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Abstract

Domingues, Pedro Henrique Leite Silva Pires; Ayala, Helon Vicente
Hultmann (Advisor). Artificial Intelligence Methods Applied
to Mechanical Engineering Problems. Rio de Janeiro, 2020.
116p. Dissertação de Mestrado – Departamento de Engenharia
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Real-world mechanical engineering problems may comprise tasks of
i) multi-objective optimization (MO) or ii) regression, classification and
prediction. The use of artificial intelligence (AI) based methods for sol-
ving these problems are widespread for i) demanding less computational
cost and problem domain information to solve the MO, when compared
with mathematical programming for an example; and ii) presenting bet-
ter results with simpler structure, adaptability and interpretability, in con-
trast to other methods. Therefore, the present work seeks to i) optimize a
proportional-integral-derivative control (PID) applied to an anti-lock bra-
king system (ABS) and the heat exchanger design of plate-fin (PFHE) and
shell-tube (STHE) types through AI based optimization methods, seeking
to develop new versions of the applied methods, e.g. multi-objective salp
swarm algorithm (MSSA) and multi-objective heuristic Kalman algorithm
(MOHKA), which enhance the optimization performance; ii) develop a pipe-
line leak detection system (LDS) sensitive to fuel theft by training decision
trees (DTs) with features based on time and principal component analy-
sis (PCA), both extracted from pressure transient data of regular pipeline
operation and fuel theft; iii) constitute an application guide for control
and design MO problems, feature extraction process and machine learning
classifiers (MLCs) training through supervised learning; and, finally, iv) de-
monstrate the potential of AI-based techniques.

Keywords
Artificial Intelligence; Multi-objective Optimization; Bio-inspired Algo-

rithms; Machine Learning; Supervised Learning.
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Resumo

Domingues, Pedro Henrique Leite Silva Pires; Ayala, Helon Vicente
Hultmann. Métodos de Inteligência Artificial Aplicados a
Problemas de Engenharia Mecânica. Rio de Janeiro, 2020.
116p. Dissertação de Mestrado – Departamento de Engenharia
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Problemas reais de engenharia mecânica podem compreender tarefas
de i) otimização multi-objetivo (MO) ou ii) regressão, classificação e pre-
dição. Os métodos baseados em inteligência artificial (AI) são bastante di-
fundidos na resolução desses problemas por i) demandarem menor custo
computacional e informações do domínio do problema para a resolução
de uma MO, quando comparados com métodos de programação matemá-
tica, por exemplo; e ii) apresentarem melhores resultados com estrutura
mais simples, adaptabilidade e interpretabilidade, em contraste com outros
métodos. Sendo assim, o presente trabalho busca i) otimizar um controle
proporcional-integral-derivativo (PID) aplicado a um sistema de frenagem
anti-travamento de rodas (ABS) e o projeto de trocadores de calor de placas
aletadas (PFHE) e casco-tubo (STHE) através de métodos de otimização
baseados AI, buscando o desenvolvimento de novas versões dos métodos apli-
cados, e.g. multi-objective salp swarm algorithm (MSSA) e multi-objective
heuristic Kalman algorithm (MOHKA), que melhorem a performance da
otimização; ii) desenvolver um sistema de detecção de vazamento em dutos
(LDS) sensível ao roubo de combustível a partir do treinamento de árvores
de decisão (DTs) com features baseadas no tempo e na análise de compo-
nentes principais (PCA), ambas exraídas de dados de transiente de pressão
de operação normal do duto e de roubo de combustível; iii) constituir um
guia de aplicação para problemas de MO de controle e projeto, processo de
extração de features e treinamento de classificadores baseados em aprendi-
zado de máquina (MLCs), através de aprendizado supervisionado; e, por
fim iv) demonstrar o potencial das técnicas baseadas em AI.

Palavras-chave
Inteligência Artificial; Otimização Multiobjetivo; Algoritmos Bio-

inspirados; Aprendizado de Máquinas; Aprendizado Supervisionado.
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1
Introduction

The majority of engineering design, management and decision making
problems may be stated as an optimization problem, usually considering
minimizing a cost function, due to the dominance of this variable in the decision
making. However, real-world applications are often complex and consider two
or more conflicting objectives for the decision making process, which makes
the multi-objective optimization (MO) the most suitable approach for this
situation, producing solutions with different trade-offs between the objectives
and allowing the designer or another decision maker (DM) to select the best
final solution [7,15]. Therefore, the MO approach does not generates an unique
solution, but a set of solutions of mathematically equal quality, known as non-
dominated or Pareto optimal (PO) solutions. This set of solutions is called
Pareto front (PF) and Pareto set, when represented in the objective and
decision space, respectively [7, 16,17].

One example of real-world multi-objective optimization problem (MOP)
is the anti-lock braking systems (ABSs) improvement. The ABSs were orig-
inally created to prevent wheel locking to which traditional brakes are sub-
jected, when abruptly triggered or during slippery surfaces braking, through
braking torque control [11, 18]. Therefore, due to the security requirement of
these systems, the study of ABSs performance improvement has been in evi-
dence in the last years (e.g. [19–22]). However, these systems may also provide
comfort during the brake activity [22], which makes multi-objective approach
the most appropriate procedure for providing a set of solutions with different
trade-offs between comfort and performance.

Another example of real-world MOP is the heat exchangers design
optimization. Heat exchangers (HEs) are common devices used in various
industry fields, with the main purpose of transferring thermal energy among
two or more fluids, or also, a fluid and a solid surface [23], for this reason, the
HE effectiveness directly impacts the processes efficiency to which it is applied.
In order to improve the heat transfer effectiveness, several design features
could be considered, as the variation of HE dimensions, the use of treated,
rough or extended contact surfaces, coiled tubes and fluid vibration, among
others [24, 25]. However, these design features bring a trade-off relationship

DBD
PUC-Rio - Certificação Digital Nº 1812727/CA



Table of contents 16

between the HE design economic cost and effectiveness, which is higher with
lesser energy resource consumption.

In order to solve MOP, the classical mathematical programming (i.e.
deterministic optimization approach) is not recommended, given that this
procedure requires significant or sometimes unsustainable computational cost
for demanding previous problem domain knowledge to direct the search or
limit the search space. These limitations made the use of artificial intelligence
(AI) optimization methods (i.e. stochastic approach) widespread in the MOP
solution [7, 17].

Another classes of engineering problems, which comprehends classifica-
tion, prediction or regression tasks, may not be addressed by MO algorithms.
For these purposes, the use of AI techniques known as ’machine learning’ (ML)
are more conducive.

Machine learning is the science field focused on the development of
techniques that allow a computer to learn or extract information from a data
set by their own, without being directly programmed for this purpose [26].
The ML methods sought inspiration in psychological learning theories, i.e. i)
’behaviorism’, where the learning comes from observation aspects; ii) ’cognitive
theory’, where learning is based on brain physiology; and iii) ’constructivism’,
where the learning is understand as a continuous process, in which new ideas
and concepts are actively built [2]. Thus, ML techniques are applied in several
products and industrial fields due to i) its simplicity and performance compared
to other methods, when applied to complex problems; ii) the environment
change (i.e. new data) adaptation ability; and iii) the possibility of extracting
information from the problems, based on the created models [26].

One example of real-world engineering problem that could be dealt with
ML methods is the fuel pipeline theft or pipeline illegal tapping problem. In the
recent years, the use of pipelines for the transportation of fossil fuels, chemicals
and water has become widespread due to their economic, ecological and
transport efficiency. On the other hand, in leakage situations, large quantities
of product are lost, which may cause economic loss and environmental damage
[27]. Therefore, focusing on reducing the impacts of leaks, several leak detection
systems (LDS) have been developed [28], being the main detection approaches
based on acoustic waves (e.g. [29, 30]), optical fiber signals (e.g. [31, 32]) and
negative pressure waves (e.g. [33, 34]) [35]. In 2018, the entity responsible for
ensuring the safe use of petroleum products in Europe (CONCAWE) made the
report no. 6/18 [36], where it was evident that i) the leakage frequency in cold
pipelines increased at least 5 times in the period 2011-2016, when compared
to the period 2006-2010 and ii) this increase is due to fuel theft activities,
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since excluding this spillage cause, the leakage frequency drops. The economic
impact of pipeline illegal tapping is heavy, e.g. only in the Niger Delta region,
Nigeria, the losses related to crude oil theft (COT) reach 12 billion american
dollars annually [37]. The pipeline illegal tapping has two approaches, i) an
’offensive theft’ where a high amount of product is rapidly withdrawn, which
is easily detected if the pressure transmission cables are not cut by the violators
and ii) a ’sophisticated theft’ where low flow rates are employed to prevent LDS
from locating the tapping point [38]. While the first theft approach seems to
be a security issue, the second one can be addressed by the improvement of
LDS or the development of specific theft detection techniques. Therefore, some
examples of machine learning application are provided in Section 1.2.

1.1
Artificial Intelligence Taxonomy

Briefly, the taxonomy of so-called ’artificial’ or ’computational’ intelli-
gence is divided into major two groups: i) ’hard computing’, where the precise
models yield accurate solutions quickly; and ii) ’soft computing’, where the
imprecisions and uncertainties are used to design approximate models, which
allows the application in complex problems [2].

The soft computing, in turn, is divided into five subgroups: i) ’fuzzy
logic’, proposed by Zadeh [39,40], the fuzzy logic models the human reasoning
and inference about imprecise or incomplete information, allowing the fuzzy-
based method to learn from experiential knowledge [2]; ii) ’neural networks’,
first introduced in 1943 by McCulloch and Pitts [41], the ANN are bio-inpired
methods based on the brain learning process, where multiple simple processing
units (neurons) are distributed in layers [26, 42]; iii) ’probabilistic methods’,
introduced by Erdos and Spencer in 1974 [43], these techniques deal with the
uncertainty and imprecision by attaching to structure families a probability
space, therefore, each sample point of a particular structure has a positive cor-
responding probability in this space [2]; iv) ’global search optimization meth-
ods’, which comprehends the evolutionary and swarm intelligence algorithms.
These methods are nature-inpired (i.e. based on political and social aspects of
the society, physical phenomena or biology aspects, such as genetic inheritance
and animal behavior) [1,2]; and finally v) ’machine learning’, which are based
on psychological learning theories, as described in Section 1. The taxonomy of
AI is shown in Figure 1.1.

The global search optimization methods may be referred as nature-
inpired or bio-inpired algorithms. In essence, these two concepts present close
meanings, but nature-inpired is a major class that encompasses the bio-
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Figure 1.1: Artificial intelligence taxonomy [1–5].

inpired class [1]. The bio-inspired computation research area was fostered by
genetic algorithm (GA), an evolutionary algorithm that deeply impacted the
scientific community [1]. Thus, the bio-inspired computation sought inspiration
from [1, 17, 44]: i) modern synthesis idea, e.g. GA [45], vector evaluated
genetic algorithm (VEGA) [46], genetic programming (GP) [47], differential
evolution (DE) [48], non-dominated sorting genetic algorithm (NSGA) [49]
and its second version (NSGA-II) [50]; ii) animals behavior or collective
movement of organisms, e.g. particle swarm optimization (PSO) [51], ant
colony optimization (ACO) [52], improved adaptive artificial immune system
(IA-AIS) [53]; grey wolf optimizer (GWO) [54], dragonfly algorithm (DA)
and its multi-objective version (MODA) [9], salp swarm algorithm (SSA)
and its multi-objective version (MSSA) [55]. While nature-inspired algorithms
are based on [1]: i) physical phenomena, e.g. gravitational search algorithm
(GSA) [56], charged system search (CSS) [57]; ii) political and social behaviors,
e.g. society and civilization algorithm (SCA) [58], imperialist competitive
algorithm (ICA) [59], anarchic society optimization (ASO) [60]. Moreover,
neural networks are also considered bio-inspired techniques [26, 61].

Still, global search optimization methods may be also classified as heuris-
tic, meta-heuristic and hyper-heuristic. Basically, the i) heuristic methods per-
form the optimization iteratively, following a set of guidelines, e.g. heuristic
Kalman algorithm (HKA) [62] and its multi-objective version (MOHKA) [63],
GSA, CSS, SCA, ICA, ASO and GA; ii) meta-heuristic techniques are heuris-
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tic optimization algorithms with different strategies for the search space explo-
ration (local) and exploitation (global), making the meta-heuristics less likely
to get stuck in a local optimum, e.g. PSO, ACO, GWO, DA and SSA; iii) hyper-
heuristics are searching/learning routines which combine or select heuristics for
an optimization problem, practically automating the creation process of new
heuristic algorithms [1, 64,65].

As for ML techniques, four categories according to the learning process
are provided: i) unsupervised learning, where the program identifies regularity
or irregularity patterns in the data set, being used to label data groups (data
cluster) or reduce data dimension; ii) supervised learning, where each data
provided for the ML training has a label indicating the group/class to which it
belongs, being used for classification applications, creating models to generate
or discriminate data; iii) reinforcement learning, where the learning process is
achieved by iteratively applying the program into an environment, in which
each action has a reward or penalty. Thus, through the observation of the
environment and the performance of previous iterations, according to the
reward/penalty values, the program learns and selects the better actions; and,
finally iv) semi-supervised learning, which comprises techniques that merge
both supervised and unsupervised learning approaches. Also, ANN may also
be considered as ML [26,61].

1.2
Artificial Intelligence Applied to Mechanical Engineering Real-World
Problems

The use of AI optimization methods for MOP resolution has become a
trend in recent years [17], some examples are reported next.

Yang and Deb proposed a multi-objective version of the cuckoo search
algorithm and applied the novel method to solve two structural design multi-
objective problems, in 2013. The first problem considered the beam design
according to fabrication cost and deflection minimization, while the second
problem made the optimization of the disk brake design through the overall
mass and braking time minimization [66].

In 2016, La Cava et al. proposed the use of epigenetic linear genetic
programming (ELGP), i.e. an evolutionary MO method, to generate simbolic
models of wind turbine, according to model intelligibility and accuracy goals
[67].

Following to 2017, Nguyen and Vo used a modified cuckoo search al-
gorithm to solve a hydrothermal scheduling problem, considering the mini-
mization of power generation cost and thermal generators pollution emission
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goals submitted to power balance, hydraulic and generator operating limit
constrains [68]. In the same year, Pavao et al. proposed the use of a hybrid
meta-heuristic based on simulated annealing (SA) and rocket firework opti-
mization to develop the MO of a heat exchanger network, considering both
total annual coast and environmental impact minimization [69].

Other mechanical engineering applications, which demand prediction or
classification tasks may be addressed by ML techniques, as depicted next.

Li et al., in 2016, proposed a gearbox fault diagnosis that merge two train-
ing features through the random forest method. The acoustic and vibration
signals are processed by wavelet packet transform (WPT), yielding statistical
parameters that are applied to two deep Boltzmann machines. In them, the
statistical features are produced, being merged by random forest later [70].

In 2017, Tahan, Muhammad and Karim proposed an automatic fault
detection system for gas turbine engines. The method studied multi-net ANN
models for detecting the faults in real time. These models were trained from
several gas turbine simulated outputs [71].

Following to 2018, Winkler et al. proposed a data extraction and pro-
cessing framework to model the failure of pipes in water distribution networks.
The framework was based on decision trees (DTs), trained through existing
data of age, diameter, number of failures, logarithmic length, material and
type of the pipe and boosted with bootstrap aggregation and other boosting
techniques [72].

Also, some other applications may be seen in the Wuest et al. review of
ML advantages, challenges and applications in the manufacturing field [73],
as well as the Bruton, Noack and Koumoutsakos review of ML for fluid
mechanics [74].

The articles mentioned above help to justify the application of AI tech-
niques to real-world mechanical engineering problems solving, since these prob-
lems: i) generally consider more than one optimization goal and MOP usually
are high-dimensional, discontinuous, multi-modal or NP-hard [7], making the
use of mathematical programming techniques not recommended, for demand-
ing an unsustainable computational cost, as well as problem domain infor-
mation [7]; and ii) when addressed by classification, prediction or regression
applications, generally present a high complexity or an online operation re-
quirement, making characteristics of high performance with simplified archi-
tecture and adaptability desirable.
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1.3
Literature Review

The literature review on how the ABS improvement, HE design optimiza-
tion and LDS development problems are addressed by the scientific community
is presented in the Sections 1.3.1, 1.3.2 and 1.3.3, respectively. Still, greater im-
portance was given to the problem of developing a theft-sensitive LDS, which
resulted in a more complete literature review on LDS.

1.3.1
Anti-lock Braking Systems Improvement

This section introduces a brief review of how ABS systems have been de-
veloped and improved in the recent years: in 2010, Sharkawy developed an ABS
based on a self-tuning non-linear fuzzy-PID (proportional–integral–derivative)
controller optimized through GA. A single-wheel model was considered for
the ABS construction, where the controlled variable was the slip. Also, the
optimization was made seeking to minimize i) the braking distance and ii)
the difference bewtween control and reference signal through integrated time
multiplied by the absolute error (ITAE) metric, seeking to obtain the fastest
response of the controller [19].

One year later, Raesian, Khajehpour and Yaghoobi proposed a self-tuning
ABS based on a non-linear neuro-fuzzy PID controller. The study considered
a conventional PID with an adaptive neuro fuzzy inference system capable of
tuning the PID coefficients. The controlled variable was the slip and a single-
wheel model was used [20].

In 2014, Guo, Jian and Lin proposed an ABS with regenerative braking,
which seeks to maintain the optimal slip value through a fuzzy logic controller
(FLC). The simulations were made considering a 3-degrees of freedom (’dof’)
vehicle model, as well as, Burckhardt friction, motor and hydraulic brake
system models [75].

Following to 2015, Qiu, Liang and Dai proposed a non-linear ABS control
based on asymmetric barrier Lyapunov function (ABLF) and backstepping
dynamic surface control. The ABLF was used to make the sliding restrictions
more flexible for runway conditions and the transition among them, while the
dynamic surface control avoids the repeated differentiations introduced by the
ABLF procedure. Also, the ABS approach considered the slip as the controlled
variable and a single-wheel model [21].

Davico et al. presented an algorithm to prevent aircraft wheel locking
based on deceleration of the wheel center, in 2017. For that purpose, they used
a ’control-oriented landing gear model’, also the performance and comfort were
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evaluated in dry, wet and in transition situations between wet and dry runway
condition. Still, the gear walk pheomena was considered in the landing gear
model [22].

Finally, in 2018, Radac and Precup proposed a fast and nonlinear ABS
based on a model-free tire slip control. In order to achieve this goal, a
reinforcement Q-learning optimal control approach was applied to a batch
neural fitted scheme, which comprehends two neural networks, the first for
value function approximation and the second to perform the control [76].

The ABS literature review revealed that the: i) single-wheel models (e.g.
’single corner model’) are sufficient and often used for the study and develop-
ment of ABS; ii) majority of controllers present a high complexity in compari-
son with the conventional PID, generally using fuzzy, neural networks or other
techniques to incorporate non-linearities; iii) use of new meta-heuristics for the
controller tuning was little observed, with traditional optimization methods or
neural networks being preferable.

1.3.2
Heat Exchanger Design Optimization

Seeking to review HE design problems: Khan and Li proposed, in 2017, a
novel MO method constituted from the combination of GA, DE and adaptive
SA. Four MO benchmarks were considered to validate the method, which was
subsequently applied in a plate-fin heat exchanger (PFHE) design problem.
The PFHE optimization was made three times, each one considering different
goal combinations, always composed of the heat transfer rate and a cost metric,
that last varying between design, annual and total cost [77].

One year later, Dhavle et al. proposed the design optimization of a shell-
tube heat exchanger (STHE) for three different operation conditions through
several AI optimization methods. The HE total annual cost (i.e. the sum
of design and annual operation costs) was considered as the optimization
objective [78].

In 2019, Vasconcelos Segundo, Mariani and Coelho proposed a new meta-
heuristic inspired by the owls behavior. The introduced method was tested in
several single and multi-objectives benchmarks, yielding competitive capcity,
convergence, diversity and convergence-diversity results in comparison with
other well-known optimization techniques. Afterwards, the novel algorithm
was applied to single and multi-objective STHE design problems, considering
the total cost alone and with the HE efficiency as objectives, respectively. [79].

Still, another HE design optimization study was developed by Pavao et
al. [69], which was also described in Section 1.2.
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Two trends were observed in the HE design literature review: i) the use
of total cost and some HE performance metric (e.g. heat transfer rate and
efficiency) as optimization objectives; and ii) the use of HE design problems
to test and compare new meta-heuristics.

1.3.3
Leak Detection System Development for Pipeline Illegal Tapping

Finally, several LDS have been proposed during the last decade, which
considered the variation of methods used to recognize the leak patterns, the
type of data collected from the pipe flow and the processing techniques to
which the data is submitted, as shown below.

In 2010, Yang, Xiong and Shao proposed an entity-part searching method
based on negative pressure waves and wavelet transform, which used Romberg
integral and Dichotomy Searching methods to iteratively calculate the gas
velocity and pinpoint the leak location in gas pipelines, respectively [80].
Meanwhile, Qu et al proposed a pipeline leak detection, locating and pre-
warning system for gas leakage in real time, which was based on support vector
machine (SVM) and wavelet packet decomposition (WPD) for extracting
features from the pipeline vibration signals [81].

Two years later, Mandal, Chan and Tiwari proposed a LDS for crude oil
and liquid fuel pipelines based on SVM optimized through artificial bee colony
algorithm, where the features were extracted from the data of pressure and
flow rate at inlet and outlet, as well as the flow rate difference. The rough set
theory was applied for the feature dimension reduction [82].

Instead of locating the leak, in 2014, Sun et al proposed a system capable
of recognizing the aperture of small leaks in gas pipelines, which considered the
local mean decomposition of the leakage pressure signals into product function
components, following by the identification of the principal product function
components (PPFC) through Kurtosis features. The PPFC are decomposed
by WPD and reconstructed through Hilbert transform and the normalized
envelop spectrum entropy feature obtained is used as input for the SVM [83].

In addition to the pipelines, LDS is also used in other applications,
in 2015, Rostek, Morytko and Jankowska proposed a LDS for fluidized-bed
boilers based on artificial neural networks (ANN) with two stages, i) early
fault detection by virtual sensors and ii) leak isolation through fault state
classification [84].

In 2016, Xiao et al proposed a LDS for small leaks, which considered
the variational mode decomposition (VMD) of the acoustic sensor’s signal,
following by the construction of an adaptive de-noising algorithm based on
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probability density function for processing noise components and reconstruct
de-noised ones. Finally, ambiguity correlation classification (ACC) method
is used to analyze the reconstructed components [85]. In the same year,
Zadkarami et al proposed a fault detection and isolation (FDI) system capable
of recognize pipeline leakage and suggest its location and severity. The FDI
system was based on multi-layer perceptron neural network (MLPNN) classifier
trained from statistical, wavelet transform and a merge of these two features,
which were extracted from pipeline inlet pressure and outlet flow rate [86].

As a continuation of previous work, in 2017, Zadkarami et al proposed
a leak diagnosis system based on the fused outputs of two MLPNN classi-
fiers through Dempster-Shafer technique. The first and second MLPNN were
trained from statistical and wavelet transform based features, respectively, also
extracted from inlet pressure and outlet flow rate [87]. Also using ANN for LDS
development, Rahmati et al proposed a gas pipeline LDS. The pipeline was
sectioning into several parts and the inlet and outlet pressure of each part were
considered for the leakage gas flow data generation with which the ANN would
be trained [88]. In order to evaluate the performance of multi-label learning
for water pipelines LDS construction, Kayaalp et al proposed LDS based on
pressure data acquired from wireless sensors and three multi-label learning
methods, namely random k-label sets, binary relevance k-nearest neighbors
and binary relevance with SVM [89]. For other applications, Li et al proposed
a LDS for gas pipeline valve based on SVM and kernel principal component
analysis (kernel PCA), which was used to reduce dimension and extracts the
most important features of acoustic emission sensors data. In terms of com-
parison, the authors built LDS using the aforementioned methodology, but
varying the classifier for the k-nearest neighbor, ANN, naive Bayes (NB) and
decision tree (DT) [90].

In 2019, Wang et al proposed a novel particle swarm optimization
algorithm with saturation and mixed time-delays, in order to improve the
accuracy of an oil pipeline LDS based on SVM, which was trained with acoustic
wave sensor acquired data of normal operation and leakage [91]. Still under an
optimization approach, Jia et al proposed a LDS, considering an optic fiber
based distributed hoop strain sensing and support vector regression (SVR),
which was optimized by genetic algorithm [92]. In the same year, Li et al
proposed the attenuation of negative pressure wave (ANPW) methodology for
pipeline LDS development. The novel ANPW method uses momentum and
continuity equations to deduce the propagation equation of negative pressure
wave (NPW) considering the pressure change rather than time difference,
avoiding the traditional NPW problems regarding the velocity disturbance
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and the time difference identification difficulty [35]. He et al proposed a
pipeline monitoring and accidental leakage handling system framework based
on big data, cloud computing, and internet of things technology, using a
new NPW based leak localization methodology, and an emergency shutdown
strategy in case of leaking, which calculates and selects the strategy that
minimize the product spilled volume [93]. Still using the time that a NPW
demands to propagate and back from the valve to the leak location, Diao et
al proposed a LDS for reservoir-pipe-valve (RPV) structures, considering a
modified transient-based method and an unsteady friction model [94]. Seeking
to achieve a real time and accurate LDS for oil pipeline with low false alarm
rate, Liu et al proposed the use of Markov features from pressure data, least
square SVM and a two-stage decision scheme, which alternates between a short
and a long term detection model according to the sample difficulty level [95]. In
order to base the development of new LDS for high-pressure hydrogen ducts,
Nagase et al proposed a mass flow rate and pressure distribution prediction
model, considering unsteady expansion wave, the hydrogen acceleration caused
by the cross-sectional area reduction between the duct and leak point, and
finally, the Borda-type and cylindrical pipeline orifice contraction coefficient
models [96]. Finally, Xie, Xu and Dubljevic proposed a LDS based on pipeline
non-linear coupled first-order hyperbolic partial differential equations (PDEs)
model and on statistical features extracted from upstream and downstream
flow velocity. The method considered the building of a discrete-time Luenberger
observer by solving the Riccati equation operator, allowing the reconstruction
of the pressure and mass flow velocity evolution with limited measurements
[97].

The recent literature review on LDS allowed us to draw four conclusions:
i) the use of machine learning classifiers (MLCs) for the development of these
systems is widespread. The MLCs are non-parametric classifiers usually able
to identify and model complex patterns, often producing more accurate results
when compared to parametric classifiers, especially for complex data with a
large number of features [98]; ii) the supervised learning approach was used
in all articles mentioned in LDS review, being the most common procedure
for classification tasks [26]. In the supervised learning approach, the desired
solutions (class labels) are provided to the algorithm along with training
features [26]; iii) the use of DT classifiers for LDS construction was little
explored, having been applied only in [90], where the performance yielded by
the DT classifier was surpassed by the SVM one. This may be an indication
that, for the LDS problem, DT classifiers perform less than other MLCs,
justifying the DT approach low frequency of application for LDS construction.
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However, DT classifiers are used in other oil and gas industry applications
(e.g. [99–103]); iv) the use of PCA-based features for training MLCs focused on
leak detection was also little explored, only being applied in [90]. Nonetheless,
the PCA methodology is used in other refining industry applications (e.g.
[102,104–107]).

1.4
Objectives

The main goals of this thesis is to i) develop and improve AI techniques;
ii) constitute a guiding framework for control and design MOPs, feature
extraction process and machine learning classifier training through supervised
approach; and iii) demonstrate the AI based methods potential in solving real-
world mechanical engineering problems.

In order to accomplish the thesis general objectives the following proposi-
tions were made: i) develop new AI optimization methods by the performance
enhancement of MSSA and MOHKA, considering the MOPs of ABS improve-
ment and HE optimal design, respectively and developing theft-sensitive LDS
from DTs trained through supervised learning approach; ii) guide the applica-
tion of: AI techniques, such as NSGA-II, MODA and MSSA in the PID tuning
for the ABS improvement and MOHKA for HE optimal design, being both
MO; extraction of machine learning training features from pressure transients
data through time and PCA based approaches; and, DT training for the devel-
opment of a theft-sensitive LDS, considering the supervised approach and the
feature extraction process just mentioned; and finally iii) yield valid results for
the ABS, HE design MOP, as well as for the theft-sensitive LDS development
problem.

1.5
Contributions

The following contributions in the AI field were made during the master’s
period:

– Bio-Inspired Multi-objective Tuning of PID-Controlled Antilock Braking
System [108];

– Genetic Algorithm for Topology Optimization of an Artificial Neural
Network Applied to Aircraft Turbojet Engine Identification [109];

– Multi-Objective Optimization of Heat Exchanger Design Through
Heuristic Kalman Algorithm [110];
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– Dynamic Multi-criteria Classifier Selection for Illegal Tapping Detection
in Oil Pipelines [111].

Aware of the advantages of using AI optimization methods for solving
multi-objective engineering problems and the results quality yielded by the
ML techniques when applied to mechanical engineering problems, the present
work condenses two already made and one forthcoming contribution, that
were developed seeking to i) improve an antilock braking system (ABS)
control through the MO approach, considering three bio-inspired optimization
algorithms [108]; ii) optimize the design of plate-fin and shell-tube heat
exchangers considering the MO approach and a recent heuristic [110]; and
iii) develop theft sensitive leak detection systems for an oil pipeline based on
ML and features extracted from pressure transient signals. An abstract of each
work, listing the main contributions for the state of the art are provided next
and, in order to associate the results obtained in each contribution to the
objectives sought in it, as well as to relate the specific goals of each work with
the general thesis objectives, Figure 1.2 is provided.

Figure 1.2: Relationship between thesis general goals and each contribution
specific objectives.
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1.5.1
Bio-Inspired Multi-objective Tuning of PID-Controlled Antilock Braking
System

Antilock braking systems were proposed to overcome wheel lock events
that might occur in sudden/heavy braking situations or when there is a change
in road conditions during the braking activity (e.g. oil, sand or water in the
driving way or landing strip), avoiding accidents. The ABS resolution requires
a controller and, among controllers, the PID one is the most widespread in
the industrial field due to its effectiveness and simplicity. In the literature,
several ways of tuning PID controllers are provided, but recently, the use of
MO methods has become attractive for this application. Therefore, the first
work proposed the optimization of a PID-controlled ABS, considering both
the performance and comfort developed by the system during the braking,
being the optimization made through NSGA-II, MODA and MSSA, as well
as a new MSSA version with initialization and evolution grounded in opposite
based learning idea (OBLI-MSSA). Also, the spacing (S), Euclidian distance
(ED) and hypervolume (HV ) comparison metrics were used to deduce which
optimization method yielded the best performance. Briefly, i) a new multi-
objective formulation for improvement of PID-controlled ABS; ii) a new MSSA
version, known as OBLI-MSSA; and iii) the comparison of recent bio-inspired
meta-heuristics (MODA and MSSA) with traditional optimization methods
(NSGA-II) to follow the state of the art evolution are the main contributions
of this work.

1.5.2
Multi-Objective Optimization of Heat Exchanger Design Through Heuris-
tic Kalman Algorithm

Heat exchangers are equipment widely used in the industry, which
makes its design optimization a hot topic. Since that the heat exchangers
design optimization usually considers its effectiveness and cost as goals, the
academic community has been addressing the use of heuristic based MO
algorithms for this purpose. Among the recent proposed heuristics is the multi-
objective heuristic Kalman algorithm (MOHKA), which was developed for
non-convex constrained optimization problems and stands out for the ease of
implementation and the presence of few adjustable parameters. Basically, the
MOHKA adjustable parameters are the population size (N), the maximum
number of evaluations (Emax), the amount of solutions considered for the
measure ξ calculation (Nξ), being ξ an important variable for the evolution
process, with which the population variance is calculated and, finally, the
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slowdown factor (ak) responsible for curbing the convergence, avoiding local
minima, being based on the slowdown coefficient α. Therefore, considering the
MO of PFHE, STHE and the optimization benchmark ZDT1 problem [112], the
second work proposed five new MOHKA versions with i) randomness addition
byNξ suppression; ii) new architecture, where new populations are derived only
from ξ; and, iii) change of the diversity preservation mechanism from ’crowding
distance’ to ’niching procedure’. Also, the variation of α is studied, considering
a range of [0.4,0.9]. For the MOHKA versions comparison, the area under the
inverted generational distance (IGD) evolution curve and the final IGD value
are considered as metrics and are compared through Wilcoxon rank sum test.
In essence, the main contributions sought are i) the MOHKA performance
improvement; ii) enhance the MOHKA attractive features, by reducing the
number of parameters and simplifying its structure; and iii) assess the impact
of the slowdown coefficient on the PF convergence.

1.5.3
Pressure Transient Signals Feature Extraction for Illegal Tapping Detec-
tion with Supervised Learning

The use of pipelines for the transportation of fuels, chemicals and water
has become widespread due to the low cost and environmental impact, in
addition to high efficiency. In recent years, there has been an increase in the
number of pipeline failures owing to the fuel theft attempts growth. Therefore,
to counteract this trend and reduce/avoid the environmental damage and
economic loss resulting from the high amount of spilled product that a pipeline
failure generally promotes, the scientific community has been studying and
developing LDS sensitive to theft. Reviewing the LDS design literature, the
use of ML classifiers (MLCs) trained with a supervised learning approach
is highlighted, but among the MLCs, the use of a simple and common one,
known as decision tree (DT) classifier, as well as the use of features extracted
through PCA is little explored. In order to extract the features, pressure
sensors meaurements stands out for being highly used in pipeline network
supervisory systems and presenting lower costs when compared to other sensor
options, such as optical fiber ones. Aware of this situation, the third work
proposed to reproduce in a physical pipeline model based on a real one, the
pressure transients of pipeline leakage and regular operation for three different
scenarios. The pressure transient data was used to generate features based
on time and PCA made through singular value decomposition (SVD), with
which two DT classifiers were trained. The main contributions sought are to i)
propose two different data-driven modeling workflows for theft-sensitive LDS;
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ii) evaluate the use of DT classifiers for this application; and iii) evaluate
which feature extraction approach generates the best DT model, according to
the prediction performance in different scenarios.

1.6
Organization

The rest of this thesis is structured as follows: Chapter 2 introduces
general concepts necessary for the artificial intelligence techniques comprehen-
sion, the comparison metrics for the algorithms performance, as well as the
algorithms themselves; Chapters 3, 4 and 5 present the problem description,
main contributions with the approach chosen to address the problem, results
and conclusion of the PID-controlled ABS tuned through bio-inspired meta-
heuristics, the heat exchanger design through MOHKA and LDS development
through ML techniques problems, respectively; finally, Chapter 6 summarizes
all conclusions and future work for each developed study.
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2
Methodology

This section is dedicated to describe the methods used in the contribu-
tions made in the present work. Therefore, Section 2.1 introduces the basic
optimization concepts; Section 2.2 presents the multi-objective optimization
approach through Pareto Optimally Theory; Section 2.3 defines the mathe-
matical expressions used to compare the optimization performance between
two or more AI algorithms; Section 2.4 declares the GA, which inspired the
structure of many other AI optimization algorithms and facilitates the compre-
hension of the other used methods, also described in this section; and, finally,
Section 2.5 depicts the ML techniques used in this dissertation.

2.1
Basic Concepts of Optimization

The present section seeks to introduce basic optimization concepts neces-
sary for understanding the multi-objective approach (Section 2.2) and the work
routine of the stochastic multi-objective optimization methods (Section 2.4)
used in the three works developed.

The main goals in the design engineering and decision making under-
stands an optimization problem solving [15]. Therefore, the optimization of a
generic process, as shown in the Figure 2.1, consists of producing and test-
ing various solutions (input), aiming to improve (minimize or maximize) the
process answer to that solution (output) [6].

Figure 2.1: Representation of a generic process [6].

In the optimization, each solution is represented in the ’decision/genotype
space’ (Rn) and ’objective/phenotype space’(Rg), being n and g the number of
decision variables (i.e. the problem dimension) and goals, respectively. Thus,
jointly, the input and output variable values constitute points in the decision
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and objective spaces. For a better visualization, in Section 2.2, the Figure 2.2
shows the decision and objective spaces for a bi-objective optimization problem
(g = 2), where each solution considers n = 3 decision variables.

A basic optimization problem generally considers a single objective, what
is known as a single-objective optimization problem. Thus, the standard state-
ment of a basic optimization problem (Eq 2-1) is defined as the minimization/-
maximization of a called objective or cost function (f(x)), subjected to equality
(hi(x) = 0; i = 1, . . . , p) or inequality (bj(x) ≤ 0; j = 1, . . . ,m) restrictions.
The objective functions are mathematical abstractions of qualitative concepts
(e.g. cost and performance), and as the objective function may depend on more
than one parameter/variable, x is a vector solution composed by n decision
variables (x = [x1, . . . , xn]T ). The x vector solution belongs to the space Ω of
possible solutions, which is determined by the upper and lower bounds of each
decision variable (xlk ≤ xk ≤ xuk ; k = 1, . . . , n) [7].

min f(x) x ∈ Rn

s.t.

hi(x) = 0 i = 1, . . . , p
bj(x) ≤ 0 j = 1, . . . ,m
xlk ≤ xk ≤ xuk k = 1, . . . , n

(2-1)

The previous statement helps to define the concept of i) ’search space’,
which is the problem domain or the subspace of the decision space limited by
the upper and lower bounds of the decision variables; and ii) ’optimum’ for
single-objective optimization problems, which is referred as ’global optimum’.

The global optimum is the best solution among the possible solutions (i.e.
in the search space), that when applied to the process function and compared
with all other valid solutions, returns the minimum or maximum value, for
minimization or maximization problems, respectively. The methods capable
of finding the global optimum solution are known as global optimization
method. Mathematically, for minimization problems: considering a function
f : Ω ⊆ Rn → R, f 6= ∅, for a solution x ∈ Ω, the value of f ∗ defined as f(x∗)
and being greater than minus infinity (f ∗ , f(x∗) > −∞) is called a global
minimum, if and only if ∀x ∈ Ω, f(x∗) ≤ f(x) [7].

2.2
Multi-Objective Optimization

The present Section introduces the multi-objective approach, which bases
the optimization methods that will be presented in Section 2.4.
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The multi-objective optimization approach has a standard statement
similar to the single-objective optimization one, but now considering the
minimization or maximization of a vector F (x) composed by two or more
objectives, with each vector solution x consisting of n decision variables
between their upper and lower bounds (xlk ≤ xk ≤ xuk ; k = 1, . . . , n),
and submitted to equality (hi(x) = 0; i = 1, . . . , p) or inequality (bj(x) ≤
0; j = 1, . . . ,m) restrictions. Also, the standard statement of a multi-objective
problem is represented by Eq.(2-2) [7].

min F (x) = [f1(x), . . . , fg(x)] x ∈ Rn; g ≥ 2
s.t.

hi(x) = 0 i = 1, . . . , p
bj(x) ≤ 0 j = 1, . . . ,m
xlk ≤ xk ≤ xuk k = 1, . . . , n

(2-2)

As seen in Section 2.1, for the single-objective optimization, the ’opti-
mum’ solution may be easily inferred by comparing the optimization outputs,
since only one objective is taken into account for the optimization and/or solu-
tion comparison. However, when two or more objectives are considered for the
optimization process, the single-objective idea of ’optimum’ is no longer suit-
able, seeing that the outputs now present a trade-off between the optimization
metrics. In that case, the multi-objective approach is recomended [7, 17].

Therefore, the most common definition of ’optimum’ for MOP is set by
the Pareto Optimally Theory, coming from the Pareto Optimum or Edgeworth-
Pareto Optimum concept proposed by Francis Ysidro Edgeworth in 1881 [113]
and generalized by Vilfredo Pareto [114] in 1897 [7]. The definitions of the
Pareto Optimally Theory are provided next [7]:

Definition 1. Pareto optimal: A solution vector x ∈ Ω is said a Pareto
Optimal or true Pareto solution, with respect to (w.r.t) Ω, iff ¬x ∈ Ω : fi(x) ≤
fi(x∗) ∧ f(x) 6= f(x∗);∀i = 1, 2, . . . , k.

Definition 2. Pareto dominance: A solution vector x1 dominate another
feasible solution x2 (or formally x1 � x2) iff fi(x1) ≤ fi(x2) ∧ ∃j : fj(x1) ≤
fj(x2);∀ij = 1, 2, . . . , k. The solution x1 is said non-dominated, if no other
solution dominates x1.

Definition 3. Pareto set: A set of non-dominated solutions
x∗ | ¬∃x : x � x∗ is said to be a Pareto set.

Definition 4. Pareto front: The set of vectors in the objective space
which are image of a Pareto set, i.e. F (x∗) | ¬∃x : x � x∗. The PF composed
of true Pareto solutions is known as PFtrue.
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Briefly, for working with a set of possible solutions, the multi-objective
optimization is capable of finding several PO solutions in a single optimization
run, rather than having to perform multiple runs as in mathematical program-
ming techniques [7]. Also, the representation of Pareto set and Pareto front for
a bi-objective minimization problem are shown in Figure 2.2.

Figure 2.2: Representation of the solutions in decision and objective spaces [7].

The degree of freedom (’dof’) on the context of the MOP is substantial
to evaluate the possibility of optimization. Hence, the number p of equality
constrains must be less than the number n of decision variables to exist
sufficient ’dof’ for optimization. If p ≥ n, the problem is said overconstrained,
not having enough equations for the number of unknows [7].

2.3
Performance Comparison

As seen in Section 2.2, the optimization performed through multi-
objective approach provides a PF as an answer, and when working with
stochastic optimization methods, the same method may generate widely varied
PFs when the optimization is finished. Thus, to make a fair performance
comparison of these methods: i) all optimization algorithms must have the
same number of evaluations as stop criterion, since this operation usually
carries the highest computational cost. Another option would be to match
the number of optimization iterations, but when the methods present different
architectures, there may be distinct number of evaluations per iteration,
making the comparison unfair; ii) all algorithms must have the same number
of optimization rounds, i.e. a complete optimization process that lasts until the
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stopping criterion is satisfied, so that the PF extracted from all optimization
rounds results has a statistically relevant comparison. Still, the greater is the
optimization rounds number, greater is the comparison relevance; and iii)
comparison metrics are applied to the resulting PFs, in order to assess their
quality. The evaluation criteria for each comparison metric used in the three
works, as well as their mathematical description is presented in this section.

2.3.1
Spacing

Spacing metric (S) seeks to quantify how well the solutions are scattered
over the PF and does not require knowledge of the true PF. For a bi-objective
optimization problem with objective vector F (x) = [f1(x), f2(x)], Spacing is
defined as follows [7]:

S ,

√√√√ 1
P − 1

P∑
i=1

(d̄− di)2 (2-3)

where P is the number of vectors or solutions in the PF; di is the Euclidean
distance between the ith solution and the nearest solution, in the objective
space; and d̄ is the mean of all di.

For a better comprehension, the Figure 2.3 presents the visual description
of the spacing metric. When S = 0 all members will be evenly spaced. In MO,
preference is given to the smaller S, which means a more constant distribution
of solutions over the PF.

2.3.2
Euclidean Distance

The mean of Euclidean distance of all vectors defined by points of the
PF and origin in the objective space is knows as Euclidian Distance metric
(ED), as illustrated in Figure 2.3. For a minimization problem, the smaller
the result, closer to the origin (i.e. the minimum) is the PF, therefore, better
is the method performance. Mathematically, for a bi-objective problem:

ED = 1
P

P∑
i=1
‖ −→o − f i(x) ‖ (2-4)

where −→o is the origin vector in R2; f i(x) is objective vector for the ith solution;
and ‖ . ‖ is an operator that calculates the l2-norm.
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2.3.3
Hypervolume

Hypervolume (HV ) is the evaluation function defined by the hyper area
calculated from the sum of rectangles formed between the PF solutions and
some reference point, which may be the point R(1, 1), in a normalized objective
space. The reference point and the PF form in the objective space a hyper-
edge and a hyper-surface, respectively. Together, the calculated hyper areas
constitute a hypervolume, as shown in Figure 2.3. Therefore, the closer to 1
is the HV (i.e. the maximum possible volume, when considering normalized
objective axes), the closer to the objective axes the analyzed PF will be,
thus being better when considering a minimization problem. The hypervolume
conceptual description is presented below [7]:

HV , {
⋃
i

voli | veci ∈ PF} (2-5)

where veci is a non-dominated vector in PF ; and voli is the area between the
origin and vector veci.

2.3.4
Inverted Generational Distance

The IGD calculates the mean square of the shortest distances dj, from
each true Pareto-optimal solution j and the nearest computed solution, for
that reason, the IGD is a metric that consider not only the convergence but
the distribution of the resulting PF [115]. For a better comprehension, the
Figure 2.3 [7] brings a visual description of the dj vector and, being n the total
number of solutions in the true PF, the IGD is mathematically expressed
as [116]:

IGD =

√∑n
j=1 d

2
j

n
(2-6)

However, two IGD-dependent metrics are assumed for the performance
analysis and comparison of the optimization methods. The first metric is
referred as IGDa and is the integral of the ’IGD x evaluations curve’, where, for
each iteration the IGD and evaluation numbers yielded are archieved in order
to set up a convergence curve to the true PF at the end of the optimization.
The axes are normalized and the smaller the area under the curve, greater is
the algorithm convergence to the real PF. The second metric is referred as
IGDf and is the IGD value at the end of the optimization, which indicates
how nearest is the computed PF to the true PF, being the lowest values the
best. Both IGDa and IGDf metrics are illustrated in Figure 2.4.
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Figure 2.3: Visual description of the comparison metrics.

2.3.5
Wilcoxon Rank Sum Test

The Wilcoxon test is a non-parametric statistical procedure that seeks to
assess whether two sets of data (X1 and X2) effectively represent two distinct
groups.

The test is a non-parametric analogous of the paired t-test and is defined
as follows: being di = X1,i −X2,i the performance score difference in relation
to two sets of data, for i = 1, . . . , n problems, R+ and R− are calculated as
depicted in Eq.(2-7a) and Eq.(2-7b), respectively. Still, so that no problem is
prioritized, the normalization between [0, 1] of the compared scores may be
done. From the smaller rank value R+ or R−, the variable T is derived (i.e.
T = min(R+, R−)), and with the number of problems/’dof’ n, the p-value
related to the negation of the null hypothesis (h0) that ’both groups are equal’
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Figure 2.4: Representation of IGDa and IGDf metrics on a IGD evolution
curve.

is extracted from interpolation of Table B.12 ’critical values of Wilcoxon T
distribution’, present in Biostatistical Analysis [117]. In summary, the test
states that the populations or groups X1 and X2 are distinct and that the
probability of this sentence being wrong is the p-value. In this work, the
Wilcoxon rank sum test was performed by a pairwise multiple comparison
of mean ranks package [118] for R [119].

R+ =
∑
di>0

rank(di) +
∑
di=0

rank(di) (2-7a)

R− =
∑
di<0

rank(di) +
∑
di=0

rank(di) (2-7b)

2.4
Multi-objective Optimization Algorithms

For single-objective problems, the classical mathematical methods (i.e. )
proved to be very effective to several economic and engineering problems [120].
However, the classical approach is not suitable when the problem considers
more than one objective, since that, in this situation, the mathematical pro-
gramming techniques assume a high computational cost making the optimiza-
tion impossible, difficult or demanding knowledge of the problem domain to
reduce the search space [7, 17]. In this context, the use of stochastic methods
for the resolution of MOP has become widespread. Therefore, the present Sec-
tion seeks to describe i) the GA, an important stochastic method that deeply
impacted the optimization field, inspiring the development of many other tech-
niques and promoting the research area, that would come to be called ’bio-
inspired computation’ [1]; and ii) the stochastic optimization algorithms used
in the papers developed during this research.
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2.4.1
Genetic Algorithm

The genetic algorithm was proposed in 1975 by John Holland, but first
applied in 1989, by one of his students, solving a complex problem of gas-
pipeline transmission control for his thesis [121]. The GA is a stochastic
optimization method based on the modern synthesis idea, expressed as merger
of the ’Mendelian genetic’ (reproduction and mutation) with ’Darwinian
evolutionary theory’, also known as ’survival of the fittest’ (selection) [7, 16].

First proposed for single-objective optimization problems, the GA con-
siders the creation of a Npop sized initial population, according to each decision
variable upper and lower bounds. Each solution in the population is called a
chromosome and has its cost evaluated by the objective functions. The vari-
ables may be encoded as real or binary numbers, in the last case, the parameter
Nbits defines the number of bits encoding each variable and a decoding step
is applied on the chromosomes before solutions cost evaluation. The next step
is the selection of Nkeep mates, which occurs based on a crossover rate Xrate

(Nkeep = XrateNpop). The parent pairs may be selected from the population top
to bottom, randomly, having a selection probability inversely proportional to
their costs (in the case of a minimization problem) or through tournament. Fol-
lowing, the crossover/mating operation cuts the parents cromossomes in one,
two, three points or following a mask, generating offsprings from the cut pieces
recombination or distributing the bits/decision variables of each parent alter-
natively to their offsprings (’uniform crossover’). Usually, two parents produces
two offsprings, therefore Npop − Nkeep offsprings are generated at the end of
the mating process. After the crossover, random mutations are applied in the
bits/decision variables, according to a mutation probability µ, generally the
best solutions are not submitted to that operation, also, in the final iteration
the mutation process is generally not applied. Finally, the algorithm evaluates
if the stop criteria (e.g. number of evaluations, iterations or valid solutions)
was satisfied: i) in negative case, a new population is generated through the
processes of ’decoding’, in case of binary encoding, ’fitness evaluation’, ’se-
lect mates’, ’mating’ and ’mutation’; and ii) in positive case, the optimization
comes to an end. The single-objective GA workflow is presented in Alg. 1 and,
for multi-objective optimization, the GA considers the sum of weighted cost
funtions or the multi-objective approach [6].

Therefore, the main advantages of the GA are the: i) possibility to
optimize with continuous or discrete variables; ii) no problem knowledge
requirement for derivative operation; iii) parallel searches of the decision
space, as well as the ease to use multiple computers at the same time for
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Algorithm 1 GA pseudocode
1: Define cost functions, decision variables bounds, stop criteria and GA

parameters (Npop,Nbits,Nkeep,Xrates,µ);
2: Generate initial population (real or binary encoding);
3: while Stopping criteria is not satisfied do
4: if Encoding = Binary then
5: Decode chromosomes;
6: end if
7: Find cost of each chromosome;
8: Select mates;
9: Mating/crossover;

10: Mutation;
11: end while

the optimization task; iv) support of solutions with large number of decision
variables; v) power to deal with complex cost surfaces, by the presence of
a mutation operator that avoids local minima; vi) generation of a set of
nondominated solutions, allowing more decision making options; and vii)
possibility to encode the variables as binary or real numbers [6].

2.4.2
Non-dominated Sorting Genetic Algorithm II

Based on GA [121], in 1994, Srinivas and Deb proposed NSGA [49]. In
2002, Deb, Pratap, Agarwal and Meyarivan reformulated the NSGA, seeking
to reduce computational complexity in the sorting process of non-dominated
solutions, adding elitism and eliminating the need for an adjustable parameter
called sharing parameter. The algorithm obtained was named NSGA-II and
presented, in the majority of tested problems, a better spread of solutions
and convergence to true PF, when compared to multi-objective optimization
evolutionary algorithms focused on the creation of a diverse PF [8].

The NSGA-II is a fast and elitist multi-objective genetic algorithm that
differs from the original GA [121] in the way that the selection of crossover
pairs is made [17]. The selection process is based on i) a front score, named
rank; and ii) a crowding distance value. The rank value is ordered according
to Pareto non-dominance and allows the representation of multiple objectives
in a single fit value, giving efficiency to the method [7, 17]. When comparing
two solutions of the same rank, both non-extreme, crowding distance operator
constructs a cuboid between two closest neighbors and ranks from the largest
to the smallest perimeter, preferring to choose solutions with wider cuboid
perimeter, that means the most isolated ones, to fill new population [8, 17].
For a better understanding of the NSGA-II method, the Figure 2.5 shows the
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selection mechanism scheme, also, its pseudocode is presented in Alg. 2.

Figure 2.5: Selection process scheme for NSGA-II [8].

Algorithm 2 NSGA-II pseudocode
1: Create a population of size P , evenly distributed in the search space and

initialize the generation counter t = 1;
2: Evaluate the cost of each individual and order the population according to

Pareto non-dominance;
3: Assign a rank value according to the degree of non-dominance;
4: while Stopping criteria is not satisfied do
5: Perform parent selection through a binary tournament;
6: Generate a offspring population of size P , through the uniform

crossover and mutation operators;
7: Evaluate the cost of each individual in the offspring population;
8: Add the offspring population to the parent one, forming an extended

population of size 2P ;
9: Sort the population extended according to Pareto dominance;

10: Fill the new population of P individuals with the best fronts of the
extended population;

11: Call the crowding distance operator to decide which individuals to keep
in the new population, if the set of solution for a specific rank may only
be partially introduced into the new population;

12: Update the generation number (t = t+ 1);
13: end while

DBD
PUC-Rio - Certificação Digital Nº 1812727/CA



Table of contents 42

2.4.3
Multi-Objective Dragonfly Algorithm

The MODA is the multi-objective version of DA method, being inspired
in the dragonflies behavior, which only swarms for predatory and migratory
activities. The hunting behavior of the swarm resembles as the exploration
stage (local search) in the optimization, with local movements and abrupt
changes in the flying path, while the migratory behaviour resemble as the
exploitation stage (global search) in the optimization, making a massive
number of solutions to walk in one direction, over long distances [9]. The
Figure 2.6 illustrates the change in search behavior of MODA, that allows
classifying the method as a meta-heuristic.

The step vector of dragonflies ∆Xt+1, which is the vector that indicates
the displacement of solution i = 1, . . . , n between the iteration t and t + 1, is
described as follows [9]:

∆Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w∆Xt (2-8)
where s, a, c and w are the separation, alignment, cohesion and inertia weights;
f and e are the food and enemy factor; Si, Ai, Ci, Fi and Ei quantifies the
separation, alignment, cohesion, food attraction and enemy distraction of the
i-th individual; and ∆Xt is the step vector for the individual i in the last
iteration, being t the iteration counter.

In order to obtain the step vector ∆Xt+1, the separation, alignment, cohe-
sion, food attraction and enemy distraction vectors are calculated as depicted
in Eq.(2-9)- Eq.(2-13), respectively. The position Xt+1 is updated following
Eq.(2-14). Still, for a better understanding of the step vector calculation, the
Figure 2.6 seeks to facilitate the visualization of how the separation, alignment,
cohesion, food attraction, enemy distraction and inertia vectors are constructed
and the idea behind them.

Si = −
N∑
j=1

X −Xj (2-9)

Ai =
∑N
j=1 Vj

N
(2-10)

Ci =
∑N
j=1 Xj

N
−X (2-11)

Fi = X+ −X (2-12)

Ei = X− +X (2-13)

Xt+1 = Xt + ∆Xt+1 (2-14)
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where X or Xt are the position of the current individual i at the iteration t; Xj

and Vj indicates the position and velocity of the j-th neighbouring individual,
being j = 1, . . . , N , where N is the total number of neighbouring individuals;
X+ and X− indicate the position of the food source and enemy, respectively.

Figure 2.6: Change in the dragonflies (solutions) displacement behavior in the
objective space according to the optimization stage [9].

The step vector is directly dependent on the s, a, c, f , e and w weights.
Therefore, to perform the method search behavior change, characterized by
the high alignment and low cohesion at the exploration stage, as well as the
low alignment and high cohesion when exploiting, the mentioned weights are
adaptively adjusted according to iteration number. Another important factor
for the optimization process is the number of neighbors, which affects the
parameters Si, Ai and Ci calculation. So, to consider more individuals on the
final optimization stage, a growing neighborhood radius is assumed, being also
based on the iteration number [9].

The MODA uses an archive to store and retrieve the best solutions.
Therefore, food sources and enemies position are selected from the archive,
preferring the least populated region solutions for food sources and the most
crowded for enemies position, for the purpose of finding a well-spread PF. In
order to select solutions to add to the archive, in each iteration all dragonflies
are compared with the saved solutions using the Pareto Dominance concept
and if i) a dragonfly of the new population dominates one of the repository
solutions, they are swapped; ii) a dragonfly dominates a set of solutions in
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the repository, that new dragonfly is added and the set is eliminated from the
repository; iii) at least one saved solution dominates a dragonfly of the new
population, that last is discarded; finally iv) a dragonfly of the new population
is non-dominated when compared with the other repository solutions, this
dragonfly has to be added to the archive. These set of rules can guarantee
that the archive always store non-dominated solutions obtained so far by the
algorithm and is known as archive maintenance mechanism [9].

Still, to obtain the least crowded area, the best and worst objectives of
the current archive data are found and a hyper-sphere that covers all the PF
solutions is defined. With the hyper-sphere segmentation, a procedure known
as ’roulette wheel mechanism’ is applied ir order to define the probabilites
depicted in Eq.(2-15) and Eq.(2-16). Thereby, Eq. (2-15) assigns a high
probability of choosing food sources in less crowded regions, while Eq. (2-
16) set a great probability of selecting as enemies position the solutions in
the most crowded segments of the hyper-sphere. A summary of the MODA
working structure is presented through its pseudocode in Alg. 3 [9].

Pi = c

Ni

(2-15)

Pi = Ni

c
(2-16)

where Pi is the probability and Ni is the number of Pareto optimal solutions
of the ith hyper-sphere segment; c is a constant value greater than one.

2.4.4
Multi-Objective Salp Swarm Algorithm

The MSSA is a multi-objective optimization algorithms based on salp
swarm displacement behavior. The salps belong to the Salpidae family, being
similar to jelly fishes, due to their i) transparent body; and ii) propulsion
displacement mode by pumping water through the body [122]. In deep waters,
salps form chains and, although there is no consensus, some researchers believe
that this swarm behavior is reproduced to improve the locomotion capability
[123].

Thus, in order to mathematically abstract the salp chains behavior, the
salps population is divided into two groups: leader and followers. The first
individual of the chain guides the movement, being known as ’leader’, while
the ’followers’ follow each other [55]. Therefore, considering that each salp
position is a solution in a n-dimensional search space, where n is the problem
dimension, the learder position depends on the food source position and is
governed by [55]:
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Algorithm 3 MODA pseudocode
1: Create a dragonflies population of size n, evenly distributed in the search

space;
2: Initialize the step vector ∆Xi, i = 1, . . . , n;
3: Define parameter Narc, the number of hyper-sphere segments and initialize

the generation counter t = 1;
4: while Stopping criteria is not satisfied do
5: Evaluate the fit value of all dragonflies;
6: Find the non-dominated solutions;
7: if the archive is full then
8: Run the archive maitenance mechanism to update the repository;
9: end if

10: if any of the new solutions added in the archive is located outside the
hyper-sphere then

11: Update and re-position all hyper spheres to cover new solutions, if
these are located outside of hyper spheres;

12: end if
13: Select food source X+ and an enemy X− from archive;
14: Update the step vector with Eq. (2-8);
15: Update the position vector with Eq. (2-14);
16: Update the generation counter t = t+ 1;
17: Check and correct the new positions based on the variable bounds.
18: end while

x1
j =

 Fj + c1 ((ubj − lbj) c2 + lbj) c3 ≥ 0
Fj − c1 ((ubj − lbj) c2 + lbj) c3 < 0

(2-17)

c1 = 2e−( 4l
L )2

(2-18)
where x1

j represents the salps chain leader position; Fj is the food source
position; ubj and lbj are the upper and lower bounds, all in the jth problem
dimension, being j = 1, . . . , n; l and L are the current and the final/total
iteration number; and finally c1, c2 and c3 are MSSA parameters.

The c1 is the most important parameter in the MSSA method, because
it balances the exploration and exploitation stages. The c2 and c3 parameters
are random numbers uniformly generated in the [0, 1] interval, which define
whether the new position in the jth dimension will towards to positive infinity
or negative infinity, as well as the step size [55].

The formula that updates the position of follower salps is based on
Newton’s law of motion, which is depicted in Eq. (2-19). However, considering
v0 = 0 and a discrete approach of the problem, where time t is related to a
single iteration, always being unitary (t = 1), the formula that updates the
followers’ position can be seen in Eq. (2-20) [55].

xij = 1
2at

2 + v0t (2-19)
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considering i ≥ 2 (followers), xij is the position of ith follower salp in jth
dimension; t is current time; v0 is the initial speed; and a = vfinal

v0
, where

v = x−x0
t

.

xij = 1
2
(
xij + xi−1

j

)
(2-20)

The MSSA uses a repository of best solutions and consider an archive
maintenance mechanism similar to that used in MODA (Section 2.4.3). In cases
of archive fully complete, preference is given to the removal of one solution on
a most populated region, focusing on finding an uniformly distributed PF, the
most crowded region is defined by a neighborhood distance −→d = −−→max−−−→min

repositorysize
,

where −−→max and −−→min are two vectors that store the maximum and minimum
values for every objective, respectively. However, the food source is chosen from
the least crowded region. For a better comprehension of the MSSA structure,
the MSSA pseudocode is presented in Alg. 4 [55].

Algorithm 4 MSSA pseudocode
1: Create the salps population of size P evenly distributed in the search space,

where each X ∈ Rn, being n the number of decision variables;
2: Initialize the generation counter t = 1;
3: while Stopping criteria is not satisfied do
4: Evaluate the fitness for all salps;
5: Find the non-dominated solutions of the salps population;
6: Update the repository based on the archive maintenance mechanism

selection of non-dominated solutions;
7: if the repository is fully complete then
8: Run the archive maitenance mechanism to update the repository;
9: end if

10: Select a food source F from the repository;
11: Update c1 from Eq. (2-18);
12: Update the position of the leading and followers salps from Eq. (2-17)

and Eq. (2-20), respectively;
13: Amend salps population based on upper and lower bounds of return

variables;
14: Update the generation counter t = t+ 1;
15: Return the repository.
16: end while
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2.4.5
Multi-Objective Heuristic Kalman Algorithm

The heuristic Kalman algorithm (HKA) was proposed by Toscano and
Lyonnet [62], based on the Kalman filter philosophy, where the solution gener-
ated has its noisy corruption iteratively removed by Kalman equations, ensur-
ing an optimal solution. The multi-objective version of the HKA (MOHKA)
was proposed by Ayala, Coelho and Reynoso-Meza [63], being divided in five
steps, namely as:

Step 1. Initialization: where the mean mk and the standard deviation
Σk is calculated based on the decision variables bounds, as follows:

mk =


µ1
...
µn

 , µj = x̄j +
¯
xj

2 , j = 1, 2, . . . , n (2-21)

Σk =


σ2

1 . . . 0
... . . . ...
0 . . . σ2

n

 , σj = x̄j +
¯
xj

6 , j = 1, 2, . . . , n (2-22)

where
¯
xj and x̄j are the lower and upper bounds for the j-th decision variable

x ∈ Ω, being Ω the solution space; and k is the iteration number, initially null.
Step 2. Gaussian generator: where a set of N new solutions are

generated, derived from a normal distribution above the mk and Σk, thus
comprising the solutions set X(k) = {xk1, xk2, . . . , xkN}.

Step 3. Measurement process: where the solutions in the X(k) set
are evaluated, generating the Z(k) set of same size, but arranged in ascending
order, according to the Pareto-dominance and descending crowding distance
when the solutions have the same rank. All the non-dominated solutions
(rank = 1) are archived in a temporary repository until it reaches the total
file size of Na solutions. In case of file fully complete, the same criteria used
to sort the Zk set is considered to select the solutions that remain in the
archive [8]. In the next iteration, the i-th solution from X(k) that was added
to the archive has its mean started as xki and the same standard deviation from
the solution in the archive which generated it [63]. Also, the measurement ξk

is calculated by the mean of the Nξ best fit solutions in the archive, and from
ξk, the variance V k is obtained, as described below [63]:
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V k = 1
Nξ

Nξ∑
i=1

(xki,1 − ξk1,1)2, · · ·
Nξ∑
i=1

(xki,n − ξk1,n)2

 (2-23a)

ξk = 1
Nξ

Nξ∑
i=1

xki (2-23b)

where Nξ is the number of candidates chosen from the gaussian generator;
xki,j denotes the j-th dimension or decision variable of the i-th solution at the
instant k.

Step 4. Kalman estimator: where the Kalman gain Lk and slowdown
factor ak are calculated through Kalman filter equations depicted below:

Lk = Σk(Σk + diag(Vk))−1 (2-24a)

Wk =
[
vecd [(Ik − Lk) Σk]

]1/2
(2-24b)

ak =
αmin

(
1,
(

1
n

∑n
i=1

√
vki

)2
)

min
(

1,
(

1
n

∑n
i=1

√
vki

)2
)

+ max
i

(
wki
) (2-24c)

where the gaussian generator standard deviation vector is denoted by Sk =(
vecd (Σk)

)1/2
, being vecd(.) an operator that returns the diagonal components

of a matrix as vector; vki and wki are the i-th component of Vk and Wk,
respectively; finally, α ∈ (0, 1] is a scalar known as slowdown coefficient, but
the typical values are comprehended between [0.4,0.9] [62].

Step 5. Mean and standard deviation update: finally, in possession
of the Kalman gain Lk and slowdown factor ak, the mean and standard
deviation vectors are updated as follows:

mk+1 = mk + Lk (ξk −mk) (2-25a)

Sk+1 = Sk + ak (Wk − Sk) (2-25b)

After one iteration, which comprehends the resolution of Steps 2-5 for
all solutions in the native archive, the temporary repository becomes the new
native archive. For a better understanding of the algorithm, its pseudocode is
presented in Alg. 5 [63].
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Algorithm 5 MOHKA pseudocode
1: Set the parameters N , Na, Nξ and α;
2: Initialize m0 and Σ0 through Eq. (2-21) and Eq. (2-22);
3: Initialize the iteration counter t = 1;
4: Evaluate the fit value for all solutions in the population;
5: Identify non-dominated solutions and save them in the native archive;
6: while Stopping criteria is not satisfied do
7: for each solution in the native archive do
8: Gaussian generator: a new population X(t) with gaussian distribu-

tion is set;
9: Measurement: evaluation and sorting of X(t) solutions and Vk

calculation through Eq. 2-23a;
10: Find non-dominated solutions and save them in the temporary

repository;
11: if the temporary repository is fully complete then
12: Use the crowding distance concept, so that the temporary repos-

itory is always composed of rank = 1 solutions with greater crowding
distance;

13: end if
14: Kalman estimator: Lk calculation through Eq. (2-24a);
15: Mean and standard deviation update through Eq. (2-25a) and Eq.

(2-25b);
16: end for
17: Native archive update, becoming the same as the temporary file;
18: Update the iteration counter t = t+ 1;
19: end while

2.5
Machine Learning

Machine learning techniques are inspired by the psychological learning
theories, as introduced in Section 1. Also, the possible machine learning
approaches and their applications were presented in Section 1.1. Therefore,
the present section seeks to describe the binary classification decision tree
and principal component analysis, which are the supervised and unsupervised
learning methods used in the third work, respectively.
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2.5.1
Binary Classification Decision Trees

Decision trees are a conceptually simple and interpretable supervised
learning method, which are capable to perform both classification and regres-
sion tasks [10, 26]. The DT seeks to partition the feature space into a set of
rectangular regions Rm by selecting a feature Xj and a split point tm−1 recur-
sively, until a stopping rule is satisfied, being j the total amount of features
and m the final number of regions or terminal nodes in each step [124].

In order to select the feature Xj and the cutpoint tm−1 for each node,
it is considered the ’recursive binary splitting’ procedure, where the decision
tree split begins from the top to bottom, dividing the current branch in two
more branches according to the split point tm−1, which leads to a better tree
or briefly, reduce the ’impurity’ of the current node [124].

Seeking to decide the predictor Xj to split and the consequent cutpoint
tm−1, three methods are presented, i) the Gini index, introduced by in Eq. (2-
27), ii) cross-entropy or deviance, depicted by Eq. (2-28) and iii) twoing rule
presented in Eq. (2-29). The first two are impurity measures methods, therefore
the goal is to reduce these indices, while the third method is a different measure
of split point decision, which should have its value maximized. For the Gini
index and deviance methods it is necessary to calculate p̂mk, the proportion of
class k in the region m, which is depicted as follows [124]:

p̂mk = 1
nm

∑
xi∈Rm

I(yi = k) (2-26)

where nm is the number of observations in the region m and yi is the real
class/label related to the observation xi, being i = 1, . . . , nm.

G =
K∑
k=1

p̂mk(1− p̂mk) (2-27)

D = −
K∑
k=1

p̂mk log p̂mk (2-28)

P (L)P (R)(
K∑
k=1
| L(k)−R(k) |)2 (2-29)

where K is the number of classes; P (L) and P (R) are the fractions of
observations that split to the left and right of the cutpoint, respectively; L(k)
and R(k) denote the fraction of class k members in the left and right child or
subsequent after the split, respectively.

Thus, the class associated with each region m is the one with the highest
incidence in its class (k(m) = maxk p̂mk). The growing process of a decision
tree considering a bi-dimensional feature space is represented in Figure 2.7.
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Figure 2.7: Decision tree growing process and the consequent split in the feature
space [10].

2.5.2
Principal Component Analysis

The principal component analysis (PCA) is an unsupervised method for
dimensionality reduction, first proposed by Pearson in 1901 [125]. The main
idea of the PCA is to identify a lower-dimensional hyperplane close to the
training data, in a way that the hyperplane preserves the maximum amount
of variance, losing the minimum of information from the data set [26].

In order to perform the PCA, the singular value decomposition (SVD)
may be used, being one of the main applications of this matrix factorization
method [26, 126]. Therefore, given a matrix X, with i observations for each
of the j features or data, being i ≤ j, the SVD is conduced by the following
expression [126,127]:

X
i×j

= U
i×i
× Σ

i×j
× V

j×j
T (2-30)

where U and V are unitary matrices, being U columns composed by eigen-
vectors associated with the symetric matrix XXT and V columns com-
posed by the eigenvectors associated with the e largest eigenvalues of XTX;
and Σ = diag(σ1, . . . , σe) is a diagonal matrix of the non-negative square
roots of the eigenvalues of XTX, called singular values and is assumed that
σ1 ≥ σ2 ≥ · · · ≥ σe ≥ 0.
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Thus, seeking to obtain a matrix P with p principal components for each
observation i in the matrix X, the PCA is made according to Eq. (2-31b),
being p < j, since the objective is to reduce the matrix X dimension (i.e.
number of features or data for one observation) [126,127].

C
j×p

= columnsp(V ) (2-31a)

P
i×p

= ( C
j×p

T × X
i×j

T )T (2-31b)

where columnsp(.) is an operator that builds a matrix from the p first columns
of another one, so C is defined as a matrix composed of the p first columns of
V .
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3
Bio-Inspired Multi-objective Tuning of PID-Controlled An-
tilock Braking System

The present section seeks to depict the first work: ’Bio-Inspired Multi-
objective Tuning of PID-Controlled Antilock Braking System’ [108]. Therefore,
this section is divided as follows: Section 3.1 introduces the ABS problem;
Section 3.2, reviews the main contributions related to the first work, presenting
the methodology associated with them; Section 3.3 addresses the obtained
results; and, finally Section 3.4 summarizes the conclusions drawn and future
work suggestions.

3.1
Problem Description

Seeking to reduce the vehicle speed, a braking torque is exerted on
opposite way of the wheel angular velocity, which decreases the same and
induces a friction force Fx between the tire and ground, that is contrary to
the motion and promotes the reduction of longitudinal speed of the vehicle
as shown in Figure 3.2. However, the relation of angular and longitudinal
speed is not linear, since there is a physical limit of friction, which when
exceeded, results in a slip rate between the tire and the ground, that during
abrupt braking or on slippery surfaces, increases rapidly leading to wheel
locking and loss vehicle control [128]. Thus, in order to prevent the wheel
lock, the wheel slip may be controlled based on a friction model, as depicted in
Section 3.1.1; the wheel model used to simulate the braking action is presented
in Section 3.1.2; and the PID control law is introduced in Section 3.1.3.

3.1.1
Friction Model

Therefore, seeking to estimate the friction coefficient µ, the Burckhardt
model expressed in Eq. (3-1) was used by assuming a strictly longitudinal
braking, with sideslip and camber angles close to zero, the longitudinal force
Fx may be defined as the product of vertical force Fz by friction coefficient
µ [11].

µ(λ, vr) = vr1
(
1− e−λvr2

)
− λvr3 (3-1)
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where λ is the slip rate and vr1, vr2 and vr3 are empirical parameters obtained
for each type of soil.

In order to visualize the friction coefficient by slip value curves, i.e.
the Burckhardt curves, the Figure 3.1 was generated on top of the empirical
parameters vr1, vr2 and vr3 available in the Table 3.1.

Figure 3.1: Burckhardt model curves for dry and wet asphalt, cobblestone and
snow soil conditions.

Table 3.1: Burckhardt model empirical parameters values according to soil
condition [11].

Soil condition vr1 vr2 vr3

Dry asphalt 1.28 23.99 0.52
Wet asphalt 0.86 33.82 0.35
Cobblestone 1.37 6.46 0.67

Snow 0.19 94.13 0.06

3.1.2
Single Corner Model

The single corner model consists of a single decoupled wheel dynamics,
where suspension and tire deflection dynamics are disregarded, as shown in
Figure 3.2. Considering that, in braking situations, the slip can be defined by
Eq. (3-2) and in view of the assumption made in Section 3.1.1, the formulas
that depict single corner model dynamics are defined by Eq. (3-3a) and Eq.
(3-3b), respectively [11].
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λ = v − ωr
v

(3-2)
where ω and v are angular and longitudinal velocities, respectively; and r is
the wheel radius.

Jω̇ = rFzµ
(
v − ωr
v

)
− Tb (3-3a)

mv̇ = −Fzµ
(
v − ωr
v

)
(3-3b)

where J is the wheel inertia; m is the proportional mass of the vehicle to which
the wheel is subjected; Tb is the braking torque; Fx is the longitudinal force; Fz
is the vertical load which the wheel is subjected; µ is the friction coefficient in
which the value varies according to the longitudinal slip λ, already substituted,
as defined by Eq. (3-2) and following the Burckhardt model expressed in Eq.(3-
3a) and Eq. (3-3b).

Figure 3.2: Single Corner Model [11].

3.1.3
Proportional-Integral-Derivative Controller for Antilock Braking System

Digital PID controllers are large-scale used in the industry due to
their reliability, effectiveness and simplicity. Due to these benefits and the
ease of being incorporated into already operational control meshes, the PID
is researched in order to develop new design and tuning techniques (e.g.
[129–131]) [132–134].

The basic description of a PID controller for the braking problem is shown
in Eq. (3-4a) and Eq. (3-4b) [19]. Still, the representation in block diagrams of
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a regular PID applied to the braking problem is provided in Figure 3.3 [19].

Tb(t) = Kp

[
e(t) + Td

de(t)
dt

+ 1
Ti

∫ t

0
e(t)dt

]
(3-4a)

e(t) = λRef (t)− λ(t) (3-4b)

where Tb is the output torque of the controller;Kp is the proportional gain; Ti is
the integral time; Td is the derivative time; λRef (t) and λ(t) are the reference
and obtained slip, respectively, so λRef is the slip λ which yields the best
friction coefficient in the Burckhardt curve, i.e. the greater friction coefficient
in the curves depicted Figure 3.1. All terms represented at the instant t.

Figure 3.3: Block diagram of a regular PID applied to the ABS control.

However, the PID formulation may contain improvements such as [135]: i)
derivative term filtering, which uses a low-pass filter to avoid larger derivative
gains associated with high-frequency noises; ii) setpoint weight, used to avoid
steady-state error and also decrease the overshoot when there is a setpoint
change; and iii) anti-windup, which uses a saturation function of the actuator,
seeking to avoid that the control output exceeds the actuator operating limit
(i.e. if reaching the operation limit, the integrative term stops ceases to
accumulate error incessantly). Thus, the digital PID version used is the same
presented by Astrom [132], which provides the use of the previously mentioned
features and is described as following:

P (tk) = KP (βλRef (tk)− λ(tk)) (3-5a)

D(tk) = Tf
Tf + tsamp

D(tk − 1)− KD

Tf + tsamp
(λ(tk)− λ(tk − 1)) (3-5b)

V (tk) = P (tk) + I(tk − 1) +D(tk) (3-5c)

Tb(tk) = sat(V (tk), Tb−low, Tb−high) (3-5d)

I(tk) = I(tk − 1) + tsampKI(λRef (tk)− λ(tk) + tsamp
Tt

(sat(V )− V ) (3-5e)
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where tk is discrete time; P , I and D are the proportional, integral and deriva-
tive terms, respectively; tsamp is the sampling time at which PID operates; V
is the non-saturated output of the controller; sat is the actuator saturation
function; Tb−low and Tb−high are the upper and lower operating limits of the
actuator, being Tb the saturated braking torque; β is the setpoint weighting
term, which was not used since an unitary value (β = 1) was considered; Tf is
the filtering time, considered unitary (Tf = 1), as this value already guarantees
a Tf
Tf+tsamp 6= 0 and < 1 mangnitude, ensuring a stable difference equation; and,

finally, Tt is the anti-windup term, also considered unitary (Tt = 1), in order
to multiply the difference between PID original (V ) and saturated (sat(V ))
outputs by the PID sampling time tsamp in the integral update [132].

In short, the actuator saturation function works in a way that torque
Tb will be: i) Tb−low, when the output torque V is less than the lower limit of
actuator operation; ii) Tb−high, when the output torque V is greater than the
upper limit of actuator operation; and, iii) V : when the output torque V is
within the operating limits of the actuator.

3.2
Contributions

The ABS literature review present in Section 1.3 revealed that: i) the use
of a single-wheel model is sufficient and often used for the ABS development;
ii) the majority of ABS controllers present a high complexity, thus the use
of controllers easier to implement is fostered; iii) the use of traditional AI
optimization methods or neural networks are widely used for tuning PID-based
controllers, being interesting, thus, the use of new AI optimization methods
for this purpose.

Still, as introduced in Section 1.5.1, the present work proposed as main
contributions: i) a new multi-objective formulation for PID-controlled ABS
tuning, which was introduced in Section 3.2.1; ii) a novel MSSA version
considering opposite based learning initialization (OBLI-MSSA), which is
presented in Section 3.2.2; and iii) in order to follow the state of the art
evolution, the performance comparison between recent (i.e. MODA, MSSA
and OBLI-MSSA) and traditional (i.e. NSGA-II) AI optimization techniques.
The final contribution is carried out in the Section 3.3, being made through S,
ED and HV comparison metrics, depicted in Section 2.3.
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3.2.1
Multi-objective Tuning of a PID Controller

From the digital PID formulation described in Section 3.1.3, the multi-
objective optimization of proportional KP , integral KI and derivative KD

gains is sought for yielding optimal relations among performance and comfort.
Therefore, the metrics used to evaluate the performance [136] and comfort [22]
of each solution x are respectively listed below:

f1(x) = ∆S (3-6a)

f2(x) =

√∑N−1
1

[(
aReft+1 − at+1

)
− (aReft − at)

]2
∆S (3-6b)

where ∆S is the total distance required for the wheel to reach longitudinal
velocity v equal to zero; N is the maximum number of measurements estimated
or performed by the sensor; at and aReft are the current (i.e. at the instant
t) and reference acceleration, respectively, being at+1 and aReft+1 are the same
for the instant t + 1. Generally, for the same surface condition the reference
acceleration aRef is constant, being equal in moments t and t + 1, but for
simulations where braking does not start at the initial moment, this distinction
is necessary to not generate and accumulate errors. Also, the reference slip λRef
that yields the best friction coefficient µRef is defined through Burckhardt
curve (Eq. (3-1)). Therefore, aRef is identified by v̇ value when replacing λRef
and µRef with λ = v−ωr

v
and µ in Eq. (3-3a) [11].

Being n the number of decision variables for the ABS multi-objective
optimization, the regular MO statement (n = 3) for the ABS problem is
similar to that described in Eq. (2-2), but with i) F (x) = [f1(x), f2(x)]; and
ii) no equality and inequality constrains (Eq. (3-7)).

However, another ABS multi-objective optimization approach is proposed
by considering a PID gain scheduling. In essence, the idea is to divide the PID
action into 5 regions according to the slip value presented at the instant tk,
seeking to obtain a specific control law that presents a better performance for
each region. The control sections are divided into four equally spaced regions
from zero to the ideal slip value, and other region comprising the remaining
slip values, until the unitary slip, bringing together five control laws. Thus,
each solution becomes a n = 15 decision variables vector, every three being
the set of gains for one PID controller. For a better comprehension, the MO
statement for the novel approach is shown in Eq. (3-8).
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
min F (x) = [f1(x), f2(x)] ; x ∈ Rn

s.t.

K l ≤ x ≤ Ku

(3-7)



min F (x) = [f1(x), f2(x)] ; x ∈ R15

s.t.

K l
P ≤ x(3r − 2) ≤ Ku

P

K l
I ≤ x(3r − 1) ≤ Ku

I

K l
D ≤ x(3r) ≤ Ku

D

r = 1, . . . , 5. (3-8)

where F (x) is the objective vector; x is the solution vector with n decision
variables, where each one represents a proportional, integral or derivative
PID gain; f1(x) and f2(x) represent performance and comfort objectives,
respectively; r indicates the region to which the current slip belongs; and,
finally, K l and Ku are the lower and upper bounds vectors of the solution x,
also with n terms representing proportional, integral or derivative bounds. The
upper and lower bounds of each variable were defined by running optimization
rounds with arbitrary boundary values until the PF yielded did not present
solutions with threshold variables.

3.2.2
Opposite Based Learning Initialization for Multi-Objective Salp Swarm
Algorithm

The opposition based learning (OBL) is a research field which has
drawn a lot of attention in the last decade for having been used to improve
reinforcement learning, ANN, GA, PSO, ACO, ABC and others soft computing
algorithms [137].

Inspired by the opposition concept existing in different knowledge areas
and cultures, the OBL is defined as [137]:

Definition 1. Opposite number: Being x ∈ [a, b] a real number. The
opposite number of x is defined as follows:

x̆ = a+ b− x (3-9)
However, the concept of opposite number may be extended for n-

dimensional space, as presented below:
Definition 2. Opposite point in n space: Being x(x1, ...xn) a point in n

space and xi ∈ [ai, bi], i = 1, 2, ..., n. The opposite number of x is defined as
follow:

x̆i = ai + bi − xi (3-10)
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For AI optimization techniques, the OBL brought promising results in
accelerating the solutions convergence on PF, when considering an opposi-
tion based initial population, an idea conceived primarily by Rahnamayan,
Tizhoosh and Salama [138]. Posteriorly, Ventresca and Tizhoosh brought a
mathematical proof in their work [139] that a population consisting of half of
random solutions and half of opposing solutions has a greater variability than
an entire population of random individuals.

Therefore, in order to obtain a new MSSA version with a more diverse
initial population and greater solutions convergence potential on the PF, two
approaches were considered: in a first moment i) a traditional MSSA with
a ’half random-half opposite solutions’ initial population, known as OBLI-
MSSA; and, in a second moment ii) a MSSA with a P -sized initial population,
selected from the fittest solutions in a P -sized whole random population and
its opposite one (i.e. also with size P ). For this purpose, the selection process
is the same used by the NSGA-II, which was described in Section 2.4.2. Also,
the same dynamic of ’opposite population generation’ and ’selection process’
occurs during the iterations, according to a ’jumping rate’ (JR) probability,
on top of the current population [138]. The OBLI-MASS built by the second
approach are identified by the presence of the jumping rate next to the OBLI-
MSSA acronym.

3.3
Results

The PID-controlled single corner model was built using wheel radius
r, inertia J and proportional mass m of 0.30m, 1.00kg.m2 and 225.00kg,
respectively, as the case study depicted in the Savaresi and Tanelli book [11].
The simulated maneuver consists of reducing the vehicle speed from 55.55m/s
(200km/h) to 8.33m/s (30km/h) [22], on a dry asphalt road condition. The
simulation time stipulated was 6s, with the braking event starting at the
second first and a sampling time set to 0.01s. In addition, solutions that do not
reached the desired final velocity (≤ 8.33m/s) at the end of the simulation were
penalized, being associated with them a fit value of 109 for both objectives.
For dry asphalt road condition, the Burckhardt parameters are vr1 = 1.28,
vr2 = 23.99 and vr3 = 0.52, as depicted in Table 3.1 [11], which makes the
greater friction coefficient occur when the slip is λ = 0.17. Also, a saturation
limit of 1000Nm was considered for the actuator.

Regarding the MO algorithms configuration, for all methods the popula-
tion size P = 100 and the maximum number of itermax = 500 iterations were
defined, i.e. 50,000 maximum number of evaluations, being executed 30 opti-
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mization rounds for statistical comparison. Still, the search space was delimited
by KP = [200, 4000], KI = [1000, 9000] and KD = [0, 1500]. For the NSGA-
II, crossover and mutation rate were defined as PC = 0.9 and PM = 1/15,
respectively, the same parameter values used by Deb et al. [8] in the tested
problems. About MODA, the inertia weight was defined by Eq. (3-11) and
the food atraction weight was considered a random number in between zero
and two, with standard uniform distribution. Also, separation s, alignment a,
cohesion c and enemy distraction e weights were considered the same value y
(Eq. (3-12a)), presenting a different behavior after 75% of the iterations (Eq.
(3-12b)).

w = 0.9− iter
( 0.7
itermax

)
(3-11)

y = 0.1− iter
(

0.1
itermax

2

)
(3-12a)

y = 0.1−
(

0.1
itermax

2

)
(3-12b)

where iter is the current iteration.
As introduced in Section 3.2.1, two different PID approaches were con-

sidered. The first approach evaluated a conventional PID (n = 3), in which
the multi-objective optimization yielded 2226, 3000, 2839 and 3000 unique so-
lutions for MODA, MSSA, NSGA-II and OBLI-MSSA, respectively, after 30
optimization rounds. The solutions were concatenated and ranked according
to Pareto dominance, generating the Figure 3.4 from the first rank solutions
obtained by each method, totalizing 965, 1023, 1389 and 1104 Pareto optimal
solutions, following the same order presented above. However, results found
did not facilitate the methods comparison, since they reached to very close
PFs, mainly for MODA and NSGA-II methods, with practically overlapping
PFs.

The second approach considered a gain scheduling PID with five slip
regions: four equally spaced sections, from zero to the ideal slip λ = 0.17
and another region comprising the rest of the values, until the unitary slip,
totalling 5 different control laws, i.e. a solution vector x with n = 15 decision
variables. Thus, to select the control law, at each iteration tk the current slip
is evaluated, so that the region to which the current slip belongs is recognized,
causing the controller to use the gains defined for that specific region. After
30 optimization rounds, MODA, MSSA, NSGA-II and OBLI-MSSA provided
2307, 2999, 2847 and 2999 unique solutions, 155, 391, 115 and 415 of them
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being first rank solutions, respectively, as shown in Figure 3.5.

Figure 3.4: Pareto Front for each optimization algorithm, considering the PID-
controller case with 3 decision variables.

Therefore, the Figure 3.5 indicates that the second control architecture
yields better performance (f1) and comfort (f2) values. Also, the AI opti-
mization methods present PFs with greater distinction among them, for that
reason, the comparison between the MO algorithms is made on top of the
second control architecture.

Seeking to compare the dominance of the solutions that constitute the
Pareto Front of each method, the Table 3.2 was generated.

Table 3.2: Pareto Front Percentage of Domination for 15 Variables.
Algorithm MODA MSSA NSGA-II OBLI-MSSA
MODA � - 16.62 65.22 8.19
MSSA � 72.90 - 61.74 25.06

NSGA-II � 47.74 25.58 - 7.71
OBLI-MSSA � 84.52 55.50 80.00 -

The results presented in Table 3.2 show that the PF obtained by OBLI-
MSSA dominates more than is dominated the other PFs, as indicated by the
highlighted results, suggesting a better performance of OBLI-MSSA. Following
the OBLI-MSSA, MSSA dominates more than is dominated by MODA, NSGA-
II. In addition, MSSA has greater dominance over OBLI-MSSA when compared
with the other methods. In the third place in the dominance ranking is MODA
algorithm, that more dominates than is dominated by the NSGA-II, its direct
competitor, besides, also dominate a higher percentage of OBLI-MSSA, than
the NSGA-II.
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Figure 3.5: Pareto Front for each optimization algorithm, considering the PID-
controller case with 15 decision variables.

Spacing (S), Euclidian Distance (ED) and Hypervolume (HV) results
were also generated, being calculated base on PF solutions normalized between
[0, 1], for the comparison of metrics with different amplitudes. The results
obtainded constitute the content of Table 3.3, 3.4 and 3.5, where ’Min’ and
’Max’ refer to the minimum and maximum values found in all 30 optimization
rounds for the metric in question, while ’Mean’ and ’Std’ refers to the mean
and standard deviation of these same values. Also, the best result of ’Min’,
’Max’, ’Mean’ and ’Std’ found for each comparison metric is highlighted.

Table 3.3: Spacing Metric Values for 15 Variables.
Algorithm Min Max Mean Std
MODA 9.3944E-03 1.0401E-01 3.7728E-02 2.2450E-02
MSSA 2.7521E-03 3.3467E-02 8.6814E-03 7.2686E-03

NSGA-II 3.3208E-03 8.1461E-03 6.9186E-03 9.7306E-04
OBLI-MSSA 1.2677E-03 1.0440E-02 5.0483E-03 2.4747E-03

According to Table 3.3, OBLI-MSSA presented the best average, with
a result 27.03% lower than that obtained by the NSGA-II, the second lowest
average. However, NSGA-II has a standard deviation of 60.68% lower than
that obtained by OBLI-MSSA. Therefore, despite the best result of OBLI-
MSSA, the constancy of NSGA-II regarding the distribution of solutions in
PF is attractive. Following the mentioned methods is MSSA, which obtained
a mean and standard deviation better than MODA, the worst method for
Spacing.
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Table 3.4: Euclidean Distance Metric Values for 15 Variables.
Algorithm Min Max Mean Std
MODA 7.0239E-01 8.1552E-01 7.5419E-01 3.0757E-02
MSSA 6.5352E-01 7.8156E-01 7.2929E-01 3.0475E-02

NSGA-II 7.7599E-01 8.8934E-01 8.6617E-01 2.3143E-02
OBLI-MSSA 6.5441E-01 7.7184E-01 7.2413E-01 3.1796E-02

Table 3.5: Hypervolume Metric Values for 15 Variables.
Algorithm Min Max Mean Std
MODA 3.2643E-01 5.7018E-01 4.4855E-01 6.7977E-02
MSSA 5.0790E-01 6.8297E-01 5.8159E-01 4.3971E-02

NSGA-II 3.9197E-01 5.1235E-01 4.0425E-01 2.6100E-02
OBLI-MSSA 4.0354E-01 6.8116E-01 5.7544E-01 5.7739E-02

From Table 3.4, OBLI-MSSA yielded the best performance in terms of
mean, with 0.70% lower result than the second lower average, presented by
MSSA. Although standard deviation, minimum value and maximum value
presented by OBLI-MSSA are 4.33% higher, 0.14% higher and 0.12% lower
than the values found for MSSA, the two algorithms are considered tied.
Finally, MODA appears ahead of the NSGA-II, for having mean, minimum
and maximum of 12.93%, 9.48% and 8.30% lower than presented by NSGA-II,
respectively. Again, NSGA-II was the most consistent method, with a standard
deviation of 24.06% lower than the second best standard deviation, obtained
by MSSA.

From Table 3.5, in the study of Hypervolume, MSSA achieved the best
result with mean 1.07% higher and standard deviation 23.84% lower than
the OBLI-MSSA. In second place, OBLI-MSSA appears with mean 28.29%
higher and standard deviation 15.06% lower than the third highest average,
presented by MODA, that grant an average 10.96% higher than the lower
average, obtained by the NSGA-II. Even with NSGA-II having a standard
deviation of 61.60% lower than MODA and with a minimum of 20.07% higher,
which allows NSGA-II to still be able to be better than MODA, its result is
considered worse, since it is more constant on a worse average.

Despite the lower HV than the MSSA, OBLI-MSSA PF yield greater
dominance, achieved the best results in the spacing, ensuring the best distri-
bution of solutions on the PF, among the tested methods, and also obtained
good results on euclidean distance and hypervolume metrics. For these reasons,
the OBLI-MSSA was considered the best optimization method.

Thus, one solution was arbitrarily selected from the OBLI-MSSA PF as
the best solution. The solution is represented in Table 3.6, while the Figure 3.6
provides the speed reduction and braking torque behavior, showing that the
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selected solution is valid, fulfilling the objective to brake at 55.55m/s to reach
8.33m/s, before the simulation time of 6s ends.

Table 3.6: Simulated Solutions for OBLI-MSSA.

Solution Gain Slip Region
1 2 3 4 5

Selected
KP 2524.84 3999.67 3945.94 3869.18 3999.88
KI 9000.00 9000.00 8528.55 6600.07 2180.22
KD 0.00 58.56 0.00 1499.96 289.30

Figure 3.6: Braking torque, longitudinal and angular velocity for OBLI-MSSA
solution selected as the best (f1(x) = 138.5370; f2(x) = 0, 9449).

Finally, since MSSA yields a better performance when compared to
MODA and NSGA-II, the OBL initialization presented in Section 3.2.2 was
applied to MSSA. However, a second OBLI-MSSA architecture was tested,
also considering the description made in Section 3.2.2. Thus, the Fig 3.7
is introduced for the comparison of the first architecture OBLI-MSSA and
the second one, having in this last case a jumping rate varied among JR =
10%, 20%, 30% and 40%.

The Fig 3.7 indicates that the first architecture OBLI-MSSA yields a
better performance, since its PF practically dominates all others.

3.4
Conclusions

The present contribution proposed the improvement of a PID-based ABS.
Seeking to achieve this goal, NSGA-II, MODA, MSSA and a new proposed
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Figure 3.7: OBLI-MSSA versions comparison.

MSSA version, known as OBLI-MSSA, were applied for the PID tuning, being
proposed a new multi-objective formulation for PID-controlled ABS tuning, a
novel MSSA version considering opposite based learning initialization (OBLI-
MSSA) and the comparison of recent (i.e. MODA, MSSA and OBLI-MSSA)
and traditional (i.e. NSGA-II) AI optimization techniques.

The braking problem with 3 variables did not allow the methods compar-
ison, due to the proximity of results obtained by the methods. For the braking
problem with 15 variables, OBLI-MSSA was considered the best optimization
method, because its PF yield greater dominance and achieved spacing results
that ensure the best distribution of solutions on the PF, among the studied
methods. Additionally, OBLI-MSSA obtained good results on the other two
metrics, euclidean distance and hypervolume. The MSSA was considered to
have a better performance than MODA and NSGA-II, also due to the domi-
nance and the good results obtained in the S, ED and HV metrics. In terms
of performance, MODA presented a similar behavior to NSGA-II. However,
NSGA-II was the most constant method in all metrics, because it presented
the smallest standard deviations in all comparison metrics.

For future works it would be interesting to: i) introduce other PID
parameters as optimization decision variables, e.g. setpoint weighting term
β, filtering time Tf and anti-windup term Tt, as well as the slip values that
limit the gain scheduling regions; ii) evaluate if the proposed initialization
method for the OBLI-MSSA would yield better results, if applied to MODA
and NSGA-II; iii) seek ways to guarantee the same results stability obtained
by NSGA-II in other meta-heuristics, maybe making a fine tuning of the MO
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parameters; and iv) consider other controllers for the braking problem, e.g. a
fuzzy-PID [19] or fractional order fuzzy PID [140], evaluating whether these
controllers outperform the gain schedulling PID.
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4
Multi-Objective Optimization of Heat Exchanger Design
Through Heuristic Kalman Algorithm

The present section seeks to depict the second work: ’Multi-Objective
Optimization of Heat Exchanger Design Through Heuristic Kalman Algorithm’
[110]. Therefore, this section is divided as follows: Section 4.1 introduces the
heat problem; Section 4.2 reviews the main contributions related to the second
work, presenting the methodology associated with them; Section 4.3 addresses
the obtained results; and, finally Section 4.4 summarizes the conclusions drawn
and future work suggestions.

4.1
Problem Description

Heat exchangers are used for transfering heat between fluids or fluid
and solid materials, being widely used in diverse industrial processes [23],
which makes their effectiveness directly impact efficiency of other processes to
which they are applied. For this purpose, the optimization of heat exchangers
design draws the attention of the scientific community, highlighting the multi-
objective approach, considering performance and cost metrics, as seen in
Section 1.3.

Thus, the present section is divided in four parts: Section 4.1.1 introduces
the objective functions used to evaluate the solutions; Sections 4.1.2 and 4.1.3
depict both plate-fin (PFHE) and shell-tube (STHE) heat exchangers design,
respectively; and, Section 4.1.4 presents the ZDT1 description, a well known
multi-objective optimization benchmark problem. Still, for a better compre-
hension, the Figures 4.2 and 4.2 presents a schematic representation of both
PFHE (left) and STHE (right), respectively [12,141].
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Figure 4.1: Schematic representation of a plate-fin heat exchanger [12].

Figure 4.2: Schematic representation of a shell-tube heat exchanger [13].

4.1.1
Objective Functions

For the heat exchanger multi-objective optimization, two objectives are
proposed: i) the maximization of the effectiveness ε; and ii) the minimization of
the total annual cost Ctot. Considering a minimization configuration, the first
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and second objectives, respectively f1 and f2, are described as follows [142]:

f1(x) = 1/ (1 + ε(x)) (4-1a)

f2(x) = Ctot(x) (4-1b)

where x is the solution, constituted of n decision variables and ε is effectiveness
of the heat exchanger.

The effectiveness and total annual cost are distinctly calculated for PFHE
and STHE. Therefore, the PFHE effectiveness and total cost are depicted
in Eq. (4-2) and Eq. (4-3a)-(4-3d) [12], respectively. While, for STHE, the
effectiveness and total cost are described in Eq. (4-4) and Eq. (4-5a)-(4-
5d) [141], respectively.

ε = 1−
exp (−NTU(1 + C∗))

I0(2NTU
√
C∗) + I1

√
C∗(2NTU

√
C∗)

−1−C∗
C∗

∑∞
n=2 InC

∗
n
2 (2NTU

√
C∗)


(4-2)

where I is the modified Bessel function; NTU is the ’number of transfer units’;
and C∗ is the heat capacity ratio. Still, Sanaye and Hajabdollahi [12] and Kays
and London [143] present a more detailed mathematical formulation of the
above equation.

Ctot = aCin + Cop (4-3a)

Cin = CAA
n
tot (4-3b)

Cop =
(
kelτ

∆PV
3

)
c

+
(
kelτ

∆PV
3

)
h

(4-3c)

a = r

1− (1 + r)−q (4-3d)

where Cin and Cop are PFHE design and operating cost ($), respectively; a is
the annual cost; subscripts c and h refer to cold and hot fluid, respectively;
Atot, CA and n are the total heat transfer area (m2), cost per unit of surface
area ($/m2) and a constant, respectively; kel is the electricity price ($/MWh);
τ is the heat exchanger operation hours per year (h/year); ∆P , V and 3 are
the pressure drop (kPa), volume flow rate (m3/s) and compressor efficiency,
respectively; and, finally r and q are the interest rate and depreciation time
(years), respectively. Again, other details of the previous calculation may be
found in [12].
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ε = 2
(1 + C∗) + (1 + C∗2) coth

(
NTU

2 (1 + C2
∗)0.5

) (4-4)

Ctot = Cinv + Cop (4-5a)

Cinv = 8500 + 409A0.85
tot (4-5b)

Cop =
ny∑
t=1

Co
(1 + i)t (4-5c)

Co = kelτ

3p
((∆PV )t + (∆PV )s) (4-5d)

where Cinv and Cop are the STHE design and total operating cost ($),
respectively; At is the heat transfer area (m2); ny is the device lifespan (years);
i is the annual discount rate; t is the depreciation time (years); Co is the
annual operating cost ($); subscripts t and s refer to tube and shell part,
respectively; and, finally 3p is the pump efficiency. Still, other details of the
previous calculation may be found in [141].

4.1.2
Plate-fin heat exchanger

The PFHE design optimization problem considered a stainless steel
material with thermal conductivity kw = 18 W/mK and operating temperature
condition of 620 K, pressure of 180 kPa and mass flow rate of 1.45 kg/s on
the hot side, and operating temperature condition of 315 K, pressure of 120
kPa and mass flow rate of 1.35 kg/s for the cold side. Other constant values
indispensable for the objective functions evaluation as electrical energy price
kel = 20 $/MWh, price per unit of area CA = 90 $/m2, expoent which provides
non-linear growth relative to the area n = 0.6, operation time τ = 5000 h/yr,
compressor efficiency 3= 0.6, depreciation time q = 10 years and interest rate
r = 0.1%, as in Sanaye and Hajabdollahi [12].

In order to optimize the PFHE design, seven design variables with
their respective bounds were considered, namely as hot fluid flow length
(Lh = [0.2, 0.4] m), cold fluid flow length (Lc = [0.2, 0.4] m), no flow length
(Ln = [0.7, 1.2] m), fin thickness to fin length ratio (tf/Lf = [0.012, 0.048]),
fin height (Hf = [0.0015, 0.0080] m), fin length (Lf = [0.0020, 0.0035] m) and
fin pitch (ptf = [0.0010, 0.0025] m). All parameter bounds proposed by Sanaye
and Hajabdollahi [12].
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4.1.3
Shell-Tube heat exchanger

The STHE design optimization problem is the same analyzed by Sanaye
and Hajabdollahi [141] using GA, where is considered an oil cooler. In that
case, the oil enters the shell with mass flow rate of 8.1 kg/s and temperature
of 351.45 K (78.3◦C), while fresh water enters in the tubes with mass flow rate
of 12.5 kg/s and temperature of 303.15 K (30.0◦C). It was considered a tube
arrangement of 90◦ and, as in [141], electrical energy price kel = 0.15 $/kW
h, life period ny = 10 years, rate of annual discount i = 10%, operation time
τ = 7500 h/yr and pump efficiency 3p= 0.6 to evaluate the objective functions.

In order to optimize STHE design, six design variables with their re-
spective bounds were considered, namely as the inner tube diameter (di =
[0.0112, 0.0153] m), number of tubes (Nt = [100, 600]), length of tube (Lt =
[3, 8] m), tube pitch pt to outer tube diameter do (pt/do = [1.25, 2.00]), baf-
fle cut ratio (bc/Ds = [0.19, 0.32]), baffle spacing ratio (bs/Ds = [0.2, 2.4]),
where Ds is the shell diameter. All parameter bounds proposed by Sanaye and
Hajabdollahi [141].s

4.1.4
Zitzler-Deb-Thiele Test Problem 1

The ZDT1 is a bi-objective optimization benchmark with a convex PF,
which was proposed by Zitzler, Deb and Thiele in 2000 [14]. The ZDT1 stantard
statement is depicted by Eq. (4-6), while Figure 4.3 presents the ZDT1 Pareto
front [14]. 

min F (x) = [f1(x), f2(x)] x ∈ Rn

f1(x1) = x1

g1(x2, . . . , xn) = 1 + 9∑n
i=2

xi
(m−1)

f2(f1, g) = 1−
√

f1
g

(4-6)

where n = 30 decision variables, being all of them comprehended between
[0, 1]. Still, the optimization is performed until the maximum number of 25,000
evaluations, as suggest Zitzler, Deb and Thiele [14].
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Figure 4.3: Real Pareto front for the ZDT1 problem [14]

4.2
Contributions

As introduced in Section 1.3, the use heat exchanger design problem for
AI optimization methods comparison is a trend. Therefore, the present work
proposed as main contributions: i) the MOHKA performance improvement;
ii) the enhancement of MOHKA attractive features, i.e. the reduced number
of parameters and simplified architecture; and iii) assess the impact of the
slowdown coefficient α on the PF convergence, considering the typical values
between [0.4,0.9] [62]. Thus, as seen in Section 1.5.2, seeking to accomplish
these contributions, five new MOHKA versions were proposed based on i)
randomness adition by Nξ suppression; ii) a new architecture, where new
populations are created only on top of the measure ξ; iii) the replacement of
’crowding distance’ diversity preservation mechanism to ’niching procedure’.

However, for the development of these new MOHKA versions, only the
niching procedure diversity preservation mechanism requires a more exten-
sive explanation of its methodology, causing this section to be divided into
two parts: Section 4.2.1, where the niching procedure is introduced; and Sec-
tion 4.2.2, where the new MOHKA versions are described.

4.2.1
Niching Procedure Diversity Preservation Mechanism

The niching procedure diversity preservation mechanism was adapted
to replace the crowding distance operator (Section 2.4.2) in some of the
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new proposed MOHKA versions and may be dismembered in three steps, as
follows [144]:

Step 1. (Determination of reference points on a hyper-plane): The
reference points are placed in the objective space before the optimization
process starts, being preferably supplied by the optimization designer. In
case of lack of preference information, the reference points are allocated in
a structured manner as in [144], where it is considered a systematic approach
[145], which widely distributes H reference points on a (M − 1)-dimentional
normalized hyper-plane, where M is the number of objectives. Considering p
niches or divisions, the number H of reference points is described by:

H =
M + p− 1

p

 (4-7)

Step 2. (Adaptive normalization of population members): For each it-
eration, the population X(k) is composed by N solutions, each one evalu-
ated according to M objectives, generating the set Z(k) of fit values zki =(
zki,l, ..., z

k
i,M

)
, where i denotes the position of the fit value in the set Z(k),

l indicates the dimention of the i-th solution and k is the iteration number.
This notation is maintained until the end of the present subsection. As the
reference points are arranged in a normalized hyper-plane, the normalization
of solution fit value zki is important for the subsequent solution-reference point
association, as well as contributing to a better Pareto front coverage [146].
In order to perform the normalization, for each objective the minimum value
presented in the population (zminl ) is identified and an ideal point is defined
by z̄k = (zmin1 , zmin2 , ..., zminM ). Then, the solutions of Z(k) set are translated
through the subtraction operation zk′i,l = zki,l− z̄kl and an extreme point for each
l objective, denoted by zl,max, is identified by finding the solution which yields
a minimum for the following scalarizing function [144]:

ζkl = zk
′
i

wl
(4-8)

where ζl is the result of the scalarizing function when applied to the objective
l of the translated solution zk′i , wl is a weight vector close to the l-th objective
axis, which can be contructed as follows wl = el + ε

∑M
h=1,h6=l em, being ε a

tolerance, el a unit vector in the l-th axis direction and the same for em.
The M extreme vectors defined among the zl,max points constitute a

linear hyper-plane. For the distribution of Das and Dennis’ reference points,
the generated hyper-plane is coincident with that of the reference points and
the interception of such hyper-plane and the l-th objective axis is al. Therefore,
the fit values can be normalized, as follows [144]:
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zkinorm = zk
′
i

al
(4-9)

Step 3. (Association Operation): In the third step, reference lines are
drawn considering the reference points and the objective space origin. Then,
the perpendicular distance among the reference lines and each solution is
calculated. Therefore, the solutions are associated with the reference point
whose reference line yields the shortest distance to the solution. Thereby, it is
counted the number ρh of solutions associated to each niche or reference point
h and for solutions with same non-dominated rank, the preference is given to
the ones associated to niches with lower ρh.

4.2.2
Proposed Multi-Objective Heuristic Kalman Algorithm Versions

Based on the conventional MOHKA structure described in Section 2.4.5
and on the niching procedure introduced in Section 4.2.1, five MOHKA versions
were proposed. Seeking to name these novel versions, the subscripts ’r’, ’p’ and
’n’ were used to indicate the use of the following features: randomness addition,
simplified architecture and the use of niching procedure diversity preservation
mechanism. Therefore, the proposed MOHKA versions are introduced below,
indicating the difference in them to the conventional MOHKA.

Version 1. (Multiobjective heuristic Kalman algorithm random -
MOHKAr): this version has the same architecture as the MOHKA, but the
measure ξ becomes a randomly selected solution from the archive, no longer
being an average of the Nξ best solutions;

Version 2. (Multi-objective heuristic Kalman algorithm random pro-
portional - MOHKArp): this version selects the measure ξ in the same way as
MOHKAr. However, the mean and standard deviation of the solution selected
as ξ is used to initialize a new population in the next iteration, making the
iterations have a fixed/proportional number of evaluations;

Version 3. (Multi-objective heuristic Kalman algorithm niching -
MOHKAn): similar to MOHKA, but with the adapted niching procedure being
used at the locus of the crowding distance operator as diversity preservation
mechanism;

Version 4. (Multi-objective heuristic Kalman algorithm random niching
- MOHKArn): similar to MOHKAr, but with the crowding distance operator
replaced by the niching procedure as the diversity preservation mechanism;

Version 5. (Multi-objective heuristic Kalman algorithm random pro-
portional niching - MOHKArpn): similar to MOHKArp version, but with the
niching procedure replacing the crowding distance operator as the diversity
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preservation mechanism.

4.3
Results

In order to study the MOHKA parameter α and the MOHKA versions
proposed above, the PFHE, STHE and ZDT1 problems are considered.

For the ZDT1 problem it was considered a maximum number of 25,000
evaluations, as suggest Zitzler, Deb and Thiele [14]. In order to study the
ideal number of evaluation for PFHE and STHE problems it was performed
13 optimization tests using MOHKAr, which considered 30 rounds of opti-
mization, α = 0.40, a population size of N = 100, Nξ = 6 and a maximum
evaluations number of 1,000, 2,000, 3,000, 4,000, 5,000, 7,500, 10,000, 20,000,
30,000, 40,000, 50,000, 75,000, 100,000, respectively. As Figures 4.4 and 4.5
indicates, when the number o evaluations reached 30,000 there is practically
no improvement in the generated PF for PFHE (left) and STHE (right) prob-
lems. Therefore, for all numbered tests proposed next the population size N ,
the maximum number of evaluation Evalmax and the number of optimization
rounds nseeds were fixed in 100, 30,000 and 30, respectively, also it was consid-
ered Nξ = 6 for all MOHKA Nξ-dependent versions.

Figure 4.4: Iteration study for PFHE problem.

For all studied methods the slowdown coefficient α was varied according
to the typical values 0.40, 0.50, 0.60, 0.70, 0.80 and 0.90 [62]. To facilitate the
representation of results in tables, each combination of method and α value
was called a test and numbered from 1 to 6 for the original MOHKA, 7 to
12 for MOHKAr, 13 to 18 for MOHKArp, 19 to 24 for MOHKAn, 25 to 30
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Figure 4.5: Iteration study for STHE problem.

for MOHKArn and 31 to 36 for MOHKArpn, totalizing 108 tests considering
PFHE, STHE and ZDT1 problems.

Seeking to produce a PF said real, the tests from 1 to 36 were concate-
nated, totalling 20998 and 20997 unique solutions that generated 2452 and
1741 nondominated solution for the PFHE and STHE problems, respectively.
After producing the PF said real, the tests from 1 to 36 were redone to obtain
the IGD values, allowing to evaluate the IGDa and IGDf metrics.

Table 4.1 presents the means and standard deviations (’Std’) for all
methods from 1 to 36, when applied to the PFHE, STHE and ZDT1 problems.
The best IGDa and IGDf means for each method are highlighted in bold

Seeking to assess if any of the new versions of MOHKA brought per-
formance increase, the comparison metrics IGDa and IGDf are evaluated for
each method and optimization round, following the methodology introduced
in Section 2.3. Therefore, the violin plots for the IGDa and IGDf metrics
obtained for all methods are presented in the Figures 4.6, 4.7 and 4.8, where
the red and black points represent their mean and median, respectively. Also,
the Table 4.2 was generated with the median obtained by each metric and
method for the problems of PFHE, STHE and ZDT1, respectively, being the
best IGDa and IGDf for each problem and MOHKA version highlighted in
bold.
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Table 4.1: Mean and standard deviation of the IGDa and IGDf metrics for
all methods and problems.

PFHE - IGDa PFHE - IGDf STHE - IGDa STHE - IGDf ZDT1 - IGDa ZDT1 - IGDf

Tests Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
1 0.08071 0.01921 7.11178 0.58126 0.09862 0.02965 87.75893 4.19107 0.32733 0.03384 0.26669 0.03012
2 0.08092 0.01946 7.09336 0.71280 0.09862 0.02965 87.75517 4.19216 0.32729 0.03390 0.26749 0.02773
3 0.08082 0.01943 7.07986 0.63271 0.09862 0.02965 87.75512 4.19212 0.32684 0.03399 0.26524 0.02867
4 0.08076 0.01935 7.08948 0.68651 0.09862 0.02965 87.72650 4.20782 0.32675 0.03369 0.26432 0.02917
5 0.08066 0.01921 7.10559 0.58307 0.09863 0.02967 87.95238 4.21336 0.32658 0.03386 0.26043 0.02572
6 0.08084 0.01941 7.14410 0.60368 0.09862 0.02965 87.69463 4.17887 0.32702 0.03403 0.26109 0.03035
7 0.08151 0.02340 7.32560 0.51024 0.10093 0.02807 87.87557 3.47522 0.32150 0.03026 0.20438 0.03235
8 0.08150 0.02339 7.27459 0.51849 0.10093 0.02808 87.85075 2.98962 0.32095 0.02864 0.19721 0.03352
9 0.08153 0.02337 7.42823 0.58410 0.10093 0.02807 87.94513 3.50065 0.32106 0.02934 0.20621 0.03567
10 0.08154 0.02349 7.35128 0.50415 0.10092 0.02807 87.78711 3.31150 0.32167 0.02834 0.20905 0.03161
11 0.08155 0.02345 7.34596 0.51031 0.10093 0.02809 87.59678 3.20180 0.32136 0.02953 0.20746 0.03504
12 0.08138 0.02334 7.19221 0.62525 0.10093 0.02809 87.71771 3.48119 0.32182 0.02922 0.20508 0.03274
13 0.07900 0.03487 7.34952 0.68981 0.07952 0.02265 87.66299 4.45028 0.12920 0.00907 0.13077 0.01213
14 0.07838 0.03771 7.33197 0.69534 0.08048 0.02298 88.75991 3.87375 0.12838 0.01161 0.12252 0.01289
15 0.07688 0.03409 7.70273 1.31958 0.07969 0.02231 87.01330 5.24734 0.12462 0.01176 0.11306 0.01006
16 0.07739 0.04001 7.38552 0.59545 0.08053 0.02284 88.26105 4.26554 0.12222 0.01215 0.10558 0.01219
17 0.07611 0.03645 7.56501 0.67937 0.07980 0.02275 88.26542 4.74387 0.12188 0.01142 0.10082 0.01137
18 0.07765 0.03624 7.36063 0.77870 0.08007 0.02274 88.96298 4.58372 0.12060 0.01069 0.09591 0.00919
19 0.12072 0.02440 32.87390 14.33120 0.14376 0.03657 430.71277 141.55400 0.33029 0.02938 0.27892 0.04214
20 0.12146 0.02425 36.40087 13.25994 0.14376 0.03657 430.71523 141.55175 0.33016 0.02940 0.27940 0.04327
21 0.12085 0.02435 31.31559 14.11465 0.14381 0.03650 430.89771 141.35766 0.32996 0.02945 0.27621 0.03895
22 0.12122 0.02376 33.68889 13.92103 0.14389 0.03656 428.84724 144.11652 0.32989 0.02929 0.27514 0.04104
23 0.11933 0.02295 34.00893 16.78557 0.14376 0.03657 430.91362 141.33028 0.32988 0.02943 0.27504 0.03763
24 0.11921 0.02285 31.74919 14.30598 0.14376 0.03657 430.91627 141.32728 0.33014 0.02857 0.27787 0.03501
25 0.12181 0.02101 31.92999 22.56989 0.14090 0.03532 405.69336 158.81975 0.32600 0.03062 0.20397 0.03207
26 0.12293 0.02112 35.30762 25.86354 0.14101 0.03519 407.81652 158.75043 0.32467 0.03066 0.20190 0.03105
27 0.12431 0.02179 35.57332 32.94169 0.14101 0.03519 407.81254 158.75279 0.32578 0.03054 0.20077 0.03727
28 0.12142 0.02286 34.02119 24.18223 0.14101 0.03519 407.81330 158.75202 0.32597 0.03117 0.20823 0.03615
29 0.12241 0.02431 31.13583 17.48641 0.14101 0.03519 412.07004 158.03089 0.32577 0.03178 0.20340 0.03896
30 0.12390 0.02321 35.82697 23.96487 0.14085 0.03521 398.76217 148.53808 0.32521 0.03181 0.19830 0.03464
31 0.16384 0.05011 68.48640 51.67784 0.23234 0.05710 846.66454 297.14001 0.12977 0.01280 0.12934 0.01500
32 0.16856 0.05909 59.16842 54.37152 0.22902 0.05703 833.75323 263.03309 0.12474 0.01317 0.11770 0.01030
33 0.17072 0.04534 55.87618 39.29132 0.22940 0.05625 916.21595 314.54644 0.12451 0.01199 0.11412 0.01194
34 0.18779 0.06080 70.08573 57.04002 0.22962 0.06167 868.93923 270.80321 0.12165 0.01275 0.11008 0.00894
35 0.16634 0.05111 49.85450 31.74101 0.23115 0.06066 859.19644 267.32397 0.12092 0.01240 0.10345 0.00941
36 0.19156 0.07599 72.32754 69.76732 0.23123 0.05811 875.97880 223.90925 0.11825 0.01120 0.09880 0.01089
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Figure 4.6: Violin plots for the IGDa and IGDf obtained on all tests in the
PFHE problem.
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Figure 4.7: Violin plots for the IGDa and IGDf obtained on all tests in the
STHE problem.
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Figure 4.8: Violin plots for the IGDa and IGDf obtained on all tests in the
ZDT1 problem.

According to Figures 4.6, 4.7 and 4.8 and with the Table 4.2, it is observed
that i) the slowdown coefficient α did not have a relevant impact on the IGDa

and IGDf metrics, which may perhaps be justified by the use of α typical
values [62], that were large enough to avoid local minima (for both IGDa and
IGDf ) or because the maximum evaluation number is large enough to reach
PFs very close to the real ones (for IGDf ); ii) even though MOHKArn and
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Table 4.2: Median of the IGDa and IGDf metrics for all methods and
problems.

PFHE STHE ZDT1
Tests IGDa IGDf IGDa IGDf IGDa IGDf

1 0.08033 7.27768 0.09726 87.39741 0.32168 0.26276
2 0.08033 7.24413 0.09726 87.34070 0.32137 0.26322
3 0.08034 7.30294 0.09726 87.34071 0.31855 0.26574
4 0.08034 7.20299 0.09726 87.34071 0.32040 0.26092
5 0.08033 7.24402 0.09726 88.17209 0.31973 0.25835
6 0.08033 7.25578 0.09726 87.34142 0.32061 0.25655
7 0.08019 7.45012 0.09915 87.03768 0.32230 0.20775
8 0.08026 7.44444 0.09915 87.03771 0.31727 0.19718
9 0.08068 7.50721 0.09915 87.03774 0.31849 0.20767
10 0.08060 7.49192 0.09901 86.93513 0.32064 0.20976
11 0.08071 7.45964 0.09915 86.78924 0.31989 0.21099
12 0.08081 7.37480 0.09915 86.63860 0.32215 0.20653
13 0.07561 7.57068 0.07896 86.55314 0.12892 0.13035
14 0.06894 7.53459 0.08044 87.85575 0.12686 0.11759
15 0.07126 7.62879 0.07892 85.35071 0.12328 0.11230
16 0.06245 7.52240 0.08003 87.19535 0.11987 0.10779
17 0.06582 7.75752 0.07904 87.77567 0.11854 0.09853
18 0.06791 7.57623 0.07982 88.22505 0.11924 0.09578
19 0.11580 29.09568 0.14629 396.80555 0.32536 0.27492
20 0.11756 34.96224 0.14629 396.80160 0.32494 0.27979
21 0.11528 29.22926 0.14629 396.80171 0.32462 0.27757
22 0.11612 30.72122 0.14629 396.80182 0.32499 0.27660
23 0.11401 30.40658 0.14629 396.80193 0.32518 0.27581
24 0.11349 29.24911 0.14629 396.80610 0.32496 0.27483
25 0.11996 26.60234 0.14775 360.75719 0.32555 0.20248
26 0.11936 31.06591 0.14775 376.04319 0.32580 0.19883
27 0.12244 26.97527 0.14775 376.04323 0.32364 0.19650
28 0.12122 28.52293 0.14775 376.04327 0.32552 0.20208
29 0.12180 28.31938 0.14775 391.16039 0.32452 0.19044
30 0.12631 31.52410 0.14775 376.04336 0.32746 0.19847
31 0.15574 50.71148 0.21227 794.81287 0.13059 0.12744
32 0.15206 49.45806 0.20804 825.65304 0.12241 0.11731
33 0.16705 43.35480 0.20921 849.79440 0.12225 0.11348
34 0.17840 52.70905 0.20787 828.65877 0.12290 0.11000
35 0.15911 39.75508 0.20921 829.27436 0.12162 0.10439
36 0.17710 49.08957 0.20921 828.95251 0.11910 0.09923

MOHKArpn yielded best results than the original MOHKA for ZDT1 problem,
iii) the MOHKA versions that used the niching procedure (tests from 19 to
36) yielded worse results overall, when compared with the versions that used
crowding distance, and finally iv) the MOHKArp method (tests from 13 to
18) presented the best performance, for providing a visually inferior median
in the IGDa metric for PFHE and STHE problems and practically tied with
MOHKArpn in ZDT1 problem, and also a tied performance with the best
IGDf values for all problems.

In order to evaluate the best MOHKArp, each column interval of the
Table 4.2 that corresponds to the MOHKArp IGDa and IGDf medians was
separately scaled with zero mean and standard deviation of one, following by
the sum of the row values found and the ranking of the sums, which allows
us to state that the MOHKArp with α = 0.70 (test 16) was the best method
according to both IGDa and IGDf metrics. The same process was done with
the other MOHKA versions, indicating the MOHKA with α = 0.90 (test
6), MOHKAr with α = 0.50 (test 8), MOHKAn with α = 0.60 (test 21),
MOHKArn with α = 0.60 (test 27) and MOHKArpn with α = 0.80 (test 35)
as the best MOHKAs for each version.

Therefore, the Figures 4.9, 4.10 and 4.11 were generated, presenting the
30 rounds IGD median obtained during the evaluation number evolution in
the PFHE, STHE and ZDT1 optimization problems, respectively.
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Figure 4.9: PFHE problem IGD evolution comparison for the best of each
MOHKA version.

Figure 4.10: STHE problem IGD evolution comparison for the best of each
MOHKA version.

The Figures 4.9 and 4.10 consider the IGD evolution of the best of
each MOHKA version and confirms that for PFHE and STHE problems, the
niching-procedure-dependent methods had a worse convergence in comparison
with the methods that do not use this feature. This behavior changes in ZDT1
problem where MOHKA and MOHKAr lose, while MOHKArpn earn perfor-
mance, being comparable to the MOHKArp IGD convergence performance, as

DBD
PUC-Rio - Certificação Digital Nº 1812727/CA



Table of contents 82

Figure 4.11: ZDT1 problem IGD evolution comparison for the best of each
MOHKA version.

seen in Figure 4.11. In short, for PFHE and STHE problems, the MOHKArp
has a slightly better convergence than the best MOHKA and MOHKAr, being
these two tied. Nonetheless, for ZDT1, MOHKArp has a tied performance to
the MOHKArpn and for all problems, MOHKArp converges faster.

Despite the best performance, Figure 4.9 reveals that the standard
deviation of the MOHKArp with α = 0.70 encompasses the MOHKA with
α = 0.90 IGD distribution for the PFHE problem, suggesting a statistically
non-relevant result. The Wilcoxon rank sum test among the IGDa and IGDf

medians obtained for tests 6 and 16 was made followinf the methodology in
Section 2.3.5, yielding p-values that corroborates the suggestion (0.2366 for
IGDa and 0.1294 for IGDf ). However, for ZDT1 problem the performance
enhance was significant (p-value of 1.8626E-09 for both metrics) and finally,
for STHE problem the performance improvement was relevant for the IGDa,
but not for IGDf (p-values of 0.0234 and 0.9032, respectively).

4.4
Conclusions

In this work we observed that the use of heat exchanger design problems
for AI optimization techniques comparison is a common practice. Therefore,
five new MOHKA versions were proposed, being compared with the traditional
one through the IGDa and IGDf results for PFHE and STHE design problems,
as well as the ZDT1 problem, seeking to enhance the general performance of the
method and its attractive features, and also assess the impact of the MOHKA
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slowdown coefficient.
The results had showed that i) the slowdown coefficient α did not impact

the convergence of the methods, which may have been caused by the use of
typical values that were effective in avoiding local minima or by the use of
a maximum number of evaluations that allowed obtaining PFs very close to
the real ones for PFHE and STHE problems, ii) with the excepetion of the
ZDT1 problem, the adapted niching procedure was not effective in substitute
the crowding distance operator as a diversity preservation mechanism and iii)
the MOHKArp was the version that presented the fastest IGD convergence,
although the median of the best MOHKArp (α = 0.70) had presented a better
performance in the IGD evolution curve when compared to the best MOHKA
(α = 0.90), the result is not statistically relevant for the PFHE problem for
not having reached p-value lower than 0.05.

For future works, it would be interesting to: i) look for ways to improve
the MOHKA versions, mainly MOHKArp, the best rated. One possibility
would be to promote a change in the search modality as the optimization
follows by randomness, thus developing a meta-heuristic based on MOHKA;
and ii) evaluate the performance of niching-procedure-dependent codes in
many-objectives problems (i.e. four or more objectives).
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5
Pressure Transient Signals Feature Extraction for Illegal Tap-
ping Detection with Supervised Learning

The present section seeks to depict the third work: ’Pressure Transient
Signals Feature Extraction for Illegal Tapping Detection with Supervised
Learning’. Therefore, this section is divided as follows: Section 5.1 defines the
pipeline model and simulated tests; Section 5.2 reviews the main contributions
related to the first work, presenting the methodology associated with them;
Section 5.3 addresses the obtained results; and, finally Section 5.4 summarizes
the conclusions drawn and future work suggestions.

5.1
Problem Description

The pipelines are widely used for the transport of fuel, chemicals and
water, due to their economic, ecological and transport efficiency. However,
when these structures fail, the potential for product spillage is high, causing
economic and environmental losses [27]. As seen in Section 1, in recent years,
the raise of fuel theft cases has led to an increase in the number of pipeline
failures, which promotes the development of leak detection systems sensitive
to theft.

Therefore, this section is divided into two parts: Section 5.1.1, which
seeks to describe the pipeline structure and the properties of the product used
in the simulation model, while the Section 5.1.2 details the simulated tests
used to obtain the pressure transients corresponding to the pump start and
stop, flow increase, outlet valve throttling and PSV actuation situations.

5.1.1
Pipeline Simulated Model

The simulated model is based on a real pipeline of 32" of diameter
and 181.83 km of length. The duct thickness varied according to the length,
being of 0.562", 0.500", 0.438", 0.406", 0.375", 0.344" and 0.250" for the
respective stretches 0.000-8.932, 8.932-26,069, 26.069-37.466, 37.466-54.520,
54.520-69.181, 69.181-90.202 and 90.202-181.83, all expressed in kilometers
(km). The model has two centrifugal booster pumps (A/B) with nominal flow
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rate of 2,960 m3/h and five centrifugal pumps (A/B/C/D/E) with nominal
flow of 3,000 m3/h and minimum flow of 454 m3/h, all arranged in series. The
product used in the simulation was a crude petroleum with density, viscosity,
vapor pressure and Bulk modulus of 0.8986 kg/m3, 66.36 cP , 0.50 kgf/cm2abs

and 15,751 kgf/cm2, respectively, all magnitudes reported for 20◦C. The
pipeline pressure was observed at 8 different points over the simulation time,
these points were called ’Sensor i’, i = 1, ..., 8, being allocated at the positions
of 0, 20, 60, 80, 100, 120, 160 and 180 km, respectively. The pipeline inlet
and outlet operating pressure were 60 and 1 kgf/cm2, respectively, while the
operating flow rate (Qop) was 2,568.42m3/h. Also, three valves were positioned
at 18, 85 and 155 km, in order to simulate the pressure transients for the illegal
tapping points, all with a valve opening that yields 100 m3/h of theft flow rate,
representing approximately 4% of the operating flow rate Qop when openned.
The simulation model is schematically presented in Figure 5.1.

Crude Oil
2568.42 m3/h

S1

(0 km)
S2

(20 km)
S3

(60 km)
S4

(80 km)
S5

(100 km)
S6

(120 km)
S7

(160 km)
S8

(180 km)

F1

(18 km)
100m3/h

F2

(85 km)
100m3/h

F3

(155 km)
100m3/h

60 kgf/cm2 1 kgf/cm2

Figure 5.1: Simulated model scheme.

5.1.2
Simulated tests

Seeking to describe the simulated tests done to obtain the pressure
transients, some procedures are explained next:

Procedure 1. (Start maneuver): booster A and pumps D, B and E are
activated with a delay of 60s among them, totaling 180s duration;

Procedure 2. (Stop maneuver): in the same order as in the start
maneuver, all booster and pumps are closed, being the respective downstream
valves always closed before the upstream ones;

Procedure 3. (Flow increase): pump A is activated in order to increase
the operating flow rate;

Procedure 4. (Choke): the pipeline outlet valve has it opening reduced
to 2% of the initial opening;

Procedure 5. (PSV actuation) the pipeline outlet valve is completely
closed in order to trigger the PSV present at the end of the line (181.83 km),
which the opening set point is 20 kgf/cm2;
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Procedure 6. (Illegal tapping opening): the valve corresponding to the
illegal tapping at beginning, middle or end regions of the pipeline (18/85/155
km) are opened.

The simulations were numbered from 1 to 7, being the simulations
from 1 to 4 and from 5 to 7 performed to obtain normal pipeline operation
transients and fuel theft transients, respectively. Knowing the procedures, the
simulations are described in the sequence and the representation of the time
pressure signals obtained for each sensor in each simulation are presented in the
Figures 5.2, 5.3, 5.4 and 5.5. Also, for all simulations and sensors, 5 pressure
measurements were recorded per second.

Simulation 1. Start Maneuver + 1860s + Stop Maneuver + 780s;
Simulation 2. Start Maneuver + 1860s + Flow Increase + 720s;
Simulation 3. Start Maneuver + 1860s + Choke + 1020s;
Simulation 4. Start Maneuver + 1860s + PSV Actuation + 1560s;
Simulation 5. Start Maneuver + 1620s + Illegal Tapping Opening

(18km) + 240s + Stop Maneuver + 780s;
Simulation 6. Start Maneuver + 1620s + Illegal Tapping Opening

(85km) + 240s + Stop Maneuver + 780s;
Simulation 7. Start Maneuver + 1620s + Illegal Tapping Opening

(155km) + 240s + Stop Maneuver + 780s;

5.2
Contributions

As seen in Section 1.3, the use of: i) MLCs for the development of LDS
is widespread; ii) the supervised learning approach for the MLCs training is
the most common procedure for classification tasks [26]; and iii) the use of
DT classifiers for LDS construction was little explored. Aware of the literature
review conclusions and the importance of developing theft-sensitive LDS, the
third work proposed the use of a physical pipeline based model to extract pipe
leakage and regular operation pressure transient for three different scenarios.
For this purpose, two DT are trained through time and PCA extracted
features, respectively. The main contributions sought are to i) propose two
different data-driven modeling workflows for theft sensitive LDS; ii) evaluate
the use of DT classifiers for this application; and iii) evaluate which feature
extraction approach generates the best DT model, according to the prediction
performance in different scenarios.

Therefore, the present section is divided in two parts: Section 5.2.1 and
Section 5.2.2, where the time and PCA/SVD feature extraction techniques are
depicted, respectively.
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Figure 5.2: Simulations made to extract the normal duct operation transients.

Before the feature extraction procedure description, it is important to
note that, for both approaches, the extraction was done on top of the data
corresponding to the desirable transients (i.e. spliting the data into the exact
pressure series which correspond to the desirable transient). For this purpose,
the data of Simulations 2-7 went through an identification step seeking to find
the first pressure signal p referent to the transients of Flow Increase, Choke,
PSV Actuation and Illegal Tapping Opening at 18, 85 and 155 km, respectively,
while for simulation 1 data it was considered p = 1 to extract features of Start
and Stop Maneuver transients, as well as the steady state normal operation.

5.2.1
Time-based Feature Extraction

In the first feature extraction approach a window sizeWsz = 225 data and
a window step N = 1 were considered. For each windowWi, where i = 1, . . . , n
indicates the number of windows/observations, the time-based features were
calculated, i.e. 28 possible cross-correlations (XC) among the pressure data
of the 8 and 72 statistical features, corresponding to Kurtosis coefficient (K),
L2-energy norm (E), curve length coefficient (CL), mean (µ), median (m),
standard deviation (S), maximum (Max), minimum (Min) and the difference
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Figure 5.3: Simulations made to extract the fuel theft pressure transients at
the 18 km illegal tapping.

among maximum and minimum (A), for each one of the 8 sensors’ pressure
series. The formulas for calculating the features are depicted below [147,148]:

XCi
j−k =

∑Wsz
ii=1[xj(ii)− x̄j][xk(ii)− x̄k]√∑Wsz

ii=1[xj(ii)− x̄j]2
√∑Wsz

ii=1[xk(ii)− x̄k]2
(5-1)

Ki
k =

1
Wsz

∑Wsz
ii=1[xk(ii)− x̄k]4

{ 1
Wsz

∑Wsz
ii=1[xk(ii)− x̄k]2}2

(5-2)

Ei
k = ‖xk‖2 =

√√√√Wsz∑
ii=1

xk(ii)2 (5-3)

CLik =
Wsz∑
ii=2
| xk(ii)− xk(ii− 1) | (5-4)

µik = x̄k = 1
Wsz

Wsz∑
ii=1

xk(ii) (5-5)

mi
k =

xk((Wsz + 1)/2) if Wsz is odd

[xk(Wsz/2) + xk(Wsz + 1)]/2 if Wsz is even
(5-6)

Sik =

√√√√ 1
Wsz − 1

Wsz∑
ii=1
| xk(ii)− x̄k | (5-7)

Maxik = max(xk) (5-8)

Minik = min(xk) (5-9)

Aik = max(xk)−min(xk) (5-10)
where XCi

j−k, Ki
k, Ei

k, CLik, µik, mi
k, Sik, Maxik, Minik and Aik are the cross-
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Figure 5.4: Simulations made to extract the fuel theft pressure transients at
the 85 km illegal tapping.

correlation, Kurtosis, L2-energy norm, Curve length, mean, median, standard
deviation, maximum, minimum and the difference between these last two, all
for the pressure series x correspondent to the window Wi, considering the
sensors j and k, being j = 1, . . . , 7, k = 1, . . . , 8 and j < k.

Therefore, the training matrix F1 was constructed from the 100 features
values in columns for the 62,271 windows analyzed in rows and with one extra
column of classes, presenting i) label 0 if the features were extracted from the
normal steady state operation or transients of Start and Stop Maneuver, Flow
Increase, Choke and PSV Actuation or ii) labels 1, 2 and 3 if the features
considered the pressure data of the Illegal Tapping Opening transients at 18,
85 and 155 km, respectively.

5.2.2
PCA-based Feature Extraction

For the second features extraction approach, theX matrix of observations
used for DT training was constructed by concatenating in each row Xi the
pressure series correspondent to the window Wi for all pressure sensors Pk,
k = 1, . . . , 8, where i = 1, . . . , n indicates the number of windows/observations.
The window size considered was Wsz = 200, thus each row Xi has 1600 terms.
Also, the window step N and the number of observations n varied according to
the Table 5.1, making the observation matrix X have 1,020 observations. For
a better comprehension of the observation matrix construction, the Figure 5.6
is provided.
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Figure 5.5: Simulations made to extract the fuel theft pressure transients at
the 155 km illegal tapping.

Table 5.1: Window step and number of observations for each simulation.
Simulations Window step (N) Number of windows (n)
1 20 270
2-4 10 50
5-7 1 200

With the observation matrix X, the features are extracted with the PCA
approach described in Section 2.5.2, yielding the matrix P of principal com-
ponents. Also, in the same way made for time-based features in Section 5.2.1,
seeking to train the decision tree with a supervised learning approach, the
corresponding ’target’/’class’ of each window is concatenated in an additional
column with the principal component matrix P , generating the training matrix
F2.

5.3
Results

Firstly, all results obtained in the training and validation steps of the DT
model were generated considering respectively 70% and 30% of the training
matrices, i.e. F1 for the time-based feature approach and F2 for the PCA/SVD
approach. All approaches considered Gini index as split criterion [124].

In order to evaluate if the DT model is suitable for this problem,
considering the first feature extraction approach, five DT were constructed
for each type of time-based features, which generated Table 5.2. The results of
Table 5.2 demonstrate that the DT classifiers can achieve a good classification
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Figure 5.6: Observation matrix composition for feature extraction with
SVD/PCA approach.

performance for the LDS problem, however, all DT models presented false
alarms, similar to those seen in Figure 5.7.

An important note is that the number of time-based features (100)
allows and suggests the use of a feature selection technique, to derive an
optimized DT classifier for LDS problem. The optimization would remove
non-competent features and bring some benefits, as reducing the training data
size, speeding the learning process, decreasing complexity or even enhancing
the DT performance [149]. Some feature selection trials were made considering
a multi-objective approach with number of features and validation accuracy
as the objectives, but the final results performed worse compared to those
reported in the Table 5.2, even dominating these ones.

Table 5.2: Accuracy obtained for decision trees trained from a single type of
time based feature and for several split numbers.

Feature Number of splits
Type Number 10 20 30 40 50
XC 28 0.9951 0.9990 0.9995 0.9996 0.9996
K 8 0.9705 0.9748 0.9786 0.9802 0.9827
E 8 0.9993 0.9993 0.9993 0.9993 0.9993
CL 8 0.9960 0.9996 0.9996 0.9995 0.9995
µ 8 0.9993 0.9993 0.9993 0.9993 0.9993
m 8 0.9991 0.9990 0.9990 0.9990 0.9990
S 8 0.9993 0.9995 0.9995 0.9995 0.9995

Max 8 0.9996 0.9996 0.9996 0.9996 0.9996
Min 8 0.9992 0.9991 0.9991 0.9991 0.9991
A 8 0.9995 0.9991 0.9991 0.9991 0.9991

Therefore, we sought to eliminate the false alarms and improve the
classification performance by using 2 types of time-based features for the
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training. For considering i) the correlation among the sensor important to
identify leak region and ii) the curve length property to react to changes in
modal amplitudes or waves location [147], five DT with the 36 features (28
cross-correlation and 8 Curve Length coefficients) and a maximum number of
splits varying from 10 to 50 was trained, generating the Table 5.3.

Table 5.3: Accuracy obtained for decision trees trained from cross-correlation
and curve length features, considering several split numbers.

Feature Number of splits
Type Number 10 20 30 40 50

XC + CL 36 0.9968 0.9998 0.9997 0.9997 0.9997

According to Table 5.2 and Table 5.3, it is concluded that the best
accuracy among trained models was obtained by the DT with 36 features
and maximum number of 20 splits. Thus, the proportion of classes for the
time-based features approach and for the best DT model, the confusion charts
of training and validation steps, as well as the validation step predictions are
exposed in Figures 5.7, 5.8 and 5.9.

Figure 5.7: Absolute number of observations for each class for the first feature
extraction approach training (left) and validation (right).

The DT generated by the first feature extraction approach considered
41 nodes and 12 splits, presenting a great classification performance for both
training and validation data in general terms, according to the confusion charts
presented in Figure 5.8 and with the predictions made for the validation step in
Figure 5.9. Even so, despite the accuracy of 99.98% in the validation step, the
presence of false positives around the number of 5000 observations invalidates
the pipeline fuel theft detection model.

Also, an important note is that the different number of observations per
class presented by Figure 5.7 suggests the use of a imbalance compensation
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Figure 5.8: Confusion charts for training (left) and validation (right) for the
decision tree obtained through first feature extraction approach.
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Figure 5.9: Prediction of the validation data for the decision tree obtained
through first feature extraction approach.

technique. However, when a random undersampling technique [150] was applied
to the training data, the DT generated had a loss of performance, making the
results with imbalance kept in the study.

For the PCA/SVD feature extraction approach, the DT was trained
considering a maximum number of 100 splits. The proportion of classes, the
confusion charts of training and validation steps for the PCA/SVD approach
and the predictions for the validation step are shown in Figures 5.10, 5.11
and 5.12.

The DT generated by the second feature extraction approach considered
13 nodes and 6 splits, presenting a perfect classification performance for both
training and validation data in general terms, according to the confusion charts
presented in Figure 5.11 and with the predictions made for the validation
step in Figure 5.12. The accuracy of 100% in the validation predictions may
indicate that the second feature extraction approach is more conducive to DT
model training and although it lacks a heavier data processing, as it extracts
features from SVD, the PCA/SVD approach i) generates DTs with simpler
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Figure 5.10: Absolute number of observations for each class for the second
feature extraction approach training (left) and validation (right).

1 2 3 4

Predicted Class

1

2

3

4

T
ru

e
 C

la
s
s

146

146

130

292

1 2 3 4

Predicted Class

1

2

3

4

T
ru

e
 C

la
s
s

54

54

70

128

Figure 5.11: Confusion charts for training (left) and validation (right) for the
decision tree obtained through second feature extraction approach.

structure, i.e. fewer nodes and splits; ii) demands less data in comparison with
the first approach to train DT models with similar accuracy, i.e. while the
first approach demands 62,271 observations to achieve accuracy of 99.98%, the
second approach just needs 1,020 to yield 100 % accuracy performance; and
iii) builds valid DT models, while the first approach generated invalid ones by
the presence of false positives.

According to the confusion charts presented in Figure 5.11 and with
the predictions made in the validation step in Figure 5.12, it can be inferred
that, the decision tree generated from the second feature extraction approach
has a perfect classification performance for both training and validation data.
The accuracy of 100% in the validation predictions may indicate that the
second feature extraction approach is more conducive to DT model training
and although it lacks a heavier data processing, as it extracts features from
SVD, the PCA/SVD approach i) generates DTs with simpler structure and
ii) needs less data in comparison with the first approach to train DT models
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Figure 5.12: Prediction of the validation data for the decision tree obtained
through second feature extraction approach.

with similar accuracy, and iii) builds valid DT models, while the first approach
generated invalid models by the presence of false positives.

5.4
Conclusions

The present contribution applied the machine learning technique known
as DT classifier through supervised learning to address the problem of theft
sensitive LDS. Seeking to achieve this goal, two DT training approaches were
considered, where training features based on time and on PCA made through
SVD were employed for the first and second approach, respectively.

The DT validation results showed that the two approaches were able to
identify the pipeline pressure transients of normal operation and the tapping
points present in three different positions with great accuracy (99.98% and
100% for the first and second approach, respectively). However, despite the
extra computational cost demanded for the feature extraction, the PCA/SVD
approach is more suitable for the LDS application due to: i) building DT
classifiers with simpler structure for presenting models with fewer nodes and
splits number; ii) less training data need (1,020 observations) for producing
DT models with similar accuracy, in comparison with the ones produced by
the first approach (62,271 observations); and iii) building DT classifiers which
yields valid results, in contrast with the invalid ones obtained for the first
feature extraction approach, by the presence of false positives.

For future work, it is proposed for the i) first feature extraction approach:
the search of metrics of model complexity and performance or maximum
relevance and minimum redundancy that allow a feature selection which
yields DT classifiers with simpler structure and a lower false alarm rate, in
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addition to considering other time-based features; ii) second feature extraction
approach: the DT hyperparameters optimization through a multi-objective
approach, considering metrics of complexity and performance; and iii) problem
complexity enhancement: evaluate situations with simultaneous occurrence
of multiple illegal tapping points, develop a pressure analysis interface for
an accurate location of the theft point and, finally, consider pipelines with
altitude/level variation along the line or multi-product flow.
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6
Conclusion

The present thesis sought to apply AI methods for the solution of real-
world mechanical engineering problems. Thus, this work proposes: i) develop
and improve AI techniques; ii) constitute an application guide for control and
design multi-objective optimization problems, feature extraction process and
machine learning classifier training through supervised approach; and mainly
iii) demonstrate potential of AI techniques for mechanical engineering problems
solving.

Seeking to achieve this goals, three mechanical engineering problems were
proposed: i) the PID-based ABS control tuning through bio-inspired meta-
heuristics; ii) the heat exchanger design multi-objective optimization through
other AI heuristic; and iii) the development of theft-sensitive leak detection
systems through machine learning classifiers. The importance of solving these
problems, the contribution sought, the main conclusions and suggestions for
future work are depicted in the next three paragraphs, respectively.

Originally proposed to prevent wheel lock in heavy braking and slippery
road situations, avoiding accidents, the ABS may also provide comfort during
braking activity. Still, the ABS literature review revealed that single-wheel
models are sufficient and often used for the ABS study and development, the
majority of ABS controllers present a high complexity and in case of PID-
based controllers, the use of new meta-heuristics for tuning is little explored.
Thus, the first work considered the MO of a PID-controlled ABS, considering
both performance and comfort metrics, through NSGA-II, MODA, MSSA and
OBLI-MSSA. Also, the methods PF were compared through non-dominance
percentual, spacing (S), Euclidian distance (ED) and hypervolume (HV )
comparison metrics. The main contributions are: i) a new multi-objective
formulation for PID-controlled ABS improvement; ii) the development of
OBLI-MSSA, a new MSSA version; and iii) the comparison of recent bio-
inspired meta-heuristics (MODA and MSSA) with traditional AI optimization
methods (NSGA-II) to follow the state of the art evolution. The results
showed that the single PID controller did not allow the methods comparison,
due to the proximity of results. However, for the five PID controller, the
OBLI-MSSA was considered the best optimization method, since its PF
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yielded greater dominance, achieved spacing results that ensure the best
distribution of solutions on the PF and satisfatory/comparable results on
Euclidian distance and hypervolume, in between the studied methods. Also
due to the dominance, S, ED and HV metrics, the MSSA was considered
to have a better performance than MODA and NSGA-II; MODA presented a
similar performance to NSGA-II, but the last method presented the smallest
standard deviation in all comparison metrics, being the most constant method
for all comparison metrics. For future works it would be interesting to: i)
evaluate if the proposed initialization method for the OBLI-MSSA would yield
better results, if applied to MODA and NSGA-II; ii) seek ways to guarantee the
same results stability obtained by NSGA-II in other meta-heuristics, maybe
making a fine tuning of the MO parameters; and iii) consider other controllers
for the braking problem, e.g. a fractional PID or Fuzzy-PID, which are likely
to outperform the conventional PID.

Heat exchangers are common devices widely used in the industry fields,
due to the ability of transfering thermal energy between fluids or fluid and solid
materials. Therefore, owing to their function, the heat exchanger effectiveness
directly impacts the industrial process efficiency in which they are used.
The HE design literature review revealed that the MO of HE projects is a
trend, considering total annual cost and performance metrics, as well as the
use of these problems for AI optimization methods comparison. Thus, the
second work proposed five new MOHKA versions and compared them with
the traditional one through the IGDa and IGDf results for PFHE and STHE
design problems, as well as the ZDT1 problem, seeking to enhance the general
performance of the method and its attractive features; and also assess the
impact of the MOHKA slowdown factor. The results had showed that i) the
slowdown factor α did not impact the convergence of the methods, which may
have been caused by the use of typical values that were effective in avoiding
local minima or by the use of a maximum number of evaluations that allowed
obtaining PFs very close to the real ones for PFHE and STHE problems,
ii) with the excepetion of the ZDT1 problem, the adapted niching procedure
was not effective in substitute the crowding distance operator as a diversity
preservation mechanism and iii) the MOHKArp was the version that presented
the fastest IGD convergence, although the median of the best MOHKArp
(α = 0.70) had presented a better performance in the IGD evolution curve
when compared to the best MOHKA (α = 0.90), the result is not statistically
relevant for the PFHE problem for not having reached p-value lower than 0.05.
For future works, it would be interesting to: i) look for ways to improve the
MOHKA versions, mainly MOHKArp, the best rated. One possibility would
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be to promote a change in the search modality as the optimization follows
by randomness, thus developing a meta-heuristic based on MOHKA; and
ii) evaluate the performance of niching-procedure-dependent codes in many-
objectives problems (i.e. four or more objectives).

Pipelines are the main means of transporting fossil fuels, chemicals and
water, due to the economic, ecological and transport efficiency. However, in
case of failure, pipelines have a great potential for product spillage, causing
economic and environmental losses. Seeking to prevent or mitigate product
spillage due to pipe failures, leak detection systems were developed. In recent
years, the raise of fuel theft cases has led to an increase in the number of
pipeline failures with annual cost reaching billions [36,37], and since the theft
flow rate is small enough not to be detected by traditional LDS, the develop-
ment of theft-sensitive LDS is fostered. The LDS literature review revaled that
MLCs trained through supervised learning approach are widely used to address
the LDS problem and, among the ML techniques, DT are little explored. There-
fore, the third work proposed to train two DT through supervised learning,
considering time-based and PCA/SVD feature extractions approaches from
pressure transiente data. Thus, the main contributions are: i) the develop-
ment of two different data-driven modeling workflows for theft-sensitive LDS;
ii) evaluate the use of DT classifiers for LDS problem; and iii) evaluate which
feature extraction approach generates the best DT model, according to the pre-
diction performance in different scenarios. The DT validation results showed
that the two training approaches were able to classify with great accuracy ac-
curacy (99.98% and 100% for the first and second approach, respectively) the
observations corresponding to the transients of normal operation and of opera-
tion with illegal tapping in three different positions. However, despite the extra
computational cost demanded for the feature extraction, the most appropriate
approach for the LDS application is the PCA/SVD, since the DT classifiers
built through this approach present a simpler structure, demanding less train-
ing data for producing similar accuracy DT models, in comparison with the
ones produced by the first approach and, mainly, for building DT classifiers
that yields valid results, not showing false positives. For future work, some
suggestions would be: i) the search for metrics of model complexity and per-
formance or maximum relevance and minimum redundancy, which allow the
feature selection process of the first feature extraction approach, providing DT
classifiers with simpler structure and a lower false alarm rate, in addition to
considering other time-based features; ii) perform hyper-parameters optmiza-
tion of the second feature extraction approach DT, considering a MO approach
with complexity and performance metrics; iii) to promote the problem com-
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plexity enhancement, by evaluating situations with simultaneous occurrence of
multiple illegal tapping points, developing a pressure analysis interface for an
accurate location of the theft point, considering pipelines with altitude/level
variation along the line or with multi-product flow.
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