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Abstract 

Visconti, Igor Ferreira; Lima, Delberis Araujo (advisor). A Load Modeling 

Methodology for Steady State and Dynamic Simulations. Rio de Janeiro, 

2019. 132p. Tese de Doutorado - Departamento de Engenharia Elétrica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

To simulate, predict and control Electric Power Systems (EPS), engineers 

need tools to model the components of this highly complex interconnected 

network. Many efforts over the past century were dedicated to develop 

mathematical models for generators, transmission lines, reactive power 

compensators, transformers and so on. The main components of the power 

systems are precisely represented by mathematical models, but the loads are still 

a source of uncertainty in the simulations, due to their random characteristics. It 

is well known that conservative load models super estimate power response to 

voltage deviations, and, on the other hand, over-optimistic load models may 

underestimate stability margins, leading a system to operate too close to its limit. 

It is necessary to stablish load representations as close to reality as possible, in 

order to fully exploit grid resources. This work provides a methodology for load 

modeling, investigating and summarizing the steps of the process, whose can be 

implemented in a wide variety of ways. Data treatment, the choice of a load model 

representation and their parameters estimation are presented through real case 

studies, both for dynamic simulation and a steady state application. It is discussed 

how optimization and statistical inference concepts can be effective tools to reach 

better approximations on how load will respond to disturbances caused by voltage 

variations, whether these were spontaneous, due to control actions, or caused by 

short-circuits. 

 

Keywords 

Load Modeling; Genetic Algorithms; Statistical Inference; Conservation 

Voltage Reduction; Electromechanical Transients. 
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Resumo 

Visconti, Igor Ferreira; Lima, Delberis Araujo. Uma Metodologia de 

Modelagem de Cargas para Simulações em Regime Permanente e 

Dinâmicas. Rio de Janeiro, 2019. 132p. Tese de Doutorado - Departamento 

de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

Para simular, prever e controlar os sistemas de energia elétrica, engenheiros 

precisam de ferramentas computacionais para modelar os componentes dessa rede 

interconectada altamente complexa. Muitos esforços ao longo do século passado 

foram dedicados a desenvolver modelos matemáticos para geradores, linhas de 

transmissão, compensadores de potência reativa, transformadores e assim por 

diante. Os principais componentes dos sistemas de potência são representados 

precisamente através de modelos matemáticos, mas as cargas ainda são uma fonte 

de incerteza nas simulações, devido à sua característica de aleatoriedade. Modelos 

de carga conservadores superestimam a resposta de potência a desvios de tensão, 

enquanto modelos de carga excessivamente otimistas podem subestimar as 

margens de estabilidade, deixando o sistema muito próximo do seu limite 

operacional. É preciso estabelecer representações de cargas tão próximas da 

realidade quanto possível, a fim de explorar os recursos de rede de modo mais 

eficiente. Este trabalho fornece uma metodologia para modelagem de carga, 

investigando e resumindo as etapas do processo, que podem ser implementadas 

de diversas maneiras. O tratamento de dados, a escolha de uma representação 

matemática do modelo de carga e sua estimação de parâmetros são apresentados 

através de estudos de caso reais, tanto para uma aplicação focada na dinâmica do 

sistema elétrica, quanto para uma aplicação em regime permanente. Discute-se 

como otimização e conceitos de inferência estatística podem ser ferramentas 

efetivas para alcançar melhores aproximações sobre como a carga responderá a 

perturbações causadas por variações de tensão, sejam estas variações espontâneas, 

ou devido a ações de controle, ou causadas por curtos-circuitos. 

 

Palavras-chave 

Modelagem de Cargas; Algoritmos Genéticos; Inferência Estatística; 

Conservação de Energia através de Redução de Tensão; Transitórios 

Eletromecânicos. 
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1 
Introduction 

The electric power systems operation and planning always have been facing 

the challenge to balance the generation resources and load demand within the grid, 

in a reliable and cost-effective way. This work was motivated because load 

representations still need more accuracy to cover the most critical scenarios in 

power systems simulations, and they have to be updated due to a variety of new 

devices connected to the grid. In particular, distributed energy resources has been 

transforming the passive loads of the past into active distribution networks, which 

can even export their generation surplus to the transmission systems or become 

islanded from the major system during emergency events. These new distribution 

systems could be studied, and it should be investigated if it is possible to represent 

such systems with a single load model structure, with no physical meaning, using 

only data measurements taken from the frontier of the transmission system and 

these “active loads”. Time series analysis, big data and data mining are some 

knowledge areas that can help to improve load model estimation using field data. If 

in the past measurement-based load modeling was not possible to be implemented 

in a systematic way due to the lack of measurement devices installed in suitable 

points of the power grids, now it is possible to update continuously load model 

parameters, in order to evaluate dynamic equivalent of the system, using modern 

monitoring devices, fast communication links and high performance computing 

techniques. 

Experts responsible for the operation of electric power systems rely their 

decisions on different static and dynamic simulations, aiming the optimization of 

their assets, the minimization of losses and the maximization of power transmission 

capacity. These goals should be achieved respecting the electric power system 

stability margins and investment considerations. 

Electromechanical transient simulations analyze the behavior of systems after 

disturbances occurring in power grid. Many types of contingencies may cause 

sudden changes in the electrical network configuration, where the system leaves the 
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operating point pre-disturbance stable. Depending on the severity or place of origin 

of the occurrence, it is desirable to predict whether the system can reach another 

equilibrium point or will be unstable after the elimination of the disturbance by the 

protection system.  

Load modeling has a great impact on system dynamics simulations, especially 

stability studies, where the dynamic reacceleration of industrial engines influences 

the restoring synchronism between the hydraulic generating units. Contingencies 

can provoke accelerations and decelerations in certain units or groups of generating 

units that are subjected to lose synchronization between them or in relation to the 

system. 

Historically, mathematical models for generators, transmission lines, 

transformers and other elements that constitute and influence the behavior of 

electrical systems have been represented through sets of equations. However, load 

modeling for dynamic and static simulation remains a challenge, due to its 

stochastic behavior, and the complexity involved in lumping thousands of 

components that consume power from the grid in a single accurate representation. 

Besides the inherent randomness to predict and simulate load response to system 

perturbations, it is observed that the load demand varies with different time frames, 

which means there are expected cyclic variations during the 24 hours of a day, the 

days of the week, and also the seasons of the year. 

This thesis provides the general guidelines to estimate a load representation 

using suitable data measurements from a point of common coupling between the 

system to be modeled, downstream the point of installation where the data 

measurement device is installed. It will present the steps involved in data selection, 

signal processing, system identification, parameter estimation and model 

validation. A flexible load model is proposed, providing an application case study. 

The same methodology is used to assess the potential to provide peak demand 

reduction and energy savings in another case study, that estimates load model 

representations that quantify how much energy is saved, and if it is possible to 

reduce demand during the peak hours. 
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1.1. 
Motivation 

 

Optimistic load model can compromise system security, evaluating higher 

stability margins than the actual operating conditions impose; whereas the results 

of simulations that include pessimistic load models, reduces the power transfer 

capacity of transmission lines. 

The response of the loads to voltage and frequency deviations of their nominal 

values is one of the factors that influence the loss or absence of system stability. 

Models that faithfully reproduce the loads behavior during and after disturbances 

increase the reliability of the results of simulations, enabling operators to anticipate 

potential emergency conditions or maximize power transmission of specific 

transmission lines. 

In the last few years, distribution systems no longer can be defined as passive 

subsystems, supplied by the transmission system. With the increasing penetration 

of Distributed Generation (DG) connected to the grid through Medium or Low 

Voltage (MV or LV), the distribution systems with generating capacity have been 

denominated Active Distribution Networks (ADN), and this new concept has been 

demanded new mathematical representation and need more answers on how these 

subsystems will impact the overall system stability and system operation. 

Also, with the advent of smart grids and due to environmental concerns, the 

network management has been increasingly demanding more efficiency, through 

the implementation of a modern infrastructure of monitoring, automation and 

bidirectional communications. One of the smart grid possible implementations is 

the old Conservation Voltage Reduction (CVR), which has become a cost effective 

solution to deferral network investments, due to the potential peak demand 

reductions, energy saving and other voltage control benefits, that depends on the 

different load characteristics of the subsystem to be modeled. Therefore, load 

modeling can quantitatively indicate how much energy can be saved by a voltage 

reduction, keeping it within its nominal acceptable range. It can indicate how much 

active power can be reduced during peak hours, by this scheduled and/or automatic 

voltage reduction. 
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In Brazil, the National System Operator (ONS) provides data from the 

integrated electric power system, comprising the transmission lines, generators and 

transformers, both for steady-state and stability software analysis. The whole 

Brazilian Integrated System is represented up to 69kV bars connected to all bus bars 

of this voltage level, static ZIP load models (section 2.2.1.4). The parameters for 

these load models are the same for many different loads, and they could be 

improved whenever there is suitable data measured in the point of common 

coupling between transmission and distribution systems, or the point between an 

upstream system and a downstream subsystem that it is desirable to be more 

accurately represented in power systems simulations. This thesis will discuss the 

way to do it. 

 

 

1.2. 
Objectives and Contributions 

This work intends to present the guidelines for developing load models to be 

used in electric power simulations, modeling the load response caused by voltage 

variations, using field-data.  

This work will begin reviewing a collection of different mathematical 

representations of loads, reported in the scientific literature. Then, it will be detailed 

the guidelines to choose a suitable model structure and estimate the parameters set 

that best fits the available field data.  

This comprehensive methodology consists in using the same optimization 

formulation (based on the minimization of the squared error between the measured 

and simulated outputs of the model), independent of the choice of the optimization 

technique or the mathematical structure, i.e., the load model. Different optimization 

algorithms were tested, but not extensively, only to show that the measurement-

based load modeling guidelines are independent of the parameter estimation 

method, and also of the model choice. Nevertheless, the model specification can 

lead to different parameter set sizes, and therefore the optimization formulation may 

include different parameters constraints.  
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1.3. 
Outline of the Thesis 

The thesis is organized as follows: 

Chapter 2 will provide a literature review of the load definitions, the main 

mathematical structures to model the load behavior and two basic approaches 

regarding load modeling procedures: component-based load modeling and 

measurement-based load modeling. 

Chapter 3 will provide the details of the methodology developed, inspired by 

the guidelines of System Identification aspects. It will be discussed a load model 

proposed by the author, that consists in representing an aggregated load connected 

to a bulk power system as a discrete time transfer function, and the parameters set 

constraints associated with this formulation, such as causal and stability issues of 

such a model characterization. 

Chapter 4 will present the results from measurements obtained from a 

Brazilian transmission utility, and the complete process from selecting suitable data 

for load modeling, the signal data processing that filters and transforms the 

Multiple-Input Multiple-Output (MIMO) system into a Single-Input Single-Output 

(SISO) system; this is because stability system software usually is interested in 

positive sequence data. It will also be presented results from a simulation using a 

transient electromechanical software, using the complete Brazilian Interconnected 

System representation (up to 69kV) and some measurement-based dynamic load 

models, connected to 230/69kV, and its comparison to the adopted ZIP load models 

by ONS. 

Chapter 5 will present another case study, using data measurements obtained 

in the distribution systems of Manchester-UK. These data were collected for a 

Conservation Voltage Reduction (CVR) investigation, and the measurement-based 

load modeling intends to quantify energy saving and peak demand reduction that 

could be achieved from different substations with different load profiles. 

Chapter 6 will present a summary of the work, the conclusions and a summary 

of the guidelines to obtain more accurate representations of physical systems 

throughout mathematical representations that do not necessarily need to have 

physical meanings. 
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1.4. 
Publications 

This research has produced several scientific articles that have been published 

in Brazilian and international symposiums: 

 

1. Visconti, Igor F.; Lima, Delberis A.; Costa, Milanović, Jovica V., 

“Comprehensive analysis of Conservation Voltage Reduction: A real case 

study”, 2019 IEEE Milano PowerTech, Italy. 

2. Visconti, Igor F.; Lima, Delberis A.; Costa, J. M. C. de S. ; Sobrinho, N. R. 

de B. C, “Measurement-Based Load Modeling Using Transfer Functions for 

Dynamic Simulations”, IEEE Transactions on Power Systems, v. 29, p. 111-

120, 2014. 

3. Visconti, I. F.; Luiz Felipe Willcox ; Costa, J. M. S. C. ; Barros Sobrinho, 

N. R., “Metodologia para Estimação de Modelos de Cargas a partir de 

Medições em Subestações”, XII Simpósio de Especialistas em 

Planejamento da Operação e Expansão Elétrica (SEPOPE), Rio de Janeiro, 

2012.  

4. Visconti, I. F.; Souza, L. F. W. ; Costa, J. M. S. C. ; Barros Sobrinho, N. R., 

“Measurement-based load modelling of systems with dispersed generation”, 

Cigré Session 44, 2012. 

5. Rangel, R. D. ; Souza, L. F. W. ; Visconti, I. F. ; Macedo, N. J. P. ; Lima, 

M. C., “Validação de Modelos no ANATEM Através de Comparação com 

Sinais Reais de Medição”, XXI SNPTEE - Seminário Nacional de Produção 

e Transmissão de Energia Elétrica, Florianópolis, 2011. 

6. Costa, J. M. S. C. ; Barros Sobrinho, N. R. ; Souza, L. F. W. ; Visconti, I. 

F., “Estudos de Transitórios Eletromecânicos no Sistema de Transmissão da 

CHESF Utilizando Modelos de Carga Dinâmica Baseados em Medições.” 

XXI SNPTEE - Seminário Nacional de Produção e Transmissão de Energia 

Elétrica, Florianópolis 2011.  

7. Costa, J. M. S. C. ; Barros Sobrinho, N. R. ; Souza, L. F. W. ; Visconti, I. 

F., “Representação De Consumidores Industriais Em Estudos De 

Transitórios Eletromecânicos.” XIV ERIAC - XIV Encuentro Regional 

Iberoamericano del Cigré, 2011, Ciudad del Este. 
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8. Visconti, I. F.; Souza, L. F. W. ; Costa, J. M. S. C. ; Barros Sobrinho, N. R., 

“Modelos De Carga Baseados Em Medições Para Simulações De 

Transitórios Eletromecânicos.” XIV ERIAC - XIV Encuentro Regional 

Iberoamericano del Cigré, 2011, Ciudad del Este.  

9. Visconti, I. F.; Souza, L. F. W. ; Costa, J. M. S. C. ; Barros Sobrinho, N. R., 

“Estimação de Parâmetros de Modelos de Carga Dinâmicos usando 

Algoritmos Genéticos.” III Simpósio Brasileiro de Sistemas Elétricos, 

Belém, 2010.  

10. Visconti, I. F.; De Souza, L. F. W. ; Costa, J. M. S. C. ; Sobrinho, N. R. B. 

C., “From power quality monitoring to transient stability analysis: 

Measurement-based load modeling for dynamic simulations”, 14th 

International Conference Harmonics Quality Power, Bergamo, Italy, Sep. 

2010. 

11. Visconti, I. F.; De Souza, L. F. W., “Modelagem De Carga Baseada Em 

Medições Utilizando Algoritmos Genéticos” XIII ERIAC - Décimo Terceiro 

Encontro Regional Iberoamericano do Cigré, Puerto Iguazu, 

Argentina,2009.  
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2 
Literature Review

Due to the advent of new types of electronic loads, the increasing penetration 

of distributed generation and the modernization of wide area monitoring, the 

research on load modeling has received a renewed interest. The energy management 

systems will become high technology information centers, hopefully marching 

towards a more efficient asset utilization, assuming the mathematical model of the 

power system is accurate enough to predict its behavior and simulate scenarios 

evaluating accurate system response to disturbances and contingencies. 

Although it is acknowledged the key aspect of representing loads accurately 

in dynamic power systems simulations, the most usual practice adopts static load 

models, and power system studies that lack of load composition may even ignore 

the influence of voltage variation in load response, assuming the classic constant 

power load model, as it is revealed in the survey reported in [2].  

But it has been repeatedly reported that attempts to reproduce power systems 

large contingencies have failed, whenever it was used standard or very simplistic 

representations of subsystems defined as loads. One of the earliest reports of load 

modeling inadequacy dates from the Swedish blackout of 1983 since the simulated 

and recorded data did not fit properly [3]. 

This chapter presents in section 2.1 a brief historical chronology of some of 

the most remarkable publications in the load modeling research area. In section 2.2, 

it is presented a formal definition of the concepts and terminology used in this field, 

and an extensive list of mathematical representations of active and reactive power 

consumed by loads, as a function of voltage. The last section will present the two 

basic approaches for the load modeling development, which will be used whether 

in steady-state or in dynamic software simulations. 
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2.1. 
Historical Perspective 

From the last 30 years, data recording and storage capabilities, as well as the 

number of devices deployed in power systems, have increased intensively. Load 

model development and the quality of model parameters have evolved, due to more 

suitable data available for the purpose of this task. In [2], the responses to the 

questionnaire of CIGRE’s survey on load models have reported that “the power 

industry is taking full advantage of available monitoring systems for such purposes” 

(...) over 50% of cases load model parameters are being identified based on field 

measurements”. 

The first benchmark to review the load modeling is a paper published by the 

IEEE Task Force on Load Representation for Dynamic Performance [4] that has 

summarized the basic definitions on load model and provided guidelines to dynamic 

performance analysis in power system studies. A couple of years later, this Task 

Force published a bibliography containing several static and dynamic load models, 

altogether with their references [5]; a few months later, they published [6] “to 

promote better and advanced load modeling, and to facilitate data exchange among 

users of various production-grade simulation programs”. 

But apparently industry and system operators were not able to follow these 

guidelines for measurement-based load modeling, because data measurements 

devices were not often available and they were relatively more expensive. However, 

the modern power grids have increased their monitoring devices and automation 

infrastructure, towards smarter grids. Moreover, the increasing share of Distributed 

Generation (DG) connected to the grid through Medium or Low Voltage (MV or 

LV), transformed the distribution systems into Active Distribution Networks 

(ADN), and they ask for new mathematical representation to predict how these 

subsystems will impact the overall system stability and system operation. 
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2.2. 
Load Model Definition and Classification 

This section aims to cover the most common used load models found in 

literature and in power systems simulation software. But first, it is important to 

formalize the concept of load from the viewpoint of power systems. 

The term "load" takes on different meanings depending on the context in 

which it is used [4]. It could be: 

• A device connected to the power system that consumes energy. 

• The total energy consumed by all devices connected to the power system. 

• A portion of the system which is not represented in detail, but it is treated 

as if it was a single power consumer element, connected to a bus. 

In particular, the last of the above definitions establishes that, once chosen a 

load bus, all that is connected downstream of the bus is added in an equivalent load 

and this is measured in terms of power consumed by this downstream subsystem. 

The voltage measured at the load bus is defined as the disturbance variable or input 

variable of the model. There are load models that use the disturbance frequency and 

ambient temperature as disturbance variables [2]. 

Load models are traditionally classified into two main groups: static load 

models (section 2.2.1) and dynamic load models (section 2.2.2). There are other 

possibilities to cluster them into different groups, or even to combine them into 

composite load models (section 2.2.3). According to recommendations of the IEEE 

Task Force [4]-[6], the static load models would be used in steady-state simulations, 

while dynamic models would better represent load behavior in stability studies. It 

has been dedicated also a special section for the black box load models, whose do 

not take into account any physical meaning regarding its mathematical formulation; 

this approach was the choice for the case study of Chapter 4 of this thesis.  

 

2.2.1. 
Static Load Models 

If load response due to some voltage deviation reaches a steady state 

condition so fast that the measuring device is not able to detect the dynamics of the 

load change, it is considered that a static load model is sufficient to represent this 

phenomenon. Static load models express the active and reactive power at any 
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instant of time, depending on the magnitude of load bus voltage and the power 

system frequency at that moment [4], as it is formulated in (2.1). 

𝑃(𝑡) = 𝑓(𝑉(𝑡), 𝑓𝑟𝑒𝑞(𝑡)) 
(2.1)  

𝑄(𝑡) = 𝑔(𝑉(𝑡), 𝑓𝑟𝑒𝑞(𝑡)) 

When there are small or slow variations of voltage and/or frequency, the 

system returns to steady state quickly, and in such cases it is possible to model the 

static load models without loss of generality. 

In the next subsections, the most common formulations of static models 

relating power and voltage variations are presented, using the variables above: 

P (t) is the active power, expressed in watts (W), as a function of the discrete 

time variable t. 

Q (t) is the reactive, expressed in “volt-amperes reactive” (var), as a function 

of the discrete time variable t. 

V (t) is the voltage expressed in volts (V), as a function of the discrete time 

variable t. 

V0, P0 and Q0  are respectively the values of the voltage active and reactive 

powers in steady state before the disturbance or, mathematically speaking, the 

system equilibrium point, i.e. P0 = P (t = 0), Q0 = Q (t = 0) and V0 = V (t = 0). 

 

2.2.1.1. 
Constant Impedance Model (Z) 

The constant impedance model expresses variations in power proportionally 

to the square of the voltage deviations, as it is shown in (2.2): 

 

𝑃(𝑡) = 𝑃0 (
𝑉(𝑡)

𝑉0
)
2

 

(2.2) 

𝑄(𝑡) = 𝑄0 (
𝑉(𝑡)

𝑉0
)
2

 

 

Whenever short-circuits occur upstream the load bus, the latter will measure 

a voltage sag, and if the characteristics of the downstream subsystem behaves like 

a constant impedance load type, there will be a current reduction in the transmission 

and distribution lines. 
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The Brazilian national system operator adopts this load model for static 

simulations (power flow) and dynamic (transient electromechanical) for the 

reactive power, and also to model the active power when the ratio V(t)/V0<0.7 

occurs during one disturbance simulation in the system. In several articles found in 

the literature, including [6], this is considered a too simplistic practice. 

 

2.2.1.2. 
Constant Current Model (I) 

The constant current model expresses variations in power proportionally to 

voltage deviations, as it is shown in (2.3): 

𝑃(𝑡) = 𝑃0 (
𝑉(𝑡)

𝑉0
) 

(2.3) 

𝑄(𝑡) = 𝑄0 (
𝑉(𝑡)

𝑉0
) 

 

Whenever short-circuits occur upstream the load bus, the latter will measure 

a voltage sag, and if the characteristics of the downstream subsystem behaves like 

a constant current load type, there will be no significant current variation in the 

transmission and distribution lines. 

 

2.2.1.3. 
Constant Power Model (P) 

This model describes an idealized indifferent relationship between voltage 

variations and power variations measured from a load bus: 

𝑃(𝑡) = 𝑃0 
(2.4) 

𝑄(𝑡) = 𝑄0 

If a short-circuit upstream the load bus occurs, the latter will measure a 

voltage sag, and if the characteristics of the downstream subsystem behaves like a 

constant power load type, there will be a current increase in the transmission and 

distribution lines, since the power remains close to the pre-disturbance level. 
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This model is considered the most conservative representation of a load 

system in power system simulations, and therefore it is used in many studies whose 

results underestimate system capacity. 

 

2.2.1.4. 
Polynomial Model (ZIP) 

Probably the most popular load model used in steady state and dynamic 

simulations, it consists in a second order polynomial relationship between power 

and voltage deviations. 

𝑃(𝑡) = 𝑃0 [𝑝𝑍 (
𝑉(𝑡)

𝑉0
)
2

+ 𝑝𝐼 (
𝑉(𝑡)

𝑉0
) + 𝑝𝑝] 

(2.5) 

𝑄(𝑡) = 𝑄0 [𝑞𝑍 (
𝑉(𝑡)

𝑉0
)

2

+ 𝑞𝐼 (
𝑉(𝑡)

𝑉0
) + 𝑝𝑝] 

 

This model is a linear combination of the constant impedance, the constant 

current and the constant power models, and its parameters set is subject to the linear 

constraint in 2.6: 

𝑝𝑍 + 𝑝𝐼+𝑝𝑃 = 1 
(2.6) 

𝑞𝑍 + 𝑞𝐼+𝑞𝑃 = 1 

 

The parameters sets to be estimated areppz, pI] and qqz, qI], because 

the parameters pp and qp are obtained due to the constraint (2.6). If it is desired to 

keep the physical meaning of the load model, the parameters domain should be 

range between 0 and 1, and most simulation software only allows these limits, but 

theoretically any real numbers that satisfy (2.6) could be accepted. 

 

Fig. 1 - Summary of P deviations from the operating point P0, as a function of the different static 

load models described above 
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It is also known in the literature, but rarely used in practice, the frequency 

deviations included in the ZIP representation, as it is formulated in (2.7): 

𝑃(𝑡) = 𝑃0 [𝑝𝑍 (
𝑉(𝑡)

𝑉0
)
2

+ 𝑝𝐼 (
𝑉(𝑡)

𝑉0
) + 𝑝𝑝] [1 + 𝐾𝑝𝑓∆𝑓𝑟𝑒𝑞] 

(2.7) 

𝑄(𝑡) = 𝑄0 [𝑞𝑍 (
𝑉(𝑡)

𝑉0
)
2

+ 𝑞𝐼 (
𝑉(𝑡)

𝑉0
) + 𝑞𝑝] [1 + 𝐾𝑞𝑓∆𝑓𝑟𝑒𝑞] 

The parameters sets to be estimated areppz, pI, Kpf] and qqz, qI, Kqf]. 

Kpf and Kqf are additional parameters to the ZIP parameters set, that quantify how 

frequency deviations from the rated value do affect the load, assuming a linear 

relationship. In most cases, the frequency-dependent model is ignored, but it may 

be required for describing the effects on damping of oscillations. 

 

2.2.1.5. 
Exponential Model 

Exponential load model is a static load model that describes a nonlinear 

relationship between power and voltage. In some cases, the dependency between 

reactive power and voltage is more than quadratic, when the ZIP model “loses 

physical meaning”.  

𝑃(𝑡) = 𝑃0 (
𝑉(𝑡)

𝑉0
)
𝛼𝑝

 

(2.8) 

𝑄(𝑡) = 𝑄0 (
𝑉(𝑡)

𝑉0
)
𝛼𝑞

 

 

The parameters sets to be estimated arepp] and qq]. In [7], it is 

described the equivalence between Exponential and ZIP load models’ parameters 

set, based on Taylor series, restricted to small voltage changes. The equations (2.9), 

uses the parameters defined in (2.6) and (2.8): 

𝛼𝑝 ≈
2 ∗ 𝑝𝑍 + 1 ∗ 𝑝𝐼 + 0 ∗ 𝑝𝑃

𝑝𝑍 + 𝑝𝐼 + 𝑝𝑃
 

(2.9) 

𝛼𝑞 ≈
2 ∗ 𝑞𝑍 + 1 ∗ 𝑞𝐼 + 0 ∗ 𝑞𝑃

𝑞𝑍 + 𝑞𝐼 + 𝑞𝑃
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To assess the exponential parameter through active power and voltage data, 

it is straightforward: 

𝑃(𝑡) = 𝑃0 (
𝑉(𝑡)

𝑉0
)
𝛼𝑝

⇒ 𝑙𝑛 (
𝑃(𝑡)

𝑃0
⁄ ) + 𝛼𝑝𝑙𝑛 (

𝑉(𝑡)
𝑉0
⁄ )⇒𝛼𝑝 ≈

𝑃 − 𝑃0
𝑃0

𝑉 − 𝑉0
𝑉0

 

or 

𝑃(𝑡) = 𝑃0 (
𝑉(𝑡)

𝑉0
)
𝛼𝑝

⇒ 𝑙𝑜𝑔 (
𝑃(𝑡)

𝑃0
⁄ ) + 𝛼𝑝𝑙𝑜𝑔 (

𝑉(𝑡)
𝑉0
⁄ )⇒𝛼𝑝 =

log⁡
𝑃
𝑃0

𝑙𝑜𝑔
𝑉
𝑉0

 

(2.10) 

It is also a suitable estimator of the CVR factor that quantifies peak demand 

reduction, as it will be discussed in Chapter 5.  

 

2.2.2. 
Dynamic Load Models 

Dynamic response of loads is a key aspect to stability analysis, particularly to 

represent slow voltage recovery after large system disturbances. A dynamic load 

model aims to describe the load response over time, and relates its output at a given 

instant as a function of the input at the same instant and also the output and input 

from preceding instants.  

𝑃(𝑡) = 𝑓(𝑉(𝑡), 𝑓𝑟𝑒𝑞(𝑡), 𝑡) 
(2.11) 

𝑄(𝑡) = 𝑔(𝑉(𝑡), 𝑓𝑟𝑒𝑞(𝑡), 𝑡) 

 

Dynamic load models may be formulated as a set of differential equations in 

time-continuous domain or a set of differences equations in discrete-time domain. 

Dynamic load models, or dynamic equivalents of grid subsystems, are commonly 

used in power system stability simulations, but this concept is rather wide and 

therefore in [8], definitions and classification were established and Fig. 2 presents 

the classification of the subject, based on:  

 the physical nature of the mode of instability;  

 the intensity of disturbance;  

 the time span necessary to perform the analysis of the results, whether 

from simulation or field measurements. 

DBD
PUC-Rio - Certificação Digital Nº 1812675/CA



Literature review 31 

 

Fig. 2 - Power system stability definitions and classification [8] 

Next, it will be presented a list of models that takes into account the past 

samples of both voltage and power variations, to describe load behavior during and 

after voltage disturbances.  

 

2.2.2.1. 
Exponential Recovery Model 

This load model was proposed by David J. Hill in [9] and it is basically a 

combination of two exponential models (2.8), while one of the exponential load 

models is associated with the transitory response, the other one is associated with 
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the steady state response, including a time constant that models the recovery of the 

power to the steady state.  

According to the David Hill’s conclusions in the seminal paper, this load 

model was motivated by the observed non-linearity from the measurements of 

power supplied to induction motors, heating loads and tap changers after voltage 

steps. Furthermore, this paper has been cited by more than a hundred papers related 

to load modeling, and it consists of a simple choice to include dynamics within a 

mathematical representation, and the forced response to a non-linear model. The 

formulation of this model is shown in: 

𝑇𝑝
𝑑𝑃𝑟(𝑡)

𝑑𝑡
+ 𝑃𝑟(𝑡) = 𝑃0 (

𝑉(𝑡)

𝑉0
)
𝐾𝑝𝑠

− 𝑃0 (
𝑉(𝑡)

𝑉0
)
𝐾𝑝𝑡

 

(2.12) 

𝑃(𝑡) = 𝑃𝑟(𝑡) + 𝑃0 (
𝑉(𝑡)

𝑉0
)
𝐾𝑝𝑡

 

Where: 

 Pr (t): Real power recovery. 

 Po, Vo : Pre-disturbance values of real power and voltage (before the 

voltage change), respectively. 

 Tp : Recovery time constant. 

 Kpss : Steady-state real power voltage exponent. 

 Kpt : Transient real power voltage exponent. 

 P (t): Real power consumption of the load. 

 

Fig. 3 presents an implementation of (2.12) in the discrete-time domain, 

within the Matlab/Simulink development environment. The choice to implement in 

the Simulink the model’s first order differential equation (2.12) as a first order 

difference equation is because, in practice, data measurements are always recorded 

as discrete samples of voltage and current signals, thus the formulation must be 

adapted to treat the data measurements input and evaluate the simulated output. 

This load model will be used in the parameter estimation investigation of the case 

study described in Chapter 5; the data available from the substations were recorded 

with a sampling rate of 1 Hz, so the data set consists in discrete output/input samples 

of a continuous time physical system.  
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The two exponential load models of (2.12) where implemented as 

encapsulated subsystems in the schematics of Fig. 3. The differential operand of 

(2.12) was substituted in the Simulink environment by the Discrete Time Integrator. 

Simulink Design Optimization package provides many parameters estimation tools 

and it was a helpful tool to perform a load modeling investigation following the 

guidelines of the system identification approach. The parameters set to be estimated 

isp [Tp, Kpss, Kpt]. 

 

Fig. 3 - Matlab Simulink implementation of the exponential recovery model (discrete-time 

formulation) 

Fig. 4 presents the input and output signals of the Simulink implementation, 

simulating a voltage step (green line) as the input of the exponential recovery 

model, and the corresponding active power (orange line) resulted from the voltage 

step and the parameters set configured in this simulation. It illustrates the transient 

response (more severe) and the steady state load response. 

 

Fig. 4 – Demonstration of load response of the Exponential Recovery Load Model: after a voltage 

step (green line), at instant 30, that reduces voltage from 1.0 to 0.9 p.u., the load response (orange 

line) reduces from 1.0 p.u. to 0.8 p.u. temporally, and then reaches a steady state, around instant 40, 

remaining in 0.9 p.u. In this example, the load model’s parameters set  is Tp = 10, Kpt=2 and Kpss=1. 
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2.2.2.2. 
Induction Motor 

It is the most common representation for modeling dynamic loads, assuming 

that induction motors are the load devices that predominate in electric power 

systems, with estimated percentages up to 70% of the total energy consumed by the 

load buses. 

Most power electric dynamic simulation software contain induction motor 

models for representing dynamic loads, for the user to set tunable parameters, such 

as the stator impedance parameters (RS, and XS), the rotor (Rr and Xr) and the 

magnetizing reactance (Xm ) of an equivalent induction motor (Fig. 5).  

 

 

Fig. 5 – Equivalent circuit of the induction motor load model 

The following differential equations describe the third order induction motor 

load model: 

 

𝜕2𝜃

𝜕𝑡2
=
𝜕𝜔

𝜕𝑡
= −

1

2𝐻
[𝑇𝑚 − 𝑇𝑒] =

𝜔𝑠 − 𝜔𝑟

𝜔𝑠
 

(2.13) 
𝜕𝜔

𝜕𝑡
= −

1

2𝐻
[(𝐴𝜔2 + 𝐵𝜔 + 𝐶)𝑇0 − (𝐸𝑑

′ 𝐼𝑑 + 𝐸𝑞
′ 𝐼𝑞)] 

𝜕𝐸𝑞
′

𝜕𝑡
= −

1

𝑇′
[𝐸𝑞

′ + (𝑋 − 𝑋′)𝐼𝑑] + (𝜔 − 1)𝐸𝑑
′  

(2.14) 
𝜕𝐸𝑑

′

𝜕𝑡
= −

1

𝑇′
[𝐸𝑑

′ + (𝑋 − 𝑋′)𝐼𝑞] − (𝜔 − 1)𝐸𝑞
′  

𝐼𝑑 =
1

(𝑅2 + 𝑋2)
[(𝑈𝑑 − 𝐸𝑑

′ )𝑅𝑠 + 𝑋′(𝑈𝑞 − 𝐸𝑞
′ )] (2.15) 
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𝐼𝑞 =
1

(𝑅2 + 𝑋2)
[(𝑈𝑞 − 𝐸𝑞

′ )𝑅𝑠 + 𝑋′(𝑈𝑑 − 𝐸𝑑
′ )] 

𝑇′ =
𝑋𝑟 + 𝑋𝑚

𝑅𝑟
 (2.16) 

𝑋 = 𝑋𝑠 + 𝑋𝑚 (2.17) 

𝑋′ = 𝑋𝑠 +
𝑋𝑚𝑋𝑟

𝑋𝑚 + 𝑋𝑟
 (2.18) 

𝐴 + 𝐵 + 𝐶 = 1 (2.19) 

𝑃𝑎𝑔 =
𝑅𝑟
𝑠
𝐼𝑟
2 = 𝑃𝑠ℎ + 𝑃𝑙𝑜𝑠𝑠 ⇒ 𝑃𝑠ℎ =

𝑅𝑟
𝑠
𝐼𝑟
2 − 𝑅𝑟𝐼𝑟

2 (2.20) 

𝑃𝑚𝑜𝑡 = 𝑈𝑑𝐼𝑑 + 𝑈𝑞𝐼𝑞 
(2.21) 

𝑄𝑚𝑜𝑡 = 𝑈𝑑𝐼𝑑 − 𝑈𝑞𝐼𝑞 

 

Where: 

s = "slip", ratio between rotor speed and synchronous speed  r /s (p.u.).  

r –angular position of the rotor regarding the synchronous reference (rad). 

sThe synchronous angular speed (rad/s). 

rrotor angular speed (rad/s). 

Rs e Xs – Stator winding resistance and reactance (p.u.). 

Rr e Xr – Rotor winding resistance and reactance (p.u.). 

Xm – Motor magnetizing reactance (p.u.). 

H – Motor rotor inertia constant. 

A – Coefficient of torque proportional to the square of . 

B – Coefficient of torque directly proportional to  

C – Coefficient of constant torque. 

T0 – Torque in steady state. 

T’ – Transient open circuit time constant (rad). 

Id e Iq – Direct and quadrature axis stator currents. 

Ud e Uq – Direct and quadrature axis stator voltages. 

E’d e E’q – Transient direct-axis and quadrature-axis electromotive force. 

X’ – Transient reactance of the induction motor.  

Pag – Active power transferred by the gap to the rotor.  

Psh – Mechanical power transferred to the shaft. 
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The equations (2.13) are identical, describing the acceleration ratio of the 

rotor due to the imbalance between the electromagnetic and a mechanical torques 

of the motor. The equations (2.14) and (2.15) represent the dynamics of the rotor 

circuit, which express the decay of the magnetic flux of the rotor. The equation in 

(2.16) characterize the decay of the transients of the rotor when the stator is at a 

vacuum. The equation (2.20) represents the active power transferred by the rotor 

gap and its relation to the mechanical power transferred to the axis and the loss in 

rotor resistance, while (2.21) presents the active and reactive power models Pmot 

and Qmot as a function of the direct-axis and quadrature. 

It is necessary to use numerical integration methods to solve these ordinary 

nonlinear differential equations, such as Euler or Runge-Kutta. The parameters set 

to be estimated isp [Rs, Xs, Xm, Rr, Xr, H, A, B]. 

 

2.2.3. 
Composite Load Models 

Composite load models combine both static and dynamic load components 

into a single aggregated load model. In [10], the authors present results for 

parameter estimation of the following combinations: 

ZIP + Induction Motor 

ZIP + difference equations 

Exponential + Induction Motor 

Exponential + difference equations 

 

Undoubtedly, the most common is the ZIP + IM, depicted in Fig. 6, used in 

[12]-[14].  

 

Fig. 6 - Schematic Diagram of the ZIP + Induction Motor 
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This combination of the equations from sections 2.2.1.4 and 2.2.2.2, 

introduces an extra parameter, that express the percentage Kpm of the contribution 

of the induction motor component to the load model, and naturally the contribution 

of the static part would be 1- Kpm. 

In [15], the authors proposed to represent an Active Distribution Networks 

(ADN), based on a combination of different load model components, formulating 

it as a seventh-order nonlinear state space format. Fig. 7 illustrates this grey-box 

approach, that combines both a “physical meaning” modeling and a purely 

mathematical modeling. 

 

Fig. 7 – ADN equivalent diagram [15] 

The load is represented by the PL+jQL flow, where its corresponding 

composite load model ZIP+IM diagram is already depicted in Fig. 6, using the 

article`s notation: 

 

𝜕𝐸𝑚
′

𝜕𝑡
=

1

𝑇𝑑𝑚
′ [−

𝑋𝑚
𝑋𝑚′

𝐸𝑚
′ + (

𝑋𝑚 − 𝑋𝑚
′

𝑋𝑚′
)𝑉 cos 𝛿𝑚] (2.22) 

𝜕𝛿𝑚
𝜕𝑡2

= 𝜔𝑚 − 𝜔𝑠 − (
𝑋𝑚 − 𝑋𝑚

′

𝑋𝑚′
)

𝑉

𝑇𝑑𝑚
′ 𝐸𝑚′

sin 𝛿𝑚 (2.23) 

𝜕𝜔𝑚

𝜕𝑡
= −

1

𝐻𝑚
(
𝐸𝑚
′ 𝑉

𝑋𝑚′
sin 𝛿𝑚 + 𝑇𝑚) (2.24) 

𝑃𝐿 = 𝑃𝑍𝐼𝑃0 [𝑝𝑍 (
𝑉

𝑉0
)
2

+ 𝑝𝐼 (
𝑉

𝑉0
) + 𝑝𝑃] − (

𝑉

𝑋𝑚′
𝐸𝑚
′ sin 𝛿𝑚) (2.25) 

𝑄𝐿 = 𝑄𝑍𝐼𝑃0 [𝑞𝑍 (
𝑉

𝑉0
)
2

+ 𝑞𝐼 (
𝑉

𝑉0
) + 𝑞𝑃] − (

𝑉2

𝑋𝑚′
−

𝑉

𝑋𝑚′
𝐸𝑚
′ cos 𝛿𝑚) (2.26) 
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The converter-connected generator is composed of a third order synchronous 

generator model that interfaces with the grid via a back-to-back full converter model 

[16], [17]. The real power flow through the converter is balanced via the DC-link 

(the capacitor linking between inverter and rectifier), as it can be seen in the 

diagram of Fig. 8. 

 

Fig. 8 - Back-to-back full converter model 

The dynamic parts of the converter-connected generator can be described by: 

𝜕𝐸𝑔
′

𝜕𝑡
= −

1

𝑇𝑑𝑔
′ [𝐸𝐹𝐷 − 𝐸𝑔

′ − (𝑋𝑔 − 𝑋𝑔
′ )𝐼𝑑] 

= −
1

𝑇𝑑𝑔
′ [𝐸𝐹𝐷 − 𝐸𝑔

′
𝑋𝑔

𝑋𝑔′
+ (

𝑋𝑔 − 𝑋𝑔
′

𝑋𝑔′
)𝑉 cos 𝛿𝑔] 

(2.27) 

𝜕𝜔𝑔

𝜕𝑡
=

1

𝐻𝑔
(𝑇𝑚 − 𝑇𝑒 − 𝐷𝜔𝑔) (2.28) 

𝜕𝛿𝑔

𝜕𝑡
= 𝜔𝑔 (2.29) 

𝜕𝑉𝐷𝐶
𝜕𝑡

=
1

𝐶𝑉𝐷𝐶
(𝑉𝑑𝑔𝐼𝑑𝑔 + 𝑉𝑞𝑔𝐼𝑞𝑔 − 𝑉𝐷𝐺𝐼𝐷𝐺 − 𝑉𝑄𝐺𝐼𝑄𝐺) (2.30) 

𝑃𝐺 = (
𝑉

𝑋𝑔′
𝐸𝑔
′ sin 𝛿𝑔) + 𝑉𝐷𝐶𝐼𝐷𝐶 (2.31) 

𝑄𝐺 = (
𝑉

𝑋𝑔′
𝐸𝑔
′ cos 𝛿𝑔 −

𝑉2

𝑋𝑔′
) + 𝐾𝑞𝑉𝐷𝐶𝐼𝐷𝐶 (2.32) 

 

The generic nonlinear state space model of the system is given by 
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𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢 + 𝑓(𝑥) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 = 𝑔(𝑥) 

(2.33) 

 

Then, the input, output and state vector are defined as: 

𝑥 = [𝐸𝑚
′ , 𝛿𝑚, 𝜔𝑚, 𝐸𝑔

′ , 𝜔𝑔, 𝛿𝑔, 𝑉𝐷𝐶]
𝑇

 

𝑢 = [𝑉,𝜔𝑠] 

𝑦 = [𝑃𝐺 − 𝑃𝐿 , 𝑄𝐺 − 𝑄𝐿] 

(2.34) 

 

And the state space matrixes are: 

A= 

 −𝑋𝑚
𝑇𝑑𝑚
′ 𝑋𝑚

′
 0 0 0 0 0 0 

0 0 1 0 0 0 0 

−𝑉

𝐻𝑚𝑋𝑚′
sin 𝛿𝑚 0 0 0 0 0 0 

0 0 0 
−𝑋𝑔

𝑇𝑑𝑔
′ 𝑋𝑔

′
 0 0 0 

0 0 0 
−𝑉

𝐻𝑔𝑋𝑔′
sin 𝛿𝑔 

−𝐷

𝐻𝑔
 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 0 
𝐾1
𝐶𝑉𝐷𝐶

 

 

 

(2.35) 
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B= 

 𝑋𝑚
′ − 𝑋𝑚
𝑇𝑑𝑚
′ 𝑋𝑚

′
cos 𝛿𝑚 0 

𝑋𝑚
′ − 𝑋𝑚

𝑇𝑚
′ 𝐸𝑚

′ 𝑋𝑚
′
sin 𝛿𝑚 -1 

0 0 

𝑋𝑔−𝑋𝑔
′

𝑇𝑑𝑔
′ 𝑋𝑔

′
cos 𝛿𝑚 0 

0 0 

0 0 

0 0 

 

 

(2.36) 

 

C= 

 𝑉

𝑋𝑚
′
sin𝛿𝑚 0 0 

𝑉

𝑋𝑔
′ sin 𝛿𝑔 0 0 𝐼𝐷𝐶  

𝑉

𝑋𝑚
′
cos 𝛿𝑚 0 0 

𝑉

𝑋𝑔
′
cos𝛿𝑔 0 0 𝐾𝑞𝐼𝐷𝐶  

 

 

(2.37) 

 

D= 

 −𝑃𝑍𝐼𝑃0 (𝑝𝑍
𝑉

𝑉0
2 + 𝑝𝐼

1

𝑉0
) 0 

−𝑄𝑍𝐼𝑃0 (𝑞𝑍
𝑉

𝑉0
2 + 𝑞𝐼

1

𝑉0
) −

𝑉

𝑋𝑔
′
−

𝑉

𝑋𝑚
′

 0 

 

 

(2.38) 

 

f(x)= 

 0 

0 

0 

𝐸𝐹𝐷
𝑇𝑑𝑔
′  

0 

0 

0 
 

 

(2.39) 

 

g(x)= 
 −𝑃𝑍𝐼𝑃0(𝑝𝑃) 

−𝑄𝑍𝐼𝑃0
(𝑞𝑃) 

 

 
(2.40) 
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2.2.4. 
Black-box Models 

Any load model that is not constructed according to physical laws can be 

classified as black-box models. State space representation of dynamic systems, 

differential and difference equations also can be included in this definition. 

In the bibliography of load models published in [5], there are a few black-box 

formulations. From this reference, it was extracted some examples of dynamic load 

models without physical meaning, which is another way to say that they are purely 

mathematical expressions. In (2.22), using the same notation presented in the 

original reference [18], this load model was called by “Computer-based On Line 

Model” 

𝑃(𝑡) =∑𝑎𝑖𝑃(𝑡 − 𝑖)

𝑛𝑝

𝑖=1

+∑𝑏𝑖𝑉(𝑡 − 𝑖)

𝑛𝑣

𝑖=0

+∑𝑐𝑖𝑓𝑟𝑒𝑞(𝑡 − 𝑖)

𝑛𝑓

𝑖=0

+ 𝑒(𝑡) (2.41) 

 

Where: 

 t is the discrete time index. 

 P(t-i) are observable load response outputs, expressed in p.u. 

 V(t-i) are observable voltage inputs, expressed in p.u. 

 freq(t-i) are observable frequency inputs, expressed in p.u. 

 e(t) are unobservable output disturbances, a zero mean sequence of 

Gaussian variables. 

 ai, bi, ci are regression coefficients of P, V and freq  

 np, nv and nf are the regression orders of P, V and freq. 

According to the system identification core definitions, that will be presented 

later in section 3.1 (Table 1), a model set M = {mk} could be composed of different 

models characterized by different regression coefficients and orders, defining a 

search space of parameterized model structures. These elements could also be 

parameters in a system identification procedure [21], [36]. 

𝑚𝑘 = [𝑛𝑝𝑘, 𝑛𝑣𝑘 , 𝑛𝑓𝑘] (2.42) 

 Where k is an index to identify an item among the model set. The total 

numbers of parameters for each mk is npk+nvk+nfk, and the parameter set to be 

estimated is: 
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𝜃𝑝(𝑚𝑘) = [𝑎1, 𝑎2, … , 𝑎𝑛𝑝𝑘 , 𝑏1, 𝑏2, … , 𝑏𝑛𝑣𝑘,𝑐1, 𝑐2, … , 𝑐𝑛𝑓𝑘] 
(2.43) 

  

This the most general formulation of discrete time domain dynamic systems 

(with two inputs). Using the Z transform [19], the equation (2.41) can be express as 

discrete time transfer functions, and manipulating it using Tustin, Forward or 

Backward transformation, it can be represented as a continuous time transfer 

function. In section 3.2, this equivalence will be developed. 

 

2.3. 
Load modeling approaches 

Since the cost of installing measuring devices have shrank in the last decades, 

and the data storage capabilities have increased greatly, it became more feasible to 

estimate more accurate load representations, improving the quality and upgrading 

load behavior for the different power systems simulations. 

 

2.3.1. 
Component-based load modeling 

The component or knowledge-based approach builds load model upon 

different load classes (such as residential, industrial or commercial classes), 

assuming that each class has similar load compositions and characteristics. It is also 

needed to assess the percentages of each class that comprises the aggregated load 

model, which is the whole demand supplied to a load bus bar. And last, but not 

least, the typical characteristic of each load class, or component, determined 

through a set of parameters, relating P and Q with respect to voltage magnitude and 

frequency. Typical components that may be assumed to compose residential load 

classes are air-conditioning, electronics, lamps and electric showers, whereas in 

industrial load classes the small and large induction motors are the most 

representative components. Each of these components may have different model 

structures, or can share the same structure with different parameters.  

This approach is not able to take into account seasonality, or random weather 

variations uncorrelated with season, unless several scenarios are studied to estimate 

different load component characteristics, or variation in the percentages of 

components comprised in a load class. It has become more obvious that load 
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composition varies from one substation to another, and the simplification in 

assuming that all load classes can be represented in the same way, with the same 

components and the same percentage is likely to fail to represent load behavior with 

accuracy. 

Once this component-based approach is built upon survey data from end use 

consumers, or previous assumptions based on other information, such as 

social/economical characteristics of the area, it is pretty obvious that it is necessary 

to update the percentages of components within the load class, and the parameters 

from the components characteristics that will vary over the hours, days and months. 

 

2.3.2. 
Measurement-based load modeling 

Obtaining an accurate load model, whose mathematical structure is based on 

physical laws may be important to gain knowledge and insight into the behavior of 

the load response, associating parameters to specific parts of the real systems, but 

the complexity of the aggregation of an enormous quantity of electric devices 

consuming energy varying with time seems to be not feasible to identify such a 

physical model (white box [21]). System identification methods are the best choice 

for estimation of unknown parameters from more flexible mathematical structures 

that does not need necessarily physical interpretation. 

The main idea of measurement-based load modeling is to select typical input-

output system data, which means select active and reactive power data (outputs), 

and voltage data (input), disturbed from steady state by sags caused by short-circuits 

originated outside the distribution system. The next step is to estimate a set of 

parameters for a transfer function that better fits these input-output data. It is desired 

a structure as simple as possible, with a minimum number of parameters, that best 

fits measured data that expresses real load behavior.  

If load modeling main goal is to develop a generic load model, aiming to 

represent most typical disturbances used in stability simulation studies, load model 

parameter estimation needs a representative set of voltage data, and their associated 

active and reactive power data. Selecting this data properly is a key factor of this 

task. It is not feasible to achieve a model representation that simulates any 
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occurrence, at any operational state, but it is possible to cluster different operational 

conditions to estimate separately different set of parameters for each cluster of data. 

A different approach is when load modeling main goal aims to reproduce, for 

example, a particular occurrence that has impacted the system within electric power 

simulation software. In this case, the best register for parameter estimation is the 

voltage sag that caused active and reactive power deviations from its initial 

operational point. All data set shall be recorded for a time long enough to cover 

from system pre-disturbance state until post-fault steady state has been reached. 

Fig. 2 specifies time frames for different purposes, consequently indicates the 

amount of post fault data to be used for each of the particular phenomena.  

 

2.4. 
Summary of the chapter 

In this chapter it was presented a literature review regarding load modeling 

concepts and definitions. It was also presented the most used load models classified 

by their static, dynamic or a combination of both. In [2], the international survey 

found out that the most used load models are the ZIP, presented in 2.2.1.4, and the 

exponential, presented in 2.2.1.5; according to the same referenced survey, for 

steady state analysis, the constant power, presented in 2.2.1.3, is the most widely 

used; for dynamic studies, the exponential was reported to be the most used, but the 

induction motor load model representation, presented in 2.2.2.2 , is also commonly 

used, with or without a static ZIP in parallel, characterizing a composite load model 

representation, as described in section 2.2.3. 

The choice of the load model structure could be made a priori, or a posteriori 

[10], [21]. The industry acceptance or the availability in established simulation 

software may also guide the a priori choice of the load model structure. 

For measurement-based load modeling, some assumptions can be taken to 

achieve a representation good enough for the purpose of your study. A good quality 

model must be able to fit data measurements accurately, but it also should not be 

too complex, for example with a number of parameters too big. This is the reason 

why the induction load motor is rarely used above its third order representation, 

thus neglecting some dynamics that will not influence much the equivalent 

representation. It is also acceptable to use linearized models that can facilitate 
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parameter estimation, and model implementation. In the next chapter, the 

measurement-based approach will be described in more details, and how the 

proposed methodology was built upon the system identification theory, using field 

data measurements to estimate load models for static and dynamic simulations. 
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3 
Measurement-based Load Modeling Methodology

The compromise between parsimony and flexibility is at the heart of the 

identification problem 

Lennart Ljung 

 

 

 

A typical motivation for load modeling estimation is when a bulk power 

system is connected to distribution system(s) owned by different companies. These 

companies hardly ever are able to get detailed information of each other's network 

topologies, but this can be solved with a measurement device installed at the point 

of common coupling between these different systems. According to the data storage 

capabilities and the sampling rate of this device, it is possible to approximate the 

complex smaller systems behavior into equivalent systems, whose parameters can 

be estimated periodically (and even continuously updated) with the data recorded 

in the frontier of these two systems. 

The proposed load modeling methodology in this work is an application of 

the measurement-based load modeling, inspired by the system identification 

procedure. This chapter aims to describe the main tasks involved in obtaining 

mathematical descriptions from radial subsystems connected to larger systems. The 

following chapters (4 and 5) will report successful applications of the proposed 

methodology.  

Section 3.1 reviews some of the main concepts that were used to build the 

framework of the proposed methodology, which is scrutinized in more details in 

section 3.2.  

 

3.1. 
System Identification Approach 

It is reasonable to assume that a mathematical model can translate accurately 

certain features of the real world, whereas it fails to represent other aspects that, by 
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their turn, may not be important to the desired analysis. The modeling goal, or at 

least the purpose of it, should be “usefulness”, instead of “truth” [21]. 

The measurement-based load modeling is essentially a system identification 

task that builds mathematical models based on real input/output data sets from a 

system of interest. In this context, a system can be defined as an object from external 

stimuli (input signals or disturbance) that produces observable responses (output 

signals). Mathematical structures such as differential equations, difference 

equations, state space models, each with their parameter sets, are models that 

describe causal relationships between signal inputs and outputs. 

 

3.1.1. 
System Identification concepts 

The following steps summarize the system identification procedure for load 

modeling: 

• The selection of representative input-output system data 

• Data treatment for estimation 

• The choice of an appropriate model structure  

• The estimation of the load model parameters  

• The validation of the load model  

 

The terminology used to describe process modeling is not completely 

standardized, and therefore it is necessary to define some concepts that are going to 

be useful throughout this thesis. To aid the properly description of the core of this 

methodology, it will be reviewed some terminology in Table 1 to formulate the 

concepts in a more rigorous way. 

Table 1 – System Identification core concepts [22] 

Concept Symbol Details 

Model m This is the mathematical relation between 

observed quantities, which should be able to 

predict the properties or behaviors of a 

system, based on past data. 

Parameters set  This is a generic vector of variables contained 

in the formulation of each model m. 

Therefore, a model realization could be 

formulated as m( 
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Concept Symbol Details 

Model Set M This is the collection of available or typical 

models mk used to describe a particular 

system, or a class of systems (such as Linear 

Time-Invariant systems, as discussed in 

2.2.4). 

Complexity C This is a way to compare the size of each of 

the models m contained in M; the most used 

indicator of the model’s complexity is the 

total number of the parameters set i, i.e., the 

size or the order of the model (as discussed in 

2.2.4). 

Estimation Data Ze
N The aim is to find a parameter set , for a 

model m, based on the estimation data set Ze 

of size N, which minimizes the differences 

between the simulated and the measured 

outputs. 

Validation Data ZV This is an approach to ensure the 

generalization of the model description: the 

estimated model, “trained” by Ze, fits well 

when simulated with validation data ZV.  

Model Fit Fobj(m(), Z) This is the objective function that is 

formulated to quantify how close the outputs 

predicted by the estimated model are from the 

outputs observed in the past. It is usually a 

scalar value that evaluates error indexes, such 

as the Mean Squared Error (MSE), or the 

Mean Absolute Error (MAE). 

 

Fig. 9 illustrates some of the concepts listed in Table 1. In the schematic 

diagram (a), it is shown that voltage data is the same input for either active power 

load model or reactive power load model. The models mp and mq could have the 

same mathematical structure (for instance, both ZIP load models), but different 

parameters sets p and q. The diagram (b) illustrates the concept of a model set M 

that contains the different models for active power: mp1, mp2 and mp3. One of these 

models could be considered better than the others in a nonparametric approach (one 

of the possible model selection options in a system identification problem), or they 

could be tested through a parameter estimation procedure, and the choice for the 

best load representation could be the best model fit, regarding Table 1, or the best 

model fit using the validation data. 
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(a) (b) 

Fig. 9 – Schematic diagrams of the system identification concepts: the diagram (a) shows the concept 

of voltage data as the input of models mp and mq, parameterized respectively by p and q, whose 

outputs are respectively the active power P(t) and the reactive power Q(t). The diagram (b) 

represents a models set M containing three different models (and their respective parameters sets) 

to represent the active power P(t) as a function of voltage input V(t). 

 

3.2. 
Proposed Load Modeling Implementation 

This section describes the proposed load modeling methodology. Since it is 

inspired by the measurement-based approach, it should be pointed out that this 

methodology depends on data measurements from a system downstream the point 

of data acquisition. Fig. 10 illustrates the placement of a disturbance recorder (DR), 

installed at low side of a transformer at the point of common coupling (PCC) 

between transmission (upstream system) and distribution systems (downstream, 

usually strictly radial, system).  

It is mandatory to separate the set of data useful to estimate equivalent models 

of downstream systems. From now on, it is going to be defined the concept of event 

such as the short-circuits, scheduled voltage control actions or other types of state 

system changes that lead to load deviations from stable points of operation in the 

monitored bus bar. The event also has to be originated upstream the DR placement, 

i.e., in the bulk power system. The reason is that a disturbance originated 

downstream would change the network topology of the system of interest. 

 

Fig. 10 - Typical placement of disturbance recorders for distribution load model 

DBD
PUC-Rio - Certificação Digital Nº 1812675/CA



Measurement-based Load Modeling Methodology 50 

Other criteria that are common to both case studies, in order to select the 

useful and representative active and reactive power curves to estimate the load 

model best parameters, are listed below: 

 The duration of the voltage deviation must be large enough, according to the 

time frame of the analysis. 

 The amount of voltage deviation must be “significant”, which means it must 

be large enough to cause a load response that is also “significant”. 

 Pre-disturbance samples should be used for load model’s initialization (P0, 

Q0, V0). 

 The downstream system to be modeled must be radial. 

 The data must not have any interruption. Missing values should be treated 

properly. 

 

The diagram of Fig. 11, extracted from [23], represents the framework used 

in Chapter 4 case study, and the general aspects of it can also describe most of the 

steps used in the case study of Chapter 5. The diagram presents Power Quality (PQ) 

data measurements of voltage, active and reactive power that were recorded by 

Intelligent Electronic Devices (IED) and stored into a PQ database [24]. Then, the 

data sets are separated into “training data” (N events), for parameter estimation and 

“validation data” (Total_Selected_Records-N events), to assess the extent of 

modeling quality, i. e. if the parameters set obtained after fitting the model to the 

estimation data is able to generalize the validation data. 
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Fig. 11 - Load modeling schematic procedure 

The load model structure was selected a priori in the case studies described 

in Chapters 4 and 5. There are many possible reasons for the decision to not test 

exhaustively all the reviewed load models of chapter 2. In [21], regarding model 

structure selection: “The choice must be based both on an understanding of the 

identification procedure and on insights and knowledge about the system to be 

identified.” which implicitly grants the analyst freedom to determine the criteria for 

the selection procedure. The type of model set (linear/nonlinear, physical/black-

box/neural networks…) and the size can be tested through an iterative process, or 

the choice simply may be for the availability of the model structure in the target 

software simulation. In [26], the authors emphasize that it should be employed “the 

smallest possible number of parameters” (parsimony principle). 

In chapter 4, a black-box model was chosen because of its simplicity (small 

complexity, as defined in Table 1) and also due to the control theory background 

that helped defining the search space domain and its constraints. In chapter 5, the 

exponential recovery model was chosen because the theoretical response to input 

step yields a transient and a steady state output that is suitable to the purpose of the 

case study.  

The parameter estimation methods can be analytical or based on the 

optimization of an objective function. Algorithms like nonlinear least squares, 

gradient-based, vector fitting and maximum likelihood can be employed, as well as 

artificial intelligence techniques such as neural networks, fuzzy logic, simulated 

annealing and genetic algorithms [27]-[36].  
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It worthwhile to state that, during the parameter’s estimation procedure, more 

than one technique can be used to search for the best model fit. The Matlab’s 

Simulink Optimization Design is a toolbox that aids such a task, if one implements 

the selected model structure into this simulation application. 

 

3.2.1. 
Data treatment 

Data treatment involves the observation and selection of system input/output 

signals, the post-processing, when needed, and if the number of events are large 

enough, the separation between training and validation data. Filtering of data, 

removing outliers and the choice of data segments (total samples of an event) should 

be considered in this procedure step. 

In chapter 4, the data consist in instantaneous samples of three phase voltages 

and currents, recorded at sampling rate of 1920 Hz, before, during and after large 

voltage variations, i.e., whenever RMS voltage dropped below 0.9 p.u.. These data 

are processed by a Discrete Fourier Transform (DFT) to obtain voltage and current 

phasors at fundamental frequency (thus filtering harmonic components), allowing 

the evaluation of active and reactive power RMS values. In chapter 5, the data 

consist in RMS voltage, active and reactive power recorded at sampling rate of 1 

Hz during one year, and the events selection criteria separates, through an algorithm 

ad-hoc, the voltage steps performed by transformers with tap changers.  

 

3.2.2. 
Model selection 

A load model structure mk (Table 1) is a mathematical mapping of 

input/output data, whether it is a SISO model or a Multi-Input Multi-Output 

(MIMO). One of the key issues on system identification task is whether to choose 

an appropriate model structure a priori or direct estimate of the model by computing 

the impulse response of the system or by correlation analysis [26]. The first one is 

known as parametric method and consists on specifying a mathematical model that 

can be parameterized to fit a set of training data. The second one is known as 

nonparametric method, and do not assume or impose any model structure [21]. 

Fourier analysis, correlation analysis and frequency-response analysis are examples 
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of nonparametric methods for model selection. This work adopted the parametric 

method. 

Model selection can be also the process of choosing a mathematical 

description mk of a phenomenon among a set of model structures M, as defined in 

Table 1. This choice can be oriented by some heuristic, previous knowledge from 

specialists, other known physical models, or even by a mixture of different 

components. After the specification of a model structure, it should be estimated the 

parameters set  that best approximate the system output to the data output 

observed. This is achieved by minimizing the mismatch between estimation data 

and the simulated data. It is also desirable to obtain a model among a set of models 

that is not to complex. The equation (3.1) illustrates that a good model estimative 

mk should find m within M as “simple” and accurate as possible, which means that 

small order models are preferable than the more complex ones.  

𝑚𝑘 = argmin[𝐹𝑜𝑏𝑗(𝑚𝑘(𝜃), 𝑍𝑒
𝑁) + 𝑓(𝐶(𝑚𝑘),𝑁)] 

where: 𝑚𝑘 ∈ 𝑀  
(3.1) 

 

3.2.3. 
Parameter Estimation 

The technique chosen to estimate load model parameters was Genetic 

Algorithm (GA), which is a heuristic-based method inspired on natural selection 

and biological evolution, described by Charles Darwin in his Evolutionary Theory. 

The common underlying idea behind GA is: a random set of feasible vector-

solutions is generated and structured in real-valued vectors. The whole set of these 

structured vectors is called population and each vector is called an individual, or a 

chromosome. Individuals that are well evaluated by a fitness function or the 

objective function to be minimized, formulated in (3.2), are more likely to persist 

between algorithm iterations (generations’ evolution).  

Fitness evaluation of each individual allows a way to identify the best 

solutions. The individuals that give best solutions receive higher scores and are 

most likely to “survive” through generations (iterative process), because the best 

individuals have a higher probability of being selected and used to form next 

generation of population. A part of the individuals within a population, in a given 

generation, is recombined (crossover), and another part is modified in one of its 
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elements (mutation). Every generation is created through selecting, recombining 

and mutating individuals from the previous generation. 

Through iterative process, the fitness of the best chromosome improves as 

well as the total fitness of the population as a whole. The population "evolves" 

toward a quasi-optimal solution, over a finite number of generations or until a 

convergence tolerance has been reached. GA can be applied to solve a variety of 

optimization problems that are not well suited for standard optimization algorithms, 

including those in which the objective function is discontinuous, non-differentiable, 

stochastic or highly nonlinear [37]. 

The objective function to be minimized is the relative mean square error 

between measurements and the output of load models, as shown in (3.2)). 

𝐹𝑜𝑏𝑗(𝜃𝑝) =
1

𝑁
∑

1

𝑛
∑(

𝑃𝑚𝑒𝑎𝑠(𝑒𝑣, 𝑡) − 𝑃𝑐𝑎𝑙𝑐(𝑒𝑣, 𝑡, 𝜃)

𝑃𝑚𝑒𝑎𝑠(𝑒𝑣, 𝑡, 𝜃)
)

2𝑛

𝑡=1

𝑁

𝑒𝑣=1

 

(3.2) 

𝐹𝑜𝑏𝑗(𝜃𝑞) =
1

𝑁
∑

1

𝑛
∑(

𝑄𝑚𝑒𝑎𝑠(𝑒𝑣, 𝑡) − 𝑄𝑐𝑎𝑙𝑐(𝑒𝑣, 𝑡, 𝜃)

𝑄𝑚𝑒𝑎𝑠(𝑒𝑣, 𝑡, 𝜃)
)

2𝑛

𝑡=1

𝑁

𝑒𝑣=1

 

 

Where: 

 Fobj – the objective function to be minimized. 

 p and q are active and reactive load model parameters’ vectors, 

respectively. 

 N – the total of events recorded, typically an event is any “significant” 

load input deviation (the “significant” depends on the load model 

purpose, because the expected ). 

 ev – the variable that indexes each of the N events. 

 n – the total of samples recorded during an event. 

 t – the variable that indexes the order of the samples. 

 Pmeas(ev,t), Qmeas(ev,t) – active and reactive power data measured for 

the event ev, with n samples. 

 Pcalc(ev,t,p), Qcalc(ev,t,q) – active and reactive power data calculated 

by any load model structure for the event ev, with n samples, and 

parameterized by p and q. 
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3.2.4. 
Model Validation 

After parameter estimation using the training data, the model validation 

consists in the assessment of model quality, using a different data set (validation 

data set). This is achieved simulating the validation data inputs into the estimated 

load model, and comparing the simulated outputs with the measured outputs from 

the validation data set, whether visually by plotting simulated and measured 

outputs, or by comparing objective functions values.  

It is expected that the overall error from validation data simulation will be 

greater than the training data, but besides the verification if the model fits well 

observed model outputs, the real goal is to achieve a good enough model for the 

intended purpose, which means that the accuracy depends on the model usage and 

the importance of it within the overall analysis of simulation. 

A more rigorous analysis test, from a statistical point of view, relies on the 

residual’s analysis, in order to relate residuals to random error, which essentially 

implies that the model fit is well explained by predictor variables and the nature of 

unpredictability is due to noise, or any other inherent real-world randomness. 

Residual plots for good model fits presents zero mean data and small variance. 

 

3.3. 
Summary of the chapter 

This chapter presented an overview of the load modeling proposed 

methodology, which adopted the measurement-based approach and system 

identification concepts. Voltage and demand data are essential to build an 

equivalent representation of complex electrical network topologies into single 

subsystems connected to a bigger system. The guidelines of the system 

identification procedure are flexible enough to combine different techniques in each 

step, and Matlab is very helpful since its toolboxes contain probably most of the 

most common algorithms for model selection, parameter estimation and graphical 

analysis. 

The concepts presented in this chapter were applied in the case studies 

described next (chapters 4 and 5); although the purpose of the load modeling in both 

cases are different, the steps of the system identification procedure are pretty much 
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the same. The selection of model structures was made a priori and the graphical 

results have shown negligible mismatches between model output observations and 

simulations.  

Therefore, the system identification can be understood as the framework for 

estimating load models, neither depending on the choice of estimation parameters 

technique, nor if the model selection followed a parametric or nonparametric 

investigation. The main steps should be followed, but on each one of them, there 

are more than one option that can be used. This makes the proposed methodology 

flexible enough to allow the choice of different parameter estimation techniques for 

different modeling problems, different model selection approaches, and even 

different signal processing techniques.  

Nevertheless, there is an order to perform the steps required in the search of 

accurate models, and the answer for this particularly complicated philosophical 

aspect (what makes a good model? What kind of scenarios this model is suitable, 

and what are its limitations?), is always associated to the type of simulation that 

expects to use one or more load models that represent, as close as possible, complex 

systems into equivalent subsystems.
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4 
Load Modeling for Dynamic Simulation – A Case Study

This chapter will present a case study of the load modeling methodology 

proposed in chapter 3 for dynamic simulation. The data used was obtained from 

measurements due to large voltage variations from a Brazilian transmission utility. 

The purpose of the study was to perform dynamic simulations, using a Brazilian 

software, representing distribution systems with measurement-based load models. 

This software can perform electromechanical transient analysis, using input data 

from the topology of the interconnected transmission system of Brazil published by 

the national operator system. The distribution systems are not represented in detail 

within the input data published by the national operator system, and the 

measurement-based load modeling methodology proposed in chapter 3 provides a 

systematic procedure to develop equivalent distribution systems representations. 

In this chapter, section 4.1 presents a thorough description of the case study, 

section 4.2 describes the signal processing techniques involved in filtering voltage 

and current instantaneous samples into positive sequence components of voltage, 

active and reactive power, since electromechanical transient analysis assumes the 

system is balanced. Section 4.3 presents a load modeling structure that has no 

physical meaning, and thus it is designed to cover a wider range of load response 

behaviors. Section 4.4 details how the parameter estimation was solved by the 

algorithm genetic optimization procedure, separating two practical approaches to 

determine the estimation goals: the first one (subsection 4.4.1) aims to find a 

parameters set, that is a load model, as accurate as possible to describe load response 

from a set of disturbances, recorded in different scenarios; the second approach 

focus in describing a single contingency, in order to reproduce a special event of 

interest. Finally, section 4.5 shows the transient electromechanical simulation of the 

effect of a temporary fault in the transmission system, observing the frontier 

between the transmission system and a distribution system that contains generation 

within its topology. 
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4.1. 
Case Study Description 

Fig. 12 presents the grid of the case study described in this chapter. The green 

lines represent 230 kV transmission system and red lines represent 500 kV. Black 

triangles represent hydraulic generating units and black dots indicate power quality 

monitors installed in substations, on both sides of 230-69 kV.  

 

Fig. 12 - A power electric grid diagram from a northeastern Brazilian utility 

The low-voltage side of substation 230-69 kV transformers is considered the 

ideal place for collecting load data [25]. Intelligent Electronic Devices (IED), 

spread over the transmission grid, send data through an Ethernet network to a 

centralized server. Using suitable criteria to select typical disturbances (events) that 

are more likely to occur in a particular load bus, load models that cover the most 

common scenarios can be estimated to simulate electromechanical transients in a 

more realistic way.  

Using the proposed methodology, presented in chapter 3, many distribution 

systems were modeled, and some results will be shown in this chapter. However, 

there is a particular one that provided the most remarkable insights about the load 
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model structure chosen. Fig. 13 reveals a schematic diagram for this particular 

distribution system that is going to be used in this case study. It is an Active 

Distribution Network (ADN), although the generators are thermoelectric 

generators, different from the example that motivated the load model formulated in 

section 2.2.3. The results of this system will be presented in section 4.4. 

 

Fig. 13 – Case study measurement setup 

 

4.2. 
Data treatment 

Since our main goal is to explore a causal relationship between power and 

voltage, it is necessary to perform some signal processing and transformation. The 

load models must be implemented into electromechanical transient software, and 

the latter evaluates positive sequence networks, thus it is necessary to perform 

Fortescue Transformation on current and voltage phasors data sets. Therefore, 

positive sequence components of active and reactive power are the output data 

selected for the dynamic load model case study, while positive sequence 

components of voltage are the input data for the dynamic load model. This section 

describes this signal processing that transforms instantaneous voltage and current 

data samples into voltage, active and reactive power positive sequence components. 

Instantaneous three phase voltages and currents must be post-processed by 

means of a Discrete Fourier Transform (DFT) [11], based on the sliding window 

algorithm, for obtaining complex voltages and currents phasors. So, these signals 

are transformed into zero, positive and negative sequence components through 

Fortescue transform. The reason to perform this data post-processing is related to 

the nature of the electromechanical analysis, which assumes the transmission 
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systems are balanced, and thus it is modeled as a single phase, or positive sequence 

network.  

Equation (4.1) presents the instantaneous voltages and currents formulated in 

the continuous time domain. Equation (4.2) formulates the RMS equivalent 

equivalence of voltages and currents, regarding the continuous-time waveform, 

using the polar coordinates. DFT algorithm [19] is able to extract all the harmonic 

contents within a signal, but equation (4.3) evaluates only the fundamental 

frequency setting H=1. 

 

𝑣(𝑡) = ⁡𝑉𝑚𝑎𝑥 cos(𝜔𝑡 + 𝜃𝑣) 𝑖(𝑡) = ⁡ 𝐼𝑚𝑎𝑥 cos(𝜔𝑡 + 𝜃𝑖)
 

(4.1) 

𝑉
𝑅𝑀𝑆=

𝑉𝑚𝑎𝑥

√2
𝑒𝑗𝜃𝑣

 

𝐼
𝑅𝑀𝑆=

𝐼𝑚𝑎𝑥

√2
𝑒𝑗𝜃𝑖

 
(4.2) 

𝑉𝑅𝑀𝑆(𝑡) =
√2

𝑁
∑ 𝑣 (

𝑛∆𝑡

𝑁
) 𝑒−𝑗(

2𝜋𝑛𝐻
𝑁

)

𝑡+𝑁−1

𝑛=𝑡

 𝐼𝑅𝑀𝑆(𝑡) =
√2

𝑁
∑ 𝑖 (

𝑛∆𝑡

𝑁
) 𝑒−𝑗(

2𝜋𝑛𝐻
𝑁

)

𝑡+𝑁−1

𝑛=𝑡

 (4.3) 

 

Where: 

 v(t) and i(t) are the instantaneous voltage and current discrete samples 

recorded by IED. 

 Vmax and Imax are the amplitudes of the sinusoid signals of voltage and 

current, respectively. 

  , v and i are respectively angular frequency, in radians per second 

and the signal phases of voltage and current signals. 

 VRMS and IRMS are the root mean square for voltage and current 

signals. 

 N is the number of samples in one fundamental cycle. 

 t is the sampling period. 

 n is the index of the sample within one fundamental cycle. 

 H is the harmonic order evaluated by DFT. 

 t is the variable that indexes time. 

IED records current and voltage waveforms sampled at 1920 Hz, which 

means each waveform contains 32 samples per cycle (60Hz). Fig. 14 presents an 

example of instantaneous voltages and currents, recorded at the low side of a 

230/69kV transformer. 
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Fig. 14 - Instantaneous voltages and currents recorded by the IED with a sampling rate of 1920 Hz 

Fig. 15 presents the results of (4.3) for a recorded contingency, where the left 

graphic shows positive sequence active power component data (left axis, blue 

curve), and voltage data (right axis, green curve) associated, whilst right graphic 

shows reactive power (left axis, red curve) against the same voltage data recorded 

from a low voltage side of a step-down transformer, as shown in the diagram of Fig. 

10. 

 

Fig. 15 - Positive sequence active (blue) and reactive (red) power components against positive 

sequence voltage (green) component. 

Fig. 16 shows only the result of DFT onto one cycle in polar coordinates, 

although the algorithm is performed through the whole waveform using a sliding 

window. DFT may obtain magnitude of different harmonic orders, but this work 

deals only with fundamental frequency, so DFT can be thought as a filter of all 

harmonic components other than the fundamental frequency (60Hz). 

  

Fig. 16 - Discrete Fourier results from snapshots of a pre-disturbance (green phasors) and “during 

the disturbance” (red phasors)  voltages and currents shown in Fig. 15. 
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The phasor form in (4.3) can be decomposed in rectangular coordinates, 

evaluating complex numbers that can be used to calculate the component sequence 

phasors, by means of the Fortescue transform. Finally, equation (4.5) formulates 

the three-phase active and reactive power components and (4.6) computes the 

positive sequence components.  

[
𝑉0
𝑉1
𝑉2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [
𝑉𝑎
𝑉𝑏
𝑉𝑐

]
 

[
𝐼0
𝐼1
𝐼2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [
𝐼𝑎
𝐼𝑏
𝐼𝑐

]
 

(4.4) 

𝑆 = 𝑃 + 𝑗𝑄 = 𝑉𝐼∗ = 𝑉𝑎𝐼𝑎
∗ + 𝑉𝑏𝐼𝑏

∗ + 𝑉𝑐𝐼𝑐
∗

 
(4.5) 

𝑃1 = 3
𝑉1

√2

𝐼1

√2
cos(𝛿𝑉1 − 𝛿𝐼1)

 

𝑄1 = 3
𝑉1

√2

𝐼1

√2
sin(𝛿𝑉1 − 𝛿𝐼1)

 
(4.6) 

 

Where: 

 V0 and I0 are zero sequence voltage and current values, respectively. 

 V1 and I1 are positive sequence voltage and current values, 

respectively. 

 V2 and I2 are negative sequence voltage and current values, 

respectively. 

 Va, Vb and Vc are the three line to neutral voltages. 

 Ia, Ib and Ic are the three line currents. 

 a is an operator that shifts phase of the complex numbers by120º. 

 S, P and Q are respectively apparent, active and reactive powers. 

 P1 and Q1 are the positive sequence active and reactive powers. 

 

Fig. 17 summarizes the data treatment. 

 

 

Fig. 17 - Processing data procedure 
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4.3. 
Model Selection 

The model selection for this case study was guided by the following reasons: 

 It was mandatory to choose a model able to be implemented in a 

simulation software. 

 It was desirable to choose a simple model, but capable of reproducing 

the load response phenomena accurately enough for dynamic simulations purposes. 

 It was mandatory to understand the parameters’ scope, which means 

that the parameters theoretical constraints led to restrict the solution search space, 

aiding the parameters search algorithm to be efficiently designed. 

 It was also desirable to choose a load model classified as dynamic, 

rather than a static one, since the main purpose was to use it for dynamic simulations 

 There was no need to choose a load model with physical meaning, and 

a purely mathematical one was designated targeting at reproducing data 

measurements, covering as many different scenarios as possible 

 

Recalling the black box load model presented in (2.43), if frequency and noise 

data are not included in that formulation and also making np=nv=nq=2, then the 

resulting second-order load model is (4.7): 

 

𝑃(𝑡) = 𝑃0 [∑ 𝜔𝑚𝑝

𝑃(𝑡 − 𝑚)

𝑃0

2

𝑚=1

+ ∑ 𝜔𝑚𝑣𝑝

𝑉(𝑡 − 𝑚)

𝑉0

2

𝑚=0

] 

(4.7)  

𝑄(𝑡) = 𝑄0 [∑ 𝜔𝑚𝑞

𝑄(𝑡 − 𝑚)

𝑄0

2

𝑚=1

+ ∑ 𝜔𝑚𝑣𝑞

𝑉(𝑡 − 𝑚)

𝑉0

2

𝑚=0

] 

 

Where: 

 t is the integer variable that indexes data sampled at equal discrete 

intervals.  

 m is the integer that indicates the number of past samples that are 

taken into account to evaluate the actual power.  

 V0, P0, Q0 are respectively voltage (in volts), active (in watts) and 

reactive power (in vars) samples in pre-fault state. 
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 V(t), P(t), Q(t) are respectively voltage (in volts), active (in watts) and 

reactive power (in vars) at instant t.  

 1p,2p,0vp, 1vp, 2vp,1q,2q,0vq, 1vq, 2vq are the parameters 

to be estimated by the optimization technique. 

It was possible to reduce parameters set, since the steady state conditions 

correspond to the initial conditions P(t=0)=P0 and Q (t=0)=Q0, which means that, 

for each model, the sum of parameters equals one. So, 

𝜔2𝑣𝑝 = 1 − 𝜔1𝑝 − 𝜔2𝑝 − 𝜔0𝑣𝑝 − 𝜔1𝑣𝑝 
(4.8) 

𝜔2𝑣𝑞 = 1 − 𝜔1𝑞 − 𝜔2𝑞 − 𝜔0𝑣𝑞 − 𝜔1𝑣𝑞 

 

Fig. 18, extracted from [26], associate the parameters` domain with the stable 

poles of the discrete time transfer function (roots of the denominators), and also 

shows the respective autocorrelation and partial autocorrelation functions. Observe 

that the parameter  in the graphic is 1p and is 2p in (4.7). 

 

 

Fig. 18 – Parameters 2p,q, 2p,q boundaries (and  respectively) [26] 

Parameters are subjected to the constraints of (4.9), in order to guarantee the 

stability of the model.  

𝜃𝑝 = [𝜔1𝑝,𝜔2𝑝,𝜔0𝑣𝑝,𝜔1𝑣𝑝,] 

 

Subject to:   –1 < 2p < 1  

2p – 1p < 1  

2p + 1p < 1 

 
(4.9) 

𝜃𝑄 = [𝜔1𝑞,𝜔2𝑞,𝜔0𝑣𝑞,𝜔1𝑣𝑞,] 

 

Subject to:   –1 < 2q < 1  

2q – 1q < 1  

2q + 1q < 1 
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The load model presented in (4.7) is the discrete time-domain counterpart of 

ordinary differential equations. This formulation is a set of difference equations, 

and the system outputs active and reactive powers P(t) and Q(t) are evaluated taking 

into account past samples of the system respective outputs, as well as the actual and 

past samples of voltage samples V(t) inputs. These past samples are precisely what 

characterizes this load model as a “dynamic” one, and there are a lot of literature 

developments regarding this area.  

The next subsection presents some of the knowledge about transfer functions, 

and how it is interesting to formulate this model as a discrete time transfer function 

or as a continuous time transfer function, using suitable mathematical 

transformations, such as Z transform, Laplace Transform and Tustin transform. 

 

4.3.1. 
Transfer Functions 

Transfer functions are rational polynomial functions that relate input(s) and 

output(s) of dynamical systems in a compact way. The ratio of polynomials can be 

differential equations (continuous time domain) or difference equations (discrete 

time domain). For systems of finite dimension, the transfer function may be defined 

as a rational function of a complex variable. 

“A Linear Time-Invariant (LTI) system with a rational system function has 

the property that the input and output sequences satisfy a linear constant-coefficient 

difference equation. Since the system function is the Z transform of the impulse 

response, and the difference equation, satisfied by the input and output, can be 

determined by inspection of the system function, it follows that the difference 

equation, the impulse response, and the system functions are equivalent 

characterizations of the input-output relation of a LTI discrete-time system” [19]. 

The Z transform plays the same role in discrete time domain as the Laplace Transform for continuous 

time domain. If the Z transform is applied to equation (4.7), the load model assumes a transfer 

function form in discrete time domain, as it is shown in the first column of  

Table 2. The continuous time domain counterparts is also presented in the 

second column.  
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Table 2 - Second order transfer functions used for the proposed load modeling methodology 

Discrete-Time Domain Transfer Function Continuous-Time Domain Transfer Function 

𝑃(𝑧) =
𝑃0
𝑉0
[
𝜔0𝑣𝑝𝑧

2 + 𝜔1𝑣𝑝𝑧 + 𝜔2𝑣𝑝

𝑧2 − 𝜔1𝑝𝑧 − 𝜔2𝑝

] 𝑉(𝑧) 𝑃(𝑠) =
𝑃0
𝑉0
[
𝛼0𝑣𝑝𝑠

2 + 𝛼1𝑣𝑝𝑠 + 𝛼2𝑣𝑝

𝑠2 + 𝛼1𝑝𝑠 + 𝛼2𝑝
] 𝑉(𝑠) 

𝑄(𝑧) =
𝑄0
𝑉0

[
𝜔0𝑣𝑞𝑧

2 + 𝜔1𝑣𝑞𝑧 + 𝜔2𝑣𝑞

𝑧2 − 𝜔1𝑞𝑧 − 𝜔2𝑞

] 𝑉(𝑧) 𝑄(𝑠) =
𝑄0
𝑉0

[
𝛼0𝑣𝑝𝑧

2 + 𝛼1𝑣𝑝𝑧 + 𝛼2𝑣𝑝

𝑧2 + 𝛼1𝑝𝑧 + 𝛼2𝑝
] 𝑉(𝑧) 

Subjected to:  

 

 Absolute values of the poles must be smaller 

than one (to guarantee transfer function 

stability) 

 Numerator order must not be greater than 

denominator order (causality) 

 

 

Subjected to: Real parts of the poles  

must not be positive 

  

Fig. 19 and Fig. 20 illustrate the Matlab Simulink implementation of the 

discrete and continuous time transfer functions of the active power.  

Fig. 19 represents the second order differential equation using block diagrams 

where the triangles are equivalent to scalar gains, the circles are equivalent to signal 

summation and the squares represent delays that act as signal buffers, therefore 

evaluating load response taking into account one or two input and also outputs fed 

back. 

 

Fig. 19 – Simulink implementation of the discrete time transfer function of the proposed active 

power load model 

Fig. 20 are the continuous time load model counterpart, and instead of discrete 

delays, it was used integrators (1/s) both for feedback the output and to include 
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pasta samples of the input (voltage signal). The Laplace transform is similar to the 

Fourier transform. While the Fourier transform of a function is a complex function 

of a real variable (frequency), the Laplace transform of a function is a complex 

function of a complex variable. 

 

Fig. 20 - Simulink implementation of the continuous time transfer function of the proposed active 

power load model 

In continuous time domain, an equivalent formulation of the transfer function presented in  

Table 2 is presented in (4.10): 

𝑃(𝑠) =
𝑃0
𝑉0

∏ (𝑠 − 𝑧𝑠𝑝)
𝑛𝑣
𝑠𝑝=1

∏ (𝑠 − 𝑝𝑠𝑝)
𝑛𝑝
𝑠𝑝=1

𝑉(𝑠) ⁡𝑄(𝑠) =
𝑄0
𝑉0

∏ (𝑠 − 𝑧𝑠𝑞)
𝑛𝑣
𝑠𝑞=1

∏ (𝑠 − 𝑝𝑠𝑞)
𝑛𝑞
𝑠𝑞=1

𝑉(𝑠) (4.10) 

Where: 

 s: Laplace complex frequency  

 s=+jLaplace complex frequency, where the real part   is the 

decaying component of impulse response and  is the oscillatory 

component of the same impulse response. 

 P(s), Q(s) and V(s): Laplace transform of the active power, reactive 

power and voltage, respectively; 

 P0, Q0 and V0: steady state values of active and reactive powers and 

voltage, respectively; 
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 zsp, zsq: nv zeros for each active and reactive transfer functions, 

corresponding to the frequencies for which the value of the transfer 

function’s numerator becomes zero. 

 psp, psq: np (or nq) poles for active (or reactive) transfer functions, 

corresponding to the frequencies for which the value of the transfer 

function’s denominator becomes zero. 

 

Poles and zeros are constrained to a certain range of acceptable values to ensure transfer function 

stability [19], [21] and [26] and as stated in  

Table 2. Poles effectively define a differential system with homogeneous 

response. Thus, the unforced response of a linear SISO, subject to the initial 

conditions (P0, Q0), the homogeneous response is a summation of exponential 

functions whose decaying ratios are the poles of the characteristic equation, that is 

the transfer function’s denominator roots. Next, it will be listed all the possibilities, 

including unstable poles, and the corresponding differential system unforced 

response. 

 

When the poles are: 

 Complex with real negative parts in the transfer function, defined in 

the frequency domain, the corresponding impulse response in time 

domain is a sine with decaying amplitude accordingly (underdamped 

system).  

 Complex with real positive parts in the transfer function, defined in 

the frequency domain, the system outputs an oscillatory impulse 

response with increasing amplitude (unstable system). 

 Complex with real parts equal to zero, the transfer function impulse 

response is a sine with constant amplitude (undamped system).  

 Real negative, transfer function’s impulse response is a decaying 

exponential (overdamped system, if they are different, and critically 

damped, if they are equal).  

 Real positive, transfer function’s impulse response is an increasing 

exponential (unstable system).  
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These effects are illustrated in the Fig. 21: 

 

Fig. 21 - Analysis of homogeneous response from the system pole locations. 

It is also analyzed that poles in the left plane with big magnitude are the ones 

decays faster. Regarding the s-plane in Fig. 21, poles far from the origin in the left-

half plane correspond to components that decay rapidly, while poles near the origin 

correspond to slowly decaying components (dominant poles or dominant long term 

response components in the overall homogeneous response).  

In (4.11) there are presented two sets of parameters for active and reactive 

load models formulated for the higher order transfer functions presented in (4.10). 

It is worth to highlight that the number of parameters depends on the orders np and 

nq of the respective load models. No matter if the transfer function’s order is odd 

or even, it is trivial to realize that the solution of the characteristic equation yields 

complex poles/zeros, they will always appear as complex conjugated. 

 

 npppnpppp pppzzznp ,...,,,,...,,)( 2121  

(4.11) 
 nqqqnqqqq pppzzznq ,...,,,,...,,)( 2121  
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4.4. 
Parameter Estimation 

 The load model (4.7) is considered in [21] as “perhaps the most basic 

relationship between the input and output” and it is classified in the same reference 

as the Auto-Regressive with an eXogeneous input (ARX). The boundary limits of 

its parameters set were registered in [26], as it was shown in Fig. 18 and in (4.9). In 

order to pursue a simple model, it was the first choice for the parameter estimation 

procedure and its results were able to cover many different load response scenarios, 

in different measurement sites. 

The second order continuous transfer function formulated in  

 Table 2 was also used in the parameter estimation procedure. Although 

the available data was sampled from the Analog/Discrete (A/D) system of each 

IED, and therefore all available data are discrete, throughout the parameter 

estimation procedure it was always necessary to convert the continuous transfer 

function back to the discrete transfer function, in order to calculate the error 

between the model output and the measured active/reactive power data.  

The parameter estimation for this case study has explored more than one of 

the options presented in section 4.3, both listed above. There are two basic 

approaches regarding either discrete transfer function, or continuous transfer 

functions, whereas each of which also may be formulated in two different ways. 

Table 3 summarizes the formulations of section 4.3: 

Table 3 – Summary of discrete and continuous time transfer functions to represent aggregated load 

Discrete-Time Domain Transfer Function Continuous-Time Domain Transfer Function 

 

𝑃(𝑧) =
𝑃0
𝑉0

∏ (𝑧 + 𝑧𝑧𝑚)
2
𝑧𝑚=1

∏ (𝑧 + 𝑝𝑧𝑚)
2
𝑧𝑚=1

𝑉(𝑠) 

 

𝑃(𝑠) =
𝑃0
𝑉0

∏ (𝑠 + 𝑧𝑠𝑚)
2
𝑠𝑚=1

∏ (𝑠 + 𝑝𝑠𝑚)
2
𝑠𝑚=1

𝑉(𝑠) 

Subjected to: 

 

|pzm|<1                  zm=1,2 

 

Subjected to: 

 

Re{psm}<0               sm



𝑃(𝑧) =
𝑃0
𝑉0
[
𝜔0𝑣𝑝𝑧

2 + 𝜔1𝑣𝑝𝑧 + 𝜔2𝑣𝑝

𝑧2 − 𝜔1𝑝𝑧 − 𝜔2𝑝

] 𝑉(𝑧) 𝑃(𝑠) =
𝑃0
𝑉0
[
𝛼0𝑣𝑝𝑠

2 + 𝛼1𝑣𝑝𝑠 + 𝛼2𝑣𝑝

𝑠2 + 𝛼1𝑝𝑠 + 𝛼2𝑝
] 𝑉(𝑠) 

 

–1 < 2p < 1 

2p – 1p < 1 

2p + 1p < 1 

 





2vp=2p 
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There are two main approaches for choosing the training data to estimate a 

parameter set. One may need a parameter set that best describes the power behavior 

for the contingencies that are most likely to occur (in this context, these were 

considered the typical contingencies). In other words, this approach intends to find, 

within a given parameter’s solution search space, a load model that is supposed to 

simulate the power dynamics for a set of typical contingencies recorded by a 

monitoring system. This is examined in section 4.4.3. 

Finding a load model for typical contingencies, in the context explained 

above, means to estimate a parameter set as accurately as possible to simulate 

different voltage sags, which means different types of voltage sags (one-, two- or 

three-phase drops), different severities (minimum voltage during disturbance) and 

different scenarios (different pre-disturbance load levels P0 and Q0, different hour 

of the day, day of week, etc.). Therefore, the choice of training data set and 

validation data set for estimating an equivalent load representation is crucial for 

obtaining a general load model that is expected to cover the most typical scenarios. 

The other approach is to reproduce one event by using data recorded before, 

during and after this specific event of interest, which means, in this case, that N=1 

for the fitness function formulated in (3.2).  

It is sometimes necessary to better understand a specific contingency in a 

post-mortem analysis. For this case, whenever a record of this specific disturbance 

is available, it is considered the best way to estimate an equivalent load model to 

represent that subset of the main system. If it is not available, it should be tried to 

use another event as similar as possible to the one intended to be modeled. This is 

examined in section 4.4.4. 

To find a parameter set that best simulates different contingencies, one must 

retrieve from the database some representative records to act as training data. Their 

indicators (minimum RMS voltage, duration, type…) must range within an 

expected value, characterizing a typical behavior of a specific distribution system 

to be modeled.  

Next, it will be presented an example, showing the evolution of the parameter 

estimation process. Fig. 22, Fig. 23 and Fig. 24 present the evolution of the 

optimization process implemented through GA for the estimation of the parameters 

set, subjected to the constraints of (4.9). It was selected 4 contingencies (events), 

recorded after the voltage has dropped below 0.9 p.u. during a few cycles and it can 
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be seen the green curves that show the positive sequence components of voltage 

variations recorded, the blue curves that show the positive sequence components of 

the active power load response and the red curves that show the active power, 

simulated by an adaptation of the load model formulated in (4.7). At the top of each 

figure, the load model equations show the best estimates of the GA population 

generations. At the left bottom of each figure, the objective/fitness function’s 

evaluations, as formulated in (3.2) and the corresponding parameter set, as 

formulated in (4.9). 

 

 

Fig. 22 – Estimating parameters of active power (first generation) 
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Fig. 23 - Estimating parameters of active power (fourth generation) 

 

Fig. 24 - Estimating parameters of active power (after 200 generations) 

 

4.4.1. 
Genetic Algorithm 

Fig. 25 shows a flexible coding of the solution for the optimization problem, 

using the parameters set of (4.11). Genetic Algorithm (GA) is the optimization 

procedure that will search for parameters that best suits the training data. GA 

formulation uses concepts of the theory of evolution from Charles Darwin, naming 
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individual or chromosome a vector containing a solution. In this work, there were 

two different codification solutions to set GA for the parameter estimation. The first 

chromosome is a straightforward vector, which means that every parameter is stored 

in an element (chromosome genes) of the solution vector (chromosome/individual), 

within the population of solutions or individuals. The other one, contains two extra 

elements, that informs how many real zeros (nZ) and how many real poles (nP) the 

transfer function contains; the remaining elements are the parameters. The 

algorithm implementation can interpret then, what are the zeros and poles, for the 

fitness function score that solution. 

 

 

Fig. 25 - Genetic Algorithm (GA) coding strategy for 2nd and 3nd order model. 

Fig. 25 also presents bound limits for the parameters. As stated before, 

complex poles and zeros only will appear as conjugated pairs, for an odd order 

transfer function, real zeros and poles must also be odd. Therefore, in a 3rd order 

transfer function, there will be one or three real zeros and only one or three real 

poles. For example, if the GA is searching for solutions for the active power third-

order transfer function, whenever nZ=1 and nP=1, the solution must be decoded as 

shown in (3.2)): 

 

 ,,,,,,,, 321321 pppzzznPnZcromossome  

(4.12) If M=3, nZ=1, nP=1 Then 

 3232132321 ,,,,, jppjpppjzzjzzzp   
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 If nZ and nP both are equal to 3, z3 and p3 would no longer be the 

imaginary parts of the complex conjugate zeros and poles, but they would be real 

zeros and poles respectively. Because complex solutions (zeros and/or poles) 

always appear as a conjugate, in the second-order model nZ and nP are restricted to 

be zero or two. 

This coding is very flexible, because the heuristic may try a wider scope of 

solutions, and although there is no guarantee to find the global optimal solution, it 

is possible to search for real and complex solutions by only generating real negative 

numbers for z1,2,.. and p1,2….. GA-based heuristic was implemented in Matlab using 

its optimization toolbox and custom crossover and mutation functions were written 

to respect lower and upper bounds, and these coding characteristics.  

 

4.4.2. 
Higher order investigation and a comparison to induction motor 
different orders 

Load induction can be formulated with different degrees of details, which 

means that the equations may or may not neglect dynamics within this load model, 

which would result in a more or less complex load model. Common sense may 

suggest that the higher order a transfer function is, the higher the accuracy to fit 

model response to measured data. The hypothesis is that the load model complexity 

(3.1) should be as small as possible. This was one of the main reasons for choosing 

a second order transfer function, but in this section, the results of an estimation 

procedure set to the same number of generations, but increasing load model order, 

are presented below. 
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Fig. 26 - 2nd order transfer function for reactive power load model 

 

Fig. 27 – 3rd order transfer function for reactive power load model 
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Fig. 28 – 4th order transfer function for reactive power load model 

 

Fig. 29 - 5th order transfer function for reactive power load model 

 

Recalling that the induction motor load model is a very common choice for a 

dynamic simulation implemented in stability software, and also remembering that 

very often stability software has component library induction load motor built-in 

within it. Dynamic simulation users may find different induction load motor 

formulations, regarding its order, and it should be kept in mind that neglecting some 

types of reactance may lead to formulate the induction load motor as first, third or 

fifth order [38], [39].  
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In addition, as it could be seen in the figures above, the comparison between 

different transfer function orders, after 300 iterations (GA generations) the 

increasing mathematical structure order did not solve a few issues concerning 

reactive power phenomena, for example. Although the 5th order mathematical 

structure presented the best result for reactive load modeling (this was the same 

conclusion in [38], although it was a remarkable longer convergence computational 

time as the order grows, and also the number of parameters to be set), it can be 

noticed that some problems of the 2nd order load model remain. For example, if 

there is a change of signal during voltage sag, the same parameter set cannot fit 

measured data with and without this signal change. Furthermore, if there is a large 

variance of Q0, it becomes harder for the same parameter set to fit all measured 

data. The comparison presented from Fig. 26 to Fig. 29 suggests that increasing 

model order may not improve accuracy significantly. 

4.4.3. 
Parameter estimation to describe a set of typical contingencies 

Expression (4.7) presents the active power load model estimated for typical 

contingencies recorded in a 69kV load bus bar, defined here as the training data for 

the experiment conducted in this substation, whose data are plotted in Fig. 30. The 

green curves are the measured positive sequence active power data from these 9 

different contingencies, which originated upstream the measurement point. The red 

curves are ZIP load model simulations of the contingencies, whose inputs were the 

measured positive sequence voltages from each one of the 9 selected events, and 

the dotted blue curves are the simulated load responses, estimated by the 

optimization procedure. 


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Fig. 30  - Comparison between the measured P (lighter dashed curve), the P simulated by the 

estimated model (darker dotted curve) and the P described by a generic ZIP model 

Although voltage sag data were not shown in the figure, all graphics show the 

RMS minimum voltage value per unit at the bottom of each graphic, indicating the 

disturbance severity. Because the transmission utility studied still uses a generic 

ZIP load model for dynamic simulations, this generic model was plotted in each 

graphic and subjected to the same voltage sags.  

Since the GA has found a parameter set that is able to simulate power 

behavior during and after the selected contingencies (training data), it should be 

verified if this solution can represent the contingencies that are separated for 

validating the proposed model. All of the data chosen for the training data set were 

recorded in 2011, as shown in the timestamps presented above each graphic. For 

validating this model, it is essential to use a different dataset, recorded at the same 

site, to validate the estimated model’s capacity to generalize, i.e., to represent the 

typical behavior of that distribution system for other recorded disturbances. 

The contingencies recorded during 2010 were used as the validation data set 

and they are presented in Fig. 31; note that the same parameter set, formulated in 

(4.6), that was estimated for the training data, was able to represent different events 

accurately during and after disturbances originated at the transmission level. 
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Fig. 31 - Validating the estimated active power model for the 2010 contingencies. 

It is more difficult to find a generic load representation for reactive power 

load modeling because there are devices installed through distribution systems for 

reactive compensation, such as switched capacitor banks and reactors, and these 

devices may be or may not be switched on in a given day and may have a completely 

different configuration in another day. Additionally, this network topology for 

reactive compensation may be quite different over the course of a single day 

because of different load demand profiles. 

Expression (4.7) presents the formulation to the reactive power load model 

for typical contingencies, and each curve is disturbed by its respective recorded 

voltage sag data; although voltage sag data were not shown in the figure, all 

graphics show the RMS minimum voltage value per unit at the bottom of each 

graphic, indicating the disturbance severity. Because the transmission utility studied 

still uses a generic constant impedance load model to represent reactive power in 

dynamic simulations, this generic model was plotted (solid curves) in each graphic 

and subjected to the same voltage sags.  

Fig. 32 shows that the estimated model could represent records where Q0~30 

Mvar, for both the training data and the validating data (shown in Fig. 33). For those 

events where Q0 was higher than 30 Mvar, the estimated model was more 

pessimistic, and for “low Q0”, the estimated model was more optimistic.  
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Fig. 32 - Comparison between the measured Q (lighter dashed curve), the Q simulated by the 

estimated model (darker dotted curve) and the Q described by a constant-impedance load model 

(solid curve). 

 

Fig. 33 - Validating estimated reactive-power model for 2010 contingencies. 

Another substation is analyzed in Fig. 34 bringing results to the parameter 

estimation for reactive power load modeling. On the top of the figure, a 2nd order 

linear transfer function, with the same mathematical structure formulated in 

equation (4.10), estimated by a GA-based heuristic. This estimated load model 

calculates all blue curves shown in the figure, subjected to the voltage data for every 
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contingency, although these measured voltage curves were not plotted in the 

graphics, but rather summarized by its RMS minimum value during the 1 second 

window for each contingency recorded. 

The red curves plots represent real measurements of reactive power flowing 

to a distribution system, considering that these 24 contingencies were recorded in 

different days and different hours of the day. 

The green curves are calculated by a Z constant load model, which is the 

reactive power load model adopted until now in Brazilian dynamic simulations, 

when there is no information about the distribution system connected to the bulk 

power system. These curves were drawn as a matter of comparison between the real 

measurements and the proposed model. All of them were disturbed by the same 

measured voltage data that disturbed the estimated load model that calculated the 

blue curves. 

 

 

Fig. 34 - A single load model to represent reactive power for 24 different contingencies. 

It can be concluded, whether by graphical inspection, or by checking the 

Mean Absolute Errors (MAE), that a single estimated model was not able to cover 

as accurately those 24 scenarios. Reactive compensation devices are always spread 

through the distribution system, and they add complexity to the task of representing 

reactive flow dynamics.  

For the active power load model, Fig. 35 presents graphical results from 

parameter estimation and the individuals and total MAE showed that a single 
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estimated model representing active power was able to describe load behavior with 

good accuracy. It should be reminded that this distribution system has no significant 

dispersed generation. 

 

Fig. 35 - A single load model to represent active power for 24 different contingencies. 

 

4.4.4. 
Parameter estimation to reproduce one event of interest 

The example in this section uses data from a disturbance recorded by an IED 

at a 69 kV bus bar. According to the utility’s operational report, this disturbance 

was caused by an atmospheric discharge on a 230 kV transmission line near the 

230/69 kV transformer and the distribution system contains two thermo-generators 

with installed capacities of 110 and 30 MW each, as illustrated in the schematic 

diagram of Fig. 13. 

After fault clearance, there is a power oscillation between these generators 

and the synchronous machines from the bulk power system, as it can be seen in Fig. 

36 (red curve). This behavior is quite different from that in distributions systems 

with negligible or no Dispersed Generation (DG). 

To estimate this parameter set, the second-order continuous transfer function, 

formulated in (4.10), was used, and the constraint imposed on the GA parameter 

estimation was that only complex conjugated pairs of the poles were valid for the 

optimization procedure. This constraint was motivated by visual inspection of the 
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oscillatory dynamics recorded after a disturbance clearance by the protection 

system (in Fig. 36, around the instant 0.2 sec); recalling that an inverse Laplace 

transformation of a continuous transfer function, with complex conjugated pairs of 

the poles, evaluates an oscillatory step response, as illustrated in Fig. 21. 

To achieve this solution, it was imposed in the codification shown in Fig. 25 

that nP=0, resulting in complex conjugated poles with negative parts. The 

chromosome length was 6. Fig. 36 presents the result of the estimated load model 

for active power at the analyzed bus. Once again, the lighter dashed curve is the 

active power measured by the IED, the darker dotted curve is the active power 

simulated by the proposed model shown at the top of the figure. Finally, the solid 

curve is a constant impedance model (Pzip), which is still used by the utility to 

represent the load in dynamic simulations when there is no information of the 

distribution grid topology.  

Clearly, the constant impedance model is not able to approximate the load 

behavior, neither during nor after the disturbance. This generic constant impedance 

model is an overoptimistic load model, as defined in [4], which means the power 

deviation is underestimated and may lead to a misevaluation of the stability margins 

and even to voltage collapse in critical cases.  

 

Fig. 36 - Reproducing a specific event: a distribution system containing DG and active power 

behavior. 

Fig. 37 shows the reactive power curve, both measured and simulated, and 

the parameter set estimated for the reactive power autoregressive model. The 
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reactive power expression is shown at the top of the figure. Once more, the constant 

impedance model (Qzip) was not able to represent the load dynamics and the sign 

change of the reactive power during the fault. 

 

Fig. 37 - Reproducing a specific event: a distribution system containing DG and reactive-power 

behavior. 

 

4.5. 
Model Validation 

ANATEM is a simulation software of electromechanical transients used for 

the analysis of dynamic stability, supporting the operation and planning of the 

Brazilian interconnected power systems. The estimated load model for the 

distribution system containing DG (shown in the previous section, in Fig. 36 and 

Fig. 37) and for ten more 69kV substations from the Brazilian 

transmission/distributions frontier were validated in ANATEM [40]. The entire 

interconnected national power system is modeled in this software, and the Brazilian 

transmission system operator (ONS) publishes in their website the input files for 

this software detailing the various components of the Brazilian electrical system at 

750kV, 500kV, 230kV levels. The 69kV distribution systems, however, are not 

represented in further details, but they are aggregated in equivalent ZIP models.  

To reproduce the event shown in Fig. 36 and Fig. 37, a short-circuit was 

applied at the 500 kV level (transmission system) and after 80 ms, the short circuit 

was eliminated and a 500 kV transmission line was opened. The ZIP models used 
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for comparison are those published by the ONS, corresponding to PZIP: 60% of 

constant P and of constant Z, while QZIP is 100% constant Z. 

 

Fig. 38 and Fig. 39 respectively present the active and reactive power curves 

simulated in ANTEM, at the same 69 kV bus containing DG of Fig. 13; dashed 

curves are the active and reactive power evaluated with measured-based load 

models implemented in the simulation software and solid curves are the active and 

reactive power evaluated with generic ZIP load models implemented in the 

simulation software.  

 

Fig. 38 - Active power simulated at the 69 kV bus bar with DG by a constant-impedance load model 

(Pzip) and the last section’s estimated model (P). 

 

Fig. 39 - Reactive power simulated at the 69 kV bus bar with the constant-impedance (Qzip) and 

estimated models (Q). 

Power oscillation modes could not be represented by the constant impedance 

model. In addition, both the active and reactive power flows have changed signs 

during the disturbance, exactly like the real measurements have shown in Fig. 36 
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and Fig. 37. This result means that, for a short period of time, the distribution system 

injects active and reactive power into the transmission system.  

For active power, this oscillatory phenomenon after fault clearance only 

occurs when there is a high penetration of DG in the distribution system. In these 

situations, the behavior of active power may affect some types of protective relays, 

load-shedding logic and special protection schemes.  

Fig. 40 to Fig. 51 show estimation data for active and reactive power load 

models collected from 3 other substations, and their ANATEM results, after the 

estimation procedure that identified the parameters set that best fit the training data. 

 

Fig. 40 – Pmed is the active power measured, Pcalc is the estimated load model, described by the 

equation at the top of the figure, and PZIP is 60% constant P and 40% constant Z (substation 1) 

 

Fig. 41 – Comparison between PZIP and the estimated load model of Fig. 40 (substation 1) 

implemented in ANATEM. 
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Fig. 42 – Qmed is the reactive power measured, Qcalc is the estimated load model, described by the 

equation at the top of the figure, and QZIP is 100% constant Z (substation 1) 

 

 

Fig. 43 - Comparison between QZIP and the estimated load model of Fig. 42 (substation 1) 

implemented in ANATEM. 
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Fig. 44 - Pmed is the active power measured, Pcalc is the estimated load model, described by the 

equation at the top of the figure, and PZIP is 60% constant P and 40% constant Z (substation 2). 

 

 

 

Fig. 45 - Comparison between PZIP and the estimated load model of Fig. 44 (substation 2) 

implemented in ANATEM. 
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Fig. 46 - Qmed is the reactive power measured, Qcalc is the estimated load model, described by the 

equation at the top of the figure, and QZIP is 100% constant Z (substation 2). 

 

 

Fig. 47 - Comparison between QZIP (constant Z) and the estimated load model of Fig. 46 (substation 

2) implemented in ANATEM 
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Fig. 48 - Pmed is the active power measured, Pcalc is the estimated load model, described by the 

equation at the top of the figure, and PZIP is 60% constant P and 40% constant Z (substation 3) 

 

 

Fig. 49 - Comparison between PZIP (60% constant P and 40% constant Z) and the estimated load 

model of Fig. 44 (substation 3) implemented in ANATEM. 
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Fig. 50 - Qmed is the reactive power measured, Qcalc is the estimated load model, described by the 

equation at the top of the figure, and QZIP is 100% constant Z (substation 3). 

 

 

Fig. 51 - Comparison between QZIP (constant Z) and the estimated load model of Fig. 40 (substation 

2) implemented in ANATEM 

 

4.6. 
Summary of the chapter 

The load response to large system disturbances has been investigated using 

field data measurements. The following conclusions are listed below: 

 The use of traditional static load models should be replaced for dynamic 

load models in simulations of system stability. It was possible to see that static 

load models underestimate the load response to disturbances whenever the voltage 

dropped below 0.9 p.u. 

-60,53

-16,58

27,36

71,31

115,25

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

Tempo (s)

QCAR     5156 BONGI----069 DIN

QCAR     5156 BONGI----069 ZIP

DBD
PUC-Rio - Certificação Digital Nº 1812675/CA



Load Modeling for Dynamic Simulation – A Case Study 93 

 The load-to-voltage dependency has been presented in examples 

recorded in every month of a year, thus it represents a critical aspect for the design 

of security margins, and optimistic models such those found in the ANATEM files 

of the Brazilian interconnected system, may lead to underestimate the assessment 

to system security. Particularly for the reactive power results, it could be noticed 

that constant impedance load model is frequently over-optimistic regarding the 

real deviations in the reactive power, including some transitory flux inversions 

that the constant impedance relation is not able to represent mathematically. 

 It has been presented an application of the load modeling methodology 

described in chapter 3. The adequacy of the dynamic load model has been 

investigated for different recording among CHESF frontier to regional distribution 

systems. It has been shown that the second order transfer function representation 

was able to estimate parameter sets that could describe load behavior accurately. 

 The validation of this measurement-based load models was clearly 

better in active power representation than in reactive power representation. One 

of the reasons is that reactive compensation is spread in the studied systems, but 

they vary according to system operation conditions and there was no information 

whether capacitor banks are on or off. 
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5 
Load Modeling for Conservation Voltage Reduction – A 
Case Study

Conservation Voltage Reduction (CVR) is not a new technique [41]-[44], but 

recently this concept has received a renewed interest aiming to quantify its benefits. 

CVR also seems to be tuned with the new global order of developing smarter 

solutions, aiming to improve energy usage efficiency. Network operators have 

always tried to optimize the network energy transfer, developing more flexible 

ways of managing electric grid resources. CVR has been investigated through field-

data analysis researches [45]-[49], and this Volt-Var optimization application has 

been considered as an alternative low-cost approach to maximize the electricity 

network capacity is energy conservation through voltage reduction during load 

consumption peak times, therefore improving the efficiency of the network assets 

utilization. 

The main idea of CVR relies on the positive correlation between voltage and 

active power, assuming that for a small reduction within acceptable limits in voltage 

at the customer service entrance, there is a proportional small reduction in load 

demand, yielding an energy consumption reduction while the voltage remains 

reduced. Therefore, accurate load models are needed to support decision making in 

whether it is worth to implement this technique or not, in other words, can demand 

response, caused by dynamic voltage regulation, reduce the peak demand of a 

primary substation? How much energy can be saved applying this technique? 

All around the world, there are standardization on voltage range acceptable 

limits, and EN 50160 establishes in Europe that voltage magnitude must be 

delivered within ±10% and, depending on voltage level, the range must be within 

±5% [50]. It has always been an usual recommended practice to maintain the 

voltage at the higher-end of the acceptable range, but the CVR approach proposes 

to maintain the voltage at the lower-end of the acceptable range, in compliance to 

voltage standardization, during selected times of the day, in order to save energy, 

lower peak demand and losses. It is known that the relationship between voltage 
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and power depends on the load composition, and the goal of this case study is to 

quantify this and try to associate it to the load mix classes previously identified.  

Some indicators were established to quantify CVR benefits and the most 

general way to define the CVR factors is: 
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Which means that CVRf aims to quantify the ratio between power reduction 

(or energy saving) and voltage reduction. It is also possible to quantify reactive 

power reduction in this way, although it is far more difficult to scrutinize this 

relationship.  

The data analysis approach will combine a set of techniques to estimate the 

CVR factors from a huge database of measurements. It will include: 

 Automatic voltage reduction detection  

 Exploratory Data Analysis (EDA). 

 Parameters set estimation 

 Statistical inference. 

In section 5.1, it will be shown how EDA was used as a preliminary data 

analysis supporting the stratified sampling scheme. It was a very intuitive tool to 

separate data into similar scenarios, regarding different time frames (seasons, hours 

of the day, weekdays/weekends). EDA is a data analysis approach that relies on 

graphical interpretation of data patterns, allowing the data to reveal its underlying 

structure [51]. The seminal work in EDA is [52] and over the years it is considered 

the most intuitive way to previously get insights about the data under investigation. 

In the same section, the automatic voltage reduction detection algorithm, in need to 

determine the exact timestamps of the voltage reductions used to evaluate the CVR 

factors, is explained and also the smoothing technique to extract noise, outliers and 

missing data from voltage and demand signals. Section 5.3 recalls the exponential 

recovery load model, presenting a short analysis of the model step response that 

visually justifies its choice as a CVR assessment tool. Parameter estimation and the 
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stratified sampling scheme are detailed in section 5.4, and finally in section 5.5 the 

results of CVR factors for the different substations under study are supported by 

statistical inference of their confidence intervals. 

 

5.1. 
Case Study Description 

This case study was an application of load modeling to estimate the effect of 

CVR in some British distribution systems, whose data measurements were collected 

from trials conducted by Electricity North West (ENWL) within the Customer Load 

Active System Services (CLASS) project [53] from June 2014 up to May, 2015, in 

England. The CLASS project main goal was “to demonstrate an innovative, low 

cost and easily deployable solution to provide active voltage management for 

demand response capabilities and network voltage regulation services”.  

In the context of the CLASS project solution, the core functionalities were 

configured in the Autonomous Substations Controller (ASC). The voltage 

reductions were executed by the ASC, programmed to control voltage at Primary 

Substations, and also to deliver automatic frequency response, according to power 

systems operational needs. The ASC interfaces through a SCADA infrastructure to 

an Automatic Voltage Control (AVC) scheme. The voltage steps were performed 

by the AVC acting on the taps of the On Load Tap Changing transformers (OLTC) 

of the primary substations, both connected in parallel. Frequency, power factor, 

voltage, active  and reactive power data were sampled once every second by Remote 

Terminal Units (RTU), and sent to a web server. 

 

Fig. 52 - Schematic Diagram of primary substation monitoring 
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For the purpose of evaluation of CVR indicators from the substations in the 

ENW area, it was designed a set of scheduled trials, covering all days of the week, 

all the hours within each day, in different seasons. The methodology of the 

substations selection is described in details in [55], and a test scheme was designed 

for each primary substation, with representative periods for voltage 

reduction/elevation, during 1-year period. 

The selection of primary substations for the CLASS project went through a 

process of analysis and the final selected ones aim to include a set of load types that 

can be considered representative of ENWL network, where hopefully the 

conclusions estimated from these substations data could be applied to other similar 

substations. Among the main goals of these scheduled trials, the results that will be 

presented next were focused on the investigation of the estimation of voltage-

demand relationship, regarding different load types, in order to quantify demand 

response to voltage changes during peak and off-peak hours. Fig. 53 presents a table 

from [56] detailing the tests conducted for each of the project research targets and 

T1 and T2 were studied in this thesis.  

 

Fig. 53 - CLASS trials, extracted from [56] 

 For the purpose of evaluation of CVR indicators from the substations in the 

ENWL area, there was designed a set of scheduled trials, covering all days of the 

week, all the hours within each day, in different seasons. The methodology of the 
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substations selection is described in details in [55], and a test scheme was designed 

for each primary substation, with representative periods for voltage 

reduction/elevation, during 1-year period, starting in June 1st, 2014 up to May, 31st, 

2015. 

The substations selected for the trial period are divided into three previously 

identified categories:  

Type 1 - a load mix composed mainly by industrial/commercial consumers, 

Type 2 - a load mix composed mainly by residential consumers, 

Type 3 - a mix of both categories, where there is a roughly identical share of 

residential and non-residential load mix.  

To give the reader a first glimpse of the substations` characteristics, the 

approach used is inspired in Exploratory Data Analysis (EDA), which is a 

philosophical approach that is intended to let the data reveal patterns through visual 

inspection. Fig. 54 and Fig. 55 show the daily profiles of a Type 1 substation, 

Avenham, respectively on January/2015 (winter) and July/2014 (summer). The y-

axis registers the active power demand, whereas the x-axis refers to the hours of the 

day. It can be observed the typical bell-shaped curve of load profile every weekdays 

and weekends. The main difference between winter and summer are the magnitudes 

of peak demand. 

 

Fig. 54 - Daily Profile of Avenham (Type 1), January/15 (Winter) 
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Fig. 55 - Daily Profile of Avenham (Type 1), July/14 (Summer) 

Fig. 56 and Fig. 57 show the daily profiles of a Type 2 substation, Fallowfield, 

respectively on January/2015 (winter) and July/2014 (summer). It can be observed 

the shape of a residential load profile, characterized by the distinguished light, 

medium and heavy load during the days. The peaks in summer are much smaller 

than in winter, and the weekend profiles are very similar to weekdays, in both 

seasons. 

 

 

Fig. 56 - Daily Profile of Fallowfield (Type 2), January/15 (Winter) 
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Fig. 57 - Daily Profile of Fallowfield (Type 2), May/15 (spring) 

Fig. 58 and Fig. 59 show the daily profiles of a Type 3 substation, Kitt Green, 

respectively on January/2015 (winter) and May/2015 (spring). The shape of the 

load profiles in winter looks like a residential load mix, whereas in spring it looks 

more like the bell-shaped commercial/industrial load mix. The peaks in spring are 

much smaller than in winter, and the weekend profiles are very distinct from 

weekdays, in both seasons. 

 

  

Fig. 58 - Daily Profile of Kitt Green (Type 3), January/15 (Winter) 
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Fig. 59 - Daily Profile of Kitt Green(Type 3), May/15 (Spring) 

These daily load profiles are very useful to identify outliers, which is an 

important statistics concept, that represents a single data value or a data set that is 

remarkably different from data observed within an investigation. In this context, a 

daily profile that could be considered an outlier is the profile observed in a holiday 

or weekend that are quite different from an ordinary weekday. Fig. 54 and Fig. 56 

show daily profiles from January/2015, and January 1st stands out, and it is 

obviously one of the 365 days that should be analyzed separately, but the lest 

obvious May 4th and May 26th , both Mondays are the daily profiles presented in 

Fig. 57 and Fig. 59, although in Fig. 57 the difference from the other Mondays is 

much more subtle than in Fig. 59. 

Missing data and abnormal operational periods can be identified in daily 

profiles. From Fig. 54 to Fig. 59 there are several missing data records, making the 

line series looks as if they are “melting” in some moments of the day. Abnormal 

operation periods can be noticed in Fig. 60, in which the daily profiles were 

recorded from one of the two parallel transformers in Kitt Green substation (from 

June/14 to October/14 the data available from all substations were recorded from 

one of the two parallel transformers). So, in Fig. 60 the transformer is out of service 

during a few minutes after 8am up to a few minutes after noon, on Monday 21st, 

while on Tuesday, 22th, from a few minutes before 8 am up to almost 10 am, it was 

the only transformer supporting power demand. This might have been due to 

maintenance, or an operational issue. Either way, careful should be taken in order 

to separate these periods out from the analysis of the normal characteristics of the 

substation, and any other under investigation. 
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Fig. 60 – Daily Profiles registered in July/14 from one of the two parallel transformers in Kitt 

Green’s substation: it is possible to observe hours where the transformer is out of service (Monday, 

21st), and also the hours where it was the only transformer operating the demand that was supposed 

to be fed by the two parallel transformers (Tuesday, 22th). 

  

It is also possible to identify the hours of the day where the load demand is 

increasing, decreasing, static, low, medium or high, whether by visual inspection of 

Fig. 61, or by the calculation of the slopes of the daily profile curve over 1-hour 

successive windows. Fig. 62 analyzes a residential daily profile and it is possible to 

cluster the hours of the day that the demand is increasing, decreasing, and static. 
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Fig. 61 – Diurnal patterns of load demand for a bell-shaped daily profile 

 

Fig. 62 - Diurnal patterns of load demand for a residential daily profile 

 To perform a statistical analysis of large amounts of data, it is very important 

to make an effort in this preliminary pattern recognition, in order to separate the 

most useful groups of data for the load modeling and CVR factors calculation.  
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5.2. 
Data treatment 

To estimate load models that translate CVR effectiveness, it was designed 

computational procedures to separate and select suitable data, aided by exploratory 

data analysis and other statistical tools. It was investigated filtering techniques to 

smooth voltage and power data, in order to mitigate noise effects, whether caused 

by random (or spontaneous) load variations, or due to noise measurements; 

spontaneous load variations influence that can be of the same order (or even bigger) 

of the natural response of the load to small voltage variations.  

It is worthwhile to highlight the concept of the spontaneous load variations 

that are not correlated to voltage variations. During the day, countless end-user 

devices are connected and disconnected all the time, leading to spontaneous or 

natural load variation. This is the main source of uncertainty in the assessment of 

load sensibility to voltage variations. In this context, noise effects mean any 

uncorrelated signal “added” or “subtracted” to the measurement device records, due 

to transducers inaccuracy that introduces small variations to the resulting equipment 

readings and recordings. 

 The recorded data from the primary substations were extracted from text files 

and stored into tables of a relational database. Each substation was analyzed for the 

whole year period, but to identify the voltage steps performed by transformer tap 

changes, it was necessary to develop an automatic procedure to obtain exactly: 

 The instant t0 immediately before the voltage step. 

 The instant t immediately after the voltage steps and whether it is a 

voltage reduction or a voltage increase. 

 If, after a certain amount of time, any more voltage steps occur, and if it 

is in the same direction as the previous step or not.  

The next subsection will briefly describe the voltage steps identification 

procedure, in order to calculate CVR factors using precisely the time instants before 

and after the voltage control action. 
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5.2.1. 
Voltage Steps Identification Procedure 

The solution to identify the voltage steps was the calculation of the slope of 

the voltage, through a sliding window, as it is illustrated in Fig. 63. The slope is the 

vertical distance divided by the horizontal distance between a set of points, and it 

can be interpreted as the rate of change in voltage (or power, as it was shown in Fig. 

63) as time move forward. Its equation is formulated in (5.2): 

𝑠𝑙𝑜𝑝𝑒𝑖 =⁡
∑ [𝑡𝑖 − (

∑ 𝑡𝑖
𝑖+∆𝑡
𝑖

∆𝑡
⁄ )] [𝑉(𝑡𝑖) − (

∑ 𝑉(𝑡𝑖)
𝑖+∆𝑡
𝑖

∆𝑡
⁄ )]𝑖+∆𝑡

𝑖

∑ [𝑡𝑖 − (
∑ 𝑡𝑖
𝑖+∆𝑡
𝑖

∆𝑡
⁄ )]

2
𝑖+∆𝑡
𝑖

 (5.2) 

 

Where: 

 ti is the ith sample of time. 

 t is the size of the sliding window. 

 V(ti) is the ith sample of voltage, recorded at instant ti. 

 

The voltage steps identification procedure can be illustrated in Fig. 64, 

showing, in the upper plot, the voltage in p.u. (red line series and red axes) recorded 

during a CVR trial, and the slope calculated through a 10-second sliding window 

(green line series and green axes). The slope calculated through the 10-second 

sliding window is negative when the voltage tends to decrease within this 10-second 

window, and is positive when the voltage tends to increase. The active power data 

and the reactive power data are also presented, as well as their calculated slopes, 

confirming graphically the hypothesis that a voltage decrease causes a demand 

reduction, and that a voltage increase causes a demand boost.  

The slope time-series detects the voltage steps whenever the value calculated 

with (5.1) exceeds a certain bound. The ± 40 in the right axes of the upper plot of 

Fig. 63 are the empirical limits determined in this survey, which indicates a voltage 

variation, due to tap change operation, scheduled within CLASS trials, defined in 

Fig. 53.  
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Fig. 63 – Slope calculation (green curves) to identify voltage steps 

It can be observed in Fig. 63 that the first voltage step was detected at 

t0=17:52:18 (slope magnitude greater than 40), reducing the voltage from 1.005 p.u. 

to 0.992 p.u. and a few seconds later, another voltage step, in the same direction 

(voltage decrease), reducing from 0.992 to 0.979. At 17:56:08 it was detected 

another voltage reduction, from 0.982 p.u. to 0.975 p.u. At 18:41:01 there is another 

small voltage reduction, and finally at 19:11:52 the voltage is increased from 0.979 

p.u. to 0.992 p.u. In this example, to calculate Kp, as formulated in (2.10), the 

instants t0 and t that correspond to the pre-disturbance and post disturbance instants 

are respectively 17:52:18 and 17:56:08. The pre-disturbances values of voltage, 

active and reactive powers are calculated as the averages within one minute (from 

17:51:18 to 17:52:18). 

The criteria for selecting events for parameter estimation of CVR factors in 

this work is listed below:  

 Each voltage step reduction provided by the OLTC was named one-

directional step (1 dS), every aggregation of more than one OLTC tap reduction 

was named one-directional multi-step (1 dMS). This indicator identifies a Trial 1 

example, as defined in the table of Fig. 53. 

 It was only selected for the estimation voltage reductions (1dMS) greater 

than 2%. 

From each event selected for CVR factors estimation, it was retrieved from 

the database 2 minutes before the first voltage tap change reduction, and 8 to 10 

minutes after the last voltage tap change reduction. 
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Fig. 64 - Example of the detection of a two-directional multi-step (OLTC successive tap changes 

reducing voltage a after a some time the OLTC sucessive tap changes boosting voltage) 

It may be clear at this point that the correct determination of these instants t0 

and t are determinant for CVR factors assessment, because different windows sizes 

may produce different voltage/power post-disturbances values, due to power 

deviations not related to voltage deviations, defined as natural load variations. 

 

Fig. 65 - The choice of the window size is not trivial 

Both demand and voltage signals were subjected to a smoothing filter to 

eliminate noise and missing data. Both signals were normalized using the data 

immediately before the first voltage reduction occurred. 

Savitzky-Golay is a digital filter for smoothing the data, increasing the signal-

to-noise ratio without significant distortion of the signal. Savitzky-Golay smoothing 
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filters (also called digital smoothing polynomial filters or least-squares smoothing 

filters) are typically used to "smooth out" a noisy signal whose frequency span 

(without noise) is large [57]. Fig. 66 presents the implementation of the Savitzky-

Golay filter using Matlab built-in function, processing this 14-minute P and V 

measurements from one of the transformers installed in Romiley.  

 

Fig. 66 – Voltage and active power data (upper plots) and their Savitzky-Golay smoothed 

counterparts below. 

 

5.3. 
Model Selection 

In section 2.2.1.5, it was formulated a nonlinear dynamic load model with 3 

parameters, a transitory Kp (which will be t, in (5.4)), a time constant (which will 

be Tp, in (5.4)) that counts, in seconds, the partial load recovery, and a steady-state 

Kp (which will be ss, in (5.4)), that can be interpreted as the actual effect that a 

voltage step produces in the load.  

In [54] CVR factors are defined in the same way as the parameters Kp and Kq 

of the traditional exponential load model, reviewed in section 2.2.1.5, formulated 

in (2.8). Thus: 
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In the next section, the parameter estimation results will use the Exponential 

Recovery Model, formulated again in (5.4), in order to quantify CVR effectiveness, 

and the variations expected in this parameters through diurnal or annual seasons.  
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Parameters set: 𝜃𝑝=[𝛼𝑠𝑠,𝛼𝑡,𝑇𝑝] 

Subjected to: 

𝛼𝑠𝑠 < 𝛼𝑡 
𝛼𝑠𝑠 ≥ 0 

𝛼𝑡 ≥ 0 

𝑇𝑝 > 0 

 

This a priori model selection [21]-[22] is justified because peak demand 

reduction and energy saving are interested in evaluating a steady-state load 

response, and the parameter ss is a better estimation of the CVR effectiveness than 

t, because as it is reported in the results contained in [2] and [3], the time constant 

is no more than a few minutes, and then the load restores to a new level, that is not 

so severe as the transient reduction, but it is usually below the pre-voltage reduction 

level. To illustrate this, the load model parameters of the model structure (5.4) in 

the example of the Fig. 67 are Tp=10 seconds, which is the amount of time between 

30 to 40 seconds; t =2, which indicates that for a voltage reduction of V=0.1 p.u., 

there is an ideal transitory demand reduction of P=0.2 p.u.; and ss =1, which 

indicates that for V=0.1 p.u., there is an ideal steady-state demand reduction of 

P=0.1 p.u.  

 

 

 

Fig. 67 – Step Response of the Exponential Recovery Load Model (5.4) 
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In section 5.2.1, it was presented a detailed description of the voltage step 

identification procedure, highlighting the importance of determining the exact 

instants t0 and t to calculate the voltage demand sensibility, which is the core of this 

load modeling investigation. In order to assess CVR factor using this load model 

formulation, the post-disturbance starting instant t cannot be too close to the end of 

the voltage step, because there is a predictable partial load recovery, neither it can 

be too away from the end of the voltage step, because of the also predictable load 

spontaneous variations. In [3], it is suggested that the time between the initial of 

voltage step and the post-disturbance to use for analysis could be around 2.5 to 3 

times de time constant Tp.  

In the following sections, it will be presented some results from the 

parameter estimation using data collected from the substations of CLASS project. 

Each event was estimated separately using the Simulink Design Optimization of 

Matlab. The optimization method for parameter estimation was also a Genetic 

Algorithm, using MatLab’s optimization toolbox. 

 

5.4. 
Parameter Estimation 

Equation (5.5) extends (3.2), because the sum of squared errors is weighted 

proportionally to the voltage deviation from 1 p.u.. Thus, when the optimization 

routine is searching for a good parameter set that is able to model load response, 

the period(s) of the greatest voltage deviations are the most important to be modeled 

accurately. Therefore, the chosen objective function to be minimized is the 

weighted sum of square errors (SSE), but instead of setting the weights inversely 

proportional to the standard deviation of the power demand, they were set 

proportional to a kind of normalized voltage deviation from 1 p.u.. 

𝐹𝑜𝑏𝑗(𝜃𝑝) =
1

𝑛
∑𝜔𝑝𝑡 (

𝑃𝑚𝑒𝑎𝑠(𝑡) − 𝑃𝑐𝑎𝑙𝑐(𝑡, 𝜃)

𝑃𝑚𝑒𝑎𝑠(𝑡, 𝜃)
)

2𝑛

𝑡=1

 

 

where: 𝜔𝑝𝑡 =
|1 − 𝑉𝑚𝑒𝑎𝑠(𝑡)|

∑ 1 − 𝑉𝑚𝑒𝑎𝑠(𝑡)
𝑛
𝑡=1

⁄  

(5.5) 

 

Where: 

 Fobj – the objective function to be minimized. 

 p is the active load model parameters set. 
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 n – the total of samples recorded during an event. 

 t – the variable that indexes the order of the samples. 

 Pmeas(t) is the three-phase active power data measured, with n 

samples. 

 Vmeas(t) is the one voltage to neutral phase data measured, with n 

samples. 

 Pcalc(t,p) is the three-phase active power data calculated by the 

chosen load model, with n samples, and parameterized by p. 

After selecting a set of events characterized by voltage reductions greater than 

2 %, the data is filtered aided by the Savitzky-Golay filter, and then the parameter 

estimation is performed in the Simulink Design Optimization package, which 

provides functions, interactive tools, and blocks for analyzing and tuning model 

parameters. Fig. 68 and Fig. 69 presents data form the active and reactive power 

demand respectively, and also data from the voltage perturbation, all of them 

normalized by their pre-disturbance values, recorded in the same event. The data 

shown in these pictures are not filtered, it is the raw data, where the blue curves are 

the measured active and reactive power and the magenta curves are the measured 

voltage to neutral data. The red curves are the active and reactive power data 

simulated by (5.4), with the estimated parameters registered in the top of the plots. 

 

Fig. 68 – Active power load model parameters estimation for a summer event for the Golborne 

substation. 
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Fig. 69 – Reactive power load model parameters estimation for a summer event for the Golborne 

substation. 

The parameters estimated for active power are much smaller than the ones for 

reactive power, and this was expected since the voltage has a stronger influence in 

the reactive power flows, and also the latter is a much more nonlinear phenomen.  

Due to the large amount of data collected, this parameter estimation approach 

used the concepts of statistical inference to treat the collection of estimates of CVR 

factors, obtained for each voltage reduction event. The next subection describes 

some of the concepts used to derive CVR factors. 

5.4.1. 
Statistical Inference 

Data analysis is a wide area that can extract information and knowledge from 

data observations whose properties may be correlated. Statistical Inference is a data 

analysis approach that seeks to describe properties from a collection of data, 

whether by testing hypothesis or estimating a quantity of interest. It is based on the 

characteristics obtained from a subset of the whole data set. The aim of statistical 

inference data analysis is about to derive properties of an observed (measured) data 

set, assuming the data assumes a pattern regarding its variability over a certain range 

of probable values. Therefore, the statistical inference conclusions are valid under 

certain assumptions, such as data underly probability distribution.  

In this context, the whole data set will be called population or universe, and 

the data subset, a sample of the population. Numerical descriptions of a population, 

like proportions, averages or standard deviations are called parameters of the 
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population, whereas the same indicators for samples are called statistics. Statistical 

inference provides tools to estimate parameters from statistics, leading to statistical 

conclusions from samples, supported by probability theory.  

The difference between the concepts of point estimation and interval 

estimation is straightforward: a point estimate is an estimate of a single population 

parameter such as, for example, the mean of a quantity of interest. Interval 

estimation is a range of values that the same quantity of interest most likely lies 

within, under a predefined probability (confidence level). 

Thus, the main goal is to use statistical inference for CVR assessment within 

a confidence interval [59]-[61]. 

Equation (5.5) estimates the expected value for ss within the entire 

population, from a sample, within a range with 95% of confidence: 

n
xPx s

96.1%)95( 


 

(5.6) 
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
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Where: 

 x

 – is the expected value for the parameter of the population. 

 x – is the average of the statistics, i.e. the average of x calculated from 

the sample. 

 s/√n is the standard error of the expected value x , n is the size of the 

sample.

 s is the sample standard deviation, used in place of the population 

standard deviation, which is unkown.

The factor 1.96 is valid only if: 

 the distribution of the sample means of x follow a normal distribution, 

 the intended confidence interval is 95%, 

 the sample size is grater than 30. 

If the confidence interval target is 99%, 1.96 should be substituted by 2.58, 

according to the Gaussian distribution tables [60]. If the sample size is less than 30, 

this number should follow a Student`s t distribution [61]. 

A sampling design or scheme must ensure that a representative sample is 

chosen. If the population is heterogeneous as a whole but can be split into 
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homogenous sub-populations, the stratified sampling is supposed to provide better 

results than a simple random sampling within the whole population, or to reduce 

variance of the estimates within the sub-populations, which is also known as 

clusters.  

One important assumption to be done is that the parameter distribution should 

follow a normal distribution, spread over its expected value. After the stratification 

of the population, divided in a way that the groups or strata samples present similar 

characteristics within the stratum and then a simple random sample should extract 

a sample containing data from each stratum, proportionally to the size of each 

stratum within the population.  

Data collected through an entire year period can be divided taking into 

account seasonality, days of the week (weekdays, Saturdays, Sundays and holidays) 

and the hours of the day (as shown in Fig. 61 and Fig. 62). Thus, the next list divides 

the data accordingly: 

Season: 

S1 – from June to August 2014. 

S2 – from September to October 2014. 

S3 – from November 2014 to February 2015. 

S4 – from March to May 2015. 

Days of week: 

W1 – From Monday to Friday. 

W2 – Saturdays, Sundays and Holidays. 

Day hours: 

H1 – [22hs to 5hs) - Low Static/Decreasing Demand. 

H2 – [5hs-10hs) - Increasing Demand. 

H3 – [10hs-16hs) - High Static Demand (commercial/industrial) or Medium 

Static Demand (residencial). 

H4 – [16hs-19hs) - Decreasing Demand (commercial/industrial) or Increasing 

Demand (residencial). 

H5 – [19hs-22hs) - Decreasing Demand (commercial/industrial)  or High 

Static Demand (residencial). 
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Table 4 - Group definitions for strata specification 

 

The stratification may be used to focus on a particular subset of the available 

data sample, or to combine statistics from the different groups taking into account 

their proportions within the population. For example, in this case study, Table 4 

leads to the obvious conclusion that weekdays represent the majority of the days in 

a year, and the data sampled from weekdays must be the most important to be 

analyzed. It should be more relevant to sample from weekdays, than from weekends 

or holydays, unless the purpose of an investigation is precisely to understand 

whether CVR action is valuable to be applied in weekends or not. 

For peak demand reduction, Fig. 54 to Fig. 61 has shown that the peak hours 

(H3) of weekdays (W1) are likely to be the scenarios where the highest demand 

will occur. In the wintertime (S3), the heating devices in Manchester, UK represent 

a big share of total power demand.  

To obtain the high static demand H3, it was designed a query to the database 

to aggregate the peak hours of each weekday of the year in a graphical way, 

following the EDA approach to support this data stratification. The histograms are 

the perfect tool for that, and the next figures will show the peak demand hours by 

substations of the three types. Fig. 70 presents the peak demand hours distribution, 

where the first column of graphics shows the substations classified as Type 1 

(Avenham, Kingsway, Blackpool), the second column shows the substations Type 

2 (Fallowfield, Romiley, Golborne) and the third shows the Type 3 (Anne Pit, Kitt 

Green, Buckshaw). 

 

Groups description code from to N n

Summer ~ Jun-Aug/2014 S1 2014-06-01 2014-08-31 92 25.2%

Autumm ~ Sep-Nov/2014 S2 2014-09-01 2014-11-30 91 24.9%

Winter ~ Dec-Feb/2015 S3 2014-12-01 2015-02-28 90 24.7%

Spring ~ Mar-May/2015 S4 2015-03-01 2015-05-31 92 25.2%

Low Static/Decreasing Demand H1 22:00 05:00 7 29.2%

Increasing Demand H2 05:00 10:00 5 20.8%

High/Medium Static Demand H3 10:00 16:00 6 25.0%

Decreasing/Increasing Demand H4 16:00 19:00 3 12.5%

Decreasing/High Static Demand H5 19:00 22:00 3 12.5%

Weekends W2 Saturday Sunday 2 28.6%

Weekdays W1 Monday Friday 5 71.4%
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Fig. 70 - Histograms of 9 substations analyzed in the CLASS project. 

It is interesting to note that Type 1 and Type 2 registered the peak hours 

respectively around 11am/12am and 6pm/7pm, and the Type 3 ones behave with 

characteristics from both Type 1 and 2. Anyway, the parameter estimation will 

begin to analyze data from these hours of the day, for each one of them, since it is 

the period where this ancillary service would be most welcome. 

5.4.1.1. 
Bootstrap method 

To infer the characteristic values of a population, and also the margin of error 

of such inference, it is very common to assume that data follows a distribution 

pattern. The most used assumption is that the underlying distribution of data follows 

a Gaussian curve that can be fully determined by two parameters (mean and 

variance). There are a few tests to check if this is likely to be true or not. Whenever 

it is not possible to identify if data follows any known statistical distributions, the 

bootstrap method can be used. 

The bootstrap method is an application of Monte Carlo method, and it is a 

sampling strategy based on sampling with replacement of the data units’ multiple 

times (typically, one thousand, two thousand times). The resulting simulated 

sampling distribution is used to calculate an interval of plausible values that the 

unknown parameter is likely to lie within. 

Fig. 71 shows 9 normal probability plots that compare the distribution of the 

CVR factors in the x-axis to a normal distribution in the y-axis. Each CVR factor is 
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plotted using the plus sign ('+') markers that should follow a reference line that 

represent the theoretical distribution. A solid reference line is drawn between the 

first and third quartiles of the CVR factors’ distribution, and a dashed reference line 

extends the solid line to the ends of the data. If the CVR factor’s distribution follows 

a normal distribution, then the data points appear along the reference line. On the 

other hand, if the distribution of CVR samples reveals a different distribution 

pattern, a curvature can be seen in this plot. Thus, these normal probability plots 

reveals graphically if one can assume whether a distribution follows a normal one.  

The results presented in Fig. 71 indicate that a sampling design based on the 

assumption that the data has a normal distribution may introduce bias and therefore 

the bootstrap method was used. 

 

Fig. 71 – Normal probability plots one the substations of Type 1, Type 2 and Type 3, presented at 

the first, second and third columns respectively. 

Fig. 72 presents the impact of bootstrap methods on time series analysis in a 

graphical way. There were 72 samples available for the substation Anne Pitt, and 

the histogram at the bottom of the first column is clearly not following a Gaussian 

curve. However, after the bootstrap resampling method, the mean of the means 

distribution has good adherence to the Gaussian Curve, and the histogram at the 

bottom of the second column appears to be much similar to the expected shape of a 

Gaussian curve. 
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Fig. 72 – An EDA approach to justify the bootstrap method to infer the expected value of CVR 

factor ss: the first column presents the normal probability plot of the ss distribution as it was 

estimated and the histogram of the same data distribution; the second column presents the same plot 

after the bootstrap resampling method. 

 

5.5. 
Results  

Table 5 presents the results from 10 substations chosen to illustrate the results 

using the methodology described up to now in this thesis. This table includes the 

weekdays’ average energy (MWh), the CVR factors and their respective 95% 

confidence intervals calculated with the bootstrap method. In order to provide a 

better visualization of the results, the steady state CVR factors are shown in Fig. 

73, as well as the other estimated parameters of (3). These graphics are known as 

boxplots, wherein each box, a central mark indicates the data median, or the 50th 

quartile of data distribution. The box boundaries are the 25th and 75th quartiles. 

The dotted lines, or “whiskers”, indicates data up to the 25th quartile, and above the 

75th quartiles. Quartiles divide ordered data distribution (from smallest to largest 

values of the data distribution) in four parts (the first part is the 25% smallest data, 

and the last part represents the 25% greatest data of the sample distribution under 

study). 
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Table 5 - CVR Factors expected values and their confidence intervals 

 

In Fig. 73 the substations are in the same order, from left to right, as they are 

listed in Table I, grouped by their type: mixed, mainly industrial/commercial and 

mainly residential. The substations grouped by types are ordered from the most 

loaded to the least loaded. The top plot in the Fig. 73 shows that all of the CVR 

factors’ distributions have higher medians in the substations less loaded. The last 

boxplot in every graphic is the parameter data distribution from all substations, and 

it presents what it can be expected, in general, from CVR factors. 
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Fig. 73 - CVR factors estimates' distributions 

Fig. 74 investigates if there is a correlation between the loading conditions 

and the effectiveness of the CVR to reduce peak demand. The trend line plotted, 

and the corresponding equation in the figure, can be understood as a weak 

correlation between loading conditions and CVR factor, and since the equation of 

this regression line contains a negative slope, it indicates that the more loaded the 

system is, the less effective the peak demand reduction will be. Eight out of ten 

substations, whose correlations have been investigated individually presented a 
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similar pattern, i.e., a weak negative correlation, which confirms the above 

conclusion. 

 

Fig. 74 - Scatter plot correlating CVR factor against loading conditions 

5.6. 
Summary of the Chapter 

The CVR assessment is an application of the load modeling methodology, 

because: 

 It was solved using a load model selection made a priori, which means 

that this mathematical structure was not compared to others, since the phenomenon 

is characterized by a temporary load response greater than the final or steady state 

load response, and the exponential recovery load model’s structure contemplates 

this feature; furthermore, the graphical results of these parameters confirmed this 

theoretical knowledge.  

 The parameters set was estimated, for each event of voltage reduction 

performed by the OLTC transformers, by means of an optimization procedure based 

on Genetic Algorithms. 

Because the data were obtained for many different scenarios, it was demanded 

statistical tools to cope with the uncertainty underneath the conclusions and the 

heterogeneity of the data distribution. 
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The CVR evaluation is dependent on the load mix and the loading conditions 

that are correlated to weather conditions, the hours of the day and to season 

characteristics. Nevertheless, the available data from the substations investigated in 

this work could not identify any pattern when correlating CVR factors to season 

changes.  

Demand daily profiles also demonstrate visually the loading patterns that 

repeat, day after day, and the slope calculated over a 1-hour sliding window size 

aided to cluster the identified patterns into increasing demand, decreasing demand 

and static demand, where the latter is the best period of the day to calculate CVR 

factors, due to the small slope.  

The CVR factor data distribution of Fig. 73 shows that this indicator is within 

0.5 and 1.5, which means that every 1% voltage reduction is capable of achieving 

between 0.5% and 1.5% of demand reduction. 

The nonlinear exponential recovery load model was chosen because the 

parameter estimation procedure evaluates the temporary and steady state demand 

response for each voltage reduction event. This distinction was essential to avoid 

overestimation of the effectiveness of CVR approach, since the instantaneous 

demand response (transient CVR factor t, the middle plot of the Fig. 73) is 

typically greater than the steady state demand response (steady state CVR factor 

ss, the upper plot of the Fig. 73). Furthermore, the statistical data analysis 

concluded that the expected load response time from transient to steady state is 

typically from 1 up to 3 minutes (Constant Recovery Time Tp, bottom plot of the 

Fig. 73).  

The correlation analysis plotted in Fig. 74 indicates that CVR is less effective 

as load demand is higher, despite of the weak correlation.
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6 
Conclusions

The methodology proposed in this thesis intended to describe a set of 

procedures, inspired by system identification concepts, which can be implemented 

using many different techniques and many available software resources, but there 

are some macro aspects that must be included in the systematic modeling 

procedures that were discussed theoretically and practically in this thesis: sampling 

design, data processing, parameter estimation and some form of model validation 

are the core processes, but definitely there is not an unique form to implement each 

one of these tasks. References [2] and [63] describes the most used load models and 

a few techniques frequently used to estimate load model parameters. 

It is recognized that load modeling is a key aspect for power system stability, 

therefore it is necessary to continuously update and validate the way loads are 

represented in power systems simulations. It has been reported in the literature that 

static load models, reviewed in section 2.2.1, may not be able to represent load 

behavior during or after voltage disturbances, particularly for large voltage 

variations. Field measurements of reactive power behavior during voltage steps 

below 0.9 p.u. showed that the flux of reactive power can temporarily change its 

signal sign, which a static ZIP model is mathematically unable to represent. 

It has been shown along this thesis that loads are generally voltage-dependent, 

and thus it influences the stability margins, because representing loads in a 

simulation that overestimate a voltage disturbance may result in a very conservative 

security margin evaluation, leading to a poor utilization of transmission lines. 

Conversely, load models that underestimate voltage disturbance may lead the 

system to operational points too close to the limit of stability, and a voltage collapse 

can be the worst consequence of this poor design. 

There are many parameter estimation techniques and this choice is a matter 

of expertise of the developer, or associated to the availability of these techniques 

built in software development environments. The methodology was described in a 

way that it does not really matter what type of model is chosen, nor the parameter 

DBD
PUC-Rio - Certificação Digital Nº 1812675/CA



Conclusions 124 

estimation technique. Most optimization techniques have their pros and cons, and 

one needs an extra effort to configure properly the method options, and prepare data 

to search the space solutions efficiently. Nevertheless, optimization problem that 

seeks to minimize or maximize a cost/error functions always may stuck in local 

minimum solutions, and sometimes small tricks in the implementation may prevent 

this, such as the investigation of different initial parameter guess to start the 

optimization, that can be obtained from previous knowledge of experts, or from 

literature, although for aggregated load is not really easy to find universal 

parameters that are supposed to be always accurate and representative. The 

objective function definition can also be done in a creative way, and the results may 

be combined with statistical tools seeking to extract knowledge from historical 

measurements database. 

During the case study presented in chapter 4, the optimization procedure was 

built in a way that parameter estimation could seek for a parameters’ set that tries 

to respond to a range of voltage variations that were likely to occur during a year or 

two. The reactive power results showed that constant impedance load model, used 

in the Brazilian interconnected system representation of 69kV systems, is 

frequently underestimates the real deviations in the reactive power after voltage 

sags. It is worthwhile to recognize that reactive power load modeling is the most 

difficult task to achieve, because there are reactive compensation devices 

downstream the measuring device placement that will change the reactive flows of 

the response of the aggregated load, but it is hard to find out whether these reactive 

compensation devices are on or off during the different voltage sags registered. 

In chapter 4 it was given details of data processing, because the data 

measurement devices raw data is recorded with different sampling rates that 

determine the precision to filter data into the harmonic components of interest. The 

discrete Fourier transform was able to extract from instantaneous voltages and 

currents, the fundamental components that evaluated active and reactive power. The 

measurement device must be installed using the load convention, therefore wrong 

terminal connection and the identification of the phase sequence (ABC or ACB) 

will affect the results of the signal processing.  

In the case study of chapter 5, it was investigated the peak demand reduction 

through the voltage demand sensibility, using the load modeling methodology 

described in chapter 3. The field-data measurements were obtained from a 
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conservation voltage reduction (CVR) project in Manchester-UK, where one of the 

goals was to quantify the effectiveness of this technique and the potential to provide 

ancillary services to the transmission system operator, through a modern 

communication data exchange.  

The results proved that the effectiveness of CVR is dependent on the load mix 

and the loading conditions. An automatic method for the estimation of load model 

parameters supported the CVR factors assessment, but to select the data that would 

be representative in a statistical way, it had to be developed a voltage step detector, 

and a parameter estimation procedure to fit a nonlinear model into the data selected 

and smoothed. 

As a comparison, in the case study of the chapter 4, the time frame was much 

smaller, but the voltage variations were much larger. In CVR assessment, the 

voltage variations were up to 6%, and because the load demand varies in minutes 

by a few percent, it is not trivial to separate spontaneous load variations (i.e. load 

variations not related to voltage variations), to load variations caused by very small 

voltage variations.  

If the objective function minimized in chapter 4 was summing many events 

recorded on different days, the objective function in chapter 5 takes into 

consideration only one event at the time. This is explained due to the different 

purposes of each of the case studies. In chapter 4, the load model was meant to 

represent 69kV systems in stability studies, using a time frame from milliseconds 

to a few seconds that are useful for transient stability, for large voltage variations. 

The purpose was modeling to represent typical scenarios or to reproduce specific 

events of interest, i.e. modeling for simulation. In chapter 5, the purpose was more 

into predicting the effectiveness of CVR, keeping in mind that it is a fuzzy limit 

between what it was caused by voltage control and what was originated in the 

connection or disconnection of downstream loads (spontaneous load variations). 

Therefore, it seemed like a natural choice to model the uncertainty using statistical 

tools that would be supposed to draw more reliable conclusions about the real 

potential of this volt/var control application. 

EDA was used extensively for identifying patterns among the data, and the 

insights that this graphical approach brought led to a better understanding of the 

problem, before the implementation of the parameter estimation. The main goal of 
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the EDA visual analysis was to separate data into groups that contain distinctive 

characteristics particularly associated to the case study. 

Statistical inference was very useful to suggest the level of uncertainty that 

the parameters distribution presented. It is possible to obtain estimates even for 

small sample sizes that may be utilized for guessing the CVR range of expected 

values. The estimated parameters showed that the more loaded the system is, the 

less effective the peak demand reduction will be. 
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