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Abstract 

 

De Oliveira, Erick Meira; Cyrino Oliveira, Fernando Luiz (Advisor). Getting the 

most out of the wisdom of the crowds: improving forecasting performance 

through ensemble methods and variable selection techniques. Rio de Janeiro, 

2020. 113p. Tese de Doutorado – Departamento de Engenharia Industrial, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

This research focuses on the development of hybrid approaches that combine 

ensemble-based supervised machine learning techniques and time series methods to obtain 

accurate forecasts for a wide range of variables and processes. It also includes the 

development of smart selection heuristics, i.e., procedures that can select, among the pool 

of forecasts originated via ensemble methods, those with the greatest potential of 

delivering accurate forecasts after aggregation. Such combinatorial approaches allow the 

forecasting practitioner to deal with different stylized facts that may be present in time 

series, such as nonlinearities, stochastic components, heteroscedasticity, structural breaks, 

among others, and deliver satisfactory forecasting results, outperforming benchmarks on 

many occasions. 

The thesis is divided into a series of essays. The first endeavor proposed an 

alternative method to generate ensemble forecasts which delivered satisfactory forecasting 

results for certain types of electricity consumption time series. In a second effort, a novel 

forecasting approach combining Bootstrap aggregating (Bagging) algorithms, time series 

methods and regularization techniques was introduced to obtain accurate forecasts of 

natural gas consumption and energy supplied series across different countries. A new 

variant of Bagging, in which the set of classifiers is built by means of a Maximum Entropy 

Bootstrap routine, was also put forth. The third contribution brought a series of innovations 

to model selection and model combination in forecasting routines. Gains in accuracy for 

both point forecasts and prediction intervals were demonstrated by means of an extensive 

empirical experiment conducted on a wide range of series from the M- Competitions. 

 

Keywords 

Forecasting; Time Series; Model Selection; Forecast combinations; Ensemble 

methods; Bagging; Regularization techniques 
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Resumo 

 

De Oliveira, Erick Meira; Cyrino Oliveira, Fernando Luiz (Orientador). Tirando o 

máximo proveito da sabedoria das massas: aprimorando previsões por meio 

de métodos de ensemble e técnicas de seleção de variáveis. Rio de Janeiro, 2020. 

113p. Tese de Doutorado – Departamento de Engenharia Industrial, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

A presente pesquisa tem como foco o desenvolvimento de abordagens híbridas que 

combinam algoritmos de aprendizado de máquina baseados em conjuntos (ensembles) e 

técnicas de modelagem e previsão de séries temporais. A pesquisa também inclui o 

desenvolvimento de heurísticas inteligentes de seleção, isto é, procedimentos capazes de 

selecionar, dentre o pool de preditores originados por meio dos métodos de conjunto, 

aqueles com os maiores potenciais de originar previsões agregadas mais acuradas. A 

agregação de funcionalidades de diferentes métodos visa à obtenção de previsões mais 

acuradas sobre o comportamento de uma vasta gama de eventos/séries temporais. 

A tese está dividida em uma sequência de ensaios. Como primeiro esforço, propôs-

se um método alternativo de geração de conjunto de previsões, o que resultou em 

previsões satisfatórias para certos tipos de séries temporais de consumo de energia 

elétrica. A segunda iniciativa consistiu na proposição de uma nova abordagem de previsão 

combinando algoritmos de Bootstrap Aggregation (Bagging) e técnicas de regularização 

para se obter previsões acuradas de consumo de gás natural e de abastecimento de energia 

em diferentes países. Uma nova variante de Bagging, na qual a construção do conjunto 

de classificadores é feita por meio de uma reamostragem de máxima entropia, também 

foi proposta. A terceira contribuição trouxe uma série de inovações na maneira pela qual 

são conduzidas as rotinas de seleção e combinação de modelos de previsão. Os ganhos 

em acurácia oriundos dos procedimentos propostos são demonstrados por meio de um 

experimento extensivo utilizando séries das Competições M1, M3 e M4. 

 

 

Palavras-chave 

Previsão; Séries Temporais; Seleção de modelos; Combinação de previsões; 

Métodos de ensemble; Bagging; Técnicas de regularização 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



Contents 

1 Introduction 11 

2 Literature Overview 14 

2.1 Combining forecasts 14 

2.2 Hybrid, ensemble-based approaches to forecasting 16 

2.3 Bagging applications to time series forecasting 17 

3 How Bagging works for time series forecasting 21 

3.1 Bagged.BLD.MBB.ETS 21 

3.1.1 Pretreatment and decomposition 22 

3.1.2 Resampling 24 

3.1.3 Forecasting with ETS 27 

3.1.4 Combination 30 

3.1.5 Overall procedure 30 

3.2 The Bootstrap Model Combination (BMC) 33 

3.3 The Bagged.Cluster.ETS 34 

4 First essay: A new variant of Bagging applied to mid/long term electric 

energy consumption forecasting 35 

4.1 Introduction to energy demand planning and its challenges 35 

4.2 Methods 37 

4.2.1 Remainder Sieve Bootstrap 37 

4.2.2 Forecasting with ETS and ARIMA 38 

4.2.3 Aggregation using the mean and the median 41 

4.3 Data and overall procedure 41 

4.4 Empirical Findings and Discussion 44 

4.4.1 Performance gains from Bagging 44 

4.4.2 Comparison with other methods 49 

4.4.3 Discussion 53 

4.5 Main conclusions from the first essay 54 

5 Second essay: Ensemble approaches and regularization techniques to 

natural gas consumption and energy supplied forecasts 55 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



5.1 Proposed methodology 56 

5.1.1 Resampling via the Maximum Entropy Bootstrap 57 

5.1.2 Combination via Regularization 61 

5.2 Applications 65 

5.3 Results and Discussion 68 

5.3.1 Results 68 

5.3.2 Robustness checks 71 

5.3.3 Discussion and implications 76 

5.4 Conclusions and future directions 76 

6 Third essay: new approaches to model selection and combination 78 

6.1 Introduction 79 

6.2 Exponential smoothing and Bagging for forecasting - state of the art 81 

6.2.1 Exponential Smoothing and current limitations 81 

6.2.2 Bagging in time series forecasting 82 

6.3 Methods 83 

6.3.1 Treating in model selection 83 

6.3.2 Pruning in model combination 84 

6.3.3 Prediction intervals in Bagging 85 

6.3.4 Pruning for Bagging 88 

6.4 Empirical investigation 88 

6.4.1 Experiment settings 89 

6.4.2 Findings 90 

6.4.3 Relative performance on the M4 competition 97 

6.5 Conclusions and future directions 98 

7 Summary of contributions and avenues for future research 100 

References 102 

 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



List of Figures 

 

 

Figure 3.1 Bagged.BLD.MBB.ETS algorithm – First Part – Flowchart. ..... 26 

Figure 3.2 Illustration of the MBB algorithm.............................................. 26 

Figure 3.3 A usual Bagging routine for forecasting. .................................. 32 

Figure 3.4 Bagged.BLD.MBB.ETS and BMC. .......................................... 34 

Figure 4.1 MBB and RSB-based Bagging approaches. ........................... 43 

Figure 4.2 Electricity demand by country. ................................................ 48 

Figure 5.1 MEB – Data treatment, resampling and forecasting stages. ... 58 

Figure 5.2 Bias-Variance trade-off. ........................................................... 62 

Figure 5.3 Gross inland natural gas consumption in terajoules (TJ) and 

energy supplied in gigawatt-hour (GWh). ................................................. 66 

Figure 5.4 Robustness checks: Different ensemble sizes. ....................... 74 

Figure 6.1 Bagged ETS and BMC and their pruned versions. .................. 87 

Figure 6.2 M4 competition monthly series 41895, training set. ................ 93 

Figure 6.3 MSIS per different coverage levels (85–99%) four methods. .. 96 

Figure 6.4 Multiple comparisons with the best for MASE and MSIS. ........ 97 

 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



List of Tables 

 

 

Table 3.1 Possible variations for the trend and seasonal components of ETS 

formulations under a state space-based approach ................................... 28 

Table 4.1 Forecast evaluation – developed countries .............................. 46 

Table 4.2 Forecast evaluation – developing countries ............................. 47 

Table 4.3 Comparison with other methods – developed countries ........... 51 

Table 4.4 Comparison with other methods – developing countries .......... 52 

Table 5.1 Selected methods for comparison ............................................ 67 

Table 5.2 Evaluation metrics .................................................................... 68 

Table 5.3 Forecast evaluation: Natural gas consumption ......................... 69 

Table 5.4 Forecast evaluation: Energy supplied....................................... 70 

Table 5.5 Robustness checks: comparisons with the MBB algorithm ...... 72 

Table 5.6 Robustness checks: average of MASEs at different horizons .. 75 

Table 6.1 All competitions - Average MASE of different methods ............ 91 

Table 6.2 All competitions - Average MSISs at the 95% coverage level .. 92 

Table 6.3 M4 competition monthly series 41895, test set ......................... 94 

Table 6.4 M4 competition - Average MSIS, computed at the 95% desired 

coverage level, for the automated exponential smoothing formulations, the 

two most accurate Bagging methods and the four best methods from the 

competition ............................................................................................... 98 

 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



11 

 

1 

Introduction 

 

 

 

 

 

In light of the rapid economic development and to respond to an ever-

growing competitive environment, businesses and organizations have become 

increasingly complex. As a result, decision makers find it increasingly more 

difficult to weigh all the factors in a given situation without some explicit, 

systematic support.  

A major concern that is common to most decision-making circumstances is 

the uncertainty of future outcomes. Every day, corporate leaders, planners and 

policymakers are faced with the challenge of making decisions without knowing 

what will happen in the future. For instance, inventory is ordered without certainty 

as to what sales will be; new equipment is purchased despite uncertainty about 

demand for products, and investments are made without knowing what profits will 

be. In this context, the availability of tools which can correctly recognize emerging 

changes in the business environment and accurately predict future ones has become 

a key factor for effectively planning and eventually succeeding in business. This 

brings forecasting methods to the forefront of management practice in 

organizations. 

A general approach to forecasting is the use of quantitative methods, 

particularly the ones which resort to time series information (data collected at 

regular intervals over time). In this connection, a wide range of quantitative 

forecasting methods have been proposed throughout the last decades – see DE 

GOOIJER & HYNDMAN (2006) for a comprehensive review. 

Contemporary evidence from international forecasting competitions points 

toward the use of combinatorial approaches as the state-of-the-art in forecasting 

time series, particularly for long time horizons – see, for instance, the results from 

the M4 competition (MAKRIDAKIS et al., 2018, 2020) and the Global Energy 

Forecasting Competition (GEFCom) (HONG et al., 2019). Furthermore, the use of 
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hybrid approaches, i.e. procedures that utilize both statistical and Machine Learning 

(ML) features, ranked the best in terms of accuracy in both competitions. 

A particular class of machine learning algorithms that has received 

considerable attention in time series forecasting applications are the so-called 

ensemble methods. In brief terms, these supervised learning algorithms construct a 

set of classifiers and then classify new data points by taking a (weighted) vote of 

their predictions. That way, these methods are capable of including different forms 

of uncertainty which may be present when building a predictive model from data, 

namely data uncertainty, model uncertainty, and parameter uncertainty 

(PETROPOULOS et al., 2018). 

In spite of their potential, a caveat common to all combinatorial approaches 

(including ensemble methods) is that they assume that the forecasts to be combined 

are reasonable. To overcome this, an additional step must be considered: the correct 

treatment of the sources of uncertainty. Surprisingly, this step has been mostly 

overlooked in the literature (PETROPOULOS et al., 2018; KOURENTZES et al., 

2019).  

All things considered, this thesis focuses on the development of hybrid 

strategies, combining ensemble-based machine learning algorithms (mainly 

Bootstrap Aggregating – Bagging routines), time series methods, and variable 

selection/weighting techniques to obtain accurate forecasts for a wide range of 

variables and processes. The underlying rationale is that by combining different sets 

of features from carefully selected models, one can substantially improve the 

performance (accuracy) of forecasting methods. 

To demonstrate its contributions, this thesis was divided into a series of 

essays. The first contribution was the proposal of an alternative method to generate 

ensemble forecasts which delivered satisfactory forecasting results for certain types 

of electricity consumption time series (DE OLIVEIRA & CYRINO OLIVEIRA, 

2018). In a second effort, a novel forecasting approach combining Bagging 

algorithms, time series methods and regularization techniques was introduced to 

obtain accurate forecasts of natural gas consumption and energy supplied time 

series across different countries. A new variant of Bagging, in which the set of 

classifiers is built by means of a Maximum Entropy Bootstrap routine, was also put 

forth. The third contribution brought a series of innovations to how model selection 

and model combination routines can be conducted. The gains in forecasting 
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accuracy for both point forecasts and prediction intervals were demonstrated by 

means of an extensive empirical experiment conducted on a wide range of series 

from the M- Competitions (98,830 in total). It should be highlighted that the 

methods/procedures presented in this third work were developed in partnership with 

field researchers from the School of Management, University of Bath, where the 

author stayed as a Visiting Postgraduate Scholar during the months of March to July 

2019. 

The rest of the thesis unfolds as follows. Chapter 2 provides a brief overview 

on the use of combinatorial approaches and ensemble-based methods for 

forecasting, with a special focus on Bootstrap Aggregation (Bagging) algorithms. 

Chapter 3 delves into the details of the most up-to-date techniques involving the use 

of Bagging for forecasting. It proceeds by proposing a framework for forecasting 

ensembles in which four main stages/tasks can be identified: (i) an (optional) data 

treatment or decomposition; (ii) resampling; (iii) forecasting; and (iv) combination. 

This framework provides a common ground for the discussion of the contributions 

comprising this thesis. The first alternative method to generate ensemble forecasts 

and its applications on electric energy consumption time series are presented in 

Chapter 4. Chapter 5 describes the new forecasting approach applied to natural gas 

consumption and energy supply forecasts. Chapter 6 introduces the concepts of 

treating and pruning and demonstrates how they can improve the accuracy of both 

point forecasts and prediction intervals in any forecasting approach involving 

model selection or combination. Finally, Chapter 7 summarizes the findings of the 

essays, emphasizing their main take-away messages, and indicates possible avenues 

for future research. 
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2 

Literature Overview 

 

 

 

 

 

2.1 

Combining forecasts 

 

The combination of different forecasting methods is a well-established 

procedure in the literature of time series forecasting. Since the seminal works of 

BATES & GRANGER (1969) and NEWBOLD & GRANGER (1974), there have 

been nearly five decades of research and empirical evidence in favor of forecast 

combination over the selection of a single forecasting model (CLEMEN & 

WINKLER, 1986; AKSU & GUNTER, 1992; MACDONALD & MARSH, 1994; 

DE MENEZES et al., 2000; ELLIOTT & TIMMERMANN, 2004; STOCK & 

WATSON, 2004; DEKKER et al., 2004; JOSE & WINKLER, 2008; GUIDOLIN 

& TIMMERMANN, 2009; ANDRAWIS et al., 2011; KOLASSA, 2011; 

KOURENTZES et al., 2014; AYE et al., 2015; ELLIOTT & TIMMERMANN, 

2016; BARROW & KOURENTZES, 2016; KOURENTZES et al., 2019). Results 

from global forecasting competitions, such as the M, M-3 and M-4 Competitions 

(MAKRIDAKIS et al., 1982; MAKRIDAKIS & HIBON, 2000; MAKRIDAKIS et 

al., 2018) have also been virtually unanimous in concluding that combining 

multiple forecasts leads to increased forecast accuracy. In many cases one can make 

dramatic performance improvements by simply averaging the forecasts. The two 

key reported advantages are the reduction of forecast error variance and not having 

to rely on a single forecast method (CLEMEN & WINKLER, 1986; 

TIMMERMANN, 2006). 

Even though empirical evidence suggests potential gains in accuracy when 

more than one model/method is taken into consideration when building the final 
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forecasts, there is still no consensus as to what the best approach to forecast 

combination is (DEBNATH & MOURSHED, 2018). 

A crucial (and intuitive) point which it is often overlooked in the empirical 

literature of forecast combination is the proper treatment of the uncertainties 

associated with the identification of the “best model” (KOURENTZES et al., 2019). 

In most applied studies, the issue of forecast quality is subsumed in the task of using 

multiple alternative forecasting models or methods and picking the ones that are 

identified as most appropriate, given the data at hand. Even though each empirical 

study has its own merits (usually by being the first application of a particular 

combination of methods to a specific set of time series), the real additionality of 

such contributions is of little relevance to the state-of-the-art in time series 

forecasting methods. 

In general, according to the taxonomy of BREIMAN (1996), three sources 

of uncertainty are present in time series forecasting: the one inherent to the 

information available (the available data sample); that related to model selection; 

and another one originating from the estimation of the involved parameters in each 

selected model. It is worth noting that these uncertainties are interlinked, in the 

sense that different sample sizes will result in different parameter estimates, which 

in turn may result in different model forms (KOURENTZES et al., 2019). 

Parameter estimation uncertainty may originate from the estimation algorithm and 

setup; for instance, different initial values may result in different estimates. 

Different model structures may impose specific restrictions in parameters, 

simplifying, or not, the estimation problem, and so on. 

Recent works have sought to address the issue of uncertainty reduction by 

employing specific model selection metrics in the training or validation phases, 

such as the AKAIKE (1974) information criterion (AIC) – see, for instance, 

BILLAH et al. (2006) and KOLASSA (2011) – or by means of cross-validation 

techniques, as in FILDES & PETROPOULOS (2015) and BARROW & CRONE 

(2016). Naturally, the use of different criteria can lead to different selections of 

allegedly optimal forecasts. That way, such criteria are still subject to the above-

mentioned sources of uncertainty. This is added to the fact that most selection 

criteria, particularly those which are based on likelihood values or one-step ahead 

in-sample fit, suffer from an additional limitation: implicitly they assume that the 
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postulated forecasting model is true. Otherwise, the likelihood function is not 

appropriate for any multi-step forecast that we require from the model 

(CHATFIELD, 2000; XIA & TONG, 2011). FILDES & PETROPOULOS (2015) 

provide empirical evidence of the disadvantage of one-step ahead forecast based 

selection criteria. 

 

2.2 

Hybrid, ensemble-based approaches to forecasting 

 

A recently emerged strand of literature dedicated to combinatorial 

approaches for forecasting is the use of hybrid techniques, i.e., approaches that 

incorporate functionalities from traditional statistical methods and from machine 

learning techniques. Such approaches allow the forecasting practitioner to deal with 

different stylized facts that may be present in time series – such as nonlinearities, 

stochastic components, heteroscedasticity, structural breaks, among others – and, at 

the same time, deliver satisfactory forecasting results, outperforming benchmarks 

on several occasions. 

A particular class of computationally intensive methods that has 

demonstrated satisfactory forecasting results when combined with classical time 

series methods are the so-called ensemble-based methods. They are based on the 

concept of Decision committee learning: “committee members” are applied to a 

classification/forecasting task and their individual outputs are combined to create a 

single classification/forecast from the committee as a whole (WEBB, 2000). 

Examples of such methods include: classification ensembles formed by stacked 

generalization (WOLPERT, 1992) or by stochastic search (ALI et al., 1994);  

NOCK & GASCUEL’s (1995) decision committees; averaged decision trees 

(OLIVER & HAND, 1995); Bootstrap Aggregation (Bagging) (BREIMAN, 1996) 

algorithms; Weight Aggregation (Wagging) (BAUER & KOHAVI, 1999) routines; 

and the Boosting (FREUND, 1995) algorithm and its variants, such as the AdaBoost 

(FREUND & SCHAPIRE, 1997), the Arc-X4 (BREIMAN, 1998) and the 

MultiBoosting (WEBB, 2000). 
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Among decision committee learning approaches, certain algorithms have 

received particular attention in the forecasting literature, due to their remarkable 

consistency in reducing the final forecasting error. These are methods which 

operate by selectively resampling from the training data to generate derived training 

sets to which the base learner is applied. Popular examples of such procedures are 

the Bagging (BREIMAN, 1996) and the Boosting (FREUND, 1995) algorithms. 

A notable feature common to both Bagging and Boosting routines is that, 

on average, the error reduces as the committee size increases, but the marginal error 

reduction associated with each additional committee member tends to decrease. In 

other words, each additional member, on average, has less impact on a committee’s 

prediction error than any one of its predecessors (SCHAPIRE et al., 1998). On the 

other hand, the operating modes of the two algorithms differ substantially. The 

Boosting algorithm generates the classifiers sequentially, while Bagging generates 

them in parallel. Boosting also changes the weights of the training instances 

provided as input to each inducer based on classifiers that were previously built. As 

a result, Boosting appears to have greater average effect, leading to substantially 

larger error reductions than bagging on average. Much of the benefit realized by 

Boosting, however, seems to be due to overfitting (QUINLAN, 1996). This explains 

the failure of Boosting routines on some datasets, particularly when the interest is 

in predictive accuracy. The empirical results from BAUER & KOHAVI (1999), for 

instance, suggest that certain Boosting algorithms, such as the AdaBoost (FREUND 

& SCHAPIRE, 1997), do not deal well noisy data. Some authors also argue that 

Bagging is more consistent, in the sense that it increases the error of the base learner 

less frequently than Boosting does (WEBB, 2000). Finally, another important 

feature of Bagging algorithms, one that is particularly useful in forecasting 

approaches, is the possibility of selecting the predictors originated from the 

forecasting ensemble by means of user-defined techniques, i.e., the practitioner is 

not restricted to the pre-defined weight schemes of Boosting approaches. 

 

2.3 

Bagging applications to time series forecasting 
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In light of aforementioned, this thesis focuses on the use of Bagging 

algorithms to generate forecast ensembles, and the subsequent selection and 

weighting of the most relevant predictors in the ensemble by means of smart 

selection heuristics. To understand its roots, this subsection provides a brief 

chronological review of relevant works using Bagging in time series forecasting 

contexts. 

INOUE & KILIAN (2004) are likely to have pioneered the use of Bagging 

in time series forecasting. Using a multiple regression approach, the authors 

demonstrated that Bagging consistently led to more accurate forecasts than dynamic 

factor models when the number of predictors is large, but smaller than the sample 

size. LEE & YANG (2006) showed that Bagging may improve the binary and 

quantile predictions in small samples using asymmetric loss functions. INOUE & 

KILIAN (2008), in turn, proposed three variants of the original Bagging algorithm 

(BREIMAN, 1996) to investigate whether including indicators of real economic 

activity when forecasting U.S. consumer price inflation led to lower Mean Squared 

Forecast Error (MSFE) estimates. They demonstrated that Bagging could reduce 

the MSFE, although they argued that the method was not the only capable of doing 

so. 

Another strand of literature arose from the work of CORDEIRO & NEVES 

(2009), who first proposed combining Bagging and exponential smoothing 

methods, and tested it using series from the M3 competition. Their so-called 

Boot.EXPOS approach could be viewed as a variant of the Sieve bootstrap approach 

(BÜHLMANN, 1997) and had some success in forecasting series with marked 

seasonal and trendy components (mainly quarterly and monthly data). 

HILLEBRAND & MEDEIROS (2010) showed that Bagging led to accuracy 

improvements on two types of models when forecasting realized volatility of 

several stocks from the Dow Jones Industrial Average: the log-linear model and a 

nonlinear model for the realized kernel estimator of integrated volatility. RAPACH 

& STRAUSS (2010) combined Bagging with a dynamic linear regression model 

for forecasting U.S. employment growth. They compared it with several forecast 

combination methods and showed that the use of Bagging often delivered the lowest 

MSFE values. WANG et al. (2012) proposed the combined use of Bagging with 

Support Vector Machines (SVM) and Artificial Neural Networks (ANN). They 
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showed that their approach generated more accurate results than single-model SVM 

and ANN models and other ensemble methods.  

ZONTUL et al. (2013) combined Bagging with an algorithm called 

REPTree to produce forecasts of wind speed in Kirklareli (Turkey) and showed that 

their method provided better results compared to competing machine learning 

methods. JIN et al. (2014) proposed a revised version of Bagging to investigate the 

dependency in time series data. The method was found to outperform the one-step-

ahead linear, local constant and local linear models when forecasting several 

financial time series. MAÇAIRA et al. (2015), in turn, proposed a variant of 

Bagging which involved generating bootstraps of the noise obtained from a Multi-

channel Singular Spectrum Analysis (MSSA) decomposition (HASSANI et al., 

2015). The method was used to forecast up to 60 months ahead natural inflow 

energy series in Brazil and outperformed some forecasting benchmarks. 

Inspired by the Boot.EXPOS approach of CORDEIRO & NEVES (2009), 

BERGMEIR et al. (2016) proposed a novel forecasting approach combining 

Bagging with exponential smoothing methods. In brief terms, it involved first pre-

treating and decomposing the original series into three additive components (trend, 

seasonal and remainder). Replicas for the remainder would then be generated by 

means of a slightly different version of the original Moving Blocks Bootstrap 

(MBB) algorithm (KÜNSCH, 1989). Once the desired number of replicas was 

achieved, the series were reconstructed from their structural components (by adding 

again the trend and seasonal components to the remainder bootstraps). That way, 

multiple new series (bootstraps) were created. An exponential smoothing 

forecasting model was built for the original data and each of the bootstraps 

separately. Finally, the point forecasts originating from each model were 

aggregated using the median. The authors demonstrated that their approach, which 

became known as Bagged.BLD.MBB.ETS1, outperformed Boot.EXPOS and other 

simple benchmarks, particularly for monthly series from the M3 Competition.  

 

1 BLD is an acronym for Box–Cox and loess-based decomposition (BLD), MBB stands for Moving 

Blocks Bootstrap and ETS stands both for ExponenTial Smoothing and for Error, Trend, and 

Seasonality, which are the three components that define a model within the ETS state space 

modelling framework proposed by HYNDMAN et al. (2002) – see Section 3.1.3 for details. 
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Motivated by the findings from BERGMEIR et al. (2016), DANTAS et al. 

(2017) applied the Bagged.BLD.MBB.ETS forecasting approach in the context of 

air transportation demand time series, and the results outperformed the benchmarks 

methods. DE OLIVEIRA & CYRINO OLIVEIRA (2018), in turn, proposed an 

alternative method to generate ensemble forecasts – a variant of the KREISS (1988) 

/ BÜHLMANN (1997) sieve bootstrap method applied to the remainder component 

of an STL decomposition (CLEVELAND et al., 1990). This new variant of Bagging 

delivered satisfactory forecasting results for certain types of electricity consumption 

time series, outperforming BERGMEIR’s et al. (2016) approach on several 

occasions. The work, entitled “Forecasting mid-long term electric energy 

consumption through bagging ARIMA and exponential smoothing methods”, was 

published as a full-length article in Energy in 2018 (v. 144, p. 776–788) and relates 

to the first contribution of the thesis, described in detail in Chapter 4. 

PETROPOULOS et al. (2018) explored the sources of uncertainty (model, 

data and parameter) in Bagging procedures and demonstrated that the benefits of 

Bagging originate predominantly from model uncertainty. They then proposed a 

more sophisticated combination strategy that specifically tackled this source of 

uncertainty: The Bootstrap Model Combination (BMC). Considering all series from 

the M (MAKRIDAKIS et al., 1982) and M3 (MAKRIDAKIS & HIBON, 2000) 

competitions, the BMC delivered better forecasts when compared to 

Bagged.BLD.MBB.ETS of BERGMEIR et al. (2016). 

DANTAS & CYRINO OLIVEIRA (2018), in turn, developed a new 

forecasting approach combining Bagging, Exponential Smoothing and Clustering. 

In brief terms, Partitioning Around the Medoids (PAM) (KAUFMAN & 

ROUSSEEUW, 1987) is initially used to identify clusters of similar bagged 

forecasts. Then, forecasts from each cluster are selected in order to create a smaller 

subset of forecasts with reduced error-variance to be combined using the median. 

The proposed approach was evaluated using series from the M3 and CIF 2016 

competitions and led to more accurate forecasts than several benchmarks from both 

competitions, including previous existing Bagging approaches. 

 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



21 

 

3 

How Bagging works for time series forecasting 

 

 

 

 

To illustrate how Bagging for time series forecasting works in practice and, 

at the same time, provide a starting point for the discussion of the contributions in 

this thesis, the present chapter describes the most up-to-date techniques involving 

the use of Bagging in forecasting routines. 

We start by delving into the details of the Bagged.BLD.MBB.ETS method 

proposed by BERGMEIR et al. (2016), since it provides a sound base of comparison 

with other recently developed Bagging routines for forecasting. Then, we explore 

new features brought by the Bootstrap Model Combination (BMC) approach 

devised by PETROPOULOS et al. (2018) and the Bagged.Cluster.ETS approach 

depicted in DANTAS & CYRINO OLIVEIRA (2018). 

 

3.1 

Bagged.BLD.MBB.ETS 

 

As foreshadowed in Section 2.3, The Bagged.BLD.MBB.ETS / 

Bagged ETS procedure proposed by BERGMEIR et al. (2016) involves combining 

an ensemble algorithm, namely the Bootstrap Aggregation (Bagging), with 

exponential smoothing formulations. 

The Bootstrap was first devised by EFRON (1979) following an earlier 

work on the jackknife procedure by QUENOUILLE (1949). In its original form, 

the technique consisted of re-sampling the underlying data, in order to get an 

approximation of the sampling distribution of some statistic of interest. Adaptations 

have been developed for time series, since the data are typically autocorrelated. The 

Bootstrap Aggregation (Bagging), in turn, is a supervised machine learning 

technique, proposed by BREIMAN (1996). 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



Chapter 3. How Bagging Works for time series forecasting 22 

The underlying idea behind Bagging for time series forecasting is to use 

predictors that are built on bootstrapped versions of the original data. That way, a 

random pool (ensemble) of forecasts is formed, and then combined into one single 

output, by weight-averaging for instance. Hence, Bagging allows the practitioner to 

include different types of uncertainty that may arise when building a predictive 

model from data, namely data uncertainty, model uncertainty, and parameter 

uncertainty (PETROPOULOS et al., 2018). Approaches can differ, however, in 

many aspects/steps of the methodology (such as training data pre-treatment, prior 

decomposition for isolation of key features, selection of which components are 

going to be bootstrapped, choice of bootstrapping methods, among others). 

To provide a common framework for further discussions and ease the 

interpretation of the selected state-of-the-art Bagging techniques, we argue that 

most Bagging routines for forecasting can be summarized in four main stages: (i) 

an (optional) data treatment or decomposition; (ii) resampling; (iii) forecasting; and 

(iv) combination, in which the outputs from all members are averaged and 

sometimes removed, when they are unlikely to improve the forecast. In the next 

subsections, we explain in detail each stage according to BERGMEIR’s et al. (2016) 

approach.  

We finally clarify that practical implementation of every stage is conducted 

using the R programming language (R CORE TEAM, 2019) and its related 

packages. The overall procedure devised by BERGMEIR et al. (2016) can be 

implemented in R through the baggedModel( ) function from the forecast package 

(HYNDMAN & KHANDAKAR, 2008; HYNDMAN et al., 2019) using 

appropriate arguments, or the baggedETS( ) wrapper function. 

 

 

3.1.1 

Pretreatment and decomposition 

 

BERGMEIR’s et al. (2016) approach involves first generating replicas for 

the remainder component of a Seasonal-Trend decomposition using Loess (STL 

decomposition) (CLEVELAND et al., 1990) applied to a Box–Cox (BC) (BOX & 

COX, 1964) transformed time series. 
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The BC transformation aims at stabilizing the variance of a time series. It is 

also capable of making highly skewed distributions less skewed. It is defined as 

follows: 

 

𝜔𝑡 = {

   log  (𝑦𝑡) ,                𝜆 = 0;
 

(y𝑡
𝜆 − 1) 𝜆⁄ ,            𝜆 ≠ 0

 (1)  

where 𝑦𝑡 represents the original time series, 𝜔𝑡 its transformed version and 𝜆 is the 

transformation parameter. It is worth noting that there is still no consensus on the 

method of choosing 𝜆. BERGMEIR’s et al. (2016) choice was to restrict 𝜆 to lie in 

the interval [0, 1] and use the method of GUERRERO (1993) to choose its value. 

In short, the chosen method partitions the original data into subseries of length equal 

to the seasonality (or length two, if the series is non-seasonal). Then, the sample 

mean 𝑚 and the standard deviation 𝑠 are calculated for each of the subseries, and 𝜆 

is chosen in such a way that the coefficient of variation of 𝑠
𝑚(1−𝜆)⁄  across the 

subseries is minimized. The Box-Cox transformation can be implemented by means 

of the BoxCox( ) function from the forecast package in R. 

The STL, in turn, is a sequence of six smoothing operations that employ 

locally-weighted regression (Loess) on the (pretreated) series, dividing it into three 

additive components: trend, seasonal and remainder. STL offers major advantages 

when compared to other decomposition methods, such as: the possibility to handle 

any type of seasonality (regardless of the frequency) and to change the seasonal 

component over time; the possibility to control the smoothness of the trend-cycle; 

and its robustness to outliers when estimating the trend-cycle and seasonal 

components (HYNDMAN & ATHANASOPOULOS, 2013). 

In Loess, a neighborhood is first defined for each data point and the points 

in that neighborhood are subsequently weighted according to their distances from 

the respective data point. A polynomial of degree d is then fitted to these points - 

usually d = 1 or d = 2. Higher degrees do not improve much the fit. Indeed, 

CLEVELAND et al. (1990) argue that taking d = 1 is reasonable if the underlying 

pattern in the data has gentle curvature. The trend component is equal to the value 

of the polynomial at each data point. 
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In summary, the steps performed during the STL decomposition are: (i) 

detrending; (ii) cycle-subseries smoothing, in which series are built for each 

seasonal component, and smoothed separately; (iii) low-pass filtering of smoothed 

cycle-subseries, when the subseries are put together again, and then smoothed; (iv) 

detrending of the seasonal series; (v) deseasonalizing the original series using the 

seasonal component calculated in the previous steps; and (vi) smoothing the 

deseasonalized series to get the trend component. 

In R, STL can be applied by means of the stl( ) function from the stats 

package (R CORE TEAM, 2019). Essential parameters are “periodic” for s.window 

and default values for the polynomial degrees: d = 0 in step (ii) and d = 1 in steps 

(iii) and (iv).  

 

3.1.2 

Resampling 

 

BERGMEIR’s et al. (2016) approach to resampling involves generating 

replicas for the remainder component of the STL decomposition. To that end, they 

put forth a slightly different version of the original Moving Blocks Bootstrap 

(MBB) algorithm – see next paragraph for details. After obtaining the desired 

number of remainder bootstraps, the trend and seasonal components are added to 

each replica, and the BC transformation is inverted. That way, multiple new series 

(bootstraps) were created. 

The Moving Blocks Bootstrap (MBB) approach was first introduced by 

KÜNSCH (1989), who proposed drawing data blocks of equal size from the series 

until the desired length was achieved. That way, for a series of length n, with a 

block size of l, n − l + 1 (overlapping) possible blocks exist. However, bootstrap 

procedures for time series replicates must take into account both stationarity and 

autocorrelation in the data. To meet that end, BERGMEIR’s et al. (2016) proposed 

drawing ⌊𝑛 𝑙⁄ ⌋ + 2 blocks2 from the remainder series of a STL Decomposition, and 

discarding a random number of values, between zero and l − 1, from the beginning 

 

2 ⌊𝑛 𝑙⁄ ⌋ stands for the “floor” of 𝑛 𝑙⁄  division, i.e., the largest integer less than or equal to 𝑛 𝑙⁄ . 
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of the bootstrapped series. Then, to obtain a series with the same length as the 

(original) remainder series, they further discarded as many values as necessary to 

obtain the required length. This process ensures that the bootstrapped series do not 

begin or end on a block boundary. Finally, the trend and seasonality are combined 

with the bootstrapped remainder to get the final bootstrapped sample. 

The above procedure can be implemented in R by means of the 

bld.mbb.bootstrap( ) function from the forecast package. The method requires, 

however, the pre-definition of the block size parameter. Although not a consensus 

in the related literature, BERGMEIR et al. (2016) recommended the use of block 

sizes of 𝑙 = 24 and 𝑙 = 8 for monthly and quarterly series, respectively. These 

correspond to two full years of observations, to ensure that any remaining 

seasonality is captured. For yearly data, a block size of 𝑙 = 8 was employed, even 

though no explanations were provided for such choice. It is worth noting that the 

same guidelines in terms of block size is followed in subsequent works using the 

MBB algorithm for bootstrapping in time series forecasting contexts – see, for 

instance, DANTAS et al. (2017); DE OLIVEIRA & CYRINO OLIVEIRA (2018); 

PETROPOULOS et al. (2018); and DANTAS & CYRINO OLIVEIRA (2018). 

The flowchart of Figure 3.1 illustrates the first part of the BERGMEIR’s et 

al. (2016) approach (Section 3.1.1 and the current section), whilst Figure 3.2 depicts 

how the MBB procedure works in practice. 
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Figure 3.1 Bagged.BLD.MBB.ETS algorithm – First Part – Flowchart. 

Source: Adapted from BERGMEIR et al. (2016). 

 

 

Figure 3.2 Illustration of the MBB algorithm. 

 Source: Adapted from PETROPOULOS et al. (2018). 
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3.1.3 

Forecasting with ETS 

 

The second part of BERGMEIR’s et al. (2016) Bagged.BLD.MBB.ETS 

algorithm involves building a forecasting model for the original data and each of 

the bootstraps separately. In their work, the ETS family of models was selected to 

that end.  

ETS (an acronym standing for ExponenTial Smoothing or, alternatively, 

Error, Trend and Seasonality) stands for a finite set state space based exponential 

smoothing formulations, which can be obtained by considering variations in the 

combination of the error, trend and seasonal components of a time series. 

Exponential smoothing, in turn, consists of traditional procedures that attribute 

exponentially decreasing weights for past data so that recent observations are given 

relatively more weight in forecasting than older ones. 

Even though the basic structures were provided a long time ago, with the 

seminal works of HOLT (1957, reprinted 2004) and WINTERS (1960), exponential 

smoothing methods are still widely applied, mainly due its simplicity and its ability 

to adapt to many different situations (GOODWIN, 2010). In addition, ETS 

formulations have a theoretical foundation in state space modelling, allowing for 

straightforward implementation in many statistical packages (HYNDMAN et al., 

2002, 2008; HYNDMAN & ATHANASOPOULOS, 2013). 

There are several different approaches to exponential smoothing. For an 

extensive list of the most commonly used exponential smoothing methods in the 

literature, the interested reader is referred to the compiling works of GARDNER Jr. 

(1985, 2006). As for ETS in particular, according to the taxonomy proposed by 

PEGELS (1969) and extended by GARDNER Jr. (1985), the possibilities for the 

trend and seasonal components are depicted in Table 3.1. In addition, the error term 

can also vary between additive or multiplicative. That way, a total of 30 different 

formulations can be achieved. 
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Table 3.1 Possible variations for the trend and seasonal components of ETS 

formulations under a state space-based approach 

Trend Component 

Seasonal Component 

None  

(N) 

Additive  

(A) 

Multiplicative 

 (M) 
    

None (N) N, N N, A N, M 

Additive (A) A, N A, A A, M 

Additive Damped (Ad) Ad, N Ad, A Ad, M 

Multiplicative (M) M, N M, A M, M 

Multiplicative Damped (Md) Md, N Md, A Md, M 

 

Each model in a state space based formulation consists of two sets of 

equations: (i) a measurement equation that describes the observed data; (ii) and 

some transition equations that describe how the unobserved components or states 

(level, trend, seasonal) change over time. Let’s consider one possible combination 

as an example: an additive error, multiplicative trend, multiplicative season model, 

or AMM, according to the above-mentioned notation. First, we consider a p-

dimensional state vector 𝑥𝑡 =  (𝑎𝑡, 𝑏𝑡, 𝑠𝑡, 𝑠𝑡−1, … , 𝑠𝑡−𝑚)′, with 𝑎𝑡 and 𝑏𝑡 being the 

contemporaneous estimates of the level and linear trend parameters and 𝑠 

representing the included seasonal terms. We also let �̂�𝑡 = 𝑎𝑡−1 𝑏𝑡−1 𝑠𝑡−𝑚 be the 

one-period ahead forecast of 𝑦𝑡. Then, the prediction error decomposition is 

 𝑦𝑡 = �̂�𝑡 +  𝑒𝑡 = 𝑎𝑡−1 𝑏𝑡−1 𝑠𝑡−𝑚 +  𝑒𝑡 (2)  

Following ORD et al. (1997), we may write a nonlinear dynamic model 

representation of the exponential smoothing equations using a state space model 

with a common error term: 

 𝑦𝑡 = ℎ (𝑥𝑡−1, 𝜃) +  𝑘 (𝑥𝑡−1, 𝜃) 𝑒𝑡 

𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝜃) +  𝑔 (𝑥𝑡−1, 𝜃) 𝑒𝑡 
(3)  

where ℎ and 𝑘 are known continuous scalar functions, 𝑓 and 𝑔 are known 

continuous functions with continuous derivatives from ℜ𝑝 → ℜ𝑝 and 

𝑒𝑡 ~ 𝑖𝑖𝑑 (0, 𝜎2) are the independent past realizations of 𝑦 and 𝑥. 
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Conceptually, the 𝑦𝑡 equation represents how the various state variable 

components (𝑎𝑡−1, 𝑏𝑡−1, 𝑠𝑡−𝑚) are combined to express the series in terms of a 

smoothed forecast �̂�𝑡 = ℎ(𝑥𝑡−1, 𝜃) and the prediction error (𝑒𝑡). The 𝑥𝑡 equations, 

in turn, outline the process by which the component estimates are updated using the 

previous period’s estimates and the current prediction error - 𝑒𝑡. The multiple 

functions are a notational device for writing the additive and multiplicative errors 

in compact form. With additive errors, we have 𝑘 ≡ 1, so that 𝑦𝑡 = ℎ (𝑥𝑡−1, 𝜃) +

𝑒𝑡.  In short, we may think of the updating smoothing equations as being weighted 

averages of a term which depends on the current prediction error (and prior states), 

and one which depends on the prior states. The resulting state space equations for 

an additive error, multiplicative trend and multiplicative season model are: 

 �̂�𝑡 = 𝑎𝑡−1 𝑏𝑡−1 𝑠𝑡−𝑚 

𝑎𝑡 = 𝑎𝑡−1 𝑏𝑡−1 +  𝛼 
𝑒𝑡

𝑠𝑡−𝑚
⁄  

𝑏𝑡 = 𝑏𝑡−1 +  𝛼𝛽 
𝑒𝑡

(𝑠𝑡−𝑚 𝑎𝑡−1)⁄  

𝑠𝑡 = 𝑠𝑡−𝑚 +  𝛾 
𝑒𝑡

(𝑎𝑡−1 𝑏𝑡−1)⁄  

(4)  

To conserve space, further details on the ETS state space specification are 

not presented here. For a thorough overview on the subject, the interested reader is 

referred to ORD et al. (1997). For information regarding the alternatives on state 

space estimation methods, the work of HYNDMAN et al. (2008) is indicated. 

Concerning the practical implementation of ETS, an optimal model and set 

of parameters is identified for each series using the function ets( ) from the forecast 

package for the R statistical software. The input to the function is a vector formed 

by the original data values organized in a time series format. The output of ets( ) is 

a model form (together with the optimal parameters) consisting of three terms: 

error, trend and seasonality. Model selection/parameter optimization is often 

performed by minimizing one (or more) information criterion. The default is to 

select the ETS combination offering the lowest Akaike Information Criteria with 

corrections (AICc) (SUGIURA, 1978), a commonly adopted practice in empirical 

literature. Finally, forecasts for each optimal model can then be computed for a 

desired number of steps-ahead using the forecast( ) function (or forecast.ets( ) 

wrapper function), available from the R forecast package. 
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It is interesting to note that certain combinations from Table 3.1 give birth 

to well-known models in the forecasting literature. These models are frequently 

used as benchmarks to compare the forecasting performance of competing methods 

in a out-of-sample evaluation. Two widely referenced methods are (i) the three 

parameter Holt-Winters additive model and (ii) the three parameter Holt-Winters 

multiplicative model. The former can be obtained using the ets( ) function with 

default parameters, with the exception of the model selection, which is set to 

model=“AAA”. An alternative is to use the wrapper function hw( ) and setting 

seasonal to “additive”. The latter, in turn, can be called upon by simply adjusting 

the seasonal setting to “multiplicative” in the hw( ) wrapper function3. 

 

3.1.4 

Combination 

 

The last step in BERGMEIR’s et al. (2016) Bagged.BLD.MBB.ETS 

approach is to aggregate the forecasts obtained for each bootstrapped time series to 

generate the final output. To that end, the authors opt to use the simple median, 

given that it is less sensitive to outliers than other averaging approaches, reducing 

the effects of occasional poor forecasts.  

 

3.1.5 

Overall procedure 

The flowchart of Figure 3.3 summarizes the stages described in Sections 

3.1.1–3.1.4 and highlights the fundamental choices made by BERGMEIR et al. 

(2016) under the proposed framework. Following a Box-Cox (BC) transformation, 

each series is decomposed into three components (trend, seasonal and remainder) 

using the STL Decomposition. The remainder is then resampled using the Moving 

 

3 Alternatively, the ets( ) function can also be used, this time with the following arguments: 

ets(X, "MAM", alpha = NULL, beta = NULL, gamma = NULL, phi = NULL, damped = FALSE, 

opt.crit = "mse", lambda = NULL, biasadj = FALSE) 

where X is the underlying train series. 
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Blocks Bootstrap (MBB) approach (with the desired block size for each 

replication). Finally, the components are added together again, and the BC 

transformation is inverted. The overall procedure is repeated 𝐽 times, 𝐽 being the 

number of desired replications. A forecasting model is subsequently built for the 

original data and each of the bootstraps separately: in the present procedure, the 30 

possible combinations of the ETS family of models described in Section 3.1.3 are 

considered as competing models for each series. The 𝐽 + 1 forecasts (forecasts of 

the original data and the 𝐽 bootstraps generated) are finally aggregated/combined 

using the simple median. 
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Figure 3.3 A usual Bagging routine for forecasting. 

Texts in blue represent the fundamental choices adopted in BERGMEIR’s et al. (2016) in each stage of the algorithm. Source: The author.
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3.2 

The Bootstrap Model Combination (BMC) 

 

As previously outlined in Section 2.3, the Bootstrap Model Combination 

(BMC) was devised by PETROPOULOS et al. (2018) as an alternative strategy to 

tackle the isolated effect the model uncertainty arising in Bagging strategies, i.e., 

the fact that different models might be selected as optimal for the bootstrapped 

series. 

The BMC is quite similar to BERGMEIR’s et al. (2016) 

Bagged.BLD.MBB.ETS approach in that the bootstraps are originated by 

resampling the remainder from an STL decomposition and independently predicted 

using exponential smoothing formulations. However, the bootstraps are not directly 

used for forecasting, but rather to drive the selection of exponential smoothing 

model forms, which are then applied to the original data. The forecasts originating 

from this last step are then combined, with weights reflecting the frequency that the 

selected formulations were identified as optimal for the bootstraps. 

The fundamental differences between Bagged.BLD.MBB.ETS and BMC 

are illustrated in the flowchart of Figure 3.4. 

In further details, Bagged.BLD.MBB.ETS aggregates the 𝐽 + 1 Point 

Forecasts (PFs) using their medians. BMC, in turn, identifies from the pool of 𝐽 + 1 

forecasts, the 𝐾 unique ETS model forms and apply them to the original series. 

Then, it combines the results from K PFs using as weights the frequency with which 

the unique forms were identified as optimal, i.e., the amount of times they were 

selected divided by 𝐽 + 1. Considering all series from the M (MAKRIDAKIS et al., 

1982) and M3 (MAKRIDAKIS & HIBON, 2000) competitions, the BMC delivered 

better forecasts when compared to Bagged.BLD.MBB.ETS.  

Referring once again to the stages framework suggested in the last section, 

one could note that the procedure underlying the BMC is akin to the one depicted 

in Figure 3.3, with two exceptions: (i) the forecasting methods are now the unique 

model forms identified when applying ETS on the original series and its bootstraps; 

and (ii) the combination strategy is the aggregation by frequencies, in lieu of the 

simple median. 
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Figure 3.4 Bagged.BLD.MBB.ETS and BMC.  

Source: The author. 

 

3.3 

The Bagged.Cluster.ETS 

 

Another variant of Bagging for time series forecasting was recently put forth 

by DANTAS & CYRINO OLIVEIRA (2018). Their proposal was to combine 

Bagging, exponential smoothing and clustering algorithms. In brief terms, the 

approach, named after Bagged.Cluster.ETS, aimed at reducing the covariance effect 

of bagged forecasts by using Partitioning Around Medoids (PAM) to produce 

clusters of similar forecasts, then selecting several forecasts from each cluster to 

create a group with a reduced variance. The approach was tested on different sets 

of time series from the M3 (MAKRIDAKIS & HIBON, 2000) and CIF 2016 

competitions (ŠTĚPNIČKA & BURDA, 2017) and proved itself as a tough 

competitor, with its forecasts being more accurate than those from 25 benchmarks 

in the first competition and 23 in the second, including BERGMEIR et al. (2016) 

Bagged.BLD.MBB.ETS in both cases. Reporting one more time to Figure 3.3, the 

difference for Bagged.Cluster.ETS lies in the last stage (combination method), 

where a clustering and subsetting phase precedes the median aggregation. 
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4 

First essay: A new variant of Bagging applied to mid/long 

term electric energy consumption forecasting 

 

 

 

 

 

This chapter refers to the first contribution of the thesis. In a nutshell, it 

proposes an alternative method to generate ensembles of forecasts and applies it to 

a range of electricity consumption time series across different developed and 

developing economies. The proposed approach is compared with several time series 

and machine learning methods and with the Bagging approach of BERGMEIR et 

al. (2016) (Bagged.BLD.MBB.ETS). The results show that the former outperforms 

the latter on several occasions. The work, entitled “Forecasting mid-long term 

electric energy consumption through bagging ARIMA and exponential smoothing 

methods”, was published as a full-length article in Energy in 2018 (v. 144, p. 776–

788). 

Before delving into the details of the involved methodology, the next 

section provides a brief insight on the issues involved in mid/long term energy 

forecasting. The methodology is then introduced in Section 4.2. Section 4.3 

summarizes the selected data whilst Section 4.4 describes and discusses the results 

of the quantitative analysis. Finally, Section 4.5 concludes the findings of the study 

and presents directions for future research. 

 

4.1 

Introduction to energy demand planning and its challenges 

 

Accurate load forecasting is of utmost concern in decision-making within 

the electric sector, as the consequences of overestimation or underestimation can be 

costly. For instance, when delivered power is higher than the actual demand, the 

provider not only wastes resources but may also bear expensive costs due to strong 
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spot market regulation in several countries. On the other hand, underestimation 

naturally results in failures and shortages, which in turn translates into a loss of 

productive time and quality and subjects the provider to sanctions and penalties. 

Over the past decades, a large number of approaches have been proposed to 

estimate and forecast electric energy consumption. In short, these approaches can 

be divided into two main categories: short-term and mid-/long-term. Whilst the first 

is concerned with time frames of minutes to hours, the horizon for mid/long-term 

forecasting ranges from a few weeks to several years (AL-HAMADI & SOLIMAN, 

2005). Forecasting electric energy demand over the latter period is often regarded 

as a challenging task, due to the nonlinear, multidimensional nature of this variable 

(SHAO et al., 2016). In addition, many unpredictable factors affect electricity 

demand modeling, such as structural breaks and transitory effects from external 

variables. Nevertheless, mid/long-term load forecasting assumes a particular 

importance for electric power utility planning. Even though short-term forecasting 

forms the basis of the electrical energy trade and spot price calculation (CASTELLI 

et al., 2015), several decisions are made on the basis of mid/long-term energy 

demand forecasting, such as the construction of new generation facilities, the 

purchase of existing generating units, the development of transmission and 

distribution systems, among others. 

In light of the aforementioned, despite the drawbacks in terms of complexity 

and uncertainty, the pursuit of models that may enhance prediction of energy 

demand has been a prominent issue in the fields of energy/environmental policy 

and economic development. To contribute in this regard, this essay proposes an 

alternative Bagging approach to forecast two-year ahead (medium to long-term) 

forecasts for monthly electric energy demand in different parts of the world, 

including both developing and developed countries. 

As of the date of publication of this first essay, Bagging techniques are yet 

to be fully explored in the context of total electric energy consumption. 

Furthermore, a different variation of Bagging is here introduced leading to 

satisfactory forecasting results in terms of accuracy for several countries. 
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4.2 

Methods 

 

The Bagging strategy developed in this first essay is built using the same 

core ideas from BERGMEIR’s et al. (2016) Bagged.BLD.MBB.ETS approach – 

see Sections 3.1.1–3.1.4 for details. However, in lieu of resorting to the Moving 

Blocks Bootstrap (MBB) algorithm to generate the replicas of the original time 

series in Bagging, we propose a variant of the Sieve Bootstrap method applied to 

the remainder of  an STL decomposition. This approach, henceforth addressed as 

Remainder Sieve Bootstrap (RSB), is described in details in the next subsection. 

 

4.2.1 

Remainder Sieve Bootstrap 

 

The sieve bootstrap approach has its roots in the works of KREISS (1988) 

and BÜHLMANN (1997). Their methodology was based on the idea of fitting 

parametric models first and then resampling from the residuals. In brief terms, given 

a sample 𝑋1, … , 𝑋𝑛, from a stationary process, the method involved: (i) selecting 

the order 𝑝 =  𝑝(𝑛) of an autoregressive (AR) approximation using the Akaike 

Information Criterion (AIC, AKAIKE, 1974); (ii) using the AR(𝑝) model to filter 

the residuals series, obtaining centered residuals and their empirical cumulative 

distribution function; (iii) resampling the (supposed) i.i.d. centered residuals; (iv) 

using the AR(𝑝) for obtaining a new series 𝑋𝑡
∗ by recursion. Finally, given 

𝑋1
∗, … , 𝑋𝑇

∗ , the method computes the estimation of the AR coefficients and then 

obtain future bootstrap observations by recursion from the new series. 

In CORDEIRO & NEVES (2009), a different approach was proposed: the 

authors first suggested fitting an EXPOS model to the data and then proceeding like 

BÜHLMANN’s (1997) method over the residuals. The EXPOS model is named 

after the best fit model from a set of exponential smoothing forecasting methods. 

The BOOT.EXPOS procedure, as the method became known, demonstrated 

promising results in forecasting series with seasonal and trendy components. 
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In this essay, we set forth a variant of the above-mentioned procedure. In 

lieu of fitting an exponential smoothing model to the data, we first decompose the 

original time series into its trend, seasonal and remainder components, following 

the STL approach on the Box-Cox pretreated series, akin to the initial steps 

proposed by BERGMEIR et al. (2016). Then, provided that the last component is 

already stationary, we estimate the best fit Autoregressive-Moving Average – 

ARMA(𝑝, 𝑞) – model for the remainder, using AIC with corrections (AICc) 

(SUGIURA, 1978) or the most parsimonious formulation which ensures that there 

are no autocorrelation issues in the residuals. Finally, we resample the centered 

residuals and use the ARMA(𝑝, 𝑞) to obtain new series for the remainder. 

 

4.2.2 

Forecasting with ETS and ARIMA 

 

After having obtained all the bootstrapped time series, we estimated and 

subsequently forecasted each generated series using two major classes of time series 

methods: the ETS state space formulations and the Seasonal Autoregressive 

Integrated Moving Average (SARIMA) family of models (BOX & JENKINS, 

1970). Concerning ETS, their fundamentals were already presented in details in 

Section 3.1.3 of this thesis. We clarify, however, that we employed three different 

exponential smoothing approaches as forecasting methods for the bootstrapped 

series, i.e., in the third stage of the Bagging framework depicted in Figure 3.3. These 

methods are briefly described in the following lines. 

(i) The Holt-Winters additive model (WINTERS, 1960), appropriate for 

series with a linear time trend and additive seasonal variation. Its component form 

can be written as follows: 

 �̂�𝑡+𝑘 = 𝑎 + 𝑏𝑘 + 𝑠𝑡+𝑘 (5)  

where 𝑎 and 𝑏 are the permanent component (base signal) and the linear trend 

parameters, respectively, and 𝑠𝑡 are the additive seasonal factors. These parameters, 

in turn, are defined by the following recursive expressions: 
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 𝑎(𝑡) = 𝛼 [𝑦𝑡 − 𝑠𝑡(𝑡 − 𝑚)] + (1 − 𝛼) [𝑎(𝑡 − 1) + 𝑏(𝑡 − 1)] 

𝑏(𝑡) = 𝛽 [𝑎(𝑡) − 𝑎(𝑡 − 1)] + (1 − 𝛽) 𝑏(𝑡 − 1) 

𝑠𝑡(𝑡) = 𝛾 [𝑦𝑡 − 𝑎(𝑡)] + (1 − 𝛾) 𝑠𝑡(𝑡 − 𝑚) 

(6)  

where 0 < 𝛼, 𝛽, 𝛾 < 1 are the hyperparameters and 𝑚 is the seasonal frequency 

(supposedly monthly). In these terms, forecasts are computed by: 

 �̂�𝑇+𝑘 = 𝑎(𝑇) + 𝑏(𝑇) 𝑘 + 𝑠𝑇+𝑘−𝑚 (7)  

where the seasonal factors are used from the last 𝑠 estimates. 

(ii) The Holt-Winters multiplicative model (WINTERS, 1960), adequate 

to series with a linear time trend and multiplicative seasonal variation. The 

smoothed series �̂�𝑡 in this case is given by: 

 �̂�𝑡+𝑘 = (𝑎 + 𝑏𝑘) 𝑠𝑡+𝑘 (8)  

The three coefficients are now defined by the following recursions: 

 𝑎(𝑡) = 𝛼 [
𝑦𝑡

𝑠𝑡(𝑡 − 𝑚)
]

+ (1 − 𝛼) [𝑎(𝑡 − 1) + 𝑏(𝑡 − 1)] 

𝑏(𝑡) = 𝛽 [𝑎(𝑡) − 𝑎(𝑡 − 1)] + (1 − 𝛽) 𝑏(𝑡 − 1) 

𝜌𝑡(𝑡) = 𝛾 [
𝑦𝑡

𝑎(𝑡)
] +  (1 − 𝛾) 𝑠𝑡(𝑡 − 𝑚) 

(9)  

Forecasts are then computed by: 

 �̂�𝑇+𝑘 = (𝑎(𝑇) + 𝑏(𝑇) 𝑘) 𝑠𝑇+𝑘−𝑚 (10)  

(iii) State space based (exponential smoothing) formulations. As 

thoroughly explored in Section 3.1.3, this approach consists of a set of 30 different 

formulations which can be obtained by considering variations in the combination 

of the error, trend and seasonal components of a time series. As usual in automated 

ETS routines, the default here was to select the ETS combination offering the lowest 

Akaike Information Criteria with corrections (AICc) (SUGIURA, 1978). 

The SARIMA models, first proposed by BOX & JENKINS (1970), consist 

of an alternative approach to exponential smoothing. In brief terms, SARIMA 
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models are similar to exponential smoothing methods inasmuch as they are 

adaptive, can model trends and seasonal patterns, and can be automated. They 

differ, however, in that they are based on autocorrelations (patterns in time) rather 

than a structural view of level, trend and seasonality. It is argued that SARIMA 

formulations tend to succeed better than exponential smoothing methods for longer, 

more stable data sets and not as well for noisier, more volatile data (MAKRIDAKIS 

et al., 1982). 

Non-seasonal ARIMA models are generally denoted by ARIMA(p,d,q) 

where parameters p, d, and q are non-negative integers, p being the order of the 

autoregressive model, d the degree of differencing, and q the order of the moving-

average model. Seasonal ARIMA models, in turn, are usually denoted by 

SARIMA(p,d,q)x(P,D,Q)S and can written as follows: 

 ∇𝑆
𝐷 ∇𝑑 𝜙(𝐵) 𝛷(𝐵𝑆) 𝑍𝑡 = 𝜃(𝐵) 𝛩(𝐵𝑆) 𝑎𝑡 (11)  

where: 

• S refers to the number of periods in each season; 

• the uppercase P,D,Q refer to the autoregressive, differencing, and moving 

average terms for the seasonal part of the ARIMA model; 

• 𝑎𝑡 is the error term; 

• 𝐵 is the backward shift operator (eg. 𝐵𝑦𝑡 = 𝑦𝑡−1); 

• 𝜙(𝐵) and 𝛷(𝐵𝑆) are the non-seasonal and seasonal autoregressive 

polynomials, respectively; 

• 𝜃(𝐵) and 𝛩(𝐵𝑆) are the non-seasonal and seasonal moving-average 

polynomials, respectively; 

• ∇𝑑 and ∇𝑆
𝐷 are the non-seasonal and seasonal differencing operators, 

respectively. 

Concerning practical implementation, a SARIMA model can be 

automatically selected for a given time series by means of the auto.arima( ) function 

from the forecast package in R. The function implements an algorithm which 

combines unit root tests, minimization of the AICc and Maximum Likelihood 

Estimation (MLE) to select the best fit SARIMA model. 
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4.2.3 

Aggregation using the mean and the median 

 

In the last step, we aggregate the forecasts obtained for each bootstrapped 

time series to generate the final output. To that end, we use two different methods: 

the simple mean (or equal weights combination) and the median. Besides its 

simplicity, the simple mean has proved to be a tough benchmark for forecasting 

combinations, see for example STOCK & WATSON (2004). The median, in turn, 

is less sensitive to outliers, reducing the effects of occasional poor forecasts. 

 

4.3 

Data and overall procedure 

 

The empirical analysis was based upon monthly data of total electric energy 

consumption (GWh) in different developed and developing countries: Canada, 

France, Italy and Japan for the former case; and Brazil, Mexico and Turkey for the 

latter. For the Brazilian electric energy consumption, we referred to the data 

provided by the major Brazilian electric utilities company, Eletrobras, available at 

the Brazilian Central Bank time series database ELETROBRAS (2017). All other 

data were collected from the International Energy Agency (IEA) Monthly 

Electricity Statistics report, which provides electricity production and trade data for 

all OECD Member Countries (IEA, 2017). The time period of the analysis spanned 

from July 2006 (the first date available for OECD countries) to December 2016. 

Months from July 2006 to December 2014 were considered as training set whilst 

the observations from January 2015 to December 2016 comprised the test set for 

the out-of-sample experiment. 

Recalling the overall procedure proposed in this essay, a transformed 

version of each original time series was generated by means of a BOX & COX 

(1964) transformation. For the transformation parameter (𝜆), we followed 

BERGMEIR et al. (2016) and restricted it to lie in the interval [0,1], then used the 

method of GUERRERO (1993) to choose its value. Following the BC 
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transformation, each series was decomposed into three components (trend, seasonal 

and remainder), using the STL Decomposition (CLEVELAND et al., 1990). The 

remainder, was then either: (i) estimated by means of an ARMA(𝑝, 𝑞) process and 

its residuals resampled according to the Remainder Sieve Bootstrap (RSB) 

procedure proposed in Section 4.2.1; or (ii) directly bootstrapped using the MBB 

approach, as proposed in BERGMEIR et al. (2016). For each bootstrap approach, a 

total of 100 new series were generated. Finally, the components were added and the 

BC transformation was inverted. The overall procedures are illustrated in the 

flowchart of Figure 4.1. 

Several models are proposed to estimate and subsequently forecast the 

original and bootstrapped versions of the total electric energy consumption time 

series. In this essay, we restrict our analysis to four methods: 

(i) an auto ARIMA approach, implemented via the auto.arima( ) function in 

R – see Section 4.3.2 for details; 

(ii) a three parameter Holt-Winters additive model; 

(iii) a three parameter Holt-Winters multiplicative model; and 

(iv) an auto state space ETS approach. For this case, we use the ets( ) 

function in R and let it decide which Error, Trend and Seasonal (ETS) combination 

best suits the data – see Section 3.1.3 for details. 
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Figure 4.1 MBB and RSB-based Bagging approaches. 

Source: DE OLIVEIRA & CYRINO OLIVEIRA (2018). 
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Finally, the forecasts were combined using either the simple mean or median 

and the predictive power was assessed by means of an out-of-sample experiment 

using the test set (January 2015 to December 2016). The following measures were 

used to evaluate the accuracy of the forecasts: 

Mean Absolute Percentage Error (MAPE): 

 
𝑀𝐴𝑃𝐸 = ( ∑ |

𝑦�̂� − 𝑦𝑡

𝑦𝑡
|  ℎ⁄

𝑇+ ℎ

𝑡=𝑇+1

)  ×  100% (12)  

Symmetric Mean Absolute Percentage Error (sMAPE): 

 
𝑠𝑀𝐴𝑃𝐸 = { ∑ [

|𝑦�̂� − 𝑦𝑡|

(|𝑦�̂�| + |𝑦𝑡|) 2⁄
]  ℎ⁄

𝑇+ ℎ

𝑡=𝑇+1

}  ×  100% (13)  

Root Mean Squared Error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √ ∑
(𝑦�̂� − 𝑦𝑡)2

ℎ
⁄

𝑇+ ℎ

𝑡=𝑇+1

 (14)  

Theil Inequality Coefficient (TIC): 

 

𝑇𝐼𝐶 =  

√∑
(𝑦�̂� − 𝑦𝑡)2

ℎ
⁄𝑇+ ℎ

𝑡=𝑇+1

√∑ 𝑦�̂�
2

ℎ
⁄𝑇+ ℎ

𝑡=𝑇+1 + √∑ 𝑦𝑡
2

ℎ
⁄𝑇+ ℎ

𝑡=𝑇+1

 (15)  

In the above formulae, 𝑦�̂� is the predicted (forecasted) value whereas 𝑦𝑡 is 

the real (observed) value. ℎ, in turn, is the number of forecasting steps ahead. 

 

4.4 

Empirical Findings and Discussion 

 

4.4.1 

Performance gains from Bagging 
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The empirical results (best highlighted in bold) for the developed and 

developing countries are summarized in Tables 4.1 and 4.2, respectively. A 

visualization of the forecasts generated by the best bagging approaches plotted 

against the actual values (for each country) can be seen in Figure 4.2. 

With the exception of the Japanese case, where the best forecast in terms of 

MAPE and sMAPE was achieved using a auto ETS formulation, the Bagging 

approaches led to considerably superior results in terms of accuracy. In several 

cases the gains were noteworthy when compared with single forecasts on the real 

data. For the Italian electricity consumption, for instance, the sMAPE and the 

RMSE obtained using a Remainder Sieve Bootstrap (RSB) ETS approach were 

almost 30% and 58% lower than the ones obtained using the auto ETS method.  

It is worth noting that, for developed countries, the bagged forecasts that 

used the RSB approach performed better, in terms of MAPE and sMAPE, than the 

ones that resorted to the MBB counterpart. In terms of RMSE and TIC, the only 

case where the MBB outperformed the RSB was for the French monthly electricity 

consumption. Even so, the difference between the error metrics was not too 

significant. As for the developing countries, the MBB approach provided slightly 

better results on two of the three involved countries (Mexico and Turkey). This is a 

substantial improvement over previous bagging methods, as the MBB-based 

Bagging approach proposed by BERGMEIR et al. (2016) has been regarded as a 

benchmark for forecasting monthly data. 

Another interesting feature is the fact that the mean and the median of the 

forecasted values differed considerably in nearly every occasion (the Brazilian case 

is the sole exception). The results obtained using the simple median aggregation 

approach were considerably superior to the ones obtained by pooling the forecasts 

using equal weights (simple mean). Considering that the median is less sensitive to 

outliers, this suggests that the outliers (whether in the original or the generated time 

series) exert a considerable effect on the overall results. 
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Table 4.1 Forecast evaluation – developed countries (best results in bold) 

Forecast 

Approach 
Statistic 

MAPE SMAPE RMSE 
TIC  

MAPE SMAPE RMSE 
TIC 

(%) (%) (GWh)   (%) (%) (GWh) 

 
 

Canada 
 

France 

MBB.Arima 
Mean 4.271 4.187 2275.225 0.024 

 
4.056 4.067 1981.013 0.024 

Median 3.881 3.958 1960.548 0.021 
 

3.684 3.617 1442.878 0.019 

RSB.Arima 
Mean 4.986 4.899 2629.646 0.027 

 
5.116 5.132 2497.840 0.031 

Median 5.004 5.004 2503.508 0.027 
 

4.892 4.903 1784.197 0.023 

Auto Arima Single 5.140 5.050 2718.240 0.028 
 

5.946 6.014 2865.827 0.036 

 
 

         
MBB.Add. 

H-W 

Mean 4.023 3.966 2146.523 0.022 
 

4.157 4.239 2012.938 0.025 

Median 3.433 3.424 1748.092 0.019 
 

3.520 3.583 1618.959 0.021 

RSB.Add. 

H-W 

Mean 3.911 3.817 2251.833 0.023 
 

5.248 5.388 2413.163 0.030 

Median 3.174 3.176 1589.605 0.017 
 

4.320 4.416 2019.551 0.027 

Add H-W Single 4.206 4.078 2474.736 0.026 
 

5.634 5.792 2463.391 0.031 

 
 

    
 

    

MBB.Mult. 

H-W 

Mean 4.011 3.948 2149.314 0.022 
 

3.807 3.880 1944.163 0.024 

Median 3.294 3.347 1743.229 0.019 
 

3.722 3.793 1582.883 0.021 

RSB.Mult 

.H-W 

Mean 3.884 3.793 2239.347 0.023 
 

4.834 4.959 2351.984 0.029 

Median 3.296 3.253 1575.038 0.017 
 

4.558 4.664 1722.974 0.023 

Mult H-W Single 4.141 4.023 2427.717 0.025 
 

5.033 5.158 2319.074 0.029 

 
 

    
 

    

MBB.ETS 
Mean 3.855 3.787 2141.358 0.022 

 
2.781 2.784 1663.936 0.020 

Median 3.385 3.389 1681.856 0.018 
 

2.098 2.100 815.629 0.011 

RSB.ETS 
Mean 4.234 4.152 2306.102 0.024 

 
2.994 3.004 1785.948 0.022 

Median 3.879 3.956 1794.504 0.019 
 

1.955 1.954 867.615 0.011 

Auto ETS Single 4.040 3.944 2268.954 0.023 
 

2.489 2.479 1534.811 0.019 
           

 
 

Italy 
 

Japan 

MBB.Arima 
Mean 2.533 2.595 1024.809 0.020 

 
3.494 3.570 3507.538 0.022 

Median 2.527 2.559 625.712 0.012 
 

3.426 3.486 2957.626 0.018 

RSB.Arima 
Mean 2.562 2.619 1243.208 0.024 

 
3.575 3.645 3516.507 0.022 

Median 1.455 1.456 377.912 0.007 
 

3.585 3.609 2922.618 0.018 

Auto Arima Single 3.314 3.407 1221.386 0.024 
 

3.229 3.288 3267.591 0.020 

 
 

         
MBB.Add. 

H-W 

Mean 2.502 2.556 917.959 0.018 
 

3.494 3.570 3507.538 0.022 

Median 2.409 2.439 607.370 0.012 
 

3.426 3.486 2957.626 0.018 

RSB.Add. 

H-W 

Mean 2.126 2.163 848.341 0.016 
 

3.575 3.645 3516.507 0.022 

Median 1.583 1.583 402.300 0.008 
 

3.585 3.609 2922.618 0.018 

Add H-W Single 1.904 1.943 803.252 0.015 
 

3.229 3.288 3267.591 0.020 

 
 

    
 

    

MBB.Mult. 

H-W 

Mean 2.458 2.512 928.555 0.018 
 

3.909 3.994 3638.494 0.023 

Median 2.317 2.344 635.191 0.012 
 

3.997 4.058 3053.883 0.019 

RSB.Mult. 

H-W 

Mean 2.012 2.049 856.750 0.016 
 

5.624 5.805 5008.852 0.031 

Median 1.419 1.409 371.320 0.007 
 

6.128 6.322 5071.051 0.032 

Mult H-W Single 1.829 1.868 818.579 0.016 
 

3.735 3.770 3345.802 0.021 

 
 

    
 

    

MBB.ETS 
Mean 1.745 1.773 755.870 0.015 

 
3.526 3.588 3255.967 0.020 

Median 1.609 1.596 402.184 0.008 
 

3.594 3.660 2818.551 0.017 

RSB.ETS 
Mean 1.855 1.860 748.582 0.014 

 
3.711 3.781 3490.502 0.022 

Median 1.305 1.296 327.862 0.006 
 

3.044 3.057 2635.629 0.016 

Auto ETS Single 1.806 1.838 768.508 0.015 
 

2.274 2.233 2687.012 0.016 
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Table 4.2 Forecast evaluation – developing countries (best results in bold) 

Forecast 

Approach 
Statistic 

MAPE SMAPE RMSE 
TIC  

MAPE SMAPE RMSE 
TIC 

(%) (%) (GWh)   (%) (%) (GWh) 

 
 

Brazil 
 

Mexico 

MBB.Arima 
Mean 4.724 4.603 1933.379 0.025 

 
3.531 3.585 1091.476 0.023 

Median 4.627 4.522 1784.111 0.023 
 

3.041 3.046 680.274 0.014 

RSB.Arima 
Mean 4.368 4.264 1805.707 0.023 

 
3.503 3.559 1100.538 0.023 

Median 4.359 4.266 1675.724 0.021 
 

3.280 3.276 750.486 0.016 

Auto Arima Single 4.677 4.550 1943.011 0.025 
 

3.092 3.122 968.572 0.020 

 
 

         
MBB.Add.H-

W 

Mean 6.789 6.536 2803.963 0.035 
 

4.554 4.674 1375.443 0.029 

Median 6.700 6.483 2574.868 0.032 
 

4.241 4.333 1083.106 0.023 

RSB.Add.H-

W 

Mean 6.447 6.222 2658.016 0.034 
 

4.947 5.058 1446.868 0.030 

Median 6.250 6.061 2383.104 0.030 
 

4.257 4.350 1106.579 0.023 

Add H-W Single 7.170 6.884 2961.887 0.037 
 

5.128 5.298 1558.574 0.033 

 
 

     
    

MBB.Mult.H-

W 

Mean 6.647 6.405 2745.442 0.035 
 

4.608 4.728 1364.842 0.029 

Median 6.588 6.378 2495.533 0.031 
 

4.156 4.162 995.764 0.021 

RSB.Mult.H-

W 

Mean 6.381 6.162 2629.106 0.033 
 

4.566 4.657 1345.790 0.028 

Median 6.122 5.940 2335.423 0.030 
 

3.832 3.908 952.716 0.020 

Mult H-W Single 7.180 6.891 2973.818 0.037 
 

4.779 4.911 1428.301 0.030 

 
 

    
 

    

MBB.ETS 
Mean 6.471 6.242 2661.628 0.034 

 
6.192 6.441 1780.398 0.038 

Median 6.570 6.361 2502.552 0.032 
 

6.086 6.278 1442.600 0.031 

RSB.ETS 
Mean 6.411 6.188 2649.286 0.033 

 
6.341 6.610 1853.388 0.040 

Median 6.195 6.009 2366.104 0.030 
 

6.046 6.234 1463.423 0.031 

Auto ETS Single 7.214 6.927 2965.903 0.037 
 

6.921 7.228 1953.420 0.042 

 
 

Turkey 
 

    

MBB.Arima 
Mean 2.644 2.632 712.075 0.016 

 
    

Median 2.151 2.138 490.369 0.012 
 

    

RSB.Arima 
Mean 2.744 2.729 724.887 0.017 

 
    

Median 2.507 2.511 556.709 0.013 
 

    

Auto Arima Single 2.277 2.279 681.329 0.016 
 

    

 
 

         
MBB.Add.H-

W 

Mean 3.079 3.038 755.223 0.017 
 

    

Median 2.756 2.718 595.679 0.014 
 

    

RSB.Add.H-

W 

Mean 3.326 3.275 807.492 0.018 
 

    

Median 2.993 2.949 642.197 0.015 
 

    

Add H-W Single 2.623 2.594 707.484 0.016 
 

    

 
 

    
 

    

MBB.Mult.H-

W 

Mean 2.740 2.701 707.057 0.016 
 

    

Median 2.035 2.015 452.767 0.011 
 

    

RSB.Mult.H-

W 

Mean 2.995 2.938 795.979 0.018 
 

    

Median 2.392 2.364 495.507 0.012 
 

    

Mult H-W Single 2.421 2.383 698.838 0.016 
 

    

 
 

    
 

    

MBB.ETS 
Mean 2.512 2.527 724.285 0.017 

 
    

Median 2.489 2.459 547.975 0.013 
 

    

RSB.ETS 
Mean 2.686 2.728 830.497 0.019 

 
    

Median 2.224 2.224 460.625 0.011 
 

    

Auto ETS Single 2.913 2.984 932.234 0.022 
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Figure 4.2 Electricity demand by country. 

Best forecasts in red, actual values in blue. Source: DE OLIVEIRA & CYRINO OLIVEIRA (2018). 
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There was no consensus concerning the superiority of either ETS or ARIMA 

when combined with the Bagging algorithms employed in this essay. The (auto) 

ARIMA approach seemed to perform better for the Brazilian and Mexican cases, 

whereas the exponential smoothing methods adapted well for the monthly 

consumption in developed countries. 

 

4.4.2 

Comparison with other methods 

 

For robustness checks, we compared the developed approaches with other 

univariate methods established in the literature. Care was taken to choose models 

that dealt with different stylized facts in electricity demand time series, such as 

nonlinearities, stochastic components (trend, seasonality, residuals), 

heteroscedasticity, among others. Particularly, we selected the following methods 

for comparison: 

• a feedforward Artificial Neural Network (ANN) model (RUMELHART et al., 

1985; AUER et al., 2008), to address complex nonlinear behavior; 

• a feedforward ANN model with prior Box-Cox transformation (BC-ANN), in 

an attempt to ensure that residuals will be roughly homoscedastic; 

• a univariate Support Vector Regression (SVR), an advanced machine learning 

algorithm, able to learn from training data and form complex non-linear 

decision boundaries (SMOLA & SCHÖLKOPF, 2004). To select the best 

subset of variables for prediction (in our case, the lagged values of the 

electricity demand with the most predictive power), the Correlation-based 

feature selection (CFS) algorithm (HALL, 1999) was used in each country's 

training set; 

• the Theta method (ASSIMAKOPOULOS & NIKOLOPOULOS, 2000), a 

technique equivalent to a simple exponential smoothing with drift (with a 

particular restriction for this last component). The technique has performed 

particularly well in the M3-competition (MAKRIDAKIS & HIBON, 2000) for 

monthly series and for microeconomic data; 
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• two variations of the univariate Singular Spectrum Analysis (SSA) technique - 

a decomposition-reconstruction method that seeks to filter the noise and 

forecast the signal of an underlying time series using multiple steps 

(Embedding, Singular Value Decomposition, Grouping and Diagonal 

Averaging). In this work, we employ both the Recurrent SSA (RSSA) and the 

Vector SSA (VSSA) variations (GOLYANDINA et al., 2001). 

The results obtained using the above methods are presented in Tables 4.3 

and 4.4, for the developed and developing countries, respectively. For each country 

in the tables, the first and second rows refer to the two best (most accurate) 

forecasting methods from Table 4.1 (developed countries) or Table 4.2  (developing 

countries). For ANN formulations, the selected model is given in the form ANN 

(p,P,k) [m], where p is the number of lagged inputs (autoregressive terms), P is the 

number of autoregressive terms for the seasonal part of the time series, k is the 

number of nodes in the hidden layer and m is the seasonal frequency. For SVRs, 

numbers in parenthesis are the lag variables selected by the CFS algorithm for the 

training set. For the SSA models, the parameters refer to the window length (L) and 

the number of eigenvalues / eigentriples (r), in that order. The selection was made 

on the basis of the lowest Root Mean Squared Error (RMSE) for the calibration 

period (24 months before the out-of-sample period), i.e. the L and r parameters are 

the same from the model which demonstrated the lowest RMSE when forecasting 

for the period January 2013-December 2014. 

The results outlined in Tables 4.3 and 4.4 endorse the superiority of the 

proposed bagging methods. The Japanese case remains the only exception, but now 

results are not conclusive in terms of the best forecasting technique for the 2015-

2016 period. The auto ETS approach performed better in terms of MAPE and 

sMAPE for the Japanese electricity demand, whilst the Theta forecasts were slightly 

more accurate in terms of RMSE and TIC.
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Table 4.3 Comparison with other methods – developed countries (best in bold) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forecast Approach 
MAPE SMAPE RMSE 

TIC  Forecast Approach 
MAPE SMAPE RMSE 

TIC 
(%) (%) (GWh)   (%) (%) (GWh) 

           
 Canada 

 
 France 

RSB.Add.H-W - Median 3.174 3.176 1589.605 0.017 
 

RSB.ETS - Median 1.955 1.954 867.615 0.011 

RSB.Mult.H-W - Median 3.296 3.253 1575.038 0.017 
 

MBB.ETS - Median 2.098 2.100 815.629 0.011 

ANN (1, 1, 2) [12] 4.137 4.078 2334.346 0.024 
 

ANN (2, 1, 2) [12] 3.406 3.440 1957.902 0.024 

BC-ANN (1, 1, 2) [12] 4.138 4.085 2307.694 0.024 
 

BC-ANN (1, 1, 2) [12] 3.303 3.370 2002.234 0.025 

SVR (6, 20, 27, 84, 96) 8.509 8.550 4977.226 0.052 
 

SVR (8, 96) 8.199 8.074 3881.359 0.048 

Thetha 4.137 4.022 2385.858 0.025 
 

Thetha 2.846 2.861 1666.439 0.021 

RSSA (35, 33) 4.746 4.697 2661.387 0.028 
 

RSSA (35, 7) 4.413 4.422 1980.674 0.024 

VSSA (27, 26) 5.857 5.672 3245.611 0.033 
 

VSSA (34, 11) 4.289 4.322 1897.870 0.023 

           

 Italy 
 

 Japan 

RSB.ETS - Median 1.305 1.296 327.862 0.006 
 

RSB.ETS - Median 3.044 3.057 2635.629 0.016 

RSB.Mult.H-W - Median 1.419 1.409 371.320 0.007 
 

Single ETS 2.274 2.233 2687.012 0.016 

ANN (12, 1, 6) [12] 3.863 3.960 1405.311 0.027 
 

ANN (7, 1, 4) [12] 4.318 4.310 4637.648 0.028 

BC-ANN (12, 1, 6) [12] 3.393 3.520 1498.755 0.029 
 

BC-ANN (6, 1, 4) [12] 5.804 5.856 5782.212 0.036 

SVR (34, 99) 3.516 3.590 1613.364 0.031 
 

SVR (2, 100) 7.368 7.243 6883.180 0.042 

Thetha 2.065 2.107 839.800 0.016 
 

Thetha 2.392 2.370 2615.827 0.016 

RSSA (29, 21) 3.078 3.053 1107.605 0.021 
 

RSSA (21, 7) 5.276 5.443 5254.590 0.033 

VSSA (30, 16) 2.791 2.866 1127.547 0.022 
 

VSSA (23, 11) 4.424 4.591 4869.373 0.030 

Notes on the parameters for each method: See main text from Section 4.4.2. 
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Table 4.4 Comparison with other methods – developing countries (best in bold) 

Forecast Approach 
MAPE SMAPE RMSE 

TIC  Forecast Approach 
MAPE SMAPE RMSE 

TIC 
(%) (%) (GWh)   (%) (%) (GWh) 

           
 Brazil 

 
 Mexico 

RSB.ARIMA - Mean 4.368 4.264 1805.707 0.023 
 

MBB.ARIMA - Median 3.041 3.046 680.274 0.014 

RSB.ARIMA - Median 4.359 4.266 1675.724 0.021 
 

Single ARIMA 3.092 3.122 968.572 0.020 

ANN (1, 1, 2) [12] 5.531 5.360 2259.505 0.029 
 

ANN (1, 1, 2) [12] 6.762 7.019 2042.153 0.043 

BC-ANN (1, 1, 2) [12] 5.415 5.251 2212.039 0.028 
 

BC-ANN (2, 1, 2) [12] 5.810 5.998 1750.736 0.037 

SVR (2, 3, 4, 100) 5.069 4.910 2160.605 0.027 
 

SVR (2, 100) 15.040 16.749 4538.936 0.102 

Thetha 5.153 5.012 2086.524 0.026 
 

Thetha 6.545 6.820 1860.834 0.040 

RSSA (26, 13) 6.318 6.072 2751.797 0.035 
 

RSSA (35, 7) 3.557 3.567 1080.091 0.022 

VSSA (20, 11) 7.033 6.722 3059.962 0.038 
 

VSSA (24, 10) 3.303 3.341 1042.185 0.022 

           

 Turkey 
 

     

MBB.Mult.H-W - Median 2.035 2.015 452.767 0.011 
 

     

MBB.ARIMA - Median 2.151 2.138 490.369 0.012 
 

     

ANN (1, 1, 2) [12] 3.604 3.490 1320.487 0.030 
 

     

BC-ANN (2, 1, 2) [12] 3.387 3.463 1028.813 0.024 
 

     

SVR (2, 100) 5.723 6.022 1887.737 0.045 
 

     

Thetha 2.914 2.975 898.173 0.021 
 

     

RSSA (25, 7) 3.559 3.503 884.791 0.020 
 

     

VSSA (39, 24) 6.174 5.941 1457.826 0.033 
 

     

                      

Notes on the parameters for each method: See main text from Section 4.4.2. 
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4.4.3 

Discussion 

 

The performance gains demonstrated by the Bagging approaches are 

remarkable as accurate forecasts are decisive for assertive profit/cost management 

and investment decisions, as well as for the definition of sectoral policies in a local 

or national scale. For the energy sector, particularly, precise mid/long-term demand 

forecasting is of the utmost importance for several decision-making processes, such 

as the construction of new generation facilities, the purchase of existing generating 

units, the development of transmission and distribution systems, among others. In 

a more general sense, accurate forecast results are also paramount to reach 

agreements between different stakeholders (generators, transmitters, distributors, 

traders, consumers, investors, government and national regulation institutes). 

It should be noted that a considerable amount of the variation in the monthly 

electric energy consumption is due to external factors, which cannot be captured by 

univariate forecasting methods. Some remarkable examples are the influences of 

the electric energy generation and, particularly, Industrial Output in several 

countries. For the Brazilian case, for instance, the Industrial Sector accounted for 

almost 43% of the total electric energy consumption between the years of 2006 and 

2014 (train period). Another point worth noting is the important role that the Gross 

Domestic Product (GDP) plays in electric energy consumption behavior 

(KUCUKALI & BARIS, 2010; BURKE & CSEREKLYEI, 2016). By quickly 

glancing the GDP data in Brazil, one may notice substantial falls in its common 

trend, reflecting the recent political and economic turmoil in the country. Along 

with the energy rationing and the lower industrial output, this might have been an 

important factor for the substantial decline in the energy demand in Brazil in the 

last years.  

Notwithstanding the above, formulations that consider external influences 

on the variable of interest usually yield satisfactory results when simulating 

historical data but fail to perform well in forecasting several steps ahead (more than 

12 steps, as in our case). On these grounds, the combination of Bagging approaches 

and univariate forecast methods emerges as a promising alternative to predict mid-

/long-term behavior for a broad variety of time series in different economic sectors. 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



Chapter 4. First essay 54 

 

 

4.5 

Main conclusions from the first essay 

 

This essay proposed an alternative method, here addressed as Remainder 

Sieve Bootstrap (RSB), to generate the ensemble of forecasts prior to final 

aggregation in Bagging routines. It also represented the first endeavor to consider 

the use of Bagging in the context of electric energy demand forecasting. The 

obtained results attested that the developed method could improve over a range of 

benchmarks, such as univariate time series methods and machine learning 

techniques. The method also performed equally well (being superior in some cases) 

to alternative Bagging approaches to forecasting, such as BERGMEIR’s et al. 

(2016) Bagged.BLD.MBB.ETS method. This constituted an important contribution 

to the field of forecasting at the time of the publication. 

A range of suggestions for future research were made by the time of the 

publication such as the use of alternative decomposition and resampling schemes. 

A top-down disaggregation approach before proceeding to the forecasting routines 

was also indicated. This entailed applying the proposed approach for each class of 

consumption (Industrial, Commercial, Residential and Other Sectors) and then 

pooling together the forecasts to obtain the estimates of the total demand. Such 

sector-specific studies would provide a more in-depth understanding of the demand 

for electric energy across different countries and could further enhance the accuracy 

of forecasts. 
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5 

Second essay: Ensemble approaches and regularization 

techniques to natural gas consumption and energy supplied 

forecasts 

 

 

 

 

 

In this second contribution, a novel forecasting approach combining 

Bootstrap aggregating (Bagging) algorithms, time series methods and 

regularization techniques was introduced. A new variant of Bagging, in which the 

set of classifiers is built by means of a Maximum Entropy Bootstrap (MEB) routine, 

was also put forth. The approach was evaluated on two types of monthly energy 

demand across a wide range of European/OECD-European economies: energy 

supplied and gross inland natural gas consumption. These series were chosen 

because of their relevance to real world operational problems and decision making 

in energy and environmental policy. 

It should be emphasized that the use of a proper variable weighting 

technique in the aggregation of forecasting ensembles (in our case, the 

regularization routines) was an issue that had not yet been addressed for Bagging 

approaches when the work was put forth. To the best of our knowledge, there had 

been only one work partially addressing this issue (DANTAS & CYRINO 

OLIVEIRA, 2018), but the technique developed was only capable of feature 

selection, i.e., the selected variables were still given equal weights in the final 

(aggregation) phase.  

The empirical experiments and robustness checks conducted throughout the 

work demonstrated the superiority, in terms of forecasting accuracy, of the 

proposed approach over traditional forecasting methods and over recently 

developed Bagging routines for forecasting. The paper originating from this essay, 

entitled “A novel approach to ensembles applied to energy consumption time 

series”, is currently being considered for publication.  
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Despite the importance of the literature overview in forecasting energy 

supplied and gross inland natural gas consumption across different 

countries/regions, in this essay we focused only on the involved methodology from 

the second paper/contribution, its results and the overall discussion. The rest of the 

paper can be made available upon request. 

 

5.1 

Proposed methodology 

 

In spite of the substantial improvements in forecasting performance brought 

by ensemble methods, as illustrated in the last essay, resampling and variable 

weighting schemes appear to have only been partially addressed in the literature. 

Resampling in most Bagging routines for forecasting, for instance, has been mostly 

conducted via the modified Moving Blocks Bootstrap (MBB) algorithm 

(BERGMEIR et al., 2016; DANTAS et al., 2017; PETROPOULOS et al., 2018; 

DANTAS & CYRINO OLIVEIRA, 2018). However, the MBB is very sensitive to 

the choice of the block size, for which there is currently no consensus in the 

literature on what would be optimal for different types of series. In addition, MBB, 

like most bootstrapping approaches, repeats original values while not using many 

others, and values that are in the neighbourhood of observed points in the time series 

cannot be included in a replica. 

Concerning current limitations in variable weighting schemes, the BMC 

approach of PETROPOULOS et al. (2018), presented in details in Section 3.2, is 

restricted to exponential smoothing. The Bagged.Cluster.ETS method of DANTAS 

& CYRINO OLIVEIRA (2018) (Section 3.3), in turn, is also not problem-free 

since: (i) the number of clusters needs to be defined (an automatic procedure is 

offered by the authors, but it does not guarantee the best results); (ii) the method is 

very computational intensive, when compared with other ensemble-based routines; 

and (iii) only feature selection is achieved, as the selected variables are still equally 

weighted in the aggregation phase. Furthermore, as GUO & LUH (2004) 

highlighted, the weights in ensembles can reflect the overall historical prediction 

performance, but are unlikely to exploit the information in current input data. 
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Hence, traditional ensembles are generally unable to make the best use of all the 

available information at the time of forecasting. 

Given the current state of the literature, this essay proposes an ensemble 

approach that includes (i) a  resampling algorithm that expands the range of values 

in replicas and is not conditional on pre-selection of key parameters and (ii) 

regularization while combining forecasts. This proposal therefore develops a hybrid 

approach that draws on knowledge from statistics, machine learning and 

forecasting, which are fields that until recently had been developed separately, as 

observed by WERON (2014) in his review of the state-of-the-art in forecasting 

electricity prices. 

 

5.1.1 

Resampling via the Maximum Entropy Bootstrap 

 

The first part of the proposed approach is akin to the 

Bagged.BLD.MBB.ETS procedure proposed by BERGMEIR et al. (2016), since it 

involves generating replicas for the remainder component of an STL decomposition 

applied to a Box–Cox (BC) transformed time series. However, instead of using the 

Moving Blocks Bootstrap (MBB) algorithm to replicate the remainder, a Maximum 

Entropy Bootstrap (MEB) routine is adopted, so that ensembles are created from a 

density distribution that satisfies the maximum entropy principle (VINOD & 

LÓPEZ-DE-LACALLE, 2009). To the best of our knowledge, this method has not 

been adopted in this context. After bootstrapping the remainder, the trend and 

seasonal components are added, and the BC transformation is inverted. The 

procedure is repeated 𝐽 times, 𝐽 being the number of desired replicas. Subsequently, 

forecasts are generated for each series in the pool, using ETS and ARIMA 

formulations. The proposed resampling and forecasting procedures are summarized 

in Figure 5.1. 
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Figure 5.1 MEB – Data treatment, resampling and forecasting stages. 

 Source: The authors. 

 

The Maximum Entropy Bootstrap (MEB) approach was devised by VINOD 

(2004) as an alternative resampling procedure for non-stationary time series or in 

which the stationarity hypothesis is difficult to ascertain. It involves constructing 

replicates of an original series by means of a seven-step algorithm designed to 

satisfy the ergodic theorem, ensuring that the grand mean of all ensembles is close 
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to the original sample mean. In brief terms, for a 𝑥𝑡 time series of size 𝑇, the 

following steps are proposed: 

1) Sorting of the original data in increasing order to create order statistics 𝑥(𝑡) and 

storing of the ordering index vector; 

2) Computation of the intermediate points from the order statistics:  𝑧(𝑡) =

𝑥(𝑡) − 𝑥(𝑡−1) 2⁄ , 𝑡 = 2, 3, … , 𝑇 − 1; 

3) Calculation of the trimmed mean (𝑚𝑡𝑟𝑚) of the deviations 𝑥(𝑡) − 𝑥(𝑡−1) among 

all consecutive observations. In addition, computation of the lower and upper limits 

of the density, 𝑧0 = 𝑥(1) − 𝑚𝑡𝑟𝑚 and 𝑧𝑇 = 𝑥(𝑇) + 𝑚𝑡𝑟𝑚, respectively; 

4) Construction of a maximum entropy density function with the z values as limiting 

points. The density is built by joining uniform distribution intervals of equal 

probability. The uniform densities are also designed to satisfy the mean-preserving 

constraint (and eventually the ergodic theorem). To that end, the interval means for 

the uniform density, 𝑚𝑡, must satisfy the following relations: 

 𝑚1 = 0.75𝑥(1) + 0.25𝑥(2) 

𝑚𝑘 = 0.25𝑥(𝑘−1) + 0.50𝑥(𝑘) + 0.25𝑥(𝑘+1), 

 𝑘 = 2, … , 𝑇 − 1 

𝑚𝑇 = 0.25𝑥(𝑇−1) + 0.75𝑥(𝑇) 

(16)  

5) Inverse transforming sampling: generation of T random numbers from the [0, 1] 

uniform interval, computation of sample quantiles of the ME density at those points 

and sorting in increasing order; 

6) Reordering of the sorted sample quantiles by using the ordering index of step 1. 

This recovers the time dependence relationships of the original data; 

7) Finally, steps 1–6 are repeated until the desired number of replicas is achieved. 

As noted throughout the steps, the MEB procedure offers appealing 

characteristics, such as the retention of the basic shape and time dependence 

structure of the Autocorrelation Function (ACF) and the Partial Autocorrelation 

Function (PACF) of the original series for its bootstrapped versions without having 

to resort to shape-destroying transformations like detrending or differencing to 

achieve stationarity (VINOD & LÓPEZ-DE-LACALLE, 2009). Furthermore, the 
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results are not sensitive/conditional on pre-selection of key parameters, as in other 

bootstrap procedures4. Besides avoiding stationarity, VINOD (2006) adds that the 

MEB procedure circumvents three other limiting properties of the traditional 

independent identically distributed (iid) bootstrap: 

i) The traditional resample obtained from shuffling with replacement repeats some 

original values while not using as many others. It never admits nearby data values 

in a resample. A priori, there is no reason to believe that values near the observed 

𝑥𝑡 are impossible; 

ii) Traditional resamples must lie in the closed interval [min(𝑥𝑡) , max (𝑥𝑡)]. Since 

the observed range is random, we cannot rule out somewhat smaller or larger 𝑥𝑡. 

Note that the third step of the MEB algorithm implies a less restrictive/wider range; 

iii) Traditional bootstrap routines involve shuffling 𝑥𝑡 in a way that any dependence 

information in the time series sequence (𝑥1, … , 𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑇) is lost. If one tries 

to restore the original order to the shuffled resample, he/she ends up with essentially 

the original set 𝑥𝑡, except that some dropped values are replaced by the repeats of 

adjacent values. Hence, it is impossible to generate a large number of sensibly 

distinct resamples in a traditional bootstrap shuffle without admitting nearby values. 

In addition to the above, the MEB is of straightforward implementation and 

is available in different statistical packages5. For such reasons, the procedure has 

been effectively employed in different empirical applications, such as: time series 

inferences related to the Asian economy (VINOD, 2006); investigation of 

associations between energy consumption and economic health in Turkey 

(YALTA, 2011); estimation of air temperature quantiles in certain regions of 

Central Europe (BARBOSA et al., 2011). Notwithstanding its increased popularity, 

 

4 To be fair, replicates originating from MEB may vary according to the definition of the trimming 

parameter for the computation of the limiting intermediate points – see the algorithm steps for further 

details. This is more of a practitioner choice (most practical implementations are taken using a 10% 

trimmed mean for the deviations) rather than a decisive factor, such as the block size definition in 

the MBB procedure. 

 
5 In R, the MEB can be implemented using the meboot( ) function of the meboot package (VINOD 

& LÓPEZ-DE-LACALLE, 2009). Following a commmon practice, we set the trimming proportion 

to 10% by adding trim = 0.10. 
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we are unaware of previous applications of the MEB procedure in the context of 

time series forecasting, especially as part of a Bagging approach. 

 

5.1.2 

Combination via Regularization 

 

The second main difference between our proposed methodology and 

previous Bagging routines for forecasting lies in the way the pool of forecasts are 

combined. Instead of using the mean or the median, regularization routines assign 

weights for each forecast in the selected ensemble under a multiple regression 

framework. The idea is to substantially reduce the variance of the final forecasting 

model at the cost of introducing some bias, an approach which has proven to be 

very beneficial for the predictive performance of the model when (i) there are many 

predictors; and/or (ii) the predictors are highly correlated with each other. Both 

situations are both clearly present in Bagging routines for forecasting. 

For illustrative purposes, Figure 5.2 demonstrates how the bias-variance 

trade-off works under a multiple regression setting and how the search for the 

optimal model complexity is conducted in such case. In brief terms, a model’s error 

can be decomposed into three parts: the error resulting from a large variance, the 

error resulting from significant bias, and a remainder (unexplainable part). As the 

model complexity (in our case, the number of forecasted bootstraps) increases, the 

bias decreases. An unbiased ordinary least squares (OLS) estimate, for instance, 

would deliver a result on the right-hand side of the picture, which is far from 

optimal. The main rationale of regularization is thus to lower the variance at the 

cost of some bias, moving left on the plot, towards the optimum. 

There are basically two types of regularization techniques: The Ridge 

regression (HOERL & KENNARD, 1970) and the Least Absolute Shrinkage and 

Selection Operator (LASSO)6 (TIBSHIRANI, 1996, 2011). In both cases, the 

 

6 There are also the so-called elastic-net models, which are something between the RIDGE and the 

LASSO formulations, obtained by varying the α, the elastic-net penalty parameter over the range of 

0 (Ridge) – 1 (LASSO) – see FRIEDMAN et al. (2010) for further details. As a side note, we have 
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traditional OLS loss function is augmented in such a way that one not only 

minimizes the sum of squared residuals but also penalizes the size of parameter 

estimates. 

 

 

Figure 5.2 Bias-Variance trade-off. 

Source: Adapted from FORTMANN-ROE (2012). 

 

Supposing that we are aiming at predicting n observations of the response 

variable, Y, with a linear combination of m predictor variables, X, and a normally 

distributed error term with 𝜎2 variance. In this case, under Ridge, the loss function 

is defined as: 

 
𝐿𝑅𝑖𝑑𝑔𝑒(�̂�) = ∑(𝑦𝑖 − 𝑥′𝑖�̂�)

2
𝑛

𝑖=1

+ 𝜆 ∑ �̂�𝑗
2

𝑚

𝑗=1

 (17)  

where λ is the regularization penalty parameter. Minimizing the above formula 

gives the Ridge regression estimates �̂�𝑅𝑖𝑑𝑔𝑒 = (𝑋′𝑋 + 𝜆𝐼)−1(𝑋′𝑌), where 𝐼 stands 

for the identity matrix. One can easily note that as 𝜆
 

→ 0, �̂�𝑅𝑖𝑑𝑔𝑒

 
→ �̂�𝑂𝐿𝑆 and as 𝜆

 
→  ∞, �̂�𝑅𝑖𝑑𝑔𝑒

 
→ 0. 

 

considered several versions of these models, but they did not offer substantial improvements over 

Ridge and LASSO for the series considered. 
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By incorporating the regularization coefficient in the formulas for bias and 

variance we obtain: 

 𝐵𝑖𝑎𝑠(�̂�𝑅𝑖𝑑𝑔𝑒) = −𝜆(𝑋′𝑋 + 𝜆𝐼)−1𝛽 

𝑉𝑎𝑟(�̂�𝑅𝑖𝑑𝑔𝑒) = 𝜎2(𝑋′𝑋 + 𝜆𝐼)−1𝑋′𝑋 (𝑋′𝑋 + 𝜆𝐼)−1 
(18)  

From the above equation, we observe that as λ becomes larger, the variance 

decreases, and the bias increases. This leaves us with the following question: how 

much bias are we willing to accept in order to decrease the variance? 

There are basically two strategies to tackle this issue. A more traditional 

approach would be to choose λ in a way that some information criterion is the 

smallest. An alternative is to perform cross-validation and select the value of λ that 

minimizes the cross-validated sum of squared residuals (or some other measure). 

The former approach emphasizes the model’s fit to the data and the relative impact 

of exogenous inputs in the variable of interest, while the latter is more focused on 

its predictive performance. In this work, we follow this second strategy. Basically, 

we choose a set of P values of λ to test, split the dataset into K folds, and select the 

optimal λ according to the following algorithm: 

Algorithm 1 Choice of lambda 

  
1: procedure cross-validation(𝑃 = nlambda, 𝐾 = nfolds) 

2:      for 𝑝 in 1 to 𝑃 do 

3:            for 𝑘 in 1 to 𝐾 do 

4:                   keep fold 𝑘 as hold-out data 

5:                   use the remaining folds and 𝜆 = 𝜆𝑝 to estimate �̂�𝑅𝑖𝑑𝑔𝑒 

6:                   predict hold-out data: 𝑦𝑡𝑒𝑠𝑡,𝑘 = 𝑋𝑡𝑒𝑠𝑡,𝑘 �̂�𝑅𝑖𝑑𝑔𝑒 

7:                   compute the sum of squared residuals:  𝑆𝑆𝑅𝑘 = ‖𝑦 − 𝑦𝑡𝑒𝑠𝑡,𝑘‖
2
 

8:            end for 𝑘 

9:            average SSR over the folds: 𝑆𝑆𝑅𝑝 =  1 𝑘⁄  ∑ 𝑆𝑆𝑅𝑘
𝐾
𝑘=1  

10:      end for 𝑝 

11:      choose optimal 𝜆 value: 𝜆𝑜𝑝𝑡 =

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝑝
 𝑆𝑆𝑅𝑝 

12: end procedure 

where ‖   ‖2 is the quadratic norm. 
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For practical implementations, we use the cv.glmnet( ) function from the 

glmnet package in R (FRIEDMAN et al., 2010) and consider 𝐾 = 10 cross-

validation folds and 𝑃 = 1000 possible lambda values, whose sequence is defined 

by the own function. The choice of 𝜆𝑜𝑝𝑡, i.e., the value of lambda which minimizes 

the averaged sum of squared residuals, is conducted using a validation set of the 

same size of the test set. 

An important feature of our approach is that forecasts are generated only 

once for the period comprising both the validation and combining phases. For 

example, consider the case of forecasting a monthly series 12 steps (1 year) ahead 

via a regularized ensemble. In our approach, forecasts for each replica are computed 

up to 24 steps-ahead: the first twelve steps comprise the validation set and are used 

to find the optimal weights of the regularized model; the last half (steps 13 to 24) is 

then used for the combination, using the optimal weights obtained in the validation 

set (first half). Other alternatives, which were also considered, are: (i) generate first 

forecasts for the validation set only; conduct cross-validation to obtain the optimal 

weights; generate the forecasts for the combination period, but considering the 

validation set as part of the train set; and then use the weights obtained in the 

validation phase to combine these last forecasts; or (ii) conduct the cross-validation 

using the replicas (not their forecasts) as predictors; generate forecasts for the 

combination period; and combine then using the optimal weights obtained for the 

replicas. The rationale behind our approach is that, by conducting validation and 

combination in the same set of forecasts, we do not modify the data generating 

process of the forecasts. This is a subtle difference that can significantly improve 

the accuracy of the final forecast. 

Finally, we also conduct the LASSO regularization technique following the 

same guidelines as depicted above. Under LASSO, the loss function is defined as: 

 
𝐿𝐿𝐴𝑆𝑆𝑂(�̂�) = ∑(𝑦𝑖 − 𝑥′𝑖�̂�)

2
𝑛

𝑖=1

+ 𝜆 ∑|�̂�𝑗|

𝑚

𝑗=1

 (19)  

As in Ridge, LASSO also adds a penalty for non-zero coefficients, but 

unlike the former, which penalizes the sum of squared coefficients (L2 penalty), 

LASSO penalizes the sum of their absolute values (L1 penalty). As a result, for high 
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values of λ, many coefficients are exactly zeroed under LASSO. Ridge 

regularization, by contrast, always keeps some information from all the predictors.   

 

5.2 

Applications 

 

The empirical analysis in the second essay included two sets of series across 

several European economies: (i) Gross Inland Natural Gas Consumption (in 

terajoules, TJ); and (ii) Energy Supplied (in gigawatt-hour, GWh). Data for the 

former were collected from the Statistical Office of the European Union database 

(EUROSTAT, 2019). Data for the latter were compiled from the International 

Energy Agency (IEA) Monthly Electricity Statistics reports, which provide 

information on energy production and trade for all OECD Member Countries (IEA, 

2019).  

The analysis spanned from January 2008 to May 2019 (the last date 

available for all involved European countries). Data from January 2008 to May 

2018 was considered as training set for models using the median for aggregation. 

When employing regularization, a validation set was included between June 2017 

and May 2018, in which weights were assigned to each of the forecasts in the 

selected ensemble (MEB.ETS or MEB.ARIMA). The test set comprised the last 12 

observations (June 2018 – May 2019). A total of 18 countries were selected in each 

dataset, including the main consumers, namely France, Germany, Italy, 

Netherlands, Spain and United Kingdom. Figure 5.3 depicts the train set of selected 

countries, to provide a basis for comparison. As can be noted, the series differ 

considerably, highlighting the challenge faced by forecasters. 

We compared forecasts of the proposed approaches with those from several 

forecasting methods, ranging from traditional benchmarks to the most recent 

Bagging routines for forecasting. They are summarized in Table 5.1. We further 

clarify that implementation was conducted using the R programming language (R 

CORE TEAM, 2019) and related packages. More specifically, we used R version 

3.5.0 (2018-04-23) and forecast version 8.8 for ETS and ARIMA modelling. 
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Furthermore, a parallel implementation was adopted, where the following packages 

were used: doSNOW (1.0.16), foreach (1.4.4) and snow (0.4–3). 

 

Figure 5.3 Gross inland natural gas consumption in terajoules (TJ) and energy 

supplied in gigawatt-hour (GWh).  

Train set, sample 4 countries - Belgium (BE); Germany (DE); Denmark (DK); and 

Spain (ES). Sources: EUROSTAT (2019) and IEA (2019). 
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Table 5.1 Selected methods for comparison 

Method Implementation /  

Source 

Short description 

Traditional Benchmarks 

   

ETS R forecast package 

ets( ) function 

auto Error, Trend and 

Seasonality specification 

ARIMA R forecast package 

auto.arima( ) function 

automatically-selected  

(S)ARIMA model 

Additive HW R forecast package 

hw( ) function1 

three parameter Additive 

Holt-Winters method 

Multiplicative HW R forecast package 

hw( ) function2 

three parameter Multip. 

Holt-Winters method 

Competing Bagging approaches 

 

Bagged.BLD.MBB.ETS BERGMEIR et al. 

(2016) 

see Section 3.1 for details 

BMC PETROPOULOS et al. 

(2018) 

see Section 3.2 for details 

Bagged.Cluster.ETS DANTAS & CYRINO 

OLIVEIRA (2018) 

see Section 3.3 for details 

Notes: ets( ) and auto.arima( ) are used for model selection. The forecast( ) function must 

be used on the output to generate the forecasts. 1Set seasonal argument to “additive”; 2Set 

seasonal argument to “multiplicative”. 

 

For this particular experiment, we opted to generate 99 replicas for each 

ensemble. To facilitate the replication of our results, all resampling procedures were 

conducted using the same random seed, which was set to 123 using the set.seed( ) 

function in R before bootstrapping. To gauge the overall accuracy of the forecasts, 

we summarized the results according to the mean across all involved series of the 

set of metrics specified in Table 5.2. The choice of metrics (specially sMAPE) was 

mainly to allow comparability with published results, thus providing a common 

ground for discussion. It should be noted that sMAPE and MASE were the official 

evaluation metrics for point forecasts in the M4 Competition (MAKRIDAKIS et 

al., 2018). The MASE is a scale-free metric devised by HYNDMAN & KOEHLER 

(2006) as a generally applicable measurement of forecast accuracy. As for RMSE, 
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although averaging its values across multiple series is unusual, it provides an 

estimate of how much energy (in TJ or GWh) can be “saved” by opting for a more 

accurate forecasting approach in comparison with other methods. 

 

Table 5.2 Evaluation metrics 

Metric Formula Unit of measurement 

Root Mean Squared 

Error (RMSE) 
√∑ (𝑌𝑡 − 𝑌�̂�)

2ℎ
𝑡=1

ℎ
 

Same as the original 

series 

Symmetric Mean 

Absolute Percentage 

Error (sMAPE) 

1

ℎ
 ∑

 2 |𝑌𝑡 − 𝑌�̂�|

|𝑌𝑡| + |𝑌�̂�|

ℎ

𝑡=1
 × 100 

Percentage points 

(%) 

Mean Absolute Scaled 

Error (MASE) 

  

1

ℎ
 

∑ |𝑌𝑡 − 𝑌�̂�|ℎ
𝑡=1

1
𝑛 − 𝑚

∑ |𝑌𝑡 − 𝑌𝑡−𝑚|𝑛
𝑡=𝑚+1

 Dimensionless 

Notes: 𝑌𝑡 and 𝑌�̂� are the real (actual) and forecasted values of the underlying series, 

respectively; ℎ is the forecasting horizon (number of forecasting steps ahead); 𝑚 is 

the seasonal period. 

 

5.3 

Results and Discussion 

 

5.3.1 

Results 

 

The results are summarized in Tables 5.3 and 5.4 (where best performance 

is highlighted in bold), for the cases of total natural gas consumption and total 

energy supplied, respectively. Averages of performance metrics across all selected 

countries are provided. 

Overall, the most accurate forecasts in terms of RMSE and MASE were 

delivered by combining the MEB algorithm for resampling and the Ridge 

regularization routine as aggregation method. The same was observed for energy 

supplied time series according to sMAPE. However, based on sMAPE, the most 

accurate forecats for natural gas consumption were obtained via a combination of 
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MEB resampling, ETS forecasts and LASSO regularization. The performance of 

this combination, however, was similar to the one delivered by the MEB.ETS.Ridge 

approach. 

Table 5.3 Forecast evaluation: Natural gas consumption 

Resampling 

algorithm 

Forecasting 

approach 

Combining 

method 

Average 

RMSE 

(TJ) 

Average 

sMAPE 

(%) 

Average 

MASE 

Proposed approaches    
      

MEB ETS Ridge 7625.495 8.193 0.566 

MEB ETS LASSO 7719.702 8.154 0.567 

MEB ARIMA Ridge 6800.515 8.678 0.552 

MEB ARIMA LASSO 7158.693 9.026 0.567 

Median aggregation    
      

MEB ETS Median 7839.111 10.147 0.626 

MEB ARIMA Median 7267.769 10.921 0.622 

Alternative Bagging approaches    
      

MBB ETS Mediana 8092.746 9.230 0.608 

MBB ETS BaggedClusterb 8017.247 9.135 0.605 

MBB ETS BMCc 7926.985 9.615 0.615 

Traditional Benchmarks    
      

None ETS Single 8084.310 10.409 0.641 

None ARIMA Single 7295.507 10.908 0.621 

None Add HW Single 8056.783 11.048 0.644 

None Multip HW Single 7906.997 9.463 0.621 

Notes: Overall results (average of the evaluation metrics across all countries) 

considering 12 steps ahead forecasts (best in bold). MBB and MEB stand for 

Moving Blocks Bootstrap and Maximum Entropy Bootstrap, respectively. a, b, c 

stand for the methods proposed in BERGMEIR et al. (2016), DANTAS & 

CYRINO OLIVEIRA (2018) and PETROPOULOS et al. (2018), respectively. 

Block size for the MBB algorithm in these methods comprises 24 observations, 

following the same guidelines as the authors in their original papers. BMC is the 

abbreviation for Bootstrap Model Combination. HW is the Holt-Winters 

Method. Pretreatment for all ensemble methods involves using BC 

transformation and STL decomposition prior to resampling. 
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Table 5.4 Forecast evaluation: Energy supplied 

Resampling 

algorithm 

Forecasting 

approach 

Combining 

method 

Average 

RMSE 

(GWh) 

Average 

sMAPE 

(%) 

Average 

MASE 

Proposed approaches    
      

MEB ETS Ridge 411.960 2.911 0.830 

MEB ETS LASSO 425.832 2.933 0.840 

MEB ARIMA Ridge 371.904 2.759 0.778 

MEB ARIMA LASSO 377.937 2.814 0.804 

Median aggregation    
      

MEB ETS Median 475.540 3.315 0.976 

MEB ARIMA Median 380.166 2.832 0.804 

Alternative Bagging approaches    
      

MBB ETS Mediana 451.480 3.170 0.917 

MBB ETS BaggedClusterb 448.410 3.150 0.915 

MBB ETS BMCc 474.504 3.330 0.982 

Traditional Benchmarks    
      

None ETS Single 478.981 3.336 0.983 

None ARIMA Single 389.915 2.889 0.820 

None Add HW Single 453.338 3.400 0.992 

None Multip HW Single 453.246 3.264 0.957 

Notes: See Table 5.3. 

 

Concerning the choice of the forecasting method, regularized ensembles 

seem to benefit from the use of ARIMA models during forecasting. However, if we 

consider ensembles aggregated using the median, MEB.ARIMA results are usually 

poorer than MEB.ETS. That is, forecasting each series in the artificial ensemble 

with ARIMA models may initially bring more variance to the ensemble, but this 

variance is usually handled well by regularization routines. In light of this fact, 

greater gains from regularization techniques are expected in ensembles whose 

components were generated using Neural Networks (NNs), Support Vector 
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Regressions (SVRs), and other methods that have a large number of parameters and 

can result in high variance between committee members in the ensemble. We leave 

this as a direction for future research, since it is beyond the scope of the present 

study. 

 

5.3.2 

Robustness checks 

 

In this section we considered forecasting performance under alternative 

settings, such as different resampling methods, forecasting horizons and ensemble 

sizes (number of series to be combined). We started by comparing the proposed 

methods depicted from Tables 5.3 and 5.4 with similar approaches, with the 

exception that the MBB was this time used as an alternative algorithm in the 

resampling phase, to assess the potential differences between MEB and MBB in 

ensemble generation. The results for natural gas consumption and energy supplied 

forecasts are summarized in Table 5.5. They show that ensembles that considered 

the MEB for resampling provided more accurate forecasts than the ones based on 

MBB for resampling. A possible explanation lies in the way ensembles are created 

according to these two algorithms: MEB-generated ensembles are more diversified 

since MEB admits values near the original time series observations, as opposed to 

MBB. 
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Table 5.5 Robustness checks: comparisons with the MBB algorithm 

Resampling 

algorithm 

Forecasting 

approach 

Combining 

method 

Average 

RMSE 

(TJ) 

Average 

sMAPE 

(%) 

Average 

MASE 

I. Natural gas consumption forecasts 

   

Proposed approaches using MEB for resampling    
      

MEB ETS Ridge 7625.495 8.193 0.566 

MEB ETS LASSO 7719.702 8.154 0.567 

MEB ETS Median 7839.111 10.147 0.626 

MEB ARIMA Ridge 6800.515 8.678 0.552 

MEB ARIMA LASSO 7158.693 9.026 0.567 

MEB ARIMA Median 7267.769 10.921 0.622 

Proposed approaches using MBB for resampling    
      

MBB ETS Ridge 7854.193 8.396 0.574 

MBB ETS LASSO 8703.086 8.968 0.622 

MBB ETS Median 8092.746 9.230 0.608 

MBB ARIMA Ridge 7943.413 9.077 0.603 

MBB ARIMA LASSO 9394.249 10.824 0.692 

MBB ARIMA Median 8174.486 11.394 0.671 

II. Energy supplied forecasts    

Proposed approaches using MEB for resampling    
      

MEB ETS Ridge 411.960 2.911 0.830 

MEB ETS LASSO 425.832 2.933 0.840 

MEB ETS Median 475.540 3.315 0.976 

MEB ARIMA Ridge 371.904 2.759 0.778 

MEB ARIMA LASSO 377.937 2.814 0.804 

MEB ARIMA Median 380.166 2.832 0.804 

Proposed approaches using MBB for resampling    
      

MBB ETS Ridge 411.232 2.894 0.824 

MBB ETS LASSO 434.314 3.069 0.893 

MBB ETS Median 451.480 3.170 0.917 

MBB ARIMA Ridge 403.509 2.891 0.823 

MBB ARIMA LASSO 469.441 3.107 0.893 

MBB ARIMA Median 416.715 3.059 0.891 

Notes: Block size for MBB comprises 24 observations. 
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We further examined the likely gains from including or excluding replicas 

in the ensemble pool. To this end, we conduct the same empirical experiment 

depicted in Section 5.3.1 using different ensemble sizes (50, 200, 500 and 1000). 

We used the same random seed from the previous exercise before bootstrapping. In 

a nutshell, results were not very sensitive to the number of replicas involved in the 

Bootstrap Aggregation. Figure 5.4 illustrates, for the same sample of 4 countries 

depicted in Figure 5.3, the differences in the final forecasts obtained by conducting 

Ridge regularization in an ensemble comprised of 100 and 1000 MEB.ARIMA 

forecasts. Some changes can be noticed in the overall forecasting performance with 

only 50 replicas, with regularization routines performing poorer in some countries. 

Even so, in the majority of cases, the regularization approaches are still 

considerably superior to traditional benchmarks and recently developed Bagging 

routines for forecasting7. 

Finally, results were also assessed in different forecasting horizons. Table 

5.68, for instance, depicts the values for the average MASE computed at three 

different forecasting horizons: steps 1–4; 5–8; and 9–12. LASSO regularized 

forecasts seem to offer optimal results in short forecasting horizons. This is in line 

with the “more prone to overfit” behaviour of LASSO routines, since they usually 

“throw away” predictors (by making their corresponding coefficients equal to zero) 

which are considered of limited use in the validation set. The same predictors, 

however, may hold important information when forecasting in longer horizons. 

Ridge, in turn, always keeps information from all the predictors (coefficients are 

never exactly zeroed) and, for this reason, it is favoured in the long run. 

 

7 The full results for different ensemble sizes are available upon request. 

8 To conserve space, results for the traditional benchmarks and alternative Bagging approaches were 

not depicted in Table 5.6 (available upon request). We clarify that they did not provide superior 

(more accurate) results than the best method (highlighted in bold) and than most regularized 

approaches. 
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Figure 5.4 Robustness checks: Different ensemble sizes.  

Aggregation with 100 forecasts in gray and with 1000 forecasts in black. Actual 

values in blue. Sample of 4 countries in each case. 
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Table 5.6 Robustness checks: average of MASEs at different horizons 

Resampling 

algorithm 

Forecasting 

approach 

Combining 

method 

Average 

MASE 

(steps 1-4) 

Average 

MASE 

(steps 5-8) 

Average 

MASE 

(steps 9-12) 

I. Natural gas consumption forecasts    

Proposed approaches using MEB for resampling    
      

MEB ETS Ridge 0.393 0.625 0.679 

MEB ETS LASSO 0.364 0.575 0.761 

MEB ETS Median 0.488 0.645 0.744 

MEB ARIMA Ridge 0.422 0.592 0.641 

MEB ARIMA LASSO 0.417 0.544 0.741 

MEB ARIMA Median 0.458 0.639 0.769 

Proposed approaches using MBB for resampling   
      

MBB ETS Ridge 0.405 0.629 0.689 

MBB ETS LASSO 0.377 0.621 0.869 

MBB ETS Median 0.483 0.606 0.736 

MBB ARIMA Ridge 0.469 0.615 0.724 

MBB ARIMA LASSO 0.463 0.688 0.925 

MBB ARIMA Median 0.570 0.657 0.786 

II. Energy supplied forecasts    

Proposed approaches using MEB for resampling    
      

MEB ETS Ridge 0.785 0.752 0.952 

MEB ETS LASSO 0.736 0.775 1.010 

MEB ETS Median 0.820 0.963 1.145 

MEB ARIMA Ridge 0.722 0.667 0.944 

MEB ARIMA LASSO 0.703 0.716 0.993 

MEB ARIMA Median 0.729 0.683 0.999 

Proposed approaches using MBB for resampling    
      

MBB ETS Ridge 0.739 0.761 0.971 

MBB ETS LASSO 0.640 0.864 1.177 

MBB ETS Median 0.739 0.913 1.100 

MBB ARIMA Ridge 0.708 0.750 1.011 

MBB ARIMA LASSO 0.677 0.813 1.190 

MBB ARIMA Median 0.713 0.880 1.079 
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5.3.3 

Discussion and implications 

 

The results outlined in Sections 5.3.1 and 5.3.2 endorsed the superiority of 

the proposed approaches over traditional forecasting methods and recently 

developed Bagging routines for forecasting. The performance gains are noteworthy 

since accurate forecasts are paramount for profit/cost optimization and assertive 

investment strategies, as well as for the definition of sectoral policies, whether in a 

regional or national scale. It should be noted that, for many countries, a considerable 

amount of the variation in natural gas demand may be due to external factors, which 

cannot be captured by univariate forecasting methods, as for example gas on gas 

competition, market liberalization expanding third-party access to key 

infrastructure, uncertainties over medium-term and long-term carbon pricing and 

emissions taxes inhibiting investment in gas infrastructure. In such cases, future 

predictions could also benefit from judgmental forecasts, possibly combining its 

outputs with the results from quantitative methods. This leaves a question for future 

research: how to include experts’ judgements into the ensemble approaches for 

forecasting? 

Another avenue for future research is to consider a multivariate setting, 

including the influence of external variables that may contain predictive 

information on natural gas demand or energy supplied across economies. We hasten 

to add, however, that multivariate formulations usually fail to perform well when 

forecasting several steps ahead (as in our case). On these grounds, the combination 

of ensemble methods and univariate forecasting techniques is a promising 

alternative for a wide range of time series in different industries/sectors. 

 

5.4 

Conclusions and future directions 

 

This second essay proposed an ensemble-based forecasting approach 

combining Bootstrap aggregating (Bagging) algorithms, time series methods and 

regularization techniques. In doing so, this work integrated research from 
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combining forecasts, statistics and committee machines. A Maximum Entropy 

Bootstrap (MEB) routine was adopted and the use of regularization allowed for 

feature selection and variable weighting schemes in the combination of forecasts. 

The results and robustness checks demonstrated that ensemble approaches, 

when combined with regularization techniques, offer accurate forecasts and are 

capable of dealing with different complex structures that are inherent to real world 

time series. Moreover, the MEB procedure was shown to be competitive when 

compared to the frequently used Moving Block Bootstrap (MBB) approach, 

outperforming the latter in most cases. This is a contribution to the literature, as the 

MBB has been the main benchmark for resampling monthly data under Bagging. 

As previously outlined the first essay, further studies in this field of 

application may also benefit from a hierarchical disaggregation approach. For the 

natural gas sector, for instance, this would imply using the Decomposition and 

Bagging methods for each subsystem of the total consumption (Industrial, Electric 

Power, Residential, Transportation and Commercial). Such sector-tailored analysis 

may contribute to a more in-depth understanding of the demand for natural gas 

across different countries, as well as improve the forecasts of natural gas 

consumption in several countries. Finally, as methodological extensions of this 

research, investigations of other decomposition, bootstrap and forecasting methods 

constitute a future research agenda. 
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6 

Third essay: new approaches to model selection and 

combination 

 

 

 

 

 

The third and last essay introduces the concept of treating, a new way of 

selecting among model forms in automated forecasting routines. The procedure 

operates by selectively subsetting the ensemble of competing models based on 

information from their prediction intervals. An application to exponential 

smoothing formulations gives rise to an alternative forecasting method, the ‘Treated 

ETS’. By the same token, a pruning strategy that is capable of feature selection in 

combined forecasting methods is proposed. The benefits arising from pruning are 

demonstrated by applying it to different Bagging algorithms. To do so, the essay 

first proposes two different ways that Bagging routines can be extended to deliver 

prediction intervals for the point forecasts, another important contribution in the 

related field of knowledge. 

The present essay can be considered the most significant contribution of the 

thesis, both in terms of theory and practice. First, because it demonstrates that model 

selection via traditional information criteria minimization may lead to inaccurate 

forecasts and unstable prediction intervals on certain occasions. Second, because it 

shows that prediction intervals contain important information that can be used to 

compare different forecasting methods. Third, based on the two previous findings, 

this essay sets forth strategies that can be used to improve the accuracy of both point 

forecasts and prediction intervals in any forecasting approach involving model 

selection or combination. 

The paper originating from this essay, entitled “Treating and Pruning: new 

approaches to model selection and combination”, is also being currently considered 

for publication. The essay starts with a brief introduction highlighting the fact that 

prediction intervals have often been by overlooked to the detriment of point 
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forecasts in the main stream forecasting literature. Section 6.2, in turn, provides an 

overview on how model selection is usually conducted in most exponential 

smoothing routines and the limitations arising from it. It also provides a 

chronological review of relevant works using Bagging in time series forecasting 

contexts. The proposed approaches are presented in details in Section 6.3. Section 

6.4 introduces the selected data for the empirical analysis and summarizes the 

results in terms of both point forecasts and prediction intervals. Finally, Section 6.5 

concludes and suggests directions for future works. 

 

6.1 

Introduction 

 

It is nearly six decades since the basic structures of exponential smoothing 

methods were first proposed (HOLT, 1957; WINTERS, 1960). Still, thanks to their 

ease of use and adaptation to many different situations, exponential smoothing 

methods are not only widely applied but also considered competitive in many cases. 

For instance, automatic selection among exponential smoothing model forms 

ranked fourth best overall in terms of delivering accurate prediction intervals in the 

most recent M- Competition (MAKRIDAKIS et al., 2018; 2020). In spite of their 

widespread use, recent literature has demonstrated that it is possible to improve 

upon exponential smoothing formulations (HYNDMAN et al., 2002; TAYLOR, 

2003; HYNDMAN et al., 2008; HYNDMAN & ATHANASOPOULOS, 2013).  

Concurrently, the literature on forecast combination has now progressed 

to the point of considering the effect of subsetting the pool of available forecasts 

before aggregation (DE MENEZES et al., 2000; HENDRY & CLEMENTS, 2004; 

AIOLFI & TIMMERMANN, 2006; ELLIOTT, 2011; MATSYPURA et al., 2018; 

KOURENTZES et al., 2019; DIEBOLD & SHIN, 2019). The rationale behind 

subsetting has also been recently raised when forecasting using Bootstrap 

Aggregation (Bagging) routines by DANTAS & CYRINO OLIVEIRA (2018), who 

advocated the use of clustering methods to create a subset with a reduced variance. 

In spite of the undeniable achievements on exponential smoothing 

formulations and on subsetting routines for forecast combination methods, no work 
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has considered looking at the information delivered by Prediction Intervals (PIs) 

when conducting model selection and/or combination. In fact, it was not until 

recently that PIs were considered in most forecasting works. For instance, the M4 

Competition was the first of its kind to explicitly ask participants to deliver 

prediction intervals for their point forecasts, and ended with only 20 forecasters 

providing valid PIs (MAKRIDAKIS et al., 2018; 2020). 

This essay demonstrates that prediction intervals, apart from providing 

practitioners with a convenient way to estimate the uncertainty of a point forecast, 

contain important information that can be used to improve the accuracy of 

forecasting methods involving model selection and/or combination. Concerning the 

former, we introduce a new way of selecting among competing formulations that 

involve ‘treating’ – discarding specific model forms from the set of models – before 

proceeding to selection via traditional methods, e.g. via information criteria 

minimization. Regarding the latter, we set forth a ‘pruning’ strategy that can be used 

to enhance the forecasts arising from any combining method.  

Both treating and pruning are conducted based on the information 

retrieved from the prediction intervals of the forecasts. We explore the potential 

gains of these two strategies through an extensive empirical experiment on a wide 

range of monthly, quarterly and yearly time series from the M, M3 and M4 

Competitions (MAKRIDAKIS et al., 1982; MAKRIDAKIS & HIBON, 2000; 

MAKRIDAKIS et al., 2018). To demonstrate how treating can be used to improve 

upon model selection, we apply this strategy to the automated exponential 

smoothing routine implemented in the forecast package for the R statistical software 

(HYNDMAN & KHANDAKAR, 2008; HYNDMAN et al., 2019). With regards to 

pruning, we explore its potential to improve upon combining methods on two 

recently developed Bagging routines for forecasting, presented in the works of 

BERGMEIR et al. (2016) and PETROPOULOS et al. (2018). These combining 

methods were selected in light of their promising results in the M3 Competition. 

Finally, we also propose different ways that Bagging routines can be extended to 

deliver prediction intervals for the point forecasts, another important development 

of this essay. Foreshadowing our results, we demonstrate that, apart from their 

simplicity and ease of use, treating and pruning require practically no additional 
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computation cost and can substantially improve the quality of both point forecasts 

and prediction intervals for a wide range of time series. 

 

6.2 

Exponential smoothing and Bagging for forecasting - state of the art 

 

6.2.1 

Exponential Smoothing and current limitations 

 

There are several different approaches to exponential smoothing. As 

outlined in Section 3.1.3, HYNDMAN et al. (2002) provided a solid theoretical 

foundation for exponential smoothing in state space modelling, allowing for 

straightforward implementation in many statistical packages (HYNDMAN et al., 

2008; HYNDMAN & ATHANASOPOULOS, 2013). Model selection under the 

framework of HYNDMAN et al. (2002) is based on the minimization of one or 

more information criteria. For instance, by default, the ets( ) function from the 

forecast package for the R statistical software uses the Akaike’s Information 

Criterion corrected for small sample bias (AICc, SUGIURA, 1978) to select an 

appropriate model. Other information criteria, such as AKAIKE (1974) or 

SCHWARZ (1978) can also be used. A similar procedure is also conducted in the 

EViews statistical software (IHS GLOBAL INC., 2015). 

Selecting models based on information criteria minimization may seem 

compelling to practitioners who believe that searching for the ‘true’ model may not 

make sense for empirical data, since the optimal model for the real data generating 

process will not usually be among the candidate models considered in any case 

(KOLASSA, 2011). Nevertheless, selecting a single best model out of a number of 

competing candidates may also be misleading. Multiple models may explain the 

data equally well, and selecting a single model discards the information that could 

be gauged from alternative models with high explanatory power (BUCKLAND et 

al., 1997). Another point that is often overlooked is that even if one relies on criteria 

that partially addresses overfitting (such as information criteria), the selected 

model(s) may still lead to inaccurate and/or unstable forecasts. Conducting some 
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sort of cross-validation routine may circumvent this problem in some cases, but this 

is not always guaranteed. 

In light of the above, we propose looking at the outputs originating from 

competing ETS formulations and let them dictate which models are actually more 

likely to produce the best forecasts for a given time series and, accordingly, which 

should be discarded. More specifically, we aim to gather the prediction intervals 

delivered from competing models and check for deviant behaviors in the ensemble. 

This ‘wisdom of the crowds’ approach builds on the same argument of the previous 

paragraph: since multiple models may explain the data almost equally well, they 

will usually produce forecasts that are not very distant from one another. However, 

for models presenting ‘hard to estimate’ stylized facts such as structural breaks, 

nonlinear patterns and/or periods with large range of values, a best model may be 

identified on the basis of traditional criteria, but its forecasts can still be very 

inaccurate and sometimes display explosive behavior in long forecast lead times. 

On the other hand, competing models which also delivered low values for most 

information criteria but were not selected as best during estimation phase may 

produce better forecasts than the selected model. Under such circumstances, pre-

treating the set of candidate models may contribute to reduce the odds of selecting 

an unstable model and hence improve the accuracy of the forecasting method. We 

demonstrate the usefulness of ’pre-treatment’ in Section 6.4, using a wide range of 

time series (more than 100,000 series from the M-Competitions, split into monthly, 

quarterly and yearly frequencies). We also note that the additional computational 

cost is negligible, especially when compared with the time ETS routines take to 

estimate all competing model forms and collect their corresponding information 

criteria values. 

 

6.2.2 

Bagging in time series forecasting 

 

This section intended to provide a brief overview of recent studies 

employing Bagging as a combining method for forecasting. Since the content of 

this section has already been previously explored in the thesis (Section 2.3), we 

opted to skip it here and promptly proceed to the methodology part. 
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6.3 

Methods 

 

6.3.1 

Treating in model selection 

 

The rationale behind ‘treating’ is to compare the prediction intervals 

originating from competing model forms in ETS, and discard the ones showing 

deviant behaviors from the majority in the ensemble. More specifically, it collects 

the upper limits of the prediction intervals and considers as outliers any values lying 

outside the range of ±1.5 𝐼𝑄𝑅, where 𝐼𝑄𝑅 =  𝑄3 − 𝑄1 is the Inter-Quartile Range 

(difference between the 3rd and 1st quartiles). We recall that we use as a benchmark 

the automated ETS procedure implemented in the ets( ) function from the forecast 

package for the R statistical software (HYNDMAN & KHANDAKAR, 2008; 

HYNDMAN et al., 2019). According to this algorithm, not all the 30 ETS state 

space formulations are considered by default in model selection. Model forms 

involving multiplicative trends and combinations of additive errors and 

multiplicative seasonality are not estimated by default. Thus, at the end, there are 

15 competing model forms out of the 30 different possibilities9. Provided that no 

transformations were conducted before estimating the model, the upper and lower 

limits of the prediction intervals delivered by the default ETS model forms are 

symmetric relative to the corresponding point forecast, so there are no differences 

in conducting treating by looking at one limit or another. The symmetry in 

prediction intervals may not hold for the other 15 model forms which are not 

considered by default in ets( ), since their prediction intervals are computed by 

simulation – see HYNDMAN et al. (2008) for further details. We also note that the 

 

9 The number of competing model forms is even smaller for yearly data (just six) since combinations 

for this frequency do not take into account any seasonality. In addition, for quarterly series with 

training sets comprising 13 observations or less only, there is insufficient amount of data to estimate 

models with damped trends. In such cases, we are left with only 10 out 15 competing model forms. 

By the same token, for yearly series with training sets comprising 9 observations or less only, the 

set of candidate models decreases from 6 to 4. 
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use of the Inter-Quartile Range for outlier detection is a well-established procedure 

in descriptive statistics (VINOD, 2014) and has been used in a vast number of 

applications, including subsetting pools of forecasts (KOURENTZES et al., 2019).  

The choice of using prediction intervals in lieu of point forecasts to 

compare and occasionally discard model forms from the pool of ETS formulations 

is twofold: first, prediction intervals are quicker, in the sense that they require fewer 

forecasting steps, to indicate explosive patterns in forecasts; second, it can be quite 

challenging to identify deviant behaviors just by looking at point forecasts: 

differences, in relative terms, may not be so big (hampering the task of looking for 

outliers, for instance); and it is not uncommon to observe forecasts that deviate 

considerably from the ensemble at specific forecasting steps, usually due to the 

model from which they were originated, but are still competitive at large forecast 

lead times. 

The outlier detection procedure in our ‘Treated ETS’ approach is 

conducted for every step in the forecast lead time and considers all competing 

model forms, regardless of whether a model form has already been identified as an 

outlier in the first forecasting step, for instance. At the end, every model identified 

as an outlier (even if just once) throughout the forecast lead time is discarded from 

the set of competing models. After this treatment, final model selection proceeds as 

usual: by finding, among the remaining models, the one offering the lowest value 

for AICc. Albeit unlikely to occur, it may be the case that all competing model 

forms are identified as outliers at least once during the forecast lead time. Under 

such circumstances, only the model forms which were the most frequently 

identified as outliers would be discarded from the set of competing models. 

 

6.3.2 

Pruning in model combination 

 

As previously outlined, the rationale behind pruning is quite similar to 

treating. The main difference is that now we aim at subsetting the pool of forecasts 

to be combined, since some of them may deviate considerably from the rest of the 

ensemble. Therefore, pruning can be viewed as a feature selection strategy to 

improve the quality of prediction intervals and point forecasts of any forecast 
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combination method. To demonstrate its potential, in this paper we opt for using 

pruning on some benchmark Bagging strategies, given their flexibility to 

encompass different forecast methods for the ensemble of bootstraps. Particularly, 

we aim at improving point forecasts and prediction intervals originating from two 

different approaches discussed in Chapter 3: the Bagged.BLD.MBB.ETS method 

proposed by BERGMEIR et al. (2016); and the Bootstrap Model Combination 

(BMC) devised by PETROPOULOS et al. (2018). It should be noted that both 

approaches were developed with the focus of improving the accuracy of point 

forecasts. Therefore, extending their fields of application to generate prediction 

intervals can also be viewed as a novelty in this essay. In the next subsections, we 

demonstrate how the two selected Bagging strategies can be used to generate 

prediction intervals and how pruning can be applied to such cases. 

 

6.3.3 

Prediction intervals in Bagging 

 

The strategies proposed to generate the prediction intervals in Bagging are 

built using the same core ideas for the point forecasts. As previously outlined, two 

Bagging strategies were here considered: BERGMEIR’s et al. (2016) 

Bagged.BLD.MBB.ETS (henceforth ‘Bagged ETS’ to conserve space) and 

PETROPOULOS et al. (2018). These methods were selected in light of their 

promising results in the M3 Competition. In the case of Bagged ETS, besides 

aggregating the point forecasts, we also combine their corresponding prediction 

intervals using the median. This is possible because, besides the point forecasts, the 

forecast( ) function from the forecast package, when applied to an ETS model, also 

generates their corresponding prediction intervals, with a theoretical coverage level 

set by the practitioner. For instance, if a 95% coverage is aimed for, a prediction 

interval is generated using the 2.5% quantile as lower limit and the 97.5% quantile 

for the upper limit. The reader is referred to HYNDMAN et al. (2008) for details 

on how the quantiles are computed in ETS formulations. 

Let 𝐽 be the number of forecasts involved in the ensemble (forecasts of the 

original data and the 𝐽 − 1 bootstraps generated). That way, the upper and lower 

limits in Bagged ETS are obtained as follows: 
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 𝑈𝑡,𝐵𝑎𝑔𝑔𝑒𝑑𝐸𝑇𝑆 = median[𝑈𝑡,1, … , 𝑈𝑡,𝐽] 

𝐿𝑡,𝐵𝑎𝑔𝑔𝑒𝑑𝐸𝑇𝑆 = median[𝐿𝑡,1, … , 𝐿𝑡,𝐽] 
(20)  

where 𝑈𝑡,1, … , 𝑈𝑡,𝐽 and 𝐿𝑡,1, … , 𝐿𝑡,𝐽 are respectively the upper and lower limits of 

the 𝐽 point forecasts in the ensemble. The above equation is applied for every step 

in the forecast lead time, i.e., 𝑡 = 1, … , ℎ, ℎ being the total number of steps required. 

As for BMC, we take a weighted average of the prediction intervals 

generated from applying the ‘unique’ ETS model forms on the original data, with 

weights defined by the frequency that the unique models were identified as optimal. 

Let 𝐾 be the number of unique ETS model forms identified among the ensemble of 

𝐽 forecasts. Hence, the limits of the BMC prediction interval can be obtained 

according to the following equation: 

 
𝑈𝑡,𝐵𝑀𝐶 = ∑ 𝑤𝑖 𝑈𝑡,𝑖

𝐾

𝑖=1
 

𝐿𝑡,𝐵𝑀𝐶 = ∑ 𝑤𝑖 𝐿𝑡,𝑖

𝐾

𝑖=1
 

(21)  

where 𝑤𝑖 = 1, … , 𝐾 are the weights of the 𝐾 unique model forms, and 𝑈𝑡,𝑖 and 𝐿𝑡,𝑖 

are the upper and lower limits of their corresponding prediction intervals. 

Figure 6.1 illustrates how Bagged ETS and BMC can be used to generate 

both Bagged Point Forecasts (PFs) and Prediction Intervals (PIs). The figure also 

foreshadows how pruning can be achieved in each of these strategies (see the next 

section for details). Bagged ETS aggregates the 𝐽 Point Forecasts (PFs) and their 𝐽 

corresponding Prediction Intervals (PIs) using their medians. BMC, in turn, 

identifies from the 𝐽 forecasts the 𝐾 unique ETS model forms and apply them to the 

original series. Then, it combines the results from 𝐾 PFs (and corresponding PIs) 

using as weights the frequency with which the unique forms were identified as 

optimal, i.e., the amount of times they were selected divided by 𝐽. 
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Figure 6.1 Bagged ETS and BMC and their pruned versions. 

Source: The author. 

 

DBD
PUC-Rio - Certificação Digital Nº 1613068/CA



Chapter 6. Third essay 88 

 

 

6.3.4 

Pruning for Bagging 

 

Relating once again to Figure 6.1, pruning for Bagged ETS and BMC first 

considers merging the forecasts and prediction intervals from both ensembles, 

ending up with 𝐽 + 𝐾 PFs (and corresponding PIs). This is recommended in light 

of the small number of forecasts comprising the BMC ensemble, which sometimes 

renders impossible the detection of outliers. By merging the PFs (and corresponding 

PIs) from both ensembles, it becomes easier to detect and remove unwanted outputs 

from the BMC ensemble using the ±1.5 𝐼𝑄𝑅 ‘rule’. This may also prove beneficial 

to the Bagged ETS approach since, with the exception of the first forecast from both 

ensembles (which is the same since it is produced from the original data), the 𝐾 

added forecasts from the BMC ensemble can differ considerably from the 𝐽 

forecasts, bringing more diversity to the merged ensemble and ultimately making 

outlier detection more effective. 

Even though pruning is conducted on the merged (𝐽 +  𝐾) ensemble of 

forecasts, the final results are separated between Bagged ETS and BMC. In other 

words, after pruning, the resulting ensembles now encompass 𝐽 − 𝑗1 and 𝐾 − 𝑘1 

forecasts (respectively for Bagged ETS and BMC), where 𝑗1 and 𝑘1 are the removed 

forecasts from each ensemble. Beyond this point, the Bagged ETS and BMC 

routines proceed as usual. 

Pruning can be conducted as many times as desired, until no outliers can 

be identified in the resulting ensemble. Depending on the case, pruning twice leads 

to better results than pruning just once. The gains, however, were not too significant 

in our empirical tests with the M- Competitions and were usually detected for 

prediction intervals only, with a slight loss in accuracy for the point forecasts. We 

finally note that further pruning (three times or more) frequently led to poorer (less 

accurate) results, both in terms of point forecasts and prediction intervals. 

 

6.4 

Empirical investigation 
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6.4.1 

Experiment settings 

 

To assess the accuracy of our developed strategies and at the same time 

provide a common ground for discussion with previous related works, the empirical 

experiment was conducted using the databases from three well-known forecasting 

competitions, the M, M3 and M4 Competitions (MAKRIDAKIS et al., 1982; 

MAKRIDAKIS & HIBON, 2000; MAKRIDAKIS et al., 2018). We restrict our 

attention to yearly (181 + 645 + 23,000 = 23,826 series), quarterly (203 + 756 + 

24,000 = 24,959 series) and monthly (617 + 1,428 + 48,000 = 50,045 series) data, 

which are the most used frequencies in practice and also in previous works 

concerning Bagging approaches (BERGMEIR et al., 2016; DE OLIVEIRA & 

CYRINO OLIVEIRA, 2018; PETROPOULOS et al., 2018; DANTAS & CYRINO 

OLIVEIRA, 2018). The predictive power of the proposed approaches was assessed 

using the same amount of out-of-sample data suggested in the competitions (6 

observations for yearly series, 8 for quarterly and 18 for monthly), to allow 

comparability with published results. To gauge the accuracy of the developed 

strategies, we opted to summarize the results according to the following metrics: 

• For Point Forecasts: Average of the Mean Absolute Scaled Errors (Mean of 

MASEs); 

• For Prediction Intervals: Average of the Mean Scaled Interval Score (Mean of 

MSISs). 

The MASE and MSIS are defined as follows: 

 
𝑀𝐴𝑆𝐸 =

1

ℎ
 

∑ |𝑌𝑡 − 𝑌�̂�|ℎ
𝑡=1

1
𝑛 − 𝑚

∑ |𝑌𝑡 − 𝑌𝑡−𝑚|𝑛
𝑡=𝑚+1

 

𝑀𝑆𝐼𝑆

=
1

ℎ
 
∑ (𝑈𝑡 − 𝐿𝑡)ℎ

𝑡=1 +
2
𝛼

(𝐿𝑡 − 𝑌𝑡)𝟏{𝑌𝑡 < 𝐿𝑡} +
2
𝛼

(𝑌𝑡 − 𝑈𝑡)𝟏{𝑌𝑡 > 𝑈𝑡}

1
𝑛 − 𝑚

∑ |𝑌𝑡 − 𝑌𝑡−𝑚|𝑛
𝑡=𝑚+1

 

(22)  

where 𝑌𝑡 and 𝑌�̂� are the actual and forecasted values of the underlying series, 

respectively; 𝑡 is the forecast lead time from 1 to ℎ steps ahead; 𝑚 is the seasonal 

period; 𝑈𝑡 and 𝐿𝑡 are the upper and lower limits of the prediction interval produced 
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using the selected method; and 1 − 𝛼 is the desired (theoretical) coverage level. By 

introducing penalties for the width (𝑈𝑡 − 𝐿𝑡) and for the instances where the actual 

values are outside the specified bounds of the predicted interval, the MSIS offers a 

good balance between spread and coverage (hit rates). 

The choice for the above-mentioned metrics was mainly to allow 

comparability with published results. It should also be noted that these are the 

official evaluation metrics for point forecasts and prediction intervals in the M4 

Competition (MAKRIDAKIS et al., 2018). Apart from depicting the results in 

terms of mean and median of the above-mentioned metrics, we have also conducted 

the Multiple Comparisons with the Best (MCB) test (KONING et al., 2005) to 

assess whether the differences between the error measures were statistically 

significant. 

 

6.4.2 

Findings 

 

Table 6.1 summarizes the average (across all series) MASE results for the 

point forecasts, whilst Table 6.2 compiles the average MSIS results for prediction 

intervals constructed with a desired coverage level (hit rate) of 95%, following the 

M4 Competition guidelines. For comparison purposes, we contrast the results 

obtained from the following methods:  

(i) The auto state space exponential smoothing (ETS) approach, i.e. the forecasts 

obtained by selecting the best ETS specification for the original series and 

subsequently using it for forecasting. Despite its simplicity when compared with 

other forecasting methods, the ETS provides a sound base for comparison with the 

proposed Bagging approaches, since they also use ETS models to build the 

forecasts. In addition, it should be noted that ETS ranked third best overall in terms 

of closeness to an expected (desired) 95% hit rate and fourth best in terms of lowest 

MSIS, when all (100,000) series from the M4 Competition were considered 

(GRUSHKA-COCKAYNE & JOSE, 2020). 

(ii) The Treated ETS approach presented in Section 6.3.1. 
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(iii) BERGMEIR’s et al. (2016) Bagged.BLD.MBB.ETS method (here abbreviated 

to ‘Bagged ETS’). 

(iv) The BMC approach, as proposed in PETROPOULOS et al. (2018). 

(v) The selected Bagging strategies using, as forecasting method for the original 

data and the bootstraps, the Treated ETS in lieu of ETS; and, 

(vi) The pruning strategy proposed in Section 6.3.4 applied to all of the above 

Bagging strategies. 

 

Table 6.1 All competitions - Average MASE of the different forecasting methods 

Method 

Average 

MASE 

(Monthly) 

Average 

MASE 

(Quarterly) 

Average 

MASE 

(Yearly) 

Exponential smoothing    
    

ETS 0.947 1.165 3.431 

Treated ETS 0.939 1.161 3.395 

Bagging Strategies    
    

Bagged ETS 0.955 1.180 3.286 

Bagged Treated ETS 0.953 1.179 3.284 

BMC ETS 0.925 1.146 3.323 

BMC Treated ETS 0.922 1.145 3.318 

Bagging with pruning    
    

Pruned Bagged ETS 0.955 1.181 3.288 

Pruned Bagged Treated ETS 0.953 1.179 3.287 

Pruned BMC ETS 0.920 1.144 3.236 

Pruned BMC Treated ETS 0.917 1.143 3.228 

Notes: Best (most accurate) approach in bold, second best in italic. BMC ETS 

stands for the BMC method devised in PETROPOULOS et al. (2018). We use the 

former notation to differentiate it from the BMC Treated ETS, which is the BMC 

applied to the forecasts generated by using the Treated ETS routine proposed in 

Section 6.3.1 on the bootstraps. 

 

From the average results we note that Treated ETS provides more accurate 

results than ETS, with the former outperforming the latter in every case, regardless 

of the frequency of the time series, namely monthly, quarterly and yearly, and the 
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evaluation scenario, namely point forecasts and prediction intervals. This makes a 

new contribution to the literature, since the automatic ETS routine, as implemented 

in the ets( ) function from the forecast package for R, has been considered the 

benchmark for automatic model selection among competing ETS model forms and 

subsequent forecasting. Furthermore, as shown in Table 6.1 for point forecasts, 

Bagging routines deliver more accurate results when combined with Treated ETS 

rather than ETS. 

Turning the attention to the MSIS values, as shown in Table 6.2, we note 

a major issue with using BMC to generate prediction intervals for monthly time 

series. When no pruning is conducted, regardless of the forecasting method selected 

for the bootstraps (ETS or Treated ETS), BMC generates very large prediction 

intervals for some series, resulting in very high overall MSIS values. 

 

Table 6.2 All competitions - Average MSISs, computed at the 95% coverage level 

Method 

Average 

MSIS 

(Monthly) 

Average 

MSIS 

(Quarterly) 

Average 

MSIS 

(Yearly) 

Exponential smoothing    
    

ETS 8.258 9.587 34.970 

Treated ETS 8.133 9.513 34.466 

Bagging Strategies    
    

Bagged ETS 8.700 9.746 36.948 

Bagged Treated ETS 8.662 9.724 36.957 

BMC ETS 3.301 × 1011 10.355 32.825 

BMC Treated ETS 6.603 × 1011 10.374 32.633 

Bagging with pruning    
    

Pruned Bagged ETS 8.727 9.780 37.276 

Pruned Bagged Treated ETS 8.693 9.759 37.286 

Pruned BMC ETS 8.342 9.345 32.317 

Pruned BMC Treated ETS 8.370 9.392 32.211 

Notes: Best (most accurate) approach in bold, second best in italic. 
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Upon closer inspection, we note that the issue with very high MSIS values 

arises in certain series from the M4 competition with notable structural breaks 

and/or outliers in the training set. As consequence, some bootstraps will be 

generated with extremely large values. ETS model forms for such bootstraps are 

not optimal for the original series, but they are applied to the latter according to 

how the BMC algorithm is designed. These model forms will usually generate very 

large prediction intervals since they contain multiplicative errors and are applied to 

the original series which already contains a large range of values. This is illustrated 

in Figure 6.2 and in Table 6.3. The former shows the training set ensemble (original 

series and its corresponding bootstraps) of the monthly series 41895 from the M4 

competition. The latter reports on the selected model forms in BMC for the same 

series, along with the upper limits of the prediction intervals generated when such 

model forms are applied to the original series. 

 

Figure 6.2 M4 competition monthly series 41895, training set. Original data in 

black, bootstraps in gray and median of the bootstraps in red. Source: The author. 
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Table 6.3 M4 competition monthly series 41895, test set 

Actual values, selected ETS model forms and corresponding prediction interval 

upper limits, BMC ETS upper limits before and after pruning 

Lead time Step 1 Step 2 Step 3 ... Step 16 Step 17 Step 18 

Actual values      
        

out-of-sample 4,119 4,074 4,032 ... 3,483 3,443 3,399 

ETS forms and upper limits      
        

A, N, N 4,662 4,870 5,029 ... 6,164 6,225 6,285 

A, N, A 4,607 4,779 4,900 ... 6,017 6,034 6,261 

A, A, N 4,711 4,969 5,179 ... 6,991 7,105 7,217 

M, Ad, M 19,094 16,407 16,815 ... 16,745 16,054 14,830 

M, Ad, N 14,714 14,750 14,784 ... 15,131 15,156 15,180 

M, A, M 16,476 17,197 15,089 ... 14,853 15,388 16,470 

M, N, M 13,114 23,203 17,954 ... 67,102 60,490 61,591 

M, A, N 41,749 363,072 3.38 × 106 ... 1.51 × 1019 1.42 × 1020 1.33 × 1021 

BMC ETS upper PI limits      
        

No pruning 15,715 45,060 2.84 × 105 ... 1.21 × 1018 1.13 × 1019 1.06 × 1020 

Pruning 13,669 13,681 12,662 ... 12,876 13,069 13,481 

 

The selected ETS form for the original M4 monthly series 4189510 was 

(A, N, N), a combination of additive errors, no trend and no seasonality. Alternative 

ETS formulations with additive errors (A, A, N and A, N, A) produced relatively 

similar values for the upper limits of the prediction intervals, when compared with 

formulations with multiplicative errors. Irrationally high values for the prediction 

intervals were observed when the model form involved an additive trend and no 

seasonality (M, A, N), with the values for the upper limits being more than 1016 

times higher than the actual (real) values at the last forecasting step. Such irrational 

behavior was considerably dampened when model forms considers a multiplicative 

seasonality (M) and/or an additive damped trend (Ad). By conducting pruning 

following the steps depicted in Section 6.3.4, we were able to discard the forecasts 

(and corresponding prediction intervals) from the last two ETS formulations – 

 

10 The one obtained by applying the default ets( ) function on the original series. 
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(M, N, M) and (M, A, N) – before proceeding to combination. As a result, the MSIS 

value decreased substantially, from 1.65 × 1016 with no pruning to 24.10 with 

pruning.  

The same pattern observed in Figure 6.2 and in Table 6.3 is repeated in 

several cases: the BMC generates very large prediction intervals for at least 15 

monthly series from the M4 competition, and relatively high values – when 

compared to ETS, for instance – for more than 100 series. In most cases, a 

substantial reduction in MSIS is achieved by conducting the proposed pruning 

strategy. 

Turning once again to the overall MSIS results in Table 6.2, we note that 

the effect of pruning is substantial for BMC formulations but not for Bagged ETS. 

This is because the latter aggregates the bagged forecasts using the median, which 

diminishes the effect of the outliers in the ensemble. BMC, in turn, takes a weighted 

average of the forecasts and will thus always consider the effect of ETS 

formulations which generates very large prediction intervals. However, provided 

that proper pruning is conducted, BMC strategies are superior on average than 

Bagged ETS, both in terms of point forecasts and prediction intervals. 

The benefits of treating for ETS model selection and pruning for BMC 

strategies are also shown in Figure 6.3, which depicts the average MSIS values 

computed at alternative prediction interval hit rates (85% to 99%) for four different 

methods. By contrasting the results delivered by ETS (in red) and Treated ETS (in 

yellow) in Figure 6.3, we note that the latter outperforms the former in every case 

scenario, regardless of the time series frequency or desired coverage level. We also 

compare the results obtained using BMC (in green) and its pruned version (in blue), 

illustrating the gains one can achieve by considering pruning in combined 

forecasting approaches. 

We proceeded by exploring the results from the Multiple Comparisons 

with the Best (MCB) tests, illustrated in Figure 6.4. The results in terms of average 

MASE ranks were largely in line with the results from Table 6.1, with BMC Treated 

ETS and Pruned BMC Treated ETS depicted as the best methods and statistically 

significant from the others. The only exception was for quarterly series, where 

Pruned BMC Treated ETS ranked third and was considered statistically different 

from BMC ETS and BMC Treated ETS. 
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Figure 6.3 MSIS per different coverage levels (85–99%) – Four methods. 

 

Average MSIS ranks, however, tell a slightly different history from the 

average MSIS values illustrated in Table 6.2. Pruned Bagged Treated ETS now 

ranks as the best overall in terms of average MSIS rank, in every case considered 

(monthly, quarterly or yearly series). An explanation lies in the fact that Pruned 

Bagged Treated ETS is usually the best method across the series, but when Bagging 

strategies fail in generating accurate and calibrated prediction intervals for their 

point forecasts, Pruned Bagged Treated ETS usually delivers worse results than 

Pruned BMC Treated ETS, the best method in terms of mean of MSISs, as depicted 

in Table 6.2. Even so, the results from Tables 6.1 and 6.2 and Figure 6.4 make it 

clear that Treated ETS consistently outperforms ETS, both in terms of Point 

Forecasts and Prediction Intervals, and that pruned Bagging strategies are usually 

more accurate than their traditional versions. 
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Figure 6.4 Multiple comparisons with the best for MASE and MSIS.  

 

6.4.3 

Relative performance on the M4 competition 

 

As a final experiment, we compared the relative performance of the 

methods developed in this essay with the best methods from the M4 competition in 

terms of prediction intervals. Table 6.4 depicts the average MSIS values (at the 95% 

coverage level) for the automated exponential smoothing formulations, the two 

most accurate Bagging methods and the four best methods in M4. 

It is interesting to note that in spite of their simplicity, as observed 

throughout the essay, treating and pruning led to very competitive results in terms 

of prediction intervals in the M4 competition. For monthly series, for instance, the 

Treated ETS and the two best Bagging routines developed with the aid of pruning 

– Pruned BMC ETS and Pruned BMC Treated ETS – ranked third among the best 

methods from the M4 competition. For quarterly series, pruned strategies ranked 
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second best overall. Finally, for yearly series, Treated ETS and Pruned BMC 

strategies ranked between the third and fourth best methods. Of course, one must 

take into account the fact that these are ex-post results, after the end of the 

competition. On the other hand, we argue that treating and pruning were not 

designed to beat benchmarks and/or rank among the best methods in the M4 

competition, and yet provided very competitive results. It is also worth recalling 

that the overall accuracy of pruning in this case is restricted to how good Bagging 

strategies perform in practice. In other words, the results for pruning could have 

been even better if employed in alternative forecast combination methods and/or in 

conjunction with more sophisticated approaches, such as the ones presented in the 

M4 competition. This leaves a potential avenue for future research. 

Table 6.4 M4 competition - Average MSIS, computed at the 95% desired coverage 

level, for the automated exponential smoothing formulations, the two most accurate 

Bagging methods and the four best methods from the competition 

Method 

Average 

MSIS 

(Monthly) 

Average 

MSIS 

(Quarterly) 

Average 

MSIS 

(Yearly) 

Exponential smoothing    
    

ETS 8.30 9.49 34.90 

Treated ETS 8.18 9.52 34.43 

Best 2 Bagging methods    
    

Pruned BMC ETS 8.39 9.25 32.22 

Pruned BMC Treated ETS 8.42 9.30 32.11 

Best 4 methods from the M4 competition   
    

Submission 118 7.20 8.55 23.90 

Submission 245 8.66 9.38 27.48 

Submission 238 9.49 9.85 30.20 

Submission 069 8.03 9.42 35.84 

 

6.5 

Conclusions and future directions 

In this essay, a new way of selecting among model forms in automated 

forecasting routines was introduced. The approach, here addressed as treating, 
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operates by subsetting the pool of competing models based on the information 

delivered by their prediction intervals. An application to exponential smoothing 

formulations gave rise to an alternative forecasting method, the ‘Treated ETS’. By 

the same token, we also proposed a pruning strategy that is capable of feature 

selection in combined forecasting methods. 

The gains originating from treating and pruning were empirically 

demonstrated by means of an extensive experiment on a wide range of monthly, 

quarterly and yearly time series from the M- Competitions. We used as benchmarks 

for forecast combination two recently developed Bagging routines, which were 

originally developed with the focus of improving the accuracy of point forecasts. 

To demonstrate how the accuracy of these methods could be improved with the use 

of pruning, we first extended the fields of application of Bagging to generate 

prediction intervals, another important development of this work. 

The implications of the present study are significant in terms of both theory 

and practice. First, we demonstrate that model selection via traditional information 

criteria minimization may lead to inaccurate forecasts and unstable prediction 

intervals. Second, we show that prediction intervals, apart from providing 

practitioners with a convenient way to estimate the uncertainty of a point forecast, 

contain important information that can be used to improve the accuracy of 

forecasting methods without having to resort to procedures which are dependent on 

the choice of the practitioner, such as the use of a validation set, for instance. Third, 

based on these two previous findings, we set forth strategies that can be used to 

improve the accuracy of both point forecasts and prediction intervals in any 

forecasting method involving model selection or combination. 

As methodological extensions of this research, future works may benefit 

from alternative schemes for subsetting the pool of competing model forms, in the 

case of treating, or the ensemble of forecasts to be combined, in the case of pruning. 

For the latter, for instance, we restricted our attention to demonstrate how subsetting 

could be achieved in Bagging routines. It would be interesting to see how the 

concept could be extended to other forecast combination methods. The use of 

alternative methods for outlier detection in ensembles, such as nonparametric 

methods, also constitute a future research agenda. 
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7 

Summary of contributions and avenues for future research 

 

 

 

 

 

This thesis comprised three main contributions involving the combined use 

of ensemble approaches and time series methods to the field of forecasting, 

summarized in Chapters 4, 5 and 6. The first of these efforts proposed an alternative 

method to generate the ensemble of forecasts prior to final aggregation, which 

delivered satisfactory results for total electricity consumption time series across 

different countries. The second endeavor put forth a novel forecasting approach 

through the combined use of Bagging algorithms, time series methods and 

regularization routines. The results from an empirical experiment involving 

different types of energy demand time series endorsed the superiority of the 

developed approach over traditional forecasting benchmarks and recently 

developed Bagging routines for forecasting. The last essay comprised the 

development of new ways of selecting among model forms in automated 

forecasting routines and conducting feature selection in combined forecasting 

methods. An important aspect of this essay, which differs considerably from the 

previous ones, is the validation of the proposed methodologies on a wide range of 

time series, such as the ones from the the M- Competitions (98,830 in total). 

The main take-away message from the essays involved in the thesis is that 

ensemble approaches offer the forecasting practitioner the ability of properly 

addressing the many different complex structures that are inherent to real world 

time series, consequently improving the accuracy of forecasting methods in a wide 

range of contexts. In this connection, the thesis provides an alternative and 

challenging view to what has been considered so far as the Holy Grail of 

forecasting, namely the selection of a single method, from an ever-growing range 

of possibilities, which best extrapolates past historical data. 

Another major advantage offered by the procedures developed in this thesis, 

when compared to alternative approaches, lies in their flexibility, in the sense that 
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the practictioner can easily adapt some stages to tackle particular needs and improve 

forecasting accuracy for a given phenomenon/situation. That way, a number of 

topics for future research can be suggested, depending on the intended application. 

A promising avenue in this regard is the development of alternative forecast 

selection heuristics, i.e., procedures that can select, among the pool of forecasts 

originated via ensemble methods, those with the greatest potential of delivering 

accurate final forecasts after aggregation. The first steps in this direction were taken 

in the second essay (Chapter 5), in which the use of regularization routines was 

proposed to select and/or assign weights to predictors in the forecast ensemble, to 

the detriment of traditional aggregation metrics (mean, median, among others). 

Another extension for future research, which was also initiated in the second essay, 

is the development of alternative approaches to generate replicas of the original 

data. This involves not only the proposition of alternative bootstrapping schemes, 

but also the proper use of simulation routines. Future studies can also benefit from 

alternative pre-treatment and decomposition schemes before resampling the 

original (or parts of the original) data. 

Apart from the endless range of possibilities that exist when considering 

alternative methods in the different stages of forecasting ensemble approaches, 

another venue for future works includes the use of the information provided by 

forecasting ensembles to generate accurate prediction intervals to the point 

forecasts. The work presented in Chapter 6 represents a seminal effort in this regard. 

Finally, applications on datasets from other competitions, such as the Global Energy 

Forecasting Competition (GEFCom) (HONG et al., 2019) and the forthcoming M5 

Competition, also constitute a future research agenda. 
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