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Abstract

Gurwicz, Allan; Pacheco, Marco Aurélio Cavalcanti (Advisor);
Abreu, Ana Carolina Alves (Co-advisor); Canchumuni, Smith
Washington Arauco (Co-advisor). Deep Generative Models for
Reservoir Data: An Application in Smart Wells. Rio de Ja-
neiro, 2020. 84p. Dissertação de mestrado – Departamento de Enge-
nharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Reservoir simulation, which via complex equations emulates flow in
reservoir models, is paramount to the Oil & Gas industry. By estimating
the behavior of the reservoir given different input conditions, it allows
specialists to optimize various parameters in the oilfield project stage.
Alas, the computational time needed for simulations is directly correlated
to the complexity of the model, which grows exponentially with each
passing day as more intricate and detailed reservoir models are needed,
seeking better refinement and uncertainty reduction. As such, optimization
techniques which could greatly improve the results of field developments
may be made unfeasible. This work proposes the use of deep generative
models for the generation of reservoir data, which may then be used
for multiple purposes. Deep generative models are systems capable of
modeling complex data structures, which after robust training are capable of
sampling data following the same distribution of the original dataset. The
present application focuses on smart wells, a technology for completions
which brings about a plethora of advantages, among which the better
ability for reservoir monitoring and management, although also carrying
a significant increase in project investment. As such, these previously
mentioned optimizations turn indispensable as to guarantee the adoption
of the technology, along with its maximum possible return. As to make
smart well control optimizations viable within a reasonable time frame,
generative adversarial networks are here used to sample datasets after a
relatively small number of simulated scenarios. These datasets are then
used for the training of proxies, algorithms able to substitute the reservoir
simulator and considerably speed up optimization methodologies. Case
studies were done in both relatively simple and complex industry benchmark
models, comparing network architectures and validating each step of the
methodology. In the complex model, closest to a real-world scenario, the
methodology was able to reduce the proxy error from an average of 18.93%,
to 9.71%.
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Resumo

Gurwicz, Allan; Pacheco, Marco Aurélio Cavalcanti; Abreu, Ana
Carolina Alves; Canchumuni, Smith Washington Arauco.Modelos
Generativos Profundos para Dados de Reservatório: Uma
Aplicação em Poços Inteligentes. Rio de Janeiro, 2020. 84p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Simulação de reservatório, que por meio de equações complexas emula
fluxo em modelos de reservatório, é primordial à indústria de Óleo e Gás.
Estimando o comportamento do reservatório dadas diferentes condições de
entrada, permite que especialistas otimizem diversos parâmetros na etapa
de projeto de campos de petróleo. Entretanto, o tempo computacional ne-
cessário para simulações está diretamente correlacionado à complexidade do
modelo, que cresce exponencialmente a cada dia que se passa, já que mo-
delos mais detalhados são necessários dada a busca por maior refinamento
e redução de incertezas. Deste modo, técnicas de otimização que poderiam
significativamente melhorar os resultados de desenvolvimentos de campo
podem se tornar inviáveis. Este trabalho propõe o uso de modelos generati-
vos profundos para a geração de dados de reservatório, que podem então ser
utilizados para múltiplos propósitos. Modelos generativos profundos são sis-
temas capazes de modelar estruturas de dados complexas, e que após treina-
mento robusto são capazes de amostrar dados que seguem a distribuição do
conjunto de dados original. A presente aplicação foca em poços inteligentes,
uma tecnologia de completação que traz diversas vantagens, dentre as quais
uma melhor habilidade de monitoramento e gerenciamento de reservatórios,
apesar de carregar um aumento significativo no investimento do projeto. As-
sim, essas otimizações previamente mencionadas se tornam indispensáveis,
de forma a garantir a adoção da tecnologia, junto ao seu máximo retorno. De
modo a tornar otimizações de controle de poços inteligentes viáveis dentro
de um prazo razoável, redes generativas adversariais são aqui usadas para
amostrar conjuntos de dados após um número relativamente pequeno de
cenários simulados. Esses dados são então utilizados para o treinamento de
aproximadores, algoritmos capazes de substituir o simulador de reservatório
e acelerar consideravelmente metodologias de otimização. Estudos de caso
foram realizados em modelos referência da indústria, tanto relativamente
simples quanto complexos, comparando arquiteturas de redes e validando
cada passo da metodologia. No modelo complexo, mais próximo de um ce-
nário real, a metodologia foi capaz de reduzir o erro do aproximador de uma
média de 18.93%, para 9.71%.
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1
Introduction

Field development optimizations are cardinal to the Oil & Gas industry,
as to guarantee projects are viable and optimally profitable. While there are
numerous areas to be optimized, there is the need in all to evaluate the influence
of each possibility in the optimization, in regards to the field as a whole.

Reservoir simulation emerges as a way to model the behavior of the reser-
voir given different input conditions and geological information, by emulating
flow via complex equations. As such, the optimization possibilities may be
evaluated without the need for real field implementation.

However, these intricate equations make the process highly computer-
intensive, requiring great computing power and encumbering these optimiza-
tions. Thus, reservoir simulator proxies arise as a method to draw on the
behavior modeling ability of the simulator, while foregoing the need for the
intensive computing and overcoming its shortcomings.

Alas, these supervised algorithms still need to be trained on a dataset
constituted by a significant amount of simulations, and as such the need for
simulations remains crucial in the context of optimizations. As such, studies in
the area of simulator substitution are paramount as to ensure faster and more
efficient optimizations, in turn ensuring more profitable field developments.

In order to ease the creation and validation of the methodology here
proposed, the smart well control optimization area was chosen, as an attempt
to diminish the disadvantages of reservoir simulation in a specific optimization
medium.

Since first implemented in a field, in 1997, smart wells have increasingly
been applied to various oilfield development projects across the globe (Gao et
al., 2007). Employed in a myriad of scenarios, ranging from mature to cutting-
edge projects, they are not only able to induce viability in non-economic
developments, but to increase the value of economic ones.

Improving on conventional wells, they include technologies capable of
remote measurement and control (Abreu, 2016). This allows for better reservoir
and production management, as well as optimizations aiming for the increase
of project net present value (NPV), raises in oil and gas and reduction in water
productions, among other common objectives.
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Alas, these benefits come associated to a main downside: the considerable
increase in investment for the application of the technology. While its use,
guided by specialists, was proven enough for overturning this increase, control
optimizations become indispensable and lead to even more attractive projects.

1.1
Motivation

There are countless optimization techniques applied to smart well control
in the Oil & Gas literature. With different methodologies, they are able to prove
the technology is worth using by showcasing these increases and reductions in
the aimed for objectives.

The main friction point in the use of these methodologies, and a point
shared by all, is the need for expensive objective function calculations. As
they mostly rely on reservoir simulation, which is highly computer resource-
intensive, many are unfeasible and while theoretically valid, are shy from being
routinely applied.

The following subsections illustrate the context in which this work is
inserted, and the motivation for its development.

1.1.1
Flexwell

The idea for the present work was born after the need for reduction in
the number of simulations was found in the context of the Flexwell project,
a Research & Development project developed in a partnership between the
Applied Computational Intelligence Laboratory, of PUC-Rio, and Petrobras.

Consisting in the development of a methodology and software capable
of estimating the value of the flexibility and information under uncertainty
brought by the use of smart wells, the core of the work is based on Abreu
(2016).

The software is robust to optimizing smart well controls in certain
different manners, as Abreu et al. (2018) describes in detail. A small summary
follows, illustrated by Figures 1.1 to 1.4.
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Figure 1.1: Illustration of the optimization without uncertainty.

Figure 1.2: Illustration of the optimization under uncertainty with clairvoy-
ance.

Figure 1.3: Illustration of the optimization under uncertainty without future
information.
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Figure 1.4: Illustration of the optimization under uncertainty considering
future information.

– Optimization without uncertainty

This case works with a single reservoir model, assuming that all reservoir
properties are true. The optimization seeks the strategy that maximizes
the objective function for this single realization.

– Optimization under uncertainty with clairvoyance

Here, the optimization takes into account different geological scenarios,
representing the reservoir uncertainty. An individual optimization is done
per scenario, and each one has a different optimal control schedule.

– Optimization under uncertainty without future information

While this case considers multiple reservoir realizations, a single opti-
mization is done, seeking to maximize the expected objective function,
that is, the average of all objective functions.

– Optimization under uncertainty considering future information

This approach assimilates information acquired on the reservoir through
the optimization. This is done by clustering the scenarios in regards
to predetermined measurements in certain timesteps, and an optimal
control is found for each cluster as a whole.

All these optimization methods are tightly bound by the need for
numerous reservoir simulations, corroborating the need, in the context of this
project, for reducing the amount of these expensive simulations.

Figure 1.5 illustrates an example of reservoir simulation in this context,
where the simulator receives as inputs the control settings, represented by the
boxes, besides the geological information, represented by the reservoir model,
and outputs production curves.
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Figure 1.5: Illustration of the reservoir simulation process.

1.1.2
Reservoir Proxies

Aiming for the reduction in the need for simulations, proxy models
emerge as a way to mimic the simulator’s behavior. While physics-based proxies
incorporate the mathematics of fluid flow, data-driven based proxies make no
assumptions on the underlying data, using it for the prediction of future data
(Aïfa, 2014). There is a plethora of reservoir proxies in the literature, such as
the following examples.

Calvette et al. (2019) used long short-term memory networks for the
prediction of smart well production data, using the controls and productions
as inputs to the proxy. The methodology was tested in two reservoir mod-
els, obtaining good results. Kohler (2013) applied multilayer perceptrons to
production prediction, with well coordinates and productions as inputs. They
used Latin hypercube sampling to create datasets for two case studies, re-
ducing input dimension with principal component analysis and finding good
result metrics. Navratil et al. (2019) used an encoder-decoder architecture re-
ceiving drilling actions, reservoir properties and productions to predict produc-
tion rates. The case studies presented low error rates and proved the speedup
in relation to conventional simulation. Mohaghegh et al. (2015) introduces a
“Surrogate Reservoir Model”, which is a so called smart proxy. It receives in-
formation on each individual gridblock of the reservoir, and was used for the
prediction of oil rates, bottom-hole pressures, gas oil ratios and water cuts.
They applied the model to a giant mature oilfield, and not only achieved good
results, were able to use the proxy for production optimization. Cao et al.
(2016) applied a neural network-based proxy to real field collected production
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and pressure data, acceptably predicting future production.
There are plenty more published examples available, with assorted inputs

and outputs. Yet, a shared characteristic between the majority is the need for
extensive simulations to build the dataset for training the networks, excluding
the ones based on real world collected data.

Some of the examples presented try to mitigate this, such as Kohler
(2013) which intelligently chooses scenarios for the dataset via Latin hyper-
cube sampling, and Mohaghegh et al. (2015) which, by considering each grid-
block individually, can generate considerable datasets with a low amount of
simulations.

Figure 1.6 illustrates the simulator proxy training process for the smart
well control context, where the simulator is used for the building of a dataset,
which is then used for the training of the proxy. Figure 1.7 shows the inference
process, where the trained proxy may be used in place of the simulator to return
the outputs based on the same inputs the simulator would have received. Both
figures mantain the representations of Figure 1.5.

Figure 1.6: Illustration of the proxy training process.

Figure 1.7: Illustration of the proxy inference process.
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1.2
Proposed Methodology

While theoretically helping in the reduction of simulations, some ideas
are not applicable to all methodologies, relying on the type of the underlying
data, or have not been tested as simulator-use reducing methodologies.

A great downside in the use of proxies is the fact that, while reducing
simulator use after its construction, a great number of simulations are first
needed for training. As such, the total number of simulations might not
necessarily be reduced with the use of these techniques.

Deep learning, aiming to ease the objective of allowing computers to learn
from input, harnesses hierarchical algorithms as to represent complex concepts
in data. It differs from traditional shallow networks in that the amount of stages
for learning, where each stage transforms the activation of the network, is high
(Schmidhuber, 2015). The recent availability of high computing power allowed
the application of these networks to spread, and proved their superiority in a
variety of tasks.

Within the context of data generation, there is a great quantity of
methods available in the literature. Deep generative models emerge as a way
to represent probability distributions over a set of variables, ideally being able
to sample from these distributions (Goodfellow et al., 2016). These models are
able to capture complex structure in the data, allow for fast sampling, and are
computationally viable and scalable (Rezende et al., 2014).

Generative models have been used and validated for images (Goodfellow
et al., 2014; Radford et al., 2016), music (Mogren, 2016; Yang et al., 2017)
and various time-series data (Esteban et al., 2017; Hartmann et al., 2018; Yahi
et al., 2017), among others. In the Oil & Gas domain, there is use in history
matching (Canchumuni et al., 2019), the generation of pore and reservoir-scale
models (Mosser et al., 2018), and work focusing on geophysics (Mosser et al.,
2018) and geology (Dupont et al., 2018).

The present work introduces a methodology which makes use of deep
learning and deep generative models to, with a relatively low number of
simulations, reduce the need for simulations in the training of reservoir
proxies. As such, other optimization methodologies can benefit from the fast
objective function calculation of proxies, while not sacrificing computer power
for extensive simulations in their training.

A generative adversarial network is proposed as a way to, after initial
training, generate scenarios representative of the reservoir in question, man-
taining input data diversity. Thus, a smaller number of simulations are needed
for the construction of this network, which then generates new scenarios for
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training proxies and enabling other optimization methodologies.
The present work proposes the methodology and studies its validity,

by applying datasets sampled by the generator to long short-term memory
network-based proxies. The work is divided into the following chapters:

– Chapter 2 introduces a background on the petroleum engineering themes
related to the application of the present work, including an explanation
on smart well technology and control optimization literature.

– Chapter 3 outlines the relevant deep learning concepts, as to better
understand the networks and techniques used in this work.

– Chapter 4 describes in detail the proposed methodology.

– Chapter 5 details the application of the methodology to case studies,
aiming for its validation and the justification of its use.

– Chapter 6 analyzes and draws conclusions from the results of the previous
chapter, then suggesting future work for further improvement of the
methodology.
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2
Smart Wells

In order to better understand the application of the present work, this
chapter aims to provide a background on the relevant petroleum engineering
areas and topics.

2.1
Completions

The set of operations and equipments done and used in the well after
its drilling, aiming to make it fit and safe for use, is named completions. In
this crucial step, a great number of equipments are traditionally installed, in
order to optimally, efficiently and safely produce oil and gas from the intended
reservoir.

Thomas et al. (2001) lists the step-by-step of a conventional offshore
completion:

– Installation of surface equipment, including the wellhead, blowout pre-
venter and the christmas tree.

– Cleaning of the well and insertion of the completion fluid.

– Testing of the cementing.

– Perforation of the well.

– Installation of the production string and tubing, including the chosen
artificial lift equipment.

2.2
Smart Completions

While the conventional completion previously described is usually enough
for oilfield development, the increase in decline rates and a recent industry push
for more complex projects exposed the need for the use of new, innovative
technology. This led to the first use of smart completions, in 1997 (Gao et al.,
2007).

Since then, the technology has become widespread, being applied in a
myriad of fields all around the world. Lots of case studies can be found in
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the literature, such as the ones presented in Anderson (2005), from Brazil,
Wulandari et al. (2015), from the North Sea, Jeu et al. (2008), from the Gulf
of Mexico, Chan et al. (2014), from Malaysia, and Al-Shenqiti et al. (2007),
from Saudi Arabia.

Robinson (2003) defines smart completions as “a completion system ca-
pable of collecting, transmitting, and analyzing wellbore production, reservoir,
and completion-integrity data, then enabling remote action to enhance reser-
voir control and well-production performance”. The following components are
present in the intelligent well, enabling these objectives, as per Konopczynski
et al. (2003):

– Flow control devices, being able to control production binarily, discretely
or in a infinitely variable way.

– Feedthrough isolation packers, which segregate different reservoir zones
and allow isolated control.

– Control, communication and power cables, transmitting power and data
to and from downhole monitoring and control devices.

– Downhole sensors, used to individually monitor well parameters from all
zones of interest, such as flow, pressure, temperature, phase composition
and water pH (Glandt, 2005).

– Surface data acquisition and control systems, which acquire, validate,
filter and store the real-time data obtained by the sensors.

Figure 2.1 shows a simplified example of a smart well. The different
patterns represent different reservoir zones, the crossed boxes illustrate the
packers, isolating the flow between zones of interest, the dashed lines represent
the perforations, through which the reservoir fluids enter the well, and the red
boxes represent the flow control devices, able to control production.

Establishing a link to the figures in Chapter 1, the opening settings
for each one of these flow control devices, in all smart wells of the reservoir,
compose the control vector given as input to the simulator or proxy.
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Figure 2.1: Illustration of a smart well.

2.3
Control Optimization

Even though the application of smart wells in a development project
incurs in an increase of project cost, in the form of capital and operational
expenditures (CAPEX and OPEX), Pari et al. (2009) illustrates how its
use may lead to increases in total project net present value (NPV). While
this might be enough for the justification of its use, as Schiozer and Silva
(2009) shows, the comparision to conventional wells is only fair if done after
production strategy optimization, as it leads to even further considerable gains
in NPV. There is a great amount of work in smart well control optimization
and gain quantification. Some examples follow.

Abreu (2016) developed a methodology for estimating the value of the
flexibility given by the technology and seeking the optimal flow control strategy
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under uncertainties. A case study was done in the UNISIM-I reservoir (Avansi
and Schiozer, 2015), which is based in a Brazilian field, and the methodology
was able to increase NPV. Emerick and Portela (2007) optimized valve settings
by using direct search methods. Two case studies were done in Brazilian
offshore fields, obtaining increases in NPV and oil production. Su and Oliver
(2010) used ensemble-based optimization for the valve control aiming for the
reduction of water production. Two complex case studies showed that the
methodology was successful. Durlofsky and Aziz (2002) applied a gradient-
based optimization algorithm, which was able to optimize valve settings,
leading to increases in oil recovery, for three case studies. Almeida et al.
(2007) used evolutionary algorithms for optimizing the controls. A synthetic
reservoir-based case study revealed an increase in NPV and oil production,
and a reduction in water production, with the application of the methodology.
Ilamah and Waterhouse (2018) employed a proactive optimization approach,
using genetic algorithms and local searches, to a case study on a real North
Sea field, after representative scenario selection. The resulting control settings
induced an increment in oil production for all model realizations, even the ones
not considered in the optimization.

2.4
Reservoir Simulation

A common point in the majority of methodologies aiming for smart
well control optimization is the need for reservoir simulation, as to calculate
objective functions.

Reservoir simulators are numerical flow simulators, which by using the
finite difference method to solve complex equations, coupled to information
inputted on geology and wells, are able to model the behavior of the reservoir
(Rosa et al., 2006).

They receive as input a model of the reservoir, divided into gridblocks,
which contain information on properties such as porosity and permeability,
among others. The simulator is then responsible for solving a set of equations,
such as Darcy’s law and material balance equations, to model flow between
adjacent blocks, for all gridblocks in the reservoir. This is done in discrete
increments, called timesteps, whose division directly influences the accuracy
of the simulator (Mattax and Dalton, 1990).

As the present work focuses on data-driven models and only uses reservoir
simulation as a means to achieve production results, the simulation concept
may be simplified by considering the simulator a black-box. This means that,
after receiving the required inputs, it outputs chosen variables, such as oil, gas
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and water productions, and little attention needs to be given to how that is
accomplished.

The models used for simulation hike in complexity with each passing day,
aiming for better representation of real reservoirs with more refined and de-
tailed grids, property distributions and further timestep discretization. While
this leads to more accurate output data, computational cost is also greatly
increased. As such, many of the optimization methodologies previously de-
scribed might become unfeasible, depending on the complexity of the reservoir
and available computing power (Kohler, 2013).
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3
Deep Learning

Deep learning is a subarea of machine learning, which, in turn, is a
subarea of artificial intelligence. Machine learning is the subject which focuses
on allowing computers to learn from input, i.e., converting experience or
training data to expertise or knowledge (Shalev-Shwartz and Ben-David,
2014). Deep learning is, in a simplistic definition, the approach consisting in
facilitating this learning by showcasing the world in terms of a hierarchy of
concepts, where complex concepts are built out of simpler ones (Goodfellow et
al., 2016).

As the world of machine learning is nearly endless, this chapter aims to
provide a background focused in the deep learning topics needed for better
understanding the created methodology, and the concepts on which it stands.

3.1
Multilayer Perceptrons

The networks we are used to nowadays are made possible by a foundation
built all the way back in the middle of the 20th century. McCulloch and Pitts
(1943) defined the first artificial neuron, as seen in Figure 3.1.

x1

x2

xn

...
y

Figure 3.1: Simplified illustration of the McCulloch-Pitts neuron.

It works by applying a sum to the boolean inputs and activating the
neuron based on a comparison to a threshold value. That is, if ∑n

i=1 xi ≥ θ,
y = 1, where θ is the predefined threshold value. Else, y = 0. It also has an
inhibitory input, i, which, if on, impedes the neuron from firing.

The model was made closer to what we are used to, nowadays, by the
perceptron (Rosenblatt, 1958), as seen in Figure 3.2.
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x1
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xn

...
y

w1

w2

wn

b

Figure 3.2: Simplified illustration of a neuron in the Rosenblatt perceptron.

The neuron now has w weights and a b bias parameter. It may be used
as a linear classifier, where the output y is a function of ∑n

i=1 xiwi + b, with a
decision boundary given by ∑n

i=1 xiwi + b = 0.
Rosenblatt (1958), improving on Hebb (1949), also came up with a

learning algorithm, which updates the weights and the bias iteratively.
As to greatly simplify the history of deep learning, in the coming decades,

improvements were made to the model:

– Perceptrons can be stacked in a single layer, as to provide multiple
outputs.

– These layers of perceptrons can now be stacked, giving origin to the
multilayer perceptron.

This model, which is still vastly used nowadays, can be seen in Figure
3.3.

x1

x2

xi

h11

h12

h13

h1j

h21

h22

h23

h2k

hn1

hn2

hn3

hnl

y1

ym...
... ... ...

...

. . .

. . .

. . .

. . .

Figure 3.3: Simplified example of a multilayer perceptron.

The output of the ym neuron, for example, is given by (3-1). The same
equation is applicable to the output of all neurons in the network.
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ym = fy

(
l∑

o=1
womhno + bm

)
(3-1)

Where wom is the weight of the connection between neuron o of the nth hidden
layer and neuron m of the output layer, hno is the output of neuron o of the
nth hidden layer, bm is the bias and fy is the activation function of the output
layer.

This activation function is differentiable and usually non-linear, so the
network may learn from complex data. Some examples are the sigmoid (σ),
hyperbolic tangent (tanh), rectified linear units (ReLU) and leaky ReLU
functions, as seen in Figure 3.4.

−2 −1 1 2

−1

1

x

y σ
tanh
ReLU

Leaky ReLU

Figure 3.4: Graphs of commonly used activation functions.

3.2
Loss Functions and Optimizers

In order to update the weights and bias in this complex network, new
learning rules need to be used. As this work’s focus is not on deep learning
intricacies, the math behind this section will be skipped in favor of a general
explanation.

The main objective of the network, as a supervised learning algorithm, is
to act as an universal approximator (Hornik et al., 1989), i.e., correctly giving
outputs based on inputs and as per the data observed. As a way to measure
the accuracy of this action, cost or loss functions are used to calculate the
distance between the output of the network and the true desired output.

Some examples of loss functions are the mean squared error (3-2), mean
absolute error (3-3) and crossentropy (3-4), among others.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3-2)
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MAE = 1
n

n∑
i=1
|yi − ŷi| (3-3)

crossentropy loss = −
n∑
i=1

k∑
j=1

yij ln(ŷij) (3-4)

Where y are the true values, ŷ are the outputs of the network, n is the amount
of data, and k is the number of existing classes.

Optimizers are used to minimize these functions, updating the weights
and biases of the network as to better approximate the data. It is also
important to mention backpropagation, that is, while the inputs are fed-
forward through the network, the errors are “backpropagated”, from the output
to the input layers. Some examples of optimizers follow.

– Gradient Descent

Gradient descent updates the parameters of the network based on the
partial derivative of the cost funcion in regards to each parameter, and a
predefined learning rate. This update is done once for each pass through
the whole dataset.

– Stochastic Gradient Descent

This algorithm is different from the previous one in that the parameters
are updated once per training example.

– Mini-Batch Gradient Descent

Here, a mini-batch number is defined, and the parameters are updated
once per mini-batch of training examples.

– Adagrad

This algorithm, developed by Duchi et al. (2011), introduces an adaptive
learning rate. That is, each parameter has a different learning rate, and
the updates are done based on its importance.

– Adadelta and RMSprop

Zeiler (2012) and Hinton et al. (2012) respectively came up with these
algorithms, which solve a problem that Adagrad has of decreasing
learning rates.

– Adam

Kingma and Ba (2014) adds a momentum-like term to the previous
algorithms, empirically improving results.
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3.3
Convolutional Neural Networks

While Fukushima (1980) is given credit by Schmidhuber (2015) for
introducing this architecture, or at least a predecessor of it, the literature
usually associates the birth of modern convolutional neural networks (CNNs)
to Yann LeCun (LeCun et al., 1989, 1990, 1998).

Typical CNNs are made of convolutional, pooling and fully connected
layers, as seen in Figure 3.5.

x

y1

yn

...

Figure 3.5: Simplified example of a convolutional neural network.

The convolutional layers are responsible for extracting features from the
input data, by applying a filter, also called kernel. The kernel strides through
the data, performing a Hadamard product, that is, elementwise multiplications,
and storing the results on the feature, or activation, maps. This is followed by
the application of a non-linearity on the resulting data, such as ReLU or others.

The pooling layers reduce the size of the feature maps, mantaining only
the most important information while merging similar features. The most
common type is the max pooling, which takes the maximum value in each
predefined window from the activation maps.

These layers and operations may be repeated multiple times, as seen in
the state-of-the-art (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; He et al., 2015).

The output of the last pooling layer is then fed into a multilayer
perceptron, also called a fully connected or dense layer. It may act as a
classifier, for example, outputting probabilities for each class, in one of the
uses of these networks.

3.4
Recurrent Neural Networks

Recurrent neural networks (RNNs) introduce a time dependency to the
architecture. A simple example can be seen in Figure 3.6.
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ht

xt

yt

Figure 3.6: Simplified example of a recurrent neural network.

The network is divided in timesteps. At each, the hidden state ht is
updated by (3-5), and the output yt is given by (3-6).

ht = fh(whht−1 + wxxt + bh) (3-5)

yt = fy(wyht + by) (3-6)
Where w are the network weights, x are the inputs, b are the biases and f are
the activation functions.

This imbues the network with a so called memory, remembering previous
inputs to make future predictions.

3.4.1
Long Short-Term Memory Networks

While simple RNNs perform satisfactorily for some time-reliant tasks,
their memory is short lived. While previous inputs influence close future
timesteps, this is not true for the long-term, due to a problem of exploding or
vanishing gradients (Hochreiter, 1998).

As to address this problem, Hochreiter and Schmidhuber (1997), com-
plemented by Gers et al. (1999), came up with the long short-term memory
(LSTM) architecture, as seen in Figure 3.7.
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Figure 3.7: Simplified example of a long short-term memory network unit.

The architecture is comprised of a cell state (C), which is updated by
gates. The forget gate (f) is responsible for deciding how much of the previous
timestep is kept (3-7). The input gate (i) decides which values to update, and
creates new values (3-8). Then, the cell state is updated (3-9), and the output
gate (o) decides what to output and pass to the next timestep (3-10).

ft = σ(wf · [ht−1, xt] + bf ) (3-7)

it = σ(wi · [ht−1, xt] + bi)

C̃t = tanh(wc · [ht−1, xt] + bC)
(3-8)

Ct = ftCt−1 + itC̃t (3-9)

ot = σ(wo · [ht−1, xt] + bo)

yt = ht = ottanh(Ct)
(3-10)

All of this allows this architecture to handle long time dependencies,
improving on the vanilla RNN.
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3.5
Generative Adversarial Networks

Generative Adversarial Networks (GANs), conceived by Goodfellow et
al. (2014), belong to a class of networks named deep generative models.

The model is composed of two networks, a generator and a discriminator,
both multilayer perceptrons in the original formulation. They are pitted against
each other, where the generator aims to fool the discriminator into thinking its
generated samples are real, while the discriminator aims to correctly classify
real and fake samples.

The discriminator D and the generator G play a zero-sum game (3-11).
In the original formulation, the proposed value function V is given by (3-12).

min
G

max
D

V (D,G) (3-11)

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (3-12)

Where pz(z) is the known distribution of input noise variables, which are given
to the generator that has a distribution pg, and pdata(x) is the original data
distribution.

Figure 3.8 illustrates the general structure of the GAN, and the relation-
ship between networks.

•

•

•

pz Generator

•

•

•

pg

Discriminator

Fake

•

•

•

pdata

Real

Figure 3.8: Structure of the generative adversarial network.

Goodfellow et al. (2014) proves that pg = pdata is a global optimum and
Nash equilibrium of the game, per the following:
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– The discriminator aims to maximize, while the generator aims to min-
imize, V (G,D) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz log(1 − D(G(z)))dz =∫

x
pdata(x) log(D(x)) + pg(x) log(1−D(x))dx;

– As a
a+b is the maximum of a log(x) + b log(1− x) in [0, 1] for any (a, b) ∈

R2\{0, 0}, V (G,D) is maximum when D(x) = D∗G(x) = pdata(x)
pdata(x)+pg(x) , for

any fixed generator;

– Assuming the optimal discriminator, V (G,D∗G(x)) =
Ex∼pdata

[
log

(
pdata(x)

pdata(x)+pg(x)

)]
+ Ex∼pg

[
log

(
pg(x)

pdata(x)+pg(x)

)]
=

Ex∼pdata

[
log

(
pdata(x)

pdata(x)+pg(x)
2

)]
+ Ex∼pg

[
log

(
pg(x)

pdata(x)+pg(x)
2

)]
− log(4) =

KL
(
pdata,

pdata+pg

2

)
+KL

(
pg,

pdata+pg

2

)
− log(4) =

2 · JSD(pdata, pg)− log(4), where KL is the Kullback-Leibler divergence
and JSD is the Jensen-Shannon divergence.

– As JSD(a, b) ≥ 0 ∀a, b and JSD(a, b) = 0 if a = b, the global minimum
of V (G,D∗G) = − log(4) happens when pg = pdata, and both discriminator
and generator are at their optimum and have no incentives for changing.

The paper states that while theoretically guaranteed to achieve this
optimum, in practice this doesn’t happen and both networks’ losses keep
oscillating during training, unable to find the equilibrium.

Other problems that happen in GAN training include mode collapse,
where the generator only produces samples from a single mode of the distri-
bution, and vanishing gradients, where the discriminator is so good that the
generator cost saturates and it isn’t able to learn.

Several methodologies exist in the literature aiming for the mitigation
of these problems. Salimans et al. (2016) lists some, including minibatch
discrimination, where the discriminator looks at multiple data in combination,
one-sided label smoothing, consisting in replacing the targets from 0 and 1 to
smoothed values like 0.1 and 0.9, and virtual batch normalization, where the
inputs of each mini-batch are normalized.

Other methodologies include alterations to or new cost functions, such
as Goodfellow et al. (2014), the original GAN paper, which suggests using the
maximization of log(D(G(z))) as the generator objective.

DBD
PUC-Rio - Certificação Digital Nº 1812642/CA



Chapter 3. Deep Learning 37

3.5.1
Deep Convolutional Generative Adversarial Networks

Not only multilayer perceptrons, as in the original paper, may be used in
the layers of the generator and discriminator. Radford et al. (2016) proposed
the Deep Convolutional GAN (DCGAN) architecture, using convolutional
networks.

They also list guidelines for stable training of the network, improving on
previous convolutional GANs.

3.5.2
Wasserstein Generative Adversarial Networks

Arjovsky et al. (2017) proposed a new cost function for training GANs,
titled Wasserstein distance, or Earth-Mover distance, given by (3-13). It
represents the cost of the optimal transport plan of “mass” from distribution
pdata to distribution pg.

W (pdata, pg) = inf
γ∈Π(pdata,pg)

E(x,y)∼γ [||x− y||] (3-13)

Where γ(x, y) represents the aforementioned transport plans, belonging to the
set Π(pdata, pg).

They also show that while this calculation may be intractable, the
function can also be given by (3-14).

W (pdata, pg) = 1
K

sup
||f ||L≤K

Ex∼pdata
[f(x)]− Ex∼pg [f(x)] (3-14)

Where ||f ||L ≤ K means the function f should be K-Lipschitz continuous, i.e.,
there exists a real constant K such that |f(x1)−f(x2)| ≤ K|x1−x2| ∀x1, x2 ∈
R.

The authors suggest using (3-15), where the function fw may be a neural
network with weights w.

max
w∈W

Ex∼pdata
[fw(x)]− Ez∼pz [fw(G(z))] (3-15)

As such, the discriminator is not responsible for telling real from fake
samples apart, but for learning a function for computing the Wasserstein
distance between both distributions.

As for the question of enforcing K-Lipschitz continuity, the methodology
enforces weight clipping, where the weights of the network are clamped to
a compact space W and the continuity is mantained. This also helps with
vanishing gradients.
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3.5.3
Boundary-Seeking Generative Adversarial Networks

Hjelm et al. (2018) introduced a method for training GANs on discrete
data, named Boundary-Seeking GANs. They also aim for improving the
stability in continuous data, as per the following.

Recall that Goodfellow et al. (2014) proved that for a given generator G,
the optimal discriminator is D∗G(x) = pdata(x)

pdata(x)+pg(x) .
This equation can be modified to find the true data distribution by

knowing the optimal discriminator (3-16):

pdata(x) = pg(x) D∗G(x)
1−D∗G(x) (3-16)

Generalizing this equation for any discriminator, as assuming by training
it gets closer to the optimal one, it can be seen that the generator is optimal
when D(x)

1−D(x) = 1, that is, pg(x) = pdata(x). This leads to D(x) = 0.5, which
is the decision boundary, and the discriminator has the same probability of
classifying samples as real or fake.

To achieve this, Kristaldi (2017) proposed the following objective for the
generator (3-17):

min
G

Ez∼pz(z)

[1
2(log(D(x)− log(1−D(x))))2

]
(3-17)

DBD
PUC-Rio - Certificação Digital Nº 1812642/CA



4
Methodology

As introduced in Chaper 1, there is a great need for the reduction in
the use of reservoir simulation, as to expedite, and increase feasibility of,
smart well control optimizations. This work opted to exploit the advantages
of deep learning for this purpose, due to its historical validation in the context
of supervised learning. Within deep learning, generative adversarial networks
were chosen to generate well controls and its accompanying reservoir data, as
to augment existing datasets and increase the robustness of simulator proxies
trained on relatively few simulations.

In order to address the challenge of achieving good proxy results without
the need for extensive simulations, this work proposes a methodology which
harnesses the power of GANs to generate scenarios for augmenting proxy
training datasets.

Figure 4.1 illustrates the methodology, from the definition of a reservoir
model, its multiple simulation as to create a dataset, the training of a GAN
on this data and its use for the sampling of new data, to the use of this final
augmented dataset for the training of a reservoir simulator proxy. The following
sections detail these steps.

Simulator

Figure 4.1: Illustration of the proposed methodology.

4.1
Model Selection

The first step is the selection and preparing of a reservoir model, as seen
in Figure 4.2. As the focus hereto is on smart wells, the models need to have the
valves defined, that is, the smart well controllable zones. This information may
come from reservoirs already in production, with smart completions already
present, or by specialists, aiming to justify the installation of the technology
by proving its positive financial return via optimizations. In this case, this

DBD
PUC-Rio - Certificação Digital Nº 1812642/CA



Chapter 4. Methodology 40

methodology expedites the testing of several possibilities and combinations of
valve settings.

Simulator

Figure 4.2: Illustration of the model selection step.

4.2
Dataset Building

After its definition, the reservoir model needs to be simulated for the
generation of an initial dataset, as shown in Figure 4.3.

While the input parameters are always the smart well controls, this step
includes determining which output parameters will be learned and predicted in
the future. Some possibilities include production rates, such as oil, water and
gas, pressures, such as bottomhole or wellhead, or ratios, such as the gas-oil
or the water cut, among many others.

Following parameter choosing, the model should be simulated multiple
times with diverse enough input scenarios. An important parameter to be set
in this step is the number of simulations to be done. While the use of a great
number of scenarios leads to more accurate network predictions, the number
should not be as large as the amount of simulations needed for the original
objectives, such as optimizations. Testing this parameter is encouraged, as
to find the balance between simulation reduction and acceptable prediction
errors.

Simulator

Figure 4.3: Illustration of the dataset building step.

4.3
Generative Adversarial Network Construction and Use

With a robust enough dataset given by the previous step, the GAN can be
constructed and trained, as per Figure 4.4. This includes the definition of the
architecture to be used in the networks, and cost functions. Hyperparameter
and architecture tuning is also encouraged, as to achieve optimal results.
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After training, the GAN can now be used for the generation of scenarios,
including inputs and outputs. The generator is uncoupled from the network,
and with noise provided as input, it can be used to sample multiple scenarios.

While one simulation takes a significant amount of time, the generator
can create a whole dataset, with a considerable number of scenarios, in an
almost negligible amount of time.

Simulator

Figure 4.4: Illustration of the generative adversarial network construction and
use step.

4.3.1
Generator Evaluation

This work also proposes a methodology for the evaluation of the scenar-
ios generated by the network. While there are several options in the literature
for generator evaluation, the data used in the present work has certain char-
acteristics which favor a specific and new result-obtention routine, illustrated
by Figure 4.5.

The generator here proposed is used for the sampling of the inputs, which
are smart well controls, and the chosen outputs. As the control settings are
between 0 and 1, i.e., a fully closed and fully open zone, any generated control
in this interval is valid. While reproducing the distribution of the original data
may be interesting, depending on the way the original dataset was built, it may
not always be needed, as it is interesting to introduce variety in the dataset for
future proxy use. Meanwhile, achieving good output results is paramount for
accuracy in the proxy. Not only mantaining the distribution of the original data
is important, the generated outputs should realistically represent simulator
outputs, given the same inputs.

Therefore, in order to guarantee that the error is minimal, that is, that
the generator is also correctly representing the simulator, the inputs sampled
by the network can be simulated, and its results can then be compared to the
generator outputs.
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Simulator

Generator

Figure 4.5: Illustration of the proposed result-obtention methodology.

4.4
Proxy Construction, Training and Coupling

After the GAN is trained and the generator is ready for use, the reservoir
proxy model can be built, as in Figure 4.6.

This step involves, as in the previous one, the definition of the archi-
tecture, including which networks to be used, and several parameters of the
model. As before, hyperparameter tuning is also strongly encouraged.

Subsequently, the generator can be coupled to the proxy, with this
coupling being the core of the present work. Here, the generator is used for the
sampling of several scenarios, creating a new dataset. This is then paired with
the previous used one, as to create a final, robust dataset, which may be used
for the training of the proxy. This results in a powerful reservoir proxy, which
can thus be used to enable several simulation-intensive optimizations.

Simulator

Figure 4.6: Illustration of the proxy construction, training and coupling step.

4.5
Optimization Connection

As mentioned in section 1.1.1, the present work was developed in the
context of the optimizations given by the Flexwell project. As such, all the
previous steps are inserted in the project workflow, and run in tandem to the
optimization.

In the beginning of the optimization, reservoir simulation is needed for
objective function calculation of all control possibilities. At a certain point,
there are enough simulated scenarios as to begin the GAN training.

In sequence, the trained generator can be used for the sampling of
datasets, and the proxy may be trained. It is important to note that these
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steps happen simultaneously to the optimization, as to help total optimization
time.

After training, the proxy may be used in lieu of the simulator, be it by
fully replacing it in the optimization, or only partially. If done via the latter
option, it and the GAN may be improved throughout the process, by using
the simulated scenarios for further training. Other possibility opened by this
option is to check the error of the proxy in each timestep, against the simulated
scenarios. As such, information may be gained as to judge whether the proxy
and GAN need further training.

As the models here proposed don’t take geological information into
account as inputs, each one is related to a single reservoir realization. As such,
when using one of the optimization possibilities which considers uncertainty, a
GAN and proxy need to be built for each geological scenario. This means that
even when using scenario clustering, the networks may be used for the whole
length of the optimization, as each one accompanies its respective scenario.

DBD
PUC-Rio - Certificação Digital Nº 1812642/CA



5
Case Studies

In order to successfully validate the methodology proposed in this work,
three case studies were conducted. This section details the cases, displaying,
discussing and analyzing the obtained results.

While the methodology was developed for the optimization context, these
case studies were conducted in an isolated manner, with simulations done only
for the studies, not given by the necessity of an optimizer.

It is important to note that all simulations done in this work were
via CMG’s IMEX black-oil reservoir simulator (Computer Modelling Group
Ltd., 2017), and all networks were built with the Keras (Chollet et al., 2015)
framework, with a TensorFlow (Abadi et al., 2015) backend.

To calculate the errors in the case studies, the root mean squared error
(5-1) and the normalized root mean squared error (5-2) metrics were used.

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (5-1)

NRMSE = RMSE

ymax − ymin
(5-2)

Where y are the true values, ŷ are the values given by the networks and n is
the amount of data in question.

5.1
Generative Adversarial Network Validation

The first aspect of the methodology to be tested was the application of
GANs to the generation of smart well data, before the connection to other
applications. This case study, including the description of the methodology for
the generation of smart well data and the results here obtained, was published
as Gurwicz et al. (2019).

For this case study, a single realization of the PUNQ-S3 reservoir model
was chosen. It is an industry benchmark, first proposed by Floris et al. (2001).

Based on a real field reservoir, it represents a small-size model, with a
grid of 19× 28× 5 blocks, of which 1761 are active. The field is bound to the
east and south by a fault and to the north and west by a strong aquifer, and
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contains 11 producer wells. Its production horizon is of 17 years. Figure 5.1
shows the porosity map of the model, including the location of the wells.

Figure 5.1: Porosity map of the PUNQ-S3 reservoir model.

While the geological model and parameters were kept the same as the
original paper (Floris et al., 2001), the suggested historical production data,
including the well testing and shut-in periods, was not used for the purposes
of this work as it does not necessarily represent the reservoir behavior under
normal conditions.

This model was chosen as while it is sufficiently complex and represents
a real case, it still has a relatively small simulation runtime, allowing for
the testing of several model and network possibilities. As the model is also
freely available, the methodology here developed may be compared to other
alternatives.

For this initial investigation into the methodology, wells PRO1 and
PRO12 were chosen to contemplate smart completions, with flow control
valves in all completed zones, i.e., three zones each. This brings the total of
controllable valves to six, which were defined to allow for control changes once
per month.

While the input parameters for the reservoir simulator are the smart well
controls, the output parameters were chosen as the oil and water production
rates, in m3/day, allowing for the perception of changes in reservoir behavior
given input changes. The model was then simulated 1000 times with varying
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valve settings, as to build a dataset. Each simulated scenario began with all
valves open, and then after a random timestep all controls were randomly
modified, once or twice, chosen also randomly, per scenario.

The dataset was then normalized to the [0, 1] feature range to ease
network learning and reshaped to be of the form [number of samples,
timesteps per sample, features per timestep], before being fed to the
network. In this case, the shape was [1000, 203, 8], for 1000 simulations, 203
timesteps per simulation (one per month for 17 years, minus the first month)
and 8 features per timestep (six valve controls plus oil and water productions).
In this case study, the output of the generator was kept continuous, and
truncated to the second decimal place before evaluation.

As a first test, a conventional GAN model was constructed and trained.
Before result evaluation, it was observed that the generated data was
stochastic-like, with several spikes. As to better represent the original curves,
the Deep Convolutional architecture was henceforth used, which introduced a
smoothness to the data, closer in shape to the simulator outputs.

As such, a DCGAN was constructed with an architecture adapted from
the one proposed by the original paper (Radford et al., 2016). Figures 5.2 and
5.3 detail the architecture of the networks in this model.

Input

Dense

ReLU

Reshape

Convolutional

Batch
Normalization

ReLU

Convolutional

Batch
Normalization

ReLU

Convolutional

Sigmoid

Figure 5.2: Generator architecture.
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Figure 5.3: Discriminator architecture.

The idea of using convolutional layers, followed by batch normalization
and a ReLU activation in the generator, and convolutional layers, followed by
batch normalization, a leaky ReLU activation and dropout in the discrimina-
tor, was taken from the DCGAN paper.

However, some adaptations were made. The originally used 2D convolu-
tional layers were swapped to 1D, as the data here used is two dimensional,
being time series, and not three dimensional, as in images. In the generator,
it was chosen to downsample the feature dimension while keeping the other
dimension in a fixed size, due to the relatively small complexity of the data. As
such, upsampling was not used, as present in common applications of GANs.

Also, as the majority of the data to be generated is in the [0, 1] interval,
the sigmoid function was chosen for the output of the generator. This is in
contrast to the common use of the hyperbolic tangent, which outputs values
in the [−1, 1] interval.

The GAN was then trained adversarially, with the loss functions as
proposed in the original GAN paper (Goodfellow et al., 2014) and the Adam
optimizer (Kingma and Ba, 2014), and used to sample 128 scenarios, containing
both smart well controls and associated oil and water productions. These
went through the created results methodology, with Table 5.1 containing the
obtained results.

Table 5.1: Results obtained for the DCGAN via the developed routine.

Epochs
RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

10000 83.26 96.40 6.66% 4.78% 5.72%
20000 100.29 109.88 8.02% 5.45% 6.74%
30000 106.11 107.95 8.49% 5.35% 6.92%
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Another test was done using Boundary-Seeking GANs, aiming for better
results. While the architecture of the networks remained the same, the loss
function proposed by Hjelm et al. (2018) and Kristaldi (2017) was used in the
generator. Table 5.2 contains the results of this application.

Table 5.2: Results obtained for the B-DCGAN via the developed routine.

Epochs
RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

10000 93.20 140.37 7.45% 6.96% 7.21%
20000 59.15 91.90 4.73% 4.56% 4.65%
30000 55.97 84.76 4.48% 4.20% 4.34%

As the one that lead to the best metrics, the B-DCGAN trained on
30000 epochs was chosen to further illustrate results. Figure 5.4 contains a
boxplot of the NRMSE of each scenario, for both oil and water productions.
The box extends from the lower to the upper quartile values of the data, and
the whiskers extend to the 2nd and 98th percentiles. The circles represent
outliers, and the middle line, the median. As this plot illustrates, not only is
the total NRMSE low, the distribution of the NRMSEs has predominantly low
values, with a few high outliers that are still acceptable values.

oil water

0.02
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0.04

0.05

0.06

0.07

0.08

0.09

0.041 0.039

Figure 5.4: Boxplot of the NRMSE.

Figure 5.5 contains boxplots comparing the distribution between the
simulated and generated data, given by the concatenation of all timesteps
in all scenarios. It was built in a similar fashion to the previous one, with the
difference that the whiskers extend to the maximum and minimum values of
the data. It shows that the GAN was able to correctly learn the distribution
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of the original data, maintaining approximate maximum and minimum values,
as well as medians and quartiles.

IMEX - oil GAN - oil IMEX - water GAN - water
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Figure 5.5: Boxplots of the simulated and generated oil and water production
data.

Figures 5.6 and 5.7 show examples of generated curves, of a single
scenario, compared to the ones simulated with the same valve controls.
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Figure 5.6: Example of a comparison between oil production curves.
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Figure 5.7: Example of a comparison between water production curves.

Figure 5.8 shows a comparison between the valve control data of the
original dataset, and the one sampled by the generator. The whiskers extend
to the maximum and minimum of the data, and the dotted line represents the
mean. These results show that the model was able to replicate the distribution
of original valve control data, while increasing diversity, as seen by the shift
in the median. This means that the generated strategies have applied control
earlier than the original dataset, and is useful as it increases data variety, for
future dataset building.

IMEX GAN
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0.91

0.75 0.73

Figure 5.8: Boxplots of the original and generated control data
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5.2
Coupling of the Generator to a Reservoir Proxy

While the previous case study validated the ability of a trained generator
to correctly sample production curves and generate datasets, the connection
to a reservoir proxy is paramount to guarantee that not only the data can be
generated, it is useful in the proxy augmentation context.

As such, this case study aims to couple the generator to a simulator
proxy, by training the proxy on data sampled by the generator. It also aims to
bring the work closer to a real-world use case and to literature recomendations,
in contrast to the previous one.

The PUNQ-S3 reservoir model (Floris et al., 2001) was again used, with
the same modifications as the first study. This case tested the feasibility of
including smart completions in all available zones of all wells, as the total
number is modest. As such, the final model contains twenty two valves, one
per zone where each well is defined in the original model.

The output parameters were again chosen to be the oil and water
production rates, in m3/day. In this case study, the scenarios no longer began
with the valves all open, as it doesn’t accurately represent the simulations
needed in an optimization. Instead, each scenario started with random valve
controls, which were modified once in a random timestep. As such, variety
was added to the initial dataset, which no longer is mostly composed of open
controls.

Different datasets were built to test the network’s response to variations
in dataset size, with 100, 1000 and 5000 scenarios. The data was normalized
to the [−1, 1] interval and reshaped to [number of scenarios, 203, 24], before
being fed to the network. A different generator architecture was here applied,
as seen in Figure 5.9.
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Figure 5.9: New generator architecture.

This more closely resembles the architectures commonly present in the
literature, as both timestep and feature dimensions were now modified in shape
along the network, with the feature one being downsampled and the timestep
one being upsampled, in contrast to what was done in the previous case study.
In order to succesfully apply these transformations and achieve the final correct
data shape, the convolutional layers’ kernel sizes were tuned, and zero padding
was added to the data.

Also, the last activation function was changed from sigmoid to the hy-
perbolic tangent, matching literature recommendation (Radford et al., 2016).
While it outputs data in the [−1, 1] interval, as the initial data normalization
was also done in this interval, the final data is denormalized to the correct
interval.

While the generator still samples values in a continuous manner, the valve
controls here generated were truncated to the first decimal place. Although this
does not mean the generator is discrete, after this operation the data is only
able to fall into ten possibilities.

The GANs were trained adversarially with the loss functions proposed in
the original paper (Goodfellow et al., 2014) and the Adam optimizer (Kingma
and Ba, 2014), using the different simulated datasets, and used to sample 100
scenarios. Table 5.3 contains the results of the created results methodology, and
Figures 5.10 to 5.21 show the boxplots of the distributions of the simulated
and generated production data, and the original and generated control data,
for the 10000 and 50000 training epoch cases, representing the two extremes of
training availability, where the full line represents the median, and the dotted
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line, the mean.

Table 5.3: Results obtained for the DCGAN via the developed routine.
Scenarios in the
Training Dataset

Epochs
RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100

10000 267.48 200.42 18.78% 14.70% 16.74%
20000 249.63 175.42 18.23% 12.64% 15.44%
30000 170.19 134.60 12.46% 9.84% 11.15%
40000 196.15 126.37 15.15% 8.62% 11.89%
50000 158.96 142.54 11.93% 10.22% 11.08%

1000

10000 195.59 179.70 13.69% 11.89% 12.79%
20000 175.09 140.36 12.33% 9.75% 11.04%
30000 199.64 178.45 15.34% 12.14% 13.74%
40000 152.16 172.71 11.20% 12.52% 11.86%
50000 171.97 151.70 12.47% 10.71% 11.59%

5000

10000 232.76 201.65 15.50% 13.68% 14.59%
20000 177.31 164.51 12.74% 11.64% 12.19%
30000 167.91 144.15 12.31% 10.11% 11.21%
40000 155.68 140.64 11.54% 9.65% 10.60%
50000 108.39 94.80 7.97% 6.55% 7.26%
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Figure 5.10: Production data box-
plots for the DCGAN trained on
100 scenarios for 10000 epochs.
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Figure 5.11: Control data boxplots
for the DCGAN trained on 100 sce-
narios for 10000 epochs.
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Figure 5.12: Production data box-
plots for the DCGAN trained on
100 scenarios for 50000 epochs.
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Figure 5.13: Control data boxplots
for the DCGAN trained on 100 sce-
narios for 50000 epochs.
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Figure 5.14: Production data box-
plots for the DCGAN trained on
1000 scenarios for 10000 epochs.
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Figure 5.15: Control data boxplots
for the DCGAN trained on 1000
scenarios for 10000 epochs.
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Figure 5.16: Production data box-
plots for the DCGAN trained on
1000 scenarios for 50000 epochs.
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Figure 5.17: Control data boxplots
for the DCGAN trained on 1000
scenarios for 50000 epochs.
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Figure 5.18: Production data box-
plots for the DCGAN trained on
5000 scenarios for 10000 epochs.
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Figure 5.19: Control data boxplots
for the DCGAN trained on 5000
scenarios for 10000 epochs.
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Figure 5.20: Production data box-
plots for the DCGAN trained on
5000 scenarios for 50000 epochs.
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Figure 5.21: Control data boxplots
for the DCGAN trained on 5000
scenarios for 50000 epochs.

As before, a Boundary-Seeking GAN was also tested, with the generator
loss function proposed in Hjelm et al. (2018) and Kristaldi (2017). Table 5.4
contains the results of this application, and Figures 5.22 to 5.31 show the
boxplots of the distributions of the simulated and generated production data,
and the original and generated control data, for the 10000 and 50000 training
epoch cases, where the full line represents the median, and the dotted line, the
mean.
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Table 5.4: Results obtained for the B-DCGAN via the developed routine.
Scenarios in the
Training Dataset

Epochs
RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100

10000 228.22 143.94 16.07% 10.73% 13.40%
20000 - - - - -
30000 - - - - -
40000 - - - - -
50000 - - - - -

1000

10000 206.76 210.95 14.65% 14.21% 14.43%
20000 191.84 163.79 13.34% 11.07% 12.21%
30000 186.71 196.95 13.52% 13.98% 13.75%
40000 160.68 145.22 12.36% 10.61% 11.49%
50000 141.17 119.06 10.37% 8.90% 9.64%

5000

10000 208.65 215.11 14.31% 15.32% 14.82%
20000 205.40 191.93 15.33% 13.73% 14.53%
30000 210.65 218.25 15.78% 16.01% 15.90%
40000 170.01 136.35 12.90% 9.43% 11.17%
50000 124.13 117.64 8.96% 8.10% 8.53%
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Figure 5.22: Production data box-
plots for the B-DCGAN trained on
100 scenarios for 10000 epochs.
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Figure 5.23: Control data boxplots
for the B-DCGAN trained on 100
scenarios for 10000 epochs.
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Figure 5.24: Production data box-
plots for the B-DCGAN trained on
1000 scenarios for 10000 epochs.
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Figure 5.25: Control data boxplots
for the B-DCGAN trained on 1000
scenarios for 10000 epochs.
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Figure 5.26: Production data box-
plots for the B-DCGAN trained on
1000 scenarios for 50000 epochs.
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Figure 5.27: Control data boxplots
for the B-DCGAN trained on 1000
scenarios for 50000 epochs.
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Figure 5.28: Production data box-
plots for the B-DCGAN trained on
5000 scenarios for 10000 epochs.
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Figure 5.29: Control data boxplots
for the B-DCGAN trained on 5000
scenarios for 10000 epochs.
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Figure 5.30: Production data box-
plots for the B-DCGAN trained on
5000 scenarios for 50000 epochs.
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Figure 5.31: Control data boxplots
for the B-DCGAN trained on 5000
scenarios for 50000 epochs.

The B-DCGAN trained on 100 scenarios experienced exploding gradients
with 20000 or more epochs of training, therefore not generating valid data.
A Wasserstein GAN, as proposed in Arjovsky et al. (2017), was then tested
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in this study case, as by enforcing weight clipping it tends to avoid the
exploding gradients problem. The general architecture of the network was
mantained, except for the last layer of the discriminator’s activation function
being changed from a sigmoid to a linear function as needed for the architecture
per the original paper.

The network was then trained adversarially as proposed in Arjovsky et
al. (2017), where the disciminator is trained more than the generator and has
its weights clipped. The RMSprop (Hinton et al., 2012) optimizer was used,
as also proposed in the original paper of this network. Table 5.5 contains the
results of this application, and Figures 5.32 to 5.43 show the boxplots of the
distributions of the simulated and generated production data, and the original
and generated control data, for the 10000 and 50000 training epoch cases,
where the full line represents the median, and the dotted line, the mean.

Table 5.5: Results obtained for the W-DCGAN via the developed routine.
Scenarios in the
Training Dataset

Epochs
RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100

10000 520.08 293.70 31.16% 18.65% 24.91%
20000 518.95 282.42 34.11% 18.61% 26.36%
30000 638.43 305.30 42.16% 21.44% 31.80%
40000 511.63 302.54 31.72% 21.67% 26.70%
50000 574.93 272.30 36.78% 19.66% 28.22%

1000

10000 211.42 256.94 14.90% 17.71% 16.31%
20000 290.54 309.56 19.67% 20.64% 20.16%
30000 226.26 263.74 16.48% 16.59% 16.54%
40000 256.22 284.92 18.10% 18.91% 18.51%
50000 228.65 285.06 15.94% 19.95% 17.95%

5000

10000 223.51 268.01 15.91% 18.79% 17.35%
20000 264.90 243.60 19.30% 16.54% 17.92%
30000 201.18 217.60 13.86% 15.15% 14.51%
40000 228.78 229.25 16.68% 14.85% 15.77%
50000 224.64 215.30 15.87% 14.48% 15.18%

DBD
PUC-Rio - Certificação Digital Nº 1812642/CA



Chapter 5. Case Studies 59

IMEX - oil GAN - oil IMEX - water GAN - water

0

500

1000

1500

2000

2500

m
3 /d

ay

902.5
1089.7

455.3
336.2

Figure 5.32: Production data box-
plots for the W-DCGAN trained on
100 scenarios for 10000 epochs.
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Figure 5.33: Control data boxplots
for the W-DCGAN trained on 100
scenarios for 10000 epochs.
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Figure 5.34: Production data box-
plots for the W-DCGAN trained on
100 scenarios for 50000 epochs.
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Figure 5.35: Control data boxplots
for the W-DCGAN trained on 100
scenarios for 50000 epochs.
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Figure 5.36: Production data box-
plots for the W-DCGAN trained on
1000 scenarios for 10000 epochs.
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Figure 5.37: Control data boxplots
for the W-DCGAN trained on 1000
scenarios for 10000 epochs.
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Figure 5.38: Production data box-
plots for the W-DCGAN trained on
1000 scenarios for 50000 epochs.
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Figure 5.39: Control data boxplots
for the W-DCGAN trained on 1000
scenarios for 50000 epochs.
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Figure 5.40: Production data box-
plots for the W-DCGAN trained on
5000 scenarios for 10000 epochs.
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Figure 5.41: Control data boxplots
for the W-DCGAN trained on 5000
scenarios for 10000 epochs.
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Figure 5.42: Production data box-
plots for the W-DCGAN trained on
5000 scenarios for 50000 epochs.
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Figure 5.43: Control data boxplots
for the W-DCGAN trained on 5000
scenarios for 50000 epochs.

Comparing the three networks’ metrics, it can be seen that the DCGAN
achieved better results in almost all cases. While better results were expected
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from the other networks, this can be explained by the simplicity in this case
study, in regards to number of parameters and size of the data.

It is expected that in cases with larger production horizons (where the
timestep dimension of the data is higher) and with more controllable valves
(where the feature dimension of the data is higher), the DCGAN architecture is
surpassed by the others, given their need for more training data to obtain better
results. In regards to the Wasserstein architecture, it takes longer to stabilize
training in relation to the others. As the present case fixed the number of
training epochs for comparison purposes, it was not enough for the stabilization
of the W-DCGAN.

With the GANs trained, the next step was the coupling to the reservoir
proxy, with the DCGAN chosen for this purpose based on the obtained results.
It was decided to test both the influence of the number of scenarios and the
number of GAN training epochs in the final results of the proxy. As such, six
GANs were chosen: the one trained on 10000 epochs, and the one trained on
50000 epochs, for each number of scenarios.

For each case, the generator was uncoupled from the network, and used
for the sampling of new datasets. Two tests were done, with the generation
of 5000 and 10000 scenarios, in order to test the influence of the number of
sampled scenarios in the proxy.

Each dataset to be fed into the proxy consisted on the samplings of
the generator and the original dataset used for training the GAN. The
data was normalized to the [0, 1] interval and reshaped to [number of
samples, timesteps per sample, features per timestep], in this case
[number of sampled scenarios+number of scenarios in the original
dataset, 203, 24].

The data was then randomly shuffled along the first dimension and
divided into 80% for training and 20% for validation, before being split into
inputs, the valve controls, and outputs, the productions. 100 scenarios were
also randomly created, simulated and pre-processed as in the training dataset,
in order to act as a test dataset for all cases.

For this case study, a simple LSTM-based proxy was used, with an
architecture as shown in Figure 5.44.

Input LSTM
Hyperbolic
Tangent Dense

Figure 5.44: Reservoir proxy architecture.
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A set of fixed hyperparameters was chosen for all tests of the proxy, as
to fairly compare the influence of solely the input dataset. The proxies were
trained for 20 epochs with the Adam optimizer (Kingma and Ba, 2014).

Table 5.6 contains the metrics obtained when training the proxy on only
the initial datasets, without the use of GANs, and Table 5.7 contains the
results of the proxies trained on datasets augmented by the generators. Table
5.8 summarizes the best results of the coupling in each scenario amount case.

Table 5.6: Results obtained for the proxy without the use of GANs.
Scenarios in the
Training Dataset

RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100 383.85 361.78 19.63% 23.43% 21.53%
1000 111.92 113.97 5.72% 7.38% 6.55%
5000 63.59 53.77 3.25% 3.48% 3.37%

Table 5.7: Results obtained for the proxy with the use of generators.
Generated
Scenarios

Scenarios in the
Training Dataset

GAN
Training
Epochs

RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

5000

100
10000 227.66 173.16 11.64% 11.22% 11.43%
50000 181.04 171.69 9.26% 11.12% 10.19%

1000
10000 105.44 110.68 5.39% 7.17% 6.28%
50000 105.87 104.65 5.41% 6.78% 6.10%

5000
10000 64.27 70.73 3.29% 4.58% 3.94%
50000 55.47 49.56 2.84% 3.21% 3.03%

10000

100
10000 267.73 202.02 13.69% 13.09% 13.39%
50000 143.21 157.34 7.32% 10.19% 8.76%

1000
10000 107.99 91.25 5.52% 5.91% 5.72%
50000 89.95 103.67 4.60% 6.72% 5.66%

5000
10000 91.40 83.44 4.67% 5.40% 5.04%
50000 54.60 45.98 2.79% 2.98% 2.89%
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Table 5.8: Best results of the coupling.

Scenarios in the
Training Dataset

GAN
Training
Epochs

Average
NRMSE

100
- 21.53%

10000 11.43%
50000 8.76%

1000
- 6.55%

10000 5.72%
50000 5.66%

5000
- 3.37%

10000 3.94%
50000 2.89%

These results should be analyzed by tier, as seen in Table 5.8. In the
first one, where a small number of scenarios was available, the coupling of the
generator greatly improved results, going from an average NRMSE of 21.53%
to 11.43%, if trained for 10000 epochs, and 8.76%, if trained for 50000 epochs.

In the second tier, with 1000 simulations, the generator mildly improved
the proxy, going from an average NRMSE of 6.55% to 5.72%, if trained for
10000 epochs, and 5.66%, if trained for 50000 epochs.

With 5000 simulations, the results worsened if trained for 10000 epochs,
with the average NRMSE going from 3.37% to 3.94%. If trained for 50000
epochs, the results improved to 2.89%.

A great comparison lies in the switch between tiers, if one had to choose
between the use of the generator or the simulation of more scenarios. With 100
scenarios and a 21.53% average NRMSE, instead of simulating 900 more, to
1000, and achieving a 6.55% metric, one can opt to train the GAN and achieve
a 8.76% metric, with only the 100 simulated scenarios.

In regards to the influence of generated scenarios, it can be seen that it
is significantly affected by the accuracy of the generator. With the generators
trained for 10000 epochs, the use of 5000 generated scenarios led to better
results than the use of 10000 scenarios. When trained for more epochs, the use
of 10000 sampled scenarios led to better results than 5000. This means that the
error is clearly being propagated through the use of the generated scenarios,
and the choice of number of scenarios to augment the proxy training dataset
should rely on the accuracy of the available generator.
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5.3
Validation on a Complex Reservoir Model

In this next case study, the main objective was to apply the routine as
described in the previous one, to a more complex and realistic reservoir model.
As to achieve this, the OLYMPUS model was selected, as proposed in Fonseca
et al. (2018).

This model was developed with the objective of being a benchmark for
field development optimization under uncertainty, used for a challenge on
finding optimal well controls, optimal well and platform placement, and both
in tandem. It is a synthetic model, based on North Sea fields, created to be
sufficiently challenging for optimizations, while having realism of properties
and uncertainties. It also has a relatively short simulation runtime, allowing
for manageable optimization and testing of algorithms and techniques.

It consists on a grid of 118× 181× 16 blocks, of which 192750 are active.
Each block has approximately 50m × 50m × 3m. The reservoir contains four
different facies, which model the uncertainties and were regenerated as to
provide 50 realizations.

As the present methodology doesn’t take uncertainties into account, a
single realization was chosen to be used. Figure 5.45 shows the porosity map of
the chosen realization, and Figure 5.46 shows the grid top map of the reservoir,
highlighting the impermeable shale layer present, which divides it into two
zones.
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Figure 5.45: Porosity map of a realization of the OLYMPUS reservoir model.

Figure 5.46: Grid top map of the OLYMPUS reservoir model.

This characteristic was used to place the smart completions, and the
technology was implanted in all wells that had perforations on both zones. As
such, all injector wells plus five producer wells contemplated the technology,
with two zones each, the division given by the impermeable layer. This led to a
total of twenty four controllable valves. As in the previous case, the valves were
defined to be controllable once per month, through the twenty-year reservoir
production horizon.
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As before, the output parameters were chosen to be the reservoir oil and
water production rates, in m3/day. The inputs were defined by starting with
random valve controls, modified once in a random timestep.

As this case more closely resembles a real application scenario, it was
opted to do the analysis based on only a dataset of 100 simulations, which
more accurately represents what is available on an optimization procedure.

In order to proceed to the network, the data was normalized to the [−1, 1]
interval, and reshaped to [number of scenarios, 239, 26], where the second
dimension corresponds to a control per month for 20 years, minus the first
month, and the third dimension corresponds to the twenty four valves, plus
the oil and water production rates.

The DCGAN was chosen for this case study, based on its performance
on the previous one, with its architecture kept the same. Figures 5.47 and 5.48
illustrate the network architectures, with the parameters specific to this case
study. The vectors underneath each box represent the size of the data when
exiting the respective layer, with the “None” element indicating the flexibility
in the network to receive data with different amounts of samples. The numbers
on the right of certain boxes represent the amount of neurons, in the case of
dense layers, and filters, in the case of convolutional layers.

(None, 100)

(None, 7680)

(None, 7680)

(None, 30, 256)

(None, 60, 256)

7680

(None, 59, 128)

(None, 59, 128)

(None, 59, 128)

128

(None, 239, 26)

(None, 239, 26)

26

(None, 240, 64)

(None, 240, 32)

(None, 240, 32)

(None, 240, 32)

32

(None, 118, 128)

(None, 120, 128)

(None, 120, 64)

(None, 120, 64)

(None, 120, 64)

64

Figure 5.47: Generator architecture with parameters.
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(None, 239, 32)

(None, 239, 32)

(None, 239, 32)

32

(None, 239, 64)

(None, 239, 64)

(None, 239, 64)

(None, 239, 64)

64
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(None, 239, 128)

(None, 239, 128)

(None, 239, 128)

128
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(None, 239, 256)

256
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(None, 1)

(None, 1)

1

Figure 5.48: Discriminator architecture with parameters.

All layer parameters were kept as the default of the Keras (Chollet et
al., 2015) framework, with the exception of a 0.2 slope for the leaky ReLU
layers, a 0.25 rate for the dropout layers, and a 0.8 momentum for the batch
normalization layers. The Adam optimizer (Kingma and Ba, 2014) was used,
with a learning rate of 10−5 and a β1 of 0.5. The parameters were taken from
the recommendations in Radford et al. (2016), except for the learning rate,
found from experiments.

Differently from the previous application, the results were taken for fewer
epoch discretizations, as to test the influence of more extreme changes in the
number of epochs. Table 5.9 contains the results of the methodology applied
to this case, for the three datasets, after using the generator for the sampling
of 100 scenarios. Figures 5.49 to 5.54 show the boxplots of the distributions of
the simulated and generated production data, and the original and generated
control data, for the 10000, 50000 and 100000 training epoch cases, where the
full line represents the median, and the dotted line, the mean.

Table 5.9: Results obtained for the DCGAN via the developed routine.
Scenarios in the
Training Dataset

Epochs
RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100
10000 766.58 1006.26 16.81% 17.61% 17.21%
50000 428.36 747.55 9.57% 13.49% 11.53%
100000 672.30 576.82 14.90% 10.20% 12.55%
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Figure 5.49: Production data box-
plots for the DCGAN trained on
100 scenarios for 10000 epochs.
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Figure 5.50: Control data boxplots
for the DCGAN trained on 100 sce-
narios for 10000 epochs.
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Figure 5.51: Production data box-
plots for the DCGAN trained on
100 scenarios for 50000 epochs.
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Figure 5.52: Control data boxplots
for the DCGAN trained on 100 sce-
narios for 50000 epochs.
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Figure 5.53: Production data box-
plots for the DCGAN trained on
100 scenarios for 100000 epochs.
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Figure 5.54: Control data boxplots
for the DCGAN trained on 100 sce-
narios for 100000 epochs.

The generators were then uncoupled from the networks, and used for the
sampling of new data. Tests were done with the generation of 1000, 5000 and
10000 scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1812642/CA



Chapter 5. Case Studies 69

The data went through the same preprocessing as before, result-
ing in the [number of sampled scenarios+number of scenarios in the
original dataset, 239, 26] shape, divided into 80% for training, and 20% for
validation. 100 additional scenarios were also simulated, to act as a test dataset.

The proxy was created, maintaining the architecture from the previous
case study, as seen in Figure 5.55, which mantains the notations of Figures 5.47
and 5.48. The first “None” element in the vectors indicates the flexibility in
the network to receive data with different amounts of samples, and the second
indicates the flexibility to receive data with different numbers of timesteps.

(None, None, 24) (None, None, 128)

128

(None, None, 128) (None, None, 2)

2

Figure 5.55: Reservoir proxy architecture with parameters.

The proxy was then trained for 20 epochs, with a batch size of 64 and
the Adam optimizer (Kingma and Ba, 2014), with the default Keras (Chollet
et al., 2015) parameters. Table 5.10 shows the results of the proxy trained
on only the simulated dataset, and Table 5.11 shows the results of the proxy
trained on the datasets including the generators. Table 5.12 summarizes the
best results of the coupling.

Table 5.10: Results obtained for the proxy without the use of GANs.
Scenarios in the
Training Dataset

RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100 709.19 1288.10 15.58% 22.27% 18.93%

Table 5.11: Results obtained for the proxy with the use of generators.
Scenarios in the
Training Dataset

Generated
Scenarios

GAN
Training
Epochs

RMSE
Oil

RMSE
Water

NRMSE
Oil

NRMSE
Water

Average
NRMSE

100

1000
10000 743.68 1040.43 16.34% 17.98% 17.16%
50000 453.59 602.62 9.96% 10.42% 10.19%
100000 569.82 708.88 12.52% 12.25% 12.39%

5000
10000 557.34 786.73 12.24% 13.60% 12.92%
50000 386.49 631.87 8.49% 10.92% 9.71%
100000 528.82 633.40 11.62% 10.95% 11.29%

10000
10000 548.86 813.71 12.06% 14.07% 13.07%
50000 397.59 620.15 8.73% 10.72% 9.73%
100000 530.02 648.62 11.64% 11.21% 11.43%
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Table 5.12: Best results of the coupling.

Scenarios in the
Training Dataset

GAN
Training
Epochs

Average
NRMSE

100

- 18.93%
10000 12.92%
50000 9.71%
100000 11.29%

The inclusion of the generator improved results in all tested cases, with
the most significant one being the GAN trained for 50000 epochs, with 5000
generated scenarios. This lead to a reduction of the error from 18.93% to 9.71%,
as seen in Table 5.12.

Even in the case where a large number of epochs is not viable, the error
was slightly reduced from 18.93% to 12.92%, with 10000 epochs and 5000
generated scenarios.

Among the chosen training epochs, the best results were always obtained
with 50000. This leads to a balance of not too few epochs, as in the case of
10000, or not to many, as the case of 100000. Between the number of generated
scenarios, the best results were consistently found with 5000, also highlighting
an important balance in the mix of original and generated data.

5.3.1
Time Comparisons

While the performance of the GAN was validated, it is important
to guarantee that the time taken to train this additional network is not
overbearing in relation to the original simulations. As such, the time taken
for each step of this case study is presented in Tables 5.13, 5.14 and 5.15.

The simulations were done in an Intel R© CoreTM i7-8700 CPU, with 64GB
of RAM, and the networks’ training in an NVIDIA R© GeForce R© GTX 1660
GPU, with 1408 CUDA R© cores and 6GB of memory.

Table 5.13: Parallel simulation times for the OLYMPUS case study.
Scenarios Time (minutes)

100 411.04
Average per scenario 4.11
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Table 5.14: GAN training times for the OLYMPUS case study.
Epochs Time (minutes)
10000 21.33
50000 105.97
100000 216.46

Average per epoch 0.13 seconds

Table 5.15: Proxy training times for the OLYMPUS case study.
Simulated Scenarios Generated Scenarios Time (seconds)

100

0 6.28
1000 30.37
5000 126.77
10000 251.49

It is important to note that the time needed for the generation of
scenarios and proxy inference is trivial in comparison to the simulations and
training.

In the context of an optimization, the training of the networks may
happen parallel to the simulator. As such, the optimization starts with only
simulations. As it progresses and reaches enough simulated scenarios for an
initial dataset, the GAN can start training, followed by the proxy. When
finished, they may begin to substitute the simulator in the optimization.

100 scenarios might represent, for instance, the amount of simulations
needed for one iteration in an optimization algorithm. As the time needed
for these simulations is significantly higher than the time needed for the
training of the 50000-epoch GAN added to the 5000-generated scenarios proxy,
even before the third iteration of the algorithm the reservoir simulator may
start to be substituted. In fact, considering the average simulation time per
scenario, this network combination could be trained in the same time as
105.97 minutes + 126.77 seconds

4.11 minutes ' 26 simulations, a very small amount in the context
of an optimization.
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6
Conclusions

Reservoir simulation is one of the pillars in which the Oil & Gas industry
stands, as a way to model and predict reservoir behavior is paramount to
field developments. As several methodologies aiming for gains in project
results heavily rely on it, and the complex equation-dependent simulation
process is computationally expensive and time-consuming, ways to obtain
faster simulations are always being researched.

Singling out an application of reservoir simulation, smart well control op-
timizations stand out as each objective function calculation needs a simulation.
As these optimizations are essential in justifying the use of this technology, and
making the most of it, a way to expedite these processes leads to better and
more robust results, within a reasonable time frame.

The present work proposed a novel methodology for the use of generative
adversarial networks, a subclass of deep generative models, to generate accu-
rate and diverse smart well reservoir data. This data may then be used in the
improvement of simulator proxies, networks able to substitute the simulator
and ensure faster optimizations.

The methodology encompasses the selection of the reservoir model, the
building of an initial dataset and the construction and use of the GAN. A novel
result-evaluation technique is also proposed, by decoupling and simulating
the generated input data, then comparing to the generated output data. The
trained generator may then be applied to the sampling of new data, used for the
training of reservoir proxies, which can in turn be used in control optimizations.

Three case studies were conducted in order to validate the work. The
first one used the PUNQ-S3 reservoir model, with smart completions in six
total zones, to test the generation of data. A Deep Convolutional GAN was
tested, yielding a best average NRMSE of 5.72%, and a Boundary-Seeking
Deep Convolutional GAN yielded 4.34%, both trained on a dataset of 1000
simulations.

The second one also used the PUNQ-S3 model, but with smart comple-
tions on a total of twenty two valves. This case tested the influence of the
number of scenarios in the initial dataset, between 100, 1000 and 5000. A
Deep Convolutional GAN obtained a best error of 7.26%, a Boundary-Seeking
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Deep Convolutional GAN obtained 8.53%, and a Wasserstein Deep Convolu-
tional GAN obtained 14.51%. The DCGAN was then used for the sampling of
new data, and an LSTM-based reservoir proxy was built and trained on these
datasets. The coupling of the generator was able to reduce the proxy error
from 21.53%, in the case with 100 simulations, to 8.76%. In the case with 1000
simulations, from 6.55% to 5.66%, and in the case with 5000 simulations, from
3.37% to 2.89%.

The final case study was done on the OLYMPUS reservoir model, a
complex model built as benchmark for field optimization techniques, where
twenty four valves were chosen to be controllable. A DCGAN was trained on
100 simulations, obtaining a best average NRMSE of 11.53%. It was then
coupled to an LSTM-based proxy, reducing the NRMSE from 18.93%, to
9.71%. Time comparisons were also done for this case study, finding that the
training of the networks takes about the same time as the simulation of 26
scenarios of this reservoir, a very low number in the context of an optimization.

These cases successfully validated the hypothesis that the GANs are not
only able to generate realistic data, and to follow the distributions of the
original simulations, but to greatly reduce the errors of reservoir simulator
proxies. As it was also established that a relatively small number of scenarios
is enough for its training, which in turn is relatively fast, their coupling to
proxies is able to considerably speed up optimization techniques.

6.1
Future Work

While all proposed objectives were achieved, in the course of this work
several points for future investigation and study continuation were found. This
section details them, suggesting the extension of this work as to find even better
results.

– Network Architectures

While this work tested a few different kinds of GANs, plenty more are
available in the literature, the number growing with each passing day.
As such, the testing of more types of GANs is encouraged, as to search
for ones with better stability, and a good stopping criteria for training.
The connection to other kinds of simulator proxies is also advocated for,
as to test the reduction in the error of the coupling to other networks.

– Parameter Tuning

Here, all network hyperparameters were kept constant throughout the
case studies, as the focus was not on the best possible individual network
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results, but on the dialog between networks. A way to significantly
improve results is to optimize these parameters, that is, to test different
possibilities and heuristics as to yield smaller errors.

– Output Selection

In the case studies, the variables chosen as outputs were the reservoir
oil and water production rates. Instead of the rates, the cumulative
production might yield better network results, as the curves are smoother
and less stochastic-like, among other options.

– Initial Scenario Generation

In order to generate the initial datasets for training the GANs, the
control scenarios were randomly generated. Methodologies for smarter
initial control choosing, such as Latin hypercube sampling (McKay et
al., 1979), can be tested as to possibly lead to improved results by better
covering the possible control space.

– Data Preprocessing

The training and validation data split for the proxy was fixed in the
present work, done after being randomly shuffled. A potential option
to guarantee that the data was correctly divided, that is, that both
sets accurately represent the data space, is to apply cross-validation
techniques, such as k-fold cross-validation, possibly guaranteeing that
the model sees all parts of the data as both training and validation.

– Generative Models

While generative adversarial networks were exclusively used in this work,
other kinds of deep generative models should be investigated. Examples
include variational auto-encoders (Kingma and Welling, 2013), genera-
tive stochastic networks (Alain et al., 2016) and variational generative
stochastic networks (Bachman and Precup, 2015), among others.

– Unification of the GAN and Proxy

In this work, two different networks were used for the final optimization
speedup objective. An encouraged line of work is to use the GAN both
as data generator, and as proxy. One of the ways proposed is to use an
encoder network, usually applied to feature dimension reduction, with the
generator network, in order to map data to the generator input latent
space. As such, the encoder can be used to receive the smart well controls,
mapping them to the input of the generator, which after training could
construct the output related specifically to this set of controls.
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– Optimization Connection

While this work validated the generation of data and proxy augmenta-
tion, there is still the need to couple the methodology to an optimization.
In doing so, the objective of expediting optimizations may be tested, with
the expectation of better results by increasing optimization robustness.
This also means that the simulations which compose the initial dataset
are done according to the need of the optimization, and not via detached
scenario generation techniques. As such, it might also be interesting to
check whether the GAN is generating scenarios in the same direction as
the optimization leads to, and not guiding the optimization away from
its best possible results.
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