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Abstract

Silva, Rodrigo Ferreira Inocencio; Valladão, Davi Michel (Advi-
sor); Silva, Thuener Armando da (Co-Advisor). Assessment of a
derivative management policy for risk-averse corporations:
a stochastic dynamic programming approach. Rio de Janeiro,
2020. 70p. M.Sc. Dissertation – Departamento de Engenharia In-
dustrial, Pontifícia Universidade Católica do Rio de Janeiro.
Corporate finance comprises investment, financing and dividend

policies aimed at maximizing shareholder value. In particular, the results of
commodity producers and, consequently, the value to their shareholders are
subject to high volatility, resulting from the variation of prices of these
products in the global market. However, the risk of this variation can
be mitigated by exploiting the broad derivatives market that is generally
available for commodities. This work proposes to calculate the value increase
that a commodity-producing company can provide to its shareholders
through the use of an optimal derivatives management policy, by buying
or selling forward contracts. To this end, it seeks to maximize shareholder
returns via dividends in a risk-averse environment. The model assumes that
the commodity price follows a discrete state Markov process. Since the
model is applied in several stages, the problem becomes quite complex,
and it is necessary to use a decomposition method to obtain the solution, so
we used the method known as stochastic dynamic dual programming. The
results show that by trading forward contracts, a company increases the
value perceived by the shareholder, measured by the payment of dividends,
to any level of risk aversion. The average value increase, considering different
levels of risk aversion and an unbiased pricing assumption, is higher than
320% when compared to companies that do not have access to such
instruments. In addition to measuring the value increase, we also analyzed
which factors determine the optimal derivatives management policy. It
was possible to identify that the derivatives management policy is very
determined by the prices, which in turn are associated with the state of the
Markov chain in force at each stage.

Keywords
Derivatives management policy Forward contracts Markov chain

Stochastic dynamic programming
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Resumo

Silva, Rodrigo Ferreira Inocencio; Valladão, Davi Michel; Silva,
Thuener Armando da. Avaliação de uma política de gestão de
derivativos em empresas avessas a risco: uma abordagem
de programação dinâmica estocástica. Rio de Janeiro, 2020.
70p. Dissertação de Mestrado – Departamento de Engenharia In-
dustrial, Pontifícia Universidade Católica do Rio de Janeiro.
Finanças corporativas compreendem políticas de investimento, finan-

ciamento e dividendo cujo objetivo é maximizar o valor do acionista. Em
particular, os resultados de empresas produtoras de commodities e, conse-
quentemente, o valor para seus acionistas estão sujeitos a alta volatilidade,
decorrentes da variação dos preços destes produtos no mercado global. En-
tretanto, o risco dessa variação pode ser mitigado ao se explorar o amplo
mercado de derivativos que, em geral, está disponível para commodities.
Este trabalho propõe calcular o acréscimo de valor que uma empresa produ-
tora de commodities pode fornecer ao seu acionista pelo uso de uma política
ótima de gestão de derivativos, por meio da compra ou venda de contratos a
termo. Para tanto, busca maximizar o retorno aos acionistas via dividendos
em um ambiente avesso a risco. O modelo assume que o preço da commod-
ity segue um processo de Markov de estados discretos. Como o modelo é
aplicado em vários estágios, o problema torna-se bastante complexo, sendo
necessário usar um método de decomposição para obter a solução, sendo
assim, utilizou-se o método conhecido como programação dual dinâmica
estocástica. Os resultados demonstram que, ao comercializar contratos for-
ward, uma empresa aumenta o valor percebido pelo acionista, medido pelo
pagamento de dividendos, para qualquer nível de aversão a risco. A média
de acréscimo de valor, considerando diferentes níveis de aversão a risco e
uma premissa de precificação não viesada, é superior a 320% quando com-
parado a empresas que não possuem acesso a tais instrumentos. Além de
medir o acréscimo de valor, analisou-se também quais os fatores determi-
nantes para a política ótima de gestão de derivativos. Foi possível identificar
que a política de gestão de derivativos é muito determinada pelos preços,
que por sua vez estão associados ao estado da cadeia de Markov vigente em
cada estágio.

Palavras-chave
Política de gestão de derivativos Contratos a termo Cadeias de

Markov Programação dinâmica estocástica
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1
Introduction

Corporate finance is the study of all economic and financial aspects
related to the operations of a company. It comprises the market analysis of
the corporation’s sector, the capital structure monitoring, the decisions that
are made by managers, and the correct use of tools to maintain financial
sustainability. In particular, the financial manager must choose whether the
company acquires debt with third parties to finance investments, what is the
appropriate level of investment (or divestment) under a given market condition,
identify budgetary constraints, assess the impact of debt on the cost of capital
considering the associated loan tax shield. All of these actions aim at providing
the shareholder with the highest possible return.

In the case of commodity-producing companies, the decision-making pro-
cess becomes more complicated due to the high volatility of commodity prices,
which compromises the company’s financial performance and, consequently, re-
duces the return to the shareholder. Given the investor risk aversion, market-
price risk tends to reduce the shareholder value of a commodity company.
However, the commodities business has a broad market of financial instruments
(derivatives) that could mitigate the risks associated with price volatility. In
the literature, several authors have tried to identify the impact of derivatives
on the value of companies. Since the first work that models derivatives in the
financial analysis of a company in 1984 (Stulz [32]), the models have become
more realistic and complex, moving from static models with very restrictive
premises to dynamic models that represent economic and financial decisions
of a company in a very reliable way.

In practice, we observe some examples of companies that use derivative
instruments in their financial planning, such as Petrobras – Brazilian state-
controlled oil company and one of the largest worldwide – that, over the past
two years, has announced partial hedging programs against oil price volatility.
Similarly, Mexico’s state-owned oil company (Pemex) also regularly discloses
hedging for its activities, as do small US oil companies. However, the industry
standard is to use simplified models in their medium and long term planning,
usually spreadsheet-based and with predefined business and financing deci-
sions. To correctly assess the value of using derivatives to the shareholders, an
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Chapter 1. Introduction 12

analytical tool capable of jointly simulate the optimal investment, financing,
and dividend payment policies, together with the company’s derivatives man-
agement policy, is required. To this end, this dynamic decision-making process
under uncertainty should be modeled as accurately as possible.

In this work, we use Waga [36]’s capital structure model as a basis (see
Chapter 3), which proposes a dynamic risk-averse model in which the most
relevant variables for a company’s financial analysis are represented, with
emphasis on variable debt cost with leverage (based on the model proposed by
Valladão et al. [34]), sale of assets and shares issuing. We expanded the Waga
[36]’s model by inserting the possibility of contracting derivatives, in addition
to changing the modeling of the problem uncertainty (see Chapter 4). Besides
we applied the Bolton et al. [8]’s broader risk management concept: we consider
a joint optimization of derivatives management together with financing and
investment policies. The objective function is to maximize the risk-adjusted
shareholder value under commodity-price uncertainty.

Our model assumes that prices follow a discrete-state Markov process
characterized by a transition probability matrix and differing conditional
probability distribution given each Markov state. The distributions and the
Markov process parameters can be estimated from historical data using an
Expectation and Maximization (EM) algorithm under a Hidden Markov Model
(HMM) learning framework. Considering the number of variables and the long-
term application, the model is quite complex and suffers from the well-known
curse of dimensionality. We circumvent this issue using a sampling-based
decomposition method, the Stochastic Dual Dynamic Programming (SDDP,
Pereira & Pinto [26]).

In the case study, the optimization model is applied to an oil-producing
company, which uses Brent as the base for oil pricing. We applied HMM
over a historical series with data from the last 20 years of Brent prices. The
results show that by trading forward contracts, a company increases the value
perceived by the shareholder, measured by the payment of dividends, to any
level of risk aversion. The average value increase, considering different levels
of risk aversion and an unbiased pricing assumption, is higher than 320%
when compared to companies that do not have access to such instruments.
In addition to measuring the value increase, we also analyzed which factors
determine the optimal derivatives management policy. We identify that the
policy is highly determined by price levels, which in turn are associated with
the state of the Markov chain in force at each stage.

The objective of this work is to assess the value of derivatives manage-
ment policies (for hedging or speculative purposes) to risk-averse shareholders
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Chapter 1. Introduction 13

of a commodity-producing company. The main contributions are:

– A realistic and computationally tractable risk-averse dynamic model
that jointly optimize investment, funding and dividend decisions, along
with the company derivatives management strategy through forward
contracts;

– A computational tool to simulate policies for a better understanding of
the interplay of derivatives using decisions with investment, funding, and
dividends in a commodity company;

– A case study for an oil company, with data from the last 20 years of
Brent prices, allowing to verify that the derivatives management policy
increases the value perceived by the shareholder (higher than 320%,
on average under an unbiased pricing assumption). The policy is very
determined by the commodity prices, which in turn are associated with
the state of the Markov chain in force at each stage.

This document is divided into six chapters. After this introduction
(Chapter 1), the theoretical background is presented in Chapter 2 with
the most relevant topics employed in this dissertation. Chapter 3 briefly
summarizes the Waga’s model and Chapter 4 details the extensions and
modifications made from it. The results are presented in Chapter 5 as a case
study. Finally, the conclusions are in Chapter 6, with references right after.
There is also an Appendix A, with a description of stochastic programming
and SDDP algorithm.
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2
Theoretical Background

In this chapter, we review some basic concepts on finance and optimiza-
tion techniques used in this work, as well as briefly present the literature review
of the topics studied, with emphasis on derivative instruments. Initially, a fun-
damental review of the capital structure literature and concepts of derivatives
is presented, additionally, we made a description of a generic discrete Marko-
vian process used later to model price dynamics.

2.1
Capital Structure

The foundations of capital structure studies, a corporate finance research
area, were established in 1958, with the work of Modigliani & Miller [22]. In
their article, by adopting as premises efficient markets, absence of taxes and
costs (bankruptcy, transaction or agency), as well as equal conditions between
companies and individuals in the capital market, the authors establish two
propositions:

I The market value of any company is independent of its capital structure;

II The required return on equity is positively related to financial leverage
due to increased risk faced by equity holders.

Proposition I is demonstrated through the concept of non-arbitration.
For example, assume a leveraged company (company L) with identical assets
to an unleveraged company (company U). Since an investor can replicate
a portfolio of shares of company L, by buying shares of company U and
borrowing (assuming the same interest rate for individuals and companies),
both companies must have the same value. Otherwise, an investor could sell
the company with the highest value, build a synthetic portfolio with the lowest
value company, and obtain a risk-free return.

Proposition II implies the higher the leverage, the higher the return
required for the company’s equity. Thus, despite the cost of debt raised with
third parties is lower than the cost of equity, the reduction in the cost of capital
with the increased leverage is perfectly offset by the increasing return required
by the shareholder as the company is riskier.
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Chapter 2. Theoretical Background 15

In later work, Modigliani & Miller [23] increase the model’s reality level
by eliminating the tax-free premise of the original one. In this context, a
leveraged company has an advantage because financial debt provides a rebate
on the income taxes, thereby increasing its value. This effect is commonly
known as tax-shield. A direct consequence of the tax shield is that the higher
a company’s leverage, the greater its value. This unrealistic result is justified on
the simplifying assumptions adopted by Modigliani & Miller [23]. Considering
that there is no cost associated with rising leverage, the result is quite different
from what we find in practice, where a heavily leveraged company has little or
no value.

Baxter [5] changed another premise of Modigliani & Miller [22] ’s work
by now considering bankruptcy costs (also known as financial distress costs),
i.e., the costs incurred by a company in the event of impending bankruptcy.
As debts to be paid to the remaining creditors will be discounted from these
costs, the interest rate charged increases with leverage. With this assumption,
the cost of capital of the company increases if leverage is too high. So, there
is a minimum value where the company valuation is maximized.

From the treatment of the assumptions adopted by Modigliani & Miller
[22], mentioned above, comes a variety of articles seeking to identify an optimal
capital structure based on similar concepts. Some of these studies are: Bradley
et al. [9], Titman & Wessels [33], Fama & French [15], Hennessy & Whited [19]
and Decamps & Villeneuve [12].

The theory that studies the balance between the benefit of reducing the
amount to be paid in taxes due to the payment of interest on debts against the
costs associated with increasing debt from third parties, was called by Myers
[24] as trade-off theory. Other theories aim to explain the capital structure
of a company. Myers [24] himself suggests one called pecking order, in which
there is an order of preference for fundraising: operating generation, debt and,
finally, issuance of shares.

2.2
Derivatives

According to the Basel Committee [3] liquidity risk can be defined as the
risk that a company will not be able to efficiently settle its current and future,
expected or not, cash flow obligations without affecting its daily operations
or financial condition. Market risk is the possibility of an investor suffering
losses due to factors that affect the performance of the markets in which
it operates. To mitigate such risks, one of the main techniques applied is
derivative contracting (an operation known as hedging).
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Derivatives are instruments that always correspond (or derive on) to an
underlying asset (the most common are stocks, bonds, commodities, currencies,
interest rates, and market indexes). They are capable of providing, based on
certain contractual premises, a financial return, also known as the payoff, to its
buyer. Some derivative instruments have an initial cost for their acquisition,
usually called a premium. In general, the value of this premium can be obtained
by estimating the value of payoff in several future scenarios, calculating the
expected value of these payoffs, and discounting it at an appropriate interest
rate (r). Thus, let vt be the premium value paid by any derivative in t and
ϕt+1 its payoff in t+ 1,

vt = Et [ϕt+1]
1 + r

. (2-1)
In general, derivative instrument types are divided into three major types:

forwards, options, and swaps. In this work only forward contracts will be used,
which is an agreement between two parties to buy or sell an asset at a specified
price on a future date. The buyer of the contract must pay for the asset, at
the time of maturity, exactly the value contracted at signing (we say that the
buyer assumes the long position). The other party (short position) must sell
the asset at the agreed price. Note that no matter how much the price of the
asset varies between signing and maturity, the product will be traded at the
agreed price at the time of signing.

However, in many contracts there is no physical delivery of the product,
there is a financial compensation between the forward contract and the spot
price at the time of maturity. In this way, if the price of an asset falls after the
contract is signed, the seller is entitled to receive compensation. For instance,
assume that a producer has signed (sold) a forward contract, which has the
contractual price for a given asset equal to f. At contract maturity, the asset has
a spot price equal to p. In this case, the seller will receive of the counterparty
an amount equivalent to (-p+ f). Note that regardless of the amount the seller
receives for the derivative instrument contract, he will always receives the value
f for the asset, because he receives (-p+ f) for the contract and sells the asset
at market price (p), totaling a revenue equal to f.

In the example above, the producer took the short position of the
contract. In this case, the derivative was used for hedging purposes, as it
ensured the sale price of its product at a future time, eliminating uncertainty.
However, suppose that the seller has assumed the long position in this contract.
At the contract maturity, he would still receive p for his product on the market,
but would have to pay (−p + f) for the derivative contract. In this case, the
revenue is equal to (2p − f). Thus, if the spot price at the time of maturity
is higher than the contract price (p ≥ f), the producer increases his earnings,
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otherwise, he may have a loss. Given this context, when assuming the long
position, the producer bets on the price rise, using the derivative instrument
to leverage his gains, but incurring in risks of large losses, which configures a
speculative operation.

Considering that there are risk-neutral agents that would eliminate any
arbitrage and disregarding transaction costs, forward contracts have no cost
to the buyer, that is, the premium is null (vt = 0). As we assume no-arbitrage,
the risk-neutral probability can be applied to equation (2-1) to calculate the
contractual price (f). So we have

1
1 + rf

Ns∑
n=1

πnϕ̂
f
n,t+1 = 0, (2-2)

where Ns is the number of future scenarios in which the payoff was calculated,
ϕ̂fn,t+1 represents the n samples of a forward contract payoff in t+ 1, πn is the
risk-neutral probability of each scenario n and rf is the risk-free interest rate.

Note that in the previous equation (2-1) the discount rate was r, whereas
in the equation (2-2) the discount rate is rf , which represents the risk-free rate.
This change is necessary because the expected value was calculated based on
the risk-neutral probabilities, so no risk must be embedded in the discount
rate.

Assuming that a forward contract has been signed at t, with the agreed
acquisition price of the asset at t+1 equal to ft, then the payoff (ϕ̂fn,t+1) of this
contract is equal to (pt+1− ft), where pt+1 is the asset price at t+ 1. Replacing
the payoff in equation (2-2), we have:

1
1 + rf

Ns∑
n=1

(πnp̂n,t+1 − ft) = 0

Ns∑
n=1

(πnp̂n,t+1)−
Ns∑
n=1

(πnft) = 0

Ns∑
n=1

(πnp̂n,t+1)− ft
Ns∑
n=1

(πn) = 0, (2-3)

where p̂n,t+1 represents each of the Ns realizations of pt+1.
As the price of the underlying asset is subject to the same risk-neutral

probabilities, which have a sum equal to 1, we have two additional restrictions:

pt = 1
1 + rf

Ns∑
n=1

πnp̂n,t+1 (2-4)
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Chapter 2. Theoretical Background 18

Ns∑
n=1

πn = 1. (2-5)

Replacing the equations (2-4) and (2-5) in the equation (2-3), we have:

ft = pt (1 + rf ) . (2-6)

Now that we know the price set at the time of signing a forward contract
(ft), so it is possible to calculate the gain or loss produced by that instrument
at maturity (fht ). Assuming a contract that is signed at t− 1 (with price ft−1)
and matures at t, the flow received by the buyer at t will be:

fht = ht−1 (pt − ft−1) . (2-7)

Note that the greater the number of contracts (ht−1) bought (for ht−1 ≥ 0
or sold for ht−1 ≤ 0) at t− 1, the greater the magnitude of the monetary value
to be paid or received.

In the literature, many works study the impact of derivatives on the
value of a company. Among these, Stulz [32] focuses on managing exposure to
foreign currencies using forward contracts. The author, through a continuous-
time model, evaluates derivatives management policies in two scenarios: value
maximization and risk-averse agents. As a result, it is possible to calculate
the optimal level of hedge for the company under certain simplifying assump-
tions: that level remains fixed over time, and the investment and financing
decisions have to be previously defined by the company’s managers. Besides,
it ignores the cost of financial distress, which impacts the optimal derivatives
management policy. Similarly, Fehle & Tsyplakov [16] developed a model with
limitations on its capital structure, assuming that the company holds no cash
and maintains a constant debt level over time. They study a dynamic and in-
finite horizon model that seeks to reduce the uncertainty related to the selling
price of a product. In this way, they could obtain a risk management policy
by assessing issues such as the initiation and maturity of derivative contracts.
Their main finding is that the policy is associated with financial distress costs.

Following previous continuous-time models, Rochet & Villeneuve [27]
consider a constant size company, i.e., no new investments, null depreciation,
and no tax shield considered. They show that the company must cover all its
risk exposure if the cash value is below a certain level; otherwise, derivatives
should not be acquired. From liquidity (cash) point of view, they state that the
company must accumulate a certain amount of cash, from which all excess must
be paid in the form of dividends. They assume investor risk neutrality and also
the possibility of buying insurance for high impact risks and low probability of
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occurrence. Bolton et al [8] expanded the Rochet & Villeneuve’s model [27] ,
adding the possibility of investment and refinancing, and proposed a dynamic
corporate risk management flowchart combining cash, investment, external
financing, dividend payments, and derivatives management policies. According
to the authors, “risk management is not just a financial hedging; in fact,
it is closely connected to liquidity management via daily operations”. Their
model ignores taxes and the influence of leverage on the company bankruptcy.
Like Rochet & Villeneuve [27], they find that the company only distributes
dividends if the cash level is above a certain threshold. They conclude that the
optimal hedging policy is one that balances the marginal benefit of the hedge
with its associated cost.

Considering the discrete-time models, one of the most important works
focusing on hedging policies is the Froot et al. [17]. The authors present a
single-period model whose uncertainty may arise from investment or funding
sources. The goal of the model is to maximize the company’s net income. The
analysis takes place around the investment that can be funded from internal
or external sources. As a result, the authors find that, if there is no correlation
between investment opportunities and internal sources of funding (own funds),
the company must fully protect its risk exposure. As the hedging is used as an
instrument to ensure cash flow for the next stage, if the correlation is high, then
there is no need to ensure own funds, because if the needy for investment is
high, the amount of internal resources will also be. If the need for investment
is low, there is no need to ensure a minimum amount of internal resources.
Therefore, with the increase in the correlation between internal sources of
financing and investment, the hedging is reduced.

Based on the research by Graham & Harvey [18], who found that 75%
of CFO’s claim to use the net present value (NPV) of free cash flows to
measure value, Léautier et al. [20] builds a multi-stage discrete-time model
that contemplates uncertainties associated with cash flow and investments. The
authors used simplifying assumptions such as fixed cost of capital, no dividends
distribution, and no share issuing. Amaya et al. [1] expand this model,
especially by adding dividend distribution and the possibility of bankruptcy.
However, the authors consider debt as the only option for obtaining external
resources, excluding the possibility of selling assets or issuing shares. Besides,
the authors do not consider cash holdings since all excess money is paid
as dividends. By implementing an analytical solution, they claim that the
company uses derivatives for all of its risk exposure until its leverage reaches
a certain high level (above approximately 80%). By exceeding this limit, the
company bets on its financial recovery and stop contracting hedge. Although

DBD
PUC-Rio - Certificação Digital Nº 1712636/CA



Chapter 2. Theoretical Background 20

the last two papers have an increasing financing cost with leverage, the cost
of capital does not take into account investment risks.

2.3
Markov Chain

In a multi-stage optimization problem, assume that ξ1, ξ2, . . . , ξT is the
uncertain information that is gradually revealed at each stage. The sequence ξt
of the information is called a stochastic process, that is, a sequence of random
variables with defined probability distribution. Considering that the notation
K[t] characterizes the “history” of this process to the stage t (ξ1, . . . , ξt), a
process is stochastically independent between stages when ξt is independent
of K[t−1]. On the other hand, a Markov process occurs when the conditional
probability distribution of ξt, given K[t−1] is the same as the conditional
probability distribution of ξt, given ξt−1.

The concept of independent and Markovian processes can be illustrated
through the diagrams of Figure 2.1. For better visualization, it was considered
that the uncertain variable (ξ) has only two possible realizations (ξu and ξd).
The probabilities of occurrence (Pu and Pd) of each achievement are described
in the figure. Note that in Figure 2.1 (a) this probability is independent of the
state.

Figure 2.1: Comparison between independent stochastic process (a) and
Markovian process (b).

The concept of Markov process was incorporated into the equations of
dynamic programming assuming a Markov chain of discrete states of space K
(Kt ∈ K, where Kt = u or Kt = d), in which ξt+1 depends only of the state of

DBD
PUC-Rio - Certificação Digital Nº 1712636/CA



Chapter 2. Theoretical Background 21

Markov Kt at t and does not depend on the past realizations ξt, . . . , ξ1. In the
equation (3-1), the notation Pk|j, where j, k ∈ K, represents the probability
that the Markov state in the next stage Kt+1 is equal to k, since the current
state (Kt) is j.

2.4
Markov Chained Stochastic Dual Dynamic Programming

The stochastic dual dynamic programming (SDDP) – see Appendix A for
a brief description of stochastic programming, as well as details of the SDDP
technique algorithm – was proposed by Pereira & Pinto [26], in an application
to energy planning (for more example of SDDP application, see Shapiro et
al. [31]). In this methodology, the “curse of dimensionality” is overcome by
assuming independence of the random variable between stages. Before SDDP,
even with the use of some decomposition method, such as L-shaped, it is
necessary a future cost function for each of the trajectories in the scenario tree,
causing the problem to grow exponentially with the number of stages. Figure
2.2 illustrates the concept, considering a generic time dependency. Without
time dependency of the uncetainty variable, it is possible to obtain a single
convex future cost function for each stage, as shown in Figure 2.3.

Figure 2.2: Illustrative value functions considering generic time dependence.
Source: Valladão et al. [34].

Despite the reduction in computational cost, the stage-wise independence
premise reduces the scope of real problems in which this method can be applied.
That is a critical point for using the SDDP technique: it is difficult to argue
that the return of assets from a portfolio, the flow of water in a reservoir
or, in our case, a commodity price follows a stochastic process completely
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Figure 2.3: Illustrative SDDP value function considering stage-wise indepen-
dence. Source: Valladão et al. [34].

independent of previous stages. This restriction is partially overcome by the
works of Mo et al. [21] and Phillpot & De Matos [25], who demonstrate in
their article that it is possible to work with dependence on SDDP as long
as uncertainties follow Markovian process. In this case, we have a future cost
function for each time stage and each Markov state, making the model more
realistic than its stage-wise independence counterpart but still maintaining the
model computationally tractable. Figure 2.4 presents the concept for a future
cost function that is equal to the weighted average between the functions of
two Markov states.

Figure 2.4: Illustrative weighted average of value functions for Markovian price
model. Source: Valladão et al. [34].
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3
Base Model

For investment, funding and dividend payment decisions, the capital
structure model developed by Waga [36] is the a basis of our work. For clarity
purposes, we present a compact representation of the model by defining the
dynamic equations.

Qj
t (υt−1, pt) =

max
(et,υt)∈X (υt−1,pt)

∑
k∈K

et +
ψt
[
Qk
t+1 (υt, pt+1) |Kt+1 = k

]
1 + rf

Pk|j. (3-1)

where
Qj
T+1 (υT−1, pT ) = 0. (3-2)

The model objective is to maximize the risk-adjusted present-valued
dividend payments (et). A time-consistent dynamic risk measure (ψt) is defined
as the recursive formulation of the convex combination between expected value
and CVaR (see Shapiro [28]), and the payments are discounted by the risk-free
rate (rf ). The risk-adjusted shareholder value is a function of the previous
state vector (υt−1) and the uncertainty realization (pt). The state of system
υt = (at, ct, dt, ιt)> includes the asset value (at), cash holdings (ct) and debt
raised (dt), as well as other auxiliary variables (represented generically by ιt).
The variable X denotes the feasible set as a consequence of investment (it),
debt (dt) and dividend payment (et) decisions. The indexes j and k represent,
respectively, the current and future states of a Markovian process. For the last
stage, in addition to the end of recursion due to equation (3-2), the company
is not able to raise debt or have operational generation.

In the following subsections, we detail some important features of the
model proposed by Waga [36].

3.1
Coherent Risk Measures

A risk measure is a function φ : Rn → R that associates a value to a
realization of an uncertain scenario ω ∈ Ω. The risk measure used in this work
is based on conditional value at risk (CVaR), which is extensively applied to
optimization problems. Considering R as the random return of an asset, the
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CVaR can be defined as:

φα (R) = −CV aRα (R) = sup
z

z − E
[
(z −R)+

]
1− α

 , (3-3)

where (z −R)+ = max(z −R; 0) and α ∈ (0, 1) is the confidence level.
According to the above formulation, it can be understood that the CVaR

is the average of 100× (1− α) % worst scenarios.
As stated by Artzner et al. [2] a coherent risk measure respects the

following properties:

– Monotonicity: for all random returns R1 and R2, if R1 (ω) ≥ R2 (ω) ,∀ω ∈
Ω, then φα (R1) ≥ φα (R2);

– Translation invariance: for all random return R and constant m ∈ R,
φα (R +m) = φα (R) +m;

– Positive homogeneity: for all random return R e constant m ≥ 0,
φα (mR) = mφα (R);

– Subadditivity: for all random returns R1 e R2, φα (R1 +R2) ≥ φα (R1) +
φα (R2).

The coherent risk measures used in this work (ψt) is the convex combi-
nation expected value and CVaR, as proposed by Shapiro [28], defined as:

ψt [R] = (1− λ)Et [R] + λφα,t [R] , (3-4)

where 0 ≤ λ ≤ 1 is the risk averse parameter.

3.2
Cash Balance Constraint

The problem variables are related to each other through the cash equa-
tion, which is a result of the sum of the cash inflows and outflows. Cash inflows
are the cash value of the previous period (ct−1), plus risk-free income, oper-
ational generation (gt), defined as EBITDA, and debt raised in the present
period. The cash outflows are: amount paid from the debt raised in the previ-
ous period (plus interest) (qt), investments (it), dividends paid to shareholder
(et) and taxes (xt). The variables mt and bt represent the cost of selling assets
and issuing shares, respectively, which will be discussed in detail in section 3.3.

ct = ct−1 (1 + rf )+gt (at−1, pt)+dt−qt (dt−1)−(it +mt)−(et + bt)−xt. (3-5)
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3.3
Asset and Equity

In addition to raising debt, there are two ways to obtain cash instantly:
sale of assets (negative investment) or fundraising with partners (issuance
of shares, i.e., negative dividend). However, both the sale of assets and the
issue of shares are subject to a cost, respectively represented by mt and bt

(for more details see Waga [36]), which consumes part of the amounts to
be added to cash. These two variables only have value when the investment
and dividend variables, respectively, are negative. Otherwise, as there is no
cost on an operation that has not occurred, they must have null value. So,
mathematically they are equal to:

mt = max (−κiit, 0) . (3-6)

bt = max (−κeet, 0) . (3-7)

To keep the linearity of the model, the equations can be rewritten by the
set of equations:

mt ≥ −κiit. (3-8)

bt ≥ −κeet. (3-9)

mt, bt ≥ 0. (3-10)

Where κi and κe represent the percentage cost of the asset sale and issuance
of shares, respectively.

Considering a depreciation rate δ, the assets (at) are updated according
to the equation: at = (1− δ) at−1 + it.

3.4
Borrowing Cost Function

In many models present in the literature, interest on debt acquisition
varies linearly with debt, i.e. the interest rate paid is constant, regardless of
the financial conditions in which the company is. This simplified approach
makes it easy to apply mathematical models, but it is far from the reality of
the financial market, where the interest rate for a loan can vary greatly when
comparing companies in different financial situations.

According to Valladão et al. [34], simplified linear functions are not
appropriate to represent the costs involved in raising new debt. To correctly
consider different interest rates and credit limits, their paper proposes a convex
piecewise-linear borrowing cost function. In their model, the interest rate of
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the loan (κd,n) increases proportionally to the amount of debt (dt). The Figure
3.1 shows this concept.

Figure 3.1: Borrowing cost function.

The total value to be paid at the present period (qt), which is the sum
of debt raised at the previous period and the interest, is obtained through an
optimization problem. Given that st,n represents the value of debt captured at
each level of risk, limited to the maximum lmn (with the exception of the last
level), on which there is an interest rate κd,n, and considering only debt with
maturity equal to one stage (for example, 1 year), the optimization problem
is:

qt (dt−1) = min
st,n

NR∑
n=1

(1 + κd,n) st,n (3-11)

s.t. st,n ≤ lmn , ∀n = 1, . . . , (NR − 1) (3-12)
NR∑
n=1

st,n = dt−1 (3-13)

st,n ≥ 0, ∀n = 1, . . . , NR, (3-14)

where NR is the number of different risk classes. With such formulation, the
increase in the total amount of debt implies an increase in the cost of marginal
funding.

The direct consequence of this function is that, from a certain amount
of debt (defined by the limits lm1 , lm2 and lm3 in Figure 3.1), a company should
pay more interest for each 1 $ of debt raised. However, a company’s debt
amount is not the best measure of the company’s risk. Leverage is a more
appropriate measure because it takes into account the ability to generate
revenue. Accordingly, Waga [36] proposed a change in constraint (3-12),
including operating generational, defined as EBITDA (gt (at−1, pt)). As defined
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in equation (3-15).

st,n ≤ gt (at−1, pt) ln, ∀n = 1, . . . , (NR − 1) . (3-15)

Note that with the change, the generation of the company will act as
a multiplier of the original limits proposed by Valladão et al. [34]. Thus, we
changed the symbol that represents the limits of each level of risk, as these are
no longer monetary values and become multipliers of operational generation.
The larger the firm’s generation, the greater its capability to repay debt, so it is
not appropriate to set the limits to absolute values for all firms in the market
Thus, the company’s risk measure becomes a limit of the debt to EBITDA
ratio. This ratio was chosen because of its central role in the ratings of the
international agency Standard & Poor’s (S&P).

With this assumptions, the total amount of interest paid (ut) can be
calculated as follow:

ut =
NR∑
n=1

κd,nst,n. (3-16)

3.5
Operational Generation and Taxes

According to Hennessy & Whited [19], operational generation (gt) de-
pends on the asset and a shock (zt). The operating function can be described
as strictly concave, twice continuously differentiable and strictly increasing.
The profit shock zt ∈ [z, z] corresponds to the uncertainty on demand, prices
or productivity. A function with such properties can be described by the fol-
lowing properties and equation:

lim
at−1→∞

gt (at−1, zt) =∞; zt ∈ [z, z] (3-17)

lim
at−1→0

gt (at−1, zt) = 0; zt ∈ [z, z] (3-18)

gt (at−1, zt) = zt(at−1)γ, (3-19)

where γ ∈ (0, 1) is the term that provides concavity to the function.
It is important to observe that the premise of positive operational

generation is also valid for the model that we will propose in Chapter 4, since,
in general, the cost of oil extraction is well below the selling price of this
product.

Note that was used at−1, rather than at, since the quantity of the asset
responsible for production at time t is defined at t−1. The asset at will generate
the production over t+ 1.

The function in equation (3-19) is not linear. However, it is possible to
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Figure 3.2: Linear approximation of operational genration by tangents lines.

approximate it by tangent lines from an optimization problem. The Figure 3.2
demonstrates the concept, the lines (r1, r2, r3, r4 and r5) are the tangent lines
at points ϑn, for n = 1, 2, 3, 4 and 5. Notice that the greater the number of
defined tangency points, the better is the approximation accuracy. To find the
general equation of the tangent lines first is defined an auxiliary function as

fg (at−1) = (at−1)γ . (3-20)

The angular coefficients of the tangent lines are:

βn = ∂fg (at−1)
∂at−1

|at−1=ϑn = γ (ϑn)γ−1 . (3-21)

Finally, the linear coefficients of the tangent lines are:

αn = fg (ϑn)− βnϑn = (1− γ) (ϑn)γ . (3-22)

The optimization problem will be a maximization, for which it will be
necessary to define an auxiliary variable (yt),

max yt

s.t. yt ≤ αn + βnat−1, ∀n = 1, . . . , NL

gt = ztyt,

(3-23)

where NL is the number of tangency points.
Operational generation is the basis for calculating the corporate taxable

income (ot), which is equal to operating profits added to the financial profit
from the cash (ct−1rf ), subtracted from the depreciation (δat), interest (ut),
which will be defined later, and the cost of asset sale (mt).

ot = gt (at−1, pt) + ct−1rf − δat (it)− ut −mt. (3-24)

From the above equation, the taxes could be calculated by entering a
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constraint in the model xt ≥ τot, where xt ≥ 0 and τ is the corporate tax rate.
That is, there is only taxes payment when the company has a profit.
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4
Proposed Model

In this chapter, we propose a dynamic stochastic programming model
that jointly optimizes derivatives management strategies along with invest-
ment, financing and dividend decisions for a commodity-producing company.
From the concept of integrated analysis between liquidity and derivatives of
Bolton et al. [8] and based on the capital structure model developed by Waga
[36], we incorporate the possibility of trading forward contracts, allowing a
broader analysis of the companies’ financing policy.

In this work, the objective is to maximize the risk-adjusted shareholder
value of a company producing a commodity whose price uncertainty can be
hedged with forward contracts, although these instruments can also be used
for speculative purposes, seeking greater gains for shareholders. For clarity
purposes, we present the a compact representation of the proposed model by
defining the dynamic equations

Qj
t (υt−1, pt) =

max
(et,υt)∈X (υt−1,pt)

∑
k∈K

et +
ψt
[
Qk
t+1 (υt, pt+1) |Kt+1 = k

]
1 + rf

Pk|j. (4-1)

where
Qj
T+1 (υT−1, pT ) = 0. (4-2)

The model objective is to maximize the risk-adjusted present-valued
dividend payments (et). A time-consistent dynamic risk measure (ψt) is defined
as the recursive formulation of the convex combination between expected value
and CVaR (see Shapiro [28]), and the payments are discounted by the risk-free
rate (rf ). The risk-adjusted shareholder value is a function of the previous
state vector (υt−1) and the uncertainty realization (price pt). The state of
system υt = (at, ct, dt, ht, ιt)> includes the derivatives contracted (ht), asset
value (at), cash holdings (ct) and debt raised (dt), as well as other auxiliary
variables (represented generically by ιt). The variable X denotes the feasible
set as a consequence of investment (it), debt (dt), derivatives (ht) and dividend
payment (et) decisions. The indexes j and k represent, respectively, the current
and future states of a Markovian process. For the last stage, in addition to the
end of recursion due to equation (4-2), the company is not able to raise debt
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or have operational generation or contract derivatives.
The complete optimization problem is presented throughout the equa-

tions (4-3) - (4-20) and the sections 4.1, 4.2, 4.3 and 4.4 detail changes to the
Waga’s model [36].

Qj
t (at−1, ct−1, dt−1, ht−1, pt) =

max
at,ct,dt,ht,ut,it,gt,yt,
qt,ot,x,sn,t,et,mt,bt

∑
k∈K

et +
ψt
[
Qk
t+1 (at, ct, dt, ht, pt+1) |Kt+1 = k

]
1 + rf

Pk|j (4-3)

s.t.

ct = ct−1 (1 + rf ) + gt (at−1, pt) + dt − qt (dt−1)− (it +mt)− (et + bt)

− xt + ht−1 (pt − ft−1) (4-4)

mt ≥ −κiit (4-5)

bt ≥ −κeet (4-6)

at (it) = (1− δ) at−1 + it (4-7)

ot = gt (at−1, pt) + ct−1rf − δat (it)− ut −mt + ht−1 (pt − ft−1) (4-8)

xt ≥ τot (4-9)

qt (dt−1) =
NR∑
n=1

(1 + κn)st,n (4-10)

NR∑
n=1

st,n = dt−1 (4-11)

st,n ≤ E [gt (at−1, p̃t) |Kt = j] ln, ∀n = 1, . . . , (NR − 1) (4-12)

ut =
NR∑
n=1

κnst,n (4-13)

yt ≤ αn + βnat−1, ∀n = 1, . . . , NL (4-14)

gt (at−1, pt) = pjt
p
yt (4-15)

et ≤ ct−1 (1 + rf ) + gt (at−1, pt) (4-16)

ht ≤ ηt (4-17)

ht ≥ −ηt (4-18)

ηt = yt
pθ

(4-19)

at, ct, dt, xt, st,n, ut, yt,mt, bt ≥ 0. (4-20)

Where ψt
[
Qk
t+1

]
= (1− λ)Et

[
Qk
t+1

]
+ λφα,t

[
Qk
t+1

]
and 0 ≤ λ ≤ 1 is the risk

averse parameter.
The constraints (4-15), (4-16), (4-17), (4-18) and (4-19) will be detailed
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in the following sections.

4.1
Cash balance and derivatives management policy

Although we used the Waga [36]’s model as a base, some modifications
are necessary to incorporate derivatives management strategies via forward
contracts. The Figure 4.1 presents the variables through their flow in time
assumed in this work, for a better understanding of the moment in which the
decisions are made. The variable fht (from equation (2-7), fht = ht−1 (pt − ft−1))
is the financial impact of the derivative (it is worth noting that the model
assumes the use of forward contracts with maturity equal to 1 stage). It can
be observed that the decisions made in t are made immediately before t, that
is, the consequences of these decisions impact the period t+ 1.

Figure 4.1: Dynamics of payments and receipts flows over period t.

As can be seen from equation (4-1), the variable ht was inserted to
represent the number of derivative contracts that were traded by the company
at t. This cash flow (fht ), received or lost, contributes to increase or reduce the
cash at the end of stage t and must be summed up on original cash balance
equation (3-5), resulting in equation (4-4). The costs with asset sales and share
issuing are represented in the equations (4-5) and (4-6), respectively. Equation
(4-7) refers to the updated asset given a certain invested amount (see section
(3.3)).

The cash flow from derivatives also impacts the corporate taxable income
(ot) calculation, so equation (3-24) must also be changed, resulting in equation
(4-8). The taxes are presented in the equation (4-9).

4.2
Debt and Operational Generation Changes

In this work, the uncertain variable pt denote the price of a commodity
which is a Markovian stochastic process characterized by: (i) a transition
probability matrix; (ii) given each Markov state, we estimate a different
conditional probability distribution for the commodity price (see details in the
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section 4.4). Given this assumption, changes to some parameters of the base
model are required. First, a company’s operating inflow is directly related to
the prices of products sold. As the price is a random variable, it is not possible
to know for sure how much the company will generate in the next stage. This
is an issue for calculating interest to be paid at the forward stage when raising
a debt at t. Our modeling choice is to use the expected amount of operation
inflow to calculate the interest payable on a debt. This solution is in line with
market practices, as rating agencies, as well as financial institutions, project
the company’s financial condition so that it is possible to assess the rating or
viability of a loan.

Thus, for better representation of the equations that define debt raising
in the model, an additional change in constraint (3-15), which defines the value
allocated at each risk level, is required. The new constraint is:

st,n ≤ E [gt (at−1, p̃t) |Kt] ln, ∀n = 1, . . . , (NR − 1) . (4-21)

Note again that in equation (4-21) the limits of each portion of the debt
(st,n), which will be associated with increasing interest rates, are proportional
to the operational generation. That means companies with greater productive
capacity can raise larger amounts of debt with lower interest rates, which is
also in line with market practices.

Choosing the uncertain variable as price will also impact the equations
drawn from Hennessy &Whited [19]’s paper. Since they defined their uncertain
variable (zt, see section 3.5) as a profit shock, it is necessary to define what
will be the shock to our problem, so:

zt = pt
p
, (4-22)

where p is the unconditional expected value of prices.
As seen in section 3.4, the correct value to be paid for the debt (principal

plus interest) can be obtained in the form of a linear optimization problem.
This optimization problem is a minimization, so the amount to be paid of
debt (qt) is the minimum possible. The equation (4-4) shows the lower value
for qt implies a higher value for et, whose objective is to be maximized. So we
can conclude the two optimization problems ((3-11) value to be paid for debt
and (4-1) dividends to shareholders) have similar objectives. Therefore, the
optimization problem of the variable qt can be inserted into the optimization
problem of dividends to shareholders, becoming constraints of the model,
which are presented in equations (4-10), (4-11) and (4-12). To complete the
constraints on debt acquisition, the definition of the amount paid in interest
(ut), presented in section 3.4, is in constraint (4-13).
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With a similar analysis of the debt optimization problem, it is concluded
that the optimization problem that defines the operational generation function
(equation (3-23)) can also be added to the original problem. As it is a
problem of maximization, the increase of the auxiliary variable yt, increases
the operational generation gt, which in turn, through equation (4-4), implies in
increasing the amount paid in dividends. That is, the two problems also have
similar objectives. So we have added the two constraints (4-14) and (4-15).

4.3
Derivatives and dividend constraints

Besides the constraints already described above and detailed throughout
the last sections, the final model has four additional constraints ((4-16)
- (4-19)). These constraints were necessary for operational reasons of the
optimization model simulation. Without them, the results obtained were
extremely abnormal (for example, all variables were null up to stage T − 2,
from which very high debts are raised for the payment of dividends in T − 1)
or even obtaining unbounded models. Regardless of optimization issues, the
payment of dividends could be made with resources from various sources that
the model provides (debt, sale of assets or gains on derivatives), however, the
market generally tends to criticize companies that, for example, raise debt for
the sole purpose of maintaining their dividend payout level. Thus, we limit the
payment of dividends to the company’s ability to generate profits from their
production, as represented in the equation (4-16).

As we are working with a commodity producer, the number of derivative
contracts sold will be limited to to 100% of the quantity produced (ηt),
that is, the company will be able to protect its entire exposure, depending
on its hedging strategy. As for the long position in the contracts, this will
also be limited to the company’s total production. Strictly speaking, as we
are allowing speculative strategies, it would not be necessary to impose the
limits established for the number of contracts (note that even for a production
company that sells forward contracts, if the number sold exceeds the total
produced, this operation is also speculative). However, as explained in the
previous paragraph for the constraint in the payment of dividends, not defining
any limitation for derivatives trading implies abnormal results, with a very
difficult interpretation. Therefore, the constraints (4-17) and (4-18) were
added.

To calculate the quantity produced, we used a widely known ratio in the
financial market, named as EBITDA margin (θ, defined as EBITDA divided by
revenue). With our work assumptions, this ratio is equal to gt/ptηt. Using the

DBD
PUC-Rio - Certificação Digital Nº 1712636/CA



Chapter 4. Proposed Model 35

equation (4-15), the produced quantity it is represented by the equation (4-19).
According to information provided by Damodaran [11], for oil companies, this
ratio has an average value equal to 25%.

4.4
A Hidden Markov Model for commodity price process

In this section, we will present the basic concept of the technique known
as Hidden Markov Model (HMM), which allows the parameters of a Markov
chain to be calculated from a time series. Despite the use of HMM, in this case,
the chain will not be exactly hidden due to the computational complexity of
this approach. Thus, HMM serves as a tool for calculating chain parameters.

The HMM method is widely used when one has a time series. The
basic structure of the HMM has two random variables (K and ξ). Let
K1, K2, . . . , Kn ∈ K = {1, . . . , Ns}, called hidden variables that follow a
Markov process, and ξ1, ξ2, . . . , ξn ∈ Ξ, where Ξ could be a set of discrete,
continuous or n-dimension variables, which are the observable variables. These
random variables are related through the graphical model presented in Figure
4.2, known as trellis diagram.

Figure 4.2: Graphic representation of Hidden Markov Model.

It is important to note that the observation of the diagram leads us to
conclude that K2 does not depend on ξ1, only on K1. The mathematical model
that represents the diagram of Figure 4.2 is given by the joint distribution
equation below:

P (ξ1, . . . , ξn, K1, . . . , Kn) = P (K1)P (ξ1|K1)
n∏
t=2

P (Kt|Kt−1)P (ξt|Kt) , (4-23)

where P represents the probability density function of a random variable.
From equation (4-23) it is possible to observe the parameters that

define the HMM: the transition probability Pj|k = P (Kt = k|Kt−1 = j) and
the density functions P (ξt|Kt) of the uncertainty variable. The transition
probability Pj|k = P (Kt = k|Kt−1 = j) is defined for all j, k ∈ K and can be
represented by a matrix Ns × Ns, called the transition matrix. One highlight
of the transition matrix is that the sum of the elements of its rows must equal
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1 and there can be no negative elements. The density functions P (ξt|Kt),
known as emission probabilities, are the distribution of the uncertain variable
conditioned to the state of the Markov chain. P (K1) is the initial distribution.

Note that, from equation (4-23), it is possible to simulate new realiza-
tions for the random variables K and ξ that describe the process observed
throughout ξ series. However, it is necessary to establish the correct values of
the parameters described in the previous paragraph. In practice, such parame-
ters are defined previously (for example, using a Gaussian distribution for the
probabilities of emission, in case the observed data are real numbers) and then
an estimation algorithm is applied to make the best fit to the observed data.
Among these, one of the most known is the Baum-Welch’s algorithm [4], which
can be seen as an expectation-maximization algorithm applied to HMM.

4.4.1
Commodity Pricing

Our case study in Section 5, the uncertainty (ξt) is associated with
the Brent oil price (pt). In the literature, many papers are dedicated to the
development of the best model to represent commodity prices, among which
stand out the random walk and the mean reversion process. The purpose
of this dissertation is not to discuss the price models. This, it is assumed
that commodity price follows a mean reversion process, as in Schwartz [29]
(considering constant convenience yield) and Schwartz & Smith [30] (short
term).

For computational tractability, the price follows a Markov chained pro-
cess of discrete states K, in which the probability distribution of pt+1 given
the state of Markov Kt at t does not depend on the past prices pt, . . . , p1, only
the state Kt. Thus, we are following the concept of Hidden Markov Models as
explained in section 4.4. A similar approach was used by Valladão et al. [35],
but applied to an optimal portfolio allocation problem.

Given a state, there is a probability distribution for the price, unlike what
was assumed in item 2.3, where the uncertain variable has only a single value
for each state. Besides, the probability distribution of pt and pt+1, conditioned
to the same state j, are identical. That is, the distributions depend only on
the Markov state and do not vary over time.

Figure 4.3 shows the transition probability between the different states of
the Markov chain (Kr, Ks, Kg ∈ K). It stands out that the probability values
do not vary over time. In the present model, these states can be interpreted as
scenarios of the financial market (recession, stability or growth, for instance).
There is no temporal relationship for the probabilities, which means that these
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Figure 4.3: Transition probability between states of the Markov chain.

are constants for any stage t. In the figure, P (pt|Kt = j) corresponds to the
probability distribution of the price pt conditioned to each state j. Besides that,
consider that the notation Pk|j, where j, k ∈ K, represents the probability that
the Markov state in the next stage Kt+1 is equal to k, since the current state
(Kt) is j.
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5
Case Study

Considering the model described in the previous section, a case study
is presented, based on an application example of a company focused on oil
exploration, that is, it does not refine its oil, being necessary to sell it in
the market at international prices. The essential parameters for the model
simulation will be presented throughout the chapter, highlighting the cost of
raising debt and the selling price of crude oil, which was assumed to be the
Brent oil.

The first discussion of the results addresses a view of the value added
by using derivatives, comparing cases with and without available derivative
instruments. In the following section, the optimal derivative management
policy will be studied in detail to identify the variables that most contribute
to the results of buy/sell forward instruments.

5.1
HMM estimation for Oil prices

As mentioned in section 4.4.1, the commodity price will be simulated
using HMM. Even though a very long data history is available, the latest
information better reflects the trading characteristics of this commodity,
especially regarding the liquidity of the operations. In fact, one of the factors
that contributed to the increase in liquidity was the consolidation of derivative
instruments in the last 20 years, which allow almost all the agents inserted in
the global financial market to trade oil. The oldest price information reflects
transactions carried out only among oil companies. In addition, as the data are
in nominal value, the monetary update of these values, which is not a trivial
task, would have very relevant impacts on the oldest data and can be neglected
for the most recent ones. Thus, the history of the last 20 years of Brent crude
oil prices was considered (the chart on the left side of Figure 5.1).

With the HMM algorithm, it is possible to obtain the transition proba-
bilities between the states and the probability distributions of the prices condi-
tioned to each state. In this case study, we assume the presence of three states
(recession, stability, and growth), as in the example of Figure 4.3. Since the
series is a price sample, it is convenient to analyze the logarithm of prices to
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Figure 5.1: Historical monthly brent prices series.

avoid negative prices (the chart on the right side of Figure 5.1).
The series used presents monthly frequency and the present study is

based on an annual analysis. With a 20-year history, the available series has
only 20 annual price data, which is insufficient for the proper application
of HMM in the estimation of Markov chain parameters. However, we have
240 monthly price data. Therefore, first, we carry out the monthly data
forecasting with 12000 points, using the HMM. From this newly estimated
series, we sampled every 12 months, obtaining 1000 points from a synthetic
annual series. This synthetic series was used as a basis to obtain, using the
HMM, the necessary Markov chain parameters. The result is presented by
equations (5-1) and (5-2) which show the transition matrix between states and
parameters of the conditioned distributions, respectively. A histogram of the
prices distributions conditioned to each Markov state is shown in Figure 5.2.
Two examples (simulation 01 and 02) of a Markov chain scenario for the period
of 60 years is presented in Figure 5.3, in this graph, beyond average, there are
the percentiles 10%, 25%, 75% and 90%, of the Brent series.


Pr|r Pr|s Pr|g

Ps|r Ps|s Ps|g

Pg|r Pg|s Pg|g

 =


0.63 0.34 0.03
0.12 0.72 0.16
0.02 0.25 0.73

 , (5-1)

P (log(pt)|Kt = r) ∼ N (µ = 3.34 , σ = 0.18)

P (log(pt)|Kt = s) ∼ N (µ = 4.02 , σ = 0.17)

P (log(pt)|Kt = g) ∼ N (µ = 4.55 , σ = 0.13) .

(5-2)

Instead of performing the procedure described above, we could simply
have analyzed the annual historical series, but since we are considering only
20 years from the past, the series would have only 20 sample points, being
insufficient for the analysis.
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Figure 5.2: Histogram of the prices distributions conditioned to Markov states.

Figure 5.3: Examples of a Markov chain scenario.

5.2
Debt cost estimates

To complete the correspondence between risk and the effective debt cost,
the data provided by Damodaran [11] will be applied. The data map S&P’s
rating of debt securities issued by companies and the average spread over the
US government bond rates for the same maturity.

Note that the table presents six “risk classes” (rating column), which
corresponds to the value of the variable NR in the equations introduced in
item 3.4. The table describes the spread over the risk-free rate.

At first stage, the company has no operational generation, assets, cash or
equity. Therefore, to ensure that there is no debt too, there is a restriction that
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Rating Average
(D/EBITDA) spread

AAA/AA < 1.5 0.7%
A < 2.0 1.1%

BBB < 3.0 1.6%
BB < 4.0 3.0%
B < 5.0 4.5%

Default ≥ 5.0 15.0%

Table 5.1: Relation among spread, leverage e rating.

its cost of funding in the first moment is quite high. The idea of “forbidding”
debts at the first stage comes from the observation of companies known as
start-ups, which first seek investors before issuing debts. The restriction could
even be explicitly written in the model, but, a high cost of funding has the
same result. Thus, for t = 1, κn = 15%, ∀n = 1, 2, . . . , NR.

5.2.1
Basic Parameters

In order to be possible the simulation of the model, it is necessary to
define the parameters below:

Parameter Symbol Value
Risk free rate rf 2.5% p.a.
Tax rate τ 30%
Depreciation rate δ 14.5% p.a.
EBITDA margin θ 25%
Initial cash c0 0.0
Initial asset a0 0.0
Initial debt d0 0.0
Total stages T 60

Table 5.2: Basic parameter values.

The percentage costs, associated with the sale of assets and issuance of
shares, are the same as in Waga [36] (κi = 25% and κe = 5%) and, for the
operational generation function (as in equation (3-19)), the same parameter of
the Hennessy & Whited’s work [19] is used, so γ = 0.689.

For the function approximation (as in equation (3-23)), seventeen tan-
gency points (NL = 17) were chosen, ϑn =[0.01, 1.0, 1.5, 2, 3, 5, 10, 15, 20, 30,
40, 50, 60, 100, 150, 200, 500].

The non-conditional average price p is calculated from the price samples
made for all states, without taking into account the transition matrix (5-1).
As a result, we find p = 60.6 (constant for all stages).
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As for the states of the Markov chain, the SDDP algorithm (Dowson &
Kapelevich [14]) allows choosing the state of the first stage that will be kept
constant in all scenarios of the Markov chain. For the case study, we define
that the first stage is the recession state.

In the case study, each stage represents 1 year, so the forward contract
has a maturity equal to 1 year, with no possibility of contracts with shorter
terms.

5.3
Results

For the case study, several experiments were simulated which will be
explained along the following sections. For each case, 5,000 iterations of the
SDDP algorithm (Dowson & Kapelevich [14]) were run, with a maximum exe-
cution time limit of 24 hours. For cases without using a derivative instrument,
the 5,000 iterations were reached after about 12 hours of simulation. For cases
with derivative, after 24 hours, they reached about 4,000 iterations of the al-
gorithm. The computer used was an Intel Core i7 1.8 GHz, 16 Gb RAM. From
the optimal policy calculated by the algorithm, 1,000 Markov chain scenarios
were simulated for observation and analysis of the results.

In all graphs displayed in this section, the last 10 stages are not being
displayed, so as not to contaminate the analysis with possible end-effects.

5.3.1
Value of derivative management

Throughout the introduction, we have seen that many works in the
literature are dedicated to studying if the use of derivative instruments can
increase the value of a company. In this section, we will present the results
focusing on the increase in value provided by the use of derivatives. It is worth
remembering that in this study, the value of the company is measured by the
sum of the dividends paid to shareholders, adjusted for risk. The optimal value
of the objective function occurs when the lower and upper bounds are equal
(given some margin of tolerance). However, the lower bound is statistical (see
Appendix A), so for the purpose of displaying results, the upper bound will be
used as the company’s value.

To analyze the company’s value increase, the model was simulated with
and without the possibility of contracting derivatives, each one evaluated under
three different levels of risk aversion (λ = 0.00, 0.50 and 0.99, see equation
(3-4)). The results are presented in Table 5.3.
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Risk
Aversion

(λ)

Value
with

derivatives ($)

Value
without

derivatives ($)

Value
increasing

(%)
0.00 716.33 155.15 361%
0.50 145.94 23.68 516%
0.99 8.94 4.48 99%

Table 5.3: Value increasing by the use of derivatives.

Simulations performed with different levels of risk aversion have distinct
objective functions (see equations (3-4) and (4-1)). Therefore a more appro-
priate analysis of Table 5.3 is to compare the differences between the columns
(with and without derivatives) along the same row. Thus, it can be observed
that there is a significant difference in the simulations in which derivative in-
struments were available for use, with an increase in company value in all cases,
reaching 516% for λ = 0.50.

A closer look at the table allows us to infer two possible interpretations for
its reading. A manager with a certain risk aversion (observe a line in the table)
concludes that using derivatives instruments increases shareholder value. On
the other hand, when considering two managers with different risk aversions,
i.e., same column and different lines in the table, they see that the company
has different risk-adjusted values.

In addition to the value measured by the upper bound of the objective
functions presented in Table 5.3, the value obtained by using derivatives can be
observed by analyzing the main decision variables of the optimization model.
Thus, to better analyze the decisions of the model and their impacts on the
company’s value, the following will be presented some area charts, in which the
regions comprising the interval between the 10% and 90% percentiles of the
simulations (lighter region), as well as the interval between the 25% and 75%
percentiles will be displayed (darker region), in addition to the 50% percentile
(continuous line) and expected value (dashed line).

The graphs in Figures 5.4 and 5.5 have the same risk aversion (λ = 0.5)
but differ by the use of derivatives, in the first figure the use is allowed, in
the second, the instrument is not available. The graphs show the decisions for
the following variables: assets, debts raised, dividends paid and hedge ratio.
The latter is equal to the quantity of acquired derivative contracts divided by
the entire production of the company (see equation (4-19)). As explained in
section 2.2, the company may assume the short or long position in derivative
contracts.

In addition to the value comparison presented in Table 5.3, which can also
be seen by the higher dividend amounts paid in the company that uses forward

DBD
PUC-Rio - Certificação Digital Nº 1712636/CA



Chapter 5. Case Study 44

Figure 5.4: Percentiles graphs of asset, debt, dividend and derivatives contracts.
Case with derivatives available and λ = 0.5.

Figure 5.5: Percentiles graphs of asset, debt, dividend and derivatives contracts.
Case with no derivative available and λ = 0.5.

contracts (Figure 5.4), one can observe the significant effect that derivative
instruments have on other decision variables of model. The company that
uses derivative contracts has a size, measured by the amount of assets, much
larger than the company represented in Figure 5.5. Even the curve P10 of the
company that uses forward contracts is larger than the P90 of the company
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that does not have access to this instrument. Another variable that stands
out in the order of magnitude is debt. The company that uses derivatives
has more assets, which leads to higher production and, consequently, higher
operational generation (EBITDA), so it is able to acquire more debt without
paying excessive interest, taking advantage of the tax shield described in item
2.1.

Observing the graphs in Figure 5.4, one can also conclude interesting
points of the optimal policies for the main variables. In general, the percentile
and average curves show stable behavior, suggesting that convergence was
obtained in the calculation of the optimal policy. Assets grow steadily until
stage 10, from which the stabilization movement begins, resulting in a company
whose size ranges from approximately 75 to 220 ($ million). This growth and
stabilization of the asset implies similar debt behavior, as the size of the asset
directly influences the operational generation (item 3.5), which in turn impacts
the interest to be paid for the debt raised (section 3.4). Another important
point to note from the debt chart is that, in all policy simulations, first-stage
debt is zero due to the high initial interest rate (as detailed in item 5.2).

A direct consequence of the debt analysis made in the previous paragraph
is represented in the dividend chart. In all simulations, the dividend in the first
stage is negative (issuance of shares) as it is the cheapest way to obtain funds at
this time. Also, there is usually no dividend payment until stage 5, indicating
that the firm first grows to a point beyond which it is sufficient to begin
distributing the earnings. This behavior is in line with a general corporate
in the market. Once the payment of dividends to the shareholder begins, it
presents a steady small growth and there are no negative values after the
initial investor contribution.

Regarding the derivatives management policy, it is observed that, in most
simulations, the decision was to sell the forward contract (negative values in
the chart, short position). As seen in section 2.2, the seller of this type of
contract benefits from the price fall in the stage ahead. In the next section,
it will be possible to identify that the average is not good for derivatives
management policy analysis. This analysis is more appropriate when looking
at each simulated scenario instead of all the scenarios together.

5.3.2
Derivatives management policy

Given the model developed in chapter 4 and the parameters defined at
the beginning of chapter 5, the purpose of this section is to study in detail
the optimal policy to “translate” the policy into some simple guidelines, i.e.,
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identify which variables or relationships among them most influence the policy,
making it easy to understand and apply.

The method used to carefully study how the variables influence or not the
optimal policy was to evaluate the number of derivatives traded for different
realizations of the studied variable, keeping the other variables constant, thus
isolating the effect of each variable of the problem in the optimal decision for
derivatives.

The analysis is focused on the model in which forward contracts are
available for purchase or sale and the risk aversion level is equal to 0.5. It stands
out that, for the variables that will remain constant during the analyzes, the
chosen values are always equal to their respective values in the 50% percentiles
(P50) of the simulations. Also, it was decided to study the policy at stage 30,
as it was considered that, at this intermediate stage, the policy is stabilized,
without suffering the differential effects of the early and late stages.

The first variable used to analyze the optimal policy was the exoge-
nous variable that represents the price of the product (pt). With this initial
assessment, it is possible to identify the fundamental characteristics of the op-
timal policy, the graph in Figure 5.6 presents the results. To construct this
graph, keeping all other variables constant, prices at stage 30 (x-axis) were
varied, observing the results that the optimal policy provided for the number
of derivatives traded (y-axis), which was measured as the number of contracts
bought (positive values) or sold (negative values).

Figure 5.6: Influence of price changes in number of contracts traded.

Observing Figure 5.6, it can be seen that the recession state has mostly
(approximately 82%) a positive number of derivatives (long position), which
means that the company would benefit from a price increase at the forward
stage. This behavior is very consistent with the price dynamics that were
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introduced in the model (section 5.1), because the recession state is the one
with the lowest price realizations, so it is expected that a higher probability of
price increase to the next stage. In particular, when price values are very low
(below about 28 $), the derivatives management policy is very well established,
buying as many contracts as possible (around 2 million). In terms of hedge
ratio, this means that the amount purchased from the derivative instrument
equals all the amount that will be produced at the current stage, i.e., the
hedge ratio is equal to 100%. As there is a price increase (greater than 28
$), the company will buy fewer contracts until it starts selling contracts as it
begins to protect itself for events where the price may fall.

For the stability state, the interpretation is similar to the recession state,
but contract buying occurs only for very low price realizations for this state.
Remember that for each state there is a different probability distribution of
prices, so a high price in one state may not be a high price for a different
state. From a slight price increase, still in the stability state, the company is
already beginning to position itself for a fall in prices, increasingly protecting
a larger portion of production (increasingly negative hedge ratio), until it
protects all the amount produced. For the growth state, which has the highest
price realizations, the number of derivatives traded is practically all negative,
protecting 100% of the company’s production for a possible price drop in the
next stage.

In the previous paragraphs, the analysis was divided for each state to
make the explanation easier. However, note that while price has a major
influence on derivatives management policy, the state is also important. For
example, assume the price is 40 $. In this case, looking at Figure 5.6, it can be
concluded that the number of contracts can be very negative if the present state
is the recession or slightly negative if the state is the stability. This is mainly
due to the transition matrix (5-1) and state-conditioned price distributions
(5-2). If the recession state is in effect, the transition matrix reports that is
likely to remain in that state in the next stage, but for the recession state,
a price in the 40 $ range is already a high price, i.e., the state is likely to
continue and the next price realization will be lower than the current one, so
the policy indicates the sale of the derivative, so that the company benefits
from the likely drop in price. Considering that the stability state is in effect,
despite the likelihood that it will remain is high, in this state price realizations
are similarly distributed between values greater or less than 40 $, guiding to,
approximately, no use of derivatives because the price may rise or fall with
similar probability.

As seen, the price, as expected, has a very high influence on the number
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of forward contracts traded by the company. However, one should investigate
whether other variables interfere the optimal decision. The following discussion
goes further in assessing the impact that asset has on the derivatives manage-
ment. For other decision variables present in the model, no direct influence on
the optimal derivatives management policy was identified. Given such impact
of state and price, the analysis will be segmented into states and observed at
different price levels for a more complete interpretation of the policy.

Figure 5.7: Derivatives management policy analysis for asset variations. Reces-
sion state.

Observing firstly the recession state, and remembering that the other
variables in the model were kept constant in each analysis, Figure 5.7 shows
the assessment of the asset variable. Each curve of the graph represents a
test for each different price realization within the recession state, whose values
presented in the legend.

For the price of 27.6 $, the policy is very clear, increasing the amount of
assets, the number of contracts to be bought increases in the same proportion.
However, the line is not straight (remember that the quantity produced is not
a linear function of the asset, see equations (3-19) and (4-19)). Besides the
number of derivative contracts traded is limited by production, see constraints
(4-18) and (4-17)), for all points of this curve, the hedge ratio value is
exactly equal to 100%, that is, derivatives are bought in the same company’s
production quantity. It was also found that for all recession state prices lower
than 27.6 $ exhibit precisely the same behavior, corroborating the conclusion
reached by analyzing Figure 5.6, in which, for prices less than approximately 28
$, the hedge ratio was constant (in fact in Figure 5.6 the number of derivatives
contracts traded was constant, but, as the asset was kept constant, the hedge
ratio is constant too).

DBD
PUC-Rio - Certificação Digital Nº 1712636/CA



Chapter 5. Case Study 49

An additional point of attention is to compare the contracted amount
by observing Figures 5.6 and 5.7. As already informed, Figure 5.6 was built
keeping the variables equal to their values in P50, for the asset, representing
something close to 140 $ million. In Figure 5.7, for asset equal to 140 $ million,
the quantity of contracts purchased is equal to 2 million, exactly the same value
found in Figure 5.6. The curves shown in Figure 5.7 are just a few samples of
the recession state prices. Generally, the behavior displayed by these samples
holds for all realizations of this state, i.e. from lowest to highest price, the
derivatives management policy starts from positive values (long position) to
negative values (short position), with curve shapes following the same pattern
seen in the chart.

Figure 5.8: Derivatives management policy analysis for asset variations. Sta-
bility state.

Analyzing the derivatives management policy for the stability state, pre-
sented in Figure 5.8, again it is possible to confirm the behavior observed in
Figure 5.6, in the lowest price range of stability state, the company buys the
derivatives, selling them as prices rise in the samples chosen. Nevertheless,
there is an interesting behavior of the relationship between derivatives man-
agement policy and quantity of assets for the stability state. See the curve
representing the price of 55.4 $ (green line), as the assets increase, the number
of contracts sold also increases as the company is seeking protection for 100%
of its production. However, from a certain point (asset greater than approxi-
mately 110 $ million), the green line no longer follows the curve representing
protecting 100% of production (yellow line), resulting in a declining modulus
hedge ratio. Despite increasing the number of contracts, the proportion to the
quantity produced is reduced. One possible interpretation is that the company
has reached sufficient size (asset) being no longer necessary to protect 100% of
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its production and, as the company increases, the proportion of production to
be protected becomes smaller and smaller. Also, this trigger, from which the
hedge ratio becomes higher than -100%, is different for each price level.

From Figure 5.8 it is possible to draw one more important conclusion
about the derivatives management policy for the stability state. For the
lowest price realizations in this state, the policy guides the purchase of all
available derivatives (see the curve representing price 35.7 $ in the graph).
However, as the price increases, contrary to what we saw in the recession state,
the company does not gradually reduce the number of contracts purchased,
there is a discontinuity. For a price realization greater than about 42 $, the
company stops buying all available derivatives and starts trading nothing.
After this trigger, as the price increases, the company begins to sell more
and more contracts, with a roughly continuous relationship between price,
assets, and quantity of contracts sold. In short, for the stability state lowest
price realizations, the policy recommends buying the full amount of derivatives
available, betting on price increases. From a certain price level, the policy
guides to follow the complex relationships between price and asset described
in the previous paragraph. This behavior can be confirmed in Figure 5.6. There
is a sharp change between buying about 2 million contracts, for prices below
40 $, and selling about 0.5 million contracts for prices slightly higher in the
stability state (blue dots).

Figure 5.9: Derivatives management policy analysis for asset variations. Growth
state.

Finally, for the growth state, shown in Figure 5.9, the conclusion obtained
from Figure 5.6 is maintained. Only for a single state price realization, the
policy offers a hedge ratio different from 100%. For the price equals to 67 $,
full protection is no longer required for assets greater than approximately 70 $
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million, which is similar to the behavior described in the previous paragraphs
when analyzing the stability state. For all other price realizations in growth
state, the derivatives management policy is always the same, forward contracts
are sold to obtain a hedge ratio of exactly -100%. As already mentioned,
this result is expected since the growth state has high price realizations, the
company seeks to ensure this high price level in the next stage, protecting all
its production.

As seen in section 5.3.1, the graph with percentiles of optimal policy
simulations is useful for getting some idea of model decisions, but it does
not clarify sufficiently the details of optimal policy. Continuing the analysis
performed with each decision variable separately, in order to identify possible
correlations between the derivatives management policy and the problem
decision variables, Figure 5.10 shows the results of the simulation of a specific
price scenario, with forward instruments available and risk-averse equal to 0.5.

Comparing the graphs of Figure 5.10 with the graphs in Figures 5.4 and
5.5, it is clear that some of the observations made are still valid here, such as
no debt and share emission in the first stage. However, the chart presenting
the decisions for derivatives shows that the derivatives management policy
should be evaluated in a single scenario instead of using statistics from a set
of scenarios.

By analyzing the chart containing the traded quantities of forward
contracts (Figure 5.10), the behavior discussed above can be confirmed. Until
stage 15, the hedge ratio assumes only two values +100% or -100%, indicating
that the company buys or sells enough contracts for the entire quantity
produced. The decision to buy or sell is influenced by the Markov states, buying
in the recession state and selling in the growth state. For the stability state, in
cases where the price is slightly higher the contract is sold, otherwise is bought.

Notice the period between states 15 and 25 approximately. The hedge
ratio fluctuates between low negative values and close to 50%. In this period,
the state is mostly the recession, which is reflected in the prices realized. As
pointed out in the comments on Figures 5.6 and 5.7, in the recession state the
company tends to buy contracts (positive values) and, from a certain price,
the hedge ratio decreases, including an inversion, in which the company sells
contracts. It is exactly this behavior that can be observed in the period between
stages 15 and 25. With this price range, the hedge ratio is between 50% and
values close to -10%.

For the interval between stages 25-32 and 43-50, approximately, the
predominant state is the growth and, as already noted, the hedge ratio is
exactly equal to -100%, as already concluded by Figures 5.6 and 5.8. However,
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Figure 5.10: Analysis of model variables for a single price scenario. Case with
derivatives.

note that in these two highlighted intervals, there are times when the state is
the stability and the hedge ratio is not equal to -100%. This stems from the
effect found in Figure 5.8, where for a quantity of assets above a certain value,
the hedge ratio is no longer equal to -100% and begins to gradually decrease
with increasing assets. Just to remember, this effect can best be seen by the
red and green curves in Figure 5.8.

In the period between stages 33 and 42, the states observed are recession
and stability. In turn, the hedge ratio fluctuates a lot, because of price
fluctuation higher than that seen between stages 16 and 24. As already pointed
out, these two states allow both long and short positions in forward contracts.

In addition to the analysis of the derivatives management policy, some
points of the model’s decision variables can be highlighted. After the acqui-
sition of debt in the early stages, intended to finance the initial investment
in the company, the debt grows significantly around stage 10. This growth is
coincident to third state achieved. In this state the prices are very high, the
company takes advantage to ensure a great selling price for its product in the
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following stage (short position in forward contracts), as well as invests heavily
in its asset. As soon as the price state does not hold, around stage 15, the
company identifies the change in the price context and stops investing, letting
its asset depreciate (notice how the asset fall follows approximately an expo-
nential, due to the annual rate depreciation of 14.5%). Profits in this period
are then distributed to their shareholders through dividends. This dynamic
among the variables, except for some slight variations, is repeated over the
entire period presented.
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6
Conclusion

The purpose of this dissertation is to asses the value of derivatives man-
agement policies for risk-averse shareholders of a commodity-producing com-
pany. To this end, we use Waga [36]’s capital structure model as a basis and
include the possibility of using forward contracts, in addition to other modifica-
tions, as the uncertainty variable modeling. Some constraints were added to the
original model to obtain a viable solution with interpretable results, keeping the
model computationally tractable. With this, we obtain a computational tool to
simulate policies, applying Stochastic Dual Dynamic Programming (SDDP),
for a better understanding of the interplay of derivatives management with
investment, funding, and dividends in a commodity company.

We simulated the model in a case study for an oil company, for which
we adopted Brent as a price reference. From historical data with the last 20
years of Brent prices, we made a price projection using the Hidden Markov
Model (HMM) method, assuming three Markov states. The results show that
derivative contracts, traded following an optimal policy, can add value to the
shareholder, by increasing the dividends to be distributed to the company’s
partners. In all risk aversion cases studied, it can be identified that the use
of derivatives instruments increases the value of the company substantially
(up to 500% increase). Moreover, the difference in scale when analyzing other
variables of the problem, such as assets and debt, also allows us to identify
that companies that can contract forward instruments have a larger size.

In addition to assessing the company’s value, it was possible to identify
some guidelines for the optimal derivatives management, i.e., which would
be simple drivers that companies could follow to achieve the same results,
translating the policy algorithm into simple statements. This analysis showed
that prices have a major influence on derivatives management policy, which
in turn is greatly influenced by the Markov states. For the growth state, the
hedge ratio was found to be equal to -100% for all price realizations except
for the lowest in this state. For the recession state, the hedge ratio is 100%
up to a certain price, from which the price increase produces a reduction in
the hedge ratio and may even be negative. For the stability state, the hedge
ratio ranges from 100% to -100%, but for a range of price realizations, for
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asset values greater than a certain value, the amount of asset is already high
enough to no longer hedging the entire amount produced, causing the hedge
ratio, starting at -100%, to rise progressively as the asset increases.

In this work, we note the importance of derivatives management being
made in conjunction with the financing, investment, and dividend payment de-
cisions. Some oil companies have already identified the value that a derivatives
management policy can add to their stakeholders, such as Petrobras, Pemex
and some smaller companies in the United States. However, this assessment
is usually done with models that are still very simplified (spreadsheet-based),
so we highlight the importance of developing more sophisticated models for
better assessment of the value of derivatives management in companies.

As an expansion of this work, we propose to insert other derivative
contracts, such as options, to provide more flexibility for the optimal derivatives
management policy. Besides, real market contracts may be used for pricing
forward derivatives, even conditioning future oil prices to the defined Markov
states. It is also possible to increase the number of constraints on the model
so that the results are more in line with reality, for example by reducing
volatility in dividend payments that are not well-liked by shareholders, as well
as inserting long-term investment commitments.
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A
Stochastic Programming

The vast majority of real-world problems have uncertainty about their
parameters, meaning that their objective function or constraints are not
deterministic, with one or more random variables. Stochastic programming
is a dynamic programming approach to solving problems that present such
behavior.

Dynamic programming is an optimization technique applied to problems
that have a recursive structure and require sequential decisions. Its purpose
is to subdivide complex problems into smaller problems, called subproblems.
Solutions to subproblems that have already been solved help in calculating the
remaining subproblems. For the application of this technique, the problems, in
general, present the following elements:

– Stage: Defines the number of subproblems to solve;

– State variables: are the variables that carry information from one stage
to the next;

– Decision variables: represent the decision made at each stage;

– Exogenous information: data external to the problem that influences
decisions;

– Transition Function: Function that describes how state and exogenous
variables influence the forward stage;

– Objective function: a function that describes the problem’s objective.

The mathematical equation of a two-stage problem, which aims to
minimize cost, with the factors detailed above and recursive structure, is:

min
x

c>x+ E [Q (x, ξ)]

s.t. Ax = b

x ≥ 0.

(A-1)

The first stage problem is represented by equation (A-1). The second
stage problem, which is being evaluated by the expected value, is represented
by the Q function, defined below.
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Q (x, ξ) = min
y

q>y

s.t. T (ξ)x+W (ξ) y = h (ξ)

y ≥ 0.

(A-2)

Explaining in detail each variable of the problem:

– x: decision variable from the first stage that carries information to the
second stage, is the state variable;

– c>: represents the immediate cost associated with the “x” decision;

– Q: is the second stage problem and represents the future cost, which
depends on the first stage decision;

– A e b: define first stage constraints;

– q>: immediate cost in the second stage;

– T : represents the transition function, i.e. how the decision of the first
stage will influence the second stage problem. It can be influenced by
exogenous information;

– W e h: complete the constraints of the second stage problem. It can be
influenced by exogenous information;

– ξ: variable containing exogenous information. It is the random variable
of the problem.

The first stage decision (variable x) occurs before the definition of
exogenous information (ξ), while the second stage decisions are made after
the disclosure of the information contained in ξ.

From the two-stage problem, the extension to multiple stages occurs
naturally. Adopting the extended form the objective function of the problem
would be:

min
x1∈χ1

Q1 (x1) + E1

 min
x2∈χ2(x1,ξ2)

Q2 (x2, ξ2) + E2

[
. . .

+ ET−1

[
min

xT∈χT(xT−1,ξT )
QT (xT , ξT )

]].
(A-3)

Where:
xt are the problem’s variable in each stage t;
Qt are the future cost functions in each stage t;
ξt represents the uncertainties of each stage t;
χt is the viable set of decisions.

Additionally, the equation (A-3) could be rewritten in a recursive way,
like the follow Bellman [6] equation:
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Qt (xt−1, ξt) = min
xt∈χt(xt−1,ξt)

ft (xt, ξt) + Et [Qt+1 (xt, ξt+1)] , (A-4)

where ft (xt, ξt) is a generic function of the variables at stage t.
The basic concept behind dynamic programming is recursive optimiza-

tion, in which the problem is solved from its last stage to its first stage. This
concept is defined by Bellman [6] in his optimality principle “for a given state
of the system, the optimal policy for the remaining states is independent of the
decision policy adopted in previous states.” In this principle, “policy” means
the set of decisions taken at each stage.

The expected value measure has been used to assess the cost of the
forward stages, however, there is also the possibility of applying some risk
metric as proposed by Shapiro [28]. Considering the risk measure defined in
(3-4), the equation of the multi-stage optimization problem can be changed:

Qt (xt−1, ξt) = min
xt∈χt(xt−1,ξt)

ft (xt, ξt) + ψt [Qt+1 (xt, ξt+1)] . (A-5)

Considering the stochastic nature of the problems faced in real life,
in addition to a large number of variables and stages, even with the use of
some decomposition method, such as L-shaped, causing the problem to grow
exponentially with the number of stages. The representation of the stochastic
optimization model through linear programming may generate a very large
problem (called the curse of dimensionality), which makes it impossible to
obtain a solution in practical applications, since there is a clear conflict
between the number of discrete samples (realizations) sufficient to satisfactorily
describe the entire probability space versus the algorithm execution time.
Therefore, to solve these problems efficiently, more appropriate methods such
as decomposition methods are needed.

Among the decomposition methods, there is the so-called Progressive
Hedging, which is decomposed in scenarios and known as Stochastic Dual
Dynamic Programming (SDDP), in which the decomposition is based on
stages. This dissertation used the SDDP method, because it is faster and has
been successfully applied to energy and finance problems. The main points of
the SDDP technique will be presented in the next section.

A.1
Stochastic Dual Dynamic Programming

The stochastic dual dynamic programming (SDDP) was proposed by
Pereira & Pinto [26], in an application to energy planning. According to the
authors, their algorithm seeks to solve the optimization problem by sampling
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various sequences of uncertain variable realizations, that is, several scenarios
are sampled. Another example of SDDP application is available in Shapiro et
al. [31]. Other methods based on sampling can also be studied in Donohue &
Birge [13] and Chen & Powell [10].

In this methodology, the “curse of dimensionality” is overcome by assum-
ing independence of the random variable between stages, i.e. the realization of
the variable at any stage “t” is independent of other stages’ realizations. Thus,
it is possible to separate the future cost function by stage.

To better explain the basic process on which the SDDP technique is
based, below is an example, applied to finance, of the algorithm executed to
obtain the optimal policy for a multi-stage optimization problem.

For this example, a very simplified model of a company’s cash flow will be
used. Cash at the end of the stage (ct) will be equal to cash from the previous
stage (ct−1), plus free cash flow at the end of the stage (ft) and subtracted
from the amount distributed to shareholders (et). In this two-stage problem,
in which it is desired to maximize the total shareholder return via dividends
over two periods, the company’s free cash flow is the uncertain variable, the
amount paid in dividends is the decision variable and the cash it is a state
variable since the decision made in the t stage depends on the cash value in
the t−1 stage, that is, it is the variable responsible for making the “connection”
between the stages.

In the first stage, the free cash flow is already defined (f1). For the second
stage, two equiprobable realizations (up; down) can occur, in which the cash
flow can be fu2 or fd2 . Figure A.1 schematically presents the two realizations.

Figure A.1: Representation of a two-stage problem with two realizations.

Considering that the objective is to maximize the expected value of
dividends distributed to shareholders, the optimization problem can be written
as shown below. It is worth remembering that this is still the linear problem
in its extended form, as yet Bellman’s formulation is not being used.
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max
et

[
e1 + 0, 5

(
eu2

1 + rf

)
+ 0, 5

(
ed2

1 + rf

)]
s.t. e1 + c1 = c0 + f1

eu2 + cu2 = c1 + fu2

ed2 + cd2 = c1 + fd2

c1, c
u
2 , c

d
2 ≥ 0.

(A-6)

Where:
rf is the risk-free rate;
c0 is the cash value in stage t = 0, defined as a known constant;
e1 is the optimal decision to be made in the first stage;
c1 is the cash value at the end of the first stage;
fu2 , f

d
2 are the possible occurrence realizations for free cash flow in the second

stage;
eu2 , e

d
2 are the optimal decisions to be made in the occurrence of each possible

realization for free cash flow in the second stage;
cu2 , c

d
2 are the resulting cash values at the end of the second stage, considering

each realization that occurred;
Realize that, given the first stage solution, the second stage problem,

assessed in the first stage, can be treated as:

max
et

[
0, 5

(
eu2

1 + rf

)
+ 0, 5

(
ed2

1 + rf

)]
s.t. eu2 + cu2 = c̃1 + fu2

ed2 + cd2 = c̃1 + fd2

cu2 , c
d
2 ≥ 0.

(A-7)

Where (c̃1) is the resulting cash value after deciding on the dividend to be
distributed in the first stage.

Note that the above problem can be subdivided into two independent
problems.

Up realization

ζ1 = max
et

[
0, 5

(
eu2

1 + rf

)]
s.t. eu2 + cu2 = c̃1 + fu2

cu2 ≥ 0

Down realization

ζ2 = max
et

[
0, 5

(
ed2

1 + rf

)]
s.t. ed2 + cd2 = c̃1 + fd2

cd2 ≥ 0

(A-8)

For the second stage problems (ζ1 and ζ2), the value of c̃1 is defined and
does not multiply any decision or state variables, so it was placed on the right
side of the equation. It is easy to notice that, depending on the value of c̃1,
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the problems will present different answers, so ζ1 and ζ2 can be interpreted as
functions whose dependent variable is the first stage decision. In this way, the
two-stage problem can be rewritten as:

max
et

[
e1 + ζ (c1)

]
s.t. e1 + c1 = c0 + f1

c1 ≥ 0

(A-9)

Where ζ (c1) = 0, 5ζ1 (c1) + 0, 5ζ2 (c1).
The ζ function is known as the “future cost function”. For this example,

which is about maximizing profits and not reducing costs, it can be considered
as a “future profit function”, that is, it represents the expected profit value,
obtained by the shareholder, in the stages ahead.

The determination of ζ could, for example, be done by calculating the
numerical derivative of ζ1 and ζ2. However, Pereira & Pinto [26] use the Benders
[7] decomposition, adapted to stochastic cases, to obtain the approximation of
the ζ function.

The algorithm proposed by Pereira & Pinto [26] is presented below.

1. Set an initial value for ζ. As this is a maximization problem, it can be a
very high value, that is, an upper limit for the profit of the next stages;

2. Solve the first stage problem by replacing ζ with its approximate value
ζ̂ (estimated in item 1).

max
e1

[
e1 + ζ̂ (c1)

]
s.t. e1 + c1 = c0 + f1

c1 ≥ 0;

(A-10)

3. According to Pereira & Pinto [26], it is possible to demonstrate that
a lower bound for the multi-stage optimization problem is given by
ẽ1 + ζ̂ (c̃1). Where ẽ1 and c̃1 are the solutions of the first stage problem
obtained in step 2;

4. Solve the next stage problem using the solution obtained in the previous
stage (similar to step 2). This step is called “forward simulation”. If the
analyzed problem had T stages, this procedure should be repeated for
t = 2, 3, . . . , T .

This step is not performed for all possible realizations of the forward
stages, because, depending on the number of stages and uncertain
variables, the number of scenarios would grow exponentially. Since this
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technique is based on sampling, one realization will be selected for each
stage, thus generating a scenario from which the decision variables of the
problem will be calculated. As this example has only two stages, it will
be performed only for one of the realizations of the second stage, whose
equations are given below, considering that the realization called up was
selected.

ζ1 = max
et

[
0, 5

(
eu2

1 + rf

)]
s.t. eu2 + cu2 = c̃1 + fu2

cu2 ≥ 0;

(A-11)

5. Let ẽu2 be the solution to the second stage problem obtained in step
4. Therefore a feasible solution was obtained, but not necessarily the
optimal one. This way you can calculate an upper bound for the multi-
stage problem.

In this example, there are only two realizations and two stages, however,
for bigger problems, the lower limit is reached by performing step 4
several times (sorting different realizations and, consequently, different
scenarios). With these various calculated solutions, it is possible to obtain
a distribution of the results for the problem, thus constituting a stochastic
upper bound;

6. Since the upper bound is stochastic, one must choose a metric to compare
it to the lower bound. The so-called conservative upper limit is generally
used, which is equal to the upper limit average minus one standard
deviation. Thus, if the difference between the conservative upper limit
and the lower limit is below a defined tolerance for the problem, then
convergence is reached and the algorithm is terminated. Otherwise,
proceed to the next step;

7. If convergence has not been achieved, a more accurate future cost
function approximation (ζ) is necessary. This method is called backward
recursion. If the problem analyzed has T stages, this step should be
repeated for t = T, T − 1, . . . , 2. Unlike step 4, this procedure should
be performed for all possible realizations of the stage immediately
ahead. At this point, the SDDP technique has its differential to others
in the literature. The approximation of the future cost function is
performed by adding Benders cuts to the previous stage problem, using
the (T, T − 1, . . . , 2) dual problem as a basis to obtain the necessary
parameters to the cut. In practice, problems of all stages will be solved
with one additional constraint (Benders cut). With each iteration of the

DBD
PUC-Rio - Certificação Digital Nº 1712636/CA



Appendix A. Stochastic Programming 67

algorithm, as long as the desired convergence is not reached, a further
constraint will be added. A more detailed explanation of the calculation
of Bender cuts is available in the next section.

A.2
Benders cuts in SDDP

This section speeds up the calculation of the Benders cut through the
dual problem that is necessary to step 7 of the procedure described in the
previous section. Continuing with the same example that was treated above,
which has only two stages, this step will be performed only for the second
stage.

To improve the approximation of the future cost function, you must
improve the approximation of the functions that represent the second stage
problem in each realization (ζ1 and ζ2). The procedure below is the same
for all realizations, therefore, will be presented only for the function ζ1 (see
equation (A-11)).

First, it is necessary to obtain the dual of the problem represented by ζ1.
The equations below describe the dual.

min
νu2

[(fu2 + c1) νu2 ]

s.t. νu2 = 0, 5
1 + rf

cu2 ≥ 0,

(A-12)

where νu2 is the dual variable.
Note that the restrictions now no longer depend on the first stage solution

(c1). Therefore, the viable region for this problem does not depend on c1, only
on the restrictions of the dual problem. As is known, the solution to a linear
optimization problem is found at the vertices of the viable region. For this
very simplified example, the restrictions define only a single point as a viable
region. However, for bigger problems, there would be a polyhedron defined
by a set of points that determine the vertices of the viable region. Just as a
way of presenting the complete procedure of the SDDP technique, suppose
that the viable region (Γ) was represented by the following set of n vertices:
Γ =

{
νu,12 ; νu,22 ; . . . ; νu,n2

}
. Once these points are identified, the dual problem

can be solved by finding the point that corresponds to the minimum value of
the objective function. Thus, the dual problem can be presented as follows:
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ζ1 = min
νu2

[(fu2 + c1) νu2 ]

= min
{

(fu2 + c1) νu,12 ; (fu2 + c1) νu,12 ; . . . ; (fu2 + c1) νu,n2

} (A-13)

Note that the same variable ζ1 was used as the previous problem, because,
by the principle of strong duality, the optimal solution of the dual and primal
problems are the same.

The problem of finding the minimum value among a list of values is
widely known in the literature and can be solved using the formulation below:

max
ε

ε

s.t. ε ≤ (fu2 + c1) νu,12

ε ≤ (fu2 + c1) νu,22

...

ε ≤ (fu2 + c1) νu,n2 .

(A-14)

Where ε is just an auxiliary variable.
The optimum point of the above problem, for each value of c1, is exactly

equal to the value of ζ1 (c1), that is, the value of the future cost function
measured at the solution point of the previous stage.

The set of restrictions above can still be described differently. Assume w1

is the value of the optimal solution of the second stage problem, considering
c̃1 as the first stage solution, so the value of w1 is:

w1 = (fu2 + c̃1) νu2 . (A-15)
Organizing the equation, you can write:

fu2 ν
u
2 = w1 − c̃1ν

u
2 (A-16)

Replacing the equation (A-16) in the restrictions in (A-14), these can be
written in general way as:

ε ≤ w1 + νu2 (c1 − c̃1) (A-17)
Below is Taylor’s serial expansion, up to first order, of the real function

ζ1, around the point c1 = c̃1.

ζ1 (c1) ≈ ζ1 (c̃1) +
(
∂ζ1

∂c1
| (c1 = c̃1)

)
(c1 − c̃1) (A-18)

Remembering that ε = ζ1 (c1) and that w1 = ζ1 (c̃1), by construction,
when comparing the two equations (A-17) and (A-18), it can be verified that
the variable of the dual problem (νu2 ) corresponds to the first derivative of the
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function ζ1, at the point c1 = c̃1.
Thus, it can be concluded that the restrictions of the above problem

are, in fact, an approximation of the future cost function through its tangent
lines. As the number of chosen tangency points increases, the accuracy of the
approach increases. Figure A.2 illustrates this concept in a geometric form.

Figure A.2: Approximation of the future cost function by tangent lines.

Thus it is concluded that the set of some of the above restrictions
(A-14) (which correspond, for example, to the lines r1, r2 and r3) form an
approximation to the function ζ1. Such a function would be completely known
if all restrictions were used, however, it is not necessary to describe the function
completely, only its approximation. Besides, in a problem that has a large
number of restrictions, some of them are likely inactive. Thus, one way to
increase the precision of the approximation of the ζ1 function is to add one
constraint at a time to the original problem. These restrictions are also known
as “Bender cuts”.

Just remember, the approximation calculation shown for ζ1 should also
be done for the function ζ2, which represents the future cost of the second
realization (down). If there were other realizations, they should all have their
functions approximated by the same method. To conclude the procedure, just
return to the problem of the previous stage (first in this case) and solve it
again, but with the addition of a constraint (Benders cut), to improve the
approximation of ζ, through its estimator ζ̂. The original problem would then
be:

max
e1

[
e1 + ζ̂

]
s.t. e1 + c1 = c0 + f1

ζ̂ ≤ w + ν2 (c1 + c̃1)

c1 ≥ 0.

(A-19)
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Where ν2 and w are the average coefficients obtained from the cuts made
for all the stages in the future. In this example, there are only two realizations,
so:

ν2 = 0, 5
(
νu2 + νd2

)
(A-20)

w = 0, 5 (w1 + w2) , (A-21)

Where νu2 and νd2 are the dual variables of the problems of the realizations up
and down, referring to the problems ζ1 and ζ2, whose solutions are w1 and w2,
respectively.

For each iteration, add a new constraint (associated with new ν2 and w)
to the problem of the previous stage, to reduce, for the multi-stage problem, the
gap between the lower conservative and upper limits to an acceptable value.
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