52,1,100), m(a52,2,100), i1(a52,2,100)]    % Candidate plan 
 

The operations in �⃖� are checked. Operation i1(a52, 2, 100) contributes to the 

goal – its effects include app(a52, i1, 2). The preconditions of operation i1 are 

added to the goal – in this case, there are none, and the process continues by 

checking operation m(a52,2,100) and the remaining operations. The resulting plan 

is just the operation i1(a52,2,100). 

The plan recognition algorithms above are used in the composition of the 

Library Index, described in Section 4.1.3. 

4.1.2 Plan generalization 

Besides the plan-recognition algorithms above, we also leverage algorithms 

for comparing and generalizing plans. As discussed in Section 3.3.5, we resort to 

two methods of generalization. In this section we describe the algorithms that 

implement the first one, based on the most specific generalization of similar plans. 

We build upon the methods defined in (FURTADO, 1992; FURTADO e 

CIARLINI, 2001).  

The simplest case is the most specific generalization of two simple plans, 

given by single operations. Since these are defined in the dynamic schema, we 

operate only over the operation signature. We rely on the msg algorithm defined in 

(FURTADO, 1992; FURTADO e CIARLINI, 2001), that works as follows. 

The algorithm operates over two terms T1 and T2. It yields a generalized term 

M and builds a list G of generalization substitutions [(E1,E2,V), 

(E1’,E2’,V’),…,(E1*,E2*,V*)] where E1, E1’,…E* are sub-terms of T1; E2, E2’, 

…, E2* are sub-terms of T2; and V’,V’’,…,V* are new unique variables. The 

generalized term will have V replacing both E1 and E2, V’ replacing both E1’ and 

E2’ in M, and so forth. The algorithm is initiated with an empty list of substitutions 

M, and the cases are processed are as follows: 
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• If T1 and T2 are the same variable V, add a term (V,V,V) to the list of 

substitutions M. The result is V itself. 

• If T1 is a variable and T2 is not; or if T2 is a variable and T1 is not, 

add a term (T1,T2,V) to M. The generalization is a new variable V. 

• If T1 and T2 are both not variables and are not of similar types, add a 

term (T1,T2,V) to M. The result is a new variable Vl. Two terms are 

similar if they are the same atom or if they are terms with the same 

functor and same number of arguments. 

• If T1 and T2 are both the same atom, no generalization is required, 

and the result is the atom itself.  

• IF T1 and T2 similar types compounded of the form    

  T1::=<functor>(<arg1,arg1’,…,arg1*>  

and  

  T2::= <functor>(<arg2,arg2’,…,arg2*>  

With the same functor, we recursively invoke the algorithm for each 

pair (arg1, arg2) and the current list of substitutions M. The result is 

the generalized term built with <functor> and arguments given by the 

result of the recursive invocation. 

In (FURTADO, 1992) the algorithm is described in detail, including an 

additional step in which the resulting list of substitutions M is checked for 

unnecessary substituions, replacing new variables introduced by the method by 

variables already in the original terms when appropriate. We replace that step with 

one of our own, that deals with non-discriminative arguments, introduced shortly. 

The other case is more complex. We deal with the generalization of complex 

plans, as given by composite operation’s component and dependencies lists. The first 

are comprised of tagged operations <fid>:<op-signature>, and the latter of lists of 

<fid>-<fid> elements.  

The most specific generalization of two complex plans is performed by the 

algorithm msg_plan. The algorithm consider the lists of components C1 and C2 and 

the lists of dependencies D1 and D2, from complex plan operations P1 and P2, 

respectively. 

The algorithm msg_plan will only consider the generalization of two complex 

plans P1 and P2 that have the same number of components C1 and C2.  

It will also consider only complex plans P1 and P2 that have the same number 

of dependency terms in the standard format described in Section 3.3.5. 
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The algorithm in (FURTADO e CIARLINI, 2001) also checks for the number 

of possible substitutions in each list of components – requiring that both complex 

plans have the same number of possible substitutions. A possible substitution is 

given by the number of distinct arguments in the components of the plan, counting 

co-designated variables only once. For example, the number of possible substitions 

in f1:g(a, b), f2:h(a, a), f3:i(b, c)] is three – a, b and c are distinct arguments 

in the operations. The number of possible substitutions in 

[f1:g(A,A),f2:h(A,A),f3:i(A,B)] is two – only variables A and B are distinct values.  

In our implementation we modify this check to only consider discriminative 

arguments in the component operations. Discriminative arguments are those that 

abide by the variable co-designation and non-co-designation mechanism. Non-

discriminative arguments are introduced to represent arguments that we allow to 

have different values in operations without characterizing different events. 

Consider, for example, the case of two complex plan operations P1 and P2 

whose components are given by C1 = [f1:i1(a13,1,73),f2:j1(a13,1,88)] and C2 = 

[f1:i1(a14,1,73),f2:j1(a14,2,88)], respectively. The number of possible 

substitutions in the first one is 4, referring to the distinct values 88, 73, 1 and a13. 

The number of possible substitutions in the second one is 5, referring to the distinct 

values 88, 73, 2, 1 and a13. These are very similar plans and yet they would not be 

considered for the generalization via our first method because student a14 delayed 

discipline a13 by one semester.  

Hence, we relax the restrictions over the generalization mechanism and 

determine that operation arguments that are value entities in the static schema are 

not discriminative.  

We define an auxiliary algorithm discriminative_arguments_plan that, relates a 

list of components in standard format C to a list CD of components in discriminative 

format and a list CV of non-discriminative value components.  

The discriminative_arguments_plan algorithm: 

• parses C, and  

• for each <fid>-<op-signature> checks each argument of the operation 

for the respective entity.  

• For each entity that a value entity, an element <value>/<val> is added 

to a list <non-disc-argsvalueslist>, where <val> is the value of the 
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argument associated to the <value> entity. The list CV will contain one 

element <fid>-<non-disc-argvalueslist> for element in C.  

• Finally, an element <fid>:<disc-op-signature> is added to CD, where 

<disc-op-signature> is the same as <op-signature> except only figuring 

discriminative arguments.  

For example, discriminative_arguments_plan of our plan P1 will relate C1 = 

[f1:i1(a13,1,73),f2:j1(a13,1,88)] to a list CD1 = [f1:i1(a13),f2:j1(a13)] and a list 

CV1 = [f1:[semester/1,grade/73], f2:[semester/1,grade/88]]. The algorithm 

𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒_𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠_𝑝𝑙𝑎𝑛 for plan P2 will relate C2 = 

[f1:i1(a14,1,73),f2:j1(a14,2,88)] to a list CD2 = [f1:i1(a14),f2:j1(a14)] and a list 

CV2 = [f1:[semester/1,grade/73], f2:[semester/2,grade/88]]. 

The list CD respective to each plan is then used for the check for the number 

of possible substitutions, as in the original algorithm. In the example, plan P1 yields 

list CD1 = [f1:i1(a13),f2:j1(a13)] and plan P2 yields 

CD2=[f1:i1(a14),f2:j1(a14)] that have the same number of possible substitutions– 

one each. Hence, the check succeeds.  

This relaxed mechanism allows us to consider the most specific generalization 

of more diverse, yet still similar under our domain definitions, complex plans. We 

will leverage this to capture ranges of constraints over the arguments that are non-

discriminative later on.  

At this point in the msg_plan algorithm, we mostly performed preliminary 

consistency checks. If all checks succeed, we find all possible generalizations of 

the two plans P1 and P2 via an auxiliary algorithm msg_matching_plans. We adapt 

the original algorithm in (FURTADO e CIARLINI, 2001) to account for the 

discriminative arguments and to perform constraint boundary expansion. 

The algorithm msg_matching_plans receives as input the list of dependencies, 

the list of components in discriminative format and the list of non-discriminative 

value components of both P1 and P2 – that is, D1, D2, CD1, CD2, CV1 and CV2 

as per our definitions above. It relates those to a generalized plan MSG, a list of 

substitutions SL and a number of constrained-value variables expanded NE. It is 

processed as follows:  
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• performs checks of co-designation and non-co-designation of 

variables, including a retagged of the <fid> terms in all component 

lists; 

• expands the bounds of the non-discriminative arguments in CV1 and 

CV2 via the boundary_expansion algorithm described below; 

• generalizes the (retagged) lists of components in discriminative format 

via the msg algorithm as CD; 

• re-applies the constraint expanded varibles to the generalized lists of 

components. 

We start by describing the checks. The algorithm will only generate results 

for matching plans, meaning that a lifted copy of P1 can be unified under co-

designation and non-co-designation constraints with P2. As in (FURTADO e 

CIARLINI, 2001), “Co-designation (or, respectively, non-co-designation) allows 

(forbids) the occurrence of the same value (constant or variable) in different 

parameter positions”, and we verify that the order dependencies are the same via a 

renaming of the tags that makes both sets of dependencies identical. 

After these checks, we perform the constraint boundary expansion of the 

variables in the lists of non-discriminative value components CV1 and CV2. We 

know, at this stage, that the plans are similar in structure. Furthermore, we have 

renamed the order-depency tags <fid> to match in the lists of components.  

Hence, we define an algorithm 𝑒𝑥𝑝𝑎𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠 that will process the lists 

CV1 and CV2 matching the elements <fid>-<non-disc-argvalueslist> in each by the 

same <fid>.  Each element in <non-disc-argvalueslist> is a list of <value>/<val>. We 

ultimately consider for the constraint boundary expansion the matching terms <val>, 

given by a matching <value> entity in the matching <fid> of each plan. For example, 

in our current case the lists CV1 = [f1:[semester/1,grade/73], 

f2:[semester/1,grade/88]] and CV2 = [f1:[semester/1,grade/73], 

f2:[semester/2,grade/88]] (whose <fid> tags were incidentally already matching 

before the renaming described above) will be compared element-wise: the first 

element [semester/1,grade/73] is the same in both lists, and will result in no 

expansions in this example. The second element is [semester/1,grade/88] for CV1 

and [semester/2,grade/88] for CV2 – will focus on it for the examples below. 

The constraint boundary expansion is done as follows. Let v1 and v2 be 

matching <val> arguments according to the criteria above (that is, both v1 and v2 
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are related to the same <value> entity in the same <fid> component). In our example, 

we compare the semester/1 in the second element of CV1 to the semester/2 in the 

second element of CV2, hence v1 = 1 and v2 = 2. 

We obtain the infimum and supremum values of v1 and v2 as inf1, sup1 and 

inf2, sup2. The infimum or supremum value of a concrete numerical value is itself. 

The infimum inf(X) (or supremum sup(X) ) of a variable X is the minimum 

(maximum) value that can be attributed to it consistently in the current state of the 

constraints in the domain. For example, if variable X has been previously 

determined to be constrained between 1 and 10, inf(X)=1 and sup(X)=10. More 

complex cases are dealt with by the constraint programming mechanisms, with the 

atoms inf and sup standing for the infimum and supremum of the entire domain. 

For example, determining X>Y and X<10 yields inf(X)=inf and sup(X)=10. 

Determining X>Y, X<10 and Y>5 yields inf(X)=7 and sup(X)=9. These examples 

and the implementation are all relative to the library of constraint logic 

programming over finite domains CLP(FD) available for the SWI-Prolog 

distribution. 

We obtain I as the minimum between inf1 and inf2 and Q as the maximum 

between sup1 and sup2. The minimum between any value and the atom inf is the 

atom inf. The maximum between any value and the atom sup is the atom sup. Then 

we rely again on the constraint mechanism to define the generalization Q of v1 and 

v2 with the constraints I =< Q =< M. In our example with v1=1 and v2=2, we have 

straightforwardly I=1 and M=2. Hence, the generalization of v1 and v2 becomes a 

variable Q with the constraint annotation (Q in 1 … 2). 

The result of the boundary expansion process over the lists of non-

discriminative value components CV1 and CV2 in our examples will yield a 

generalized list CV with constraint-annotated variables. In our example, the 

resulting list is CV = [f1:[semester/1, grade/73], f2:[semester/Q, grade/88]], Q in 

(1..2), and the number of expanded variables NE = 1. 

All the constraint manipulations are handled as annotated variables in the 

CLP(FD) library. We only convert the constraints to an explicit term in order to 

store them reliably as part of the Library Index entries. The algorithm 

msg_matching_plans proceeds to invoke the msg algorithm for the lists of components 
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in discriminative format CD1 and CD2, obtaining a generalization CD and the list 

of substitutions LS.  

The algorithm msg_matching_plans completes the generation of one alternative 

generalization for plans P1 and P2 by unifying variables in CD with the variables 

in CV, effectively applying the expanded constraints over the variables in CD.  

Recall that the algorithm msg_plan finds all the possible generalizations of 

matching plans. The resulting most-specific generalization is chosen as the one with 

the minimum number of substitutions. 

We’ll illustrate the application of the algorithm with some higher-level 

examples. Assume the following cases, for students a1 and a2: 

plot(1,  [   s0, 

        i1(a1, 1, 100),  j1(a1, 1, 100),  k(a1, 1, 100),  l(a1, 1, 100), 

        i2(a1, 2, 100),  j2(a1, 2, 100),  m(a1, 2, 100),  

        i3(a1, 3, 100),  n(a1, 3, 100),   grad(a1,3)  ] ). 

plot(2,  [   s0, 

        i1(a2, 1, 100),   j1(a2, 1, 100),   k(a2, 1, 100), 

        l(a2, 2, 100),    i2(a2, 2, 100),  j2(a2, 2, 100), 

        m(a2, 3, 100),    i3(a2, 3, 100), 

        n(a2, 4, 100),    grad(a2,4)   ] ). 

). 

The plots of these students are illustrated in Figure 6. In this figure, as before, 

the disciplines in each plot are aligned horizontally according to the semester. 

 

Figure 6 A visual representation of some of the plots of students a1 and 

a2 in the short example. 

Assume that the entire plot of each student has been collected as a complex 

plan, defining composite operations with the following components and 

dependencies: 

 

% Plan 1: c1(a1)  

components : [ f1:i1(a1,1,100), f2:j1(a1,1,100), f3:k(a1,1,100), f4:l(a1,1,100), 
f5:i2(a1,2,100), f6:j2(a1,2,100), f7:m(a1,2,100), f8:i3(a1,3,100), 
f9:n(a1,3,100), f10:grad(a1,3) ] 
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dependencies : [f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-f10,f8-f10,f9-
f10]  
 

% Plan 2: c2(a2)  

components : [ f1:i1(a2,1,100), f2:j1(a2,1,100), f3:k(a2,1,100), f4:l(a2,2,100), 
f5:i2(a2,2,100), f6:j2(a2,2,100), f7:m(a2,3,100), f8:i3(a2,3,100), 
f9:n(a2,4,100), f10:grad(a2,4)] 
 

dependencies : [f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-f10,f8-f10,f9-
f10]  
 

In this case, the check for the same number of components (10 in both) and 

order dependency terms (also 10 in both) succeeds. We obtain the components in 

discriminative format: 

 

% Plan 1: c1(a1)  

components in discriminative format: [f1:i1(a1), f2:j1(a1), f3:k(a1), f4:l(a1), 
f5:i2(a1), f6:j2(a1), f7:m(a1), f8:i3(a1), f9:n(a1), f10:grad(a1)] 
 

non-discriminative value components: [f1:[semestre/1,nota/100], 
f2:[semestre/1,nota/100], f3:[semestre/1,nota/100], f4:[semestre/1,nota/100], 
f5:[semestre/2,nota/100], f6:[semestre/2,nota/100], f7:[semestre/2,nota/100], 
f8:[semestre/3,nota/100], f9:[semestre/3,nota/100], f10:[semestre/3]] 

 

% Plan 2: c2(a2)  

components in discriminative format: [f1:i1(a2), f2:j1(a2), f3:k(a2), f4:l(a2), 
f5:i2(a2), f6:j2(a2), f7:m(a2), f8:i3(a2), f9:n(a2), f10:grad(a2)] 
 

non-discriminative value components: [f1:[semestre/1,nota/100], 
f2:[semestre/1,nota/100], f3:[semestre/1,nota/100], f4:[semestre/2,nota/100], 
f5:[semestre/2,nota/100], f6:[semestre/2,nota/100], f7:[semestre/3,nota/100], 
f8:[semestre/3,nota/100], f9:[semestre/4,nota/100], f10:[semestre/4]] 
 

The check for the same number of possible substitutions in both lists of 

components in discriminative format succeeds. 

We proceed to find all the matching plan substitutions via msg_matching_plan. 

Since the original dependency lists of both plans are the same, the re-tagging and 

subsequent unification check succeeds straightforwardly.  

We expand obtain the generalization of the non-discriminative value 

components via expand_bounds algorithm, obtaining the generalized list of 

discriminative arguments CV: 

 

[f1:[semestre/1,nota/100], f2:[semestre/1,nota/100], f3:[semestre/1,nota/100], 
f4:[semestre/A,nota/100], f5:[semestre/2,nota/100], f6:[semestre/2,nota/100], 
f7:[semestre/B,nota/100], f8:[semestre/3,nota/100], f9:[semestre/C,nota/100], 
f10:[semestre/D]], % with constraints  (A in 1 .. 2),  (B in 2 .. 3),  (C in 3 .. 4),  
(D in 3 .. 4) 
 

The invocation of msg with the lists of components in discriminative format 

yields the generalization: 
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[f1:i1(A), f2:j1(A), f3:k(A), f4:l(A), f5:i2(A), f6:j2(A), f7:m(A), f8:i3(A), 
f9:n(A), f10:grad(A)] 

% With substitutions 

[(a1,a2,A)]  
 

This is the only generalization found via msg_matching_plans. Hence, we select 

it as the most-specific generalization for this case.  

In the next section we will describe how this first method of generalization – 

via similarity and most-specific generalization – is applied in the composition of 

the Library Index. The generalization of plans via msg_plans will impact, for 

example, on the cases that are considered to follow the generalized plan. 

4.1.3 The Library Index 

The Library Index is a structure that records the typical plans discovered in 

the domain, indexing them by the goal-inference rule used for mining. The structure 

of the Library Index is as follows: 

 

<library_index> ::= [<library_entry>] | [<library_entry>, <library_index>] 

 

<library_entry> ::= <rule-id>, plans: [ <rule-planslist ]  

<rule_planslist> ::= < plan> | <plan>, <rule-planslist> 
 

The definition of the types of <plan> is discussed in Section 3.3.5.  

Hence, the Library Index is a structure that relates each goal-inference rule 

(represented by its rule-id) to a list of plans. We use the rule-id as a placeholder for 

the identification of the rule and report purposes – in the algorithms and 

mechanisms the rule is actually indexed by a triple (𝑎, 𝑠, 𝑔) defining the agent, 

situation and goal of the rule, respectively. 

We discussed the overall process of the composition of the library in Section 

3.3.5. Here we will discuss the algorithm build that implements the general method 

for building the Library Index.  

The build algorithm is an entry-point for the main build_library algorithm, 

described below. Before invoking the build_library, the build algorithm performs 

a series of checks and initializations, asserting that a domain is correctly specified, 

and either initializing a new Library Index or managing the state of a current Library 

Index, if one exists. 
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The checks include an assertion that a domain has been correctly defined with 

available cases and at least one goal-inference rule.  

The mechanism for dealing with a pre-existing Library Index structure is 

expanded from (FURTADO e CIARLINI, 2001) to optionally consider only new 

goal-inference rules, ignoring those already in Library Index. If no Library Index 

exists, all rules are considered new. At the end of this step, the Library Index will 

contain one element <rule-id>, plans: [ ] for each new goal-inference rule 

available. 

For each plot and each goal-inference rule the build_library algorithm will, 

iteratively, by backtracking: 

1) Extract a plan with from the plot, relying on the algorithms 

described in Section 4.1.1; 

2) Perform a matching process of the extracted plan and the plans 

already in the Library Index, which consists of: 

a) Adding the extracted plan to the Library Index if it contains 

no plans for that entry; 

i) As a simple plan, if the extracted plan is a single 

operation from the dynamic schema; 

ii) Defining a new composite operation, otherwise; 

or 

b) Generalizing one similar operation in the Library, relying 

on the algorithms described in Section 4.1.2;  

or 

c) Creating a new generic operation associated to the entry, if 

it does not contain one; and 

d) Adding the extracted plan to a generic operation complex 

plan in the entry, with the extracted plan as a 

specialization; 

i) As a simple plan, if the extracted plan is a single 

operation from the dynamic schema; 

ii) Defining a new composite operation, otherwise. 

In all cases, we update the records of the cases for the respective entry when 

we modify the Library Index. We’ll discuss some of the algorithms that manage the 

state of the Library below. 

Step 1 is straightforwardly performed via the get_plan algorithm.  
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Step 2.a implicitly includes a check for existing operations in the index – if 

there are none, step 2.a is executed. Adding a simple plan – comprising a single 

operation from the dynamic schema, in step 2.a.i – is straightforward.  

For adding complex plans, in step 2.a.ii, an operation signature and frame 

must be composed. In (FURTADO e CIARLINI, 2001) a process for asking the 

user for the definition of a complex operation is applied. In our intended process 

mining applications it is important to make the process as automatic as possible. 

Hence, we additionally implement an optional mechanism for the automatic 

generation of complex operation signatures and frames.  

The mechanism creates new operation names as required, and determines the 

arguments in the operation signature, and corresponding operation frame, based on 

the definitions of the arguments and entity types in the conceptual model. For 

simplicity, we choose the straightforward approach of only representing the 

discriminative arguments (see the previous Section) in the complex operation 

signature. Hence, in our examples, the complex operation signatures are always 

unary predicates with the first argument corresponding to the <case-id>, and the 

operation frame is, correspondingly, [student/o]. 

If the Library Index already contains a similar plan, we attempt the first-level 

generalization via the msg_plan algorithm. If a most-specific generalized plan is 

obtained, we update the corresponding Library Index entry to comprise that 

generalized plan, updating the cases as appropriate.  

An additional check is performed – the most-specific generalized plan only 

substitutes the plan in the Library if it is more general. That is, if the number of 

variables in discriminative arguments of the new generalized plan is greater – or if 

a variable expansion has been found. 

If the extracted plan is not similar enough to the existing plans to allow for 

the generalization via msg_plan we look for a generic operation in the Library Index 

entry. If one does not exist, it is created. A similar mechanism for the automatic 

definition of the operation signature and frame is used as above. Finally, the 

extracted plan is added to Library Index entry, comprising a specialization of the 

generic operation in that entry. 
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We will exemplify the algorithms described above (and auxiliary algorithms) 

with examples. To illustrate the process, we’ll consider the cases of students a1 an 

a2 from above and the additional following cases: 

plot(3,   [   s0, 

        i1(a3, 1, 70),    j1(a3, 1, 70),   k(a3, 1, 70),  l(a3, 1, 70), 

        i2(a3, 2, 70),    j2(a3, 2, 70),   m(a3, 2, 100), 

        i3(a3, 3, 70),     n(a3, 3, 70),   grad(a3,3)  ] ). 

plot(4,   [   s0, 

        i1(a4, 1, 100),  j1(a4, 1, 100),  k(a4, 1, 100),  l(a4, 1, 100), 

        i2(a4, 2, 100),  j2(a4, 2, 100),  m(a4, 2, 100),  

        i3(a4, 3, 100),   z(a4, 3, 100),  grad(a4,3)  ] ). 

plot(5,   [   s0, 

        j1(a5, 1, 100),   i1(a5, 1, 100), k(a5, 1, 100), l(a5, 1, 100), 

        j2(a5, 2, 100),   i2(a5, 2, 100), m(a5, 2, 100),  

        i3(a5, 3, 100),   n(a5, 3, 100),  grad(a5,3) ] ). 

plot(6,   [   s0, 

        i1(a6, 1, 70),    j1(a6, 1, 70),  k(a6, 1, 70),  l(a6, 1, 70), 

        i2(a6, 2, 70),    j2(a6, 2, 70),  m(a6, 2, 100) ] ). 

plot(7,   [   s0, 

        i1(a7, 1, 70),    j1(a7, 1, 70),  k(a7, 1, 70), 

        l(a7, 2, 70),     i2(a7, 2, 70),  j2(a7, 2, 70) ] ). 

plot(8,  [   s0, 

        i1(a8, 1, 70),   j1(a8, 1, 70),   k(a8, 1, 70),   l(a8, 1, f), 

        l(a8, 2, 70),    i2(a8, 2, 70),   j2(a8, 2, 70),  m(a8, 2, 100) ] ). 

plot(9,  [   s0, 

        i1(a9, 1, 100),  j1(a9, 1, 100),  k(a9, 1, 100),  l(a9, 1, 0), 

        l(a9, 2, 100),   i2(a9, 2, 100),  j2(a9, 2, 100), m(a9, 2, f),  

        m(a9, 3, 100),   i3(a9, 3, 100),  n(a9, 3, 0),  

        n(a9, 4, 100),   grad(a9,4) ] ). 

 

A visual representation of the plots of these students is given in Figure 7 and 

Figure 8. In these figures, as before, the disciplines in each plot are aligned 

horizontally according to the semester. Within each semester the order of 

disciplines represents the order of terms in the plot. 

 

Figure 7 A visual representation of some of the students in the short 

example. 
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These students, along with a1 and a2, are students who graduated without 

failing disciplines. They perform different sets of disciplines, in different orders and 

different grades. 

 

Figure 8 A visual representation of other students in the short example. 

In this set we have partial traces, as well as students with failed disciplines. 

The process for building the Library Index recursively selects a plot and a 

goal-inference rules; finding the plans that satisfy the rule and adding them to the 

Library Index in the appropriate entry.  

We’ll consider the example of goal-inference rule 1. 

gi_rule( 1, 

        student(Student), 

        (   student(Student),  

      not app(Student, _, _), not rep(Student,_, _),  

            not grad(Student) ),    not drop(Student) ) 

        (   not rep(Student,_, _), grad(Student)  ) 

). 

This rule represents the goal of new students of graduating without any failed 

disciplines.  

We invoke the build algorithm for this set of students and this single goal-

inference rule. After the checks and the initialization of the Library Index structure, 

we have: 
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% Library Index 

[ (1,plans:[] ) ] % Goal-inference 1 – no plans 
 

And we proceed to the build_library algorithm. The algorithm first selects the 

plot of student a1, introduced in Section 4.1.2, and then rule 1 (the only one 

available).  

The plan-recognition via the get_plan algorithm will yield the students entire 

plot as a plan: 

 

[i1(a1,1,100), j1(a1,1,100), k(a1,1,100), l(a1,1,100), i2(a1,2,100), 
j2(a1,2,100), m(a1,2,100), i3(a1,3,100), n(a1,3,100), grad(a1,3)] 
 

The matching process will identify that no plans exist in the Library Index 

entry. A new composite operation c1(a1) is defined and added to the Library Index: 

 

[ ( 1, plans:  

    [  complex: 

       [  composite:c1(a1),  

          frame:[student/o], 

         components:[f1:i1(a1, 1, 100), f2:j1(a1, 1, 100), f3:k(a1, 1, 100), 
f4:l(a1, 1, 100), f5:i2(a1, 2, 100), f6:j2(a1, 2, 100), f7:m(a1, 2, 100), 
f8:i3(a1, 3, 100), f9:n(a1, 3, 100), f10:grad(a1, 3)], 

         dependencies:[f1-f5, f1-f7, f2-f6, f3-f10, f4-f10, f5-f8, f6-f8, f7-
f10, f8-f10, f9-f10], 

         cases:[1]     

      ] 

    ] 

  ) 

] 
 

 At this point, a representation of the plans in the entry 1 of the Library Index 

is given in Figure 9: 

 

Figure 9 A visual representation of the plan extracted for goal-inference 

rule 1 and student a1 in the short example. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



142 

 

In the figure above the order dependencies are represented as directed arrows 

(e.g. the order dependency term f1-f5 is represented by the arrow pointing from i1 

to i2). The order dependencies to the case termination operation are omitted. 

Because this is the only plan in the Library Index entry, no second-level 

generalization is attempted. No other plans are available for the student, and we 

proceed to check the next plot. 

The plot of student a2 is selected. The extracted plan is again the entire plot 

of the student.  

Since a similar plan already exists in the Library, we attempt to generalize 

both via msg_plan. The example of the generalization of the plans for student a1 and 

a2 is exactly the example used in Section 4.1.2. The generalization succeeds and 

the composite operation c1 is generalized as follows: 

 

    composite:c1(a1),  

    frame:[student/o], 

   components:[f1:i1(A,1,100),  f2:j1(A,1,100),  f3:k(A,1,100),  f4:l(A,B,100),  
f5:i2(A,2,100),  f6:j2(A,2,100),  f7:m(A,C,100),  f8:i3(A,3,100),  
f9:n(A,D,100),  f10:grad(A,E) ],  

% with constraints clpfd:(B in 1 .. 2), clpfd:(C in 2 .. 3), clpfd:(D in 3 .. 4), clpfd:(E 
in 3 .. 4) 

   dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-f10,f8-f10,f9-
f10],  

   cases:[2,1]) ] 
 

Notice that the constraints resulting from the boundary expansion in the 

generalization are still annotated variables according to the CLP(FD) library 

implementation. In order to store the new plan, we perform the process of making 

those constraints explicit, as discussed in Section 4.1.3. The operation c1 in the 

Library Index entry is substituted by the generalized version above, with explicit 

constraints. 

A visual representation of the plans in the entry 1 of the Library Index is given 

in Figure 10. The operations with dashed outline are disciplines (or case termination 

operation grad) that can be executed in one of many semesters, delimited by the 

dashed whisker lines: 
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Figure 10 A visual representation of a generalized plan in the short 

example. 

Because there’s still only a single plan in the Library Entry, we still don’t 

consider the second-level generalization.  

The example above illustrates how the Library of Typical Plans for Process 

Mining identifies that two plans of the same activities with similar ordering 

relations – but different timestamps – are captured as a unique plan for further 

analysis. 

With no more available plans for student a2, we proceed to check the plans 

for student a3. The plan from student a3 is very similar to that of student a1, except 

that she obtains lower grades while still being approved in all disciplines. Again, 

the plan extracted comprises the whole plot of the student. 

The first-level generalization via msg_plan succeeds yet again, this time 

expanding the boundaries for the grades obtained by the students that perform the 

plan. The resulting generalized plan is illustrated in Figure 11. The constraint ranges 

for the grades for disciplines are given by dashed boxes and minimum-maximum 

grades: 
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Figure 11 A visual representation of the plan extracted for goal-inference 

rule 1 and students in the short example. 

This example shows that the plan-recognition algorithm is capable of 

identifying that a ground plan, with concrete values for timestamps, is considered 

similar to a generalized plan as long as the constraints over the timestamps hold. It 

also illustrates that the additional non-discriminative arguments are generalizable 

as well.  

Once again, after the consideration of the plans of student a3, there is still only 

one plan in the Library Index entry and the second-level generalization is not 

considered. The algorithm proceeds to check the plans for student a4. 

Student a4’s plot is also very similar to a1’s. However, she performs a 

different discipline to obtain approval in the ‘group’ of disciplines – a4 performs 

discipline Z instead on N. Once again, the extracted plot is the student’s whole plot. 

This time, however, due to the strict requirements for considering plans 

similar, we find that the plan for student a4 is not similar to the generalized c1 in 

the Library Index. Hence, we compose a new operation c2 and add it to the Library 

Index: 

 

[ ( 1, plans:    

       [  complex:(  

             composite:c2(a4),  

             frame:[student/o],  

             components:[f1:i1(a4,1,100),  f2:j1(a4,1,100),  f3:k(a4,1,100),  
f4:l(a4,1,100),  f5:i2(a4,2,100),  f6:j2(a4,2,100),  f7:m(a4,2,100),  
f8:i3(a4,3,100),  f9:z(a4,3,100),  f10:grad(a4,3) ],  
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             dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-
f10,f8-f10,f9-f10],  

             cases:[4],  

             constraints:[] 

         ), % End of complex plan 

         complex:( 

             composite:c1(A),  

             frame:[student/o],  

             components:[f1:i1(A,1,B),  f2:j1(A,1,C),  f3:k(A,1,D),  
f4:l(A,E,F),  f5:i2(A,2,G),  f6:j2(A,2,H),  f7:m(A,I,100),  f8:i3(A,3,J),  
f9:n(A,K,L),  f10:grad(A,M) ],  

             dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-
f10,f8-f10,f9-f10],  

             cases:[3,2,1], 

             constraints:[ (B in 70 .. 100),  (C in 70 .. 100),  (D in 70 .. 
100),  (E in 1 .. 2),  (F in 70 .. 100),  (G in 70 .. 100),  (H in 70 .. 100),  
(I in 2 .. 3),  (J in 70 .. 100),  (K in 3 .. 4),  (L in 70 .. 100),  (M in 3 .. 
4) ] 

         ) % End of complex plan        

       ] % End of Plans of rule 1 

   )  

] 
 

A visual representation of the plans contained in the library at this stage is 

given in Figure 12: 

 

Figure 12 Multiple plans in the Library Index entry in the short example. 

Now the Library Index contains more than a single plan for the entry. Hence, 

the second-level generalization is attempted. There are no generic operations, so a 

new one is created and added to the index: 

 

complex:(generic:g1(A), frame:[student/o], specializations:[c2(A),c1(A)], 
cases:[4,3,2,1] 
 

The algorithm then checks the plot of student a5 for plans. That plot is 

identical to a1’s, included in the examples to show that the plan-recognition has 

been adapted do identify that two plots of events with the same timestamps are the 

same. The examples in 8.1.1 exemplify that in detail. With the addition of the plan 

extracted for student a5 the final state of the Library is: 
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[ ( 1, plans:    

       [ complex:( 

             generic:g1(A), 

             frame:[student/o],  

             specializations:[c2(A),c1(A)], cases:[5,4,3,2,1] 

   ), % End of complex plan 

         complex:(  

             composite:c2(a4),  

             frame:[student/o],  

             components:[f1:i1(a4,1,100),  f2:j1(a4,1,100),  f3:k(a4,1,100),  
f4:l(a4,1,100),  f5:i2(a4,2,100),  f6:j2(a4,2,100),  f7:m(a4,2,100),  
f8:i3(a4,3,100),  f9:z(a4,3,100),  f10:grad(a4,3) ],  

             dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-
f10,f8-f10,f9-f10],  

             cases:[4],  

             constraints:[] 

         ), % End of complex plan 

         complex:( 

             composite:c1(A),  

             frame:[student/o],  

             components:[f1:i1(A,1,B),  f2:j1(A,1,C),  f3:k(A,1,D),  
f4:l(A,E,F),  f5:i2(A,2,G),  f6:j2(A,2,H),  f7:m(A,I,100),  f8:i3(A,3,J),  
f9:n(A,K,L),  f10:grad(A,M) ],  

             dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-
f10,f8-f10,f9-f10],  

             cases:[5,3,2,1], 

             constraints:[ (B in 70 .. 100),  (C in 70 .. 100),  (D in 70 .. 
100),  (E in 1 .. 2),  (F in 70 .. 100),  (G in 70 .. 100),  (H in 70 .. 100),  
(I in 2 .. 3),  (J in 70 .. 100),  (K in 3 .. 4),  (L in 70 .. 100),  (M in 3 .. 
4) ] 

         ) % End of complex plan        

       ] % End of Plans of rule 1 

   )  

] 

Notice that the case 5 (the id in the initial_state of student a5) is added to 

cases of both the composite plan c1 and the generic plan g1. 

The state of the library above is the final Library Index obtained by this set of 

students and the goal-inference rule 1 – students a5, a7, a8 and a9 don’t reach the 

goal. Students a6, a7 and a8 don’t graduate, and student a9 fails a discipline. Hence, 

no plans are extracted for those cases. 

4.1.4 Management of the Library Index 

The Library Index is a data structure to hold all the plans found for the goal-

inference rules considered. The structure of Library has been presented above, and 

the structure of the plans in the Library Index entries in Section 3.3.5. At all times 
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during the mining process the Library Index structure is stored as an asserted fact 

library_index(<library_index>) in the Prolog database.  

Notice that in the asserted representation of the Library – the one we’ve used 

to showcase the plans and the Library, except when stated otherwise – the 

constraints over the variables in the plans are explicitly stored in a list. The 

constraints are said to be in explicit format in the asserted library_index but, in all 

the plan-mining algorithms, they are in the implicit format, as annotated variables 

in the CLP(FD) library format. We define an algorithm library_explicit_implicit 

that relates a <library-index> structure in explicit format (with constraints in explicit 

format) to a library in implicit format (a similar structure in which the plans do not 

contain constraint terms, but the equivalent restrictions are applied over the 

variables in the CLP(FD) constraint store. The algorithm can be used to obtain a 

library in explicit format from one in implicit format and vice-versa. 

Thus, the Library is typically not directly accessed via the library_index 

predicate. Rather, we define an algorithm read_library that (1) obtains the current 

Library Index and (2) translates the list to the implicit format, via 

𝑙𝑖𝑏𝑟𝑎𝑟_𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡_𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡, yielding that as a result.  

Because the Library Index is stored as an asserted fact, the methods for 

updating the plans or including a new plan) in an entry must retract the current fact 

and assert the modified version. Because we must store the constraints of the new 

plans in explicit format, we define auxiliary algorithms that also rely on 

library_explicit_implicit for those manipulations as well. 

Finally, the format of the Library Index in the Library of Typical Plans for 

Process Mining is different from the one used in (FURTADO e CIARLINI, 2001). 

Because of our secondary goal of not discarding any features of the original Library 

of Typical Plans, we also provide methods to translate a Library Index to (and from) 

that format. When translating from the Library Index to that format, the information 

of the cases is discarded – but the constraints are asserted in the constraint store. 

When translating from that format to the Library Index, no cases will be considered 

(the cases list in all plans will be variable), but any constraints over the variables in 

the constraint store will be recognized and carried over. 
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4.1.5 Highlighted additional features 

The implementation of the algorithms related to Plan mining in the Library of 

Typical Plans for Process Mining comprise several novel features with respect to 

the original BLIB (FURTADO e CIARLINI, 2001).  In this section we highlight a 

few of those main aspects that differentiate the Library of Typical Plans for Process 

Mining and the BLIB and also discuss the ‘retro compatibility’ of the 

implementation in other aspects. 

The most important novel feature of the Library of Typical Plans for Process 

Mining relates to the new Library Index structure. The novel format holds explicit 

constraints over values in the arguments of the operations – according to the 

definitions of the value entities in the static schema. The structure also holds the 

cases that relate to each plan and, therefore, to each rule.  

The mechanisms for generalization are changed to collect the constraints over 

these values expanding the boundaries of the values already observed in the plan. 

The generalization algorithms also deal with non-discriminative arguments, which 

are important for the consideration of whether a generalization took place when a 

new plot is observed. As previously stated, this relaxed mechanism allows us to 

consider the most specific generalization of more diverse, yet still similar under our 

domain definitions, complex plans. 

The mechanism for accounting for constraints also comprise the plan-

recognition, although in limited scenarios, and the detection of ‘clobbered’ and 

‘undone’ facts by leveraging the timestamp argument. 

The algorithm for building a (or updating a previously generated) Library 

Index from plots is also novel. It captures the cases of the respective plans and 

updates them accordingly in the structure. 

Our approach for Process Mining balances the simplicity of the model and the 

other quality criteria. Hence, in the examples and in the general approach described 

in this thesis we don’t always exploit the full power of the representation allowed 

by the conceptual model – which is, in fact, according to the Entity-Relationship 

model.  
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As a consequence, there are several features of the Library of Typical Plans 

for Process Mining that stem from the original BLIB (FURTADO e CIARLINI, 

2001) and that are not used for the Process Mining examples. In this section we 

discuss some of this features and possibilities of representation in the adopted 

conceptual model approach. 

The Library of Typical Plans for Process Mining can be used for the same 

purposes as the original BLIB. In the implementation, the aspects of the original 

formulation were considered and we strove to maintain all functionalities. With the 

mechanism for translating a Library Index to (and from) the format used in BLIB 

we developed a testing mechanism to ensures that all examples concerning richer 

features generate equivalent results when executed in the Library of Typical Plans 

for Process Mining. 

As discussed in Section 3.3.1 the conceptual model accounts for richer 

definitions in the static schema. We considered the use of an entity attribute in the 

examples of model enhancement in Section 3.5 by adding an argument to the entity 

clause. This is a change in notation, in respect to the original formulation in 

(FURTADO e CIARLINI, 2001), in which attributes are defined by separate 

attribute clauses and the only additional argument for the entity clauses define a 

privileged identifying attribute. The static schema may also additionally comprise 

multiple entity classes organized in a is-a hierarchy, in which attributes are inherited 

by sub-classes. In any case, the Library of Typical Plans for Process Mining 

accounts for (properly defined) entity attributes and multiple entity classes.  

The static schema may also define relationships between entity classes. Facts 

regarding relationships among entity instances can be used in the definition of the 

situation or goal of goal-inference rules, same as facts regarding entity attributes. 

This is also demonstrated by the correct replication of the results of the examples 

in (FURTADO e CIARLINI, 2001), which include relationship clauses and facts. 

In the dynamic schema we defined that operations created from domain 

activities have only positive effects. This is a strong restriction on the representative 

power of the conceptual mode. However, by relying on the meta-predicate holds 

both the plan-recognition and plan-verification algorithms are general and capable 

of dealing with operations with negative effects. 
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Another aspect that is accounted for in the Library of Typical Plans for 

Process Mining that is not required for the process mining approach is the capacity 

of dealing with plots involving multiple agents. In the Process Mining fashion, we 

expect to be able to identify the case uniquely for each event in the log. Thus, it is 

trivial to separate the traces, and therefore the plots, of each case. This relates 

especially to the extract_plan algorithm – for the process mining approach it 

wouldn’t need to check that the operation refers to the relevant agent. We keep that 

check for compatibility with the BLIB. 

Finally, in (FURTADO e CIARLINI, 2001) three kinds of operations are 

defined for re-structuring the index after a batch of plots are considered. These 

rebuild algorithms recognizes in the index – and update it accordingly – multi-level 

generalizations; generic operations as components of composite operations; and 

multi-level compositions. Again, we strove the maintain the retro-compatibility of 

the Library of Typical Plans for Process Mining and adapted those methods to deal 

with the Library Index. Hence in several cases, our resulting Library Index can be 

subjected to these re-structuring processes and updated as expected. The re-

structuring of the Library Index was not the focus of our analyses, however, and we 

expect that the investigation of Library Index rebuild algorithms will comprise 

future work, especially interesting for novel approaches of model enhancement. 

4.2 Conformance Checking algorithms 

Recall the discussion in Section 3.4. We define a plan-verification method for 

the conformance checking via replay of plots. The algorithm for plan-replay is 

described in the following section. The algorithm for support-counting and other 

metrics of interest are discussed in Section 4.2.2. 

4.2.1 Replay 

The plan-verification forward_check algorithm is as follows. It relates a plot 

�̂� = [𝑠0, 𝑜𝑖 , … , 𝑜𝑘] to a list F of failed operations (and their precondition sets) and a 

list A of failed operations allowed in the plot. The algorithm will produce all 

combinations of A and F from the plot by backtracking. 

The forward_check algorithm starts by splitting the trace into two lists: one 

representing the sequence of successfully executed previous operations 𝜀 = [𝑠0], 
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initially comprising only the initial state operation s0; and a sequence 𝜎 =

[𝑜𝑖 , … , 𝑜𝑘] comprising the remaining operations in the plot. Then, it invokes the 

forward_check_acc algorithm that deals with the recursive cases. 

In the following, let 𝜎𝑖,𝑗 , for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 be the subsequence of 𝜎 starting in 

operation 𝑜𝑖 and ending in operation 𝑜𝑗. In this definition, 𝑘 is the number of 

operations in the original plot and 𝑜𝑘 is the last operation. For ease of representation, 

let 𝜎𝑖  be the subplot of 𝜎 starting in operation 𝑜𝑖. and ending in operation 𝑜𝑘.  

The forward_check_acc will consider each operation 𝑜𝑖 in 𝜎, roughly as 

follows: 

1. If 𝜎 is the empty sequence, the algorithm terminates with an empty list 

A and an empty list F. 

2. Otherwise, we check whether 𝑜𝑖 has preconditions.  

a. If it has no preconditions or if at least one alternative 

conjunction of preconditions is satisfied by the successfully 

executed previous operations, 𝑜𝑖 is conformant in the domain 

– we recursively invoke the algorithm with the remaining plot, 

and considering 𝑜𝑖 a successfully executed operation. The 

algorithm yields the results of that recursive invocation. 

b. Otherwise, we consider the operation discrepant. The 

algorithm yields the results of two recursive invocations, by 

backtracking: 

i. One in which we do not consider 𝑜𝑖 as a successfully 

executed operation and proceeding checking the 

remainder of the plot – thus ignoring the effects of that 

operation; 

ii. Another in which we do consider 𝑜𝑖 to be a successfully 

executed operation, while also adding it to a list of 

‘allowed’ operations. 

A more detailed description of the algorithm, matching the predicates that 

implement it in our Prolog implementation, is given in the following.  

In step 1, if 𝜎 is the empty sequence, the algorithm terminates with an empty 

list A and an empty list F.  

Otherwise, in step 2, we check whether 𝑜𝑖 has preconditions. This check 

comprises accounting for sets of alternative preconditions as defined by the precond 
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clauses of that operation defined in the dynamic schema. Recall the definition of Π 

as the set of alternative preconditions of 𝑜𝑖, as discussed in Section 3.3.2.2.1. 

In step 2.a, the operation 𝑜𝑖 has no preconditions, Π = {∅}, or at least one 

alternative conjunction of preconditions 𝜋 ∈ Π is satisfied in the state 𝜋𝜀  (the state 

resulting from the subplot 𝜀). These are the cases in which we consider the operation 

conformant in the domain.  We determine this in a similar manner as in the plan 

mining methods, relying on the meta-predicate holds. In this case, we obtain a new 

list of previously executed operations 𝜀′ by adding 𝑜𝑖 to 𝜀. We then recursively 

invoke the forward_check_acc algorithm with 𝜀′, the list of remaining operations in 

the plot 𝜎𝑖+1 . The algorithm yields the resulting lists A and F from the recursive 

invocation. 

In step 2.b none of the alternative preconditions 𝜋 ∈ Π of 𝑜𝑖 hold in 𝜋𝜀 , and 

we consider the operation discrepant.  

In step 2.b.i. we obtain a list F1 of failed operations by the recursive 

invocation of forward_check_acc for sequence 𝜎𝑖+1  with the same 𝜀. The algorithm 

yields a list comprising 𝑜𝑖  and the elements in F1 as failed operations, and the list 

A obtained from the recursive invocation. 

In the alternative recursive invocation of the algorithm reached via 

backtracking in step 2.b.ii we ‘allow’ the discrepant operation 𝑜𝑖. In this invocation 

we consider the sequence 𝜎𝑖+1 , and a list of executed operations 𝜀′ obtained by 

adding 𝑜𝑖 to 𝜀, and a list A’ obtained by adding 𝑜𝑖 to A. Also, in this case the 

algorithm yields the resulting list F as the list of failed operations. 

Consider the following cases for an example: 

% Ok - partial trace. M requires either I1 or J1. 

plot(95, 
    [   s0, 
        i1(a95, 1, 100), %<--- this satisfies 
        m(a95, 2, 100)  %<-- this 
    ] 
). 
 

% Drops for no reason - it drops because of a known reason 

% If drop is forgiven, nothing else. 

initial_database(96, student(a96)). 
plot(96,  
    [   s0, 
        i1(a96, 1, 100), 
        j1(a96, 1, 100), 
        k(a96, 1, 100), 
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        l(a96, 1, 100), 
        i2(a96, 2, 100), 
        drop(a96,3) %<--- dropped without satisfying preconditions 
    ] 
). 
 

% Similar to a96 

% Drops without satisfying full condition - 

% only part of the preconditions of the drop are satisfied. 

initial_database(96-2, student(a96-2)). 
plot(96-2, 
    [   s0, 
        i1(a96-2, 1, 0), 
        i1(a96-2, 2, 0), 
        i1(a96-2, 3, 100), 
        drop(a96-2,3) 
    ] 
). 
 

% Student that *does* conform - it drops because of a known reason! 

initial_database(97, student(a97)). 
plot(97, 
    [   s0, 
        i1(a97, 1, 0), 
        i1(a97, 2, 0), 
        i1(a97, 3, 0), 
        drop(a97,3) %<-- satisfied! 
    ] 
). 
 
% This student does not perform I1.  
% That means I2 happens even though it shouldn’t. Same for I3. 
% M does not appear in the failed list because J1 suffices. 
initial_database(98, student(a98)). 
plot(98, 
    [   s0, 

         %i1(a98, 1, 100), <-- Does not perform I1 

        j1(a98, 1, 100), 
        k(a98, 1, 100), 
        l(a98, 1, 100), 
        i2(a98, 2, 100), %<-- shouldn’t – no I1 
        j2(a98, 2, 100), 
        m(a98, 2, 100), %<--- *can* perform this because of j1 
        i3(a98, 3, 100), %<-- shouldn’t - I2 required for I3. 
        n(a98, 3, 100), 
        grad(a98,3)  
    ] 
). 
 

% Does not conform - graduates without most disciplines.  

% Should not be able to perform J2 - it requires I1 

initial_database(99, student(a99)). 
plot(99, 
    [   s0, 
        i1(a99, 1, 100), 
        j2(a99, 2, 100), 
        grad(a99,2) 
    ] 
). 
 

% Nonconforms - With I1 out of order, I2, and  I3 and grad shouldn’t happen 

% Notice M does not fail - j1 happens before 

initial_database(100, student(a100)). 
plot(100, 
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    [   s0, 
        j1(a100, 1, 100), 
        k(a100, 1, 100), 
        l(a100, 1, 100), 
        i2(a100, 2, 100), %<--- Should fail because i1 is not there 
        j2(a100, 2, 100), 
        m(a100, 2, 100), % <-- Should succeed out of j1 
        i1(a100, 3, 100), %<--- Out of order 
        i3(a100, 3, 100), %<--- Fails because i2 fails 
        n(a100, 3, 100), 
        grad(a100,3) 
    ] 
). 

In the examples we will ignore the collection of the preconditions of the 

discrepant operations for ease of representation.  

We’ll first consider the plot of student a95. The algorithm forward_check splits 

the plot in the two lists and invokes algorithm forward_check_acc with 𝜀 = [𝑠0] and 

𝜎 = [ i1(a95, 1, 100), m(a95, 2, 100) ]. 

In (1)forward_check_acc2, with 𝜀 = [𝑠0] and 𝜎 = [ i1(a95, 1, 100), m(a95, 2, 

100)]: we consider the first operation in 𝑜1 = i1(a95, 1, 100). It has no 

preconditions, so we consider it conformant. We obtain 𝜀′= [s0, i1(a95, 1, 100) ] 

and 𝜎2 = [m(a95, 2, 100)], and invoke the algorithm recursively. 

In (2) forward_check_acc, with 𝜀 = [s0, i1(a95, 1, 100)] and 𝜎 = [m(a95, 2, 

100)] we consider operation 𝑜2 = m(a95, 2, 100). This operation has two alternative 

preconditions: Π = [[app(a95,i1,A),A<2],[app(a95,j1,B),B<2]]. We find that the 

conjunction 𝜋 = (app(a95,i1,A),A<2) holds in the plot 𝜀. Hence, the operation is also 

conformant. The algorithm is recursively invoked again  

In (3) forward_check_acc, 𝜎 = [ ] and the algorithm yields an empty list A and 

an empty list F; Thus (2), (1), and the initial invocation of forward_check also yield 

A = [ ] and F = [ ]. There are no more solutions, and the algorithm ends. This result 

means that the plot is entirely conformant. 

The results for this call are, therefore: 

 

Case 95 

% The allowed operations  

[] 

%The failed operations 

[] 

                                                 

2 We precede the name of the algorithm with (n) for the n-depth recursive invocation. 
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We’ll now consider the case of student a96. The algorithm forward_check splits 

the plot in the two lists and invokes algorithm (1)forward_check_acc with 𝜀 = [𝑠0] 

and 𝜎 = [i1(a96,1,100), j1(a96,1,100), k(a96,1,100), l(a96,1,100), i2(a96,2,100), 

drop(a96,3)]. The first few recursive invocations are all straightforward – 

disciplines I1, J1, K and L don’t have pre-requisites.  

We skip ahead to (5)forward_check_acc with 𝜀 = [s0, i1(a96,1,100), 

j1(a96,1,100), k(a96,1,100), l(a96,1,100)] and 𝜎 = [i2(a96,2,100), drop(a96,3)]. 

The operation 𝑜5 = i2(a96,2,100) has a single alternative precondition Π = 

[[(app(a96,i1,A),A<2)]]. The single precondition conjunction 𝜋 =

 (app(a96,i1,A),A<2) is satisfied by 𝜀.  

In (6)forward_check_acc we have 𝜀 = [s0, i1(a96,1,100), j1(a96,1,100), 

k(a96,1,100), l(a96,1,100), i2(a96,2,100)] and 𝜎 = [drop(a96,3)]. We check 

operation 𝑜6= [drop(a96,3)] and find that is has a precondition set Π = 

[[(rep(a96,A,B), rep(a96,A,C), B #< C, rep(a96,A,D), C #< D)]]. This condition 

cannot be met: the operation is discrepant. Hence, this scenario spawns two 

continuations. 

In the first one, representing the continuing execution of the plot with a failed 

operation, we recursively invoke (7-1)forward_check_acc with 𝜀 = [s0, 

i1(a96,1,100), j1(a96,1,100), k(a96,1,100), l(a96,1,100), i2(a96,2,100)] and 𝜎 =[ 

]. Notice that the failed operation in (6) is not part of 𝜀.  

In (7-1) we obtain F1 = [ ] and A = [ ]. Then (6) yields the same A, and F = 

[drop(a96,3)]. These results are also yielded by the previous recursive calls (5), (4), 

(3), (2), and (1), up to the original forward_check, configuring one final result of the 

algorithm. 

In (6) we make another alternative recursive call. In this one, we allow for the 

failed operation, as if its preconditions had been satisfied.  

We invoke (7-2)forward_check_acc with 𝜀 = [s0, i1(a96,1,100), 

j1(a96,1,100), k(a96,1,100), l(a96,1,100), i2(a96,2,100), drop(a96,3)] and 𝜎 =[ 

]. The call yields A = [ ] and F = [ ]. Then, (6) yields the same F and A=[drop(a96,3)]. 

These results are also yielded by the previous recursive calls (5), (4), (3), (2), and 
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(1), up to the original forward_check, configuring another final result of the 

algorithm. 

The results for this case are: 

 

Case 96 

% The allowed operations – from call (1)(2)(3)(4)(5)(6)(7-1) 

[] 

%The failed operations – from call (1)(2)(3)(4)(5)(6)(7-1) 

[drop(a96,3)] 
 

% The allowed operations – from call (1)(2)(3)(4)(5)(6)(7-2) 

[drop(a96,3)]] 

%The failed operations – from call (1)(2)(3)(4)(5)(6)(7-2) 

[] 
 

We’ll consider, in a higher level, the results for the other students. In the 

results below we adopt a more concise representation, where each line is an 

alternative result of forward_check. As before, the preconditions that could not be 

met are suppressed. 

 

Case 96-2 

% Forgiven > Failed Operations 

[]  >  [drop(a962,3)]  % Same as 96 – preconditions of drop partially satisfied. 

[drop(a962,3)]  >  [] 
 

Case 97 

[]  >  []  %Preconditions of drop satisfied – conformant. 
 

Case 98                                          % i1 causes i2 to fail, which 

[]  >  [i2(a98,2,100),i3(a98,3,100),grad(a98,3)] % causes i3 to fail.  Notice m 

                                                       % does not fail, since j1 succeeds. 

[grad(a98,3)]  >  [i2(a98,2,100),i3(a98,3,100)]    % Allowing grad changes nothing. 

[i3(a98,3,100)]  >  [i2(a98,2,100),grad(a98,3)]    % Same. 

[i3(a98,3,100),grad(a98,3)]  >  [i2(a98,2,100)] 

[i2(a98,2,100)]  >  [grad(a98,3)]    % Allowing i2: i3 succeeds 

[i2(a98,2,100),grad(a98,3)]  >  [] 
 

Case 99 

[]  >  [j2(a99,2,100),grad(a99,2)]   

[grad(a99,2)]  >  [j2(a99,2,100)] 

[j2(a99,2,100)]  >  [grad(a99,2)]    

[j2(a99,2,100), grad(a99,2)]  >  [] 
 

Case 100 

                                                            %i1 out of order, cause i2 to  

[]  >  [i2(a100,2,100),i3(a100,3,100),grad(a100,3)] % fail, etc. Since i2 will not 

        % be in the ‘correctly executed’ list, i3 fails even though at this time i1 –  

 % which caused i2 to fail – has already been executed successfully! 

[grad(a100,3)]  >  [i2(a100,2,100),i3(a100,3,100)] 

[i3(a100,3,100)]  >  [i2(a100,2,100),grad(a100,3)] 

[i3(a100,3,100),grad(a100,3)]  >  [i2(a100,2,100)] 
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[i2(a100,2,100)]  >  [] % Allowing i2 to happen before i1 will solve all problems. 
 

4.2.2 Support, confidence and interest metrics 

In this section we discuss the algorithms that implement the computations of 

the support and other interest metrics, discussed in Section 3.4.2. We define an 

algorithm library_report_support that computes and reports the support (and other 

metrics) of the goal-inference rules and plans in the Library Index. The algorithm 

can optionally compute and report the metrics of a subset of the goal-inference 

rules. 

The algorithm relies on an auxiliary algorithm rule_report_support with one 

argument – a goal-inference rule 𝑟 = (𝑎, 𝑠, 𝑔) . In practice, we use the goal-

inference rule-id as stand-in identifier. The computation is as follows. 

We obtain the number of cases in the domain |𝒞|. This is computed as the sum 

of the number of available plots. Notice that this will consider cases for which no 

plans have been mined. For example, consider the example of Section 4.1.3. After 

the build_library process we have, for the goal-inference rule 1, plans for students 

a1, a2, a3, a4 and a5. The domain includes students a6, a7 a8 and a9. The total 

number of cases |𝒞| = 9. 

We obtain the cases RC that follow the rule and a list LOC relating each plan 

in the rule to a list of cases. This is done via an auxiliary algorithm rule_cases. 

In the rule_cases algorithm we query the library (via read_library) for all plans 

of rule with the id 𝑟. We obtain the cases – from the cases term – of each plan 

operation and compose a list LOC of elements (<op-signature>, <cases>). The list 

LOC contains the operation signatures of all plan operations and the respective list 

of cases.  

For example, for the resulting Library Index entry of goal-inference rule 1 we 

have above we have LOC= [(g1(A),[5,4,3,2,1]),(c2(a4),[4]),(c1(A),[5,3,2,1])]. 

We also obtain a list RC of cases that is the union of all the <cases> in LOC. In our 

example, RC=[5,4,3,2,1]. 

After invoking rule_cases, we have in rule_report_support the number of 

items in RC as 𝑘𝑟, that is, the number of cases that perform a plan in rule 𝑟. The 

computation of the support(𝑠 ⇒ 𝑔) = 
𝑘𝑟

|𝒞| 
 is straightforward from there. 
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In order to compute the confidence(𝑠 ⇒ 𝑔) of the rule we must find the 

number of cases that reach the situation 𝑠, but not necessarily the goal 𝑔, or rule 𝑟. 

We obtain a set C(𝑠) of cases that reach the situation 𝑠 through an auxiliary 

algorithm cases_reach that considers each of the cases in the domain and leverages 

the holds_plot algorithm described in Section 4.1.1. We don’t need to consider the 

cases in RC – we already know that they are members of C(𝑠) by construction. 

We compute the support(𝑠) as 
C(𝑠)

|𝒞|
, and the confidence(𝑠 ⇒ 𝑔) of the rule as 

support(𝑠 ⇒ 𝑔)/support(𝑠).  

For the computation of the lift(𝑠 ⇒ 𝑔) of the goal-inference rule, for example, 

we must compute 
support(𝑠⇒𝑔)

(support(𝑠)support(𝑔))
. We have the support(𝑠 ⇒ 𝑔) and the 

support(𝑠) at hand. We can compute the support(𝑔) similarly to the support(𝑠), 

relying also on the cases_reach auxiliary algorithm to obtain C(𝑔). 

At this stage, we may also compute the other metrics of interest. We have 

experimented, for example, with metrics such as the leverage and conviction of the 

rules, but have not focused on their analysis and further investigation is required to 

determine whether they are appropriate. Regardless, we posit that the algorithm 

described above will support the computation of all metrics that depend on these 

kinds of support values. 

Recall the list LOC of operations and their respective cases. For element in 

LOC we compute the support and confidence of the respective plan (see Section 

3.4.2.2). We apply similar computations - except instead of considering the set RC 

to obtain 𝑘𝑟, we use the set of cases of the Library Index entry operation. For the 

computation of the confidence of the plan we reuse the support(𝑠), already 

computed to obtain the confidence of the goal-inference rule. 

4.3 Enhancement algorithms 

In this section we discuss the implementation of algorithms that are used in 

the Model Enhancement task, discussed in Section 3.5. In Section 4.3.1 we discuss 

algorithms for the generalization of goal-inference rules. In Section 4.3.2 we 

discuss the formulation and algorithms related to decision mining. 
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4.3.1 Generation of goal-inference rules 

In this Section we will discuss algorithms for the (semi-)automatic generation 

of goal-inference rules as described in Section 3.5.5.  

4.3.1.1 Interesting cases 

We discussed how we could rely on the plots of interesting students to 

determine new rules. For example, by leveraging the plot state brought by the 

student’s plot, we could use that state the situation for a new rule.  

Upon identifying a case 𝑐 of interest, we can compose a goal-inference rule 

𝑎𝑐, 𝑠𝑐 , 𝑔 where 𝑠𝑐 is the situation of case 𝑐 and goal 𝑔 is determined depending on 

the interest of the analysis, typically comprising the effects of a case termination 

operation. This will generate a rule that will capture the plans that other cases, 

sharing a characteristic and in the same situation as 𝑐, performed to reach the goal. 

Notice that if we have case attributes (e.g. in the decision mining examples of 

Section 3.5.6) we can determine that the agent 𝑎𝑐 shares characteristics with case 

𝑐. 

Recall that in our notation state 𝜋𝜎 is the state reached by executing a 

sequence of operations 𝜎. We define an algorithm plot_state that yields a plot state 

𝜋𝜎 given the plot from a student’s trace 𝜎. It is straightforwardly implemented 

relying on the holds meta-predicate. 

We will provide examples of this in combination with the methods for the 

relaxation of rules in the next sections. 

4.3.1.2 Lifting variables 

We also discussed the relaxation of rules, so that they may apply to more 

cases, via the lifting of the arguments of one or more terms with grounded elements 

in the situation or goal.  

The situation or goal is typically given by 𝜋 as a conjunction of success or 

failure clauses. Let 𝑡𝑖, 𝑡𝑗 ∈ {𝑠1, 𝑠2, … , 𝑠𝑛} be both success or failure clauses part of 

a plot state 𝜋 of the format defined in Section 4.2: 

 

<op-success> ::= <success-functor>(<op-case>,<activity-attr>,<op-id-arglist>). 

<op-failure> ::= <failure-functor>(<op-case>,<activity-attr>,<op-id-arglist>). 
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When lifting the variables in 𝜋 we allow for co-designation 𝑣 = 𝑣1 = 𝑣2 of 

the lifted variables 𝑣1 in 𝑡1 and 𝑣2 in 𝑡2 if and only if they share the same position 

as argument in the success or failure clause’s arguments. That condition guarantees 

that the same variable 𝑣 will be used to refer either to the same event-identifying 

attribute in the <op-id-arglist> of both clauses. The same reasoning as above 

applies for terms 𝑡𝑖 , 𝑡𝑗 ∈ {𝑔1, 𝑔2, … , 𝑔𝑚} in the goal conjunction 𝑔. 

We explore a first algorithm for the lifting of plot states lift_state. In this 

configuration, the algorithm allows for the combination of all possible liftings, co-

designated or not. The algorithm relates a plot state 𝜋 to a plot state 𝜋′ in which one 

or many variables have been lifted. 

The algorithm considers each term 𝑡𝑖 in 𝜋, lifting the appropriate elements in 

the <op-id-arglist>: 

1. In one execution path, it lifts the elements to a predefined variable for 

that argument, so that the it will be co-designated with other liftings.  

2. In another execution path, reached by backtracking, it lifts the 

elements to a free variable.  

In our example domain only the semester attribute is part of the <op-id-

arglist>, so we will only lift that argument.  

For example, consider the goal-inference rule 5 in our short example domain: 

 

gi_rule( 5, student(Student), 

        (   student(Student), rep(Student,Disc1, 1) ), 

        (   app(Student, Disc1, 2), 

            not rep(Student, _Disc2, 2)           ) ). 
 

The results of the lift_state algorithm, obtained by backtracking, for the goal 

𝑔 in that rule are: 

% The resulting lifted state              , the substitutions 

(app(A,Disc1,B), not rep(A,Disc2,B)) ,  [(2,B)];       % Both co-designated 

(app(C,Disc1,B), not rep(C,Disc2,_)) ,  [(2,B)];       % First co-designated 

(app(E,Disc1,_), not rep(E,Disc2,B)) ,  [(2,B)];       % Second co-designated 

(app(G,Disc11,_),not rep(G,Disc2,_)) ,  [].            % None co-designated 
 

This version of the algorithm generates all the combinations of co-designation 

and free variables. It does not distinguish the cases that are equivalent – in the 

example above, co-designating the semester only the first or only the second term 
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is effectively the same thing. Optimizations could be implemented to avoid 

generating these results.  

However, we opt to instead define a restricted version of the algorithm 

because – even with a single argument semester under consideration - the number 

of possible combinations of lifted and free variables grows exponentially with the 

number of terms in 𝜋. 

For example, consider the case of student a6 in our example of Section 4.1.3. 

Let 𝜎 be the sequence of operation that comprise the student`s plot. We obtain the 

plot state 𝜋𝜎 resulting from the execution of his plot: 

 

student(a6), app(a6, i1, 1), app(a6, j1, 1), app(a6, k, 1), app(a6, l, 1), 
app(a6, i2, 2), app(a6, j2, 2), app(a6, m, 2) 
 

For this plot state, the algorithm lift_state yields: 

 

[student(A), app(A,i1,B), app(A,j1,B),  

 app(A,k,B), app(A,l,B), app(A,i2,C),  

 app(A,j2,C), app(A,m,C)],             [(1,B),(2,C)];     % all co-designated 
 

[student(A), app(A,i1,B), app(A,j1,B), 

 app(A,k,B), app(A,l,B), app(A,i2,C),  

 app(A,j2,C), app(A,m,_)],             [(1,B),(2,C)]      % m free 
 

[student(A), app(A,i1,B), app(A,j1,B), 

 app(A,k,B), app(A,l,B), app(A,i2,C), 

 app(A,j2,_), app(A,m,C)],             [(1,B),(2,C)]      % j2 free 
 

( ... ) % 4 results suppressed 
 

[student(A), app(A,i1,B), app(A,j1,B), 

 app(A,k,B), app(A,l,B), app(A,i2,_),                     % disciplines in 1st  

 app(A,j2,_), app(A,m,_)],             [(1,B)]            % semester co-designated 
 

[student(A), app(A,i1,B), app(A,j1,B), 

 app(A,k,B), app(A,l,_), app(A,i2,C), 

 app(A,j2,C), app(A,m,C)],             [(1,B),(2,C)]      % l free 
 

[student(A), app(A,i1,B), app(A,j1,B), 

 app(A,k,B), app(A,l,_), app(A,i2,C), 

 app(A,j2,C), app(A,m,_)],            [(1,B),(2,C)]       % l and m free 
 

( ... ) % 117 results suppressed 
 

[student(A), app(A,i1,_), app(A,j1,_),                   % all free 

 app(A,k,_), app(A,l,_), app(A,i2,_), 

 app(A,j2,_), app(A,m,_)], [] 
 

Even lifting only one argument – our example only contains the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 

as an event identifying attribute – we obtain 128 possible combinations of lifting. 
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This comprises too many for the generation of goal-inference rules, as we discussed 

in Section 3.5.5. It is likely that domain-dependent definitions should restrict the 

number of possible combinations of liftings. 

For the short example, we determine the lift_state_restricted algorithm. It 

operates similarly to the lift_state algorithm but restricts the lifting to all arguments 

co-designated by position and value, or all free variables. Hence, for the same 

example, lift_state_restricted yields: 

 

[student(A), app(A,i1,B), app(A,j1,B),  

 app(A,k,B), app(A,l,B), app(A,i2,C),  

 app(A,j2,C), app(A,m,C)],             [(1,B),(2,C)];     % all co-designated 

 

[student(A), app(A,i1,_), app(A,j1,_),                   % all free 

 app(A,k,_), app(A,l,_), app(A,i2,_), 

 app(A,j2,_), app(A,m,_)], [] 
 

We provide an example that combines the first approach – of using the plot 

state resulting from a student’s plot – and the lifting of variables in a single 

experiment, in our short domain. Consider the execution of the example in Section 

4.1.3. We will simulate a domain-dependent analysis by identifying 

“noncomplying” students of rule 1. We do so through an auxiliary algorithm 

noncomplying_cases that leverages a (simplified) version of rule_cases (as defined in 

Section 4.2.2) to obtain the plots of all students that don’t follow a plan in a rule. 

Let NC be the list of ‘noncomplying’ cases of a rule. In this example, NC = [a6,a7, 

a8, a9].  

For each case in NC we obtain the plot state 𝜋𝜎, where 𝜎 is the student’s plot, 

and iteratively generate new goal-inference rules 𝑟 = 𝑎, 𝑠, 𝑔 where the situation 𝑠 

is obtained via the lifting algorithm described above, and the goal 𝑔 is the goal from 

goal-inference rule 1. In our example, we generate the following rules: 

 

% From student a6’s plot; free variables in lifting 

gi_rule(2 - 1, 

 student(A), 

       ( app(A,m,_),  app(A,j2,_), app(A,i2,_), app(A,l,_), 

         app(A,k,_),  app(A,j1,_), app(A,i1,_), student(A) ), 

 ( not rep(A,_,_), grad(A) ) ). 
 

% From student a6’s plot, co-designated variables in lifting 

gi_rule(2 - 2, 

 student(A), 

 ( app(A,m,B), app(A,j2,B), app(A,i2,B), app(A,l,C), 
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         app(A,k,C), app(A,j1,C), app(A,i1,C), student(A) ), 

       ( not rep(A,_,_), grad(A) ) ). 
 

% From student a7’s plot, free variables in lifting 

gi_rule(2 - 3, 

 student(A), 

 ( app(A,j2,_), app(A,i2,_), app(A,l,_), app(A,k,_), 

         app(A,j1,_), app(A,i1,_), student(A) ), 

       ( not rep(A,_,_), grad(A) ) ). 
 

% From student a7’s plot, co-designated variables in lifting 

gi_rule(2 - 4, 

 student(A), 

 ( app(A,j2,B), app(A,i2,B), app(A,l,B), app(A,k,C),  

         app(A,j1,C), app(A,i1,C), student(A) ), 

 ( not rep(A,_,_), grad(A) ) ). 
 

% From student a8’s plot, free variables in lifting 

gi_rule(2 - 5, 

 student(A), 

 ( app(A,m,_), app(A,j2,_), app(A,i2,_), app(A,l,_), 

         rep(A,l,_), app(A,k,_), app(A,j1,_), app(A,i1,_), student(A) ), 

 ( not rep(A,_,_), grad(A) ) ). 
 

% From student a8’s plot, co-designated variables in lifting 

gi_rule(2 - 6, 

 student(A), 

 ( app(A,m,B), app(A,j2,B), app(A,i2,B), app(A,l,B), 

         rep(A,l,C), app(A,k,C), app(A,j1,C), app(A,i1,C), student(A) ), 

 ( not rep(A,_,_), grad(A) ) ). 

% From student a9’s plot, free variables in lifting 

gi_rule(2 - 7,  

        student(A), 

     ( grad(A), app(A,group_nz,_), app(A,n,_), rep(A,group_nz,_), rep(A,n,_),  

         app(A,i3,_), app(A,m,_), rep(A,m,_), app(A,j2,_), app(A,i2,_),  

         app(A,l,_), rep(A,l,_), app(A,k,_), app(A,j1,_), app(A,i1,_) ),  

        ( not rep(A,_,_) grad(A) ) ). 

% From student a9’s plot, co-designated variables in lifting 

gi_rule(2 - 8, 

 student(A), 

 ( grad(A), app(A,group_nz,B), app(A,n,B), rep(A,group_nz,C), rep(A,n,C), 
app(A,i3,C), app(A,m,C), rep(A,m,D), app(A,j2,D), app(A,i2,D), app(A,l,D), 
rep(A,l,E), app(A,k,E), app(A,j1,E), app(A,i1,E) ), 

 ( not rep(A,_,_), grad(A)) ). 
 

The plan-mining process then generates the following Library Index structure: 

[ ( 1, plans:    

       [ complex:( 

             generic:g1(A), 

             frame:[student/o],  

             specializations:[c2(A),c1(A)], cases:[5,4,3,2,1] 

   ), % End of complex plan 

         complex:(  

             composite:c2(a4),  
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             frame:[student/o],  

             components:[f1:i1(a4,1,100),  f2:j1(a4,1,100),  f3:k(a4,1,100),  
f4:l(a4,1,100),  f5:i2(a4,2,100),  f6:j2(a4,2,100),  f7:m(a4,2,100),  
f8:i3(a4,3,100),  f9:z(a4,3,100),  f10:grad(a4,3) ],  

             dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-
f10,f8-f10,f9-f10],  

             cases:[4],  

             constraints:[] 

         ), % End of complex plan 

         complex:( 

             composite:c1(A),  

             frame:[student/o],  

             components:[f1:i1(A,1,B),  f2:j1(A,1,C),  f3:k(A,1,D),  
f4:l(A,E,F),  f5:i2(A,2,G),  f6:j2(A,2,H),  f7:m(A,I,100),  f8:i3(A,3,J),  
f9:n(A,K,L),  f10:grad(A,M) ],  

             dependencies:[f1-f5,f1-f7,f2-f6,f3-f10,f4-f10,f5-f8,f6-f8,f7-
f10,f8-f10,f9-f10],  

             cases:[5,3,2,1], 

             constraints:[ (B in 70 .. 100),  (C in 70 .. 100),  (D in 70 .. 
100),  (E in 1 .. 2),  (F in 70 .. 100),  (G in 70 .. 100),  (H in 70 .. 100),  
(I in 2 .. 3),  (J in 70 .. 100),  (K in 3 .. 4),  (L in 70 .. 100),  (M in 3 .. 
4) ] 

         ) % End of complex plan        

       ] % End of Plans of rule 1 

   ), % End of rule 1 

  ( 2 - 1, plans:    

       [  complex:(  

             generic:g2(O),  

             frame:[student/o],  

             specializations:[c4(O),c3(O)],  

             cases:[5,4,3,2,1]  

         ), % End of complex plan 

         complex:( 

             composite:c4(a4),  

             frame:[student/o],  

             components:[f1:i3(a4,3,100),f2:z(a4,3,100),f3:grad(a4,3)],  

             dependencies:[f1-f3,f2-f3],  

             cases:[4],  

             constraints:[] 

         ), % End of complex plan        

          complex:( 

             composite:c3(P),  

             frame:[student/o],  

             components:[ f1:i3(P,3,Q),f2:n(P,R,S),f3:grad(P,T)],  

             dependencies:[f1-f3,f2-f3], 

             cases:[5,3,2,1],  

             constraints:[(Q in 70 .. 100), (R in 3 .. 4), (S in 70 .. 100), 

  (T in 3 .. 4) 

         ) % End of complex plan        

       ] % End of Plans of rule 2-1 

  ), % End of rule 2-1 

( 2 - 2, plans:    

       [  complex:(  
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             generic:g3(U),  

             frame:[student/o],  

             specializations:[c6(U),c5(U)],  

             cases:[5,4,3,1]  

         ), % End of complex plan 

         complex:( 

             composite:c6(a4), 

             frame:[student/o], 

             components:[f1:i3(a4,3,100),f2:z(a4,3,100),f3:grad(a4,3)], 

             dependencies:[f1-f3,f2-f3], 

             cases:[4], 

             constraints:[]  

         ), % End of complex plan     

         complex:( 

             composite:c5(V), 

             frame:[student/o], 

             components:[ f1:i3(V,3,W),f2:n(V,3,X),f3:grad(V,3)],  

             dependencies:[f1-f3,f2-f3], 

             cases:[5,3,1],  

             constraints:[(W in 70..100),(X in 70..100)]  

         ) % End of complex plan     

       ] % End of Plans of rule 2-2 

  ), % End of rule 2-2 

( 2 - 3, plans:    

       [  complex:(  

             generic:g4(Y),  

             frame:[student/o],  

             specializations:[c8(Y),c7(Y)],  

             cases:[5,4,3,1]  

         ), % End of complex plan 

         complex:( 

             composite:c8(a4),  

             frame:[student/o], 

             components:[ f1:m(a4,2,100), f2:i3(a4,3,100), f3:z(a4,3,100), 
f4:grad(a4,3)], 

             dependencies:[f1-f4,f2-f4,f3-f4], 

             cases:[4], 

             constraints:[]  

         ), % End of complex plan     

         complex:( 

             composite:c7(_),  

             frame:[student/o],  

             components:[ f1:m(Z,A1,100), f2:i3(Z,3,B1), f3:n(Z,C1,D1), 
f4:grad(Z,E1) ], 

             dependencies:[f1-f4,f2-f4,f3-f4], 

             cases:[5,3,2,1], 

             constraints:[ (A1 in 2 .. 3), (B1 in 70 .. 100), (C1 in 3 .. 4),  
(D1 in 70 .. 100), (E1 in 3 .. 4) ] 

         ) % End of complex plan     

       ] % End of Plans of rule 2-3 

  ), % End of rule 2-3 

( 2 - 4, plans:    
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       [  complex:(  

              composite:c9(a2), 

              frame:[student/o],  

              components:[f1:m(a2,3,100), f2:i3(a2,3,100), f3:n(a2,4,100), 
f4:grad(a2,4)], 

             dependencies:[f1-f4,f2-f4,f3-f4], 

             cases:[2], 

             constraints:[] 

         ) % End of complex plan     

       ] % End of Plans of rule 2-3 

  ), % End of rule 2-3 

  (2 - 5, plans : []), 

  (2 - 6, plans : []), 

  (2 – 7, plans : []), 

  (2 – 8, plans : []) 

] 

In the results above, we can see that the Library Index entry for the goal-

inference rule 1 is unchanged. The only cases that perform plans of the new rules 

are again a1, a2, a3, a4 and a5 – that’s intuitively correct, since we did not change 

the goal of graduating without failed disciplines. A visual representation and 

discussion of the plans obtained for the new rules is given in the following Figure 

13: 

 

Figure 13 A visual representation of the plans obtained for goal-inference 

rule 2-1 in the short example. 

The goal-inference rule 2-1 was created from the situation of student a6 (recall 

Figure 8), by lifting the variables indicating the semesters freely. Hence, find plans 
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by all the students a1, a2, a3, a4 and a5 that graduated without failed disciplines. 

The interest metrics for this rule and the plans are: 

Support of Rule 2-1: 

    support:    0.5556 

    confidence: 0.6250 

    lift:       1.1250 

    leverage:   0.0617 

    conviction: 1.1852 

        >g2(A): 

                support:    0.5556    confidence: 0.6250 

        >c4(a4): 

                support:    0.1111    confidence: 0.1250 

        >c3(A): 

                support:    0.4444    confidence: 0.5000 
 

The support, as expected, indicates that a little above half the students in the 

domain perform plans for this rule. The confidence of the rule is rather low – besides 

students a1, a2, a3, a4 and a5, the situation of the rule is also reached by student a6 

(obviously) as well as students a8 and a9 – both eventually approve in the 

disciplines that a6 was approved in, and the situation does not forbid them from 

having failed disciplines. 

We compare those results to those obtained with rule 2-2. A visual 

representation is given in Figure 14. 
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Figure 14 A visual representation of the plans obtained for goal-

inference rule 2-2 in the short example. 

This rule was also created from the situation of student a6,but the variables 

introduced in the arguments referring to semesters were co-designated. This means 

that only plans that performed the sets of disciplines in similar semesters reach the 

plot state determined by the situation. Most notably, we can see that student a2 does 

not perform the rule. That is intuitively explained – student a6 has not delayed any 

disciplines, and student a2 has delayed a few. 

The interest metrics for the example are: 

 

Support of Rule 2-2: 

    support:    0.4444 

    confidence: 0.8000 

    lift:       1.4400 

    leverage:   0.1358 

    conviction: 2.2222 

        >g3(A): 

                support:    0.4444    confidence: 0.8000 

        >c6(a4): 

                support:    0.1111    confidence: 0.2000 

        >c5(A): 

                support:    0.3333    confidence: 0.6000 
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The support is lower than that of rule 2-1 (with one less student). However, 

the confidence of the rule is much higher – this means that the rule has captured the 

plans of all the students that reached student a6’s situation, except a6 herself. 

The goal-inference rule 2-3 was created from the lifted situation of student a7. 

A visual representation of the plans is given in Figure 15. 

 

 

Figure 15 A visual representation of the plans obtained for goal-

inference rule 2-3 in the short example. 

In comparison with student a6, student a7 has performed one less discipline – 

discipline m. Hence, the plans incorporate that operation. Since for rule 2-3 we have 

lifted the variables representing the semesters freely, we find that the plans 

encompass the execution of discipline m in the second semester. This is a 

consequence of the way the goal was built, but makes little sense in the context of 

the educational domain – student a7 has (most likely) already finished the second 

semester, and the plans that would require him to perform additional disciplines in 

that semester are (contextually) unfeasible. Regardless, the plan denoted by 

operation c7 can still be performed from semesters 3 and onwards, but this case is 

an example of how the process generating goal-inference rules might require 

additional domain restrictions. 

We proceed to the example of goal-inference rule 2-4. A visual representation 

of the resulting plan is given in Figure 16: 
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Figure 16 A visual representation of the plans obtained for goal-

inference rule 2-4 in the short example. 

This goal-inference rule was created by the lifting of the variables in the 

situation reached by student a7 with co-designated variables for the semesters. 

Because the student delayed operation l from the recommended first semester to 

the second, students a1, a3 and a5 do not reach that plot state. They have all been 

approved in discipline l in an earlier semester than disciplines i2 and j2. The interest 

metrics for this rule and plan are: 

Support of Rule 2-4: 

    support:    0.1111 

    confidence: 0.2500 

    lift:       0.4500 

    leverage:   -0.1358 

    conviction: 0.5926 

        >c9(a2): 

                support:    0.1111    confidence: 0.250 

This example illustrates how lifting a rule with co-designated variables might 

still generate a rule whose plans are infrequent or not very representative. This is 

reflected by the scores in the interest metrics. 

Rules 2-5 and 2-6, generated from the situation reached by student a8’s plot, 

result in no plans. This is intuitively easy to see – the situation will include the 
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requirement that a student failed in discipline l, but the goal requires that the 

student not fail in any disciplines. The same is true for rules 2-7 and 2-8, generated 

with the situation reached by student a9’s plot, with the additional observation that 

that situation includes that the student is already graduated. Even if it didn’t include 

failed disciplines, the plan-process would find only empty plans for these rules and 

discard them preemptively. Both of these examples motivate the removal of terms 

from the clauses with predicated that allow a domain specialist user to guide the 

removal process. We will discuss algorithms for such in the next section. 

4.3.1.3 Removing clauses 

In Section 3.5.5 we also discussed how goal-inference rules can be created by 

the relaxation of requirements via the removal of terms from the situation or goal. 

Formally, given a rule 𝑟 = 𝑎, 𝑠, 𝑔 we define a new conjunction 𝑠′ ⊂ {𝑠1, 𝑠2, … , 𝑠𝑛} 

and compose a new rule 𝑔′ = 𝑎, 𝑠′, 𝑔. We can also define a new conjunction 𝑔′ ⊂

{𝑔1, 𝑔2, … , 𝑔𝑚} and compose a new rule 𝑔′ = 𝑎, 𝑠, 𝑔′, instead. Finally, we can 

combine both 𝑠′ and 𝑔′ in a rule 𝑟′ = 𝑎, 𝑠′, 𝑔′. Notice, however, that there will be 

(2𝑛 − 1) × (2𝑚 − 1) total combinations of 𝑠′ and 𝑔′. For any reasonably large 

values of n and m that is impractical. 

For this kind of goal-inference rule generation, we define algorithm 

relax_conjunction. It relates a conjunction of terms 𝜋, possibly representing a plot 

state, to a conjunction 𝜋′ in which one term of 𝜋 has been removed. The algorithm 

is very straightforward. When invoked in sequence, it is capable of generation all 

conjunctions formed by subsets of terms of the original conjunction. However, 

similarly to the lifting of variables described in Section 4.3.1.2, we also have the 

problem that there will be too many combinations of removal of terms, and 

consequently, too many conjunctions 𝜋′ with which to compose new rules. 

To that end, we define auxiliary algorithm relax_conjunction_restricted. 

Besides the conjunction of terms 𝜋 this algorithm receives as input two lists: one 

list TK of term functors that dictates terms to keep, and one list TR of functors that 

dictates terms to remove from the conjunction. The removal of functors takes 

precedence. We start by removing from 𝜋 all terms whose functor matches one of 

the functors in TR. Then, we remove one element from 𝜋 whose functor does not 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



172 

 

match any of the elements in TK. In both cases we consider that the term might be 

negated in the conjunction, and deal with it accordingly. 

Below we provide some examples. Let 𝜋 be the conjunction (student(A), not 

app(A,D1,1), not rep(A,D1,2), not grad(A)). Invoking the algorithm 

relax_conjunction_restricted for 𝜋, TK = [grad] and TR=[ ] yields, by backtracking: 

 

(not app(A,D1,1), not rep(A,D1,2), not grad(A));      

(student(A), not rep(A,D1,2), not grad(A)); 

(student(A), not app(A,D1,1), not grad(A)). 
 

Invoking the algorithm relax_conjunction_restricted for 𝜋, TK = [grad, 

student] and TR=[ rep ] yields only: 

 

(student(A), not grad(A)). 
 

The pruning performed by the restrictions seems small at first, but the iterative 

invocation of the algorithm will severely diminish the exponentially increasing 

number of possible sub-conjunctions of a conjunction. Still, the numbers resulting 

from naïve combinations may be too high and could rely on domain knowledge for 

additional filtering. We provide a discussion on our conclusion in this topic in 

Chapter 9. 

We provide an example in our short example domain. Consider the resulting 

Index Library from the examples in Section 4.3.1.2. We discussed how rule 2-6 

generated no plans due to the fact that student a8 (from whose plot we composed 

the situation) had failed in a discipline. We’ll use that goal-inference rule as an 

example of the mechanism for relaxing the restrictions of a rule via removal of 

terms.  

We invoke the relax_conjunction_restricted for 𝜋 equal to the situation in 2-

6 with TR=[grad,rep]. Removing grad allows us to capture plans of students that 

haven’t graduated yet. Removing rep will allow us to capture plans of students that 

may have failed on one or more disciplines. We also invoke the algorithm for 𝜋 

equal to the goal in 2-6. In that case, we choose TK=[grad]. We use the results, 

obtained iteratively, to compose new rules. With the restrictions in place, we 

generate seven alternative rules. We highlight the first one of these rules: 

 

% From rule 2-6, with removed terms from situation and goal.  

gi_rule(3 - 1, 
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 student(A), 

 ( app(A,j2,B), app(A,i2,B), app(A,l,B), app(A,k,C),  

         app(A,j1,C), app(A,i1,C), student(A) ), 

       grad(A)  ). 
 

The results obtained with this rule are: 

 

% A snippet of the resulting Library Index  

% (...) 

  ( 3 - 1, plans:    

       [  complex:(  

              composite:c10(F1),  

              frame:[student/o],  

              components:[ f1:m(F1,3,100), f2:i3(F1,3,100), f3:n(F1,4,100),  
f4:grad(F1,4) ], 

              dependencies:[f1-f4,f2-f4,f3-f4], 

              cases:[9,2], 

              constraints:[] 

         )  

       ]  

  ),  

%(...) 

 

The plan is illustrated in Figure 17. 

 

Figure 17 A visual representation of the plans obtained for goal-

inference rule 3-1 in the short example. 
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This example shows that with the lifted restrictions we are able to capture the 

behavior of student a9 in the plan, whereas before he was ignored due to the failed 

disciplines in his plot. 

Notice that since we used the rule 2-6, which had been previously lifted from 

a situation obtained from a plot, this example configures an example of all the three 

methods we proposed in tandem. 

4.3.2 Metrics for decision mining 

In this section we provide the formulation for the discussion in Section 3.5.6. 

Let a set of attributes Ψ ⊂ 𝐴 configure the set of case attributes of interest for 

the analysis. We consider Ψ = {𝑎1, … } to be non-empty for the decision mining 

task. With Ψ = {𝑎1, … , 𝑎𝑛} where all attributes 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑛, are categorical, the 

number of characteristic classes will be equal to the number of unique combinations 

of values for those attributes. For attributes with numerical, continuous, or too many 

categorical values it might be necessary to cluster them (in representative bins or 

classes), and use the bin (or class) instead. 

Let 𝕎 = {𝑊1,𝑊2, … ,𝑊𝑘} be the set of characteristic classes for the analysis. 

Each characteristic class 𝑊𝑗, 1 ≤ 𝑗 ≤ 𝑘 determines a unique value for each attribute 

in Ψ. That is, 𝑊𝑗 defines values 𝑤𝑗,1, … , 𝑤𝑗,𝑛 for attributes 𝑎1, … , 𝑎𝑛, respectively.  

We call 𝑊-cases the set of all cases of characteristic class 𝑊. That is, 𝑐 ∈ 𝒞 is 

a  𝑊𝑗-case iff #𝑎𝑖(𝑐) = 𝑤𝑗,𝑖 for all 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛. We further define 𝑘𝑊 

to be the total number of 𝑊-cases. For each 𝑊 ∈ 𝕎 let 𝑘𝑊,𝑟 be the number of 

𝑊-cases that perform a plan of rule 𝑟. In the example of rule 9, from previously,  

we have: 

Characteristic of Cases in Rule 9:  

  Characteristic enroll_a: 11 cases 

  Characteristic enroll_b: 10 cases  

  Characteristic enroll_c: 1 cases 

  Characteristic enroll_d: 1 cases 
 

That is, 𝑘A,9 = 11, 𝑘B,9 = 10, 𝑘C,9 = 1 and 𝑘D,9 = 1. 

We define the in-rule support of W as defined as 
𝑘𝑊,𝑟

𝑘𝑟
, where 𝑘𝑟  is the number 

of cases that perform a plan mined from rule 𝑟 (see Section 4.2.1).  
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We define the in-characteristic support (or in-char for short) as 
𝑘𝑊,𝑟

𝑘𝑊
. 

The in-plan support is defined as 
𝑘𝑊,𝑝

𝑘𝑝
, where 𝑘𝑊,𝑝 is the number of cases in 

𝑘𝑊 that follow the plan 𝑝 of rule 𝑟, and 𝑘𝑝  is the number of cases that perform 𝑝. 

The in-char support of the plan is similarly computed. It is defined as 
𝑘𝑊,𝑝

𝑘𝑊
, 

where 𝑘𝑊,𝑝 is as above and 𝑘𝑊 is again the number of cases in characteristic class 

𝑊. 

Finally, the Jaccard index (or Jaccard similarity coefficient) is defined in our 

notation as 
𝑘𝑊,𝑟

𝑘𝑊+𝑘𝑟−𝑘𝑊,𝑟
. The formulation follows from the definition of the Jaccard 

index as the ratio between the intersection and the union of two sets. We consider 

the total cases with characteristic 𝑊 that perform a plan of rule 𝑟 akin to the 

intersection of cases that perform a plan in the rule, and the cases of that 

characteristic class.  

4.4 Summary of the chapter 

In this chapter we define the algorithms that embody the methods described 

in Chapter 3, and presented the Library of Typical Plans for Process Mining that 

implements the algorithms. We describe the main aspects of the library, the data 

structures and the relation to prior work in Section 4.1, along with the algorithms 

for plan mining. In Section 4.2 we define the algorithms for the conformance 

checking task of process mining – both the replay and computation of interest 

metrics. Finally, in Section 4.3 we define the algorithms for the enhancement task. 

All are given with examples in an illustrative educational domain. 
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5 Conclusions  

In this chapter we evaluate our results, which indicate that we reached the 

objective of usefully viewing process mining under a perspective based on planning 

as applied to a conceptual model specification, while, on the other hand, 

recognizing issues and shortcomings of our current achievement, and pointing out 

the most promising developments that our approach enables for future work. 

5.1 Summary of the thesis 

In this thesis we have presented an approach for the application of Process 

Mining tasks to domains with challenging characteristics. Our investigation is 

motivated by an attempt to combine goals and mechanisms contributed by the 

process mining research area, with those resulting from our treatment of 

information systems through an automated planning paradigm based on a 

conceptual modeling specification.  

We discussed the related work in both areas in Chapter 2.  

In Chapter 3 we discuss and describe our approach. We discuss how 

automated planning can account for unstructured processes in process mining in 

3.1, and the characteristics of event logs in educational domains in 3.2. We defined 

the conceptual model that fundaments our approach as a Process Discovery task in 

3.3, including how a conceptual model can be defined in relation to an available 

event log, supported by domain knowledge and the mining of typical plans for the 

Process Discovery of de facto models. In Section 3.4 we defined a plan-verification 

method and applied it to a Conformance Checking task, and also computed interest 

metrics of the domain for validation and analysis. In Section 3.5 we proposed and 

explored approaches for Model Enhancement.  

In Chapter 4 we described the Library of Typical Plans for Process Mining 

that implements the methods discussed in Chapter 3, leveraging and expanding the 

prior art in the planning paradigm over a conceptual model specification, and 

detailed technical aspects of the implementations. 
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Throughout the thesis we discussed the methods and algorithms with 

examples in an academic program domain, which characterizes an unstructured 

process with the challenging characteristics that we concern ourselves with: 

intertask dependencies, multiple dependencies, concurrent events, failing activities, 

repeated activities and knock-out structures. 

5.2 Evaluation 

In this section we recapitulate the scope and objectives, determined in Chapter 

1, and discuss how they relate to the methods and algorithms discussed throughout 

this thesis.  

Recall our main hypothesis: that we are able to perform the typical Process 

Mining tasks in a domain with challenging characteristics via automated planning 

and a conceptual modeling paradigm. We posit that we have proven that the 

hypothesis is true to a reasonable degree. We have tackled the three main tasks, as 

defined in the seminal literature of the field.  

In the process discovery task, we have discussed how a three-schemata 

conceptual model can be defined from the information contained in an event log. 

With the goal of simplicity of the resulting model in mind we have defined the 

concept of a case entity and formalized how the data in the event log can define a 

corresponding static schema. We only slightly extended the formulation in prior 

work to define value entities, useful for the constraint collection in the plan-

recognition algorithms. We also defined how the information of the activities in the 

domain can be used to compose a dynamic schema. The operations, their effects 

and preconditions are implicitly defined from clauses describing the pre-requisites 

between activities. The case termination operations are defined from available case 

attributes. For the behavioral schema, we discussed how normative patterns can be 

formulated as goal-inference rules, but that will require domain knowledge input.  

The most challenging aspect of the definition of a conceptual model for 

process mining is to define the model in an appropriate level of detail and 

complexity. This relates to the tradeoff between simplicity, fitness, precision and 

generalization of the model, and is a core concern of the process mining approach 

and other approaches relying on executable models. In typical process mining 

approaches, with graphical models like Petri Nets, the problem of determining and 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



178 

 

adequate level of detail for the model can be mitigated by the exploration of several 

techniques, especially in the process discovery task. Algorithms like the 

HeuristicsMiner can be parametrized for varying levels of detail, accounting for 

noise and infrequent behavior, in the resulting model. In our proposed approach we 

require domain knowledge to determine several aspects of the conceptual model. 

On the other hand, still in the process discovery task, we find that the 

conceptual model easily represents the domains with the challenging characteristics 

outlined in our goals, and that the representation is adequate for the discovery of 

typical plans. These characteristics include the intertask dependencies, naturally 

captured by the pre-conditions of the operations - which also easily capture multiple 

dependencies, as the model allows for multiple sets of alternative preconditions. 

There’s also the characteristics of failing activities. We capture the failure (and 

success) of activities by modeling the effects of the operations conditionally, based 

on event attributes that can be used to determine whether the activity was a success. 

In the example of the educational domain, we leveraged the grade of the discipline 

attempt. By considering an event classifier in which figures the timestamp of the 

event in the trace – reflected by an additional argument in the operations – we also 

easily capture concurrent operations. In the same way, repeated activities are easily 

represented as different activity instances simply by having a different timestamp. 

Finally, the knock-out structures characteristic is captured by the modeling of 

alternative case termination operations. 

As a result, given a conceptual model, tailored to represent the challenging 

aspects of the domain via operations and arguments in the operations, the automated 

planning algorithms are naturally capable of dealing with such characteristics. Only 

minor concerns had to be addressed in our approach, and they might not be 

universal to the automated planning techniques, as we discuss later. This 

strengthens our conclusion that the application of automated planning techniques 

based on a conceptual model for process mining is a feasible approach. 

We also highlight that the generalizations of plans in the plan-recognition, as 

part of the process discovery task, capture richer detail of the behavior of cases 

without any downsides. For example, there is no downside to considering 

infrequent cases in the domain, which are a problem for some process discovery 

techniques for graphical models. In our example educational domain process, we 
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find that students typically perform unique traces, with each student failing, 

skipping, re-ordering activities in a unique way – it is extremely rare for two 

students to perform the same disciplines in the same order, obtaining the same 

grades, etc. Yet, the plan-recognition algorithms are capable of finding meaningful 

representative plans of their behavior, given reasonably defined goal-inference 

rules. These characteristics are commonly associated to ‘spaghetti processes’ in 

graphical models, so called because of the complexity of the resulting 

representation. 

The plan-recognition indeed also does not need to make special allowances to 

account for ongoing traces. Unfinished traces, in our approach, are easily 

represented by plots without case termination operations. The plan-mining will 

consider those plots just like the others when the effects of the case termination 

operation are not required to reach the situation and goal of a goal-inference rule. 

Thus, our approach also neatly deals with the online process discovery, as in online 

process mining. 

A downside of the model in our approach is that is provides no way of 

visualizing the model. The visualization of the model is valuable both in the process 

analysis tasks as well as for visualizing the status of running cases. The latter feature 

would be especially important to our approach, since we deal with the online 

process mining. Furthermore, without visualization tools it is difficult to understand 

‘at a glance’ the trace of a particular case of interest. While we can analyze cases 

of interest in detail – for example, by generating goal-inference rules to capture 

possible plans for recommendation purposes – the visualization of the cases, 

especially in comparison to a normative pattern, is a great way to provide inspection 

tools. With proper visualization tools a process stakeholder can intuitively follow a 

case, checking if it is performing a normative pattern or if it is discrepant. We could 

also leverage techniques for generating natural language from the planning 

operators, as we in explored in (DE LIMA, GOTTIN, et al., 2017). 

This issue relates to the conformance checking task. In our approach we find 

that the plan-verification method, leveraging the executable characteristic of the 

model, is capable of finding the discrepancy issues in detail, identifying not only 

the cases for which problems are found but also what are the activities that caused 

problems. The mechanism of ‘allowing’ failed operations for the sake of continuing 
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with the replay checking is similar to those applied to graphical models. We 

additionally collect the failed preconditions of the nonconformant operations, 

which could support more intricate kinds of reporting.  

In our analysis, we expected that the pre-requisite relationships between 

disciplines would ensure students perform conformant partial-orders in successful 

plans. However, there are a relevant number of discrepant operations in the students 

plots. We posit that this issue originates from pre-requisite sets of disciplines having 

changed in the syllabus definitions. 

Our conformance checking approach also deals with the computation of 

interest metrics. We find that the reports comprising numeric scores satisfy the 

needs of comparing the relative relevance of rules and plans for analysis. Still, the 

visualization of all the metrics of all the plans could also benefit from visualization 

schemes. Another issue related to conformance checking is that he infrequent 

behavior, although not an issue for the plan-recognition approach,  may generate 

skewed results for the fitness metrics. Finally, we did not explore plan-generation 

and plan-reachability techniques. We envision approaches, for example, in which 

traditional plan-generation techniques could be used to discover alternative 

conformant plans, upon discovering discrepant situations. 

Mostly, this is due to our option of adopting simpler planning mechanisms 

than general purpose planners - recall from the discussion of our objectives that we 

did not intend to showcase all the representative power and features of planning 

approaches based on a conceptual model. Still, the adaptation of the methods and 

algorithms described in this thesis to leverage more power planning frameworks 

like the Interactive Plot Generator (CIARLINI, 1999) is one of the core concerns 

for our future developments. We strove to define methods and algorithms in such a 

way as to be easily adapted to other planning frameworks but have not performed 

in depth evaluation of the results of those efforts. We posit that we have succeeded, 

however, in keeping the Library of Typical Plans for Process Mining compatible 

with the BLIB (FURTADO e CIARLINI, 2001). The original BLIB was developed 

in the context of the IPG – hence, we trust that our resulting approach could be 

feasibly adapted to work with IPG, with no prohibiting issues. The only mechanism 

we defined that may conflict with the workings of more complex planners (IPG 

included) is the changes we enacted to the plan-recognition algorithm to account 
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for concurrent operations ‘clobbering’ and ‘undoing’ effects of operations in the 

same timestamp. These same mechanisms could be further developed to enable the 

model enhancement by adding a richer time perspective to the model. 

The model enhancement task is related to analyses tasks, and as such relies 

heavily on domain knowledge. We explored diverse possibilities, aiming to 

showcase practical applications in our domain – even if conservative in scope, due 

to the restrictions we faced. For example, we only had one additional case attribute 

with which to perform decision mining tasks. We highlight the importance of the 

model repair and model generalization approaches, since we started with a simpler 

model. The results we obtain are important to show that it is possible to iteratively 

amend the model to become more representative and reliable. The decision mining 

task is also important in that regard, as it enriches the model with characteristics of 

the cases. The representation of those additional characteristics in the conceptual 

model, and accounting for them in the planning techniques, is very straightforward.  

One important aspect of the model enhancement task in our approach is the 

generation of new goal-inference rules. We determined that using only naïve 

transformations over pre-existing rules is insufficient and unfeasible in practice. 

While some goals generated by the straightforward lifting and combination of rules 

are interesting, we had to imbue the algorithms with mechanism to restrict the 

search-space to make them feasible. Those mechanism rely on domain knowledge 

to a point where it would debatably better for the user to write new rules for himself.  

In any case, we identified rules of thumb for the combinations of rules that 

seem to be useful. One of them is to use the plot states reached by interesting cases 

to compose new goal-inference rules. Another one is that goal-inference rules in 

our process mining analysis typically deal with ‘positive behavior’ situations (e.g. 

students that performed well to a certain point) and goals (e.g. students will 

graduate) as well as ‘negative behavior’ situations (e.g. students that failed in the 

same discipline twice) and goals (e.g. will eventually drop or halt. For ‘positive’ 

situations and goals, we can generalize the rule by removing any failure terms (e.g. 

discipline failure from the situations). For ‘negative’ situations and goals we 

typically want to ensure the failure terms are part of the rules. The analysis of the 

relevance of these rules of thumb for other domains is still insipient, however, but 

indicates the possibility that the goal-inference rule generation mechanisms we 
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proposed can be used at least for suggestion mechanisms, perhaps as part of a goal-

inference rule editor tool. 

Another major concern for future development of this work is the integration 

with tools for operational support. We are especially interested in methods for the 

conceptual design of information systems that lead to database implementation. By 

leveraging database logs – not only of domain-level events, but actual transactions 

in the database management system – we envision approaches where a static 

schema could be composed by applying reverse engineering (HEUSER, 2009, p. 

119-144) to a running database. We particularly highlight the integration of the 

approach presented in this thesis to the IDB system (GOTTIN, DE LIMA e 

FURTADO, 2015). The IDB system implements an approach in which a conceptual 

model, in the same three-schemata format used in this thesis, is transitioned into a 

full DBMS environment. The functionalities provided allow the management of the 

database in a story-driven way, relying in (procedural versions of) operations of an 

automated planning domain. Even at the last stage the conceptual model 

specification is kept for allowing simulation, training, continuous testing, and many 

kinds of analysis based on statistical and artificial intelligence methods. Most 

importantly, the IDB system features a temporal log of the operations. Hence, the 

system not only extends the temporal database functionalities to deal with entities 

in the domain, but also deals with the plots of those entities over time. Finally, the 

IDB system features a prototypical implementation of storyboard features, similar 

to the ones presented in (DE LIMA, GOTTIN, et al., 2017).  

The IDB system relies on a more complete set of planning algorithms than the 

one used in our approach, however. The same considerations as for adapting our 

approach to the IPG planner likely apply. Furthermore, the choice of representation 

of discipline operations with the code of the discipline as the functor must be 

revisited – the abuse of notation will not carry straightforwardly to the IDB 

approach in which the definition of the operations in the dynamic schema has 

deeper consequences, including in the definition of the storage procedures that 

implement them in the DBMS.  

As for the uses of the approach within IDB, we could use the simulation 

capabilities based on plan-generation that are part of the IDB systems, for example, 

for richer kinds of analysis and for obtaining prescriptive plans that have no support 
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from previous cases. Our current approach can only provide recommendations for 

a student based on typical plans. These can be mined from a goal-inference rule 

composed from that particular students’ current plot state, but that doesn’t 

guarantee that a plan exists – for a plan to be recognized, prior cases must have been 

in similar situations before. Our methods for goal-inference rule generation ease 

those restrictions by generalizing the rules but can’t provide the same exploratory 

power as a plan-generation technique.  

Hence, the operational support provided by the integration of a tool like the 

IDB system and the approach presented in this thesis could configure an end-to-end 

approach to process mining linked to a database system. We could leverage the IDB 

log facilities to obtain event logs, likely with positive side effects to the quality of 

the data. That is, since the since the same system that performs the operations in the 

domain is charged with the logging, we can reasonably expect the log to be reliable 

and complete. 

Furthermore, the same conceptual model specification could be used both to 

obtain a database instance in the IDB approach as well as to support the process 

discovery task in ours. The model discovery could alternatively focus on composing 

simplified, higher-level representations of the database model for specific kinds of 

analysis. This would help with dealing with the tradeoff between simplicity, fitness, 

precision and generalization, since a model for process mining could be created at 

the appropriate level of detail for specific analytics tasks, while the effective domain 

specification, in full complexity, is managed by a DBMS system in routine 

operational usage. The conformance checking (either of simplified or the actual 

database model) could, as typical, indicate opportunities for model enhancement 

which, in this context, relates to the ‘meta-story’ of the evolution of the system 

during its lifetime. 

5.3 Future Work 

The main aspects for future developments of the present work are to 

generalize the approach – in formalization and implementation – towards other 

domains, and the integration of the presented approach within a system able to 

provide operational support. We deferred the integration of the approach into the 

IDB system, for example, for reasons discussed previously in Section 5.1. One 
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aspect involved is the adoption of more complex planning mechanisms, as the one 

used in the IDB (or in the IPG) system. This too was anticipated in Section 5.1. In 

that section we also mentioned the need of providing the user with inspection 

mechanisms about the domain, possibly via visualization or plot narration 

mechanisms. We envision borrowing and extending features proper to 

dramatization approaches, developed in the context of systems wherein planning is 

used to compose plots over entertainment domains, as well as serious games 

domains, for which sophisticated dramatization is a major requirement. 

Other topics of future work that we identified relate to the implementation of 

mechanisms for the management of the Library of Typical Plans for Process 

Mining. So far, we have focused our implementation on the building stage of the 

Library Index. The implementation could be extended to account for rebuilding 

processes, possibly leveraging prior work for re-structuring common plans in the 

Library Index, and also to enrich the dynamic schema with the discovered 

operations. We could also possibly bring in temporal model checking approaches 

for the conformance checking. Model checking is typically applicable to planning 

domains to verify hypotheses about complex properties of the system over time – 

accordingly, we could check the satisfiability of domain integrity rules expressed 

as temporal constraints over plots and plans. 

Also related to conformance checking, we envision the collection of richer 

metrics of quality of plans. In the educational domain program, we already consider 

using the students’ achievement scores as interest metrics of the model fitness. 

Besides that, we could consider the average grades obtained by students performing 

certain plans as indicative of the quality of those plans. This also relates to possible 

additional decision mining approaches, in which we could identify characteristics 

of the students (and/or their plots) that affect these metrics.  

The current conformance checking replay mechanism additionally collects the 

failed preconditions encountered in discrepant operations in the plots but does not 

exploit them in interesting ways. We envision expanding the analysis of 

conformance checking discrepancies to consider the frequencies and patterns in 

these typically-failed preconditions. This information could lead to new kinds of 

reports – perhaps graphical reports, related to the visualization aspect discussed 

above – as also extend the decision mining approach. For example, we could 
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identify the correlations between failing preconditions and characteristic classes of 

cases. 

Finally, the Process Mining literature describes how data analytics tasks – 

classification models, sequence mining algorithms – applied over the event log can 

support the definitions and guide the scoping of the Process Mining tasks. Based on 

preliminary explorations we are particularly interested in sequence mining 

approaches as a way to identify candidate goal-inference rules. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



 

6 References 

ABELHA, P. et al. Abelha, Paulo, et al. "A Nondeterministic Temporal 

Planning Model for Generating Narratives with Continuous Change in 

Interactive Storytelling. AIIDE. [S.l.]: [s.n.]. 2013. 

AGRAWAL, R.; GUNOPOULOS, D.; LEYMANN, F. Mining process 

models from Workflow Logs. Proceedings of the 6th International Conference on 

Extending Database Technology. [S.l.]: Springer-Verlag. 1998. p. 469-483. 

AGRAWAL, R.; SRIKANT, R. Fast algorithms for mining association 

rules. Proceedings of the 20th International Conference on Very Large Databases 

(VLDB). Santiago, Chile: [s.n.]. 1994. p. 487-499. 

ALBERTI, M. et al. Agent Interaction in Abductive Logic Programming: 

the SCIFF proof-procedure. DEIS. Bologna. 2006. (DEIS-LIA-06-001). 

ALLEMAND, D. et al. On the computational complexisty of hypothesis 

assembly. Proceedings of the Tenth International Joint Conference on Artificial 

Intelligence. [S.l.]: [s.n.]. 1987. 

APPICE, A. Towards mining the organizational structure of a dynamic event 

scenario. Journal of Intelligent Information Systems, v. 501, n. 1, p. 165-193, 

2018. ISSN 10.1007/s10844-017-0451-x. 

ATTIE, P. C. et al. Specifiying and enforcing intertask dependencies. 19th 

International Conference on Very Large Databases (VLDB). San Francisco, CA: 

Morgan Kaufmann. 1993. p. 134-145. 

AWAD, A.; SMIRNOV, S.; WESKE, M. Resolution of Compliance 

Violation in Business Process Models: A Planning-Based Approach. OTM 

Confederated International Conferences" On the Move to Meaningful Internet 

Systems". Berlin: Springer. 2009. p. 6-23. 

BATEMAN, J.; ZOCK, M. Natural language generation. The Oxford 

Handbook on Computational Linguistics, 2003. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



187 

 

BELLODI, E. R. F.; LAMMA, E. . Probabilistic declarative process 

mining. In International Conference on Knowledge Science, Engineering and 

Management. [S.l.]: [s.n.]. 2010. p. 293-303. 

BOGARÍN, A.; CEREZO, R.; ROMERO, C. A survey on educational process 

mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge 

Discovery, v. 8, n. 1, 2018. 

BOSE, R. P. J. C.; VERBEEK, E. H. M. W.; VAN DER AALST, W. M. P. 

Discovering Hierarchical Process Models Using ProM. Forum the Conference 

on Advanced Information Systems Enginieering (CAisE). [S.l.]: [s.n.]. 2011. 

BRIN, S. et al. Dynamic itemset counting and implication rules for market 

basket data. Acm Sigmod Record, v. 26, n. 2, p. 255-264, 1997. 

BROWNE, M. C.; CLARKE, E. M.; GRÜMBERG, O. Characterizing finite 

Kripke structures in propositional temporal logic. Theoretical Computer Science, 

v. 59, n. 1-2, p. 115-131, 1988. 

CASANOVA, M. A. et al. Three Decades of Research on Database Design at 

PUC-Rio. Journal of Information and Data Management, v. 3, n. 1, p. 19-34, 

2012. 

CHESANI, F. et al. Exploiting inductive logic programming techniques for 

declarative process mining. Transactions on Petri Nets and Other Models of 

Concurrency, p. 278-295, 2009. 

CHRISTIANSEN, H. Executable specifications for hypothesis-based 

reasoning with Prolog and Constraint Handling Rules. Journal of Applied Logic, 

v. 7, n. 3, p. 341-362, 2009. 

CHRISTIANSEN, H.; DAHL, V. HYPROLOG: A new logic programming 

language with assumptions and abduction. International Conference on Logic 

Programming. [S.l.]: [s.n.]. 2005. 

CIARLINI, A. E. M. Geração interativa de enredos. PUC-Rio. Rio de 

Janeiro. 1999. 

CIARLINI, A. E. M. et al. Event Relations in Plan-Based Plot Composition. 

Computers in Entertainment (CIE), v. 7, 2007. ISSN DOI: 

http://doi.acm.org/10.1145/1658866.1658874. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



188 

 

CIARLINI, A. E. M. et al. Modeling interactive storytelling genres as 

application domains. Journal of Intelligent Information Systems , v. 35, n. 3, p. 

347-381, 2010. 

CIARLINI, A. E. M.; FURTADO, A. L. Understanding and Simulating 

Narratives in the Context of Information Systems. ER, p. 291-306, 2002. 

CODOGNET, P.; DIAZ, D. Compiling constraints in clp(FD). The Journal 

of Logic Programming, p. 185-226, 1996. 

CONSOLE, L.; DUPRÉ, D. T.; TORASSO, P. On the relationship between 

abduction and deduction. Journal of Logic and Computation, v. 1, 1991. 

CONSOLE, L.; DUPRE, T.; TORASSO, P. Causes for events: their 

computations and applications. Eight International Conference on Automated 

Deduction. [S.l.]: [s.n.]. 1986. p. 608-621. 

CRESSWELL, S. N.; MCCLUSKEY, T. L.; WEST, M. M. Acquiring 

planning domain models using LOCM. The Knowledge Engineering Review, v. 

28, n. 2, p. 195-213, 2013. 

DA SILVA, F. A. G.; CIARLINI, A. E. M.; SIQUEIRA, S. W. M. 

Nondeterministic Planning for Generating Interactive Plots. In: Kuri-Morales 

A., Simari G.R. (eds) Advances in Artificial Intelligence – IBERAMIA 2010. 

IBERAMIA 2010. Lecture Notes in Computer Science. Berlin: [s.n.]. 2010. 

DAHL, V.; TARAU, P. Assumptive Logic Programming. Argentine 

Symposium on Artificial Intelligence. [S.l.]: [s.n.]. 2004. 

DE KLEER, J. An assumption-based TMS. Artificial Intelligence, p. 127-

162, 1986. 

DE LEONI, M.; MARRELLA, A. Aligning real process executions and 

prescriptive process models through automated planning. Expert Systems with 

Applications, v. 82, n. 162-183, 2017. 

DE LIMA, E. S. Video-Based Interactive Storytelling. PUC-Rio. [S.l.]. 

2014. 

DE LIMA, E. S. et al. Network Traversal as an Aid to Plot Analysis and 

Composition. Proceedings of SBGames 2017. [S.l.]: [s.n.]. 2017. p. 418-427. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



189 

 

DENECKER, M. . D. S. D. SLDNFA: an abductive procedure for abductive 

logic programming. Logic Programming , v. 34, n. 2, p. 111-167, 1998. 

DENECKER, M.; MISSIAEN, L.; BRUYNOOGHE, M. Temporal 

Reasoning with Abductive Event Calculus. ECAI, 1992. 

DÓRIA, T. R.; CIARLINI, E. M.; ANDREATTA, A. A nondeterministic 

model for controlling the dramatization of interactive stories. Proceedings of 

the 2Nd ACM International Workshop on Story Representation, Mechanism and 

Context. Vancouver, British Columbia, Canada: ACM. 2008. p. 21-26. 

DOURISH, P. et al. Freeflow: Mediating Between Representation and Action 

in Workflow Systems. New York: In Proceedings of the ACM Conference on 

Computer Supported Cooperative Work (CSCW ’96). 1996. 

EITER, T.; GOTTLOB, G.; LEONE, N. Semantics and complexity of 

abduction from defautl theories. Journal of Artificial Intelligence, v. 90, p. 177-

223, 1997. 

ESHGHI, K.; KOWALSKI, R. Abduction as deduction. Imperial College. 

London. 1988. 

ESHGHI, K.; KOWALSKI, R. Abduction compared with negation by 

failure. Imperial College. London. 1989. 

EXPLANATION and prediction: an architecture for default and abductive 

reasoning. Computational Intelligence, v. 52, p. 97-110, 1989. 

FANN, K. T. Peirce's theory of abduction. The Hague: Martinus Nihjoff, 

1970. 

FERNANDES, A. et al. Adding flexibility to workflows through incremental 

planning. Innovations in Systems and Software Engineering, v. 3, n. 4, p. 291-

302, 2007. 

FERREIRA, H.; FERREIRA, D. An integrated life cycle for workflow 

management based on learning and planning. International Journal of 

Cooperative Information Systems, v. 15, n. 4, p. 485-505, 2006. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



190 

 

FIKES, R. E.; NILSSON, N. J. STRIPS: A new approach to the application 

of theorem proving to problem solving. Artificial intelligence, v. 2, n. 3-4, p. 189-

208, 1971. 

FLIEDL, G.; KOP, C.; VÖHRINGER, J. Guideline based evaluation and 

verbalization of OWL class and property labels. Data & Knowledge Engineering, 

v. 69, n. 4, p. 331-342, 2010. 

FORD, M. An Abductive reasoning system in Java. [S.l.]. 2012. 

FRÜHWIRTH, T. Theory and practice of constraint handling rules. The 

Journal of Logic Programming, p. 95-138, 1998. 

FURTADO, A. et al. Applying Analogy to Schema Generation. iSys-Revista 

Brasileira de Sistemas de Informação, v. 1, n. 1, 2008. 

FURTADO, A. L. Analogy by generalization - and the quest of the grail. 

ACM SIGPLAN Notices, v. 27, n. 1, January 1992. 

FURTADO, A. L. Narratives and temporal databases: an interdisciplinary 

perspective. Conceptual modeling: historical perspectives and future 

directions, 1999. 

FURTADO, A. L. Narratives and Temporal Databases: An Interdisciplinary 

Perspective. In: CHEN, P. P., et al. Conceptual Modeling: Current Issues and 

Future Directions. [S.l.]: Springer, 1999. 

FURTADO, A. L. et al. Plot mining as an aid to characterization and 

planning. PUC-Rio. Rio de Janeiro. 2007. (MCC 07/07). 

FURTADO, A. L. et al. Plot Mining as an Aid to Characterization and 

Planning. Departamento de Informática - PUC Rio. Rio de Janeiro, p. 22. 2007. 

(ISSN 0103-9741). 

FURTADO, A. L. et al. Analysis and Reuse of Plots Using Similarity and 

Analogy. Proc. 27th International Conference on Conceptual Modeling. Barcelona: 

[s.n.]. 2008. p. 355-368. 

FURTADO, A. L.; CASANOVA, M. A. Plan and Schedule Generation 

over Temporal Databases. Prc. 9th Internation Conference on Entity-Relationship 

Approach (ER 90). [S.l.]: [s.n.]. 1990. p. 235-248. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



191 

 

FURTADO, A. L.; CASANOVA, M. A.; BARBOSA, S. D. J. A Semiotic 

Approach to Conceptual Modelling. Internation Conference on Conceptual 

Modeling, Cham, 2014. 

FURTADO, A. L.; CIARLINI, A. E. M. Plots of Narratives over Temporal 

Databases. Databases and Expert Systems Applications Workshop. Toulouse, 

France: [s.n.]. 1997. 

FURTADO, A. L.; CIARLINI, A. E. M. Generating Narratives from plots 

using schema information. International Conference on Application of Natural 

Language to Information Systems. Berlin: Springer. 2000. 

FURTADO, A. L.; CIARLINI, A. E. M. The plan recognition / plan 

generation paradigm. Information Systems Engineering - State of the Art and 

Research Themes, 2000. 

FURTADO, A. L.; CIARLINI, A. E. M. Constructing libraries of typical 

plans. International Conference on Advanced Information Systems Engineering. 

[S.l.]: [s.n.]. 2001. 

FURTADO, A.; CIARLINI, A. Aiding the Construction of Libraries of 

Typical Plans. PUC Rio. [S.l.]. 2000. (ISSN 0103-9741). 

GABBAY, D. M.; WOODS, J. A Practical Logic of Cognitive Systems: The 

reach of Abdcution: Insight and Trial. [S.l.]: Elsevier, v. 2, 2005. 

GATT, A.; REITER, E. SimpleNLG: A realisation engine for practical 

applications. Proceedings of the 12th European Workshop on Natural Language 

Generation. [S.l.]: [s.n.]. 2009. p. 90-93. 

GHALLAB, M.; NAU, D.; TRAVERSO, P. Automated Planning Theory 

and Practice. San Francisco, CA: Morgan Kaufmann Publishers Inc, 2004. 

GHALLAB, M.; NAU, D.; TRAVERSO, P. Automated planning and 

acting. Authors' manuscript. ed. [S.l.]: Cambridge University Press, 2016. 

GLANCE, N.; PAGANI, D.; PARESCHI, R. Generalised Process Structure 

Grammars (GPSG) for Flexible Representations of Work. New York: In 

Proceedings of the Conference on Computer-Supported Cooperative Work 

(CSCW96). 1996. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



192 

 

GOEDERTIER, S. Declarative Techniques for Modeling and Mining 

Business Processes. Katholieke Universiteit Leuven. [S.l.]. 2008. 

GONÇALVES, E. M. N.; BITTENCOURT, G. A Planning-Based 

Knowledge Acquisition Methodology. LAPTEC. [S.l.], p. 105-112. 2005. 

GONZÁLEZ-FERRER, A.; FERNÁNDEZ-OLIVARES, J.; CASTILLO, L. 

From business process models to hierarchical task network planning domains. THe 

Knowledge Engineering Review, v. 28, n. 2, p. 175-193, 2013. 

GORDON, A. S. Commonsense Interpretation of Triangle Behavior. 

AAAI Conference on Artificial Intelligence. [S.l.]: [s.n.]. 2016. 

GOTTIN, V. M. Verificação Abstrata de Propriedades Dramáticas 

Contínuas em Eventos Não-Determinísticos. UNIRIO. [S.l.]. 2013. 

GOTTIN, V. M. et al. A Story-Based Approach to Information Systems. 

[S.l.]. 2015. (MCC05/15). 

GOTTIN, V. M. et al. An Analysis of Degree Curricula through Mining 

Student Records. Advanced Learning Technologies (ICALT), 2017 IEEE 17th 

International Conference. [S.l.]: [s.n.]. 2017. p. 276-280. 

GOTTIN, V. M..; JIMENEZ, H. G. Academic Analytics at PUC-Rio. PUC-

Rio. [S.l.]. 2017. 

GOTTIN, V. M.; DE LIMA, E. S.; FURTADO, A. L. Applying Digital 

Storytelling to Information System Domains. Proceedings of the XIV Brazilian 

Symposium on Computer Games and Digital Entertainment (SBGames 2015). 

[S.l.]: [s.n.]. 2015. 

GOTTIN, V. M.; JIMENEZ, H. G. Information Visualization. Gottin V. M. 

academic page, 2017. Disponivel em: <http://www.inf.puc-

rio.br/~vgottin/projects/inf2691.html>. Acesso em: 14 November 2019. 

HALLER, S. M. A model for cooperative interactive plan explanation. 

Artificial Intelligence for Applications, 1994., Proceedings of the Tenth Conference 

on. [S.l.]: [s.n.]. 1994. 

HAN, J.; PEI, J.; YIN, Y. Mining frequent patterns without candidate 

generation, v. 29, n. 2, p. 1-12, 2000. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



193 

 

HEINL, P. et al. A Comprehensive Approach to Flexibility in Workflow 

Management Systems. New York, NY, USA. 1999. 

HEINRICH, B.; SCHÖN, D. Automated planning of context-aware 

process models. University of Regensburg. Regensburg. 2015. 

HEUSER, C. A. Projeto de banco de dados: Volume 4 da Série Livros 

didáticos informática UFRGS. [S.l.]: Bookman Editora, v. 4, 2009. 

HICKMOTT, S. Concurrent planning using Petri net unfoldings. [S.l.]: 

[s.n.]. 2006. p. International Conference on Automated Planning and Scheduling-

ICAPS. 

HNICH, B.; KIZILTAN, Z.; WALSH, T. Modelling a balanced academic 

curriculum problem. Proceedings of CP-AI-OR-2002. [S.l.]: [s.n.]. 2002. 

HORNIK, K.; GRÜN, B.; HAHSLER, M. arules-A computational 

environment for mining association rules and frequent item sets. Journal of 

Statistical Software, v. 14, n. 15, p. 1-25, 2005. 

HOUSTMA, M.; SWAMI, A. Set-oriented mining for association rules in 

relational databases. In Data Engineering, 1995. Proceedings of the Eleventh 

International Conference. [S.l.]: IEEE. 1995. p. 25-33. 

JAFAR, J. et al. ACM Transactions on Programming language and system, p. 

339-395, 1992. 

JIMÉNEZ, H. G. Applying Process Mining to the Academic 

Adminstration Domain. PUC-Rio. [S.l.]. 2017. 

JUHÁSOVA, A. et al. How to model curricula and learnflows by Petri 

nets-a survey. In Emerging eLearning Technologies and Applications (ICETA). 

[S.l.]: [s.n.]. 2016. 

KAKAS, A. C.; KOWALSKI, R. A.; TONI, F. The role of abduction in logic 

programming. Handbook of logic in artificial intelligence and logic 

programming, v. 5, p. 235-324, 1998. 

KAKAS, A. C.; KOWALSKI, R. A.; TONI, F. The role of abduction in logic 

programming. Handbook of logic in artificial intelligence and logic 

programming, 5, 1998. 235-324. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



194 

 

KAKAS, A. C.; KOWALSKI, R.; TONI, F. Abductive Logic Programming. 

Journal of Logic and Computation, v. 2, n. 6, p. 719-770, 1992. 

KAKAS, A. C.; MICHAEL, A.; MOURLAS, C. ACLP: Abductive constraint 

logic programming. Journal of Logic Programming, v. 44, n. 1, p. 129-177, 2000. 

KAKAS, A. C.; NUFFELEN, B. V.; DENECKER, M. A-System: Problem 

Solving through abduction. International Conference on Logic Programming and 

Nonmonotonic Reasoning. Berlin: [s.n.]. 2001. 

KAKAS, A. C.; PAPADOPOULOS, G. A. Parallel Abduction in Logic 

Programming. 1st International Symposium on Parallel Symbolic Computation 

(PASCO). Linz, Austria: [s.n.]. 1994. p. 214-224. 

KATZOURIS, N.; ARTIKIS, A.; PALIOURAS, G. ILED. [S.l.]. 2014. 

KAUTZ, H. A. A formal theory of plan-recognition and its 

implementation. San Mateo: Morgan Kaufmann, 1991. 

LEEMANS, M.; VAN DER AALST, W. M. Discovery of frequent episodes 

in event logs. In International Symposium on Data-Driven Process Discovery and 

Analysis. [S.l.]: Springer. 2014. p. 1-31. 

LEEMANS, S. J.; FAHLAND, D.; VAN DER AALST, W. M. Discovering 

block-structured process models from event logs containing infrequent 

behaviour. In International conference on business process management. [S.l.]: 

Springer. 2013. p. 66-78. 

LEVESQUE, H. L. Foundations of a functional approach to knowledge 

representaiton. Artificial Intelligence, v. 23, p. 155-212, 1984. 

LEVESQUE, H. L. A knowledge-level account of abduction. Processings 

of IJCAI 89. [S.l.]: [s.n.]. 1989. p. 1061-1067. 

LLERA, A. A. Seeking Explanations: Abduction In Logic Philosophy Of 

Science And Artificial Intelligence. Amsterdam: Universeteir van Amsterdam, 

1997. 

LY, L. T. et al. Data transformation and semantic log purging for process 

mining. In International Conference on Advanced Information Systems 

Engineering. [S.l.]: Springer. 2012. p. 238-253. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



195 

 

MA, J. User Guide of the SICStus abduction module: abductive logic 

programming for Prolog. [S.l.]. 2011. 

MANHARDT, F. et al. Data-driven process discovery-revealing 

conditional infrequent behavior from event logs. 2009 International Conference 

on Information, Process, and Knowledge Management. [S.l.]: IEEE. 2009. p. 545-

560. 

MANNILA, H.; TOIVONEN, H.; VERKAMO, A. I. Discovery of frequent 

episodes in event sequences. Data Mining and Knowledge Discovery, v. 1, n. 3, 

p. 259-289, 1997. 

MARRIOT, K.; STUCKEY, P. J. Introduction to Constraing Logic 

Programming. [S.l.]: [s.n.], 1998. 

MCDERMOTT, D. The formal semantics of processes in PDDL. Proc. 

ICAPS Workshop on PDDL. [S.l.]: [s.n.]. 2003. p. 101-155. 

MCDERMOTT, D. et al. PDDL-the planning domain definition language. 

[S.l.]. 1998. 

MCILRAITH, S. A. Logic-based abductive inference. Knowledge Systems 

Laboratory. [S.l.]. 1998. 

MOONEY, R. J. Learning Plan Schemata from Observation: Explanation‐

Based Learning for Plan Recognition. Cognitive Science, v. 14, n. 4, p. 483-509, 

1990. 

MOONEY, R. J. Integrating Abduction and Induction to Machine Learning. 

[S.l.]: Kluwer Academic, 2000. p. 181-191. 

PAAVOLA, S. Abduction as a logic and methodology of discovery: the 

importance of strategies. Foundations of Science, v. 9, n. 3, p. 267-283, 2004. 

PAPAMARKOS, G.; POULOVASSILIS, A.; WOOD, P. T. Event-

condition-action rule languages for the semantic web. Proceedings of the First 

International Conference on Semantic Web Databases. [S.l.]: [s.n.]. 2007. p. 294-

312. 

PEARL, J. Probabilistic Reasoning in Intelligent Systems. [S.l.]: Morgan 

Kaufmann, 1998. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



196 

 

PECHENIZKIY, M. et al. CurriM: curriculum mining. Educational Data 

Mining, 2012. 

PENG, Y.; REGGIA, J. Abductive Inference Models for Diagnostic 

Problem-Solving. [S.l.]: Springer-Verlag, 1990. 

PENG, Y.; REGGIA, J. Abductive inference models for Diagnostic 

Problem-Solving. [S.l.]: Springer-Verlag, 1990. 

PESIC, M. Constraint-based workflow management systems: shifting 

control to users. Technische Universiteit Eindhoven. Eindhoven. 2008. 

PICCININI, H. et al. Verbalization of RDF tiples with applications. ISWC-

Outrageous Ideas Track. [S.l.]: [s.n.]. 2011. 

PICHLER, P.; ET AL. Imperative versus declarative process modeling 

languages: an empirical investigation. International Conference on Business 

Process Management. Berlin: [s.n.]. 2011. 

POOLE, D. A logical framework for default reasoning. Artificial 

Intelligence, v. 36, n. 1, p. 27-27, 1987. 

POOLE, D. What the Lottery Paradox tells us about Default Reasoning. 

Knowledge Representation, 1989. 

POOLE, D. Compiling a Default Reasoning System into Prolog. New 

Generation Computing. [S.l.]: [s.n.]. 1991. p. 3-38. 

POOLE, D. AILog User Manual Version 2.3. [S.l.]. 2008. 

POOLE, D. Local Users Guide to Theorist. [S.l.]. 

POOLE, D.; GOEBEL, R. G.; ALELIUNAS, R. Theorist: a logical reasoning 

system for defaults and diagnosis. In: CERCONE, N.; MCCALLA, G. The 

Knowledge Frontier: Essays in the Representation of Knowledge. [S.l.]: Springer-

Verlag, 1987. p. 331-352. 

POOLE, D.; LYNTON, A. K.; GOEBEL, R. Computational Intelligence: a 

logical approach. [S.l.]: Oxford University Press, 1998. 

POOLE, D.; MACKWORTH, A.; GOEBEL, R. Computational 

Intelligence: A Logical Approach. [S.l.]: Oxford University Press, 1998. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



197 

 

POPLE, H. E. On the mechanization of abductive logic. IJCAI. [S.l.]: [s.n.]. 

1973. 

RAY, O. Nonmonotonic Abductive Inductive Learning. Journal of Applied 

Logic, p. 329-340, 2009. 

REGGIA, J. Diagnostic experts systems based on a set-covering model. 

International Journal of Man-Machine Studies, v. 19, n. 5, p. 437-460, 1983. 

REITER, R. A logic for default reasoning. Artificial Intelligence, p. 81-132, 

1980. 

RODRIGUES, P. S. L. et al. An Expressive Talking Head Narrator for an 

Interactive Storytelling System. PUC-Rio. [S.l.]. 2015. (MCC 15/05). 

RODRIGUEZ, C. et al. Eventifier: Extracting process execution logs from 

operational databases. In Demonstration Track of BPM Conference, CEUR-WS. 

[S.l.]: [s.n.]. 2012. p. 17-22. 

ROSSI, F.; VAN BEEK, P.; WALSH, T. Handbook of Constraint 

Programming. [S.l.]: Elsevier, 2006. 

SAVASERE, A.; OMIECINSKI, E. R.; NAVATHE, S. B. An efficient 

algorithm for mining association rules in large databases. Georgia Institute of 

Technology. [S.l.]. 1995. 

SCHONENBERG, M. H. et al. Taxonomy of process flexibility. [S.l.]. 2007. 

SCHRIJVERS, T.; DEMOEN, B. The K.U.Leuven CHR System: 

Implementation and Application. [S.l.]. 2004. 

SNOWDON, A. et al. On the Architecture and Form of Flexible Process 

Support. Software Process Improvement and Practice, v. 12, p. 21-34, 2007. 

SOWA, J. Knowledge Representation: logical, philosophial, and 

computational foundations. [S.l.]: [s.n.], 1999. 

STRYCZEK, R. Petri net-based knowledge acquisition framework for CAPP. 

Advances in Manufacturing Science and Technology, v. 32, n. 1, p. 21-38, 2008. 

SURIADI, S. et al. Event log imperfection patterns for process mining: 

Towards a systematic approach to cleaning event logs. Information Systems, v. 

64, p. 132-150, 2017. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



198 

 

TRCKA, N.; PECHENIZKIY, M. From local patterns to global models: 

Towards domain driven educational process mining. In Intelligent Systems Design 

and Applications, 2009. [S.l.]: [s.n.]. 2009. p. 1114-1119. 

VAN DER AALST, W. M. Re-engineering knock-out processes. Decision 

Support Systems, v. 30, n. 4, p. 451-468, 2001. 

VAN DER AALST, W. M. Process Mining: Discovery, Conformance and 

Enhancement of Business Processes. [S.l.]: Springer, Heidelberg, Dordrecht, 

London et. al, 2011. 

VAN DER AALST, W. M. Extracting event data from databases to 

unleash process mining. In BPM-Driving innovation in a digital world. [S.l.]: 

[s.n.]. 2015. p. 105-128. 

VAN DER AALST, W. M. P. Business alignment: using process mining as a 

tool for Delta analysis and conformance testing. Requirements Engineering, v. 

10, n. 3, p. 198-211, 2005. 

VAN DER AALST, W. M. P. Process Mining - Discovery, Conformance 

and Enhancement of Business Processes. [S.l.]: [s.n.], 2011. 

VAN DER AALST, W. M. P. et al. Process mining manifesto. Berlin: 

Springer. 2011. 

VAN DER AALST, W. M. P.; WEIJTERS, A. J. M. M. Process mining: a 

research agenda. Computers in Industry, v. 53, n. 3, p. 231-244, 2004. 

VAN DER AALST, W.; DE BEER, H. T.; VAN DONGEN, B. F. Process 

mining and verification of properties: An approach based on temporal logic. 

"OTM Confederated International Conferences" On the Move to Meaningful 

Internet Systems. [S.l.]: [s.n.]. 2005. 

VAN DONGEN, F. et al. The ProM framework: A new era in process 

mining tool support. International Conference on Application and Theory of Petri 

Nets. Berlin: Heidelberg. 2005. p. 444-454. 

VELOSO, M. M.; CARBONELL, J. G. Derivatioal Analogy in PRODIGY: 

Automating Case Acquisition, Storage and Utilization. In: ______ Case-Based 

Learning. [S.l.]: [s.n.], 1993. p. 249-278. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



199 

 

VERBEEK, H. M. W. et al. Prom 6: The process mining toolkit. Proc. of 

BPM Demonstration Track. [S.l.]: [s.n.]. 2010. p. 34-39. 

VERBEEK, H. M.; BUIJS, J. C.; VAN DONGEN, B. G. . V. D. A. W. M. 

XES, XESAME and PROM 6. International Conference on Advanced 

Information Systems Engineering. [S.l.]: [s.n.]. 2010. 

WAINER, J.; DE LIMA BEZERRA, F. Constraint-based flexible 

workflows. [S.l.]: In Proceedings of the 9th International Workshop on Groupware: 

Design, Implementation, and Use (CRIWG 2003). 2003. 

WANG, R.; ZAÏANE, O. R. Discovering Process in Curriculum Data to 

Provide Recommendation. [S.l.], p. 580-581. 2015. 

WEIJTERS, A. J. M. M.; RIBEIRO, J. T. S. Flexible heuristics miner 

(FHM). IEEE symposium on computational intelligence and data mining (CIDM). 

[S.l.]: [s.n.]. 2011. p. 310-317. 

WEIJTERS, A. J. M. M.; VAN DER AALST, W. M.; DE MEDEIROS, A. 

A. Process mining with the heuristics miner-algorithm. Technische Universiteit 

Eindhoven. [S.l.], p. 1-34. 2006. 

YANG, Q.; TENENBERG, J.; WOODS, S. On the Implementation and 

Evaluation of Abtweak. Computational Intelligence Journal, v. 12, n. 2, p. 295-

318, 1996. 

ZAKI, M. J. SPADE: an efficient algorithm for mining frequent sequences. 

Machine Learning, v. 42, n. 1, p. 31-60, 2001. 

ZAKI, M. J. et al. New algorithms for fast discovery of association rules. 

KDD. [S.l.]: [s.n.]. 1997. p. 283-286. 

ZAKI, M. J.; MEIRA JR., W. Data mining and analysis: fundamental 

concepts and algorithms. [S.l.]: Cambridge University Press, 2014. 

ZAKI, M.; LESH, N.; OGIHARA, M. Planmine: Predicting plan failures 

using sequence mining. Artificial Intelligence Review, v. 14, n. 6, p. 421-446, 

2000. 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



200 

 

ZIMMERMANN, A. Colored petri nets. In: ZIMMERMANN, A. Stochastic 

Discrete Event Systems: Modeling, Evaluation, Applications. [S.l.]: [s.n.], 2008. 

p. 99-124. 

 

DBD
PUC-Rio - Certificação Digital Nº 1521400/CA



 

7 Appendix - Educational Domain Definitions 

In this thesis we perform the process mining tasks over an academic program 

example. The description of the original data sources, from which the event logs 

were obtained, and the explanation of preprocessing steps performed are available 

at (GOTTIN e JIMENEZ, 2017)3. In the following we describe that domain, 

discussing the terminology adopted; and also discuss the challenging characteristics 

of the domain that motivate its use as an example for process mining. 

Terminology  

Due to the varied terminologies used by academic systems we provide a list 

of the usual synonyms, when applicable, for each defined term. These are given in 

footnotes in this Appendix. 

The academic program4 is an undergraduate educational program at a higher 

learning institution - PUC-Rio. Each program is designed with general and specific 

objectives in mind, defined in accordance with regulations processes, both internal 

to PUC-Rio as well as pertaining to the Brazilian government body that regulates 

higher learning institutions. Each program is periodically updated, also in 

accordance to those regulations. 

The program dictates the activities and requirements that the student must 

perform and achieve in order to obtain a degree. These requirements determine an 

expected number of activity-hours the student must complete, as well a minimum, 

expected and maximum number of academic terms5 for performing those activities. 

                                                 

3 The report and additional material are available at http://www.inf.puc-rio.br/~vgottin/projects/inf2391.html 

(accessed 2019, November 14th). 

4 In the terminology adopted at PUC-Rio the academic program is a course. We avoid the usage of the term 

course because it is also typically used, in other higher learning institutions, as the term for what we call a 

discipline. 

5 In the terminology adopted at PUC-Rio the generic term for academic term is a ‘period’ (“período”). We 

avoid using that term because it is frequently used, in other higher learning institutions, to refer to the 

scheduling of the classes, lectures or sessions for a discipline, to distinguish between morning, afternoon 

and evening.  
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In the case of the academic programs at PUC-Rio the academic terms correspond 

to academic semesters. Finally, the activities required for graduation are expressed 

in terms of credits that the student must obtain in each of the categories of activities. 

The activities mainly comprise disciplines6 (but also other, complementary 

activities – e.g. participation scientific conferences, internships, etc.). Certain 

disciplines are considered ‘basic’, part of an initial shared common sequence of 

disciplines for several programs (e.g. “MAT 1157”, “Single Variable Calculus A” 

is part of the basic set of disciplines for all Engineering programs). In our analysis, 

we focus on a single program – Computer Science. Hence, we don’t consider this 

aspect in the definition of disciplines. 

Students are identified in the program by their enrollment number, a unique 

registration number that states the year and academic term of first enrollment. For 

practical purposes, we anonymized the dataset, as discussed later on in this 

Appendix: that is, we refer to students by a unique anonymized identification 

number. Students enroll in disciplines in each semester and have their performances 

evaluated, obtaining a record of success or failure7. Students may be evaluated in 

many ways – there are ten distinct evaluation categories defined at PUC-Rio, 

defining number, frequency and relative weight of tests, grading schemes, etc. 

Typically, the grade8 is a number that summarizes the performance of the student. 

The sequence of disciplines performed by the student is that student’s trace, in 

process mining terminology (and plot, in ours). At PUC-Rio the information of the 

activities performed by the student is part of his academic record9. 

As stated, the activities are linked to credits. Each discipline confers a number 

of credits to the students who are successful, determined according to the 

discipline’s syllabus in the definition of the academic program. Besides the credits, 

                                                 

6 Disciplines are also referred to, in other works related to educational domains, as courses, classes or lectures. 

7 In the terminology adopted at PUC-Rio the student is either approved (“aprovado”) or rejected (“reprovado”). 

We choose success and failure as these terms are closer to the terminology that seems to be used in formal 

contexts in English. A discipline failure is colloquially referred to as flunking. 

8 The grade (“grau”) obtained by the student at PUC-Rio is typically expressed as a number between 0 and 10, 

with a single digit for the fractional part, e.g.: 8.7, 1.0, 2.6, etc. To simplify the representation, we adopt a 

range of integer grades between 0 and a 100, and no fractional part. 

9 We mainly use trace and plot throughout the thesis, avoiding the term ‘academic record’ (“histórico”). In 

other works and systems the sequence of disciplines and activities performed by a student is called her 

career or transcript. 
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the syllabus states the discipline’s (human-readable) name, topics (the subjects 

covered by the lectures, classes or laboratory sessions), the required and suggested 

bibliography, the evaluation category, the pre-requisite disciplines and the 

identifying code. 

 The code of a discipline at PUC-Rio is comprised of a three-letter 

abbreviation of the department that offers that discipline, plus a four-digit unique 

number. E.g. ‘INF’ is department of informatics; ‘MAT’ is the mathematics 

department. It is common for the academic programs pertaining to a department to 

have several disciplines of other departments as required activities. For example, 

there are several disciplines from the Engineering and Mathematics departments for 

the Computer Science course, in the department of informatics. There is also 

meaning in the composition of the four-digit number (the first digit ‘1’ denotes an 

undergraduate-level discipline, for example), but we ignore that in the examples of 

this thesis. 

The pre-requisite of a discipline are given as sets of alternative pre-requisites. 

For example, discipline INF1019 requires that the student have successfully 

completed either INF1612 or INF1018. Some disciplines have as a pre-requisite 

requirement a minimum number of credits. For example, discipline INF1014 

requires the student have obtained 120 credits; discipline INF1608 requires 100 

credits and that the student have successfully completed INF1001. 

It is not permitted for a student to re-enroll in a discipline in which she was 

already successful. The student is allowed, and oftentimes required, to re-enroll in 

disciplines in which she has failed. There are also rules governing a minimum and 

maximum amount of disciplines a student can perform each semester (expressed as 

a number of maximum credits, e.g. 30 credits in disciplines in a term for the 

Computer Science program). 

The academic program also determines the recommended term (or 

recommended semester) for each discipline that is part of the required activities. 

The set of required disciplines, along with the recommended semesters is what we 

call the academic program’s curriculum. Hence, the curriculum is a normative 

pattern – a ‘de juris model’, the suggested set and sequence of activities for students 

to follow in the program.  
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The student that obtains the required number of credits (that is, successfully 

completes the required activities) within the maximum number of academic terms 

allowed graduates. That is, he successfully completes the academic program. The 

students that exceed that maximum number of academic terms allowed without 

fulfilling all the requirements are dismissed10 from the program. There are several 

other reasons for which a student can interrupt the academic program, either 

temporarily or permanently. E.g., if a student fails the same discipline 5 times, he 

is forcibly dismissed from the program as well. Other reasons yet relate to internal 

management issues at PUC-Rio and are unrelated to the student’s academic 

performance (e.g. the student can be dismissed from the program as punishment for 

administrative infractions). 

In the record systems used at PUC-Rio the student’s status in an academic 

term can be one of 18 alternatives, several of which relate to each one of: graduated 

students, students currently enrolled in the program, students temporarily 

suspended from program, and students permanently dismissed from the program. 

There are cases in which a student re-enrolls in the academic program by 

performing (and succeeding) in the admission process. These students receive a 

new enrollment number, but the successful (and unsuccessful) disciplines are 

carried over from the previous enrollment to the new one.  

In our approach we consider all the students that are permanently dismissed 

from the program as dropped out students. We also ignore complex cases dealing 

with transferred students – to or from other higher learning institutions. Hence, we 

initially consider the three possible ‘status’ groups: graduated students (successful 

traces), enrolled students (that is, partial traces, still performing the process) and 

dropped out students (unsuccessful traces). As part of the model enhancement task 

we additionally consider students that are halted (also partial traces). 

Academic program as an educational process 

Recall from Section 2.1 our discussion on van der Aalst’s (2011) Process 

Mining definitions of process, case, activity and event. Recall also the 

                                                 

10 The terminology used at PUC-Rio (“jubilado”) also corresponds to the ‘sent down’ term, used in British 

English. 
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correspondence (Section 3.2) between those terms and the academic program: in 

our educational domain example we consider an academic program as the process, 

with each student’s career throughout the program configuring a case. The activities 

in the process are the discipline, and events may refer to the approval (being 

assigned a passing grade) or the failing (a failing grade) of a discipline.  

We now explore additional typical restrictions over the log discussed by van 

der Aalst (2011, p. 97-103) in the context of our educational domain. This 

discussion adds to the discussion in Section 3.2. 

• “One event log corresponds to one process”: 

Our event log corresponds to a single degree program. 

• “Only relevant events in the data”: 

Only events relating to enrollment, enrollment cancellation, 

approval, passing, failing or abandoning courses are present in 

the log. 

• “Specify a process as a collection of activities such that the lifecycle 

of a single instance is described”: 

The degree program is specified as a collection of courses such 

that the career of a single student is described. 

• “case id and activity columns (…) bare minimum for process mining”  

Student id and discipline code must figure in each entry in the 

log. 

• “Events within a case are ordered”: 

Events within a student’s plot are ordered. However, since we 

deal with concurrent events, there are several alternative plots 

representing the same orderings.  

Additionally, when considering the concept of a classifier (VAN DER 

AALST, 2011, p. 103) for stating event attributes, we have the following event 

attribut: #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(e): the timestamp of events is given by the effective semester 

of an activity instance. The effective semester is computed as a difference from the 

academic term of the enrollment in the discipline and the first enrollment of the 

student. For example, if a student’s first enrollment happens in the first semester of 

2009 (academic term 2009-1), then all of the disciplines in which he enrolls in 2009-

1 happen in the first effective semester. The disciplines in which that student enrolls 

in 2009-2 happen in the effective semester 2; and so on. With this classifier, we 

have no ambiguity in activity instances since there are no parallel instances of the 

same discipline for the same student.  
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We additionally have attributes that could comprise attributes like #𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒  - 

we don’t concern ourselves with resources in the current proposal, but we include 

the event attributes for reference. In the thesis, we describe how case attributes can 

be used to fundament the decision mining. 

We consider students still enrolled in the program (even if not currently 

enrolled in any courses) as ongoing traces. In the extended representation we adopt 

for the model enhancement task the same is true for students that voluntarily adopt 

the halted status (students may, twice during the program, hold enrollments for up 

to four academic terms). We can’t consider the effective termination of students 

that transfer to programs in other universities, as we do not have information on 

whether they graduate in a similar program or not. In our formulation, these are 

halted cases. 

We now discuss the challenges posed by a domain like the academic program 

when viewed as a process, under the process mining definitions. These challenges 

motivate the usage of the academic program as a domain example. 

In (VAN DER AALST, 2011, p. 112-114) several challenges are related to 

the extraction of event logs: 

• Correlation: which events are of which case? 

We have no problem with the correlation between cases and 

events – the data relates the student enrollment (our case if) 

explicitly to each event. 

• Timestamps – complete ordering of the events?  

We have explicit timestamps in the data. We compose plots (the 

traces) in ordered fashion from there. 

• Snapshots – complete traces only?  

Our approach deals with partial traces naturally. One aspect of 

incomplete data that is indeed missing – and we ignore – is that 

students may cancel enrollment in disciplines. These 

cancellations don’t figure in the data. This will impact, for 

example, in the rules for dropping out. The rules state that a 

student is dismissed from the program after failing or cancelling 

the enrollment in the same discipline five times. Another aspect 

that is not present in the data we considered is that if a student 

that halts the process returns to the program by re-enrolling, the 

halted status is changed to enrolled. Thus, the halting information 

for students that halt the program and return is not available. 

• Scoping: required data reflected only?  
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In our approach, after anonymizing the students, we don’t have 

additional case attributes other than the academic term of first 

enrollment. For the event attributes, we have attributes that we 

discard from the composition of the conceptual model – such as 

the lecturer of the disciplines’ classes for that semester. 

• Granularity: events of lower/higher levels?  

We assumed the level of disciplines as activities because that is 

what is reflected within our available data and corresponds to the 

expected analyses. However, it is apparent that a more fine-

grained dataset could allow for the representation of intra-

disciplines tasks. For example, at PUC-Rio, each discipline may 

comprise several evaluations (in the form of tests, projects or lab 

assignments, for example). The events could show the partial 

grades of each student in each of these evaluations. There are 

examples in the literature, particularly related to the usage of 

learning resources, of mining events of much finer, granularity – 

see Section 2.1.3. 

Challenging characteristics of the domain 

The educational domain used as an example in this thesis, when viewed as a 

process, presents the challenging characteristics that are tackled by the methods and 

algorithms implemented in the Library of Typical Plans for Process Mining. 

• intertask dependencies 

The pre-requisites between disciplines are a clear example of intertask 

dependencies (supposedly and typically) enforced by the domain 

rules. The disciplines at PUC-Rio have alternative sets of pre-

requisites, which relates to the next characteristic. 

 

• multiple dependencies 

Not only do disciplines depend on sets of pre-requisites, there are 

alternative sets. We discuss the handling of alternative sets of 

preconditions throughout the thesis. 

 

• concurrent events 

Another challenging aspect of the domain is that cases perform 

multiple concurrent events. It is typical for students to perform several 

disciplines at the same time.  

 

• failing activities 

Students may not obtain passing grades in a discipline. The failure in 

disciplines has consequences in the trace, due to the intertask 

dependencies, the side-effects of failing activities in case-termination 
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(e.g. students dropping out due to repeated failures) and that certain 

disciplines are required for graduation. This relates to the next 

characteristic. 

 

• repeated activities 

In the educational domain students may not repeat disciplines at will 

– they are forbidden from re-enrolling in disciplines in which they 

have been approved, for example. However, they are implicitly 

obligated to re-enroll in disciplines in which they have failed if those 

are required disciplines for graduation. 

 

• knock-out structures 

Finally, we deal with both partial-traces and terminated cases that may 

have completed the process in success (graduation) or failure 

(dropping out). We also consider students that have halted the process 

as a third kind of case-termination. 

All of these characteristics are dealt with by our model. The representation of 

the domain in a conceptual model with a dynamic schema comprised of STRIPS-

like operations eases most of the difficulties faced by graphical models in the 

representation of these characteristics.  

One characteristic of the educational domain is that the academic terms are 

discrete and synchronous time periods. There is no intersection between academic 

semesters, for example – all disciplines happen during exactly one semester. The 

generalization of the method proposed to continuous time representations would 

imply several changes to the algorithms proposed, possibly requiring planning 

mechanisms apt to deal with more complex temporal logic constraints. The problem 

of planning in domains with time-oriented dynamics is well discussed in the 

literature (GHALLAB, NAU e TRAVERSO, 2004). Perhaps an approach such as 

Declare would be naturally more suited for domains with complex time relations.  

A characteristic specific to the set of students we use for the experiments is 

that they are enrolled in an academic program with a high rate of dropped out 

students and failed disciplines. We’ve explored the characteristics of that program 

in comparison to other programs at PUC-Rio in (GOTTIN, JIMÉNEZ, et al., 2017).  

A final challenging characteristic of the domain is the changing of the domain 

rules over time. Particularly, the syllabus of the disciplines (that we use to determine 

the activity clauses), including their pre-requisites, are periodically updated. Not 
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only the domain rules but also the recommended curriculum change periodically. 

We have circumvented part of the problems by considering in our examples sets of 

students with that enrolled around the same time, and defining the domain 

respecting the rules of that time period. However, not all information is retroactively 

available, and we were forced to use the current (as of the writing of this thesis) 

definitions of disciplines. As a result, the pre-requisite relations that we have 

considered might be different than the ones that were in place when the students 

were enrolled in the academic program. We have hinted at that issue when 

analyzing the discrepancies between the plots and the event log.  
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