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Abstract

Leitão, André Xavier; Pereira, Anderson (Advisor). Topology
Optimization of Geometrically Nonlinear Structures Ba-
sed on an Energy Interpolation Scheme. Rio de Janeiro,
2019. 104p. Dissertação de Mestrado — Departamento de Engenha-
ria Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

In many engineering problems, e.g., design of flexible biomedical prostheses
or energy absorption devices, structures undergo large displacements.
In those problems, the structural response must take into account
the geometric nonlinearity. However, topology optimization algorithms
regarding nonlinearities, and based on the finite element method, typically
suffer from numerical instabilities caused by excessive distortions of
low-density regions within the design domain. In particular, the stiffness
matrix may be no longer positive definite, which can jeopardize the
convergence of the optimization process. This thesis aims to study
an interpolation scheme between linear and nonlinear finite element
formultation to alleviate this convergence issue. At each step of the
optimization, the nonlinear state equation is solved by the Newton-Raphson
procedure to determine the equilibrium configuration. Making use of the
gradient information computed from the adjoint method, the Method
of Moving Asymptotes is employed to update the design variables.
Through several benchmark problems considering large displacements, it is
demonstrated the effectiveness and efficiency of this interpolation scheme.
More specifically, the optimized designs are in agreement with those
obtained in the literature and exhibit correct load-level dependence. The
investigated interpolation scheme plays a crucial role in the solution of
nonlinear problems with high load levels, allowing the optimization routine
to converge and to obtain the optimal material arrangement.

Keywords
Topology Optimization; End-compliance Minimization; Geometrical

Nonlinearity; Nonlinear Solution; Finite Elements; Interpolation Scheme; Nu-
merical Instabilities; Low-Density Elements; Sensitivity Analysis.
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Resumo

Leitão, André Xavier; Pereira, Anderson (Orientador). Otimi-
zação Topológica de Estruturas Geometricamente Não-
lineares Baseada em um Esquema de Interpolação de Ener-
gia. Rio de Janeiro, 2019. 104p. Dissertação de Mestrado — Depar-
tamento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Em muitos problemas de engenharia, e.g., no projeto de próteses biomédicas
flexíveis ou em dispositivos de absorção de energia, estruturas sofrem
grandes deslocamentos. Nestes casos, a não linearidade geométrica deve
ser levada em conta na resposta estrutural. Contudo, algoritmos de
otimização topológica considerando não linearidades, e modelados segundo
o método de elementos finitos, sofrem instabilidades numéricas causadas por
distorções excessivas nas regiões de baixa densidade dentro do domínio de
projeto. Em particular, a matriz de rigidez pode não ser positiva definida
comprometendo a convergência do processo de otimização. Esta dissertação
visa estudar um esquema de interpolação entre as formulações lineares e
não lineares de elementos finitos para aliviar tais distorções. Em cada etapa
da otimização, para determinar a configuração de equilíbrio, o sistema de
equações não-lineares é resolvido pelo procedimento de Newton-Raphson.
Utilizando-se das informações dos gradientes calculadas através do método
adjunto, o Método das Assíntotas Móveis é empregado para atualizar as
variáveis de projeto. Por meio de problemas de referência considerando
grandes deslocamentos, são demonstradas a eficácia e a eficiência deste
esquema de interpolação. Mais especificamente, as topologias otimizadas
estão de acordo com aquelas obtidas na literatura e exibem a dependência
esperada em relação ao nível de carga. O esquema de interpolação em estudo
desempenha papel crucial na solução de problemas não lineares em níveis
elevados de carga, permitindo que a rotina de otimização convirja e se
obtenha a distribuição de material ótima.

Palavras-chave
Otimização Topológica; Minimização da Flexibilidade; Não-linearidade

Geométrica; Solução Não-linear; Elementos Finitos; Método de Interpolação;
Instabilidade Numérica; Elementos de Baixa Densidade; Análise de Sensibili-
dade.
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1
Introduction

Structural optimization can be divided into three categories: sizing, shape and
topology. Concerning sizing optimization, the goal is to find the optimum value
for a certain parameter, the design variable, typically the thickness of a plate
or the cross section areas of a truss structure. The main feature of the sizing
problem is that the design domain is known a priori and is fixed throughout
the optimization process (Bendsøe & Sigmund, 2003). In shape optimization,
the boundaries are changed to achieve the optimum geometry. The domain
is modified at each iteration and the connectivities remains the same. An
application of shape optimization is on the reduction of stress concentration
in equipments subjected to cyclic loading to predict crack initialization and
propagation that eventually led to failure of the structure.

In topology optimization the number, location and shape of holes and
their connectivities are determined during the optimization. The key is to find
where to introduce and remove material according to the constraints of the
problem. Different from the other methods, topology optimization can be used
in conceptual phases to meet specific applications and conditions of a project.
Figure 1.1 shows a typical example of each type of optimization method.

Sizing OptimizationSizing Optimization

Topology Optimization

Shape Optimization

Figure 1.1: Optimization methods (Bendsøe & Sigmund, 2003).
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Chapter 1. Introduction 21

The Topology Optimization Method (TOM) is a powerful tool to de-
termine the better distribution of material within a fix design domain. In-
troduced by Bendsøe & Kikuchi (1988), it combines optimization algorithms,
e.g., Method of Moving Asymptotes (MMA) with Finite Element Analysis.
The domain is discretized by finite elements, and considering the sensitivities
regarding the proposed objective function and its restrictions, it is possible to
obtain the optimal material arrangement. Figure 1.2 illustrates the complete
optimization project for a diesel-generating set common base frame, where
the topology optimization plays an important role on its weight reduction.
From the design domain, it is defined which part of the component is fixed
and which one is free to be optimized. Then, the component is modeled by
finite elements and, applying a specific software, the topology optimization is
conducted leading to the preliminary result. Next, the topology is interpreted
regarding its final application. At this stage, it is usual to apply shape opti-
mization to modify the boundaries of the structure, important, for instance, to
reduce stress concentration. In shape optimization, the nodal coordinates are
modified while the stresses in the component are constrained by stresses limits,
e.g., yield stress. The optimized structure is validated when the stresses are
below these limits for a certain tolerance. Otherwise, the project is reviewed
until specific criteria are met.

Optimization 
Project

Figure 1.2: Illustrative scheme for a topology optimization project (adapted
from VTT subproject (SIMPRO)).
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Chapter 1. Introduction 22

When the finite element analysis considers large displacements, the
tangent stiffness matrix may become indefinite or even negative definite –
loss of ellipticity on the material law (see Ball, 1976). This phenomenon
happens in low-density (also called low-stiffness or void) elements due to large
displacements of their nodal coordinates and is known to be “artificial” since
these elements should not influence the structural response (solid elements).
Nonetheless, such finite displacements impose difficulties or even result in non-
convergence of the equilibrium iterations in the Newton-Raphson solution or
similar scheme.

A easier way to comprehend this phenomenon is observing that large
displacements can distort and flip void elements into themselves, resulting in
negative volume. This is not evaluated by the classical Continuum Mechanics
theory, in which the strain measures, based on the deformation gradient, has
only physical meaning when a body is not turned inside out. Therefore, this
thesis studies a technique to reduce the distortions of low-density regions and
allows the nonlinear structural topology algorithm to converge.

1.1
Motivation

Nonlinear topology design has several applications in the design of components
and equipments with large displacements or large deformations. The aeronau-
tical industry due to the intrinsic need to design light structures is an area in
which components are commonly projected using topology optimization. An
example is the design of a rib structure in the fixed leading edge of an airplane,
as showed in Figure 1.3.

Another example is the project of structures based on energy absorption.
After a collision, a vehicle is subjected to a wide range of energy, resulting in
large deformations in its bodywork. While designing a car, concerning, say, its
weight reduction, the TOM considering the nonlinear theory can be employed
and this method must take into account the energy absorbed by the vehicle in
case of impact and be capable to protect its occupants (crash-worthiness).
Other examples can be cited as flexible prostheses in Figure 1.4, Micro-
Electro-Mechanical Systems (MEMS), compliant mechanisms, high-pressure
tanks subject to buckling and many other industrial applications (see Lahuerta,
2012).
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Chapter 1. Introduction 23

2000 mm

3600 mm

Figure 1.3: Optimization process of a rib structure in the front part of the wing
of Airbus A380: (a) design domain; (b) optimized layout; (c) actual structure;
(d) manufactured wing structure (Bendsøe & Sigmund, 2007).

distributed
transmission
system

arm
shells

spring and
actuation system in box

flexible
harness
shell

Figure 1.4: Body support structure to help a disabled person lift his arm
(adapted from Holtzer (2017)).

Nonlinear topology optimization is a very challenging area. The biggest
problem is dealing with difficulties in the convergence of the nonlinear solution

DBD
PUC-Rio - Certificação Digital Nº 1621754/CA



Chapter 1. Introduction 24

algorithm. Nonetheless there are also complications in the implementation of
the nonlinear finite element method consistently, since this requires either
a different formulation of material law, capable of correctly describing the
behavior in excessive compression, or the study of specific techniques to
bypass large distortions in low-stiffness regions, as considered in this thesis.
These complications, in turn, do not occur in analyses considering infinitesimal
displacements and circumvent them is essential to achieve coherent responses
in designing structures with nonlinear behavior.

1.2
Objective

According to the examples mentioned in Section 1.1, nonlinear topology design
is a field of wide and varied applications. To alleviate numerical instabilities in
the finite element simulations of nonlinear topology optimization, and ensure
its convergence, this thesis studies the technique proposed by Wang et al.
(2014).

The discussed method can be applied to the traditional St. Venant-
Kirchhoff (SVK) material law without the solution algorithm resulting in
non-convergence of the optimization routine. To ensure that the equilibrium
path is properly traced, and the structure reaches the maximum load, the
incremental-iterative Newton-Raphson Procedure, NRP, is employed. The
mesh is discretized by 4-node quadrilateral, Q4, elements. The optimization
algorithm should be robust, such as OC (Bendsøe & Sigmund, 2003) or MMA
(Svanberg, 1987), and the continuation method and a nonlinear projection
technique are employed to reduce the gray scale (intermediate densities) in
the final structure.

1.3
Literature Review

Most of the works in literature are focused on linear elastic behavior, meaning
that the structure has small displacements and also small deformations. This
assumption is applicable to a variety of problems. However, a linear assumption
is not always coherent, and those are the cases when studying space antennas
or compliant mechanisms (Bruns & Tortorelli, 2001). Topology optimization
is a useful tool in the conceptual design phase, which allows the designer to
obtain the optimum result at an early stage of the design process. For these
reasons, there is a growing need to develop a powerful method for topology
optimization, including nonlinearities. In the last two decades, several essays
have appeared in the area of nonlinear optimization considering structures
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Chapter 1. Introduction 25

submitted to large displacements and/or large deformations to solve, mainly,
the “end-compliance” minimization problem. Some of these are: Jog (1996),
Bruns & Tortorelli (1998, 2001, 2003), Buhl et al. (2000), Kemmler et al.
(2005), Lahuerta et al. (2013), Wang et al. (2014), Luo et al. (2015) and Wallin
et al. (2018). Dealing with both geometric and material nonlinearities, to name
a few, there are the works by Jung & Gea (2004), Huang & Xie (2008), Lee &
Park (2012) and Luo & Tong (2016).

The first study to consider nonlinear regime in topology optimization
was that of Jog (1996). His article was centered on presenting the formulation
for large displacements considering mechanical and thermal loads, although
the author did not show significant differences in the results from linear and
nonlinear topologies. Bruns & Tortorelli (1998) and Bruns & Tortorelli (2001)
formulated a hyperelastic material law. In the first, a modified St. Venant-
Kirchhoff (mSVK) material law was proposed to make the elements stiffer for
large compressive deformations in void areas. In the latter, the SVK model was
used, but no strategy to deal with the convergence problem was demonstrated.
As consequence, all the solutions are limited to certain load level because the
deformation cannot be too extreme.

Buhl et al. (2000) cited explicitly the difficulty to solve the nonlinear
equilibrium equation in topology optimization. Considering that convergence
is guaranteed when nodal displacement is below a defined tolerance and proved
that numerical instabilities happen in nodes surrounded by void elements,
the authors suggested to remove these degrees of freedom on the convergence
criterion defined for the Newton-Raphson procedure. This idea though may
reduce the solution accuracy and even yields in incorrect topologies.

Removing void elements from the finite element mesh reduces the size
of the problem since the design domain is reduced. However this strategy
has serious drawbacks: (a) the sensitivity analysis cannot be conducted in
void elements; (b) in the course of the optimization, elements may reappear
in the mesh and be disconnected from the others; (c) re-meshing may be
necessary due to the change in the design domain. Bruns & Tortorelli (2003)
proposed a technique to remove and reintroduce elements at each optimization
iteration, which proved to be very efficient in reducing convergence difficulties,
despite of this strategy seems to have high costs. Recently, Luo & Tong (2016)
came up with a new strategy without the need of re-meshing and avoiding
disconnected structures. The discussed algorithm was capable of solving the
nonlinear compliance minimization problem. The applied technique is very
promising, nevertheless needs further investigation.

During the optimization process, local unstable structures could appear
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in the design domain (e.g., local or global buckling). The Newton-Raphson
method may fail in determining this equilibrium points when the tangent
stiffness matrix in close to zero or negative. If such is the case, a possibility
is to analyze whether the structural stiffness decreases or not in course of
the optimization analysis. This approach was investigated by Kemmler et al.
(2005). The stiffness matrix was verified on each load increment to determine
if the optimum structure was stable. In unstable points, the Newton-Raphson
procedure was replaced by the arc-length method.

The work of Lahuerta et al. (2013) used the neo-Hookean (nH) material
law proposed by Simo-Ciarlet in structures with geometric nonlinearities. The
St. Venant-Kirchhoff material law is known to provide a physically inconsistent
response to large compressions resulting in convergence problems in areas
of low-density materials (see Lahuerta, 2012). For meshes discretized by
Q4 elements, which are more sensitive to mesh distortion (see Long et al.,
2009), the nH models presented different results compared to the SVK-based
formulation in high load levels. Even though making use of hyperelastic
models, numerical instabilities were not completely solved, and the difficulties
associated to large displacements optimization problem were treated invoking
a relaxation function.

Wang et al. (2014) suggested an energy interpolation scheme. The idea
was to interpolate the strain energy density between the large deformation
formulation and the small deformation formulation. Assuming, ideally, void
regions have very small density, these areas can be modeled in any desired
way so they will not influence the solid elements. Hence, the structural part
was discretized according to the nonlinear assumption and the low-stiffness
regions were modeled based on the linear deformation premises. Based on this
idea, Wallin et al. (2018) investigated what happened when the secant stiffness
matrix was applied to the nonlinear solution scheme and compared the results
to the tangent stiffness matrix. In both cases, numerical instabilities in low-
stiffness regions were reduced, even at high load levels.

Pajot (2006) discussed another interpolation approach where the element
residual force vector is directly interpolated, by a homotopic parameter,
between the geometrically linear and nonlinear elastic residuals. One of the
difficulties regarded to this method is the choice of the homotopic parameter,
which varies from problem to problem. Wang et al. (2014) had investigated this
approach and commented that it was still susceptible to numerical instabilities,
such as the negative determinant of the deformation gradient J .

Another interpolation was formulated by Luo et al. (2015), in which a
model of hyperelastic material is added to the design domain. This idea has
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the great advantage of being easy to incorporate into commercial softwares,
as recently done by Chen et al. (2018). Therefore, two distinct meshes were
superimposed: one discretized by the elastic material of St. Venant-Kirchoff
(other models can be considered) and another – the additive mesh – defined
by the hyperelastic material, in which the Yeoh model was selected. To make
this technique coherent, the design variables (densities) of the additive mesh
must assume small values. In the literature of reference, some researchers,
for example Lahuerta et al. (2013), commented that the simple use of a
hyperelastic material model – other than the SVK – did not completely solve
the numerical instabilities in void regions. Yet, by controlling the maximal
von Mises strain, Luo et al. (2015) were able to control the parameter c2 in
Yeoh model at each iteration of the optimization process. The authors reported
reduction of numerical instabilities and that such interpolation technique was
effective to alleviate excessive distortions in low-density and intermediate-
density elements. An in deeper look at this technique is needed, as it has not
been proven that the approximation of the remodeled structure is sufficiently
accurate.

A few papers discussed the use of optimization algorithms other than
MMA or OC: Gea & Luo (2001) and Jung & Gea (2004) studied the minimiza-
tion of mean compliance using the generalized convex approximation algorithm
for a micro-structure-based design domain; Gomes & Senne (2014) formulated
a new algorithm named Sequential Piecewise Linear Programming (SPLP) on
an intention of combine the SLP method, that has cheap iterations but many
steps to achieve convergence, and the SQP method, that takes smaller number
of iterations although is slower than the SLP method.

Besides those previously mentioned studies, other articles investigated
the problem for different biases. Huang & Xie (2008) proposed an improved
Bi-directional Evolutionary Optimization (BESO) method to maximize the
structural stiffness under prescribed displacements. Kawamoto (2009) replaced
the Newton-Raphson procedure by the Levenberg-Marquardt method. Yoon
& Kim (2005a) formulated a technique where all the finite elements within
the design domain are kept solid: Element Connectivity Parameterization
(ECP). In this method, the elements are connected to each other through
zero-length elastic links. These links are the design variable to be penalized on
the optimization procedure. The optimized structures are comparable to those
in the literature (e.g., Buhl et al., 2000; Gomes & Senne, 2014). Yoon et al.
(2011) employed the ECP formulation to prescribed load-displacement curves
in different structures, including an example of snap-through phenomenon.
On the essay of van Dijk et al. (2014) another interpolation method called
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Element Deformation Scaling, EDS, was proposed. By defining new examples
and did not show the value of the objective function, most of the results
are incomparable with other references. Despite these methods having fewer
iterations in Newton-Raphson and optimization procedures when compared to
the SIMP method (Section 3.2.1), both ECP and EDS are still susceptible to
convergence problems in nonlinear topology optimization cases.

1.4
Outline

The organization of this thesis is as follows:
Chapter 2 forges some concepts of Continuum Mechanics, as well as a

brief review on the finite element method, dedicated to geometric nonlinear
problems;

Chapter 3 discuss and develop the main features of a density-based
topology optimization approach including SIMP, continuation scheme, gray
scale, checkerboard pattern and mesh-dependency and non-uniqueness of
solution. Regularization techniques are also presented in this chapter;

Chapter 4 formulates the topology optimization under geometric non-
linearity for the “end-compliance” problem. Here the interpolation scheme to
deal with convergence difficulties is discussed. The sensitivity analysis and the
nonlinear methods of load control, arc-length and generalized displacement
control are also formulated in this chapter;

Chapter 5 shows the results for traditional examples used in nonlinear
topology optimization analyses: cantilever and clamped beams;

Chapter 6 express the final considerations, as well as proposes issues to
be investigated in future works.
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2
A Brief Review on the Finite Element Method

2.1
Introduction

Finite Element Method (FEM) is widely used and diffused in engineering
analyses. Its basis was fostered in solving problems of structural mechanics.
Later it was recognized that this technique could be applied in the solution
of other classes of problems. Finite element procedures can be employed to
study problems of solids and structures, heat transfer and fluids, mainly when
the case being analyzed has no analytical solution or when this solution is
complicated to be determined (which is the case of a multi-degree-of-freedom
problem).

The formulation presented here is the standard theory, based on dis-
placements, which is more effective to deal with most of practical problems,
except those discretized by plate or shell elements and incompressible media.
For these classes of problems, the mixed interpolation approach is more ac-
ceptable (Bathe, 2014). Only the isoparametric formulation will be discussed
in this chapter.

In the first part of this chapter, a brief review on Continuum Mechanics
is presented. Then, the geometric nonlinear finite element theory will be
discussed, as well as the isoparametric formulation for plane elements and their
corresponding interpolation functions. At last, the Gauss numerical integration
is introduced.

2.2
Mechanics of Deformable Bodies

A body in three-dimensional Euclidean space, like the one indicated in Fig-
ure 2.1, is composed by a set of particles. For a given geometry and loading,
this body will undergo macroscopic deformations. If the applied load are time-
dependent, then the deformation will be a function of time as well. If the loads
are applied slowly, so the deformation is only load-dependent.

At time t = 0, the body has the configuration 0Ω and it is composed
by the particles P and Q, occupying positions described, respectively, by the
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vectors X and X + dX. The vector X has coordinates (X1, X2, X3), called
material coordinates. The material coordinate system, indicated in Figure 2.1,
will be used in the examples throughout this thesis unless stated otherwise.

After the deformation, at a time t, this body has the configuration tΩ, in
which the particles p and q are defined by x and x+dx, and x has coordinates
(x1, x2, x3), known as spatial coordinates. The relation describing the motion
is

x = X + u, (2.1)

where u denotes the displacement.

𝑃

𝑄
𝑝

𝑞

𝑑𝒙

𝑑𝑿

Reference
Configuration

Current
Configuration

𝑿

𝒙𝑿 + 𝑑𝑿

𝒙 + 𝑑𝒙 𝒖(𝑿)

𝒖 𝑿 + 𝑑𝑿 = 𝒖 𝑿 + 𝑑𝒖
𝑑𝒖

𝑥2, 𝑋2

𝑥1, 𝑋1
𝑥3, 𝑋3

𝝌(0Ω, 𝑡)

𝝌−1(𝑡Ω)

Time 𝑡 = 0

Time 𝑡

0Ω

𝑡Ω

Figure 2.1: Schematic motion and deformation of a solid in space.

When the motion is described from the reference or initial configuration
to the current or deformed configuration, the classical Continuum Mechanics
define the motion as the Lagrangian or material description. However, the
relation in Equation (2.1) is reversible and one can observe this motion looking
back for the initial position: from the current or deformed configuration to
the reference one. That is the Eulerian or spatial description. The Eulerian
description appears in fluid mechanics because it is more adequated to study
a fixed region in space, i.e., a control volume. In solid mechanics, as the initial
position is known, the Lagrangian description is the natural choice, and, since
this thesis is about structural optimization, this is the description addressed
in following discussion.
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The deformation mapping χ maps the body from the reference to current
configuration, i.e., the deformation mapping χ(0Ω, t) takes every position
vector X belonging to the initial configuration 0Ω and places these points
in the deformed configuration as x = χ(0Ω). The deformation gradient F
gives the relation of a material line dX to a spatial line dx (consisting of the
same material as dX)

dx = F dX, (2.2)

where

F = ∇0x = ∂x

∂X
, (2.3)

or, in index notation,

FiJ = ∂xi
∂XJ

= xi,J . (2.4)

The determinant of F is J = det(F ), which is important to quantify the
volume ratio of current to initial configuration. The gradient deformation is
a 2nd-order tensor, thus is possible to write its inverse, F−1, to describe the
inverse transformation dX = F−1dx:

F−1
Ji = ∂XJ

∂xi
= XJ,i. (2.5)

Those interested in a more in-depth reading on ContinuumMechanics can
consult, among several traditional readings, Mase & Mase (1999) and Reddy
(2008).

2.2.1
Strain Measures

The geometric changes in a continuous medium can be quantified in a variety
of ways. Here, the most traditional strain measures will be discussed.

Look again to the particles P and Q, separated by dX, in the reference
configuration and to the particles p and q, separated by dx, in the current
configuration. To measure the deformation induced by certain motion, it is
often to use the quadratic distance between two particles. In each configuration,
this distance is defined as
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(dS)2 = dX · dX (2.6)

(ds)2 = dx · dx = dX · (F TF )dX, (2.7)

where the term in parenthesis is called right Cauchy-Green deformation tensor,

C = F TF or CIJ = FkIFkJ , (2.8)

which is a symmetric 2nd-order tensor. Analogously, the left Cauchy-Green
deformation or Finger tensor, b, is

b = FF T or bij = FiKFjK . (2.9)

One common strain measure is based on the difference in squared lengths.
For the reference configuration, this relation can be easily derived using index
notation and Kronecker delta:

||dx||2 − ||dX||2 = (FkIdXI)(FkJdXJ)− dXIdXJ

= FkIFkJdXIdXJ − δIJdXIdXJ

= (CIJ − δIJ)dXIdXJ . (2.10)

The term in parenthesis is

2E = C − I or 2EIJ = CIJ − δIJ , (2.11)

where E is the Green-Lagrangian strain tensor and I is the identity matrix.
The idea described in Equation (2.10) can be also derived for spatial variables:

||dx||2 − ||dX||2 = dxidxj − (F−1
Ki dxi)(F−1

Kjdxj)

= δijdxidxj − F−1
Ki F

−1
Kjdxidxj

= (δij − b−1
ij )dxidxj, (2.12)

The expression in the parenthesis is
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2e = I − b−1 or 2eij = δij − b−1
ij , (2.13)

in which, e the Almansi-Eulerian strain tensor.
Both Green and Almansi tensors are independent from rigid body

motion. They can be written in terms of displacements by differentiating the
Equation (2.1) and applying the definition of C and b in Equations (2.11) and
(2.13). This will result in the expressions,

E = 1
2
[
∇0u+ (∇0u)T + (∇0u)T∇0u

]
or

EIJ = 1
2 (uI,J + uJ,I + uk,Iuk,J) (2.14)

e = 1
2
[
∇u+ (∇u)T − (∇u)T∇u

]
or eij = 1

2 (ui,j + uj,i − uK,iuK,j) , (2.15)

where the subscript ∇0 denotes that the differentiation is with respect to the
material coordinates X.

In Equations (2.14) and (2.15) is very easy to identify the portion
neglected by infinitesimal displacement theory, i.e., the high-order terms. Thus,
the infinitesimal strain measure is

ε = 1
2
[
∇0u+∇0u

T
]

or εij = 1
2(ui,j + uj,i). (2.16)

The rate of deformation of Green-Lagrangian strain tensor is

Ė = 1
2
(
Ḟ TF + F T Ḟ

)
. (2.17)

2.2.2
Stress Measures

After addressing the strain tensors, it is important to introduce the stress
measures. The Cauchy stress σ is a 2nd-order symmetric tensor, so σij = σji is
true. It relates a force in the current configuration to an area in the deformed
state. A more formal definition for the Cauchy tensor, relating it to the
traction vector, can be found in Mase & Mase (1999). Other stress measures
are introduced in the study of large deformations. The first and the second
Piola-Kirchhoff stress tensors are:
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P = JσF−T or PiI = JσijF
−1
Ij (2.18)

S = F−1P or SIJ = F−1
Ik PkJ . (2.19)

The first Piola-Kirchhoff stress tensor P relates forces in the current
configuration with the corresponding areas in the reference configuration. So,
it can be interpreted as the current force per unit of undeformed area. It
belongs neither to the reference nor to the current configuration and, thus,
it is consider a mixed tensor. In general, this tensor is unsymmetric. In turn,
the second Piola-Kirchhoff stress tensor S is contrived to produce a totally
material symmetric tensor. This stress measure relates forces to areas in the
reference configuration.

Sometimes it can be inconvenient to calculate the stresses as a function
of det(J), since it also depends on the deformation. So, another stress measure,
that has a similar transformation relation with Equation (2.19), can be
introduced:

τ = Jσ = FSF T or τij = Jσij = FiKSKLFjL, (2.20)

for τ being the Kirchhoff stress. It is worth to mention that under small
deformation theory all these four stress measures are equivalent.

2.3
Finite Element Formulation in Nonlinear Problems

There are, essentially, three sources of nonlinearities in solid mechanics: geo-
metric, from material and kinematic. In kinematic (or boundary) nonlinearity
the boundary conditions change during the motion of the body under consider-
ation. One example refers to two bodies in contact, in which the displacements
on the contact boundary are limited so they cannot penetrate each other.
Therefore, this source is also referred to as “contact problems”. In materially-
nonlinear-only case, the nonlinearity come from the fact that the stress-strain
relation is not linear. Geometric nonlinearity, studied in this work, arises from
the fact that the relations displacement/strains and rotation/strains are non-
linear.

The basic problem in nonlinear analysis is to find the equilibrium state
of a body corresponding to the external force vector l,

l− f = 0, (2.21)
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in which f is the vector of internal force vector. This relation express the
equilibrium of the system accounting all nonlinearities.

When the analysis depends on the time or the material conditions and
properties or the (nonlinear) path, as in this thesis, the condition in Equa-
tion (2.21) must be satisfied for the complete history of loads (or prescribed
displacements). Then, an incremental-iterative procedure, discussed in Sec-
tion 4.5, is applied in order to guarantee the equilibrium at every step of the
solution until the maximum load (or displacement) is reached.

In the analysis of nonlinear finite elements, a common difficulty is how
to describe the equilibrium of a body in the current configuration, since it is
previously unknown. Thus, it is necessary to establish the relation between the
equilibrium of the body in the current and in the reference configuration. This
is possible by using an incremental formulation and the principle of virtual
work. This principle states that if a body is in equilibrium, for any small
deformation, the internal virtual work is equal to the external virtual work,
that is,

∫
tΩ
σ :Ē dv =

∫
tΩ
fB · ū dv +

∫
tΓ
t · ū da, (2.22)

where ū is the virtual displacement vector, Ē is the variation of Lagrangian
strain and the double dot symbol “:” is the contraction operator. fB is the
applied force per unit deformed volume tΩ and t is the vector traction (force
per unit deformed area) that acts on an element on the surface tΓ. The terms
dv and da represent, respectively, an infinitesimal element of volume and area
in the current configuration.

Substituting Equation (2.18) into (2.19) and using the relation (2.17),
after few manipulations (Bonet & Wood, 2008), the Equation (2.22) can be
rewritten as

∫
tΩ
σ :Ē dV =

∫
0Ω
S :Ē dV =

∫
0Ω
fB0 · ū dV +

∫
0Γ
t0 · ū dA, (2.23)

on what fB0 = JfB is the body force per unit initial volume 0Ω and t0 is the
traction vector defined in material coordinates and acting on a region 0Γ. dV
and dA correspond, respectively, to the infinitesimal element of volume and
area in the reference configuration.

In Equation (2.23) it was assumed that the applied forces are conserva-
tive, therefore the applied loads are independent of the deformation. It follows
from the work conjugate pair {S, Ė} (Bonet & Wood, 2008) and respects the
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principle of objectivity which, roughly speaking, establishes that the law of
material must be invariant to the rigid body motion since it does not induce
deformations. Hence, internal forces should not be affected by superposed rigid
body motions.

2.3.1
Linearization of Incremental Equations

It is essential to write the incremental finite element equation. To develop a
governing linearized equation, it is important to emphasize that, for a body
in the current configuration, all the previous states are known and could be
applied in the linearization. Nevertheless, in practice, two formulations have
been used: the Total Lagrangian (TL) and the Updated Lagrangian (UL). In
the last, the solution scheme for all static and kinematic variables are referred
to the last configuration calculated. The TL formulation refers to parameters in
the initial configuration and it is also named as Lagrangian formulation. Here,
only the TL formulation will be discriminated. The loading is also assumed
to be deformation-independent, i.e., all applied loads are concentrated, which
means the directions and the intensities are constant and independent of the
structural response.

To linearize the incremental equations, the concept of directional deriva-
tive, D (Wint(ū)) [δu] (Kim, 2015), is applied to the left-hand side of Equa-
tion (2.23):

D (Wint (ū)) [δu] =
∫

0Ω
D(Ē :S)[δu] dV

=
∫

0Ω
Ē :D(S) [δu] dV +

∫
0Ω
S :D(E) [δu] dV

=
∫

0Ω
Ē :D

 ∂S
∂E

∂E

∂%

∣∣∣∣∣
%=0

 [δu] dV +
∫

0Ω
S :D(Ē) [δu] dV

=
∫

0Ω
Ē :C0 :D(Ē) [δu] dV +

∫
0Ω
S :D(Ē) [δu] dV. (2.24)

The term [δu] represents the direction of the linearization and % its the
corresponded magnitude. The elasticity tensor C0 is given by ∂S/∂E and
∂E/∂% follows immediately from the definition of directional derivative:

D (E(ū)) [δu] = ∂

∂%
E (ū+ %δu)

∣∣∣∣∣
%=0

. (2.25)

The term Ē can be composed into the sum of linear and nonlinear
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portions, respectively,

ĒL = 1
2
(
∇0δu+∇0δu

T +∇0ū
T∇0δu+∇0δu

T∇0ū
)

(2.26)

ĒNL = 1
2
(
∇0δu

T∇0δu
)
. (2.27)

The first term in Equation (2.24) are function of ū and δu. This term is
linear with respect to δu but nonlinear with respect to the virtual displacement
ū. Nonlinearity comes from the fact that the stress and strain implicitly depend
on ū. Thereby, by neglecting the nonlinear term, ĒNL, in the first term of
Equation (2.24) and recalling the external forces are deformation-independent,
the linearized principle of virtual work is:

∫
0Ω
Ē :C0 :D(ĒL) [δu] dV +

∫
0Ω
S :D(ĒNL) [δu] dV = l− f . (2.28)

The right-hand side of Equation (2.28) is the residual or unbalanced force
vector r, in which

l =
∫

0Ω
fB0 · ū dV +

∫
0Γ
t0 · ū dA (2.29)

f =
∫

0Ω
S :D(ĒL) [δu] dV, (2.30)

or simply,

K [δu] = r, (2.31)

where K is the tangent stiffness matrix. Equation (2.31) has to be solved
according to an incremental-iterative method. For further detail among the
linearization, one can read Bathe (2014) or Kim (2015).

2.3.2
Element Isoparametric Formulation

The idea is to relate the geometry described in two different coordinate
systems: one local and other global. This can be done using Lagrangian
interpolation or shape functions. The isoparametric formulation has this name
because both nodal coordinates and element displacements are interpolated by
the same shape functions.
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2.3.2.1
Quadrilateral Elements

The representation of geometry can be considered as a mapping procedure that
transforms a square shape in local coordinate system to a regular quadrilateral
or distorted shape in global coordinate system, as shown in Figure 2.2 for a two-
dimensional case. In the local coordinate system are used natural coordinates
(ξ1, ξ2), each one of them varying from −1 to 1. The global coordinate system
is commonly the Cartesian coordinate system, for example (X1, X2) in the
reference configuration.

𝜉1

𝜉2

1 2

34

1
2

3

4

𝑋1, 𝑥1

𝑋2, 𝑥2

mapping

Figure 2.2: Mapping of a square in local coordinate system to an arbitrary
straight-sided quadrilateral in global coordinate system.

The element discretization in the reference configuration is interpolated
considering the initial geometry described in terms of the points X i

j. The
superscript i represents the nodal points of a certain element and the subscript
j represents the degree of freedom. For now on, the two-dimensional case will
be considered. So, the element interpolated coordinates Xj are

Xj =
n∑
i=1

hi(ξ1, ξ2)X i
j, for j = 1, 2, (2.32)

where hi is the interpolation function written in natural coordinates. A similar
relation can be denoted for elements in the current configuration. Thus:

xj =
n∑
i=1

hi(ξ1, ξ2)xij, for j = 1, 2. (2.33)

The interpolation function hi has a fundamental property: in the natural
coordinate system, hi values one at node i and zero in the others. Plus, the
summation of all shape functions of an element must be unitary. Considering
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the general 2D element in Figure 2.3, the corresponding interpolation functions
are given in Table 2.1.

𝜉2

𝜉1

𝜉1 = 1𝜉1 = −1 𝜉1 = 0
1 2

34

5

6

7

8 9

𝑋1, 𝑥1

𝑋2, 𝑥2

Figure 2.3: Representation of a 4-to-9-node quadrilateral element.

Table 2.1: Interpolation functions for quadrilateral elements (adapted from
Bathe (2014)).

Included only if node i is defined

i = 5 i = 6 i = 7 i = 8 i = 9

h1 = 1
4(1− ξ1)(1− ξ2) −1

2h5 −1
2h8 −1

4h9

h2 = 1
4(1 + ξ1)(1− ξ2) −1

2h5 −1
2h6 −1

4h9

h3 = 1
4(1 + ξ1)(1 + ξ2) −1

2h6 −1
2h7 −1

4h9

h4 = 1
4(1− ξ1)(1 + ξ2) −1

2h7 −1
2h8 −1

4h9

h5 = 1
2(1− ξ2

1)(1− ξ2) −1
2h9

h6 = 1
2(1− ξ2

2)(1 + ξ1) −1
2h9

h7 = 1
2(1− ξ2

1)(1 + ξ2) −1
2h9

h8 = 1
2(1− ξ2

2)(1− ξ1) −1
2h9

h9 = (1− ξ2
1)(1− ξ2

2)

The element displacements are interpolated in the same way as the nodal
coordinates. Therefore,

uj =
n∑
i=1

hi(ξ1, ξ2)uij, for j = 1, 2, (2.34)

in which uij is the displacement at node n for the j degrees of freedom.
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In order to calculate the stiffness matrix, it is necessary to determine
the strain-displacement relation. It is easy to observe from Equations (2.33)
and (2.34) that both coordinates and displacements are functions of type
g = f(ξ1, ξ2), for g representing coordinates X1 and X2 or displacements u1

and u2. The chain rule is the appropriate choice to describe the transformation
of coordinates. For Xj-axis, this transformation is of the form

∂

∂Xj

= ∂

∂ξ1

∂ξ1

∂Xj

+ ∂

∂ξ2

∂ξ2

∂Xj

, (2.35)

where the terms ∂ξk/∂Xj, for j, k = 1, 2, are unknowns. Observing the chain
rule above, to solve the inverse derivatives the following matrix form can be
written:


∂

∂ξ1

∂

∂ξ2

 =


∂X1

∂ξ1

∂X2

∂ξ1

∂X1

∂ξ2

∂X2

∂ξ2



∂

∂X1

∂

∂X2

 (2.36)

or most directly,

∂

∂ξ
= J0

∂

∂X
, (2.37)

where J0 is Jacobian matrix, responsible for relating natural coordinate
derivatives to the global ones. If the inverse of J0 exists, the following operation
can be applied to determine the terms in the last column of Equation (2.36):

∂

∂X
= J−1

0
∂

∂ξ
. (2.38)

Proved the non-singularity of the Jacobian matrix, an important charac-
teristic is revealed. The map relating natural coordinates (ξ1, ξ2) to Cartesian
coordinates, in both reference (X1, X2) and current (x1, x2) configurations, is
unique. In other words, a certain point described in natural coordinates has
only one representation in the global coordinate system and vice versa.

When large displacements are allowed to happen in a finite element anal-
ysis, the elements can become highly distorted and even flip over themselves.
In such case, the Jacobian matrix J0 becomes singular and consequently the
isoparametric formulation is no longer valid.
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2.3.3
Matrix Form

Equation (2.31), for static problems, can be written in matrix form. The
tangent stiffness matrix is represented in left-hand-side of Equation (2.28).
The first integrand can be written as

KE =
Ne⋂
e=1

∫
Ωe

(BL0 +BL1)T D0 (BL0 +BL1) dV, (2.39)

where ⋂ is the assembly operator acting from the eth finite element to Ne

(number of elements in the mesh), Ωe is the element domain, D0 is the matrix
representation of the Elasticity tensor C0.

Equation (2.39) can be further decomposed by splitting its terms. Then,
the following expression arises:

KE =
Ne⋂
e=1

[∫
Ωe

BT
L0D

0BL0 dV
]

︸ ︷︷ ︸
KL

+

Ne⋂
e=1

[∫
Ωe

(
BT
L0D

0BL1 +BT
L1D

0BL0 +BT
L1D

0BL1
)

dV
]

︸ ︷︷ ︸
KD

(2.40)

where theKL in the linear stiffness matrix (the same arising from infinitesimal
displacement’s problems) andKD is the “initial displacement” stiffness matrix.
For the nth nodal point, the strain-displacement matrices, depicted above, are

BL0n =


hn,ξ1 0

0 hn,ξ2

hn,ξ2 hn,ξ1

 , (2.41)

BL1n =


l11hn,ξ1 l21hn,ξ1

l12hn,ξ2 l22hn,ξ2

l11hn,ξ2 + l12hn,ξ1 l21hn,ξ2 + l22hn,ξ1

 (2.42)

and

lij =
n∑
k=1

hk,ξj
uki , for i, j = 1, 2. (2.43)
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The elasticity tensor depends on which material model is considered. For
hyperelastic materials, in which exists a strain energy density function φ, it
is defined as the second derivative of φ with respect to the strain measure,
e.g., C0

IJKL = ∂2φ/∂EIJ∂EKL. However, the SVK model presents a linear
relationship between the stress and strain measures. The elasticity tensor is
constant and can be written as function of any elastic modulus:

S = C0 :E. (2.44)

The relation of Equation (2.44) can be rewritten in the matrix notation

Ŝ = D0Ê, (2.45)

where Ŝ and Ê are, respectively, the vector representation of S and E

according to the Voigt notation. For a plane strain state and employing the
Young’s modulus E0 and Poisson’s coefficient ν0 the matrix form of C0 is

D0 = E0(1− ν0)
(1 + ν0)(1− 2ν0)



1 ν0

1− ν0
0

ν0

1− ν0
1 0

0 0 1− 2ν0

2(1− ν0)


. (2.46)

Returning to Equation (2.28), the second integrand, on the other hand,
appears in geometric nonlinear problems. It is defined as:

KS =
Ne⋂
e=1

∫
Ωe

BT
NLS̃BNL dV. (2.47)

Since it depends on the stress measure, KS is called the initial stress stiffness.

BNLn =


hn,ξ1 0
hn,ξ2 0

0 hn,ξ1

0 hn,ξ2

 (2.48)

and
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S̃ =


S11 S12 0 0
S21 S22 0 0
0 0 S11 S12

0 0 S21 S22

 . (2.49)

Finally, by combining the terms defined in Equations (2.40) (2.47), the
tangent stiffness matrix is

K = KL +KD +KS. (2.50)

The right-hand side of Equation (2.28), representing the internal forces,
is given by:

f =
Ne⋂
e=1

∫
Ωe

(BL0 +BL1)T Ŝ dV. (2.51)

2.4
Numerical Integration

The finite element formulation requires integration over the element domain
Ωe to compute, for example, the stiffness matrices and vector forces. Most
integrals are difficult to be analytically evaluated, thus it is often faster to
integrate them numerically. Among many numerical integration methods that
have been proposed, the Gauss integration rule is commonly used in the finite
element formulation due to its simplicity and accuracy.

Considerer a two-dimensional function f(x, y) defined, by convenience,
in the same interval of isoparametric finite elements: [−1, 1]. This function is
approximated by the Gauss integration as

∫ 1

−1

∫ 1

−1
f(x, y) dxdy ≈

NG∑
i=1

NG∑
j=1

ωiωjf(xi, yj), (2.52)

where NG is the number of integration points, ωi and (xi, yi) are, respectively,
the weight and the coordinate of the ith sampling point.

The main task in Gauss quadrature (applied in isoparametric elements)
is to choose the correct order of integration, i.e., to define the value of NG.
Suppose the function f(x) = x3 + 7x2 − 5 integrated in the limits [a, b]. Its
primitive is
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∫ b

a
f(x) dx =

[1
4x

4 + 7
3x

3 − 5x
]a
b
. (2.53)

The minimum polynomial degree to exactly evaluate this integral (“full”
integration) is 4. So, the order of integration is given by the integral’s primitive.

A common association can help defining the correct approximation: for
NG sampling points a polynomial of degree (2NG − 1) can be integrated
exactly. However, this relation is not valid for triangular and tetrahedral
elements, because the integration limits depends on the variables themselves.

Figure 2.4 illustrates the Gauss integration points in a Q4 regular
element. Tables 2.2 displays the integration points and the weights for this
type of element. And the integrals of Section 2.3.3 are rewritten in function of
the natural coordinates (ξ1, ξ2):

∫
dV =

∫ 1

−1

∫ 1

−1
t det(J0)dξ1dξ2. (2.54)

Figure 2.4: Gauss integration points of Q4 element.

Table 2.2: Gauss integration over Q4 element (adapted from Bathe (2014)).

Integration
Order (NG)

Degree of
Precision

Integration Points (ξ1, ξ2) Weights (ω)

1 1 0.0 2.0

2 3 ± 0.5773502692 1.0

3 5
± 0.7745966692 0.5555555556

0.0 0.8888888889

4 7
± 0.8611363116 0.3478546451

± 0.3399810436 0.6521451549
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3
Topology Optimization

3.1
Introduction

The concept of topology optimization was first introduced in the work of
Bendsøe & Kikuchi (1988), as an extension of shape optimization, which
is limited to optimize only the boundaries of an initial topology. Shape
optimization concerns control of nodal coordinates or the location of control
points, as in the case where the boundaries are represented by curves (e.g.,
splines), to re-design the boundary of a structure.

Consider a certain design domain Ω as in Figure 3.1. Typically, one
defines Ω, where the boundary ∂Ω is divided into a portion ΓD over which
the displacements are prescribed and the remainder is either free or subject
to imposed traction t. The amount of eliminated material in the domain is
Ωv = Ω\Ωs, where the symbol “\” is the relative complement, i.e., it represents
the objects that belong to Ω and not to Ωs.

𝒕

ΓD
Ω𝑠

𝜕Ω

Ω𝑣

Figure 3.1: Representation of a topology optimization problem of design
domain Ω (adapted from Talischi et al. (2012b)).

The topology optimization defines the optimum material distribution
within a design domain with respect to prescribed loads and boundary con-
ditions. The method consists in introducing and removing elements within Ω
to reproduce, respectively, the removal and introduction of small holes, i.e.,
the material arrangement. The material distribution can be modeled by the
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homogenization method, which introduces composite micro-structure to the
design space (Bendsøe & Kikuchi, 1988), and the density approach (Bendsøe,
1989; Bendsøe & Sigmund, 2003). In this work, the density-based technique is
adopted, in which the geometry is parametrized by a material density function
and the displacement field is approximated by finite elements.

In this chapter, the main aspects of this approach will be presented, as
the material model based on SIMP and Continuation Scheme. It will be also
discussed about regularization techniques used to solve some complications
related to it, as gray scales and checkerboards in the final layout, and mesh-
dependency and non-uniqueness of solution.

3.2
Material Representation

A typical approach, by computational means, and the one used in this thesis,
is to discretize the design domain Ω using finite elements. Commonly, in the
density approach, each element of the mesh assumes a value that represents
the design variable, i.e., the “density”, which is zero for voids and one for solid
(or structural) elements.

Above, the word density is enclosed in quotation marks, because the
design variable does not represent the density (ratio of mass to volume).
However, over the years, it has been the most widely accepted interpretation
in the literature Bendsøe & Sigmund (2003).

A well-posed problem must satisfy, mainly, two conditions:

1. solution exists;
2. the solution is unique for the same initial data.

The discrete formulation (if no constraint is added, e.g., perimeter
control) violates the condition 2 above. The 0-1 problem is relaxed and the
design variable is now assumed varying in the range [0, 1]. This relaxation is
also important to use gradient-based optimizers, such as MMA and OC.

3.2.1
Solid Isotropic Material with Penalization (SIMP)

The continuous parameterization of the design variables introduce intermediate
values (gray regions) in the design domain. These values have no physical
meaning, since the model represents an isotropic material (Bendsøe, 1989).
The design variables must be penalized to recover the discrete characteristic.
A widespread technique in topology optimization applications is the SIMP,
Solid Isotropic Material with Penalization (Zhou & Rozvany, 1991; Bendsøe &
Sigmund, 1999). Considering the density ρ, the SIMP method is
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x̃(z) = ε+ (1− ε)ρ(z)p, for p > 1, (3.1)

in which ε is the Ersatz parameter. Typically, it assumes a small positive
number, e.g., 10−4, to ensure non-singularity on the global stiffness matrix
when ρ(z) → 0. The exponent p is the penalization parameter and x̃(z) is
called the material interpolation function.

The relation between unpenalized Elasticity tensor C0
IJKL and the penal-

ized one CIJKL is written, in index notation, as

CIJKL(ze) = x̃e(ze)C0
IJKL, (3.2)

for C0
IJKL being characterized by the Young’s modulus E0 and the Poisson’s

coefficient ν.

Figure 3.2: Influence of different penalization exponents in SIMP method.

In Figure 3.2 are illustrated different penalization exponents for an
element e. As one can see, for p = 1 there is no penalization in the eth
design variable. As p increases, the element design variable ze tends to recover
its binary nature. In topology optimization, the maximum magnitude of p is
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usually set in the range of [3, 5]. Higher values approximates Equation (3.1)
to the unitary step function (p → ∞), which steers the solution to discrete
formulation and bring back all the difficulties associated to it.

3.2.2
Continuation Scheme

Most of topology optimization problems are non-convex, i.e., the solution is not
guaranteed to converges to the global minimum. The idea of continuation is
to gradually change an artificially convex (continuous) problem to the original
non-convex (discrete), thus avoiding convergence to an undesirable local point
(Sigmund & Petersson, 1998).

In SIMP approach, the penalization parameter is, gradually, increased
from p = 1 to a certain limit, in this work p = 3, by an increment ∆p:

pi+1 = pi + ∆p. (3.3)

Figure 3.3 illustrates how this method works. Function f(ρ(z)) is convex,
while f(ρ(z)3) has multiples local minima. Starting from a small value of p
increases the chances to obtain a final topology near to the global minimum.

𝑓 𝜌 𝒛

𝑓 𝜌 𝒛

𝜌 𝒛

𝑓 𝜌 𝒛 3

Global minimum

Local minima

Figure 3.3: Schematization of continuation method (adapted from Lahuerta
(2012)).

3.3
Complications

Three significantly important issues affect the computational results of topol-
ogy design: gray scale, checkerboard layout and mesh-dependency. In this sec-
tion these points will be discussed.
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3.3.1
Gray Scale

In the continuous formulation for topology optimization, the relaxation on the
design variable introduce intermediate density values. These densities appear in
the final layout as gray scales, cf. Figure 3.4. The grays tones are consistent with
the applied formulation but, in most of the engineering problems, they have
no applicability and should be eliminated from the final solution throughout
techniques such as SIMP and projection methods.

Figure 3.4: The MBB beam with gray scale. Result obtained without contin-
uation or any penalization method.

3.3.2
Checkerboard Pattern

The pattern alternating solid and void material in checkerboard like fashion, cf.
Figure 3.5, is known as checkerboard problem. The origin of this phenomenon
is related to features of the finite element approximations that maximizes
the strain energy (Diaz & Sigmund, 1995). This layout has an overestimated
artificially high stiffness which results in the optimum material arrangement
in minimum compliance problems discretized by Q4-displacement elements.

Figure 3.5: Checkerboard pattern demonstrated in the MBB beam.

The topology optimization is a two-field problem: densities ρ(z) and
displacements u. Jog & Haber (1996) reported that the checkerboard layout
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can be addressed to numerical instabilities caused by an inadequate choice of
function spaces representing the fields of displacements and densities. This is
similar to problems of fluid mechanics that violates the Ladyzenskaja-Babuska-
Brezzi (LBB) condition (Talischi et al., 2014).

One way to avoid checkerboard-type pattern is to use higher-order
elements. Four node elements are linearly interpolated; 8 or 9 node elements,
for instance, are build by quadratic functions. Therefore, the application of
higher-order elements increases the cost to evaluate CPU-time.

Polygonal elements have demonstrated to be very effective in dealing
with checkerboards, as pointed by Talischi et al. (2009). Nevertheless, polygons
contain functions of non-polynomial nature in their finite element spaces, which
typically requires a large number of quadrature points to reduce consistency
errors. For modeling nonlinear elasticity, the larger number of integration
points required makes such approach less attractive from a practical point
of view. On the other hand, the so-called Virtual Element Method (VEM) has
been recently introduced in the literature (Chi et al., 2017). VEM is capable
of handling general polygonal elements, including concave ones and, unlike
FEM, the shape functions in VEM are constructed implicitly. In other words,
for linear elements, only one integration point per element is required.

3.3.3
Mesh-Dependency and Non-uniqueness of Solution

Sigmund & Petersson (1998) define: “Mesh-refinement should result in a better
finite element modeling of the same optimal and a better description of
boundaries – not in more detailed and qualitatively different structure”.

The above statement is self-explanatory. When the refined mesh results in
a different optimum structure the optimization procedure does not guarantee
the uniqueness of solution.

Mesh-dependency is related to non-uniqueness of solution and mesh-
refinement. When refining the mesh, if mesh-independency is not guaranteed,
the final topology will be dependable of the problem discretization, cf. Fig-
ure 3.6, where an improved finite element discretization results in a much
more detailed structure. This means the final solution is not unique.

Some authors, as Bendsøe & Sigmund (2003), refer to the fact of mesh-
refinement resulting in different responses as the non-existence of solutions.
This is because by refining the mesh more and more, different optimum
solutions are obtained, to the point where one no longer knows when the
optimization procedure should stop.
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3.6(a): 2700 elements.

3.6(b): 4800 elements.

3.6(c): 17200 elements

Figure 3.6: Dependency of the optimal topology on mesh-refinement for
the MBB beam for different mesh discretizations (adapted from Bendsøe &
Sigmund (2003)).

3.4
Regularization Techniques

In general, the introduction of more holes within the design domain, without
changing the structural volume, will increase the efficiency of a given structure.
Bendsøe & Sigmund (2003) points out that in the limit of this process (of
introducing more holes) one obtains structural variations in the form of
microstructures that have an improved use of the material.

Regularization methods are employed to reduce the space of admissible
designs by some sort of global or local restriction on the variation of design
variable, thus difficulting the possibility of fine structures to formate. Those
have been demonstrated very effective in yielding mesh-independent and
checkerboard-free topologies.
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3.4.1
Restriction Methods

Restriction methods are those who impose a new constraint to the optimization
problem (Bendsøe & Sigmund, 2003). This is the case of perimeter control
and gradient constraint, which eliminate checkerboards, at the same time
the convergence to a final definitive solution is guaranteed. Nonetheless, for
example, in problems where the volume is constrained, if such a restriction is
not met, these methods become inadequate.

3.4.1.1
Perimeter Control

The perimeter control (Haber et al., 1996) imposes one constraint in the
optimization problem. The total perimeter is restricted allowing to control
the number of admissible holes within the design domain.

As this method enforces a global constraint, this is still susceptible
to local problems, as the formation of very thin bars. Furthermore, the
determination of the perimeter itself is empirical: a small value of it may not
satisfy a certain constraint, e.g., the volume, and a high value will introduce
more holes than the necessary. This makes difficult to apply this method to
practical problems, where the final layout is unknown.

3.4.1.2
Local Gradient Constraint

In the slope constrained optimization (Petersson & Sigmund, 1998), restric-
tions in the gradient are added to the optimum topology design problem. The
idea is to restrict the partial derivatives.

This method allows controlling the minimum length scale based on two
adjacent elements and one can choose the parameter control based on the
element size (da Senhora, 2017). Nevertheless, it introduces too many extra
constraints which slow down the optimization process and is, in general,
considered unfeasible in practical cases.

3.4.2
Linear Filter

Filters can deal with checkerboards and mesh-dependency. Mainly, two filters
have been used: the sensitivity and the design variable filter.

The sensitivity filter modifies the derivatives in a heuristic way, thus
there is no mathematical proof. Since these derivatives are not consistent with
the problem formulation, it cannot be established what is the optimization
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problem to be solved. But, Bendsøe & Sigmund (2003) point out it has shown
good results, specially to ensure mesh-independency results.

Considering the theoretical basis for the sensitivity filter still not yet
understood the design variable filter (Bruns & Tortorelli, 2001) appear as
an alternative. Also know as the density filter, it acts directly modifying
the densities of a certain element ze, based on weighted average of the
element densities in a defined neighborhood. It allows local control on material
distribution and ensures a smooth transition of the density field.

For the discrete case and the design variable ze located in the centroid
of element e, the filter is

ye =

∑
i∈Ne

wi (ze, zi) zi∑
i∈Ne

wi (ze, zi)
, (3.4)

where ye is the filtered design variable, Ne is the number of elements in
the domain Ω and zi is the location of the ith design variable. The weight
distribution w is stated as

wi (ze, zi) = max

(
1− di

rmin
, 0
)
, (3.5)

for di being the distance from element e to element i, that is, di = ||ze − zi||,
and rmin the filter radius, which is independent of the mesh.

Basically, a loop is scanned by checking whether zi is within the radius
rmin defined by ze. Values greater than or equal to rmin are null and the smaller
ones are aggregated according to the weight wi in Equation (3.5), that works
as a convolution operator.

The Equation (3.4) can be written in the matrix form

y = Mz, (3.6)

on what z is the vector of design variables, y is the corresponded “filtered”
vector and M is the matrix of weighted indices defined by

Mei = wi (ze, zi)∑
i∈Ne

wi (ze, zi)
.

This filter is also known as linear hat kernel since the weight function
decays linearly with the distance from element e: it has magnitude 1 at element
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centroid to 0 at rmin similar to a birthday party hat, as illustrated in Figure 3.7.
Other weight distributions can be used, such as parabolic and Gaussian, but
this technique will no longer remember this hat.

𝑟𝑚𝑖𝑛

𝑒

𝑖

𝑑𝑖 = 𝑧𝑒 − 𝑧𝑖

3.7(a): Top view.

𝑒

𝑟𝑚𝑖𝑛

1

𝑑𝑖

𝑤(𝑧𝑒 , 𝑧𝑖)

3.7(b): Frontal view.

Figure 3.7: Two-dimensional linear density filter: (a) application in a regular
quadrilateral element mesh; (b) conical form alike to a birthday party hat.

One drawback of these filtering methods has been the transition regions
between solids and voids in the contours of the optimal geometry. These
intermediate densities though can be alleviated using nonlinear projection
techniques or removing the filter effect after the optimization process has
ended.
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3.4.3
Nonlinear Projection Techniques

Linear filters are inevitably submitted to fading effect that occurs along the
edges of structural members. Guest et al. (2004) stated that this phenomenon is
inherent to linear projections schemes and cannot be prevented through penal-
ization methods. As emphasized by Talischi et al. (2012b), nonlinear projection
functions can be combined to SIMP scheme to modify the material interpo-
lation function. Then, this combination can be applied to the optimization
procedure in such way that it deals with grays in the boundaries of structural
members. Here, two of them are presented: exponential and tanh Heaviside-
based functions.

3.4.3.1
Exponential Projection Function

The exponential projection function gives a continuous and smooth transition
between solids and voids. It was introduced by Guest et al. (2004) to reduce
gray scales on the edge of structural parts after the filtering process defined
in Equation (3.4). In fact, it controls the minimum length scale of structural
elements, that is, this function allows to control the size of solid members in the
design domain. Being β1 a parameter dictating this transition, the exponential
function is

g(ye) = 1− e−β1ye + yee
−β1 , (3.7)

where the term ye is the “filtered” design variable of an element e. This value
can be conditioning in an array of projected densities g(y). Doing that and
recalling y ∈ [0, 1], this array is penalized by SIMP, which can be rewritten in
the form of:

x̃(y) = ε+ (1− ε)(g(y))p, for p > 1. (3.8)

The projection function is linear for β1 = 0 and approaches the Heaviside
step function when β1 → ∞. For the element e, Figure 3.8 demonstrates its
behavior for different values of β1.

Since many problems are solved using continuation, β1 parameter is
raised as the penalty exponent p increases, until the fading areas are eliminated.
For the exponential function, Guest et al. (2004) recommend starting with a
low value of β1, for example β1 = 1, to reduce the probability of converging
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to a local minimum. This function, however, is susceptible to generate hinges,
i.e., node-to-node connections.

Figure 3.8: Regularized exponential function for several magnitudes of β1.

3.4.3.2
Hyperbolic Tangent (tanh) Projection Function

Another nonlinear Heaviside-based projection function was studied by Wang
et al. (2011):

g(ye) = tanh (β2η) + tanh (β2 (ye − η))
tanh (β2η) + tanh (β2 (1− η)) . (3.9)

The variable η is kept constant, η = 0.5 as recommended by Wang et al.
(2014), and β2, responsible for the sharpness of the projection, is doubled every
10 iterations starting at 4 and ending at 64. It is easy to see from Equation (3.9)
and Figure 3.9 that β2 = 1 represents the linear behavior and the higher β2,
the closer it gets to Heaviside’s function.

As procedure for the exponential function, an array of g(ye), g(y), can be
combined with SIMP method as in Equation (3.8). In some analysis conducted
in this thesis, this function was implemented alongside SIMP method acting
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when the penalization exponent p = 3, so it will not influence on the behavior
of low-stiffness elements.

Figure 3.9: Hyperbolic tangent function for several magnitudes of β2.
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4
Topology Optimization Under Geometric Nonlinearity

4.1
Introduction

This chapter is divided into two parts: optimization problem and nonlinear
methods. In the former, the “end-compliance” minimization problem is for-
malized, as well as the interpolation scheme – applied to deals with the large
distortions in low-stiffness elements within the domain – and the sensitivity
analysis, fundamentally necessary for gradient-based optimizers. In the lat-
ter, the nonlinear solution methods of load control, arc-length and generalized
displacement control are reviewed. Those are formulated according to an uni-
fied library discussed by Leon et al. (2011). At the end, a flowchart for the
optimization procedure is presented.

4.2
Optimization Problem

The studied optimization problem is the minimization of “end-compliance” Fc
defined by:

min
z

Fc = lTu (4.1a)

s.t.:
Ne∑
e=1

V (ze)
V0
− Vfrac 6 0 (4.1b)

0 6 z 6 1 (4.1c)

with r(z,u) = l− f(z,u) ≈ 0. (4.1d)

The objective is defined by Equation (4.1a), where l, f and u are,
respectively, vectors of external and internal forces and displacements.

The amount of material is controlled by the volume fraction Vfrac,
representing the ratio between the final and initial volume: Vfrac = Vf/V0.
This ratio controls the percentage of maximum material allowed in the final
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topology. The basic definition for the volume restriction is given as function of
the density ρ by

∫
Ω
ρ dV 6 Vf . (4.2)

In optimization problem this restriction is discretized by Equation (4.1b)
forNe elements in the design domain Ω. V (ze) corresponds to the actual volume
of the design variable ze.

Equation (4.1c) limits the range of the design variable z. The difference
between external and internal forces, indicated in Equation (4.1d), corresponds
to the structural equilibrium in which r is the residual force vector. In static
or quasi-static analysis this expression must be zero.

4.3
Modeling of Void Regions

To reduce the convergence issues in geometrically nonlinear topology opti-
mization routine, Pajot (2006) proposed a simply interpolation scheme. As the
source of the numerical instabilities are associated to large displacements, the
concept of this method is based on remodeling the kinematic relations (geo-
metric nonlinearities). To do so, the element residual force re is written as a
combination of linear and nonlinear terms:

re = γhe r
NL
e + (1− γhe )rLe , 0 6 γhe 6 1, (4.3)

for γhe being the homotopic parameter and

rLe = le − fLe ; (4.4)

rNLe = le − fNLe , (4.5)

where le is the element external force vector and fLe and fNLe are, respectively,
the linear and nonlinear terms of the element internal force vector.

Nevertheless, Wang et al. (2014) observed, when elements undergo large
deformations, the approach of Equation (4.3) can still result in numerical
instabilities for 0 < γhe < 1. As consequence, the authors proposed a different
interpolation approach called energy interpolation scheme. The element elastic
energy is interpolated between the large deformation theory and the small one.
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Ideally, if modeled by sufficiently low density, void elements do not influence
the solid (structural) parts of the domain Ω. With this concept in mind, low-
density regions can be modeled according to linear strain energy theory and
the structural regions by the nonlinear concepts of strain energy.

For the discrete case, this energy interpolation scheme is conceptualized
as

φe (ue) = [φ (γeue)− φL (γeue) + φL (ue)]E0e, (4.6)

where E0e and ue are, respectively, the Young’s modulus and the vector of
displacements of element e. The parameter φ is the stored elastic energy density
function for the base material with unit Young’s modulus and φL is the stored
elastic energy density under small deformations also with E0e = 1. The element
behavior is controlled by the interpolation factor γe, which assumes the value
of 0 for voids or 1 for solids.

In this thesis the Pajot’s formulation is combined with the interpolation
factor described by Wang et al. (2014). Therefore, the residual is

re = γer
NL
e + (1− γe)rLe

= γe
(
le − fNLe

)
+ (1− γe)

(
le − fLe

)
= γele − γefNLe + le − fLe − γele + γef

L
e

= le −
(
γef

NL
e + (1− γe)fLe

)
. (4.7)

The tangent stiffness matrix is derived directly from Equation (4.7):

∂re
∂u

= ∂

∂u
(le − fe)

= −
(
γe
∂fNLe

∂u
+ (1− γe)

∂fLe
∂u

)

= −
(
γeK

NL
e + (1− γe)KL

e

)
. (4.8)

There is only one modification to be added in Equations (4.7) and (4.8):
the design variable x̃e, responsible to assign existence of material (or not) in the
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design domain (see Sections 3.2.1 and 3.4.2). Then, the interpolation procedure
is defined by

fe = x̃e
[
γef

NL
e + (1− γe)fLe

]
; (4.9)

Ke = x̃e
[
γeK

NL
e + (1− γe)KL

e

]
, (4.10)

for Ke and fe being, respectively, the tangent stiffness matrix and the
internal force vector of eth element. KL

e , KNL
e , fLe and fNLe are presented

in Section 4.3.1.
On the implemented interpolation method, to associate linear behavior

on small “densities” x̃e, the interpolation factor γe is

γe(x̃e) = tanh (αρ̄) + tanh (α (x̃e − ρ̄))
tanh (αρ̄) + tanh (α (1− ρ̄)) . (4.11)

In Equation (4.11), α controls the sharpness of the interpolation factor
and ρ̄ is a threshold to determine the element behavior. The parameter α
must assume a higher value to guaranty a smooth transition between linear
and nonlinear cases. The concerning variable is ρ̄: a low value, ρ̄→ 0, imposes
a linear behavior on the elements, what does not reproduce the mechanics of a
large deformation problem. Besides, for high values (ρ̄→ 1), the void elements
assume large displacements due to nonlinear behavior and the distortion
associated to them will retard or result in non-convergence of the topology
optimization process. Based on numerical experiments, the best pair of values
capable of reducing the distortion of void regions is

α = 500; ρ̄ = 0.01,

as suggested by Wang et al. (2014) in the reference paper.

4.3.1
Tangent Stiffness Matrices and Internal Force Vectors

The element tangent stiffness matrix Ke under small deformation theory is

KL
e =

∫
Ωe

BT
L0D

0BL0 dV (4.12)

and for large deformations it is
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KNL
e = KL

e +KD
e +KS

e

=
∫

Ωe

[
(BL0 +BL1)T D0 (BL0 +BL1) +BT

NLS̃BNL

]
dV. (4.13)

The element internal force fe for small deformations is

fLe = KL
e ue (4.14)

and for large deformations it is

fNLe =
∫

Ωe

(BL0 +BL1)T Ŝ dV. (4.15)

For further detail on these matrices and the finite element theory, one can
go back to Section 2.3 or consult Bathe (2014), among other classical readings.

4.3.2
C-shaped Benchmark Problem

𝑞1 = 0.02 N

𝑞2 = 0.03 N

10 m

10 m

1m

E0 = 1 GPa, ν0 = 0.3

Figure 4.1: C-shape.

The C-shape is a benchmark example proposed by Yoon & Kim (2005a)
to study large distortions in void elements of the finite element mesh, which
helps clarifying the idea and the benefits behind the interpolation technique
in study. As shown in Figure 4.1, the C-shape is fixed on the left side and
it is submitted to two different loads qi, i = 1, 2. This geometry has unitary
Young’s modulus E0 and Poisson’s coefficient ν0 = 0.3.
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Figure 4.2(a) illustrates the C-shape geometry, discretized by Q4 ele-
ments, and Figure 4.2(b) displays the Euclidean norm of displacement ||u||
for a linear analysis. To represent the linear behavior, the magnitude of loads
are set as 10% of those indicated in Figure 4.1 and a plane stress state (depth
d = 1 m) is assumed for both linear and nonlinear analysis conducted in this
section.

4.2(a): Geometry representation. 4.2(b): Deformation and displacement field.

Figure 4.2: C-shape geometry when modeling only solid elements.

𝑥𝑒 = 1

𝑥𝑒 = 10−9

4.3(a): Geometry representation. 4.3(b): Deformation and displacement field.

Figure 4.3: C-shape linear analysis when modeling solid (light blue) and void
(white) elements in a fictitious domain representation.

To investigate the difficulties imposed to the nonlinear solution methods,
the C-shape is modeled using fictitious domain approach (Ramiere et al., 2007),
cf. Figure 4.3(a). The domain is discretized by 10 x 10 quadrilateral elements.
The idea of using this representation, here, is to reproduce a possible result
from topology optimization. Following this approach, the solid elements are
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modeled for a design variable x̃e = 1, while voids are represented by small
values, e.g., x̃e = 10−9. For the linear case, both the displacement field and
the deformation of the solid regions in Figure 4.2(b) and its fictitious domain
representation in Figure 4.3(b) are the same, which indicates that the behavior
of the structural members does not depend on the way the voids are modeled.

4.4(a): Modeling only solid elements by the
large deformation theory.

4.4(b): Modeling solids and voids by the large
deformation theory.

4.4(c): Modeling solid elements by the large
deformation theory and voids by the small
one.

Figure 4.4: C-shape nonlinear analysis. Deformation and displacement field for
the indicated cases.

Regarding the nonlinear case, Figure 4.4(a) illustrates the deformation for
the simple C-shape – only the solids are modeled. Assuming the same domain
of Figure 4.3(a), Figure 4.4(b) represents the deformation when the elements’
bevavior are modeled considering the large deformation theory. In Figure 4.4(c)
the elements’ behavior are interpolated by means of the interpolation scheme
defined in Equations (4.9) and (4.10).

In Figure 4.4(c) the voids have a smooth fashion deformation than
those in Figure 4.4(b) and, despite they still inverted, this is not seen by
the solver, due to the linear behavior attributed to them. The investigated
interpolation method facilitates the convergence as it reduces the number of
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iterations taken by the nonlinear solution method. Without this interpolation
approach the algorithm took 501 iterations in the Newton-Raphson method.
In turn, interpolating the elements’ behavior only 180 were needed. Thus, this
interpolation technique required 36% of the iterations in the Newton-Raphson
approach of those needed in the nonlinear case to converge.

4.4
Sensitivity Analysis of the Objective

Assuming the equilibrium has been reached, the residual force vector r is zero
and the Equation (4.1a) can be rewritten in function of the adjoint vector ψ:

Fc = lTu+ψTr (4.16)

The external force l is independent on the (element) design variable
x̃e, but the residual force depends on both design variable and displacement,
therefore the sensitivity of Equation (4.16) is given as

dFc
dx̃e

= lT
∂u

∂x̃e
+ψT

(
∂r

∂x̃e
+ ∂r

∂u

∂u

∂x̃e

)
, (4.17)

where ∂r/∂u is obtained by differentiating equation (4.1d) for a fix design
variable,

∂r

∂u
= −∂f

∂u
= −K, (4.18)

and isolating the term ∂u/∂x̃e in Equation (4.17) results in:

dFc
dx̃e

=
(
lT −ψTK

) ∂u
∂x̃e

+ψT ∂r

∂x̃e
. (4.19)

Since the adjoint vector is arbitrary, it can be employed to eliminate the
implicit response ∂u/∂x̃e. To do so, the first term on the right-hand side of
Equation (4.19) should vanishes and the natural choice for the adjoint vector
is

ψ = K−1l. (4.20)

Substituting the nonlinear state equation of Equation (4.1d) into Equa-
tion (4.19), the sensitivity of the objective with respect to the design variable
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becomes

dFc
dx̃e

= −ψT ∂f

∂x̃e
. (4.21)

The derivative of internal force fe for the eth element is

∂fe
∂x̃e

= ∂

∂x̃e

[
x̃e
(
γef

NL
e + (1− γe)fLe

)]
, (4.22)

and, after few manipulations, one obtains

∂fe
∂x̃e

= γef
NL
e + (1− γe)fLe + x̃e

∂γe
∂x̃e

(
fNLe − fLe

)
, (4.23)

in which the derivative of the interpolation factor is

∂γe
∂x̃e

= α sech2(α(x̃e − ρ̄))
tanh(α(1− ρ̄)) + tanh(αρ̄) . (4.24)

Finally, the sensitivity of the residual force r, with respect to the design
variable ze, is calculated by the following chain rule, taken on the Ne elements
in the mesh,

∂r

∂ze
= − ∂f

∂ze
= −

Ne∑
j=1

(
∂fj
∂x̃j

+ ∂fj
∂γj

∂γj
∂x̃j

)
∂x̃j
∂yj

∂yj
∂ze

, (4.25)

where is immediately to observe that the term in parenthesis corresponds to
the expression in Equation (4.23) and

∂ya
∂zb

= Mab

as stated in Equation (3.6). The derivative of x̃j with respect to yj depends on
the design variable penalty method and whether or not projection function is
applied. That is,

∂x̃j
∂yj

=



p(1− ε)yp−1
j for SIMP method

p(1− ε)g1(yj)p−1∂g1

∂yj
for exponential projection function

p(1− ε)g2(yj)p−1∂g2

∂yj
for tanh projection function

(4.26)
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with:

g1(yj) = 1− e−β1yj + yje
−β1 (4.27)

∂g1

∂yj
= β1e

−β1yj + e−β1 (4.28)

g2(yj) = tanh (β2η) + tanh (β2 (yj − η))
tanh (β2η) + tanh (β2 (1− η)) (4.29)

∂g2

∂yj
= −β2(tanh(β2(η − yj))2 − 1)

tanh(β2η)− tanh(β2(η − 1)) . (4.30)

The comparison between the analytical sensitivity, discussed above, and
the sensitivity calculated via finite differences is presented in appendix B.

4.5
Nonlinear Solution Schemes

When solving nonlinear problems the algorithm has to be able to trace complex
equilibrium paths. These paths feature critical points, in which structure loses
stability.

Displacement

Load
Load Limit 

Point

Displacement
Limit Point

Load Limit 
Point

A

B

C

D

E

O

Stable StableUnstable

𝐴′

𝐵′

Snap-through

Snap-back

Figure 4.5: Representative equilibrium path.

Consider the schematic path illustrated in Figure 4.5. Load limit points
occur at local maxima or minima. In one-dimension problem, it is characterized
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by a horizontal tangent (points A e D); displacement limit points occur in
verticals tangents (points C e C). Nonlinear schemes which fails to trace
beyond load limit points present the snap-through phenomenon. The ones
capable of passing the displacement limit points are said to capture snap-back
behavior.

Equilibrium curves can be traced by applying either a purely incremental
procedure or an incremental-iterative procedure. In the purely incremental
method, the load is applied in relatively small steps. It is assumed that each
incremental step exhibits linear behavior. Despite the ease of implementation,
this method tends to diverge from the real path, since it does not ensure
equilibrium at every solution step.

In the incremental-iterative method, a series of iterations are performed
at each incremental step until a certain convergence criterion is satisfied.
Among many criteria in literature, a simple one is adopted: ||δu|| 6 CONV ,
where CONV = 10−6 is the specified convergence tolerance. This convergence
checking, applied in small increments, assures that the correct equilibrium
path is traced. The nonlinear solution schemes discussed in this thesis are
incremental and iterative, cf. Figure 4.6.

Constraint
Surface

Linearization

𝑖
𝑠Δ𝒖 = 𝑠Δ𝒖

A

B

After 𝑖 iterations

𝒇 𝑠−1𝒖

𝑠−1𝒖, 𝑠−1𝒍

𝑠Δ𝒍

𝑖
𝑠Δ𝜆 ҧ𝒍

Displacement

Load

𝑖−1
𝑠Δ𝒖 𝑖

𝑠𝛿𝒖

𝑠𝒖, 𝑠𝒍

Figure 4.6: Incremental-iterative procedure.

To represent the incremental-iterative solution the following notation is
proposed:

step→s
iteration→i (•).
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The left superscript s represents the incremental step (or, simply, step
or increment) and left subscript i is the iteration. This representation allows
the reader to distinguish it from the index notation, often used in Continuum
Mechanics, and from the analysis taken on elements – denoted by the right
subscript e.

In nonlinear problems, the internal forces s
if are functions of displace-

ments s
iu and so, sif ≡ f(siu). These forces are not necessarily in equilibrium

with the external ones, so an unbalanced or residual force s
ir = s

i l − f(siu) is
generated.

The displacements and external forces at step s are computed by adding
the contributions from the previously converged step, s−1, and the incremental
update at the ith iteration of the sth incremental step:

s
iu = s−1u+ s

i∆u (4.31)
s
i l = s−1l + s

i∆l. (4.32)

In turn, the incremental update vectors of displacement and external
force at step s are reckoned by adding, respectively, the contributions on the
previous (i − 1)th iteration and the iterative updates from the current ith
iteration. Thus:

s
i∆u = s

i−1∆u+ s
iδu (4.33)

s
i∆l = s

i−1∆l + s
iδl, (4.34)

where s
i−1∆u = 0 for i = 1, since there are no previous iterations at the first

iteration of sth step. The vectors s
iδu and s

iδl are, respectively, the iterative
displacement and force vectors at iteration i and incremental step s.

Recalling Equations (4.31) to (4.34), the residual force can be written as

s
ir = s−1l + s

i∆l− f
(
s−1u+ s

i∆u
)

(4.35)

and the equilibrium equation for nonlinear systems is:

s
i−1K

s
iδu = s

i l− s
i−1f . (4.36)

The tangent stiffness matrix s
i−1K can be evaluated by either the stan-
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dard or the modified method. In the former, the stiffness is evaluated at each
iteration for every step. In the latter, the tangent matrix is calculated only at
the first iteration of the sth step, i.e., s

i−1K = s
0K.

In the finite element analysis, building the tangent stiffness matrix and
solving the matrix equation are computationally expensive tasks. The modified
method appears as an option to reduce the costs since it avoids the need
to reformulate the tangent stiffness matrix at each iteration. In addition,
this can also reduce the computational time required for solving the matrix
equation. On the other hand, this technique usually presents a slower (linear)
convergence, while standard method converges quadratically. As here the main
objective is not about the algorithm performance, no further discussion is
presented and the standard method is applied in all analyses.

4.5.1
Unified Library

By unified library, one can understand it as an unique set of equations in which
certain parameters will be adjusted according to the required nonlinear solution
method. Among many libraries proposed in literature, here, the nonlinear
methods are formulated according to the unified solution discussed by Leon
et al. (2011).

In the unified library an extra dimension is introduced in the solution
space. The load parameter siδλ is brought into Equation (4.34) by replacing s

iδl

with s
iδλl, in which l is the reference force vector. Ergo, from Equation (4.32),

the external force can be written as:

s
i l = s−1l + s

i−1∆l + s
iδλl. (4.37)

Substituting Equation (4.37) into (4.36) and comparing this result to
Equation (4.35) leads to the system of governing equations:

s
i−1K

s
iδu = s

i−1r + s
iδλl. (4.38)

The above expression has n variables, referred to the n degree’s of freedom
s
iδu, plus the load parameter siδλ. Therefore, this system has n+ 1 unknowns,
but only n equations. To solve it, an additional constraint is added to the
system. The nonlinear solution schemes differs only in the use of different
control parameters to set the incremental steps and perform the iterations.
Thus, this restriction can be expressed in terms of general parameters, which
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are adjusted according to the desired nonlinear scheme. Yang & Kuo (1994)
suggest to write this constraint equation in the form of

s
ia · siδu+ s

i b
s
iδλ = s

i c, (4.39)

where the effectiveness and reliability of the nonlinear solution technique
depend directly on the choice of the constants, sia and s

i b and the increment
parameter s

i c.
Equation (4.39) can be viewed as the constraint for an optimization

problem. Leon et al. (2011) assembles this system in a matrix form:

 s
i−1K −l
(sia)T s

i b


s
iδu
s
iδλ

 =


s

i−1r
s
i c

 . (4.40)

Such augmented system is no longer symmetric and the solution of it,
in general, is impractical due to the high computational cost for both storage
and efficiency. To overcome this problem, the iterative displacement vector is
often decomposed into the terms s

iδul and s
iδur,

s
iδu = s

iδλ
s
iδul + s

iδur, (4.41)

and the Equation (4.38) turn into:

s
i−1K

s
iδul = l (4.42a)

s
i−1K

s
iδur = s

i−1r. (4.42b)

One can observe this set of equations is mathematically equivalent to the
expression in Equation (4.38). The stiffness matrix is the same in both
expressions and it maintains its original properties, e.g., the symmetry.

To determine s
iδu, the load parameter has to be calculated. This is easily

done substituting Equation (4.41) into Equation (4.39):

s
iδλ =

s
i c− s

ia · siδur
s
ia · siδul + s

i b
. (4.43)

Hereafter, by means of an unified library, three nonlinear solution schemes
will be discussed: load control method, arc-length method and generalized
displacement control method. The first and the third were indeed implemented
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in the nonlinear topology optimization code. The arc-length procedure is
the one often available in commercial finite element softwares. Its response,
investigated in ANSYS®, was used to validate the nonlinear solution scheme
in the Lee-Frame structure (see Appendix A).

4.5.1.1
Load Control Method

The Newton-Raphson Procedure (NRP) is one of the oldest and most popular
iterative nonlinear method. Most of techniques for solving nonlinear equations
are derived from this scheme. It directly imposes the load parameter s

iδλ and
because of that, the NRP is also known as Load Control Method (LCM). For
each step s, the load parameter is computed in the first iteration, i = 1, and
held constant over the remaining iterations in the sth step, cf. Figure 4.7.

𝑠Δ𝜆

𝜆

𝒖
𝑠Δ𝒖

A

B

Constraint
Surface

𝑠 − 1

𝑠

𝑖 = 1 𝑖 = 2

After 𝑖 iterations

Figure 4.7: Load control method.

Looking at Equation (4.43), the unknown parameters of constraint
Equation (4.39) can be defined as:

s
ia = 0 (4.44a)
s
i b = 1 (4.44b)

s
i c = s

iδλ =


s∆λ for i = 1

0 for i > 2.
(4.44c)
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The term s∆λ is a prescribed initial load factor. This value can be
interpreted as a percentage of the reference force l and it does not have to be
constant, i.e., its value can be changed according to the level of nonlinearity
presented in the equilibrium path.

The total load factor s
iλ, after sth incremental steps, corresponds to

the summation of the load parameter in the previous step, s − 1, and the
incremental load factor. Then,

s
iλ = s−1λ+ s

i−1∆λ+ s
iδλ = s−1λ+ s∆λ, (4.45)

following the same idea of Equations (4.31) to (4.34), in which the term s
i−1∆λ

is null for i = 1.
However, the LCM fails to trace nonlinear equilibrium paths through

load limits points, because, in the vicinity of these points, the stiffness matrix
becomes singular, and the iteration procedure diverges as s

iδu → ∞, i.e.,
the iterative updated displacement vector tends to be unbounded. This is a
consequence of the load factor being the parameter control, and, wherefore,
this divergence is inherent to this method (Yang & Kuo, 1994).

4.5.1.2
Arc-Length Method

The Arc-Length Method (ALM), Crisfield (1981), is one of the most traditional
nonlinear solution schemes, capable of handling with both load and displace-
ment limit points. Mathematically, this method can be viewed as the trace
of a single equilibrium curve in a space spanned by the nodal displacement
variables u and the total load factor λ, cf. Figure 4.8.
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Figure 4.8: Arc-length method.

The general constraint equation for ALM, written with respect to the
iterations, is

s
1δu · siδu+ β2s

1δλ
s
iδλ = (si∆R)2 , (4.46)

for s
i∆R being the arc-length, i.e., is the radius of curvature, and β is a non-

negative real parameter (β ∈ IR+). The square in β is to make it compatible
with classical literature, e.g., Forde & Stiemer (1987). As summarized in
Table 4.1, the value assigned for β2 defines which version of arc-length
constraints the solution path.

Table 4.1: Versions of arc-length method.

β2 Version Equation

1 Spherical s
1δu · siδu+ s

1δλ
s
iδλ = (si∆R)2

0 Cylindrical s
1δu · siδu = (si∆R)2

IR∗+ − {1} Elliptical Equation (4.46)
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By, simply inspection, it is possible the determine the restriction terms
in Equation (4.39):

s
ia = s

1δu = s
1δλ

s
1δul (4.47a)

s
i b = β2s

1δλ (4.47b)

s
i c = (si∆R)2 =


(
s∆R

)2
for i = 1

0 for i > 2.
(4.47c)

In the above set of equation, s∆R is the prescribed initial arc-length
value, which does not have to be fixed for all incremental steps: it can assume
different values in different increments according to the degree of nonlinearity
involved in the equilibrium path, but it will be always defined in the first
iteration of the sth step.

Since each incremental step s begins at a previously converged step s−1,
the unbalanced forces vector is null at the first iteration of step s. Therefore
the iterative displacement residual portion s

iδur will also vanish according to
Equation (4.42b). It follows from Equation (4.41) that

s
1δu = s

1δλ
s
1δul (4.48)

and isolating the load factor in Equation (4.46) results in:

s
iδλ =


±

s∆R√
s
1δul · s1δul + β2

if i = 1

−
s
1δu · s1δur

s
1δu · siδul + β2s

1δλ
otherwise.

(4.49)

It is worth to emphasize that the general constraint equation is quadratic
in terms of s

iδλ. To solve it a set of rules must be adopted to treat real or
complex roots and to define which of these roots will be used to evaluate the
next point in the equilibrium solution.

This scheme has the ability to identify the change of direction in the load
factor: the plus sign refers to loading and the minus sign means unloading.
Nevertheless, one drawback of ALM has been the lack of information for
determining the change in the sign of siδλ.

Another concerning fact is about the units of terms in Equation (4.49).
The load factor siδλ is a scalar, while displacements vectors siδu contain trans-
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lations and rotations, which are different in units and orders of magnitudes.
Because of that, there is the possibility for the load parameter to be large so
that the sign of it depends fully on the angle between s

1δu and s
iδur. This is

especially true in the vicinity of displacement limit points, where the gradient
tends to be high. It follows that the sign of siδλ may change improperly result-
ing in wrong iterative directions and ending in numerical divergence, i.e., the
algorithm achieves the maximum number of allowed iterations without conver-
gence. Leon et al. (2011) summarizes the difficulties find by researchers along
the years and can be read for further discussion.

4.5.1.3
Generalized Displacement Control Method

The Generalized Displacement Control Method (GDCM) was proposed by
Yang & Shieh (1990) due to the limitations on the existing techniques. In its
original formulation, based on ALM, the following constraint parameters were
selected:

s
ia = s

1δλ
s−1

1δul (4.50a)
s
i b = 0 (4.50b)

s
i c =

generalized displacement for i = 1

0 for i > 2.
(4.50c)

From equation (4.43), the load factor is

s
iδλ =

s
i c− s

1δλ
(
s−1

1δul · siδur
)

s
1δλ

s−1
1δul · siδul

, (4.51)

where the generalized displacement is prescribed on the first iteration of the
incremental step (i.e., s1c = c) and is unchanged at subsequent iterations. When
i = 1, siδur = 0, and the load parameter can be written as:

s
iδλ =



c
s
1δλ

s−1
1δul · s1δul

if i = 1

−
s−1

1δul · siδur
s−1

1δul · siδul
otherwise.

(4.52)

Special treatment of Equation (4.52) is required for the first step because
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0
1δul does not exist. Hence, the authors adopted 0

1δul = 1
1δul, which results in

c = (δλ)2
(

1
1δul · 1

1δul
)
, (4.53)

for 1
1δλ = δλ being the prescribed initial control factor. Ergo, the expression

for s
1δλ becomes:

s
1δλ = ±δλ

(∣∣∣∣∣ 1
1δul · 1

1δul
s−1

1δul · s1δul

∣∣∣∣∣
) 1

2

. (4.54)

The ratio in the parentheses is the modulus of a quantity known as
generalized stiffness parameter,

GSP =
1
1δul · 1

1δul
s−1

1δul · s1δul
, (4.55)

which plays an important role in the change of load direction. GSP is positive
for stiffening systems and negative for those presenting softening behavior.
Its numerator represents the norm of iterative displacement at the first step,
while the denominator is, approximately, the norm of iterative displacement at
the current step. As consequence, GSP symbolizes the stiffness of a structure
(in the current step referred to the first step). Another important feature is
that the sign of GSP is positive, except immediately after load limit points,
where GSP = 0. The reason for that is because it depends purely of the scalar
product s−1

1δul · s1δul.
Considering the characteristics of GSP , s1δλ can be written, perhaps in

a more understandable and direct form, as

s
1δλ = sign(GSP )δλ (|GSP |)

1
2 , (4.56)

where “sign” is the GSP sign.
The capability of changing the load sign in the correct points (only at

load limit points) makes this method very robust and one of the best options
to capture complex nonlinear behaviors. In addition, the load increment can be
adjusted according to the nonlinearities of the structure and numerical stability
is always achieved in regions near the critical points, i.e., both load factor and
displacements are bounded.
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4.6
Flowchart

A flowchart for the optimization process is illustrated in Figure 4.9. It can be
divided into three parts. The first one concerns to the mesh generation in which
the geometry (length, height and thickness), the number of elements and the
symmetry conditions (if applied) are defined. The mesh itself can be generated
by commercial software, although it has been used the PolyMesher function
(Talischi et al., 2012a) for that. This function returns nodal coordinates,
applied loads and supports and a cell of element connectivities. Material
properties such as Poisson’s coefficient and Young’s modulus also must be
specified.

The second part is about the nonlinear solution. The original PolyTop
code (Talischi et al., 2012b), regarded only for linear analysis, was modified to
solve geometrical nonlinear problems for the methods of LCM or GDCM. The
algorithm, implemented in Matlab® (MATLAB, 2017), also includes shape
functions for Q4 and Q8 elements. In this part, one of these schemes is
set alongside with the maximum number of steps, the maximum number of
iterations to be taken by each step, the convergence tolerance (CONV ) and
the initial load factor s∆λ. Those parameters are summarized in Table 4.2.

The last portion considers the optimization parameters. The user defines
the filter radius, the volume fraction, β1 or β2 value, the design variable
tolerance TOL, the value of p used in the continuation scheme and the
optimizer, OC or MMA, and its input parameters. The maximum number of
iterations allowed Itermax may remain fixed during the optimization process,
but it also may vary as p is increased (see Chapter 5).

Table 4.2: Input data for the Newton-Raphson procedure.

Parameter Value

Max. steps allowed 20

Max. iterations allowed 200

Reference load (l) q†

Initial load factor (s∆λ)
Cantilever beam: 0.05||q||
Clamped beam: 0.5||q||

Convergence tolerance (CONV ) ||siδu|| = 10−6

†
q is the applied load vector
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Start

End

Input Data

Initialize 𝑝 = 1

Compute filtered design variable, 𝒚

Compute penalized design variable via SIMP, 𝒙

Initialize 𝑠 = 1, 𝑖 = 1;

𝑖
𝑠𝛿𝒖 = 𝟎, 𝑖

𝑠𝛥𝒖 = 𝟎, 𝑖
𝑠𝒖 = 𝟎, 𝑖

𝑠𝛿𝜆 = 𝟎

Compute load factor 𝑖+1
𝑠𝛿𝜆 according to

the desired nonlinear solution scheme

Compute stress tensor and elasticity
tensor at each point of Gauss

Compute the interpolation fator 𝛾𝑒
for each element 𝑒

Compute 𝑖+1
𝑠𝒇𝑒

𝐿, 𝑖+1
𝑠𝒇𝑒

𝑁𝐿, 𝑖+1
𝑠𝑲𝑒

𝐿 , 𝑖+1
𝑠𝑲𝒆

𝑁𝐿;

𝑖+1
𝑠𝒇𝑒, 𝑖+1

𝑠𝑲𝑒

Assemble 𝑖+1
𝑠𝒇 and 𝑖+1

𝑠𝑲

Compute the out of balance force i+1
s𝐫 = 𝑖+1

𝑠𝛿𝜆 ҧ𝒍 − 𝒊+𝟏
𝒔𝒇;

the incremental displacement 𝑖+1
𝑠𝛿𝒖 = 𝑖

𝑠𝑲−1
𝑖+1

𝑠𝒓

Compute 𝑖+1
𝑠𝒖 = 𝑠−1𝒖 + 𝑖+1

𝑠Δ𝒖 + 𝑖+1
𝑠𝛿𝒖

𝑖
𝑠𝜆 = 𝑠−1𝜆 + 𝑖+1

𝑠Δ𝜆 + 𝑖+1
𝑠𝛿𝜆

𝑖+1
𝑠𝛿𝒖 ≤ 𝐶𝑂𝑁𝑉?

𝑖 = 𝑖 + 1

No Yes
𝑖
𝑠𝜆 = 1?

𝑖 = 1;
𝑠 = 𝑠 + 1

𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟𝑚𝑎𝑥?
𝐶ℎ𝑎𝑛𝑔𝑒 ≤ 𝑇𝑂𝐿?

Yes

No

𝑝 ≤ 3?

𝑝 = 𝑝 + Δ𝑝

No

No

Evaluate the objective 𝐹𝑐

and its sensitivities
𝜕𝐹𝑐

𝜕𝑧

Evaluate the constraints 𝐺

and its sensitivities
𝜕𝐺

𝜕𝒛

Update the design variable 𝒛
and 𝐶ℎ𝑎𝑛𝑔𝑒 (OC or MMA)

Visualize material 
arrangement

Yes

𝐶𝑂𝑁𝑉 = 10−6

𝑇𝑂𝐿 = 10−2

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 = 150

𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1

Yes

Initialize 𝐼𝑡𝑒𝑟 = 0;
𝐶ℎ𝑎𝑛𝑔𝑒 = 2𝑇𝑂𝐿(max 𝒛 − min(𝒛))

Figure 4.9: Flowchart for geometric nonlinear topology optimization.
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5
Results

5.1
Introduction

This chapter is dedicated to illustrate examples using the interpolation scheme
discussed in Section 4.3. Two structures are investigated: the cantilever and the
clamped beams. All results are conducted for a plane strain state1, considering,
as the objective function, the the “end-compliance” at the load application
point. Different load levels are considered for the same structure and the
nonlinear state equation is solved by the load control method at each step of
the optimization. The implemented algorithm always ensure that the external
force reaches its maximum value during the optimization process. The MMA
solver (Svanberg, 1987) is applied to solve the topology optimization problem.

5.2
Cantilever Beam

𝑞

1 m

0.25 m E0 = 3 GPa, ν0 = 0.4

Figure 5.1: Cantilever beam domain.

The first structure is the cantilever beam (Buhl et al., 2000), shown in
Figure 5.1. The beam is 1 m long (L), 0.25 m height (H) and 0.1 m depth (d),
the Young’s modulus E0 is 3 GPa and the Poisson’s coefficient ν0 is 0.4. This
model is fixed on the left edge and loaded downwards at the midpoint of the

1Beams are often studied under the plane stress state assumption, but most of the works
in literature treats these examples as plane strain. So, the plane strain state was adopted in
all analysis in order to perform a fair comparison to the literature.

DBD
PUC-Rio - Certificação Digital Nº 1621754/CA



Chapter 5. Results 81

right edge by a force of magnitude q. The design domain is discretized by 120
x 30 Q4 elements and the volume fraction is Vfrac = 0.5.

The penalization exponent starts at p = 1 and is increased by ∆p = 0.05
until it reaches a maximum value of 3 following the continuation method. The
same procedure adopted by Wang et al. (2014) is considered here: until p < 2
the optimization iterations are restricted to 2; from 2 6 p < 3, a maximum of
5 iterations are allowed. When p = 3, the optimization algorithm stops only
if it converges or reaches the maximum iterations allowed Itermax = 150. The
filter radius is rmin = H/8.

The SIMP method is employed until the penalization factor achieves its
maximum value, i.e., p = 3, then the tanh projection function is combined
with it, as defined in Equations (3.8) and (3.9). In this manner, the material
interpolation, given by the combination of SIMP and tanh function, does not
influence the convergence of the nonlinear solution method. And more, it plays
a crucial role to reduce the compliance value since it diminish the grays on
the boundaries of the optimized design. Not combining (nonlinear) projection
functions to SIMP will result in similar structures, but the large presence of
intermediate densities in their layouts tends to make the final topology stiffer
than those presented in here.

Table 5.1 compares the optimal topologies for the linear and nonlinear
cases without employing the interpolation scheme. For small magnitudes of
loads, such as 6 kN and 12 kN, one can observe the similiarities between
the small and large deformation theories. For instance, the difference in the
compliance Fc is very small and can be considered irrelevant. The higher
the force, the higher is the difference between these formulations. This is
perceptible due to the loss of symmetry in higher loads: as the force increases,
the responses in the displacements also increase and the sensitivity values also
change.

When the interpolation scheme is employed, the optimal design for the
loads of 240 and 300 kN – which the solver was not capable to determine
assuming nonlinear behavior due to numerical instabilities – now could be
achieved as printed out in Figure 5.2. Loads of 12, 60, 96 and 144 kN presents
very similar topologies to those obtained without evoking the interpolation
scheme (Table 5.1), demonstrating that this technique does not influence on
the behavior of structural elements.

The element’s behavior for a force of 300 kN is exhibited in Figure 5.3.
As expected, the structural elements are characterized by large displacements
and the low-stiffness ones by small displacements.
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Table 5.1: Cantilever beam optimal topologies and compliance values for
several load levels considering linear and nonlinear analyses.

Load
(kN) Small Deformation Theory Large Deformation Theory

6

Fc = 0.0368 kJ Fc = 0.0368 kJ

12

Fc = 0.1473 kJ Fc = 0.1471 kJ

60

Fc = 3.6840 kJ Fc = 3.6742 kJ

96

Fc = 9.4186 kJ Fc = 9.3559 kJ

144

Fc = 21.1561 kJ Fc = 20.8849 kJ
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5.2(a): 12 kN, Fc = 0.1469 kJ. 5.2(b): 60 kN, Fc = 3.6702 kJ.

5.2(c): 96 kN, Fc = 9.3525 kJ. 5.2(d): 144 kN, Fc = 20.8792 kJ.

5.2(e): 240 kN, Fc = 56.3350 kJ. 5.2(f): 300 kN, Fc = 84.8276 kJ.

Figure 5.2: Optimal topologies and corresponded compliance values for the
indicated loads obtained using the interpolation scheme.

Linear Behavior
Nonlinear Behavior

Figure 5.3: Element’s behavior at the end of the optimization process for an
applied force of 300 kN.

5.2.1
Comparison with Literature

In this section, the values of the “end-compliance” and the optimal topologies
are compared to the results in the recent literature concerning the optimization
of geometric nonlinear structures. For this, two references are considered:
Lahuerta et al. (2013) and Wang et al. (2014).

The comparison is taken for the appiled forces of 60, 144 and 300 kN,
cf. Table 5.2. In each load level, there are similarities on both topologies and
objective values.
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Table 5.2: Comparison of optimized topologies for the cantilever beam for three
different loads.

Load
(kN) Lahuerta et al. (2013) This thesis

60

Fc = 3.7060 kJ Fc = 3.6702 kJ

144

Fc = 22.2960 kJ Fc = 20.8792 kJ

Load
(kN) Wang et al. (2014) This thesis

300

Fc = 84.9019 kJ Fc = 84.8276 kJ

The difference on the results may be by the fact that Lahuerta et al.
(2013) applied a relaxation function to control the excessive distortions in
the mesh. It should also be noted, as cited by these authors, that the
topology optimization of nonlinear geometric structures is extremely non-
convex. Therefore, the value set for the initial penalization factor and its
increment in the continuation influences directly in the final layout and it
characterizes another point for possible differences.

When comparing the layout accomplished in this thesis for q = 300
kN with those attained in the original paper, the objective value is almost
the same and this difference can be neglected. The topology is a little bit
different and could be explained by the way the interpolation procedure
is considered in this work. Recalling that Wang et al. (2014) extend their
formulation for hyperelastic materials, which changes a little bit the finite
element implementation.
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5.3
Clamped Beam

The second example is the clamped beam (Buhl et al., 2000). This beam is
encastred and the force of magnitude q is applied at midpoint on the upper
edge, cf. Figure 5.4. The geometry is L x H x d = 3 x 1 x 0.1 m3, the Young’s
modulus E0 and the Poisson’s coefficient ν0 are, respectively, 3 GPa and 0.4.
The design domain is discretized by 120 x 40 Q4 elements and the final volume
Vf is set be 10% of the initial volume V0.

𝑞

3 m

1 m E0 = 3 GPa, ν0 = 0.4

Figure 5.4: Clamped beam domain.

This structure exhibits large distortions on elements around the point of
load application, because the volume fraction is small (Vfrac = 0.1). To relax
the mesh distortion in the vicinity of the loading point, the force is uniformly
distributed over the nodes of four adjacent elements, as indicated by the black
square box below the load point. This is a common practice in the literature,
e.g., Luo et al. (2015). For the cantilever example, this load distribution is not
necessary, because the volume fraction will not cause immediately instability
in low-density regions, as this structure allows a higher amount of volume in
the optimal solution.

The continuation strategy applied for the cantilever beam is the same
adopted in this example, except by the increment ∆p, which is set to 0.1. It
is possible to start the penalization factor from a higher value, e.g., p = 2, as
done by Luo & Tong (2016) and Wallin et al. (2018). This will prevent the
algorithm to former the topology of linear analysis initially. However, to apply
the interpolation method and allow it to penalize the low-density elements,
the continuation scheme must starts at p = 1.

A different strategy is considered to reduce the grayish tones. The number
of iterations taken for the load of 10 kN is very small and does not justify the
use of projection functions in the same manner as described for the cantilever
beam. So, at the end of optimization, the effect of the filter is eliminated. In
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short, the optimization procedure is conducted using the SIMP method and a
filter of radius rmin = H/20. When p = 3 the filter influence is removed and
the algorithm runs until the solution converges.

The topologies for the clamped beam are displayed in Table 5.3 for
analysis considering small deformations and the interpolation scheme. The
similarities in the optimal layouts for the load of 10 kN, that has a linear
behavior, and the differences for 230 kN, characterized by large displacements,
are notables.

Table 5.3: Clamped beam optimal topologies and compliance values for two
load levels considering linear analysis and the interpolation scheme.

Load
(kN) Small Deformation Theory Interpolation scheme

10

Fc = 0.01086 kJ Fc = 0.01089 kJ

230

Fc = 5.7417 kJ Fc = 11.9445 kJ

It is worth to mention that all these responses were achieved through
simulations and the objective values have precision of four or five decimal
places. So for these reasons, in the linear analysis, for 230 kN the compliance
indicated in Table 5.3 presents a small difference from the expected value:
232 · 0.01086 = 5.74494 kJ.

5.3.1
Comparison with Literature

The values of the objective function and the optimal topologies are compared
to the results from Lahuerta et al. (2013) and Wang et al. (2014) for the load
of 230 kN. As can be seen in Table 5.4, the topologies and the compliance Fc
are very similar.

The evaluated objective is greater than the one indicated in the work of
Wang et al. (2014). This is explained by the use of a different procedure to
reduce the intermediate stiffness in the final solution. By simple inspection, it
is possible to say that eliminating the filtering influence, as done here, leaves
approximately twice as many elements with intermediate densities as compared
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to the original paper, where the tanh projection function was considered.
Another distinction is related to the force distribution, which seems not to
be adopted by those authors, yet it leads to a different material arrangement
in the vicinity of the load application point.

In relation to the paper of Lahuerta et al. (2013), the difference, not
only in the objective value but also in the optimal layout, can be explained
by the mesh discretization. In their analysis, the authors considered 60, 000
Q4 elements. The investigated interpolation approach has demonstrated to be
sensitive to mesh-refinement and simulations employing refined meshes like
that may recover the undesirable numerical instabilities.

Table 5.4: Comparison of optimized topologies for the clamped beam for a load
of 230 kN.

Lahuerta et al. (2013) Wang et al. (2014)

Fc = 13.2900 kJ Fc = 11.3681 kJ

This thesis

Fc = 11.9445 kJ
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6
Conclusions

In this thesis, an interpolation scheme (Section 4.3) was considered. The idea
is to alleviate numerical instabilities in low-density (void) regions during the
topology optimization of structures undergoing large displacements. Inspired
by the fact that the stored elastic energy density function can be interpolated
between the small and the large deformation theories, this scheme was im-
plemented in such a way that it can be seen as a simple modification on the
element stiffness matrix and internal force vector.

The interpolation method was validated throughout two common exam-
ples in the study of topology optimization regarding geometric nonlinearities.
By means of cantilever and clamped beams this approach alleviated the nu-
merical difficulties in low-stiffness regions within the design domain and the
convergence to a final layout was possible.

Although the penalty function (SIMP model) penalizes intermediate
densities, some gray regions occur due to the filter operation – the boundaries of
the optimal topology still characterized by shades of gray. These intermediate
densities are reduced by composing the tanh projection function with SIMP,
which modifies the material interpolation equation. Nevertheless, it had been
observed, in the earlier steps of continuation, that this composition may
still result in numerical instabilities of low-density areas. This was a direct
consequence from changing the material interpolation function, which also
modified the element densities and, thus, the material distribution. For this
reason, the tanh function was only applied at the last step of the continuation,
where the density of elements was no longer susceptible to large variations and
the material arrangement was closer to the optimal solution.

As could be seen in the clamped beam case, turning off the filter in
the final continuation was also an effective way of reducing the grays on the
topology boundaries. This is a more generic technique, without the restrictions
and difficulties aforementioned for the tanh projection function.

Regarding the nonlinear solution method, should be mentioned that the
LCM can be easily replaced by the GDCM in the implemented algorithm.
This allows capturing topologies whose applied loads are in the unstable part
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of equilibrium path or in structures where buckling is a relevant issue. The
convergence criterium for these methods involves the norm of incremental dis-
placement, which avoids low-density elements to interfere in the convergence.
For example, as explained by Lahuerta (2012), when the convergence criterium
is based on residual forces, the internal force vector can be modified by large
displacements of void elements and may result in a fake convergence, impacting
in the optimization procedure.

6.1
Suggestions for Future Works

Ending research with some questions in mind is not ideal, but principally due
to the complexity involved in these problems and the amount of time expended
in each analysis, there are some points that can be explored in further studies.
To the best of author’s knowledge, up to the date of this thesis’ conclusion,
the works in the literature concerning nonlinear topology optimization did not
came up with a definitive solution to control the instabilities in void regions.
Mainly, because the proposed methods either depend on a series of parameters
or they are not robust in the sense that small changes in the initial conditions
of the problem may result in non-convergence of the optimization process.

The work on this thesis can be extended to investigate compliant mecha-
nisms, which is a tendency in the recent literature about topology optimization
of nonlinear problems. Other objective functions can be analyzed, as the strain
energy or the complementary work. The research in the field of nonlinear topol-
ogy optimization can be extended to consider polygonal meshes or to include
tridimensional studies or even to evaluate the plasticity effect. Beyond that,
stress constraints can be added to the proposed optimization problem.

The MMA solver demonstrated an oscillatory behavior, and it should be
considered a more in deep look on it to better understand and manipulate all
their input variables and controlling parameters, allowing to improve the code
efficiency.

One way of improving the robustness of the nonlinear topology optimiza-
tion is using hyperelastic material models, as the neo-Hookean. The recent
reference literature has evoked these models, which are known to better repre-
sent the physics of a body under large compressions (Lahuerta, 2012). Despite
the pure application of these models tends not to solve the convergence issues
completely, combining them with specific techniques – as the interpolation de-
bated here – allows the algorithm to treat more complex problems where the
deformations are not properly described by the SVK model.

The interpolation scheme discussed in this thesis has alleviated numerical
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instabilities in low-density elements. Nonetheless, the convergence of the geo-
metric nonlinear topology optimization process is extremely mesh-dependent.
Refining the mesh will reduce the elements average size and their degrees of
freedom will be relatively larger (to themselves), possibly resulting in large
distortions of voids and recovering the undesired numerical instabilities. This
enforces the need for exploring different approaches in the nonlinear topology
optimization problems. Instead of penalizing the displacements or the density
of elements, perhaps a technique that considers deformations (Luo et al., 2015)
is a way out: as the strains are relative to the body configuration, it can be
modified at every step of the optimization accordingly to the observed instabil-
ities. This mesh-dependence can be listed as one of the reasons for this theme
still drawing attention from researchers: topology optimization of geometrically
nonlinear structures is still an open problem.
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A
Verification of the Nonlinear Solution Scheme

This appendix presents the nonlinear solution method for both Q4 and Q8
elements using the implemented code and the ANSYS® software (APDL, 2017).

The Lee frame model, showed in Figure A.1, is considered for this
analysis. The structure exhibits load and displacement limit points which may
cause, respectively, the snap-through and snap-back phenomena. Therefore, it
is a good model to test the efficiency of the implemented code. The geometry
is discretized into 480 elements, two of them in the thickness, so the average
size of each element is, approximately, 1 x 1 cm2 (Parente & Vaz, 2001).

B

24 cm

121 cm

121 cm

2 cm

𝑋2

𝑋1

DETAIL A

2 cm

𝑞

Figure A.1: Lee frame. “DETAIL A” shows the point where the load q is
applied (point B).
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The material properties and model characteristics are listed below:

– Material model: SVK

– Configuration: Plane Stress

– Young’s modulus (E0): 720 kN/cm2

– Poisson’s coefficient (ν0): 0.3

– Depth (d): 3 cm

– Cross section area (A): 6 cm2

– Applied load (q): 2.5 kN

The static nonlinear analysis was implemented by means of the Gen-
eralized Displacement Control Method (GDCM) and according to the Total
Lagrangian finite element formulation. On the other hand, the ANSYS theory
is based on the Updated Lagrangian formulation and it allows only the appli-
cation of the Arc-Length Method (ALM) via its parametric language, APDL
(Ansys Parametric Design Language).

Figures A.2 and A.3 show the responses obtained by the developed
algorithm and the ANSYS. For Q4 elements, the results are very similar: the
absolute difference in the nodal displacements are less than 4%. The response
is even better when using Q8 elements in the analysis. In this case, the major
difference in nodal displacements is less than 1%, as observed in the Figure A.3.
Figure A.4 illustrates the Lee frame deformed configuration at the points
indicated in Figure A.3.

As the results of the proposed algorithm are very close from the ones
obtained by the ANSYS® Mechanical™ APDL, for both types of elements
examined, the code is numerically verified.
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Figure A.2: Lee frame equilibrium path: responses for the implemented code
and the APDL for Q4 elements.

Figure A.3: Lee frame equilibrium path: responses for the implemented code
and the APDL for Q8 elements.
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A.4(a): Point a. A.4(b): Point b.

A.4(c): Point c. A.4(d): Point d.

A.4(e): Point e. A.4(f): Point f.

Figure A.4: Deformation at the points indicated in Figure A.3: (a) linear
regime; (b) load limit point in traction; (c) first displacement limit point; (d)
second displacement limit point; (e) load limit point in compression; (f) final
configuration.
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B
Validation of Sensitivity of Objective Function

In order to verify the accuracy on the objective’ sensitivities, the analytical
result, computed in Section 4.4, is juxtaposed to the derivatives evaluated by
finite difference. The central finite difference is defined by

df

da
≈ f(a+ ∆a)− f(a−∆a)

2∆a , (B.1)

where ∆a is a small perturbation on the variable a. Its value is set to
∆a = 10−8. Figure B.1 schematics a fixed-free beam used to evaluate the
derivatives. This model has the following properties:

– Material model: SVK

– Configuration: Plane Strain

– Young’s modulus (E0): 3 GPa

– Poisson’s coefficient (ν0): 0.4

– Depth (d): 1 m

𝑞

1

3 m

1 m
2

3

4

5

6

7

8

9

10

11

12

Figure B.1: Tested beam: design domain, boundary conditions, load and
element numbering.

The analytical derivatives and those computed via finite differences are
compared in Tables B.1 and B.2 for the loads of 15 kN and 100 kN, respectively.
The relative errors are very small in both cases, which indicates the analytical
derivatives are correctly evaluated.
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Table B.1: Comparison between objective function derivatives calculated ana-
lytically and via finite differences for a load of 15 kN.

Element No. Analytical Finite Difference Relative Error (%)

1 −14, 459.718 −14, 459.718 2.735 · 10−7

2 −14, 840.061 −14, 840.060 9.892 · 10−7

3 −12, 436.037 −12, 436.037 7.938 · 10−6

4 −13, 108.253 −13, 108.253 8.901 · 10−6

5 −7, 066.004 −7, 066.004 6.768 · 10−8

6 −3, 886.417 −3, 886.417 2.161 · 10−6

7 −5, 102.824 −5, 102.824 7.337 · 10−6

8 −2, 000.004 −2, 000.005 1.603 · 10−7

9 −12, 250.868 −12, 250.869 2.460 · 10−6

10 −2, 889.744 −2, 889.744 1.665 · 10−6

11 −1, 124.049 −1, 124.048 4.712 · 10−5

12 −1, 778.668 −1, 778.668 4.574 · 10−6

Table B.2: Comparison between objective function derivatives calculated ana-
lytically and via finite differences for a load of 100 kN.

Element No. Analytical Finite Difference Relative Error (%)

1 −422, 551.196 −422, 551.192 1.018 · 10−6

2 −496, 659.944 −496, 659.938 1.248 · 10−6

3 −336, 560.520 −336, 560.516 1.233 · 10−6

4 −454, 789.904 −454, 789.896 1.633 · 10−6

5 −206, 174.065 −206, 174.065 2.627 · 10−7

6 −393, 049.000 −393, 048.998 3.714 · 10−7

7 −231, 437.913 −231, 437.910 1.346 · 10−6

8 −415, 542.719 −415, 542.722 5.785 · 10−7

9 −328, 693.269 −328, 693.260 2.766 · 10−6

10 −452, 584.229 −452, 584.226 6.221 · 10−7

11 −379, 898.474 −379, 898.466 2.141 · 10−6

12 −492, 619.624 −492, 619.632 1.475 · 10−6
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C
Articles from this Thesis

This thesis resulted in two papers (Figures C.1 and C.2): one published in the
X National Congress of Mechanical Engineering (Leitão & Pereira, 2018) and
another accepted at the 25th Brazilian Congress of Mechanical Engineering
(Leitão & Pereira, 2019).

Figure C.1: Article published in the X CONEM: title, abstract and keywords.
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Figure C.2: Article accepted at the 25th COBEM: title, abstract and keywords.
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