
Oslien Mesa Rodríguez

Proactive Mitigation of Vulnerabilities in
Plugin-based Web Systems

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Carlos José Pereira de Lucena

Rio de Janeiro
June 2019

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Oslien Mesa Rodríguez

Proactive Mitigation of Vulnerabilities in
Plugin-based Web Systems

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Carlos José Pereira de Lucena
Advisor

Departamento de Informática – PUC-Rio

Prof. Marx Leles Viana
Pesquisador Independente – PUC–Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC–Rio

Rio de Janeiro, June 14th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

All rights reserved.

Oslien Mesa Rodríguez

Graduou-se em Engenharia em Informática pela Universi-
dade de Ciência da Informática da Havana (Havana, Cuba).
Fez mestrado no Departamento de Informática da PUC-Rio,
especializando-se na área de Engenharia de Software, na área
de Framework e Linhas de Produtos. Desenvolveu um grande
número de rotinas para analisar Vulnerabilidades de Segu-
rança em Sistemas Configuráveis.

Bibliographic data
Rodríguez, Oslien Mesa

Proactive Mitigation of Vulnerabilities in Plugin-based
Web Systems / Oslien Mesa Rodríguez; advisor: Carlos José
Pereira de Lucena. – Rio de janeiro: PUC-Rio, Departamento
de Informática, 2019.

v., 73 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Vulnerabilidade;. 3. Sistemas
Configuráveis;. 4. WordPress;. 5. Plugin;. 6. Sistemas de
Segurança;. 7. Teste de Software.. I. Lucena, Carlos José
Pereira de. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

To my mother, for your support and encouragement. To my maternal
grandmother, for being my first guide in life, educate me and teach me to be

who I am.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Acknowledgments

I would like to thank the Department of Information Technology of the PUC-
Rio firstly for allowing me to take the Post-Graduation courses and complete
the master’s degree, an improvement that I did not achieve in my country
despite several attempts. To CNPq, for its interest in promoting research in
Brazil and allowing me to make use of its study payment system. To Professor
Lucena for welcoming me to his team, being my counselor and advisor. To
Marx for influencing as a counselor with his advice, desire and motivation for
research and hard work. To the union of professors Lucena, Marx and Elder,
who supported me and allowed me to attend the conferences in which the
articles were published. To Professor Marcos Kalinowski, for be member of
the defense court and his constructive criticisms, to the research and thesis
document. Chico for his criticisms in the presentations, his help with the
recommendation of several articles, his help with the format of the thesis
document and his collaboration in the use of Latex. To Vera, who with her
kindness and patience, who allowed me to enjoy her company, and teaching
moments while waiting for a class shift or a schedule marked with Professor
Lucena. I thank the secretarial staff of the Information Technology Department
for their patience and guidance.

I can’t stop thanking my family for the support they have offered me from a
distance. To my brother Osniel, for taking care of the needs of our Mother.
To my cousin and sister Geidy, for helping my brother in all circumstances.
To my little nephew Jose Julio (JJ) for making my Mother’s days happy.
To my Mother, for suffering and enduring so much time in the distance, the
absence of one of her children and for insisting and influencing her behavior
and ideas. The many Cubans that I met here in Brazil, that everyone has
somehow offered me useful advice at some point in this journey in my life.
I cannot fail to mention Javier Guillot, to whom I owe the thanks of having
spent a first semester sharing his time and knowledge with him. To Claudia
and Adrian, who always welcomed me and accompanied me in happy and sad
moments during this project. To Antonio Iyda, he is not Cuban, but it is as if
he were, a Brazilian friend who held out his hand and relieved me on several
occasions with my problems at the university. To my girlfriend Darialys, for
her quick adaptation to a new family and a new life by my side. For your
patience and insistence to conclude this project.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Abstract

Rodríguez, Oslien Mesa; Lucena, Carlos José Pereira de (Advisor).
Proactive Mitigation of Vulnerabilities in Plugin-based
Web Systems. Rio de Janeiro, 2019. 73p. Dissertação de mestrado
– Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

A common software product line strategy involves plug-in-based web
systems that support the simple and rapid incorporation of custom beha-
viors and are widely adopted for building web-based applications. The po-
pularity of ecosystems that support plug-in-based development (such as
WordPress) is largely due to the number of customization options available
as community-contributed plugins. However, plug-in related vulnerabilities
tend to be recurring, exploitable and difficult to detect and can lead to se-
rious consequences for the custom product. Therefore, these vulnerabilities
must be understood to enable the prevention of relevant security threats. In
this paper, we conduct an exploratory study to characterize plug-in vulne-
rabilities in web-based systems by examining the WordPress vulnerability
bulletins cataloged by the National Vulnerability Database and the associ-
ated patches maintained by the WordPress plugin repository. We identify
the main types of vulnerabilities, their impact, and the size of the patch to
address the vulnerability. We have also identified the most common security-
related topics discussed among WordPress developers. We note that while
vulnerabilities can have serious consequences and remain unnoticed for a
long time, they can often be mitigated with minor changes to source code.
Characterization helps provide an understanding of how such vulnerabilities
manifest themselves in practice and contributes to new generations of vul-
nerability testing tools that can anticipate their potential occurrence. This
research proposes a support tool to mitigate the occurrence of vulnerabili-
ties in web plugin based systems, facilitating the discovery and anticipation
of the possible occurrence of vulnerabilities.

Keywords
Vulnerability; Configurable Ssytems; WordPress; Plugin; Security

Systems; Software Testing.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Resumo

Rodríguez, Oslien Mesa; Lucena, Carlos José Pereira de. Miti-
gação Proativa de Vulnerabilidades em Sistemas da Web
Baseados em Plugin. Rio de Janeiro, 2019. 73p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
Uma estratégia comum de linha de produtos de software envolve sis-

temas da Web baseados em plug-ins que suportam a incorporação simples
e rápida de comportamentos personalizados, sendo amplamente adotados
para criar aplicativos baseados na web. A popularidade dos ecossistemas
que suportam o desenvolvimento baseado em plug-ins (como o WordPress)
é, em grande parte, devido ao número de opções de personalização dispo-
níveis como plug-ins contribuídos pela comunidade. Entretanto, as vulne-
rabilidades relacionadas a plug-ins tendem a ser recorrentes, exploráveis e
difíceis de serem detectadas e podem levar a graves conseqüências para o
produto personalizado. Portanto, é necessário entender essas vulnerabilida-
des para permitir a prevenção de ameaças de segurança relevantes. Neste
trabalho, realizamos um estudo exploratório para caracterizar vulnerabili-
dades causadas por plug-ins em sistemas baseados na web, examinando os
boletins de vulnerabilidade do WordPress catalogados pelo National Vul-
nerability Database e os patches associados, mantidos pelo repositório de
plugins do WordPress. Identificamos os principais tipos de vulnerabilida-
des, o seu impacto e o tamanho do patch para corrigir a vulnerabilidade.
Identificamos, também, os tópicos mais comuns relacionados à segurança
discutidos entre os desenvolvedores do WordPress. Observamos que, em-
bora as vulnerabilidades possam ter consequências graves e permanecerem
despercebidas por muito tempo, elas geralmente podem ser atenuadas com
pequenas alterações no código-fonte. A caracterização ajuda a fornecer uma
compreensão de como tais vulnerabilidades se manifestam na prática e con-
tribui com as novas gerações de ferramentas de teste de vulnerabilidades
capazes de antecipar sua possível ocorrência. Esta pesquisa propõe uma
ferramenta de suporte para mitigar a ocorrência de vulnerabilidades em sis-
temas baseados em plugins web, facilitando a descoberta e antecipação da
possível ocorrência de vulnerabilidades.

Palavras-chave
Vulnerabilidade; Sistemas Configuráveis; WordPress; Plugin;

Sistemas de Segurança; Teste de Software.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Table of contents

1 Introduction 13
1.1 Motivation 13
1.2 Problem 14
1.3 Research Questions and Goal 15
1.4 Contributions 16
1.5 Proposal Organization 17

2 Security Vulnerabilities 18
2.1 Type of Vulnerabilities 18
2.2 Classification according to the CWE Repository 19

3 Security Web Systems 22
3.1 Definitions of Security Web Systems 22
3.2 Tool for detection of vulnerabilities 22

4 Vulnerabilities in Plugin-based Web System 24
4.1 Exploratory Research 24
4.2 Answers to Research 25
4.2.1 RQT.1 – What are the main vulnerabilities caused by WordPress

plugins? 26
4.2.2 RQT.2 – How critical are the vulnerabilities caused by WordPress

plugin? 27
4.2.3 RQT.3 – What is the patch size to fix WordPress plugin vulnerabilities? 29
4.2.4 RQT.4 – How long does a vulnerability survive in the WordPress

plugins code? 30
4.2.5 RQT.5 – What are the most common vulnerability related topics

discussed among developers? 31
4.3 Mitigation and Detection Methods 32
4.4 Threats to Validity 34
4.4.1 External Validity 34
4.4.2 Internal Validity 34
4.5 Chapter’s Conclusions 35

5 A Tool for Supporting the Mitigation of the Occurrence of Vulnerabilities 36
5.1 Motivation for building the Tool 36
5.2 Functional Requirement 39
5.3 Technologies used for Build the Tool 41
5.4 Tool Design 42
5.5 How to use 45
5.6 Class Diagram 46
5.6.1 Class Main_XSS 47
5.6.2 Class Process 47
5.6.3 Class P_Reader 48
5.6.4 Class Fill_Line 49

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

5.6.5 Class Line_Word 49
5.6.6 Class Word_Property 50
5.6.7 Class Possible_Vul 50
5.7 Highlight in the Code 51

6 Tool Evaluation 53
6.1 Partial Results 53
6.2 Results Images 55

7 Conclusions 58
7.1 Advantages and Weakness of Patterns 58
7.2 Final Recommendations 59
7.3 Future Work 60

Bibliography 61

A Articles Published at Conferences 67

B Behavior Patterns 68

C Solutions to Behavior Patterns 69

D File CVE-2011-4562-log.php 70

E File CVE-2011-4562-log_item.php 72

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

List of figures

Figure 1.1 Fragment of study made by W3Techs 14
Figure 1.2 Vulnerability CVE-2015-7325 15

Figure 5.1 Case study identified. Plug-in directly connected to
WordPress 37

Figure 5.2 Case study rejected. Plug-in connected through another
Plug-in with WordPress 37

Figure 5.3 Example of vulnerability produced by use of a plugin 38
Figure 5.4 Architecture proposal for the tool 43
Figure 5.5 Architecture proposal for the tool made 44
Figure 5.6 File Analysis Flow Diagram 45
Figure 5.7 Tool Plugin’s Class Diagram 46
Figure 5.8 Class Main_XSS 47
Figure 5.9 Class Process 47
Figure 5.10 Class P_Reader 48
Figure 5.11 Class Fill_Line 49
Figure 5.12 Class Line_Word 49
Figure 5.13 Class Word_Property 50
Figure 5.14 Class Possible_Vul 50

Figure 6.1 Folder Path Request 55
Figure 6.2 Show the folder path inserted in green 55
Figure 6.3 Test image performed showing a possible security vul-

nerability found in a single file 56
Figure 6.4 Test image performed showing the security vulnerabili-

ties found in with two files 56
Figure 6.5 Test image performed showing the security vulnerabili-

ties found in with three files. 56
Figure 6.6 Fragment of test image made with more than forty files, it

shows a sample of the possible security vulnerabilities detected
in several files. 57

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

List of tables

Table 2.1 Reflect the scope of the vulnerability group 21

Table 4.1 Lists the most common vulnerability types 26
Table 4.2 The number of vulnerabilities that do partially affect the

web systems 28
Table 4.3 Reflect the number of lines of code and files that were

modified to correct vulnerabilities 29
Table 4.4 Reports the survival time of security vulnerability in the

plugins code extracted from the 119 patch analyzed 30
Table 4.5 Show the distribution of question (Q) and answers (A)

per topic 31

Table 5.1 Characters used for identify words 51

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

List of Abreviations

(A) --- Int --- Integrity
(B) --- Conf --- Confidentiality
(C) --- Ava --- Availability
(D) --- AsC --- Access Control
(E) --- NoRd --- Non Repudiation
(F) --- Other --- Other
(G) --- AsC / Conf
(H) --- AsC / Conf / Other
(I) ----- Int / Conf / Ava
(J) ---- Conf / Int / Ava / AsC
(K) --- Conf / Int / Ava / AsC / NoRd
Adv --- Advantages
Weak --- Weakness

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

1
Introduction

The rise of computerization and the wide use of web applications for the
personal management of users has led to the need to increase the protection of
user data. Web applications are used to manage confidential information; such
as bank accounts to mention an example, of each of our users which implies
that the need for data protection is even greater. On the other hand, the wide
diversity of web applications used to perform similar procedures and that are or
may be originated using a common core, generates the applications belonging
to the same Product Line or Configurable Management Systems (CMS)(44).

To optimize the functioning of web applications created with CMS,
plugins are commonly used (38). The plugins optimize or add functionalities
to the CMS cores. Just as there is a wide diversity of web applications, wide
diversity of CMS, there is a wide variety of plugins for each CMS. Sometimes
plugins can also be grouped as a family.

It happens that the wide diversity of products created with a core
in common causes that all result with the same deficiencies or in our case
vulnerabilities. In addition to that there are vulnerabilities that are not
manifested until a plugin is added as evidenced by the vulnerabilities registered
in the National Vulnerability Database (NVD) Repository(1). Of course, the
Repository has registered vulnerabilities that are not related to the plugins,
but they are not the vulnerabilities with which we will carry out our work.

1.1
Motivation

We select the WordPress CMS for our study because it is one of the
most used by the community of developers and the curious that without
being computer programmers dare to develop web applications. In addition,
to facilitate, complete and increase its use it has more than 55,000 plugins(2).

In our research we found a study conducted Web Technology Surveys
(W3Techs)(3), where a part of the CMS more used is tracked. The W3Techs
updates its study daily and Figure 1.1 shows a fragment of the upper part of

1https://nvd.nist.gov/
2https://es.wordpress.org/plugins/
3https://w3techs.com/technologies/overview/content_management/all

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 1. Introduction 14

Figure 1.1: Fragment of study made by W3Techs

diagram of May 25, 2018. W3Techs shows that the CMS are used in 48.4%
of web applications, followed for it, and only WordPress is used in 30.9%. If
limited the study area of site only to CMS, we can be appreciate as WordPress
is used in 59.9% of the times.

1.2
Problem

The community of programmers develops useful and practical applica-
tions, but its eagerness for the creation and fast obtaining of the results is
neglected several aspects. Studies (26)(27)(28) have shown that one of the
most neglected aspects are security vulnerabilities; aspects as common as, the
sanitization of a variable or the validation of a GET method, to prevent an
insecure data entry. Another study shows that on many occasions, program-
mers do not know how to deal with existing security vulnerabilities regardless
of the experience of programmers (19).

Figure 1.2(4) shows an example about how a good code with a slight
oversight can cause a serious vulnerability. Figure 2 was derived from SQL
Injection vulnerability CVE-2015-7235(5), it registered in the NVD Repository
last September 17, 2015. The vulnerability was evaluated with metric CVSS
v2.0 and score was 7.5 (HIGH)(6), which indicated that the vulnerability is
serious. Besides being a serious vulnerability the Figure 1.2 shows how with
a small change in the code could be avoided the existence of it. To fix this
vulnerability, the group of developers took 1 year, 3 months and 4 days; the
solution was announced last December 21, 2016 (36)(37). We understand that

4https://plugins.trac.wordpress.org/changeset/1104099/cp-reservation-calendar
5https://plugins.trac.wordpress.org/changeset/1104099/cpreservation-

calendar/trunk/dex_reservations.php
6https://nvd.nist.gov/vuln/detail/CVE-2015-7235

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 1. Introduction 15

is a very long time to fix a HIGH vulnerability. The vulnerability happened
and was inserted by using the CP Reservation Calendar plugin, in the dex
reservations.php file.

Figure 1.2: Vulnerability CVE-2015-7325

In our research, as a first step, we will focus on understanding the
characteristic and behavior about code registered at NVD Repository; and
where the programmers neglect small details and how serious is the compromise
the security of web applications. As an example we have, the structure of aGET
method inserted directly as a parameter in another method; when the correct
way is to save the GET structure in a variable and insert this as a parameter.
The programmers concentrate their efforts on the correct function of the web
application, but an application with a correct operation is not always a safe
web application. A Secure Web Application is a web application that hinders
access to attackers. As a second step, we will try to reduce the occurrence
of security vulnerabilities caused by the addition of plug-ins to configurable
applications.

1.3
Research Questions and Goal

Based on the problems and limitations presented previously, we can
define the following research questions (33):

(i) RQT.1: What are the main types of security vulnerabilities caused by
WordPress plugins? (Sub-section 4.2.1)

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 1. Introduction 16

(ii) RQT.2: How critical are the security vulnerabilities caused by WordPress
plugins? (Sub-section 4.2.2)

(iii) RQT.3: What is the patch size to fix WordPress plugin vulnerabilities?
(Sub-section 4.2.3)

(iv) RQT.4: How long does a vulnerability survive in the WordPress plugins
code? (Sub-section 4.2.4)

(v) RQT.5: What are the most common security-related topics discussed
among WordPress developers? (Sub-section 4.2.5)

The approach proposed in this research deals with such issues, answers
to research questions and shows the relevance or our main goal:

(i) Identify Patterns of Behavior in the vulnerabilities registered in the NVD
Repository in order to use them for the detection of new vulnerabilities.

(ii) Create a Tool‘s Support for mitigating the occurrence of security vulner-
abilities produced by the addition of a plugin to WordPress.

1.4
Contributions

With our research we expect demonstrate the need and posibility of
mitigate the security vulnerabilities in web aplications. Initially, we will attack
the possible security vulnerabilities in the application-plugin pairs developed
with CMS WordPress, and make the following contributions:

(i) Identify the most common vulnerabilities, due to their high frequency of
occurrence;

(ii) Demonstrate the need and possibility of decreasing the occurrence of
vulnerabilities gradually;

(iii) Start the creation of a plugin for Eclipse IDE, that uses the identified
patterns for the identification of new possible security vulnerabilities;

(iv) Use the plugin to show the solution to the possible security vulnerability
detected with the identified patterns in our study.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 1. Introduction 17

1.5
Proposal Organization

This dissertation proposal is structure as follows:

(i) Chapter 2 - Security Vulnerabilities. We reduce and define the small
group of vulnerabilities with we will work.

(ii) Chapter 3 - Security Web Systems. We define security system and show
many applications that perform vulnerability tests to web applications

(iii) Chapter 4 - Vulnerabilities in Plugin-based Web System. We describe
our research and the questions that guided us.

(iv) Chapter 5 - Tool Support for Mitigating the Occurrence of Vulnerabili-
ties. We describe some detail about our prototype.

(v) Chapter 6 - Tool Evaluation. In this chapter, we analyzed the result of
the research and we show images of it.

(vi) Chapter 7 - Conclusions. In this chapter, we analyzed the advantages
and weakness of use of our Patterns, and we reveal our conclusions.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

2
Security Vulnerabilities

In this chapter, we define the different vulnerabilities with which we
will work in this proposal. The group of types of vulnerabilities is very
broad but after an exploratory study reflected in Chapter 4, we reduced the
group of vulnerabilities with that we will work. In addition, we summarize
the classification offered by the Common Weakness Enumeration (CWE)
Repository(1) for the assessment of damages of each vulnerability.

The security vulnerabilities appear when attackers manage to violate one
of the aspects identified in the definition of Security Systems.

(i) Security Systems: is “the practice of building software to be secure
and function properly under intentional malicious attacks” (20), is an
integrative concept that includes four key properties (13): confidentiality,
authenticity, integrity, and availability. (3)

These keys properties are useful whenever we talk about system secu-
rity; without making a difference between the software. The differences are
established when in the different types of vulnerabilities identified in the next
Section.

2.1
Type of Vulnerabilities

Before starting with our research, we will define the different classifica-
tions of existing vulnerabilities and the classes in which they can be grouped
according to A Community-Developed List of Software Weakness Types. (51)

(i) Cross-site Scripting (XSS): the code does not neutralize or incorrectly
neutralize the user input before it is passed as output to other users;

(ii) Direct Traversal (Dir. Trav.): the code does not neutralize special ele-
ments that may cause the requested access path to be returned to another
restricted directory;

1https://cwe.mitre.org/

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 2. Security Vulnerabilities 19

(iii) Cross-site Request Forgery (CSRF): the code is not able to verify whether
well-formulated and valid requisitions were intentionally or not provided
by the user who submitted the requisition;

(iv) SQL Injection: the code does not unduly neutralize or neutralize special
elements passed as input and that have the ability to modify commands;

(v) Open Redirect: allows attackers to impersonate or duplicate the identity
of the site and thus carry out phishing attacks;

(vi) Bypass: allows an attacker to fool unsuspecting users through pages with
malicious content.

2.2
Classification according to the CWE Repository

There are other classifications for the vulnerabilities, but due to their low
frequency of occurrence they will be evaluated in future studies. In this study
we prefer to focus on the most frequent vulnerabilities.

The CWE (43) Repository offers to Community-Developed a List of
Software Weakness Types. Repository where the origin of the vulnerabilities
described and explained and possible strategies for the solutions are offered,
both from the point of view of the programmer and the network administrator.
Because they are another criterion of classification, several classifications of the
most known can be combined in some of them.

In addition, several strategies are offered to mitigate the appearance
of vulnerabilities in various phases of the software creation process. It also
describes the complexity of taking care of the appearance of a vulnerability,
because by avoiding the appearance of a vulnerability, we can cause the
vulnerability of another vulnerability. After describing vulnerabilities, we
visualize a Table 2.1 with the scope of each vulnerability.

The vulnerabilities that we found in the CWE-20(2) group: Improper
Input Validation are originated when the data entry is not validated correctly,
an attacker can elaborate the data entry in a manner for which the application
is not prepared and misinterprets, causing some parts of the system to receive
an involuntary entry resulting in an altered control flow. For the examples that
are used in this group, they used code fragments in C, Java and PHP.

The vulnerabilities that appear in the group classified as CWE-22(3):
Improper Limitation of a Path-name to a Restricted Directory [Path Traversal]
are dominated by vulnerabilities classified as Dir. Trav., Those that appear

2http://cwe.mitre.org/data/definitions/20.html
3http://cwe.mitre.org/data/definitions/22.html

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 2. Security Vulnerabilities 20

when the protection of the address that indicates where the files of the
application are saved is neglected.

In the description of these vulnerabilities examples of their existence and
correction in languages such as Perl, Java and HTML are shown.

In the group classified as CWE-79(4): Improper Neutralization of Input
During Web Page are those vulnerabilities that do not neutralize or incorrectly
neutralize the data inserted by the user. Most of the vulnerabilities found in
this group are XSS.

On the page that describes and explains the vulnerabilities of the CWE-
79 group, it shows several examples of how to detect and correct these XSS
vulnerabilities in languages such as PHP, JSP and ASP.NET.

In the group of classified vulnerabilities such as CWE-89(5): Improper
Neutralization of Special Elements used in SQL Command (SQL Injection).
They are vulnerabilities that originate from the lack of validation of the
data that have to be inserted by the user, and in turn the application uses
them to elaborate SQL queries. For examples of how to mitigate or correct
vulnerabilities, use examples in languages such as C#, PHP, SQL and Perl.

The vulnerabilities grouped in CWE-94(6): Improper Control of Gener-
ation of Code (Code Injection). The application is able to build a segment of
code from the data inserted by the user and does not neutralize or incorrectly
neutralize elements that could modify the syntax or behavior of the desired
code segment. In this group of vulnerabilities, they use the codes in PHP and
Perl languages.

The vulnerabilities grouped in the classification CWE-200(7): Informa-
tion Exposure are produced by the intentional or unintentional disclosure of
sensitive information and not accessible to a user not authorized to have access
to that information.

In this other group CWE-284(8): Improper Access Control you can find
the vulnerabilities caused by the non-restriction or incorrect restriction of the
users’ access to resources not allowed. In these cases, the vulnerabilities are
not produced by carelessness during the programming, but the carelessness is
produced in the configuration of the application taking into account the users
and their roles.

Other groups in which our vulnerabilities are listed is CWE-352(9): Cross-
site Request Forgery (CSRF). In this group only vulnerabilities of the CSRF

4http://cwe.mitre.org/data/definitions/79.html
5http://cwe.mitre.org/data/definitions/89.html
6http://cwe.mitre.org/data/definitions/94.html
7http://cwe.mitre.org/data/definitions/200.html
8http://cwe.mitre.org/data/definitions/284.html
9http://cwe.mitre.org/data/definitions/352.html

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 2. Security Vulnerabilities 21

type are found as their name indicates. In this case the examples were only
applied in the PHP and HTML languages.

The group of vulnerabilities classified as CWE-601(10): URL Redirection
to Untrusted Site (Open Network) allows the execution of phishing attacks as
they allow the entry of links to external sites or redirecting it to other links.
For the examples of how they can be corrected or mitigated the vulnerabilities
of this group were used the PHP, Java and HTML languages.

Table 2.1: Reflect the scope of the vulnerability group
CWE/Scope A B C D E F G H I J K

CWE-20 X X X

CWE-22 X X X X

CWE-79 X X X

CWE-89 X X X

CWE-94 X X X

CWE-200 X

CWE-284 X

CWE-352 X

CWE-601 X X

In the fields of the Table 2.1, that reflects the scope of the vulnerability
group, the classifications of the scope are shown independently and in different
combinations, keeping in mind that the information disclosed in the repository
does not allow to separate the obtained combinations.

10http://cwe.mitre.org/data/definitions/601.html

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

3
Security Web Systems

In this chapter, we define security system and presents some applications
that perform vulnerability tests to web applications.

3.1
Definitions of Security Web Systems

The security vulnerabilities appear when attackers manage to violate one
of the aspects identified in the definition of Security Systems (20).

3.2
Tool for detection of vulnerabilities

There are a large number of web application security scanners. The
scanners only perform functional tests and do not have access to the application
code. The vulnerability detection tests are carried out to the applications
shortly before being made available for the use of users. Once published we can
add new functionalities with the use of the plugins; these new updates (using
plugin) are rarely scanned again.

With the aim of our proposal to anticipate the possible occurrence of
vulnerabilities, we will be able to perform the vulnerability detection process
during the plugin development process. In this way we want to guarantee that
the plugins are the safest possible.

An example of these applications that perform Tests are(1):

(i) Grabber: execute scans and tell where the vulnerability exists. It can
detect vulnerabilities such as: XSS, SQL Injection, and others. It is not
a quick application compared to other security scanners, but it is simple
and portable, so it should only be used to test small web applications.
This tool was developed in Python.

(ii) Vega: this tool is written in Java and offers a GUI-based environment.
It can be used to find SQL injection, XSS, file inclusion and other
web application vulnerabilities. This tool can also be extended with a
powerful API written in JavaScript.

1https://resources.infosecinstitute.com/14-popular-web-application-vulnerability-
scanners/#gref

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 3. Security Web Systems 23

(iii) Wapiti: Perform tests by scanning web pages and injecting loads and see
if a script is vulnerable. It supports GET and POST HTTP attacks and
detects multiple vulnerabilities. It can detect vulnerabilities such as Cross
Site Scripting (XSS), Weak configuration .htaccess, and many others. It
is a command line application, so it may not be easy for beginners. But
for the experts, it will work well. To use this tool, you must learn many
commands that can be found in the official documentation.

(iv) WebScarab: is a Java-based security framework for analyzing web ap-
plications using the HTTP or HTTPS protocol. It has several add-on
available, which can expand its functionality. The available modules can
easily detect the most common vulnerabilities, such as SQL Injection,
XSS and many other vulnerabilities.

(v) Skipfish: was written in C. It is highly optimized for HTTP handling
and uses a minimal CPU. He says he can easily handle 2000 requests
per second without adding a load to the CPU. Uses a heuristic approach
while tracking and testing web pages. This tool also claims to offer high
quality and less false positives.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

4
Vulnerabilities in Plugin-based Web System

In this chapter, we describe how the research questions that guide
our research were answered. Furthermore, the current work published in
(51)(52) presents some results obtained from the analysis of the vulnerabilities
registered in the repository.

4.1
Exploratory Research

We base our study on 895 vulnerability bulletins registered in the NVD
repository. The information was collected in September 2017 by downloading
all the NVD data as JSON Feeds. We then built a parser that went over all
bulletin descriptions and collected the ones in which the keywords “WordPress”
and “Plugin” occurred together in a given sentence. After reviewing the bulletin
descriptions for a second time, our parser extracted the type and severity of
the vulnerabilities in each bulletin. Finally, we examined the resulting data to
answer RQT.1 (Sub-section 4.2.1) and RQT.2 (Sub-section 4.2.2).

Currently, the CVSS (21) captures the severity of vulnerabilities by
considering how they can be accessed and whether or not extra conditions
are required to exploit them. In our study we considered the following relevant
measures to exam and answer RQT.2: Integrity Impact: the impact to integrity
when a vulnerability is exploited successfully; Availability Impact: impact to
availability of a successful exploited vulnerability, which evaluates the impact
of attacks that consume computational resources (e.g., network bandwidth use,
disk space, or processor cycles), and Complexity Impact: the complexity of the
attack required to exploit the vulnerability once an attacker has gained access
to the target application.

(i) Integrity: None: there is no impact on integrity; Partial: it is possible
to make modifications to files or gain access to application information;
however, either the attacker has no control over what can be modified or
the attacker‘s scope is limited; Completed: there is a total compromise
of application integrity;

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 25

(ii) Availability: None: no impact on web application availability; Partial:
reduction in performance, or partial interruptions in available resources;
Complete: stop of affected resources;

(iii) Confidentiality: None: no impact on web application confidentiality; Par-
tial: considerable informational disclosure; Complete: total information
disclosure;

(iv) Complexity: Low: does not demand expertise; Medium: requires a little
expertise; and High: demands high expertise.

NVD also promotes the incorporation of links to other web sites with
complementary information of interest to developers and users. Thus, in order
to measure the size of the path to fix plugin-related vulnerabilities and their
survivability, in the third inspection of the vulnerabilities bulletins, we ex-
tracted information related to patches posted in the WordPress Plugin Repos-
itory(1). This repository supports the development of over 52,000 WordPress-
related plugins and provides a set of development tools, a wiki, a version control
system, and a bug tracker.

Using the Stack Exchange application programming interface (API)
(8), we extracted questions and answers posted between August 2010 and
October 2017. To collect questions related to security issues we limited our
search to questions in which the keyword “plugin” appeared along with either
“vulnerability”, “hacked”, “security”, “insecure” or “safe” (17)(39). We looked
for these keywords both in the title and in the body questions. Next, we
manually eliminated non-related questions. We extracted information was pre-
processed: we removed any code snippet enclosed in <code> . . . </code>.
In the context of our research, code snippets do not convey much helpful
information. Additionally, we removed all HTML tags, all stop words, and
applied Porter Stemming to map each word to their base form (54).

4.2
Answers to Research

As mentioned, to answer RQT.1, we analyzed any aspects reported on
vulnerability bulletins. First, we probed the vulnerability types and whether
their frequency has been increasing or decreasing over the years. Second, we
also investigated when they are normally introduced during the development
life cycle. Table 4.1 list the most common vulnerability types

1https://es.wordpress.org/plugins/

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 26

4.2.1
RQT.1 – What are the main vulnerabilities caused by WordPress plugins?

As mentioned, to answer RQT.1, we analyzed sine aspects reported on
vulnerability bulletins. First, we probed the vulnerability types and whether
their frequency has been increasing or decreasing over the years. Second, we
also investigated when they are normally introduced during the development
life cycle. Table 4.1 list the most common vulnerability types.

Our results indicate that an extremely limited number of vulnerability
types occur and most of them are introduced at implementation time. Out of
the 705 software vulnerabilities in CWE, only 9 of them are regularly caused
by WordPress plugins. As shown in Table 4.1, the three most common types
of vulnerability are XSS with 397 occurrences (43.72%); SQL Injection with
166 occurrences (18.28%), and CSRF with 120 occurrences (13.12%). The least
common type is Unrestricted Upload (1.21%), which allows arbitrary code to
be uploaded and executed by the web application.

When investigating Table 4.1, we discovered four evolution patterns of
vulnerability caused by plugins in web systems: (i) persistent vulnerability,
which manifest itself often along the years (P1); (ii) occasional vulnerability,
which occurs at irregular intervals over the years and thus has been reappearing
from time to time (P2); (iii) once occasional vulnerability but now lays
“dormant”, which is a vulnerability that manifested itself then disappeared,
after which it has not manifested itself again ever since (P3); and (iv) occasional
vulnerability that has become prevalent in plugins (P4).

Table 4.1: Lists the most common vulnerability types
Type CWE Total Time of Introduction

XSS CWE-79 397 Implementation

SQL Injection CWE-89 166 Implementation/Operation

CSRF CWE-352 120 Implementation

Path Traversal CWE-22 48 Implementation

Management of Permissions CWE-264 28 Design

Improper Input Validation CWE-20 21 Implementation

Code Injection CWE-94 20 Implementation

Information Exposure CWE-200 19 Implementation

UNrestricted Upload CWE-434 11 Implementation

Notably, the majority of the vulnerability types caused by plugins in
WordPress falls into pattern P1: meaning that 76.31% of these vulnerabilities

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 27

keep cropping up through the years and that security is still not increasing
over time. We conjecture that vulnerabilities that follow pattern P1 are the
easiest to be introduced. For instance, XSS and SQL Injection are types of
vulnerability in pattern P1. The former, according to (2), is very common in
web systems because it requires a great deal of knowledge about program
construction and thus it should be avoided altogether. Indeed, whenever
developers are negligent during the PHP code writing process, they are prone
to lapses that may result in the introduction of XSS vulnerabilities into plugin
code. Regarding SQL Injection, we surmise it as a common vulnerability
because it is easily detected and exploited. Moreover, as observed in (2),
any web system with even a minimal user base is likely to be subject to an
attempted attack of SQL Injection.

In general, we also noted only 10.66% of vulnerabilities associated with
patterns P2, P3, and P4. Code injection is the only type in P3. We are con-
vinced that code injection was once common and the almost disappeared be-
cause developers started avoiding unsafe resources as eval(). However, in con-
trast, other vulnerability types associated with improper input validation as
Path Traversal and Unrestricted Upload have become prevalent. We under-
stand that proper input validation is still a major challenge faced by plugin
developers, especially because many of the recently developed plugins have
been created by not-so-skilled developers (14).

4.2.2
RQT.2 – How critical are the vulnerabilities caused by WordPress plugin?

Out of the 895 vulnerability bulletins analyzed, only 78 (8.71%) indicated
that the vulnerability would not lead to a significant compromise of the
web system integrity. However, 804 bulletins (89.83%) suggested that the
vulnerability had the potential to allow attackers unrestricted access to files or
to information maintained by the vulnerable web system, even when the scope
the attackers could have had access to was limited. Only 15 reports (1.67%)
described vulnerabilities that had the potential to jeopardize the integrity of
the web system as a whole. Therefore, our results suggest that the majority
of the vulnerabilities have to potential to lead to data breaches while a few
vulnerabilities do not expose web systems to serious security risks. Moreover,
fewer vulnerabilities (less than 2%) had the potential to render the whole
system vulnerable.

We also looked at the impact of the vulnerabilities on the availability and
confidentiality of web systems(45)(53). As shown in Table 4.2, the number of
vulnerabilities that do not affect, or that only partially affect the web systems

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 28

Table 4.2: The number of vulnerabilities that do partially affect the web
systems

Type L M H N P C N P C N P C

CWE-19 1 − − − 1 − 1 − − − 1 −

CWE-20 12 9 − 1 18 2 9 10 2 5 14 2

CWE-22 46 2 − 43 4 1 44 4 − 3 43 2

CWE-59 1 − − 1 − − 1 − − − 1 −

CWE-77 2 − − − 1 1 − 1 1 − 1 1

CWE-78 1 − − − 1 − − 1 − − 1 −

CWE-79 1 388 8 − 397 − 397 − − 397 − −

CWE-89 160 6 − − 166 − − 166 − − 166 −

CWE-94 14 6 − − 18 2 − 18 2 − 18 2

CWE-200 19 − − 19 − − 19 − − − 19 −

CWE-254 1 − − − 1 − 1 − − 1 − −

CWE-264 23 5 − 5 21 2 13 13 2 11 15 2

CWE-284 6 − − 2 4 − 4 2 − 3 3 −

CWE-285 2 − − − 2 − 2 − − 2 − −

CWE-287 4 1 − − 5 − 1 4 − 2 − −

CWE-352 2 117 1 2 117 1 7 112 1 5 114 1

CWE-434 1 − − − 10 1 3 7 1 3 7 1

CWE-552 1 − − 1 − − 1 − − − 1 −

CWE-601 − 1 − − 1 − 1 − − − 1 −

NO INFO 11 − − − 8 3 4 4 3 4 4 3

OTHER 16 16 1 2 29 2 8 23 2 2 29 2

are somewhat similar. The results show that 516 (57.65%) vulnerabilities
do not compromise availability. Nevertheless, according to the reports, 365
(40.78%) vulnerabilities have the potential to negatively affect the performance
of the web system or partially render resource unavailable. Similar result can
also be observed when we consider confidentiality. A considerable number of
vulnerabilities, that is, 437 (48.82%) do not affect the confidentiality of the web
system while 442 (49.38%) of them enable the attacker to access some system
files. Only in 16 (1.78%) reports the vulnerability poses a security breach that
allows the attacker to take over the vulnerable site and access sensitive data.

As shown in Table 4.2, 551 (61.56%) vulnerabilities require some special
access conditions. However, in 334 (37.31%) cases, the vulnerabilities intro-
duced by plugins do not impose any restriction to attackers nor hamper their
access to certain files. That is, any attack can be performed manually and

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 29

requires little, to no skill to be carried out. Indeed, SQL Injection (CWE-
89) seems to be the most dangerous vulnerability type. Although, the reports
indicate that SQL Injection attacks only partially affect the integrity, avail-
ability, and confidentiality of the systems, most of the cases suggest that these
vulnerabilities can be easily exploited by attackers.

4.2.3
RQT.3 – What is the patch size to fix WordPress plugin vulnerabilities?

We analyzed the impact of maintaining vulnerabilities caused by plugins
based on the patches available on the WordPress plugins repository. According
to the standard deviation, the size of the patches in terms of the number of
lines of code seems to vary considerably. Therefore, the median is a more
representative measure of central tendency for our data sample: that is, our
results seem to suggest that, on average, 11 lines of code are needed to fix
a vulnerability. Considering the 119 patches analyzed, we noted that most
changes occur in only a few files. On average, fixing a vulnerability entails
changing only one file. According to our analysis, the worst-case scenario
involves having to change up to 8 files (Table 4.3).

Table 4.3: Reflect the number of lines of code and files that were modified to
correct vulnerabilities

Llines A Lines C Lines R Files

Min 0 0 0 1
Max 20 12 21 18
Mean 1,96 1,95 1,11 1,7
Median 0 1 0 1
Std. Dev. 3,64 2,51 3,44 2,33

Analyzing the top three patches we observed that they are large because
their fix entailed sanitizing a large volume of parameters. For example, the mul-
tiple XSS vulnerabilities in wp-login.php in the Genetech Solution Pie-Register
plugin (8) was fixed in patch 74024912, which entailed adding and modifying
approximately 900 lines of code spread across 2 files to sanitize the input pa-
rameter of the Settings and Register Forms. Similarly, to fix two vulnerabilities
(9)(10)(46)(50) in the Video Embed & Thumbnail Generator plugin: one allow-
ing attackers to obtain the installation path via unknown vectors and another
allowing remote attackers to execute arbitrary commands: the developers in
patch 50792415 had to change almost 750 lines of code by implementing the

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 30

Media Upload Form and Generator functionalities to basically process input
data. This more in-depth analysis, however, indicates that the effort involved
in fixing post-release security vulnerabilities is significant only in some very
specific cases.

4.2.4
RQT.4 – How long does a vulnerability survive in the WordPress plugins
code?

The duration of a vulnerability transits through different states, ranging
from the introduction, through disclosure, to the release of a patch that corrects
the security threat (4). The introduction or birth of vulnerability occurs
unintentionally during the development cycle. Vulnerability is revealed when
the discoverer reveals details of the security threat to a wider audience. Finally,
a vulnerability is solved when the developer releases a patch that corrects the
security threat. We consider the number of days between the introduction of
vulnerability (Table 4.4) and its fixation as its survival time.

Table 4.4: Reports the survival time of security vulnerability in the plugins
code extracted from the 119 patch analyzed

Number of Days

Min 1
Max 1.710
Mean 563,41
Median 470
Std. Dev. 1,34

Although disclosure might accelerate patch release, as observer by Arora
et. al. (5), the number of days until a vulnerability is fixed after it is intro-
duced in the code of a WordPress plugin is on the other hand, considerable.
On average, it takes 653 days until the fixing of a vulnerability after its intro-
duction. This means that a vulnerability could remain unnoticed in the web
application for years before being identified and the fixed. For example, the
vulnerability CVE-2015-441318 has been fixed in the commit 117873619 made
on 6th November 2015. The commit 60349120 performed on 25th September
2012 was identified as the vulnerability-introducing commit. Therefore, a sim-
ple to be corrected but very severe vulnerability survived in the code for 989
days (2 years, 8 months, 10 days).

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 31

4.2.5
RQT.5 – What are the most common vulnerability related topics discussed
among developers?

Table 4.5 shows the distribution of questions (Q) and answers (A) per
topic as well as the ratio of answers per questions (A/Q), means of views (Mv),
and means of score (Ms). Table 4.5 provides us with interesting result. For
example, Server Security is the topic with the least amount of questions and
answers and Database Security is the one with most questions and answers.
Questions about Server Security usually focus on how server administrator
decisions may prevent an attacker from exploiting a vulnerability and from
gaining access to sensitive internal information. Although the topic Server
Security has the highest Score (5.09), we believe that this category has a low
number of questions because plugin developers are not concerned about server-
side security. Indeed, we found an outlier question with a Score of 48 and
3,108 views, which alone is responsible for 64.20% of the Server Security topic
popularity. Analyzing this question 16, we found that it very popular because
it brought up an appealing discussion regarding a collaboratively-edited list
of “high-end WordPress webhost” for those “WordPress site that needs really
hardened security”.

Table 4.5: Show the distribution of question (Q) and answers (A) per topic

Topics Name Q A A/Q Views Score

Server Security 11 19 1,72 440,09 5,09
Plugin Update 27 33 1,22 386,77 1,37
File Upload 29 36 1,24 1.835,62 1,93
Permissions 34 51 1,5 1.801,32 1,32
Cryptography 38 54 1,42 991,02 1,84
SSL Certificate 42 45 1,07 1.209,28 0,57
Authentication 43 59 1,37 1.947,55 1,37
Content Security 43 60 1,39 855,04 1,16
Programming 50 63 1,26 817,08 2,4
Database Security 291 410 1,63 794,16 1,63

It is also worth mentioning that the number of views can vary signifi-
cantly. For instance, Authentication is the topic that has the highest average
number of views (1,947.55) and Server Security has the lowest (440.0). Upon
analyzing the most visualized questions in Authentication, we noted that they

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 32

are very general and recurrent questions about best practices on authentication
and authorization. In contrast, we did not observe a considerable discrepancy
among question scores. In 2 out of 8 cases, the question scores are close to
1.50, which means that the number of “up-votes” are not more than two times
bigger than the number of “down-votes”. Therefore, we can conclude that in
general Server Security contains few, but relevant, questions and although SSL
Certificate is a very popular topic, averaging more than 1200 views, some of
the questions are poorly elaborated.

Finally, we investigated how tags are used in StackExchange WordPress,
which emphasizes the use of tags to categorize and group questions. We found
a total of 325 distinct tags. The five most common tags are: (i) login – 35
occurrences; (ii) updates – 29 occurrences; (iii) ssl – 28 occurrences; (iv)
multisite – 26 occurrences; and (v) database – 25 occurrences. These results
corroborate to indicate that Authentication, Authorization, SSL Certificate,
and Database Security are indeed the most common security-related topics
discussed among WordPress developers.

4.3
Mitigation and Detection Methods

Following the typical methods to mitigate vulnerabilities does not guar-
antee that a given plugin is secure, but it does, however, set a good security
baseline. As the results indicate, if plugin developers manage to fully under-
stand, detect, and eliminate XSS, SQL Injection and CSRF, they will be devel-
oping plugins with 76.31% less vulnerabilities. To contribute to mitigation of
vulnerabilities we summarize some methods that can be used to make plugins
code more reliable.

(i) Understand how data is used and the encoding expected by the core
parts of the plugin-based web systems (e.g. WordPress, Drupal). This is
especially important because plugins have to send input data in specific
patterns to many internal components. In this case, developers should
assume all input as malicious and reject any input that does not strictly
conform to the required encoding pattern, or transform it into a valid
input. For example, WordPress provides some helpfully PHP functions
such as: esc html – escapes HTML to safely output processed inputs; esc
js – escape Javascript to be used in tag attributes; sanitize text field –
sanitizes a string checking for invalid characters.

(ii) For instance, to protect database from SQL Injection, developers should
use parameterized SQL statements by separating code from data manip-

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 33

ulation. Moreover, it is important to check the headers to verify whether
the request is from the same origin. Another good practice is avoiding
the GET() method for any request that triggers a state change.

Unfortunately, there is not method able to detect the most common code
weakness with 100% of accuracy and coverage. Even modern techniques that
use data flow analysis to detect Cross-site Scripting (25). Indeed, Fonseca
and Vieira (16) set out to study the effectiveness of static code analysis
tools to detect vulnerabilities in plugins of web systems and understand the
potential impact of those vulnerabilities in the security of the core web system.
Their results suggest the coverage analysis performed by static analysis tools
is inefficient and these tools report false positives often. In contrast, SQL
Injection vulnerabilities are usually more effectively detected by dynamic
analysis methods. However, it is well-known that even dynamic analysis
methods have drawbacks (1). It is also worth mentioning that not even a
thorough software testing process can guarantee the detection of all possible
vulnerabilities.

(i) Software test: test process designed to ensure that the software complies
with the functional requirements for which it was designed. (21)(22).

Creating and maintaining a test suite demands many human resources
and executing large test suites might take too long. Therefore, creating secure
plugins (devoid of vulnerabilities) poses a complex challenge to developers as
testing all possible plugins combination is in general impractical (18)(23)(24).

Manual analysis can be useful for finding SQL Injection, but it might not
achieve the desired code coverage within limited time constraints. This becomes
difficult for weaknesses that must be considered for all inputs, since the attack
surface can be too large. Consequently, some organizations as OWASP stress
the importance of a balanced approach that includes both manual reviews
and automated analysis that covers all phases of the web system development
process. Code recommenders techniques (6)(12) seems to be useful in this
context as it can be used in some cases to present a list of all possible
sanitization methods, allowing a developer to browse the proposal and to select
the appropriate one from the list.

However, as sanitization methods should be recommended with respect
to specific contexts (vulnerable codes) we still be missing a set of metrics that
could help tools to effectively recommend the places most susceptible to have
a vulnerability and the most appropriated sanitation methods (15)(29).

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 34

4.4
Threats to Validity

The validation of the exploratory research was divided into two ways
to be carried out, an external validation and another internal validation was
carried out.

4.4.1
External Validity

The study was limited to the analysis of 895 NVD vulnerability bulletins
associated with WordPress plugins. Therefore, the results cannot be gener-
alized to other plugin-based web systems (e.g., Drupal and Joomla). Given
that plugin-based web systems projects vary on characteristics as number of
participants, community structure, and governance, we cannot draw general
conclusions about all projects (i.e., the whole population). To build reliable
empirical knowledge, we need a family of experiments (7) that include plugin-
based web systems of all types. However, with its 52,000 plugins, WordPress
is a relevant and highly popular ecosystem. Moreover, we think the impact
of this threat is minimal for three reasons: (i) most plugin-based web system
provides the same basic programming model; (ii) the focus of the study was
on security vulnerabilities rather than on the specifics of the software systems
themselves, and (iii) none of the other plugin based systems focus specifically
on promoting secure coding, so there is no clear reason that one would be
favored over the other in our study.

4.4.2
Internal Validity

The data analysis method is another aspect that can negatively affect
the results: the study was based on a manual verification of both the NVD
vulnerability bulletins and the patches collected from the WordPress Plugins
repository. We also manually analyzed and eliminated non-related questions
extracted from the WordPress Stack Exchange Q&A Website. Independent
validation of our results can also be performed once we made all of our
data publicly available. Another threat is the validity of our survival time
measure (i.e. number of days until a vulnerability was fixed properly). Because
most patch include large changes rather than only vulnerability-fixing changes,
measuring the extent of the modifications is challenging (40)(41).

Another construct validity threat is that if the keyword set was incom-
plete, the automatic extraction could have missed some vulnerability bulletins
or Stack Exchange questions. To validate the completeness of the set of key-

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 4. Vulnerabilities in Plugin-based Web System 35

words, the authors independently inspected randomly chosen NVD bulletins
and Stack Exchange questions that did not contain any of the keywords used.
The manual review of those assets found any relevant missed case. We applied
this analysis to increase our confidence in the soundness of the keyword set.

4.5
Chapter’s Conclusions

We could observe that plugin developers still do not know how to write
secure code, mainly because they are not-so-skilled developers. Indeed, given
the nature of the most common vulnerabilities, it is clear that developers do not
understand common attacks, the security functions provided by the language
and platform they use, and how certain easily applicable practices can mitigate
security problems. We found that the time window of addressing security
vulnerabilities post-release can be high is some cases. Overall, it takes less time
to address vulnerabilities when they are found earlier in the plugin development
lifecycle. Thus, our recommendation is to develop new methodologies tailored
to plugin developers, which promote security in the requirements and design
phases. In this case, we have to consider that developers are the most important
entities in software security. As we mentioned, automated solutions tend to fail
to detect some vulnerabilities and inexperienced software developers exhibit a
lack of texting skills (49). Worse, strategies as social transparency (48) seems
to not influence the testing behavior of plugin development teams as observed
in others context (14)(55). As we could observe, the quality of open source
plugins does not increase over time as the frequency of disclosed vulnerability
does not decrease over time.

The results indicate that we need tools that enable novice developers
to reliably build secure plugins. That is, those tools need to be usable
by developers without any security background. Unfortunately, the well-
established security tools cannot operate at the speed required to achieve a
more proactive security. These tools are based on the disclosure of existing
vulnerabilities and are incompatible with the development of modern software,
since they lack the options that facilitate rapid adaptation to the possible
emergence of new security vulnerabilities. Techniques that we can find when
combining the methods of the current tools with machine learning techniques.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

5
A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities

Taking into account the information reflected in the previous chapter,
we will dedicate this chapter to describe how we carry out the development
of our plugin and the tools we use to build it. Directing the chapter from
the motivation section, we will present the demo design, and how our demo
operates for the detection of vulnerabilities in files with PHP code.

5.1
Motivation for building the Tool

After the study shown at Chapter 4, we use this chapter to describe and
analyze our proposed solution. For analysis the tool proposal we will analyze
this architecture, the operating process and the current state of the tool. We
describe was the tool created, as was the implementation process and the tests
performed up to the state in which the application is located.

The goal of this Chapter is to explain our analysis was carried out to help
mitigate the possibility of security vulnerabilities occurring in web applications.
As we indicated in the study at Chapter 4, the area selected for the study of
the behavior of the vulnerabilities were the security vulnerabilities associated
with WordPress obtained from the NVD Repository. The study was conducted
for the vulnerabilities of websites based in Plugin (created using PHP) and
WordPress.

A precondition for the vulnerabilities registered in the NVD Repository
must have been generated by the addition of a Plug-in to WordPress. We
recognize that the limitation of using only the vulnerabilities recorded in the
Repository limits the investigation, but the Repository is used as a starting
point for the investigation. We added as a precondition, that we use the Plug-
in directly connected with WordPress (Figure 5.1); and we ignore in this first
stage the Plug-in connected with WordPress through another Plug-in (Figure
5.2).

The Figure 5.2 shows Plug-in Y, marked with a red cross, representing
those Plug-in that we neglect in this first phase of creation of our tool. Rejected
for its indirect connection with WordPress, connected with another Plug-in X.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 37

Figure 5.1: Case study identified. Plug-in directly connected to WordPress

Figure 5.2: Case study rejected. Plug-in connected through another Plug-in
with WordPress

Due to their complexity, plugin-based web systems are also plagued by
vulnerabilities (28). WordPress provides an infrastructure to which plugins
can contribute new features by modifying shared global state or running a
function at a specific point in the execution of the core. For example, The
WordPress login form works properly in isolation, but the introduction of the
aforementioned plugin causes a vulnerability as shown in Figure 5.3. Given
that, WordPress allows millions of developers across the world to create their
own plugins, it is unrealistic to anticipate all possible plugin installations,
interactions, and combinations in a specific web application. As a result, it is
clear that security can be violated by unanticipated plugins interactions with
the core, creating vulnerabilities that can be potentially exploited by attackers
(16)(29)(42). Thus, the security of these web systems hinges on keeping both
core and plugin vulnerabilities in check.

Walden et al. (28) carried out a study to observe whether plugins are the
source of vulnerabilities present in web systems and they confirmed that most

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 38

Figure 5.3: Example of vulnerability produced by use of a plugin

of the vulnerabilities (92%) appear in plugin code. In addition, according to
their results, plugin code differs from core code in terms of the types of vul-
nerabilities present in the results. Fonseca and Vieira (29) suggest that many
plugins have Cross-site Scripting and SQL injection vulnerabilities that can be
easily exploited. Moreover, they found that the coverage analysis performed
by static analysis tools is inefficient and these tools often report false positives.
Koskinen et al. (42) analyzed 322 randomly selected WordPress plugins. More
specifically, they compared the amount of potential vulnerabilities and vulner-
ability density to the user ratings in hopes to determine if user ratings can be
used to select secure plugins. The results suggest that the quality of plugins
varies and that there is no correlation between the ratings of plugins and the
amount of vulnerabilities found in them.

We conducted a study on the code of the vulnerable files found in the
Repository to detect the behavior of security vulnerabilities. We demonstrated
in Chapter 4, most vulnerabilities are detected and arranged in a single file. In
addition, the variability in the behavior of security vulnerabilities is not very
broad, and therefore we decided to make a first definition of Patterns with the
detected and concerted vulnerabilities in only one line of code.

A first step for our proposed solution was to divide the files obtained from

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 39

the NVD Repository, into two groups. A first group for the creation of Behavior
Patterns of vulnerabilities. For create the Behavior Patterns (Annex B), we use
a small group of the files collected from the total files collected from the NVD
Repository. Behavior Patterns were created respecting the correct code syntax
and the frequency of appearance of the proposed structures. The division of
the groups of files was performed randomly and the identification of the first
Patterns of behaviors was done manually. Most of the patterns detected have
the keyword "echo", this is due to the high frequency of use of this word; which
showed us that we cannot give importance to the keyword if it is not within
the structure we identify.

With the second group, the efficiency tests of the Behavior Patterns cre-
ated with the first group were carried out. Given the results of the exploratory
study shown in Chapter 4, the vulnerabilities of greatest occurrence are vul-
nerabilities of type XSS, SQL Injection and CSRF, so the first patterns of
behavior created are for to anticipate these types of vulnerabilities.

5.2
Functional Requirement

A Functional Requirement, has to express and show the composition of a
software (30)(31) to the needs of the user (be understood by a natural person
who interacts with the software or software that needs the operation or service
offered by other software), we define the following Functional Requirements:

(i) Ability to connect to the IDE Eclipse: because our tool is a plugin
to combine with the Eclipse development IDE, we understand that
we should not neglect this aspect. Our plugin does not need specific
configuration, so it facilitates its connection and only needs the basic
configuration for communication with the development IDE.

(ii) Path where the files to be tested are located: in this requirement it
presents two variants for the location of the files to be tested. As a first
variant, we understood that if the plugin does not receive a location path
for the files then, the files that are in the same location of the project
being worked on at the time of the test should be scanned. As a second
variant and given the possibility of testing several files, communicated
with each other or not, belonging to the same project or not; We offer
the possibility to write the path of the folder in which the files you wish
to test are located.

(iii) The files must contain PHP code: we are talking about a plugin to test
files with PHP code regardless of their extension, but it is not objective

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 40

to perform the test to detect possible security vulnerabilities if the files
that will be tested do not contain PHP code. The absence of PHP code
will not cause any error in reading the file, simply the plugin will try to
perform the test process without obtaining apparent results due to the
absence of PHP code.

(iv) The Knowledge Base must be connected to the plugin and updated: the
Knowledge Base must be duly updated, and with a service that allows
update yourself of the repositories recommended during the study with a
frequency not exceeding 3 months, due to the amount of vulnerabilities
that are recorded every year.

(v) Detect the Patterns of Behaviors created in the archives tested: the plugin
must be able to use the information of the Knowledge Base to detect the
Patterns of Behavior in the archives that are tested for the Detection of
Possible Vulnerabilities. In the same way you have to be able to offer the
Possible Solution stored in the Knowledge Base.

(vi) Architecture that allows the creation and incorporation of new function-
alities for the detection of new Behavior Patterns: For this the plugin
presents an architecture based on the Methodology of Multiagent Sys-
tems, where each agent can be dedicated to the detection of the Behavior
Patterns according to, they want to group. The Patterns of Behavior can
be grouped by the Possible Vulnerability in which they are found or in
several groups considering the similarity between them.

(vii) Inform the client of the Possible Security Vulnerabilities and Possible
Solutions: after detecting the Behavior Pattern in the code line where a
Possible Vulnerability may occur, our Plugin must inform the user of the
existing solution and stored in the Knowledge Base.

Of the Functional Requirements identified for the realization of the
plugin, we apply in this demonstrative version the following requirements:

(i) Path where the files to be tested are located: we apply the second variant,
in which we ask for the path of the folder where the files to be tested
are located. The plugin requests the address of the folder by console and
does not continue the process until some path is informed.

(ii) The files must contain PHP code: we created this first version capable
of working in the various formats in which PHP files can be found.
Respecting the various formats in which you can find the PHP code.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 41

(iii) Detect the Behavior Patterns created in the tested files: this version
detects the Behavior Patterns of the Possible XSS Vulnerabilities, using
the Behavior Patterns stored in the Plugin’s own code.

(iv) The Knowledge Base: A Knowledge Base stored in the Plugin code was
used, which is initialized whenever the execution of the Plugin is invoked.

(v) With the fulfillment of these last Functional Requirements, we under-
stand that they are enough to demonstrate the possibility and the via-
bility of the use of Behavior Patterns for the anticipation of Possible Se-
curity Vulnerabilities in the applications made with PHP Code. Demon-
strating that there are ways to anticipate and mitigate the occurrence of
Security Vulnerabilities.

5.3
Technologies used for Build the Tool

IDE Eclipse(1): is a free Java IDE for developer. It is mostly written in
Java. Eclipse lets you create various cross-platform Java applications for use
on mobile, web, desktop and enterprise domains.

Its contains a base workspace with an extensible plug-in system for
customizing the IDE to suit your needs. Through plugins you can develop
applications in other programming languages. These include C, C++, Java,
JavaScript, PHP, and other. Eclipse is available under the Eclipse Public
License and is available on Windows, Mac OS X and Linux. This IDE that is
very popular among the community of developers of the Java Language(2)(3)
using the JDT Plug-in that is included in the standard IDE distribution. It
provides tools for managing workspaces, writing, deploying, executing and
debugging applications (34)(35). Both Eclipse and Java enjoy great popularity
in the community of programmers.

For the creation of our tool we use Java as programming language, while
we are still studying which database NoSQL will be used.

1https://blog.idrsolutions.com/2015/03/the-top-11-free-ide-for-java-coding-
development-programming/

2http://personales.upv.es/rmartin/cursoJava/Java/Introduccion/PrincipalesCaracteris-
ticas.htm

3https://www.12caracteristicas.com/java/

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 42

5.4
Tool Design

Manually grouping the vulnerabilities by the known classifications and
by the CWE classification, combined with the WordPress information reflected
on the official CMS site; a group of patterns will identified that will allow
us to identify the possible vulnerabilities from the process of creating future
plugins in PHP language for WordPress. To strengthen the study of patterns
identification of security vulnerabilities, we will combine our study with the
different access points that WordPress offers to add a plugin.

Among the various behavior patterns detected, we find that whenever
the echo syntax appears htmlspecialchars (variable); increases the possibility
of occurrence of an XSS vulnerability. An example of where the vulnerability
can be found according to the proposed pattern is displayed in the CVE-2011-
4562 (4) (Annexo D) vulnerability refueled in the NVD Repository. For the
studies carried out whenever we find the behavior of this Pattern can be solved
by changing the htmlspecialchars function by the esc attr function. This first
example of the Vulnerability and Solution Pattern would have the following
behavior.

Vulnerability: echo htmlspecialchars (variable)
Solution: echo esc attr (variable)

Another example of Repeated behavior pattern, we find it in the lack
of sanitization of the GET methods widely used in web applications. In
vulnerabilities CVE-2012-1068 (5) and CVE-2011-5106 (6), the GET method
is used to scroll through the various pages of the website. The lack of analysis
and conversion of the GET method parameter generated an XSS vulnerability.
In this Pattern the String sent as a parameter is the number of the page to
which you want to access.

Vulnerability: variable = _GET [String]
Solution: variable = (int) _GET [String]

The patterns were formed after observing the same behavior in the code
of several PHP files of the Plug-ins studied. It is valid to remember that
the frequency of occurrence of vulnerability by Plug-in is from 1 to 1, each
vulnerability registered in the NVD Repository belongs to a single Plug-in.
This detected relationship between the vulnerabilities registered in the NVD
Repository and the Plug-ins referenced in each vulnerability, validates the
created Patterns.

4https://nvd.nist.gov/vuln/detail/CVE-2011-4562
5https://nvd.nist.gov/vuln/detail/CVE-2012-1068
6https://nvd.nist.gov/vuln/detail/CVE-2011-5106

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 43

Based on the architecture proposed in Figure Figure 5.4, we developed a
Plug-in‘s tool in the Java language using the Eclipse IDE for its creation. The
tool was created to be used in the Eclipse development IDE. It was created
to contribute to the security of other Plug-ins created with PHP language.
The Eclipse IDE has several Plug-ins that facilitate the creation of efficient
and functional codes, for none capable of preventing the existence of possible
vulnerabilities in the code.

Figure 5.4: Architecture proposal for the tool

We developed the tool in Eclipse for being an open source integrated
development platform (IDE open-source)(47), designed to be extended indef-
initely through Plug-ins. It is a generic IDE that is very popular among the
community of developers of the Java Language(7)(8) using the JDT Plug-in
that is included in the standard IDE distribution. It provides tools for man-
aging workspaces, writing, deploying, executing and debugging applications
(34)(35). Both Eclipse and Java enjoy great popularity in the community of
programmers.

On the other hand, PHP(9)(10)(32) is an interpreted language and widely
used in the construction of Web Applications and the basis of WordPress code.
In the same way, the files with PHP are completed with other languages such as
Java Script, HTML and JSON, just to mention a few. The variety of languages
that complement the PHP language make it difficult to read these files, so we

7http://personales.upv.es/rmartin/cursoJava/Java/Introduccion/PrincipalesCaracteris-
ticas.htm

8https://www.12caracteristicas.com/java/
9https://www.sitesbay.com/php/php-features-of-php

10https://www.w3schools.com/php/php_intro.asp

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 44

limit our study once again to identify patterns, to read the files between the
PHP code.

For the creation of the Plug-in‘s tool and based on the architecture
proposed in Figure Figure 5.5, we created a tool able to analyze the files
with PHP extension. Because PHP is an interpreted language and does not
need to be compiled, we use the principles of a compiler for the construction
of the Plug-in. Our tool does not aim to detect errors, so we do not need to
create a compiler in its entirety of principles, phases and operations. Of the
three phases of the compiler, only the phases of Lexical Analyzer and Syntactic
Analyzer were used. It was not necessary to use the Semantic Analysis phase.
Our Plug-in is not intended to detect if the code contains errors or operating
problems; remember that our goal is to be applied the Plugin in correct and
efficient codes, to detect possible security vulnerabilities.

Figure 5.5: Architecture proposal for the tool made

For the creation of the Lexicon Analysis phase, we conducted a manual
study on the PHP language and its keywords. The study was conducted in
PHP manuals(11)(32) regardless of the version of the language described in
the manual. Then, we repeat the same study done on the manuals, in the files
collected from the vulnerabilities registered in the NVD repository. The choice
of the files of the vulnerabilities chosen for the study was explained previously,
and the division of the groups of vulnerabilities was carried out randomly.

In the first group of files we repeat once again the manual study to define
the Behavior Patterns and obtain the first data of our knowledge base. With the
defined patterns, the next step was to build the code for the Lexical Analysis

11https://www.w3schools.com/php/default.asp

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 45

and identify the PHP language tokens in the different files. With the tokens
identified and using the Syntactic Analysis module, we created the Patterns
of the possible vulnerabilities of type XSS, SQL Injection and CSRF.

5.5
How to use

To use the Plug-in you only need to run the Eclipse IDE, in a traditional
way; and then append or have attached in advance our Plug-in for the detection
of possible vulnerabilities. Established the conditions, it is necessary to load
the PHP files; It is not necessary to load the entire Project, just upload the
file or the files that you want to test. Remembering that the PHP language is
not a compiled code, the Plug-in must interpret each of the lines of the open
files with the Eclipse IDE.

Figure 5.6: File Analysis Flow Diagram

Figure 5.6 shows the Flow of the Reading Process performed by our
Plug-in, in Eclipse, to one of the PHP files. The reading is done directly by
the module for the Lexicon Analysis. Once the different tokens detected in
the file have been formed, the module for the Syntactic Analysis is activated
and the sentence will be compared with the patterns found in the study. Then
the Seeker module is activated that performs the search and comparison of
the sentence elaborated by the Syntactic Analysis module in the Knowledge
Base. From the Knowledge Base, the modification proposal to be shown to the
developer is obtained.

This version was not developed with all the proposed functions but
with the necessary modules to facilitate its easy expansion, growth and
incorporation of new functionalities and operations. Example of the functions

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 46

we must add in a future version is the Update Service module (Figure 5.4).
It is the module in charge of updating the Knowledge Base. Update that will
be made with the information registered in the NVD Repository and with the
modifications made in PHP files after having made a proposal for our Plug-in.

Continuing with the process of reading the files, this is done line by line,
without making a fluid reading of the traceability of each variable or each
function. The condition that we do not need to load the whole project and
only some file(s) allows us to read the traceability of the variables, functions
and operations, with occurrence in several files. It also allows us to isolate the
different files, as well as the different variables and procedures created or used
in them. We only analyze and give continuity to the variables and functions
with occurrence in the same file.

5.6
Class Diagram

In this section we describe the Class Diagram (Figure 5.7) used to
create the tool of the Plugin. For the creation of the tool, seven classes were
necessary. It was necessary to simulate the principles of Lexicon Analysis and
Syntactic Analysis of a compiler to read PHP files, the Knowledge Base was
also simulated with one class.

Figure 5.7: Tool Plugin’s Class Diagram

The seven classes were divided in: one Class to start the tool of the
Plugin and receive the necessary configuration, one class to start the process

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 47

of reading the files. Four classes for the construction the Lexicon Analysis, and
the Syntactic Analysis. And a last class to simulate the Knowledge Base.

5.6.1
Class Main_XSS

This Class is used to receive the necessary configurations for the correct
operation of the tool. It contains a single method that receives the necessary
configuration’s parameters. In this tool, only the address of folder where the
PHP files that are to be tested are found is needed. This Class uses the Process
class to deliver the information entered by the keyboard so that the tool can
scan the files.

Figure 5.8: Class Main_XSS

5.6.2
Class Process

Created to receive the configurations, in this case the address of the folder
where the files to be reviewed are. This class was created thinking about the
final version of the Plugin, in this tool it is not very functional. This class uses
the Class P_Reader to activate the operation of the plugin.

Figure 5.9: Class Process

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 48

5.6.3
Class P_Reader

This class has the highest workload. It is who guides the operation of the
plugin. It is the class that guides the reading of the file and performs the search
of the Patterns of behavior of the Possible Vulnerabilities and the proposals
in solution in the Knowledge Base. Its methods guarantee the reading of the
totally file, without any lost words.

Figure 5.10: Class P_Reader

The Fill_Contain_PHP, Fill_List, and Find_Key_Word meth-
ods; are responsible for realizing the process of file’s reading. The three (3)
methods make up a structure of filtering and reading the code between the
tags that identify the beginning and the end of a fragment’s file with a PHP
code.

Fill_Contain_PHP: is the method responsible for identifying the tags
among the PHP code. With this method, the file is read line by line. All lines
found between the opening tags of the PHP code (<?PHP, <?PHP or <?)
are ignored and are not analyzed. Likewise, all lines found after the tags that
close the PHP code (?>) are ignored. The tool only works with those included
in the tags that define the opening and closing of the PHP code.

Fill_List: is the method responsible for storing in a list structure the
PHP code lines of the file in which the reading is performed.

Find_Key_Word: this method makes a first contact with the class
that simulates the Knowledge Base. In this first contact, each of the words of
the lines of code stored in the structure of created list is carefully read. This
reading is done by looking for words and symbols of the PHP code, in this way
we differentiate the key words of the language from the words created by the
programmer.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 49

5.6.4
Class Fill_Line

Class that makes up the objects in the list structure where the different
code lines found between the PHP code tags are stored during the reading of
the file. The object has the name of the file in which the study is being carried
out, the line where the reading is being made and the number that the line
represents in the file. This class need the next class.

Figure 5.11: Class Fill_Line

5.6.5
Class Line_Word

This Class is used to read the lines of code in the file. The objects created
by this class contain each word or symbol contained in the line code that is
being studied. This Class provides the Fill_Line Class with words, which
are specific to the language or not, and symbols found in the file among the
tags that identify the PHP code.

Figure 5.12: Class Line_Word

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 50

5.6.6
Class Word_Property

This class is used to create objects with the characteristics of each word
and symbol found in the Line_Word Class. These objects are only going to
store in the Property attribute the identification that defines whether the words
or symbols are proper or not of the language. The key words and symbols of
the PHP language must be properly identified for the proper functioning of
the tool.

Figure 5.13: Class Word_Property

5.6.7
Class Possible_Vul

It is the class used to simulate the Knowledge Base. The patterns for
detecting possible vulnerabilities and the variants of possible solutions for each
possible vulnerability are stored in the list structures.

Figure 5.14: Class Possible_Vul

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 51

5.7
Highlight in the Code

For the creation of our tool, we developed the code capable of reading
PHP files letter by letter. We use this reading system to identify the symbols
and spaces that separate the words from the syntax of the PHP code. The
identification is performed by reading the characters using ASCII code.

Table 5.1: Characters used for identify words

Character ASCII Code

Space ALT + 32
(ALT + 40
) ALT + 41
[ALT + 91
] ALT + 93
{ ALT + 123
} ALT + 125
. ALT + 46
; ALT + 59

In addition to the symbols we identify combinations of characters by
their meaning in the PHP language or by the importance of being identified
by our study. The combination of characters are:

//, /*, */, ->, <?PHP, <?php, <?, ?>, php?>, PHP?>

It is valid to point out that we do not identify or store each non-key word
in the PHP code, neither identify the different variables that were found
in the reading of the files. The non-key words and the variables were only
differentiated and classified independently of the keywords of the PHP code.
With this difference the Patterns of Behavior was created.

During the reading of the code, conditional if and else were used for the
different necessary stops and recognition of the words in the files. Each word
found was classified as:

With the exception of the classifications "String" and "Variable", the rest
have significant value for the syntax and structure of the PHP code. Variables
are all those words preceded by the $ symbol, and String all those that do not
belong to another classification.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 5. A Tool for Supporting the Mitigation of the Occurrence of
Vulnerabilities 52

Key Word: meaningful word for the code

Non-Key Word: negative of the meaningful word for the code

Variable: words preceded by the symbol $

Symbol: described in the Table 5.1

String: any word or sentence not classified

Boolean variables were used to segment the files, and indicate which
fragments should be studied and which should not. These variables were
necessary due to the diversity of structure with which we can find the files
with PHP code.

Example of PHP code structure. CVE-2011-4562-log.php‘s fragment.

<?php

class RE_Log {
var $id;
var $created;
...
function RE_Log ($values){
...
}
}
?>

Example of PHP code structure. CVE-2011-4562-log_item.php‘s fragment.

<?php if (!defined (’ABSPATH’)) die (’No di-
rect access allowed’); ?>

<td width="16" class="center item">
<input type="checkbox" class="check"
name="checkall[]" value="<?php echo $log-
>id ?>"/>
</td>

With these defined lines our tool is able to detect the Patterns of Behavior
elaborated and used for our study; as well as proposing a modification of the
code mitigating the possible existence of a Vulnerability of type, XSS.

The code of our Demo is ready to be executed with the Eclipse IDE
and is available in: https://github.com/omesa1984/Demo-Plugin. The only
parameter that our code will request is the path of the folder where the files
you want to analyze are located.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

6
Tool Evaluation

In this chapter we analyze the results obtained during the tests carried
out with our plugin-demo. We highlight the behavior of some Patterns because
of their multiple solutions, and we also show images of the results obtained
during the tests.

6.1
Partial Results

We developed several tests on the files of the second group of those chosen
from those published in the NVD Repository. With the help of the developed
code, a quick but efficient reading of the files was made for the detection of the
different Patterns of Behavior, developed and shown previously. The developed
code tool allows us to perform the isolated reading of each file with PHP
extension belonging to the same application without needing the necessary
integrity between them.

An example of a Pattern of Behavior detected in the files, we can see it in
the file CVE-2011-4562-log_item.php. In the line of code number 19, we
find the code expression echo htmlspecialchars ($log->ip) that responds
the Pattern of Behavior (iii) echo htmlspecialchars (variable -> String
). It can be found in Annex B.

The proposed solution to the Possible Vulnerability in the Behavior
Pattern (iii) we propose the modification (iii) echo esc_attr (variable
-> String) which can be found in Annex C. It is valid to point out that the
existed example is intentional since, we can not argue about the totality of the
appearances but without a high percentage of the occurrences of the keyword
htmlspecialchars there is the possibility of a vulnerability of some kind. In
the same way, in a high percentage of the proposed solutions or modifications
is the keyword esc_attr. So the proposal consisted in maintaining the syntax
and only changing the keyword htmlspecialchars by esc_attr.

Another relevant result found during the creation, reading and analysis
of our Behavior Patterns, we can find it in the patterns (vi), (vii), (ix) and (x).
It is not difficult to notice that if we group them correctly they are 2 possible
solutions for each possible vulnerability detected. We could argue that it is

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 6. Tool Evaluation 54

enough with the second proposal in each case for each possible vulnerability.
But we want to incorporate artificial intelligence for our tool and allow you to
learn, and we understand that it would be a good exercise to make the first
modification and then the second until he understands that he can omit the
first proposal and directly propose the second.

(vi)variable = $_SERVER [String]
(vi)variable = htmlspecialchars ($_SERVER [String])

(vii)variable = $_SERVER [String]
(vii)variable = esc_html ($_SERVER [String])

(ix)echo $_SERVER [String]
(ix)echo htmlspecialchars ($_SERVER [String])

(x)echo $_SERVER [String]
(x)echo esc_html ($_SERVER [String])

It is easy to appreciate that the Behavior Patterns (vi) and (vii) are the
same pattern with different solutions proposals. In the same way it happens
with patterns (ix) and (x). They were conceived and interpreted as different
patterns, because they were located in different files and to contribute with
the learner that we want to incorporate into our tool.

The frequency of occurrence of each Pattern is not very high and it varies
from an appearance to four appearances, in the totality of files with which we
work. Remembering that in this first study we worked only with the files that
contained a single vulnerability and that it was corrected in a single line of
code. With the exception of the employers (vi), (vii), (ix) and (x); the rest of
them always have the same solution proposal. Preliminary studies have shown
us that the patterns elaborated until now, can be repeated in the files not
analyzed by being corrected with more than one line of code.

It is true that the proposed changes in the solutions will not always be
necessary, since we are working with the concept of Possible Vulnerabilities
existing in isolated files. This suggests that no matter how many probabilities
there are of the occurrence of vulnerability, there is no guarantee of its
occurrence. In the same way our study showed that any security in our
applications never hurts, remembering that we are working on the anticipation
of vulnerabilities of type XSS, CSRF and SQL Injection; which represent more
than 70% of the vulnerabilities produced by the addition of a plugin created

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 6. Tool Evaluation 55

with PHP code.

6.2
Results Images

To conclude the tests of our code, several tests were carried out with sev-
eral files distributed in several groups. In previous chapters we had commented
that the files taken from the NVD repository were divided into two groups.
The first group was used for the creation of the Behavior Patterns and the
second group of files was used for the functional tests of our code.

When we start the process, our demo requests the path of the folder
where the files we want to test are located, as shown in Figure 6.1

Figure 6.1: Folder Path Request

Figure 6.2: Show the folder path inserted in green

The previous figure was captured after inserting the text with the path
of the folder where the files to be tested are located.

The files used for the tests were grouped into several groups for the latest
tests in our code. The images were taken at different times of the tests showing
the different results that were obtained.

The following figures were captured at various times during the perfor-
mance of the various tests, showing the results at each time. The images show
the performance of the tests with several files. At the images is clearly ap-
preciate the name of the files, the behavior pattern of the possible security
vulnerability, and the possible proposal for mitigate the vulnerability.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 6. Tool Evaluation 56

Figure 6.3: Test image performed showing a possible security vulnerability
found in a single file

Figure 6.4: Test image performed showing the security vulnerabilities found in
with two files

Figure 6.5: Test image performed showing the security vulnerabilities found in
with three files.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 6. Tool Evaluation 57

Figure 6.6: Fragment of test image made with more than forty files, it shows
a sample of the possible security vulnerabilities detected in several files.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

7
Conclusions

7.1
Advantages and Weakness of Patterns

Among the advantages and weakness of the use of Behavior Patterns, we
decided to evaluate the following points:

(Adv) Time to make the vulnerability test: with Behavior Patterns,
potential vulnerabilities can be detected at any time during the life cycle
of the application, initiating the life cycle during the implementation of the
application and ending after the deployment of the application. Without the
Behavior Patterns, we are obliged to conclude the applications completely to
perform the vulnerability test, being possible to perform the tests only in the
final stage of the life cycle of the application.

(Adv) Number of files to be analyzed: with the Behavior Patterns
the files can be individually tested in search of Possible Vulnerabilities. If there
is any report of the file where the vulnerability is found, you can test that single
file and solve with the solution proposals obtained from the vulnerabilities
where the studies were carried out.

(Adv) Application test time: As the Behavior Patterns can be
used for the detection of vulnerabilities at any time of the life cycle of the
applications and the files can be independently tested, it is possible to reduce
the test and response time before the vulnerabilities detected.

(Adv) Guarantee of the results: the tool of Plugin works in the detec-
tion of Possible Vulnerabilities which does not guarantee that the vulnerability
exists in its entirety. But studies have shown that vulnerabilities of the same
type have similar behavior, which guarantees the test result.

(Weak) Level of knowledge of the programmer respect to the
application or vulnerability detected: if the Behavior Patterns are use
in the maintenance of an application, the programmer needs to know the
application code; because the patterns detect Possible Vulnerabilities. If you
are not working on a reported vulnerability, it may be difficult to detect
the vulnerabilities. On the other hand, if you are working on a vulnerability
detected and reported, it does not require a high level of knowledge and can

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 7. Conclusions 59

solve the problem with the proposed solution of the Knowledge Base. Ignorance
of the application code can cause time losses in the correction of Possible
Vulnerabilities, and the tool used to favor the programmer can hinder their
work.

(Weak) Guarantee of the existence of the Possible Vulnerability:
as the tool of the Plugin detects the existence of Possible Vulnerabilities, we can
not guarantee that the existence of the Vulnerability; even when the changes
recommended by the tool are not made by the programmer. So we only create
a first step in the anticipation of vulnerabilities.

(Weak) Artificial Intelligence and Self-Learning: We understand
that the lack of elements of artificial intelligence and self-learning limits the
rapid evolution of our tool, so it will be one of the approaches in future work.

7.2
Final Recommendations

The study conducted on WordPress and described in the first chapters
demonstrated the need to mitigate the existence of security vulnerabilities.
It was shown that resolving or anticipating vulnerabilities of type XSS, SQL
Injection or CSRF eliminate more than 70% of vulnerabilities. As a first result
from the research we developed the Demo tool to anticipate the most frequent
vulnerabilities.

We demonstrate that the use of Behavior Patterns can contribute to
detection and anticipation of possible security vulnerabilities. As the location
of the possible security vulnerability seems exaggerated or absurd at times, so
we recommend deepen the study of Behavior Patterns and combine them with
machine learning techniques.

We create a Demo with an easily modifiable and adaptable structure to
be combined with the Multiagent Systems methodology. This methodology will
facilitate the reading of the files and accelerate the response of future versions.

Our greatest contribution is not in the vulnerability anticipation tech-
nique of our Plugin’s Demo version, although with the creation and use of
Behavior Patterns, we took an important step. Our contribution is in the
architecture designed for the use of the Behavior Patterns, and the easy in-
corporation and adaptability of the methodology of Multiagent Systems and
machine learning techniques.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Chapter 7. Conclusions 60

7.3
Future Work

In the next work we will have as a first task, the migration of the our tool
to develop with Multiagent Systems methodology (11). Being able to provide
greater speed, flexibility and intelligence to the plugin. While we generate
the definitive Knowledge Base and the necessary functions so that it is kept
updated of the NVD Repository.

We also want to carry out studies of artificial intelligence and machine
learning to select the appropriate technique and equip our tool with the ability
to learn to create new patterns of behavior. Eliminate existing patterns if they
stop appearing for long periods of time, and eliminate intermediate corrections
such as those shown at the beginning of this chapter.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Bibliography

[1] AGGARWAL, A.; JALOTE, P.. Integrating static and dynamic analy-
sis for detecting vulnerabilities. In: 30TH ANNUAL INTERNATIONAL
COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMP-
SAC’06), volumen 1, p. 343–350. IEEE, 2006.

[2] ALHAZMI, O. H.; MALAIYA, Y. K. ; RAY, I.. Measuring, analyzing and
predicting security vulnerabilities in software systems. Computers
& Security, 26(3):219–228, 2007.

[3] ANTUNES, N. M. D. S.. Software Vulnerability Detection in
Service-Based Infrastructures: Techniques and Tools. PhD the-
sis, 2014.

[4] ARBAUGH, W. A.; FITHEN, W. L. ; MCHUGH, J.. Windows of vulner-
ability: A case study analysis. Computer, 33(12):52–59, 2000.

[5] ARORA, A.; KRISHNAN, R.; TELANG, R. ; YANG, Y.. An empirical
analysis of software vendors’ patch release behavior: impact of
vulnerability disclosure. Information Systems Research, 21(1):115–132,
2010.

[6] ASADUZZAMAN, M.; ROY, C. K.; SCHNEIDER, K. A. ; HOU, D.. Cscc:
Simple, efficient, context sensitive code completion. In: 2014 IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND
EVOLUTION, p. 71–80. IEEE, 2014.

[7] BASILI, V. R.; SHULL, F. ; LANUBILE, F.. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering,
25(4):456–473, 1999.

[8] BLEI, D. M.; NG, A. Y. ; JORDAN, M. I.. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[9] BOSU, A.; CARVER, J. C.; HAFIZ, M.; HILLEY, P. ; JANNI, D.. Identi-
fying the characteristics of vulnerable code changes: An empiri-
cal study. In: PROCEEDINGS OF THE 22ND ACM SIGSOFT INTERNA-
TIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEER-
ING, p. 257–268. ACM, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Bibliography 62

[10] BOZORGI, M.; SAUL, L. K.; SAVAGE, S. ; VOELKER, G. M.. Beyond
heuristics: learning to classify vulnerabilities and predict ex-
ploits. In: PROCEEDINGS OF THE 16TH ACM SIGKDD INTERNA-
TIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MIN-
ING, p. 105–114. ACM, 2010.

[11] GALÁN, E.; ALCAIDE, A.; ORFILA, A. ; BLASCO, J.. A multi-agent
scanner to detect stored-xss vulnerabilities. In: 2010 INTERNA-
TIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED
TRANSACTIONS, p. 1–6. IEEE, 2010.

[12] BRUCH, M.; MONPERRUS, M. ; MEZINI, M.. Learning from exam-
ples to improve code completion systems. In: PROCEEDINGS OF
THE THE 7TH JOINT MEETING OF THE EUROPEAN SOFTWARE EN-
GINEERING CONFERENCE AND THE ACM SIGSOFT SYMPOSIUM ON
THE FOUNDATIONS OF SOFTWARE ENGINEERING, p. 213–222. ACM,
2009.

[13] CACHIN, C.; CAMENISCH, J.; DESWARTE, Y.; DOBSON, J.; HORNE,
D.; KURSAWE, K.; LAPRIE, J.-C.; LEBRAUD, J.-C.; LONG, D.; MC-
CUTCHEON, T. ; OTHERS. Maftia: Reference model and use cases.
2000.

[14] DABBISH, L.; STUART, C.; TSAY, J. ; HERBSLEB, J.. Social coding
in github: transparency and collaboration in an open software
repository. In: PROCEEDINGS OF THE ACM 2012 CONFERENCE ON
COMPUTER SUPPORTED COOPERATIVE WORK, p. 1277–1286. ACM,
2012.

[15] FERREIRA, G.; MALIK, M.; KÄSTNER, C.; PFEFFER, J. ; APEL, S.. Do#
ifdefs influence the occurrence of vulnerabilities? an empirical
study of the linux kernel. arXiv preprint arXiv:1605.07032, 2016.

[16] DA FONSECA, J. C. C. M.; VIEIRA, M. P. A.. A practical experience
on the impact of plugins in web security. In: 2014 IEEE 33RD IN-
TERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS,
p. 21–30. IEEE, 2014.

[17] BARUA, A.; THOMAS, S. W. ; HASSAN, A. E.. What are developers
talking about? an analysis of topics and trends in stack overflow.
Empirical Software Engineering, 19(3):619–654, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Bibliography 63

[18] GREILER, M.; DEURSEN, A. V. ; STOREY, M.-A.. Test confessions:
A study of testing practices for plug-in systems. In: PROCEED-
INGS OF THE 34TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, p. 244–254. IEEE Press, 2012.

[19] JERKOVIC, H.; SINKOVIC, B.. Vulnerability analysis of most pop-
ular open source content management systems with focus on
wordpress and proposed integration of artificial intelligence cy-
ber security features. International Journal of Economics and Manage-
ment Systems, 2, 2017.

[20] MCGRAW, G.. Software security: building security in, volumen 1.
Addison-Wesley Professional, 2006.

[21] MELL, P.; SCARFONE, K. ; ROMANOSKY, S.. Common vulnerability
scoring system. IEEE Security & Privacy, 4(6):85–89, 2006.

[22] MYERS, G. J.; BADGETT, T.; THOMAS, T. M. ; SANDLER, C.. The art
of software testing, volumen 2. Wiley Online Library, 2004.

[23] NGUYEN, H. V.; KÄSTNER, C. ; NGUYEN, T. N.. Exploring variability-
aware execution for testing plugin-based web applications. In:
PROCEEDINGS OF THE 36TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, p. 907–918. ACM, 2014.

[24] NHLABATSI, A.; LANEY, R. ; NUSEIBEH, B.. Feature interaction:
The security threat from within software systems. Progress in
Informatics, 5:75–89, 2008.

[25] SAMPAIO, L.; GARCIA, A.. Exploring context-sensitive data flow
analysis for early vulnerability detection. Journal of Systems and
Software, 113:337–361, 2016.

[26] SHAHZAD, M.; SHAFIQ, M. Z. ; LIU, A. X.. A large scale exploratory
analysis of software vulnerability life cycles. In: 2012 34TH IN-
TERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),
p. 771–781. IEEE, 2012.

[27] SMITH, B.; WILLIAMS, L.. Using sql hotspots in a prioritization
heuristic for detecting all types of web application vulnerabili-
ties. In: 2011 FOURTH IEEE INTERNATIONAL CONFERENCE ON SOFT-
WARE TESTING, VERIFICATION AND VALIDATION, p. 220–229. IEEE,
2011.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Bibliography 64

[28] WALDEN, J.; DOYLE, M.; LENHOF, R.; MURRAY, J. ; PLUNKETT,
A.. Impact of plugins on the security of web applications.
In: PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP ON
SECURITY MEASUREMENTS AND METRICS, p. 1. ACM, 2010.

[29] WALDEN, J.; DOYLE, M.; WELCH, G. A. ; WHELAN, M.. Security of
open source web applications. In: 2009 3RD INTERNATIONAL SYM-
POSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASURE-
MENT, p. 545–553. IEEE, 2009.

[30] LOUCOPOULOS, P. AND KARAKOSTAS, V.. System requirements
engineering. McGraw-Hill, Inc., 1995.

[31] VAN LAMSWEERDE, A.. Requirements engineering: From system
goals to UML models to software. Chichester, UK: John Wiley & Sons,
10th edition, 2009.

[32] BAKKEN, S. S., ALEXANDER AULBACH, A., SCHMID, E., WINSTEAD,
J., WILSON, L. T., LERDORF, R., ZMIEVSKI, A., AND AHTO, J.. PHP
Manual. 7th edition, 2003.

[33] BASILI, V. R.; ROMBACH, H. D.. The tame project: Towards
improvement-oriented software environments. IEEE Transactions
on software engineering, 14(6):758–773, 1988.

[34] GENBETA. https://www.genbeta.com/desarrollo/eclipse-ide,
January, 10, 2014, 2018.

[35] EDUCACIONIT. https://blog.educacionit.com/2014/01/16/eclipse-
ide-principales-carateristicas/, January, 16, 2014, 2005–2019.

[36] CANFORA, G.; CECCARELLI, M.; CERULO, L. ; DI PENTA, M.. How long
does a bug survive? an empirical study. In: 2011 18TH WORKING
CONFERENCE ON REVERSE ENGINEERING, p. 191–200. IEEE, 2011.

[37] DI PENTA, M.; CERULO, L. ; AVERSANO, L.. The life and death of
statically detected vulnerabilities: An empirical study. Information
and Software Technology, 51(10):1469–1484, 2009.

[38] GARZARELLI, G.. Open source software and the economics of
organization. In: MARKETS, INFORMATION AND COMMUNICATION,
p. 63–78. Routledge, 2013.

[39] GRIFFITHS, T. L.; STEYVERS, M.. Finding scientific topics. Proceed-
ings of the National academy of Sciences, 101(suppl 1):5228–5235, 2004.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Bibliography 65

[40] JIMENEZ, M.; PAPADAKIS, M.; BISSYANDÉ, T. F. ; KLEIN, J.. Profiling
android vulnerabilities. In: 2016 IEEE INTERNATIONAL CONFER-
ENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS),
p. 222–229. IEEE, 2016.

[41] KIM, S.; ZIMMERMANN, T.; PAN, K.; JAMES JR, E. ; OTHERS. Au-
tomatic identification of bug-introducing changes. In: 21ST
IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFT-
WARE ENGINEERING (ASE’06), p. 81–90. IEEE, 2006.

[42] KOSKINEN, T.; IHANTOLA, P. ; KARAVIRTA, V.. Quality of wordpress
plug-ins: an overview of security and user ratings. In: 2012 INTER-
NATIONAL CONFERENCE ON PRIVACY, SECURITY, RISK AND TRUST
AND 2012 INTERNATIONAL CONFERNECE ON SOCIAL COMPUTING,
p. 834–837. IEEE, 2012.

[43] MARTIN, R. A.; CHRISTEY, S. M. ; JARZOMBEK, J.. The case for
common flaw enumeration. In: PROCEEDINGS OF WORKSHOP
ON SOFTWARE SECURITY ASSURANCE TOOLS, TECHNIQUES, AND
METRICS, número 500-265, 2005.

[44] MEYER, M. H.; SELIGER, R.. Product platforms in software devel-
opment. MIT Sloan Management Review, 40(1):61, 1998.

[45] MUNSON, J. C.; ELBAUM, S. G.. Code churn: A measure for estimat-
ing the impact of code change. In: PROCEEDINGS. INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE (CAT. NO. 98CB36272),
p. 24–31. IEEE, 1998.

[46] NAGAPPAN, N.; BALL, T.. Use of relative code churn measures
to predict system defect density. In: PROCEEDINGS OF THE 27TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, p. 284–
292. ACM, 2005.

[47] ELECTRONICOSONLINE.COM S.A. DE C.V..
https://www.electronicosonline.com/incrementan-eclipse-y-
netbeans-popularidad-como-ides/, 2018.

[48] PHAM, R.. Improving the software testing skills of novices dur-
ing onboarding through social transparency. In: PROCEEDINGS OF
THE 22ND ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDA-
TIONS OF SOFTWARE ENGINEERING, p. 803–806. ACM, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Bibliography 66

[49] PHAM, R.; KIESLING, S.; LISKIN, O.; SINGER, L. ; SCHNEIDER, K.. En-
ablers, inhibitors, and perceptions of testing in novice software
teams. In: PROCEEDINGS OF THE 22ND ACM SIGSOFT INTERNA-
TIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEER-
ING, p. 30–40. ACM, 2014.

[50] SHIN, Y.; MENEELY, A.; WILLIAMS, L. ; OSBORNE, J. A.. Evaluat-
ing complexity, code churn, and developer activity metrics as
indicators of software vulnerabilities. IEEE transactions on software
engineering, 37(6):772–787, 2010.

[51] MESA, O.; VIEIRA, R.; VIANA, M.; DURELLI, V. H.; CIRILO, E.; KALI-
NOWSKI, M. ; LUCENA, C.. Understanding vulnerabilities in plugin-
based web systems: an exploratory study of wordpress. In: PRO-
CEEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON SYS-
TEMS AND SOFTWARE PRODUCT LINE-VOLUME 1, p. 149–159. ACM,
2018.

[52] MESA, O.; VIANA, M.; CIRILO, E. ; LUCENA, C.. Vulnerabilidades
em sistemas de software web baseados em plug-ins? um estudo
exploratório do wordpress.

[53] TELANG, R.; WATTAL, S.. An empirical analysis of the impact of
software vulnerability announcements on firm stock price. IEEE
Transactions on Software Engineering, 33(8):544–557, 2007.

[54] WILLETT, P.. The porter stemming algorithm: then and now.
Program, 40(3):219–223, 2006.

[55] XIAO, S.; WITSCHEY, J. ; MURPHY-HILL, E.. Social influences on
secure development tool adoption: why security tools spread.
In: PROCEEDINGS OF THE 17TH ACM CONFERENCE ON COMPUTER
SUPPORTED COOPERATIVE WORK & SOCIAL COMPUTING, p. 1095–
1106. ACM, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

A
Articles Published at Conferences

The work on the need to anticipate Vulnerabilities generated by the
addition of a plugin to a CMS, using WordPress as a research base, resulted in
two publications. The first at the CBSOFT conference in 2017. The second at
the 22nd International Conference on Systems and Software Product Line in
2018. Both are proof of the need to deepen this research in our area. It is for
this reason that both publications will be appended to the following pages.

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

B
Behavior Patterns

This annex shows the behavior patterns created from the deficiencies
published by the NVD repository.

(i) echo htmlspecialchars (variable)

(ii) echo htmlspecialchars (String (variable -> String))

(iii) echo htmlspecialchars (variable -> String)

(iv) echo $this -> variable

(v) echo variable.variable1 -> String

(vi) variable = $_SERVER [String]

(vii) variable = $_SERVER [String]

(viii) echo variable

(ix) echo $_SERVER [String]

(x) echo $_SERVER [String]

(xi) echo gethostbyaddr $_SERVER [String]

(xii) echo $_SERVER [’REQUEST_URI’]

(xiii) echo $_GET [String]

(xiv) http://. $_SERVER [String] . $_SERVER [’RE-
QUEST_URI’]

(xv) variable = $_GET [String]

(xvi) variable = (int) $_GET [String]

(xvii) variable = $_POST [String]

(xviii) variable = $_GET [String]

(xix) $this -> delete_post_type ($_GET [String])

(xx) $this -> delete_taxonomy ($_GET [String])

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

C
Solutions to Behavior Patterns

The annex describes the solutions proposals in the event of the possible
existence of any of the vulnerabilities worked on.

(i) echo esc_attr (variable)

(ii) echo esc_attr (String (variable -> String))

(iii) echo esc_attr (variable -> String)

(iv) echo esc_attr ($this -> variable)

(v) echo variable.esc_attr (variable1 -> String)

(vi) variable = htmlspecialchars ($_SERVER [String])

(vii) variable = esc_html ($_SERVER [String])

(viii) echo esc_html (variable)

(ix) echo htmlspecialchars ($_SERVER [String])

(x) echo esc_html ($_SERVER [String])

(xi) echo esc_html gethostbyaddr ($_SERVER [String])

(xii) echo esc_url ($_SERVER [’REQUEST_URI’])

(xiii) echo esc_attr ($_GET [String])

(xiv) http://. $_SERVER [String] . urlencode ($_SERVER [
’REQUEST_URI’])

(xv) variable = (int) $_GET [String]

(xvi) variable = (int) esc_attr $_GET [String]

(xvii) variable = sanitize_text_field ($_POST [String])

(xviii) variable = esc_html ($_GET [String])

(xix) $this -> delete_post_type ($String)

(xx) $this -> delete_taxonomy ($String)

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

D
File CVE-2011-4562-log.php

Expanded file fragment File CVE-2011-4562-log.php used to repre-
sent one of the structures of a file with php code.

<?php

class RE_Log {
var $id;
var $created;
var $url;
...

function RE_Log ($values) {
foreach ($values AS $key => $value)
$this->$key = $value;

$this->created = mysqldate (’U’, $this->created);
$this->url = stripslashes ($this->url);
}

function get_by_id ($id) {
global $wpdb;

$row = $wpdb->get_row ("SELECT * FROM {$wpdb-
>prefix}redirection_logs WHERE id=’$id’", ARRAY_A);
if ($row)
return new RE_Log ($row);
return false;
}

function get(&$pager) {
global $wpdb;

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Appendix D. File CVE-2011-4562-log.php 71

$rows = $wpdb->get_results("SELECT SQL_CALC_FOUND_ROWS
* FROM $wpdb->prefixredirection_logs FORCE INDEX(created) ".$pager-
>to_limits (’redirection_id IS NOT NULL’, array (’url’, ’sent_to’,
’ip’)), ARRAY_A); $pager->set_total ($wpdb->get_var ("SELECT
FOUND_ROWS()"));

$items = array ();
if (count ($rows) > 0) {
foreach ($rows AS $row)
$items[] = new RE_Log ($row);
}

return $items;
}

...

function referrer () {
return preg_replace (’@https?://(.*?)/.*@’, ’$1’, $this->referrer);
$home = get_bloginfo (’url’);
if (substr ($this->referrer, 0, strlen ($home)) == $home)
return substr ($this->referrer, strlen ($home));
return $this->referrer;
}
}

?>

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

E
File CVE-2011-4562-log_item.php

File CVE-2011-4562-log_item.php used to represent one of the
structures of a file with php code.

<?php if (!defined (’ABSPATH’)) die (’No direct access allowed’); ?>
<td width="16" class="center item">
<input type="checkbox" class="check" name="checkall[]" value="<?php echo
$log->id ?>"/>
</td>
<td style="width:9em">
<a href="<?php echo admin_url(’admin-ajax.php’); ?>?ac-
tion=red_log_show&id=<?php echo $log->id ?>&_ajax_nonce=<?php
echo wp_create_nonce(’redirection-log_’.$log->id)?>" class="show-log">
<?php echo date (str_replace (’F’, ’M’, get_option (’date_format’)), $log-
>created) ?>

</td>
<td class="info">
<a class="details" href="<?php echo $log->url ?>"><?php echo $log-
>show_url($log->url) ?>
</td>
<td>
<?php if (strlen ($log->referrer) > 0) : ?>
<a href="<?php echo $this->url ($log->referrer)) ?>"><?php echo $log-
>show_url($log->referrer()) ?>
<?php endif; ?>
</td>
<td style="width:9em" class="center">
<a target="_blank" href="<?php echo $lookup.$log->ip ?>"><?php echo
htmlspecialchars($log->ip) ?>
</td>
<td style="width: 16px" class="lastcol">
<img src="<?php echo $this->url ()

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

Appendix E. File CVE-2011-4562-log_item.php 73

?>/images/add.png" width="16" height="16" alt="Add"/>
</td>

DBD
PUC-Rio - Certificação Digital Nº 1621978/CA

	Proactive Mitigation of Vulnerabilities in Plugin-based Web Systems
	Resumo
	Table of contents
	Introduction
	Motivation
	Problem
	Research Questions and Goal
	Contributions
	Proposal Organization

	Security Vulnerabilities
	Type of Vulnerabilities
	Classification according to the CWE Repository

	Security Web Systems
	Definitions of Security Web Systems
	Tool for detection of vulnerabilities

	Vulnerabilities in Plugin-based Web System
	Exploratory Research
	Answers to Research
	RQT.1 – What are the main vulnerabilities caused by WordPress plugins?
	RQT.2 – How critical are the vulnerabilities caused by WordPress plugin?
	RQT.3 – What is the patch size to fix WordPress plugin vulnerabilities?
	RQT.4 – How long does a vulnerability survive in the WordPress plugins code?
	RQT.5 – What are the most common vulnerability related topics discussed among developers?

	Mitigation and Detection Methods
	Threats to Validity
	External Validity
	Internal Validity

	Chapter’s Conclusions

	A Tool for Supporting the Mitigation of the Occurrence of Vulnerabilities
	Motivation for building the Tool
	Functional Requirement
	Technologies used for Build the Tool
	Tool Design
	How to use
	Class Diagram
	Class Main_XSS
	Class Process
	Class P_Reader
	Class Fill_Line
	Class Line_Word
	Class Word_Property
	Class Possible_Vul

	Highlight in the Code

	Tool Evaluation
	Partial Results
	Results Images

	Conclusions
	Advantages and Weakness of Patterns
	Final Recommendations
	Future Work

	Bibliography
	Articles Published at Conferences
	Behavior Patterns
	Solutions to Behavior Patterns
	File CVE-2011-4562-log.php
	File CVE-2011-4562-log_item.php

