
Alexandre Marangoni Costa

A Study on Neural Networks for Poker Playing
Agents

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Marcus Vinicius Soledade Poggi de Aragão

Rio de Janeiro
April 2019

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Alexandre Marangoni Costa

A Study on Neural Networks for Poker Playing
Agents

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Marcus Vinicius Soledade Poggi de Aragão
Advisor

Departamento de Informática – PUC-Rio

Prof. Thibaut Victor Gaston Vidal
Departamento de Informática – PUC-Rio

Prof. Bruno Feijó
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 4th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



All rights reserved.

Alexandre Marangoni Costa

Bachelor’s in Computer Engineer (2013) at the Pontifícia
Universidade Católica do Rio de Janeiro (PUC-Rio). In 2009,
was scholarship holder of scientific initiation in mathematics
of computer graphics. In 2010, worked in Laboratório de
Inteligência Computacional Aplicada (ICA), which belongs
to the Department of Electrical Engineering (DEE PUC-Rio).
Joined the Master Program in Optimization and Automated
Reasoning at the Department of Informatics (DI PUC-Rio),
in 2017.

Bibliographic data
Costa, Alexandre Marangoni

A Study on Neural Networks for Poker Playing Agents
/ Alexandre Marangoni Costa; advisor: Marcus Vinicius Sole-
dade Poggi de Aragão. – Rio de janeiro: PUC-Rio, Departa-
mento de Informática, 2019.

v., 59 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Deep Learning. 2. Redes Neurais. 3. Aprendizado de
Máquina. 4. Pôquer. 5. Simulação Multiagente. I. Poggi de
Aragão, Marcus V.S.. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Acknowledgments

To Marcus Poggi, who is an advisor but also a close friend.
To my family, for unconditional love.
To my friends, who turn life into a beautiful journey.
To Alan Turing, for making computation a reality.
To God, for making everything real.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001 and in part
by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Abstract

Costa, Alexandre Marangoni; Poggi de Aragão, Marcus V.S. (Advi-
sor). A Study on Neural Networks for Poker Playing Agents.
Rio de Janeiro, 2019. 59p. Dissertação de mestrado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Data science research needs real examples to test and improve
solutions. Games are widely used to mimic those real-world examples. Poker
rounds are a good example of imperfect information state with competing
agents dealing with probabilistic knowledge, risk assessment, and possible
deception, unlike chess, checkers and perfect information brute-force search
style of games. By using poker as a test-bed we can analyze different
approaches used in real-world examples, in a more controlled environment,
which should give great insights on how to tackle those real-world scenarios.
We propose a framework to build and test different neural networks that can
play against each other, learn from a supervised experience and maximize
its rewards.

Keywords
Deep Learning; Neural Network; Machine Learning; Poker;

Multi-Agent Simulation;
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Resumo

Costa, Alexandre Marangoni; Poggi de Aragão, Marcus V.S.. Um
Estudo em Redes Neurais para Agentes Jogadores de Pôquer.
Rio de Janeiro, 2019. 59p. Dissertação de Mestrado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

A ciência de dados precisa de uma grande quantidade de dados para
testar e melhorar soluções. Jogos são largamente usados para abstrair si-
tuações da vida real. Rodadas de pôquer são um bom exemplo pois, por
não saber as cartas dos oponentes, o jogador analisa um cenário de infor-
mação incompleta numa competição de agentes que envolve conhecimento
probabilístico, análise de risco e brefe. Isso o diferencia de xadrez, damas e
jogos de conhecimento perfeito e algoritmos de busca em forca bruta sobre
o espaço de soluções. Usar o pôquer como um caso de teste possibilita a
análise de diferentes abordagens usadas na vida real, porém num cenário
mais controlado. Esta dissertação propõe um arcabouço de funcionalidades
para criar e testar diferentes algorítimos de Deep Learning, que podem jogar
pôquer entre sí, aprender com o histórico e maximizar suas recompensas.

Palavras-chave
Deep Learning; Redes Neurais; Aprendizado de Máquina; Pôquer;

Simulação Multiagente;
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1
Introduction

1.1
Motivations

Different games were historically used to benchmark and explore Artifi-
cial Intelligence algorithms. In the last twenty years, several games like Chess,
Checkers, Go, Backgammon and even Atari games were solved [Kocsis2006],
with algorithms reaching strategies that could win from professional players.
To solve these style of games, a player has to take a decision given a perfect
information scenario. In other words, all the information concerning the game
state is available to the player: board configuration in case of board games,
screen state in case of Atari games. Since there is no hidden information about
the game, a brute-force search can retrieve the best action [Billings1998] with
confidence.

But real life is not like that. According to von Neumann, founder of
modern game theory, “real life consists of bluffing, of little tactics of deception,
of asking yourself what is the other man going to think I mean to do. And that
is what games are about in my theory.” [Bronowski1973]

In poker, a player’s private cards give asymmetric information about the
state of the game. Each player sees a different state of the game, and none
of them sees the complete state. This is why poker is called an Imperfect
Information game and why it’s hard to model and solve. Even if a better
strategy is played, it can lose from a worse strategy because it has better
cards, or it has bluffed or even changed strategy. To give a perspective, an
example of an incomplete information board game is Battleship, while Chess
is a perfect information game.

Along with that, the number of possible states in Heads-Up No-Limit
Texas Hold’em Poker is estimated to be 10160. Heads-Up means there are only
two players in the table, so the number of states in a multiplayer table is even
bigger. In comparison, chess and backgammon have 1047 and 1020 game states
respectively [Johanson2013]. The universe has approximately 1080 atoms.

Limit Texas Hold’em Poker, a game variation in which players can only
raise bets to a fixed amount, have around 1013 decision points in a heads-up
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Chapter 1. Introduction 13

game, and for that, it is a lot easier to solve a Limit poker variant. In fact,
it was solved in 2015 by the Cepheus algorithm, developed by the Computer
Poker Research Group at University of Alberta, and a joint effort with Oskari
Tammelin, a Finnish software developer [Tammelin2015].

Furthermore, card games have an element of chance when the deck is
shuffled, before dealing the cards. Also, in Texas Hold’em early rounds (named
pre-flop, flop, and turn) players have to act before seeing all dealt cards. A
player’s chance might change when a public card is revealed. This is why
poker is classified as a stochastic game, in other words, not deterministic. An
example of a stochastic board game is Backgammon, while Chess and Checkers
are examples of deterministic games.

Real-world problems, like network and airport security, financial and
energy trading, traffic control, routing, business negotiations and forecasting
(weather, politics, etc) involve decision making with imperfect information and
high-dimensional information states with a huge number of decision points
[Silver2016], like poker. Those problems have some characteristics that require
intelligent behavior [Billings1998]. We can map many of those characteristics
to poker aspects:

Figure 1.1: Real world problems and poker aspects from [Billings1998]

An optimal solution to these problems would be a Nash equilibrium,
a strategy that if an agent follows, it wins. If it deviates, it loses. If an
opponent also follows, both tie. Simple machine learning methods achieve
near-optimal solutions to perfect information games but fail to converge in
imperfect information games. Using a controlled environment such as poker,
allows one to measure progress in a domain where simple machine learning
does not converge to near-optimal solutions.
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Chapter 1. Introduction 14

1.2
Goals

The imperfect information property, the stochastic property, along with
the size of the game makes solving of multiplayer No-Limit Texas Hold’em
Poker an interesting milestone for Computer Science, not reached until now.
This work proposes Pucker, a framework to help scientists reach this goal,
providing a consistent simulation of the game, storage of past scenarios in
an efficient way, a learning and prediction strategy for machine learning
algorithms, and some examples of algorithms to help the development of better
strategies.

The best Pucker agent is inspired by the reinforcement learning, but adds
domain knowledge and state abstraction to learn multiplayer No Limit Texas
Hold’em. In the end, we show how to measure progress and display a consistent
evaluation of the agent’s incremental learning.

Unfortunately, there are several caveats in learning from a generated
dataset. A learning model requires a fine representation of poker state, with
information such as private and public cards, previous opponents’ actions,
and any known public information the enables a gradient descent model
to approach incremental learning. Also, the training data obtained from
simulation of deterministic weak players are not sophisticated enough to
generate a model competitive against serious players.

To deal with these challenges, we propose a high dimensional representa-
tion composed with most of the information used by professional players, along
with statistical features built by simulation of future rounds, that improved
early stage poker actions such as flop actions. Also, we improved the dataset
by running multiple phases of learning, whereas the first phase relies on data
generated by deterministic players, and further phases learn from data gener-
ated from deep learning sophisticated players. Finally, we discuss incremental
learning using our methodology and framework, and show statistics of players
from last and first phase to support our findings.

In summary, our contributions are:

– A framework and methodology to build Texas Hold’em agents and to
control incremental learning of agents;

– A simulation of the game that can be used to generate input dataset in
a controlled way;

– State representation and feature engineering that players can use to learn
best actions;
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Chapter 1. Introduction 15

– A learning and prediction neural network that leverages reinforcement
learning to learn a multi-step game such as poker;

1.3
Dissertation Structure

The remainder of this thesis is organized as follows:

– Chapter 2 we describe how to play poker, machine learning, and
the related work;

– Chapter 3 describes the research methodology and activities;

– Chapter 4 describes the project architecture, simulation, data storage,
learn and predict modules;

– Chapter 5 presents the experiments and the associated results;

– Chapter 6 presents some concluding remarks and directions for the
future work;
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2
Background

2.1
Poker Foundations

Texas Hold’em poker variant starts with every player receiving 2 private
cards. Then, there is a betting round: every player bets some amount that they
have the best hand. This first round is called pre-flop.

Next, 3 public cards are dealt to the table. This is called flop. The
flop is public, and those 3 cards are shared among all players. A betting round
happens again, but now the players bet who has the best combination of private
hand and shared table, a total of 5 cards. Every bet goes to the table pot.

Afterward, there is the turn round. A card is dealt to the table, followed
by a betting round. Finally, another card is dealt to the table - the river round
- and the last betting round finishes the game.

A player with the best combination of private and public cards wins the
pot. Also, a player wins if all other players have given up. In case of a tie,
winners share the table pot.

The bet can be a fold, a call of the previous bet or a raise. When a player
folds, he is out of this game and loses the amount he has previously given to
the table pot. Each player announces it’s bet starting from the first player
after the dealer until every player but one fold or every active player bet the
same amount (call).

Figure 2.1: Sequence of rounds in Texas Hold’em Poker variant
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2.1.1
Game Knowledge

The hands are listed below in ranking order:
High card: all five cards of different rank and a variety of suits;

One pair: two cards of the same rank and three different cards;

Two pairs: two pairs and one different card;

Three of a kind: three cards of the same rank and two different cards;

Straight: five cards in sequence of rank with different suits;

Flush: five cards of the same suit;

Full House: three cards of the same rank and two cards of the same rank;

Four of a kind: four cards of the same rank;

Straight flush: a straight of the same rank;
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Chapter 2. Background 18

If two players have the same type of hand, the hand with higher card
wins. A player can use a combination of its private cards and the public cards
in the table. In the end, a player has 7 cards available but can combine only 5
in a poker hand.

It is trivial to understand that player’s position matters. The last player
to bet have more information about other players’ bets and can take a better
decision in order to maximize its rewards.

In each round, each player is the dealer of the deck, in sequence. The
player next to the dealer is the small-blind and the next player is the big-
blind. In pre-flop, the small-blind have to place a minimum bet and the big-
blind has to place twice the small-blind. To participate, every player has to
bet at least the big-blind amount. In the next round, the flop, bets start from
zero.

In this work, we will consider a game of 5 players, therefore, there will
be 5 positions, and each player will be the dealer, small-blind, and big-blind,
once every 5 games.

Given a state of the game, a player can

– Bet: to place an amount to the pot when no one has done it before

– Raise: to raise a previous bet

– Call: to bet the same amount of a previous bet

– Fold: to give up, and lose the money placed in the pot

– Check: when no bet has been made, a player can pass (it’s the same as
betting an amount of 0)

Also, in no-limit poker, a player can bet all of its money. This is called
all-in

2.1.2
Game Variants

Poker variants usually differ in orthogonal dimensions. The two most
common are the number of players and betting structure.

A heads-up variant includes two players. The ring variant includes more
than two players and we will refer to it as the multiplayer variant. This work
concerns about multiplayer poker but can be extended to the heads-up variant.

In the limit variant, also called fixed limit, the players can only raise to a
fixed amount, usually the big-blind amount or twice the big-blind. In no-limit
poker, a raise can be anything from the last bet to the players’ total stack.
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2.2
Machine Learning

Arthur Samuel coined the term "machine learning" in 1959, to describe
"the fact that a computer can be programmed so that it will learn to play
a better game of checkers than can be played by the person who wrote
the program" [Samuel1959]. It was attributed to him the question "how can
computers learn to solve problems without being explicitly programmed?".

Nowadays, machine learning is considered to be a subset of artificial
intelligence techniques that build models from a set of data in order to make
predictions and take decisions. Some ML applications worth mentioning are
financial market analysis, general game playing, image recognition, medical
diagnosis, natural language processing, online marketing, and recommendation
systems [wikipedia/machinelearning].

Machine learning algorithms are often divided into supervised learning
and unsupervised learning.

– Supervised learning algorithms build models from sample data that
contains the desired output for each input and are able to generalize
outputs to unseen examples. For example, in the game of poker, a possible
input is the player hand and the bets, the output is the player gain or
loss of chips. By building a supervised model out of a sufficiently large
dataset, it’s possible to predict the gain or loss of chips of an unseen
scenario, with relative confidence.

– Unsupervised learning algorithms build models from inputs without
the need of output data. Instead of focusing on the prediction, unsuper-
vised models learn patterns of the data, like groups or clusters of data
points. For example, in the game of poker, unsupervised models could be
used to group similar scenarios in buckets, in order to reduce the search
space and take a faster decision.

Another common subset of machine learning algorithms is the reinforce-
ment learning paradigm. Those algorithms learn by taking decisions in dy-
namic environments, which result in positive or negative feedback received
by the environment. By accumulating enough data about states, actions and
feedbacks received, they optimize a policy in order to maximize the number
of positive reinforcements. For example, in the game of poker, a reinforcement
model could start by taking dummy decisions to states given and, by observing
the chips gained or lost for each state-action tuple, it changes its strategy in
order to receive more chips.
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2.2.1
Neural Networks

Neural networks were first proposed by McCulloch and
Pitts [McCulloch1943], in 1943, and were inspired by the processing and
communication patterns in biological nervous systems, although there are
many differences from those biological systems and even more from hu-
man brains. Those differences make the study of Artificial Neural Networks
incompatible with the study of neuroscience.

2.2.1.1
The Perceptron

The first ANN model was implemented by Frank Rosen-
blatt [Rosenblatt1958] and was called the perceptron. The perceptron was
composed of multiple inputs, an output, a collection of weights and an acti-
vation function. It was capable of learning binary classification by supervised
learning.

Figure 2.2: The perceptron diagram

Mathematically, the perceptron is a function that maps the input x to a
binary output f(x).

f(x) =

1 if w · x + b > 0

0 otherwise

w · x is the dot product ∑m
i=1 wixi,

w is a vector of weights
m is the number of inputs
b is the bias
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This model was heavily criticized because it couldn’t learn a simple
XOR function, as it could only simulate linearly separable functions. To
overcome this, Rumelhart, Hinton, and Willians [Rumelhart1986] proposed
the Backpropagation algorithm, which implemented another layer and finally
was capable of simulating non-linearity.

As the name suggests, the activation functions are responsible for setting
the activation of a neuron, in other words, it sets how the input signal is passed
to the output.

The first activation function, proposed by McCulloch and Pitts, was the
threshold function. This function is binary, it is equal to 1 (passes the signal)
if the input signal is greater than 0, and it does not pass the signal otherwise,
as in above perceptron description.

Figure 2.3: Threshold activation function

Nowadays, one of the of the most popular activation functions is the
rectifier function φ(x) = max(0, x). The reputation is due to the work of
Glorot, Bordes, and Bengio, who proved it allowed faster and better training
of ANNs [Glorot2010].

Another common activation function is the sigmoid. Unlike the thresh-
old function, the sigmoid function is smoother, and can be mathematically
described as φ(x) = 1/(1 + e−x). This function is often used in the last layer
of classification models to estimate the probability of the signal being 0 or
1 [Richard1991], and that’s where the smoothness can be helpful instead of
the binary threshold.

Finally, there is the hyperbolic tangent function, also referred as tanh.
It is similar to the sigmoid function but goes from 1 to -1. The sigmoid function
can "stuck" the training of ANNs, a problem called "vanishing gradients". When
a strongly-negative input is provided, the sigmoid function outputs values near
to zero instead of passing a negative signal [Glorot2010.2], which results in
a very slow learning curve. Thus, the hyperbolic tangent function is usually
preferable. Mathematically, it can be described as φ(x) = (1−e−2x)/(1+e−2x).

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Chapter 2. Background 22

Figure 2.4: Rectifier, sigmoid and tanh activation functions

2.2.1.2
Backpropagation

Right now, one can understand that a multilayer perceptron simulates
the behavior of any function, given the right weights. But how to arrive at the
proper weights?

One way could be by brute-force: trying out an infinite number of weight
combinations until the network outputs the right values of the function for
any input. This is not feasible because it could take an eternity. If we have 25
neurons, and we try 1000 different weights for each neuron, there are a total of
1075 different combinations of weights for the network. As of today, the world’s
fastest supercomputer, Summit, can process 200 petaflops per second. Let’s say
hypothetically that it can test the result of a neural network in one floating
operation, which in reality is a lot more. With this optimistic estimation, it
would require 1075/(200 × 1015) = 5 × 1057 seconds to test all the weights
possibilities. That’s approximately 1.58× 1050 years, longer then the time the
universe has existed. And this is not even considering that the right weights
might be different from the 1000 different weights tried out.

Backpropagation is an algorithm that relies on gradient descent to correct
the weights. First, the cost function is chosen. The cost function describes how
to calculate the error between the predicted output and the real output. A
common cost function is the mean squared error: Cost = 0.5× (ypred− yreal)2.
The cost function shows how far the prediction is from the desired output. With
this measure, the backpropagation algorithm uses gradient descent to calculate
how much to change from the network parameters w in order to minimize the
cost function, according to a learning rate α, w = w−α∇wC. When the error
is acceptable, the backpropagation stops and the neural network is considered
to be trained.
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2.2.1.3
Data Mining and Preprocessing

When a data scientist receives third-party data, it usually comes with
important information for the owners of the data, like database ids, meta-
information that concerns the business problems, unnecessary timestamps, etc.
The quality of a machine learning model depends heavily on the input data.
When the input dataset is full of unnecessary, noise or wrong data, the models
built from this data will reflect that and output unreliable information. An
important part of building a consistent model comes before thinking about
the architecture of the model and it’s called data mining.

The goal of data mining is to extract crucial information from a database
into a more comprehensible structure [Pang2018]. Thus, data mining concerns
with all the techniques involved in the preparation of a dataset to be fed
into a machine learning model. Some of those concerns are data access, data
preprocessing, metrics extraction, data dimension, and data visualization. This
work will focus on data preprocessing and metrics extraction.

Data preprocessing is referred to as the process of cleaning the data before
feeding to a machine learning model. This usually involves:

– Data filtering: to remove unnecessary information, from which the
output does not depend on;

– Feature engineering: to create new features that make models work
better;

– Handling of missing data: to discard incomplete observations or
transform missing variables using statistical values such as the mean,
median or most frequent values;

– Categorical data encoding: to transform categorical data into new
dimensions;

– Feature scaling: to standardize a variable of the data;

The first three are self-explanatory. Below there are some examples to
understand encoding and scaling.

Given a database with people information, one possible variable is the
person’s genre. Some might be "male" and others "female". The string "male"
and "female" have little numerical value. Data encoding is the process of
transforming this information into numbers, for example, "male" to 0 and
"female" to 1. If there are only two categories, this is sufficient to feed into
a mathematical model.
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A more complex problem arises when some of the observations contain
the "other" string, referring to people that do not consider themselves either of
those two genres. One might try to set "other" as 2, but this is a big mistake
because now the data have scalar meaning: 2 > 1 > 0. This confuses most of
the known machine learning models, as they are essentially numerical. When
there are only two categories, the numerical models work because they treat 1
as different from 0, not higher, thus enabling them to mathematically separate
observations.

To solve this problem, a data scientist has to transform this information
into new dimensions. He might substitute the genre dataset column into a
"female" and a "male" column, and set 1 to men’s "male" column, 0 to men’s
"female" column, 0 to women’s "male" column, 1 to women’s "female" column
and finally 0 and 0 to "male" and "female" columns of the remaining people
data. Notice that there is no need for a third column since the last step fully
differentiates people who don’t consider themselves either "male" or "female".
This removes the scalar order from the categorical variable, hence contributing
to the learning of a numerical model.

Feature scaling concerns about the mean and standard deviation of
features. Depending on how an ML model works, a dataset feature with much
higher value can dominate other features and disturb the model learning. For
example, in neural networks (see figure 2.2), if the feature x1 has observations
from 0 to 1000 and the other features have a range from 0 to 1, the first feature
will dominate the dot product ∑m

i=1 wixi, as it is more sensible to a change in
w1 than in other weights.

2.2.1.4
Deep Learning

Nowadays, many Artificial Neural Networks are composed of multiple
neurons, multiple layers of neurons, multiple types of layers such as convo-
lutional or recurrent layers [Lavet2018.1], and can predict complex scenarios,
for example, house pricing, insurance cost, weather forecasting, stock market
prices, etc. Each neuron in a complex neural network architecture works in a
similar way to a perceptron.

Deep Learning is a branch of machine learning responsible for studying
complex architectures, with the purpose of learning patterns and making
predictions out of data representations. The deep in the name refers to the
depth and complexity of the architectures, as they can be very deep.
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Figure 2.5: Diagram of a random multimodel deep learning network,
from [wikimedia/deeplearning]

2.2.2
Reinforcement Learning

Reinforcement learning is rather known as a class of problems instead of
a set of techniques. This class of problems has in common an agent interacting
with a dynamic environment by observing the scenario, taking actions and
receiving rewards (or punishments) [Kaelbling1996].

For example, in order to play a new video game, human players watch the
screen, press a joystick button, receive/lose game points and watch the screen
again, in a repetitive cycle. By trial-and-error, human players understand which
actions led to more game points and which ones resulted in a loss. After some
rounds of learning, they change their trial-and-error behavior, choosing more
effective actions to win the game.

Reinforcement learning computer agents embrace this workflow. At each
step, they observe a state, take an action, receive a positive/negative signal,
and observe the new state from the external environment. Their goal is to
optimize their future behavior to maximize the signals received.

This parallel between the computer and biological systems is not
by chance. Since a long time, reinforcement learning plays a big hole
in psychological studies about how neuro systems learn, through positive
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and negative reinforcements controlled by the dopamine system in animal
brains [Holroyd2002] [Dayan2002] [Reynolds2001] [Garcia1966].

Figure 2.6: Reinforcement learning diagram

Formally, basic RL is modeled as a Markov decision process:

– The set of possible states S

– The set of possible actions A

– The probability of going from a state s to s′, by taking an action a:
Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)

– The reward after transition from s to s′ with action a: Ra(s, s′)

At each step, an agent receives a state st, take an action at, receive a
reward rt and a new state st+1. And the process moves on to another step.
The agent aims to receive as many rewards as possible.

The policy π is the probability of taking an action a given a state s:
π(a|s) = P (at = a|st = s). The goal of an agent is to find the best possible
policy. To accomplish this, it calculates a value function for the policy given a
state, Vπ(s). In other words, the value function is the expected return starting
with a state s and following the policy π. Finally, it attempts to find a policy
that maximizes the return by maintaining a set of estimates of expected returns
for some policy.

In many cases, the reward remains zero until a step in the future.
For example, a poker agent might receive its rewards only after the river
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round of bets. Hence, Ra(s, s′) is associated with future discounted rewards
R = ∑∞

t γtrt, where γ is the discount γ ∈ [0, 1]. From this equation, the sum
is more sensible to earlier rewards, since γt > γt+1

Usually, the agent is capable of observing the state completely, but that’s
not always the case. For example, in chess games, the whole state is observable,
but in poker, an agent cannot see its opponents’ cards. This is called a partially
observable environment.

Reinforcement Learning differs from supervised learning because there
is no prior need of a dataset of inputs and outputs and sub-optimal actions
are not explicitly corrected. In RL, the focus is on performance and in the
balance between exploration (obtaining information about the environment
states, actions and rewards) and exploitation (to maximize the rewards given
current knowledge). It differs from unsupervised learning in its goals. While
unsupervised learning focuses on finding patterns and differences between data
points, RL’s goal is to find a good behavior.

Common RL implementations use dynamic programming to find the
best policy. Deep Reinforcement Learning is the branch of RL that uses
DL techniques (see 2.2.1) to find the best policy, thus maximizing the RL
rewards [Lavet2018.2]. Pucker players are inspired in this concept, as it will be
described in further sections.

2.3
Related Work

Most of the related work on computer poker relies on improving existing
algorithms to win poker competitions against other computer agents or profes-
sional players. There is almost no work about the building blocks of a learning
player, a methodology and a framework to build incrementally better players.

In University of Porto, Luís Teófilo, together with different re-
searchers, discussed about the simulation and performance assessment of poker
agents [Teofilo2013]. They also have created a framework to analyze logs of
past human poker scenarios and measure progress of machine learning strate-
gies [Teofilo2011]. Our work is different, it provides a whole pipeline for gener-
ating poker scenarios, with automatic agents instead of humans, and provides
a framework and methodology to support incremental progress of automatic
agents that learn from each other experiences and has no human input.

The first computer program to play poker was called Orac and was
created by Mike Caro to compete in World Series of Poker in 1984. After
that, University of Alberta, Carnegie Mellon and the University of Auckland
led the development of poker bots.
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In 1998, the Computer Poker Research Group at University of Alberta,
led by Michael Bowling, released Loki, an artificial intelligence capable of
playing Limit Heads-Up Texas Hold’em [Billings2016]. Next, they improved
their work and created Poki, in 2000 [Davidson2000]. Both of them focused on
modeling the opponent’s strategy, but still relied in “search” by simulation to
find the best decision.

In 2003, scientists began to shift from the chess methodology model, and
in 2008 a poker bot developed in University of Alberta, called Polaris, played
6 heads up No Limit Hold’em matches against humans, with 3 wins, 2 losses,
and 1 tie.

Next, in 2009, studies in the University of Auckland introduced Sartres,
its first poker AI. It was designed to play specifically heads up Limit Texas
Hold’em and was the first one to use a case-based reasoning methodol-
ogy [Rubin2009].

Counterfactual Regret Minimization started to play a big hole in this
field [Zikenvich2008], and Limit Texas Hold’em was weakly solved in 2015, by
Cepheus, another AI developed at the Computer Poker Research Group at
University of Alberta [Bowling2008]. Cepheus’ along with other UoA’s work
also provide a profound discussion on how to assert the solving of extensive-
form games such as poker. Those works are used to measure progress along
their findings.

Also in 2015, a professor at Carnegie Mellon University developed Clau-
dico [Brown2015], a No Limit Texas Hold’em bot, but it lost heads up matches
against pro players. It required a Pittsburgh supercomputer with 16 terabytes
of RAM to learn its strategy.

Libratus succeeded Claudico but was rewritten from scratch. It was built
with more than 15 million core hours of computation, compared to 3 million
performed for Claudico. It applied a new variant of Counterfactual Regret
Minimization, namely CFR+, developed by Oskari Tammelin, a scientist
involved in the Cepheus project [Brown2017].

Finally, in 2017 the Computer Research Group (at the University of Al-
berta) together with several scientists from the Czech Republic, introduced
DeepStack, an algorithm for imperfect information scenarios. This work com-
bined many different deep learning strategies, like recursive reasoning, to han-
dle information asymmetry, decomposition to focus computation on the rele-
vant decision, and a form of intuition algorithm to automatically learn from
self-play [Moravcik2017]. For the first time, a computer program defeated with
statistical significance professional poker players in heads-up no-limit Texas
Hold’em.
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Alberta’s work differs from Carnegie Mellon’s. Both had contributions
from Oskari Tammelin for a faster and lighter Counterfactual Regret Mini-
mization algorithm, but Alberta did a great job on optimizing the learning to
run on modest machines, while Libratus and Claudico run on supercomputers.
Our work run on a personal laptop, a quad-core with 2.50GHz and 16GB of
RAM.

Regarding reinforcement learning, in 2016 David Silver introduced Neu-
ral Fictitious Self Play, a deep reinforcement learning method composed of
two neural networks that learn approximate Nash equilibria of imperfect-
information games. Silver’s goal was to not rely on engineering abstractions or
any domain knowledge, and still be capable of learning in a complex environ-
ment. It was applied to Limit Texas Hold’em and approached the performance
of state-of-the-art [Silver2016].

Our work is inspired by the reinforcement learning formulation, but adds
domain specific logic to improve learning. Most notably, we add the notion of
hand strength and hand potential to improve performance of the ML models,
which were first proposed at UoA in their earlier works. Also inspired by UoA
and DeepStack’s work, we applied neural networks to predict our chances of
winning, but focused on building a framework to support research in the still
open field of multiplayer no-limit poker.
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3
Methodology

The goal of this work is to propose a framework to build and test
different neural networks that can play multiplayer no-limit Texas Hold’em
poker against each other, learn from a supervised experience and maximize
its rewards. It should be extensible to other machine learning models and
preprocessing techniques.

The first step was to build the simulation of the game. We made several
decisions to simplify this already complicated step, the remarkable ones are
the abstraction of the pre-flop phase and the focus on a 5-player game. We
took both decisions with a Software Engineering concern in mind, and they
can be easily readdressed in future work to support the pre-flop round and
different sizes of table.

Next, we built two trivial players as a foundation for more intelligent
agents. The first one is an always-check player, called Player, which ignores the
game state and place its bet as the minimum allowed bet, always. It has all the
necessary methods to play the game and it is the super-class of all players. The
second one, called DummyPlayer, plays randomly, choosing actions according
to the generation of a random float between 0 and 1.

Those players could be used to build a dataset to feed ML models but,
as discussed in section 3.1, data points built randomly or from rare situations
produce less reliable ML models. To overcome this, we programmed three
players using Bayesian network models. After some experiments, we chose two
of them to build an initial dataset.

Afterward, we made the database component and connected it with the
simulation of the game. The BN players played 40000 games, thus generating
566739 rows of state-action-reward information, from flop, turn and river poker
rounds.

Then, we wrote four neural network architectures with different number
of layers and nodes per layer, with the purpose of identifying the best
architecture, and we created four NN-players out of those networks. Each NN-
player uses three neural networks with the same architecture, one for each
round of the game (flop, turn and river), hence they are fit with different data
from different poker rounds, generating a total of 12 different neural networks.
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Since the ML models were built in a different programming language
than the simulation (more on 4.4), we developed an HTTP API to expose the
model predictions. The ML players use this API to consult its ML models.

Finally, we added a statistic component to the simulation, to measure
the players’ performance and support the evaluation of this work.

With the system ready, we ran four phases of learning, and evaluated each
player of each phase in four games of 3000 hands. The details and results are
described in chapter 5. In each phase, the players learned with data generated
from the previous phase. The first phase players learned from data generated
from the bayesian network players.

The goal is to achieve incremental learning, thus the last phase players
must win against first phase players. We also desire that machine learning
players achieve a better performance than the simple bayesian network players.
This demonstrates that the framework was successful in allowing the creation
of increasingly good players, according to our initial goals.

3.1
Bayesian Networks and Initial Dataset

In order to train a supervised model, it is needed a dataset. The
performance of a machine learning model relies heavily on the quality of this
dataset [Polikar2001]. A reliable dataset must represent reality with confidence,
thus it should be generated from real situations.

In Pucker, after the models are trained, new datasets can be generated
from subsequential games played by those models. But still remains the
problem of how to generate an initial dataset with good quality.

Untrained Neural Networks could be put to play. Since their parameters
are not fitted yet, they will play randomly according to the random generation
of its initial parameters. The quality of this dataset is worse than a dataset
generated from good players because it represents random situations, hardly
seen in professional games.

Pucker Framework introduces an initial set of simple players that are put
to play against each other. Rather than playing randomly, those players use
Bayesian Networks [Heckerman1998] to analyze state and choose better poker
actions. To certify that Bayesian players perform better, they were put to play
against random players and won by a large margin in the long run. They were
also tested against "always check" players, and won by a large margin.

Bayesian networks are tree structures that represent conditional depen-
dencies of variables in a directed acyclic graph and are capable of inferring
from those variables [Neapolitan2003].
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Nodes of this graph represent Bayesian variables. In poker, those nodes
can represent the poker state: hand ranking, number of players, position,
etc. Unconnected nodes represent variables that are conditionally independent
of each other, like a player hand and position. Nodes are associated with a
probability function that represents the chance of possible states of that node.
Edges represent conditional dependencies, for example, a good poker hand
depends on the private player hand and the public table cards.

After some experiments, two different architectures were chosen to com-
pose poker players in order to generate an initial dataset. The first one is
simpler, and relies only on the state minimum bet and hand rank. The second
uses players’ position, together with the minimum bet, to compose a scenario
conditional variable. When the Bayesian Network detects a high winning condi-
tion, bayesian players raise. When it detects a low winning condition, bayesian
players check. If it’s a losing condition, it folds or checks if the minimum bet
is zero.

As an example, the bayesian player represented by figure 3.1 will fold
with a bad hand when there is a minimum bet over zero. And it will re-raise
when it has a great hand and the minimum bet is over zero.

Figure 3.1: Simple bayesian network with its probabilities
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Figure 3.2: Better bayesian network. It is represented a situation of high
position, zero bets and low hand rank. This player might bluff in this situation.

Those two bayesian networks played 40000 games in a five players Texas
Hold’em table. This table also had a random player to generate diverse
situations in order to generalize the initial dataset. The result is a 566739-
row database that was used to train the initial neural networks. After that,
the neural networks played against each other, generated even better quality
datasets, and learned incrementally from their self-plays.

3.2
Application of Deep Reinforcement Learning

According to the reinforcement learning principles (more on 2.2.2), we
used neural networks to predict the outcome of a poker scenario given an
action. The NN-player chooses the action with the maximum expected return.

From this strategy, it’s important to notice that when the model predicts:

– a win and the player wins, it’s good because the player would commit to
a winning scenario

– a loss and the player loses, it’s good because the player would fold, thus
he is less punished

– a win and the player loses, it’s bad because the player would commit to
a losing scenario
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– a loss and the player wins, it’s bad because the player would fold a
winning scenario, thus denying a reward

If the model predicts a 200 chips win, and the player actually wins 150
or 300, it’s less relevant. Same for a loss.

Although predicting the outcome is a regression problem instead of a
classification, the above explanation led us to first evaluate the models in
terms of the correct classification of the expected return. They were trained as
a regression, but evaluated as a classification.

3.2.1
Accuracy, Precision and Recall

To evaluate classification models, we calculate metrics between the
predicted and the real outputs.

Accuracy classification metric is the fraction of correct predictions over
all the predictions. In a 5-people poker table, a regular player loses a lot more
times than it wins. A model that predicts a loss for most of the cases will have
high accuracy, hence the accuracy isn’t important for this subject.

Precision is the fraction of correct predictions over all positive predic-
tions. When a model classifies the scenario as a win but the player actually
loses, he commits many chips to a losing pot, losing more money than he would
have lost with a correct prediction. Hence, the precision is an important metric
for this subject.

Recall is the fraction of correct predictions over all wins. When a model
classifies the scenario as a losing game, but the player actually wins, he will
fold a winning hand, thus he will receive a punishment from a situation he
could have been rewarded.

F1 metric is a balance between precision and recall and it is also
important to measure. It is equal to 2∗(precision∗recall)/(precision+recall).

3.2.2
Number of Layers and Neurons

We started the investigation of NN architectures with 4 layers of 100
neurons each. To simplify, we will call this architecture just 4× 100.

Following the findings of previous work [Moravcik2017], we used rectifier
activation functions in hidden layers, and the Adam optimization algorithm to
correct the model weights. We used a linear activation function in the last layer
because it is a regression problem, hence we did not restrict the prediction to
the behavior of an activation function. By having rectifier activation functions
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in the hidden layers, we already approached the non-linearity, which is intrinsic
to the poker problem.

The Adam optimizer was responsible for the stocastic gradient descent of
weights in backpropagation. At first, this choice was made by comparison with
the performance of different optimizers, in terms of the classification described
above. Then, it was confirmed by the same choice in [Moravcik2017]. Further,
the Adam optimizer is computationally efficient, requires little memory and it
is well suited for large and stochastic problems such as poker [Kingma2015].

The 4×100 models had a fine accuracy (average of 0.7), but poor precision
and recall(average of 0.5). In a 5-player poker table, usually a player loses more
times than it wins. Hence, predicting a loss is easier than predicting a win,
which explains the classification metrics and why this model was not reliable.

Then, we gradually increased the number of neurons and layers by
experimentation and evaluation, until we reached the performance limit with a
6×1000 network. After that, increasing the number of neurons or layers didn’t
show any improvement in the classification metrics. Sometimes the metrics
even decreased.

After fitting the 6× 1000 network with the BN dataset described in 3.1,
we investigated the neuron weights. We realized that an average of 300
neurons per layer were very close to 0, hence they had almost no influence
in the network’s output. This is an old technique called "pruning neural
networks", which led us to remove redundant neurons to achieve faster training
time [LeCun1990], without compromising the performance. Following that, we
created a 6 × 700 network and evaluated the accuracy, precision, recall and
loss on both networks, using separated train and test datasets, and we assured
there was no loss in the quality of outputs.

To analyze the trade-offs between the number of layers and the number
of neurons per layer, we kept the total of 6× 700 = 4200 neurons, and created
a 12× 350 and a 24× 175 neural network.

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Chapter 3. Methodology 36

Figure 3.3: Neural network architectures implemented in Pucker framework

In summary, this methodology brought us to four deep architectures:

– 6 × 1000: 6 layers of 1000 neurons each

– 6 × 700: 6 layers of 700 neurons each

– 12 × 350: 12 layers of 350 neurons each

– 24 × 175: 24 layers of 175 neurons each

We kept the 6×1000 network to analyze if it has any gain in performance
after multiple learning phases, to understand if more neurons demonstrates
better performance after they are fit with more data.

We built the learning players by using those models to estimate the
expected value of each action, given a poker scenario. Their metrics and
performance in poker games will be further discussed in chapter 5: Evaluation.

3.2.3
Hand Rank, Strength and Potential

A significant gain in performance was achieved by the addition of three
variables to the input dataset: hand rank, hand strength and hand potential.
Without those variables the models have bad classification metrics and could
not improve their performance over learning phases.

The hand rank denotes the ranking of a poker hand over all possible
poker hands. It’s used to verify which player have won, but it can also be used
by players to evaluate their hands in order to take a better decision. Without

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Chapter 3. Methodology 37

this information, the neural networks have to learn by themselves which hands
are worth to be played and which ones put them in a bad scenario. By using
a scalar to represent the ranking of a hand, the networks were able to predict
the outcomes of their actions with much more confidence.

The hand strength denotes the probability that the current hand is the
best hand in the table. It can be calculated by the enumeration of all possible
other hands and a comparison between this other hand and the players’ hand.
By counting the number of better and worse hands, the player can estimate
how good is his hand in comparison with his possible opponents’ hands.

Hand strength is a measure of the present. But in turn and river, other
cards are dealt to the table and can change the strength of the players’ hands.
Hand Potential denotes the probability that our hand will be improved over
our opponents’ hand, given a new card to the table. It can be calculated by the
enumeration of all possible cards that can be dealt to the table, and counting
how many of them improves our hand as opposed to our opponents’ hand.
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Framework Architecture

The Pucker framework has 4 components: a no-limit Texas Hold’em sim-
ulation written in JRuby [jruby.org], an SQLite storage [sqlite.org], a learning
and a prediction script written in Python programming language [python.org].

The simulation runs the game and inserts data about the states seen
by a player, actions taken and his rewards (or punishments if negative) in
the database. The states, actions and rewards are the learning variables.
The learning script reads the database, fits the model, and stores the model
parameters in the disk. The prediction script loads the model and exposes
predictions through an HTTP API. The simulation queries the prediction API
when a machine learning player needs to take a decision.

Figure 4.1: Pucker framework architecture diagram

4.1
Simulation

The Ruby programming language was chosen to write the simulation
component. Ruby offers great syntax to write game simulations because it is
idiomatic, succinct, and object-oriented.

The game of poker, as many other games, is composed of independent
reusable components that answer to messages, such as player, dealer and
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a deck of cards. Games demand great flexibility, code reusability, and low
maintenance costs. Consequently, the application of design patterns in them
can be beneficial. Ruby is heavily object-oriented and allowed fast development
of the simulation.

Due to its idiomatic property, the main method of the simulation, the
play method on the Game class, can be understood by anyone. It seems like an
english description of the poker game (see Listing 4.1) and a simple random
player can be written in a few lines of ruby (see Listing 4.2).

Listing 4.1: game.rb
def play

setup_game
collect_blinds

# FLOP
3. times { deal_table_card }
bets = collect_bets
main_pot .merge !( bets)

# TURN
deal_table_card
bets = collect_bets
main_pot .merge !( bets)

# RIVER
deal_table_card
bets = collect_bets
main_pot .merge !( bets)

winners = eligible_players_by_rank
reward winners

rotate_and_reset_states
end

Through the past years, many reusable poker components were writ-
ten by the Computer Poker Research Group, at the University of Alberta
[spaz.ca/poker/doc]. Those components were written in the Java programming
language. To reuse those components, we chose the JRuby platform to run the
poker simulation. This platform runs the Ruby syntax on the Java Virtual
Machine [jruby.org] and simplifies the calling of Java poker components from
Ruby simulation code.

In the context of the Pucker framework, a game has a group of players,
a dealer and a pot with the bets of the current game. The dealer deal cards.
Players evaluate game state and choose an action based on their current state.
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Listing 4.2: player.rb
class DummyPlayer < Player

def bet(state)
min_bet = state. min_bet
choice = rand

if min_bet > 0 && choice < 1/3.0 # FOLD
fold

elsif choice < 2/3.0 # CHECK
get_from_stack ( min_bet )

else # RAISE
raise_from ( min_bet )

end
end

end

Figure 4.2: Pucker framework simulation diagram

As previously said, Texas Hold’em poker variant has 4 phases: pre-flop,
flop, turn and river.

In pre-flop, a player has to take an action with little information about
its opponents, since few bets have been committed to the pot. Given that, in
pre-flop, a player must deal with more imperfect information than in further
rounds of the game. Due to its complexity, this research has abstracted the
pre-flop phase: every player bets the same as the big-blind player.

Many simulators have been developed for poker research, the most no-
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table one is the Poker Academy simulator. In comparisson with this simulator,
our simulation runs two times slower. It simulates 100000 games in 26 min-
utes, while the Poker Academy simulator does in 13 minutes. This is due to
the Hand Rank algorithm, which is slower in our simulator but can be easily
exchanged in future work. Instead of using open-source solutions, we decided
to build our own simulator to have more control over the code, possible bugs,
and performance. For example, it’s possible to run multiple simulations at the
same time, one per CPU, with our simulation component. This reduced the
simulation time four times, during the evaluation of this work.

4.2
Storage

In real poker, the state of the game have many variables, such as how
much time a player delayed to take a decision, history of opponent’s decisions,
cards on the table, cards in player’s private hand, how strong is the combination
of table and hand cards, player position, and many others.

To support machine learning, Pucker must store an abstraction of the
state, the actions taken and rewards. Pucker is an extensible framework, it is
easy to add or remove variables to the state abstraction in future work. In
Pucker, we consider a state as composed by:

– Count of players

– Count of active players in this round (players who have not folded)

– Player’s position

– Amount in the pot

– Amount each player has bet

– Number of raises per player

– Self amount committed to the pot

– Self number of raises

– Hand cards

– Table cards

– Combination of Hand and Table ranking

– Combination of Hand and Table strength

– Combination of Hand and Table potential

In poker, a player sees a game state, takes an action, and receives a
reward (or punishment) at the end of the round. Pucker players remember the
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states, actions, and rewards, and stores them in an SQLite database, one row
per action taken.

This is a complex game. To learn a fine strategy, a machine learning player
must be fitted from a very large dataset. To accomplish that, the simulation
needs to be fast and can’t be stopped every round by a slow operation such
as database inserts. To overcome this problem, a batch of states is written at
once in a single insert query, after multiple games.

4.3
Learning

A machine learning prediction typically maps a set of variables to an
output. In this work, the input will be the state and action, the output will
be the reward seen at the end of this state. In short, the machine learning
algorithm will learn to predict the reward, given a state and an action.

To choose the right action, a machine learning player will predict the
reward of different actions (fold, call, raise), and choose an action that
maximizes its rewards. This is inspired in Reinforcement Learning but the
policy optimization is done implicitly by the neural network.

Since the number of states in no-limit Texas Hold’em is
10160 [Johanson2013], it is impossible to store every state. It is even hard
to store the number of states to take a good decision. To overcome this, we
will store only the model parameters and erase the database of states after
the learning process.

It is crucial for the model to be extensible: it may correct its parameters
according to new data, it will not be able to access the full history. Neural
Networks are naturally capable of incremental learning, and this is a big reason
for their choice in favor of other models, like Gradient Boosting Machines. Until
today, popular Gradient Boosting Machine implementations cannot handle
incremental learning [xgboost-github].

Instead of considering the game round (pre-flop, flop, turn or river) a
variable of the state, past work [Sirin2008] and [Moravcik2017] has seen better
results by creating a separate model for different rounds, and we will also
consider that. The main reason is that different rounds of poker are played
in very different ways because they have a different state. Additionally, the
number of possible states in poker is huge [Johanson2013], by using different
models in different rounds we are reducing the number of possible states a
model has to learn from.

The learning component is a Python script that reads states from
a database, preprocesses, fits prediction models and stores their param-
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eters in the disk. It uses [scikit-learn.org], [keras.io], [pandas.pydata.org],
and [joblib.readthedocs.io] packages.

4.4
Prediction

The prediction component reads the stored model parameters and creates
an instance of the model ready to predict unseen states and actions.

There are two problems: this is a slow process, and the Ruby simulation
cannot run Python code seamlessly, as they are different languages running
in different virtual machines. To overcome those problems, the prediction
component keeps an instance of the model in memory and exposes an HTTP
API that receives a state-action query and returns a prediction.

This component is capable of exposing many different models, one per
HTTP endpoint. This way, Pucker supports the simulation of many different
machine learning algorithms playing at the same time.

To build the HTTP API, Pucker uses the Flask library [flask.pocoo.org].
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5
Evaluation

According to the subsection 3.2.1, we will start the evaluation of the
models by the precision, recall and F1 metrics of each model. To prevent
overfitting, we will split the datasets in 80% for training and 20% for testing
those metrics, and only when using them in game plays we will train the model
with the complete database.

Then we will analyze the performance in action, by playing them against
each other in tables of five players. We will do that in four rounds of 3000
games each and display a measure of rewards one by each player.

5.1
Metrics without feature engineering

The first Neural Networks developed had little information about the
domain of poker. They were created to predict the outcome of actions given
basic poker variables such as hand cards, table cards, opponents bets, pot size,
number of players. They reached a precision lower than 0.6, and a very low
recall as well, and were discarded right away. To overcome this, our first step
was to separate the neural networks of flop, turn and river, the results are
shown below.

Table 5.1: Classification metrics of Neural Networks without Feature Engineer-
ing

flop turn river
NN prec. recall f1 prec. recall f1 prec. recall f1
6x1000 0.686 0.561 0.617 0.739 0.640 0.686 0.720 0.788 0.752
6x700 0.652 0.675 0.663 0.737 0.657 0.694 0.731 0.763 0.747
12x350 0.723 0.459 0.562 0.724 0.691 0.707 0.751 0.713 0.731
24x175 0.670 0.457 0.551 0.750 0.601 0.667 0.745 0.779 0.626

By the use of simple multilayer NNs, players were not able to action
effectively, and the models presented poor metrics. Given this bad result,
we added some domain specific knowledge to the models, as described in
section 3.2.3. With hand strength and hand potential knowledge, the models
performed much better, as you can see in next section.
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To effective compare the metrics of this session with the next section,
one must compare against phase 1, since we also used phase 1 database in this
section.

5.2
Model metrics

Below are the metrics for each NN model in each learning phase. It’s
important to notice that phase 1 presents the overall best metrics among all
phases. At first glance this seems a problem, but it can be explained by the
fact that phase 1 dataset was built by BN players, which are more predictable
than NN players.

Table 5.2: Classification metrics of Neural Network 6x1000

flop turn river
phase prec. recall f1 prec. recall f1 prec. recall f1
1 0.682 0.661 0.671 0.750 0.720 0.735 0.770 0.772 0.771
2 0.735 0.353 0.478 0.730 0.624 0.673 0.760 0.704 0.731
3 0.700 0.558 0.621 0.729 0.653 0.689 0.787 0.805 0.796
4 0.695 0.624 0.658 0.747 0.721 0.734 0.758 0.750 0.754

Table 5.3: Classification metrics of Neural Network 6x700

flop turn river
phase prec. recall f1 prec. recall f1 prec. recall f1
1 0.686 0.655 0.670 0.722 0.758 0.739 0.771 0.769 0.770
2 0.710 0.385 0.499 0.747 0.590 0.659 0.757 0.729 0.743
3 0.691 0.575 0.628 0.710 0.701 0.706 0.792 0.797 0.794
4 0.699 0.621 0.658 0.726 0.749 0.737 0.748 0.750 0.749

Table 5.4: Classification metrics of Neural Network 12x350

flop turn river
phase prec. recall f1 prec. recall f1 prec. recall f1
1 0.654 0.696 0.674 0.721 0.749 0.735 0.757 0.779 0.768
2 0.752 0.326 0.455 0.727 0.624 0.672 0.789 0.646 0.711
3 0.700 0.546 0.613 0.713 0.695 0.704 0.782 0.813 0.797
4 0.725 0.533 0.614 0.741 0.719 0.730 0.751 0.761 0.756
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Table 5.5: Classification metrics of Neural Network 24x175

flop turn river
phase prec. recall f1 prec. recall f1 prec. recall f1
1 0.669 0.638 0.654 0.760 0.660 0.707 0.776 0.735 0.755
2 0.666 0.399 0.499 0.733 0.599 0.659 0.743 0.740 0.741
3 0.614 0.405 0.488 0.684 0.671 0.678 0.786 0.799 0.793
4 0.711 0.564 0.629 0.714 0.746 0.730 0.697 0.818 0.753

In flop and turn, there is a visible improvement of metrics from phases 2,
3 to 4, which shows incremental gain in performance between learning phases.
In river, we cannot notice an improvement between learning phases. This is
due to the models having more information about the table cards and the
players bets, hence it needs less data to learn and additional learning phases
didn’t contribute to the overall performance.

In flop and turn, F1 metric increases over phases 2, 3 and 4, and the
improvement is due to recall metric. According to section 3.2.1, the poor recall
of early phases relies on the classification of winning scenarios as a loss. When
a model classifies a winning situation as a loss, his player will fold a winning
hand, preventing him from getting rewards.

Also according to section 3.2.1, precision goes down when a model
predicts lost scenario as a win. It’s important to notice that, in a five people
table, most of the situations will be losing scenarios. Even when a model
predicts a win, a player might deal with deception and luckiness, which are
key factors in poker.

Another important observation is that turn and river present better
metrics than flop. In those phases, there are less active players, since some
players had already folded on flop. Also, the last phases are easier to predict
since more actions have been taken by the opponents, and the observable state
is composed of more table cards.

There is no significant difference in the metrics between the architectures,
hence we will have to compare them in terms of game results.

5.3
Poker statistics

To evaluate the neural network players, we simulated 4 rounds of 3000
games each. Every player started with 2000 chips, and when they hit 0, they
receive more 2000 chips, as a rebuy. The charts bellow account for the relative
amount of chips they’ve have: the present amount minus the number of chips
they’ve rebuyed.
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5.3.1
Neural x Bayesian Networks

In the first evaluation, we simulated a table with the four different
architectures and one bayesian agent, and measured how many chips they
have accumulated.

Figure 5.1: Round 1 of the evaluation between neural and bayesian agents

DBD
PUC-Rio - Certificação Digital Nº 1712650/CA



Chapter 5. Evaluation 48

Figure 5.2: Round 2 of the evaluation between neural and bayesian agents

Figure 5.3: Round 3 of the evaluation between neural and bayesian agents
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Figure 5.4: Round 4 of the evaluation between neural and bayesian agents

The player with the 12 × 350 architecture had the best performance,
followed by the 24×175 agent, which suggest that wider architectures perform
better than narrower ones with the same number of neurons. The narrower
architectures performed worse than the bayesian player.

5.3.2
Incremental Learning Evaluation

Next, we evaluated the incremental learning. For this test, we created
the same number of games but with two 12 × 350 agents in the fourth phase
of learning, two of the same architecture in the second phase of learning and
one dummy fifth player to serve as a benchmark for the performance of the
players.

In the first two rounds, an always-call fifth player was used. The results
show that phase 4 (P4) models performed better.
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Figure 5.5: Round 1 of the evaluation between neural agents of different
learning phases

Figure 5.6: Round 2 of the evaluation between neural agents of different
learning phases
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In the last two rounds, a random fifth player was used. The results show
that phase 4 (P4) models performed better again.

Figure 5.7: Round 3 of the evaluation between neural agents of different
learning phases
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Figure 5.8: Round 4 of the evaluation between neural agents of different
learning phases

This suggests P4 follows a better policy than P2, thus receiving more
rewards. Both of them performed better than always-check and random
players. Although this is an exciting result, it is more intended to evaluate
the success of the framework development than the players. The framework
allowed us to explore poker and many of its caveats, it empowered our research
to get better at each step, and provided us a nice workflow over the learning
phases.

The players present an increasing performance, but are worse than the
best players developed at University of Alberta and Carnegie Mellon, since
reaching this result was never the intention.
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6
Conclusions

This chapter presents the concluding remarks about our work. Discuss
our contributions in Section 6.1, and present directions for future works in
Section 6.2.

In this dissertation, we presented theory and practice of deep learning
and how to apply it to a complex field. We created a complete framework to
support simulation, persistence, learning and prediction of multiplayer no-limit
Texas Hold’em. We evaluated the methodology in practice, by creating several
machine learning players and analyzing them in live-action.

Best response for multiplayer no-limit Texas Hold’em is still an open
field. Academia can benefit from this work by understanding step-by-step how
to approach computer poker, and by using the framework to create more robust
poker agents and evaluate them against the neural network players developed
in this research.

Although bluffing wasn’t addressed in this research, the developed models
showed that bluff is not a human behaviour, it is mathematically worth. The
developed players bluffed in some different scenarios, more frequently when in
higher position when no other players had placed a bet. This behaviour is also
common in amateur poker tables.

We acknowledged that, without any domain specific knowledge, it is
really hard to model a poker machine learning model. Besides researching
and iterating through the different neural network architectures, what made
most difference in our results were the separation of neural networks in flop,
turn and river, and the development of domain specific features such as hand
strength and potential.

It must be stated, however, that does not mean our approach is the best,
specially regarding the performance of the created poker agents. The important
goal was to support an improvement in the state-of-the-art by bringing all the
aspects of computer poker in one work, from the simulation, to data generation,
to deep learning and to reinforcement learning.

Another important goal was to incrementally build better players using
the framework to support the research of better strategies, which was discussed
in section 5.3.2.
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6.1
Contributions

Our contributions can be summarized by:

– A review on how to use modern techniques to tackle a complex environ-
ment;

– A complete machine learning framework to simulate, generate data and
evaluate computer poker;

– A set of deep reinforcement learning agents built using the techniques
and the framework described;

The first contribution is theoretic and resides in the second and third
chapter of this dissertation, where we describe the foundations of machine
learning, deep learning and reinforcement learning, and how to use those
techniques to build a poker playing agent. The second contribution is practical,
and goes from the description of the system, in the fourth chapter, to the actual
framework code [github/pucker]. The last contribution is both, theoretic and
practical, and goes from section 3.2 to the deep learning code presented by the
framework.

6.2
Future Work

To contribute to the state-of-the-art, a researcher should use the contents
of this dissertation to improve the performance of the presented framework and
agents.

One path is to automate the learning phases and the creation and
evaluation of different architectures, inspired by evolutionary algorithms, in
order to create neural networks from the evolution and progress of the learning
phases.

Other way is to develop an opponent modeling component, to support
the agents in building a probability distribution over an important part of the
unobservable state: their opponents’ hands.

Another interesting future work is to improve the reinforcement learning
workflow, by an explicit programming of the policy optimization instead of
relying on the neural network’s learning.
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