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Abstract 

Fernandes, Chrystinne Oliveira; Lucena, Carlos José Pereira de (Advisor). 

An Architecture for E-Health Systems that supports Patient 

Monitoring and Caregivers Notification based on a Reasoning Model to 

avoid Alarm Fatigue. Rio de Janeiro, 2019. 125p. Tese de Doutorado - 

Departamento de Informática, Pontifícia Universidade Católica do Rio de 

Janeiro. 

Estimates show that 80% to 99% of alarms set off in hospital units are false 

or clinically insignificant, representing a cacophony of sounds that do not present 

a real danger to patients. These false alarms can lead to an alert overload that 

causes a health care provider to miss important events that could be harmful or 

even life-threatening. As health care units become more dependent on monitoring 

devices for patient care purposes, the alarm fatigue issue has to be addressed as a 

major concern in order to prevent healthcare providers from undergoing alarm 

burden, as well as to increase patient safety. The main goal of this thesis is to 

propose a solution for the alarm fatigue problem by using an automatic reasoning 

mechanism to decide how to notify members of the health care team. Our specific 

goals are: to reduce the number of notifications sent to caregivers; to detect false 

alarms based on alarm-context information; to decide the best caregiver to whom 

a notification should be assigned. This thesis describes: a model to support 

reasoning algorithms that decide how to notify caregivers in order to avoid alarm 

fatigue; an architecture for health systems that supports patient monitoring, 

reasoning and notification capabilities; and  three reasoning algorithms that 

decide: (i) how to notify caregivers by deciding whether to aggregate a group of 

alarms; (ii) whether, or not, to notify caregivers with an indication of a false alarm 

probability; (iii) who is the best caregiver to notify considering a group of 

caregivers. Experiments were used to demonstrate that by providing a reasoning 

system that aggregates alarms we can reduce the total of notifications received by 

the caregivers by up to 99.3%  of the total alarms generated. These experiments 

were evaluated through the use of a dataset comprising real patient monitoring 

data and vital signs recorded during 32 surgical cases where patients underwent 

anesthesia at the Royal Adelaide Hospital. We present the results of this algorithm 

DBD
PUC-Rio - Certificação Digital Nº 1521448/CA



 
 

by using graphs generated with the R language, which show whether the algorithm 

decided to deliver an alarm immediately or after a given delay. We also achieved 

the expected results for our reasoning algorithm that handles the notifications 

assignment task, since the algorithm prioritized the caregiver that was available 

and was the most experienced and capable of attending to the notification. The 

experimental results strongly suggest that our reasoning algorithms are a useful 

strategy to avoid alarm fatigue. Although we evaluated our algorithms in an 

experimental environment, we tried to reproduce the context of a clinical 

environment by using real-world patient data. As future work, we aim to evaluate 

our algorithms using more realistic clinical conditions by increasing, for example, 

the number of patients, monitoring parameters, and types of alarm. 

 

 

 

Keywords 

Alarm Fatigue; E-Health Systems; Patient Monitoring; Alert Systems; 

Artificial Intelligence. 
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Resumo 

Fernandes, Chrystinne Oliveira; Lucena, Carlos José Pereira de. Uma 

Arquitetura para Sistemas de Saúde Eletrônicos que Suporta o 

Monitoramento de Pacientes e a Notificação de Cuidadores com base 

em Raciocínio Automático para evitar a Fadiga de Alarme. Rio de 

Janeiro, 2019. 125p. Tese de Doutorado - Departamento de Informática, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Estimativas informam que 80% a 99% dos alarmes disparados em unidades 

hospitalares são falsos ou clinicamente insignificantes, representando uma 

cacofonia de sons que não apresenta perigo real aos pacientes. Estes falsos alertas 

podem culminar em uma sobrecarga de alertas que leva um profissional da saúde 

a perder eventos importantes que podem ser prejudiciais aos pacientes ou até 

mesmo fatais. À medida que as unidades de saúde se tornam mais dependentes de 

dispositivos de monitoramento que acionam alarmes, o problema da fadiga de 

alarme deve ser tratado como uma das principais questões, a fim de prevenir a 

sobrecarga de alarme para os profissionais da saúde e aumentar a segurança do 

paciente. O principal objetivo desta tese é propor uma solução para o problema de 

fadiga de alarme usando um mecanismo de raciocínio automático para decidir 

como notificar os membros da equipe de saúde. Nossos objetivos específicos são: 

reduzir o número de notificações enviadas à equipe de cuidadores; detectar 

alarmes falsos com base em informações de contexto do alarme; decidir o melhor 

cuidador a quem uma notificação deve ser atribuída. Esta tese descreve: um 

modelo para suportar algoritmos de raciocínio que decidem como notificar os 

profissionais de saúde para evitar a fadiga de alarme; uma arquitetura para 

sistemas de saúde que suporta recursos de monitoramento, raciocínio e notificação 

de pacientes; e três algoritmos de raciocínio que decidem: (i) como notificar os 

profissionais de saúde decidindo quando agrupar um conjunto de alarmes; (ii) se 

deve ou não notificar os profissionais de saúde com uma indicação de 

probabilidade de falso alarme; (iii) quem é o melhor cuidador a ser notificado 

considerando um grupo de cuidadores. Experimentos foram realizados para 

demonstrar que, ao fornecer um sistema de raciocínio que agrupa alarmes 

semelhantes e recorrentes, pode-se reduzir o total de notificações recebidas pelos 
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cuidadores em até 99.3% do total de alarmes gerados, sem perda de informação 

útil. Esses experimentos foram avaliados através do uso de um conjunto de dados 

reais de monitoramento de sinais vitais de pacientes registrados durante 32 casos 

cirúrgicos nos quais os pacientes foram submetidos à anestesia, no hospital Royal 

Adelaide. Apresentamos os resultados desse algoritmo através de gráficos gerados 

na linguagem R, onde mostramos se o algoritmo decidiu emitir um alarme 

imediatamente ou após um determinado delay. Para a tarefa de atribuição de 

notificações realizada pelo nosso algoritmo de raciocínio que decide sobre qual 

cuidador notificar, também alcançamos nossos resultados esperados, uma vez que 

o algoritmo priorizou o cuidador que estava disponível no momento do alarme, 

além de ser o mais experiente e capaz de atender à notificação. Os resultados 

experimentais sugerem fortemente que nossos algoritmos de raciocínio são uma 

estratégia útil para evitar a fadiga de alarme. Embora tenhamos avaliado nossos 

algoritmos em um ambiente experimental, tentamos reproduzir o contexto de um 

ambiente clínico utilizando dados reais de pacientes. Como trabalho futuro, 

visamos avaliar os resultados de nossos algoritmos utilizando condições clínicas 

mais realistas, aumentando, por exemplo, o número de pacientes, os parâmetros 

de monitoramento e os tipos de alarme. 
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1 
Introduction 

Information Technology (IT) has already provided significant benefits to the 

healthcare sector, but there are still many areas where the application of IT could 

offer further critical improvements. For example, a worldwide hospital problem 

nowadays is the alarm fatigue (Cvach, 2012), which has recently been receiving 

attention from the industry, the healthcare sector and the academic community. 

Alarm fatigue involves a lack of response due to an excessive number of non-

critical alarms being received by healthcare personnel, resulting in sensory overload 

and desensitization1 (Cvach, 2012). To illustrate the severity of this problem, in 

Canada and the United States, where this issue has been treated as a major patient 

safety concern (Jones, 2014), it was reported that during a 12-day period of analysis 

of the alarm system at The Johns Hopkins hospital in Baltimore, there was an 

average of 350 alerts per bed per day. In fact, in one Intensive Care Unit (ICU), the 

average was 771 alerts per bed per day. Such numbers indicate a severe sensory 

overload for the healthcare staff, with serious consequences for the well-being of 

the patients if an alarm is ignored. 

In this thesis, we present a new approach to cope with the alarm fatigue 

problem, its most common causes, adverse consequences, and strategies as 

compared with other solutions published in the literature. Our proposed solution for 

addressing this issue uses an artificial intelligence approach based on an automatic 

reasoning system that decides how to notify caregivers about anomalies detected by 

a patient monitoring system where a large volume of alarms could lead to alarm 

fatigue. In other words, we are using information technology to assess the validity 

of alarms and to notify the most suitable member of the healthcare staff about the 

alarms that truly need attention. 

This chapter presents our problem definition, motivation, goals, research 

questions, main contributions and the thesis organization. 

                                                           
1 Reduction or elimination of individual´s negative reaction to stimulus (Myles et al., 2007). 
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1.1 
Problem Definition 

A concern in a great number of hospitals and a complaint among possibly 

every medical team that works with physiologic monitors, alarm fatigue is an 

undesired sensory overload experienced by physicians and other health providers. 

This problem is caused by the excessive numbers of alerts generated from 

physiologic monitor devices in audible or visual form. Alarm fatigue represents a 

substantial issue that can bring undesired consequences to healthcare environments. 

For instance, we can cite the desensitization of the medical team in relation to alerts, 

which can lead to longer response times to handle the anomalies as well as the 

overlook of critical events. These examples illustrate unintended behaviors in the 

context of a sensory overload that may culminate in an unsafe patient environment.  

 

1.2 
Motivation, Goals and Research Questions (RQ) 

Estimates show that 80% to 99% of alarms set off in hospital units are false 

or clinically insignificant. Such alarms represent a cacophony of sounds that do not 

even represent a real danger to patients. Consequently, these false alarms can lead 

to alarm burden and can compromise the health providers’ attention (Cvach, 2012; 

Drew et al., 2014; Jones, 2014; Tanner, 2013). For example, they can lead health 

providers to miss relevant alarms that announce significant, harmful, or life-

threatening events. As the healthcare units become more dependent upon 

physiologic monitoring devices used for patient care, the alarm fatigue issue has to 

be addressed as a major concern. In this case, feasible strategies need to be provided 

to prevent the alarm burden for the healthcare providers, as well as to increase 

patient safety. 

Our main goal in this thesis is to propose a solution to contribute to the 

mitigation of the alarm fatigue problem. The proposed solution relies on an 

automatic reasoning mechanism to decide how to notify health providers. We aim 

at reasoning about whether to notify caregiver teams with an indication of a False 

Alarm Probability (FAP). The FAP label added to the notification can help the 

caregivers to prioritize their work, especially when they are under alarm fatigue 

conditions. As another contribution of our work, we aim to reduce the bedside 
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monitor’s alarm burden by grouping a set of identical (or too similar) notifications. 

Finally, we also aim at reasoning about which caregiver to notify, considering their 

degree of experience, availability, geolocation, and current workload 

circumstances. 

 To pursue our main goal, we defined the following Research Question: 

RQ. How can an automatic reasoner determine how to best notify 

caregivers about anomalies detected by a patient monitoring system 

where a large volume of notification leads to alarm fatigue? 

Because of its complexity, we divided our main research question in 4 Sub-

Questions (SQ) as follows: 

SQ1. How to reason about whether to group alarms to avoid alarm 

fatigue?   

SQ2. How can an automatic reasoning system calculate an indication of 

FAP for an alarm generated by sensors and monitoring devices? 

SQ3. How to reason about whether, or not, to add an indication of FAP 

to a notification that could be visualized by the healthcare team? 

SQ4. How to reason about who to notify within the caregiver teams?  

We conducted three case studies in order to answer our sub-questions. The 

results of each case study, which comprise a reasoning algorithm and its evaluation, 

are presented as individual chapters, later on.   

By answering the sub-questions, we provided examples of strategies that 

can be utilized to notify caregivers in order to mitigate alarm fatigue. These 

strategies were combined into the notification model that composes the architecture 

provided in this thesis. 

1.3 
Main Contributions 

In this work, we try to fill the gap of having feasible solutions to mitigate 

the alarm fatigue problem by focusing on the issues of excessive alarms and false 

positive alarms that are known to be a serious problem that still remains unsolved. 

As a strategy to mitigate the alarm fatigue issue, in this thesis we present a new 

approach to monitor patients by using an intelligent notification process supported 

by a reasoning mechanism that mainly assists health providers in deciding: 1- 

whether to group a set of alarms that occurs within a short period of time in order 

to deliver them together; 2- whether to include an indication of FAP to a notification 
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that can be visualized by caregivers in order to assist them in their decision-making 

process about which alarm to prioritize next; 3- who the best caregiver is to receive 

the notification within a set of caregivers, based on real-time circumstances in an 

ICU - including information about alarms, caregivers’ and patients’ circumstances. 

Below, we list our main contributions:  

C1. An architecture well suited for health systems that supports patient 

monitoring, reasoning and notification capabilities; 

C2. A model to support reasoning algorithms that decide how to best notify 

caregivers to avoid alarm fatigue; 

C3. A reasoning algorithm that specifies how to notify caregivers by grouping 

a set of alarms; 

C4. A reasoning algorithm that decides whether to notify with an indication of 

a false alarm probability; 

C5. A reasoning algorithm that decides who to notify considering a group of 

caregivers. 

The contributions C1 and C2 are related to our main Research Question 

RQ1, while the contribution C3 is associated to the Sub-Question SQ1, the 

contribution C4 is related to the Sub-Questions SQ2 and SQ3 and, finally, the 

contribution C5 is associated to the SQ4. 

1.4 
Thesis Organization 

This thesis is organized as follows:  

Chapter 2 presents a literature review. As related work, we present studies 

that provide strategies to deal with the alarm fatigue problem and we discuss how 

these works are distinct from our approach. 

Chapter 3 presents: (i) our proposed architecture for health systems that 

supports patient monitoring, reasoning and notification processes; (ii) a more 

formal description of the main features of these systems, e.g., anomaly detection, 

alarm triggering, and notification; (iii) the Alert Fatigue-aware Notification Model, 

the model we developed to support our reasoning algorithms.  
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Chapter 4 presents examples of applications we built by following the 

architecture to show the implementation of data collection, data visualization and 

data analysis features.   

Our main contributions are presented in Chapters 5, 6 and 7, where we 

describe our reasoning algorithms to solve our main research question and sub-

questions, along with their evaluations.  

Finally, we conclude this thesis and present possible future work in Chapter 

8. 
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2 
Background and Related Work 

A critical concern in hospitals that use monitoring devices to track patient 

health is alarm fatigue. Tens of thousands of alerts may go off throughout a hospital 

each day, and yet the majority of these audible or visual alerts are false or nuisance 

alarms, indicating conditions that do not require clinical intervention (Cvach, 2012; 

Drew et al., 2014; Jones, 2014; Tanner, 2013). Alarm fatigue represents a 

substantial issue that can bring undesired consequences to health care 

environments. For instance, the desensitization of a health care team to alerts can 

lead to longer response times for handling anomalies as well as possibly missing 

life-threatening events. These examples illustrate the fact that sensory overload is 

very likely to produce an unsafe environment for patients. 

According to Sowan et al., the key issues causing alarm fatigue and decrease 

in trust of alarm systems are as follows: the high incidence of nuisance alarms, the 

confusion in locating the device sending out the alarm, unit layouts that hinder 

alarm response, the inadequacy of alarm systems to alert nurses of changes in 

patients’ conditions, and the complexity of new monitoring systems, among others. 

The most important issues interfering with alarm recognition and alarm response 

ranked by the nurses cited by Sowan et al.  were as follows: (1) frequent false 

alarms, (2) difficulty in understanding alarm priorities, and (3) noise competition 

from nonclinical devices. 

Caring for patients and managing alarms simultaneously is a very complex 

and demanding task, especially when health providers are caring for multiple 

patients at the same time and have been exposed to a high number of alarms 

generated by physiological monitors. In addition to dealing with frequent alarms, 

health care providers also perform other activities, such as medication 

administration, patient assessments, and note updates. Over time, they become 

fatigued and errors may occur because of decreased attentiveness (Shanmugham, 

Strawderman, Babski-Reeves, & Bian, 2018).  
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Considering the aforementioned scenario, a commonly recommended 

solution to mitigate alarm fatigue is to adjust alarm parameters on monitors to suit 

each patient’s condition rather than using default settings (Shanmugham et al., 

2018). The works of Shanmugham et al. and Sowan et al. are examples of studies 

that assess the effect of modifying the default alarm settings provided by the device 

manufacturers. According to their findings, the nurses’ perceived workload was 

lower when the clinical alarm threshold limits were modified according to the 

patients’ clinical conditions. They also concluded that the modification of alarm 

settings affects the number of alarms accurately addressed, care providers’ 

experience, and overall satisfaction. 

Another strategy suggested by Sowan et al. to reduce the number of false 

alarms and alarm fatigue is educating staff regarding alarm management. The 

authors showed that their changes in default alarm settings significantly reduced 

24% of the total number of the target alarms after their interventions, which 

included the following: (1) re-education of ICU bedside nurses on the appropriate 

use of the monitors, and (2) change of default settings of some parameters on the 

cardiac monitors - including the addition of an alarm delay by increasing the period 

between the alarm detection and its triggering. 

However, despite the achievement of a significant reduction in the alarm rate, 

they deem that the change of default settings and better education regarding cardiac 

monitors are insufficient to improve alarm system safety. 

Scientific studies show that the quality of medical device alarms is 

unsatisfactory, and it affects quality of care and patient safety. One root cause is the 

poor quality of alarm-generating algorithms. Therefore, from a clinical perspective, 

major improvements in alarm algorithms are urgently needed (Imhoff, Kuhls, 

Gather, & Fried, 2009). 

To pursue this goal, different methods have been proposed and investigated 

for use in the alarm systems of medical devices, mostly from the fields of statistics 

and Artificial Intelligente (AI). Imhoff et al. gave a brief overview of different 

methods, including statistical approaches and AI methods.  

Regarding the methodological approaches to alarm management, Imhoff et 

al. present the 4 areas in which alarms can be improved: (1) signal acquisition, that 
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is, the interface between patient and medical devices; (2) alarm generation, that is, 

the algorithms that determine an alarm situation; (3) alarm validation, that is, 

determining whether the alarm is actually valid; and (4) integration of multiple 

alarms, for example, from different devices, into 1 or few alarms. 

Successful quality improvement approaches included alteration in default 

monitor presets, daily electrode change, alarm customization, alarm management 

education, change in policy, histogram-based pulse oximetry (SpO2), alarm 

tailoring, improved displays to aid  nurse-patient assignments, and the use of 

notification delays (Winters et al., 2018). Notification delays are performed with a 

middleware situated between the alarming medical device and the clinicians’ 

receiver equipment such as a mobile phone. Several studies found that introducing 

alarm delays prior to the notification process could decrease “false alarms” by 25%–

67% (Winters et al., 2018). Regarding the reduction of the total alarms, considering 

the effects of these interventions, alarm quantities decreased between 18.5% and as 

much as 89%, according to Winters et al.. 

2.1 
Alarms and the Impact of Alarm Safety in Patient Care 

Alarms are utilized to improve patient safety and quality of care, by detecting 

changes early and requiring appropriate action. However, the medical literature 

contains many studies that show that up to 90% of all alarms in critical-care 

monitoring are false positives. The vast majority of all threshold alarms in the ICU 

does not have a real clinical impact on the care of the critically ill (Imhoff et al., 

2009). 

Many studies have recorded the number of alerts being triggered nowadays 

in intensive care units during a period of time in order to analyze the impact of 

alarm safety in patient care as a consequence of the excessive volume of alarms. 

For instance, Lawless analyzed alarm soundings that occured in an ICU during a 7-

day period, recorded by ICU staff (Lawless, 1994). In his experiments, he 

categorized alarms into three types: false, significant (resulted in change in 

therapy), or induced (by staff manipulations; not significant). He showed that, 

within the total of 2,176 alarm soundings, 1,481 (68%) were false, 119 (5.5%) were 

significant and 576 (26.5%) were induced. His results showed that over 94% of 
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alarm soundings in a pediatric ICU may not be clinically important. Based on his 

findings, the author concluded that current monitoring systems are poor predictors 

of untoward events. 

In addition to the excessive number of alarms in ICUs, another alarm-related 

problem presented by Sendelbach & Funk is the high number of different alarm 

signals in an Operating Room (OR). In 1983, each patient in an ICU could have up 

to 6 alarms. By 1994, up to 33 different alarms were identified, and by 2011, this 

number increased to over 40 different alarm signals in an ICU (Sendelbach & Funk, 

2013). Currently, this number can reach 120 separate alarm devices in an OR that 

are stand-alone, uncorrelated, and non-prioritized (Sendelbach & Funk, 2013).  

The main problem of having so many different devices triggering alarms is 

that it is not feasible for nurses to identify all of them, which means that this increase 

has occurred despite staff having difficulty in learning all available alarm signals in 

their work environment.  The work of Shanmugham et al. pointed out this problem, 

showing that nurses have difficulties in learning more than six different alarm 

signals. Therefore, in addition to the excessive number of alarms, staff can only 

identify between 9 to 14 out of the 23 alarms found in the OR, and, on average, 10 

to 15 out of 26 alarms triggered in the ICU, which contributes to the alarm overload 

problem. 

According to Shanmugham et al., Kerr & Hayes recognized that the excessive 

number and many diverse types of alarms were bringing adverse consequences to 

patient care, such as: (i) the reduction of the effectiveness of alarms, (ii) creation of 

confusion and distraction for caregivers, who were having difficulties in responding 

to alarms, and (iii) the deterioration of patient care, putting patients in a more unsafe 

environment.  

At last, a third alarm-related problem we are focusing on this thesis is the 

excessive number of false alarms. Studies have indicated that false and/or clinically 

insignificant alarms range from 80%-99% (Cvach, 2012). False alarms are 

frequently triggered by erroneous or absent patient data (Tanner, 2013). These types 

of alarms can be caused by events such as patient movement or repositioning in bed 

and by poor placement of sensors, such as pulse oximeter. 
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Along with the already mentioned alarm-related problems that can affect 

patient care, there is more information in ICUs that are considered critical for the 

healthcare team, such as: (i) the perceived alarm urgency, and (ii) the perceived true 

alarm rate of the alarm system (Tanner, 2013). Tanner showed that perceived alarm 

urgency contributes to the nurses’ alarm response; but nurses also use additional 

strategies to determine response, including the criticality of the patient, signal 

duration, uncommonness of the alarming device, and workload.  

Regarding the perceived true alarm rate of the alarm system, an important 

finding of the work of Tanner is the link between the impact of the perceived true 

alarm rate of the alarm system by caregivers and its influence in patient care. The 

author showed that the nurses’ response to alarms follows the perceived true alarm 

rate of the alarm system. According to the author, if the true alarm rate is perceived 

to be 10% reliable, then the response rate will be about 10%.  

Although alarm safety is a critical issue that needs to be addressed to improve 

patient care, the hospitals have not given serious consideration on how its staff 

should be using, setting and responding to clinical alarms, according to the ECRI 

Institute (ECRI Institute; Keller, 2012). Currently, this complex and overwhelming 

scenario is still a problem that culminated in an unsolved health problem known as 

Alarm Fatigue, which we next describe.  

2.2 
Alarm Fatigue 

By definition, Alarm Fatigue consists of the lack of response due to excessive 

numbers of alarms in hospital environments, especially in ICUs, resulting in 

sensory overload and desensitization (Cvach, 2012). This issue has the potential to 

compromise patient safety (Keller, 2012), since frequent alarms are distracting and 

interfere with a clinician’s performance of critical tasks. Excessive false positive 

alarms may lead to apathy, resulting in less likelihood that real events may be acted 

on. The presence of medical devices generate enough false alarms to cause a 

reduction in responses, leading to a scenario in which caregivers disable, silence 

and/or ignore the alarms (Keller, 2012) or are slow to respond (Cvach, 2012; Kerr 

& Hayes, 1983). 
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In Table 1, we summarized the information we presented about alarm-related 

issues, comprising its causes, consequences to the staff, consequences to the 

patient’s care and avoidance strategies (Cvach, 2012).   

Table 1- A summary of alarm-related issues. 

Alarm-

related 

issues 

Causes Consequence to 

the staff 

Consequence to 

the patient care 

Avoidance 

strategies 

Excessive 

False 

Positive 

Alarms 

(FPAs) 

Can  be 

attributed to 

patient 

manipulation 

(motion 

artifact) 

Apathy and 

desensitization; 

 

Mistrust 

Reduction in 

responding; 

Lack of 

caregiver 

response; 

Real events 

being less likely 

to be acted on 

Suspension of 

alarms for a 

short period 

prior to patient 

manipulation; 

Statistical 

methods should 

be suitable to 

decrease the 

number of FPAs 

Frequent 

insignificant 

or irrelevant 

alarms 

Use of the 

default alarm 

settings; 

 

Poor staff 

education on 

alarm 

management 

Distraction; 

 

Reduction in 

trust 

Disruption of 

patient care; 

 

Disabling of 

alarm systems 

by staff 

Eliminating 

nonessential 

alarms; 

Adjusting alarm 

parameters on 

monitors to suit 

patients’ 

conditions; 

Staff education 

on alarm 

management 

 

2.3 
Statistical and AI-related Approaches 

According to Imhoff et al., the quality of medical device alarms is 

unsatisfactory, affecting quality of care and patient safety. Since the low quality of 

alarm-generating algorithms is one of the main causes of this problem, major 

improvements in alarm algorithms are urgently needed (Imhoff et al., 2009).  

To achieve this goal, a variety of alarm suppression algorithms have been 

developed and successfully applied in laboratory and the clinical environment to 

avoid alarm fatigue, such as: relevance vector machine learning, statistical metrics, 

time series analysis, spectral regression, feature selection, and other classifiers 

(Winters et al., 2018). Imhoff et al. showed different methods that have been 

proposed for use in the alarm systems of medical devices, including statistical 

approaches, such as: improved data preprocessing, robust signal extraction, 
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segmentation, median filter, statistical process control, and time series analysis for 

pattern detection, among others. AI methods also have been investigated, and 

includes approaches based on machine learning, neural networks, random forests, 

fuzzy logic, and Bayesian networks.  

Another strategy to avoid alarm fatigue is to use notification delays that are 

performed through the use of a middleware between the alarming medical device 

and the clinicians’ receiver device such as a mobile phone or a tablet. Several 

studies found that introducing alarm delays before notifying caregivers could 

decrease “false alarms” by 25%–67% (Winters et al., 2018). Regarding the 

reduction of the total alarms, considering the effects of these interventions, alarm 

quantities decreased between 18.5% and as much as 89%, according to Winters et 

al.. 

Other examples of promising proposed approaches are the application of 

contextuality, and the integration of alarms to create smart alarms with improved 

data presentation through human factors engineering (Winters et al., 2018).  

According to Imhoff et al., one of the main areas in which alarms can be 

improved is alarm validation. In this thesis, we are given our contribution to the 

alarm validation area in Chapter 6. As our methodological approach to deal with 

alarm validation, we try to fill the gap of having feasible solutions for mitigating 

the alarm fatigue problem by focusing on the issue of false positive alarms that is 

known to be a serious problem that still remains unsolved.  
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3 
System Architecture and The Alarm Fatigue-aware 
Notification Model 

Before presenting our reasoning algorithms, we outline important concepts of 

the monitoring and notification processes we developed to cope with remote patient 

monitoring. In this chapter, we illustrate a more formal description of the 

components of the architecture that will be used in our systems, e.g., the anomaly 

detection, the alarm-triggering, and the notification processes. We cover all the 

features of our architecture with the Reasoning module that is introduced in this 

chapter but is explained in more detail in Chapters 5, 6 and 7. 

3.1. 
System Architecture 

The default function of our notification system is to notify a group of 

caregivers about anomalies detected in a patient’s vital signs. The anomaly 

detection process works through continuous monitoring of each patient’s vital signs 

using data acquired from sensors (P_DATA). To verify if an anomaly occurs, the 

readings are evaluated against anomaly thresholds configured for each patient. If a 

reading for a patient is above a maximum or below a minimum threshold value, 

then the reading is considered to be anomalous and the system triggers an alarm 

that is sent to the healthcare team. The anomaly detection process and its related 

concepts such as anomalies, alarms and notifications, are more formally defined in 

the next subsections. 
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Figure 1 - An architecture designed for health care systems that support patient monitoring 

and notification capabilities. MPM: Multi-parametric Monitor; API: Application Programming 

Interface.  

3.1.2 
Defining Thresholds and Anomalous Values 

Anomaly thresholds for the sensors must be configured before starting to 

monitor a patient. A threshold is a minimum and maximum limit for a reading of a 

sensor S for a patient P, and an anomaly is a value either below or above those 

limits. An anomaly or anomalous value v ∊ AV(S,P) triggers an alarm that is sent 

to the health care team. The threshold value for sensor S connected to a patient P is 

designated threshold(S,P) and the minimum and maximum values are v_min(S,P) 

and v_max(S,P), respectively. We formally defined anomalies using set theory as 

shown later. 

https://www.jmir.org/api/download?filename=fd7865af23f240a5c6e0c1582d600c90.png&alt_name=15406-292966-3-SP.png
https://www.jmir.org/api/download?filename=fd7865af23f240a5c6e0c1582d600c90.png&alt_name=15406-292966-3-SP.png
https://www.jmir.org/api/download?filename=fd7865af23f240a5c6e0c1582d600c90.png&alt_name=15406-292966-3-SP.png
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Let AV(S,P) be the set of values that represent patient P’s anomalous values 

for the sensor S. Let us also consider that these values from S belong to the set of 

real numbers. The AV(S,P) set is formally defined as shown in Equation (1): 

AV(S,P) = { v | v ∈ ℝ, v_minS,P > v > v_maxS,P} (1) 

Where: 

- the inequalities v < v_ minS and v > v_ maxS,P comprise the thresholds for 

sensor S and patient P; 

- v_minS,P ∊ R, which represents the minimum limit, that is, the value below 

which a sensor reading v is considered an anomalous value; 

- v_maxS,P ∊ R, representing the maximum limit, that is, the value above 

which v is considered an anomaly. 

We can define an anomaly detected by sensor as the function An(v) = b that 

maps real numbers into Booleans (f : R → Boolean) where v ∊ R and is the value 

that represents a sensor reading, and b={true, false} as shown below. 

An(v) = true, if v ∊ AVS,P; false, otherwise. (2) 

3.1.3 
Defining Alarm, Anomaly Detection, and Notification Events 

In our system, we define the concepts of anomaly detection, alarm 

triggering, and notification in terms of events, which are represented as α, β, and μ, 

respectively.  

The occurrence of an event α = “anomaly detected” means that the function 

An(v) assumes the value “true” at a given time defined as 

ANOMALY_DETECTION_TIME (Tα). The event β = “alarm triggering”, in its 

turn, is defined as the action of triggering an alarm to indicate that an anomaly has 

been detected. The time when an event  β occurs is referred as 

ALARM_TRIGGERING_TIME (Tβ). The third event we define in this section is μ 

= “notification”. μ is the action of sending a notification to a set of caregivers to 

inform them that an alarm has been triggered. The time when an event μ occurs is 

referred to as NOTIFICATION_TIME (Tμ).  
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Associated with the occurrence of these events, we have the delays 

ALARM_TRIGGERING_DELAY (Dβ) and NOTIFICATION_DELAY (Dμ), 

where Dβ represents the delay between anomaly detection and its indication through 

an alarm triggering and Dμ is the delay between an alarm triggering and its 

notification to the caregivers. We show in Equations (3) and (4) how the delays Dβ 

and Dμ are calculated according to the time at which the events α, β, and μ occur. 

Dβ = Tβ−Tα (3) 

Dμ = Tμ−Tβ (4) 

We can summarize the abovementioned explanation through the event-

trigger rules presented in Equations (5) and (6): 

 φ1:  α→β   (5) 

 φ2:  β→μ   (6) 

Where α, β, and μ are the events; the symbol “→” represents the action 

triggers; φ1 indicates that, when the event 𝛼 occurs, the event β is automatically 

triggered after the delay Dβ; and φ2 indicates that event 𝜇 is automatically triggered 

Dμ time after β occurs. 

The parameterization of the events α, β, and 𝜇 is defined as follows. 

α=< type, Tα > (7) 

β=< type, α, Tβ > (8) 

μ=< type, β, Tμ > (9) 

Where the parameter 𝛼 for β event represents the event α; and the parameter 

β for μ event represents the event “alarm triggering” β. 

 

3.1.4 
Modeling Anomaly Detection, Alarm-Triggering, and Notification 

To illustrate the anomaly detection, alarm-triggering, and notification 

processes, we present a state-transition diagram in Figure 2. This figure presents a 

visual representation of the following: (1) the possible states of the anomaly 
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detection, alarm-triggering, and notification processes; (2) the events such as inputs 

that may result in transitions between states; and (3) the transitions between states. 

We also show the conditions an event requires in order to trigger a transition.  

 

Figure 2 - The state-transition machine showing the states involved in the anomaly 

detection, alarm-triggering, and notification processes. 

To formalize the concept of an anomaly, we present, through the state-

transition machine in Figure 3, the possible states for an anomaly. Figure 3 presents 

the current anomaly detection process, showing the 3 possible states of an anomaly: 

no anomaly, anomaly alerted, and anomaly notified. The interconnecting arrows 

represent the transitions between states, and the labels on the arrows represent the 

events that make the transitions occur.  
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Figure 3 - The state-transition machine showing the possible states for an anomaly. 

Now that the basic concepts anomaly, alarm, anomaly detection, and 

notification needed for the reasoning process have been defined, in the next section 

we present our reasoning model.  

3.2. 
Adding Reasoning to the System  

3.2.1 
A Brief Description of Using Reasoning to Cope with Alarm Fatigue 

In this section, we provide a brief description of how we apply a reasoning 

engine to the alarms generated by the monitoring devices being used to track a 

patient’s health status to minimize alarm fatigue. The software system contains a 

component that reads the vital signs (the reader) accompanied by a reasoning engine 

that decides how to notify the health care team. The reader can be set to ignore all 

the non-anomalous vital signs to focus only on the anomalous values that can 

require attention from the caregivers’ team. An anomalous reading is then passed 

to the reasoning engine that decides how to handle the reading. For example, the 

reading could be used to cause an alarm to be triggered immediately because the 

patient’s situation is deemed critical; or readings could be accumulated as the 

situation is not critical but can be attended to within a certain time period.  
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3.2.2. 
Updating the Anomaly Detection, Alarm triggering and Notification 
Process through the Addition of Reasoning  

Before presenting the reasoning algorithms, we show, in Figure 4, how the 

reasoning process interacts with the anomaly detection, alarm- triggering, and 

notification processes.  

 

Figure 4 - Illustration of the inclusion of the state “Reasoning” (inside the hatched rectangle) 

that determines when an alarm trigger(s) causes a notification. 

  

Figure 5 is an update of Figure 2 including information related to the 

reasoning activity. 
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Figure 5 - Illustration of the inclusion of the new state “Anomaly alerted under reasoning” 

(inside the hatched rectangle) as another possible state for an anomaly. 

To deal with the decision-making processes occurring during reasoning, we 

developed the Reasoner entity that is an instance of our reasoning algorithm. The 

Reasoner is responsible for managing the entire notification process. A high-level 

representation of the decision-making processes is shown in Figure 6. 

https://www.jmir.org/api/download?filename=dfc83cf5ce7059d936885848a25bccc7.png&alt_name=15406-292968-3-SP.png
https://www.jmir.org/api/download?filename=dfc83cf5ce7059d936885848a25bccc7.png&alt_name=15406-292968-3-SP.png
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Figure 6 - A high-level representation of the decision-making processes used during 

reasoning. FAP: false alarm probability. 
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3.2.3. 
The Alarm Fatigue-aware Notification Model  

The Alarm Fatigue-aware Notification Model (Figure 7) is designed to 

support reasoning algorithms that decide on the best approach to notify caregivers 

about anomalies detected by a patient monitoring system where a large volume of 

alarms could possibly lead to alarm fatigue. The reasoning algorithms, which are 

the focus of this research, decide on how to notify the healthcare team by 

determining: (i) whether to aggregate alarms to avoid alarm fatigue while not 

compromising patient safety, (ii) whether to add a FAP label to the notification, and 

(iii) who to notify within the group of caregivers. 

 

 

Figure 7 - Representation of our alarm fatigue-aware notification model. 
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4 
Examples of Applications 

This chapter provides examples of how the data collection and the 

visualization modules of our architecture were implemented by showing examples 

of systems we built during this research. In these works, we carried out two 

experiments by using modern technologies to monitor brain activity and by 

performing Encephalography (EEG) in a wireless way through the use of wearable 

devices to capture EEG data. We used MindWave Mobile Headset devices to 

monitor electrical activity of the brain, and to collect data generated by these 

devices (e.g., concentration and meditation levels, and brainwave patterns). In the 

first example, we promoted technological support for the electric Depth of 

Anesthesia (DoA) monitoring activity during an intraoperative period by using 

EEG sensors and software agent technology (Luck, 2003). In the second example, 

we assembled a dataset gathered from the EEG data capture. These data were pre-

processed, analyzed and visualized through proper graphs. We also provided 

statistical calculations such as mean, median and moving average of attention and 

mediation values, and we were able to make predictions based on the EEG data 

results.  

4.1. 
Case Study I: Smart Depth of Anesthesia Monitoring 

The present section describes the development of a medical system applied to 

the general domain of remote patient monitoring and focused on the anesthesiology 

care domain. We present a solution to perform Depth of Anesthesia (DoA) 

monitoring activities during the intraoperative period in a remote, autonomous and 

wireless way, by using EEG sensors and software agent technology (C. O. 

Fernandes, Lucena, & Silva, 2017).   
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4.1.1. 
Motivation 

When a patient undergoes a surgical procedure under General Anesthesia 

(GA), it is expected that such a procedure will be successful in all of its stages - pre, 

inter and postoperative. As important as the patient's preparation for surgery and 

the postoperative phase - when recovery occurs - are, is the time when the procedure 

actually takes place. In this case, it is expected that, throughout the procedure, the 

three pillars of anesthesia will be kept at adequate levels: analgesia, immobility and 

unconsciousness. This means that the medical staff strives to ensure that the patient 

does not feel pain, remains immobile and is not aware of what is happening during 

all intraoperative period. 

To ensure that such expectations are met, the intraoperative period requires a 

high level of collaboration between the medical teams involved in the procedure, 

i.e., the surgical, anesthesia and monitoring teams. Therefore, it is necessary that 

the three teams work with proper vigilance and agility and are able to act proactively 

to avoid situations of risk for the patient, detect and take quick action in the event 

of an unexpected situation.  

The monitoring team must continuously monitor the patient’s depth of 

anesthesia after administration of anesthesia (Figure 8). Any changes in the 

expected levels of analgesia, immobility and unconsciousness should be 

immediately reported to the other teams so that the anesthesia team can intervene, 

with the adoption of strategies that guarantee the return to the adequate level. 

 

Figure 8 - The illustration of an intraoperative monitoring process of DoA. 
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Our solution aims to assist the DoA monitoring process during the 

intraoperative period by providing technological resources so that the DoA 

monitoring can be performed in a proactive, remote and autonomous way, trying to 

avoid risky situations for the patient and increasing patient safety. 

 

4.1.2  
Depth of Anesthesia Monitoring  

General anesthesia is a reversible state of induced coma, which comprises the 

three pillars of anesthetic depth shown above. During GA, these pillars need to be 

maintained alongside with physiological stabilization (Purdon et al., 2013). In this 

case, monitoring physiological patient data such as heart rate, body temperature, 

saturation and blood pressure has been a critical factor in reducing morbidity and 

mortality in anesthesiology, as well as other consequences of using inadequate 

doses of anesthetics, which will be discussed in section Clinical DoA Monitoring. 

 

4.1.2.1 
DoA Monitoring Techniques 

In order to assess DoA levels and guide the anesthetics administration 

process, the following DoA monitoring techniques have been applied in hospitals 

during intraoperative period: 1- Clinical DoA monitoring using multi-parametric 

monitors; 2- Monitoring of Expired Fraction of Anesthetic Gases; 3- Electrical DoA 

Monitoring.  

4.1.2.1.1 
Clinical DoA Monitoring 

In clinical monitoring, some physiological parameters have been used to 

assess DoA levels, such as: blood pressure, heart rate, respiratory pattern changes, 

somatic and skeletal motor activity, sweating, tearing, pupillary diameter and 

vasomotor skin reflexes. Although sympathetic stimulation is not always a 

consequence of painful stimulus, tachycardia, hypertension, sweating and tearing 

are usually considered signs of inadequate analgesia. However, depending on the 

patient’s clinical conditions and the medications been used, these parameters may 

have little influence on the DoA assessment. 
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In addition to the physiological parameters, the motor response in voluntary 

commands' response along with the reaction to painful stimuli are also ways to 

evaluate the potency of anesthetic agents. The presence of these signs is an 

important indication of anesthetic inadequacy, which makes the patient susceptible 

to the risk of arousal and intraoperative awareness that are undesired conditions. 

 

4.1.2.1.2 
Monitoring of Expired Fraction of Anesthetic Gases 

Monitoring the anesthetic agent administration process, especially inhaled 

gases, has become routine in hospitals due to the modules incorporated into the 

multi-parametric monitors. The study of Nunes et al. compares the three DoA 

monitoring techniques regarding anesthetic consumption. 

 

4.1.2.1.3 
Electrical DoA Monitoring 

Normally performed simultaneously with clinical monitoring, electrical DoA 

monitoring through EEG is considered one of the most feasible approaches to 

tracking brain states under GA.  

In general, we can highlight the following objectives of the electrical DoA 

monitoring activity: 1- Regulate the consumption of anesthetics, aiming to reduce 

the excessive administration of anesthetic agent and decrease the anesthetic 

recovery period, as well as the adverse effects of anesthesia such as: nausea, 

vomiting, headache, cognitive dysfunctions, especially in the elderly; 2- Avoid 

intraoperative awakening; 3- Study the relationship between electrical activity of 

the nervous system and mortality; 4 - Minimize the residual effects of drugs on 

cognition, considering Postoperative Delirium (POD) and Postoperative Cognitive 

Dysfunction (POCD); 5- Avoid post-traumatic stress syndrome due to superficial 

anesthesia (Nunes et al., 2015). 

In this case study, we choose the Electrical DoA Monitoring technique as our 

strategy to handle our research problem of performing DoA monitoring during 

simulated intraoperative period. 
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4.1.2.2 
Consequences of Inappropriate Depth of Anesthesia  

As mentioned above, DoA monitoring is necessary to ensure its adequate 

level, since too superficial, or deep levels of anesthesia can be disastrous in the short 

and long term. The following Table 2 classifies intercurrences that occur as a 

consequence of insufficient, or excessive dosages of anesthetics. Anesthesia 

awareness, also called unintended intraoperative awareness, occurs under GA when 

a patient becomes cognizant of some or all events during surgery, and recalls those 

events. Because of the routine use of neuromuscular blocking agents during GA, 

the patient is often unable to communicate with the surgical team when this occurs 

(The Joint Commission, 2004). 

Table 2 - Example of anomalies that can occur as adverse effects of anesthesia. 

Anesthetic dose 

Excessive Anesthetic Dose Insufficient Anesthetic Dose 
Cardiovascular and respiratory 

depression;  

Cognitive impairments in 

patients with low neuronal 

reserve 

Unintended Intraoperative 

Awareness 

 

4.1.3.  
Open Issues and Related Work 

Despite its broad application, brain state monitoring is not a totally accepted 

practice in anesthesia care nowadays because there are no markers or indicators that 

reliably track changes in the level of consciousness in patients under GA (Purdon 

et al., 2013). This issue makes DoA monitoring still an open problem because there 

is no precise mapping of how anesthetics impact the brain.  

Interest in performing EEG as a monitoring tool during GA has increased 

considerably. This practice has been fomented by the development of technological 

tools that have produced tangible progress in the creation of anesthetic-depth 

monitors (Rampil, 1998). However, since EEG reading has not become part of the 

routine anesthesiology practice, a simpler approach is used: current depth-of-

anesthesia monitors compute proprietary indices that reduce the EEG to a single 

number (BIS) intended to represent a patient's level of unconsciousness, varying 

from 0 to 100 (Purdon et al., 2013). Since the monitors have proprietary algorithms, 
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they work as a black-box approach that obscures structure in the EEG (Lehmann, 

Thaler, & Boldt, 2001). An adequate patient's level of unconsciousness is assumed 

when BIS numbers vary at intervals from 40-60. Consequently, any values smaller 

than 40 and greater than 60 are detected as an anomaly condition and reported to 

the medical team. 

Instead of using these indices, some studies have created other approaches to 

map the EEG reading process. As an example, the work of Purdon et al.  aim to 

better understand how anesthetics affect the brain in terms of unconsciousness, 

mapping the EEG reading process through a process of induction to, and emergence 

from, anesthetics in a very slowly way. This work involves some concepts that have 

been called EEG signatures and have been defined to be markers used as indicators 

of loss of consciousness. However, according to the authors, it has been difficult to 

specify EEG signatures because most anesthesia-related EEG data comes from 

clinical settings in which GA induction is performed rapidly, i.e., when the loss of 

consciousness occurs within 30-60 seconds. To overcome this obstacle, the work 

of Purdon et al. designed an experiment to study the relationship between EEG 

activity and the loss and recovery of consciousness over a two-hour period. They 

recorded EEGs in 10 volunteers during gradual induction of, and emergence from, 

unconsciousness while executing tasks to assess conscious behavior. 

The results presented by Purdon et al. provided insights into the mechanisms 

of induced unconsciousness, establishing EEG signatures of brain states that track 

transitions in consciousness precisely, and suggesting strategies for monitoring the 

brain activity of patients receiving GA during the intraoperative period. According 

to the authors, the EEG signatures they have identified can be computed in real-

time, are easy to recognize, and can be interpreted in a way that relates directly to 

the mechanisms through which this anesthetic is postulated to induce 

unconsciousness.  

 

DBD
PUC-Rio - Certificação Digital Nº 1521448/CA



45 
 

4.1.4. 
Research Goals 

4.1.4.1.  
General Goals for our SmartDoAMonitoring App 

In general, we aim to promote a technological support for the electric DoA 

monitoring activity during an intraoperative period, in a simulated environment, in 

order to process DoA monitoring automatically, proactively and wirelessly. By 

using wearable devices with EEG sensors and software agent technology, we hope 

our solution  contributes to facilitate risk management, increase patient safety and 

offer a more accessible monitoring solution, replacing large and expensive 

equipment for smaller devices with greater mobility such as wearable sensors. We 

also expect that our solution will bring the concept of personalized medicine, where 

the monitoring parameters are defined according to each patient individually. 

  

4.1.4.2. 
Specific Goals for our App 

Our specific goals are: 1- Create a database as a result of the EEG sensing 

process; 2- Allow sensing data to be accessed remotely, monitored and visualized 

in real time from mobile devices (smartphones and tablets); 3- Enable alerts to the 

medical team when DoA anomalous values occur, notifying the professionals 

interested in receiving this information; 4- Evaluate our agents’ performance in its 

monitoring and notification tasks. 

4.1.5. 
Methodology  

To meet our defined goals and achieve the expected results, providing an E-

Health System capable of performing sensing, visualization and monitoring 

activities in the DoA monitoring context, the SmartDoAMonitoring Application 

was generated as an IoT4Health (Chrystinne Oliveira Fernandes & Lucena, 2017) 

instance. IoT4Health is a flexible software framework (Markiewicz & de Lucena, 

2001) we developed to generate a range of Internet of Things (IoT) (Atzori, Iera, & 

Morabito, 2010) applications in the Remote Patient Monitoring domain. As a 

software framework, IoT4Health offers extensibility points for the generation of E-
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Health applications as multi-agent systems (Wooldridge, 2009) that are designed to 

perform patient monitoring activities autonomously. 

 

4.1.5.1 
EEG Sensing Process 

In the sensing process, we used an Arduino microcontroller (Arduino UNO) 

Uno R3 (Figure 10) to collect the EEG data from the Mindwave headset (Figure 9). 

Because the headset sends the EEG data via Bluetooth and the Arduino model we 

were using did not provide communication capabilities in this technology, we 

coupled the Arduino with a Bluetooth module (Sparkfun) to enable communication 

between the two devices. The BlueSMiRF module has been programmed to pair 

with and connect to the headset. Once connected to the microcontroller with the 

Bluetooth module, Mindwave was able to send a stream of data through the 

ThinkGear protocol (ThinkGear Serial Stream Guide). In this case, the Arduino was 

programmed (in C language) to process the data stream received by Mindwave, 

interpreting it through the use of the ThinkGear protocol and storing the information 

in a database. 

 

 

Figure 9 - Devices used to collect EEG data: our hardware prototype with the Arduino Uno 

R3 Microcontroller and the BlueSMiRF Sparkfun Bluetooth Module, on the left; MindWave 

Mobile Headset from NeuroSky on the right; 

 

The Mindwave measures and outputs the following data: Received Package 

Timestamp (TSLP); Information about quality of signal (PoorQuality); Raw EEG 

Data (RAW); Processed information that corresponds to the brainwaves patterns 

(Delta Power, Theta Power, Low Alpha Power, High Alpha Power, Low Beta 

Power, High Beta Power, Low Gamma Power, High Gama Power); Attention; 

Mediation;  Blink Strength (Strength of detected blink); Mental Effort (measures 
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how the subject’s brain is working); Familiarity (measures how well the subject is 

learning a new task).  

From the information provided by the device, we decided to assemble our 

dataset, capturing and storing the following data subset: PoorQuality, Attention, 

Meditation, Brain waves (Delta, Theta, LowAlpha, HighAlpha, LowBeta, 

HighBeta, LowGamma, MidGamma) and TSLP. 

 

4.1.5.2 
EEG Monitoring, Anomalies Detection and Notification Processes 

Our DoA monitoring goal was to detect anomalies in the EEG data provided 

by the Mindwave device to assess if the pillars of GA were adequate. As strategies 

for monitoring the brain activity of patients receiving GA by the Electrical DoA 

Monitoring technique some monitoring parameters such as BIS number and EEG 

signatures could be used in real hospital environments. 

However, as a strategy for monitoring the patients’ brain activity in our 

simulated environment, we selected the Attention EEG data from our database to 

serve as the main parameter of our monitoring and anomalies detection activities. 

We utilized this strategy because we did not find how the BIS number is calculated. 

As we said previously, it is derived by a proprietary algorithm and works as a black-

box approach. However, both the BIS and MindWave Attention values vary from 

0 to 100. Similarly to the BIS approach, we considered that a normal patient 

condition is assumed when the Attention level varies at intervals from 40-60, e.g., 

all occurrences of attention outside this interval are reported as anomalies in DoA 

and trigger a notification message to health providers. So, our developed solution 

can be posteriorly applied to other monitoring parameters such as BIS number – if 

we can calculate it in future – in order to have a more useful comparison. 

To measure the ability of our tool to respond proactively and in real-time to 

adverse conditions and its capacity to notify health providers in case, for example, 

of anomalies in patients’ EEG signs (Table 3) the following step-by-step 

experiment was conducted: 

Step1. Initially, five measurement points related to the tasks performed by 

agents were identified in the SmartDoAMonitoring App and were labeled 

Timestamps (T1-T5) as follows: 
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T1. Our app collects the EEG data and the monitoring agent analyses them, 

searching for anomalies. If no anomaly is detected, the system remains in a loop 

collecting and analyzing more data until an anomaly is found. Once an anomaly is 

detected the application continues to T2. 

T2. This point is reached when the monitoring agent detects an EEG data 

anomaly and then calls the notification agent. 

T3. The notification agent initiates the routine to notify the health care 

providers; 

T4. The notification agent sends information about the detected EEG anomaly 

to the patient’s health care providers. 

T5. The health care providers receive the notification message on their mobile 

phones or tablets. 

Step 2. The SmartDoAMonitoring App is executed and the timestamps are 

measured and registered. 

Step 3. Our delays captured by the agents’ execution tasks are defined as 

follows: 

Delay 1: DAI- Detection Anomaly Interval (DAI = T2−T1). The anomaly's 

detection delay in the monitoring routine.   

Delay 2: NSI- Notification Start Interval (NSI = T3−T2). The delay between 

the anomaly detection and the initiation of the notification routine.  

Delay 3: NP- Notification Period (NP = T4−T3). Duration of the notification 

routine by agents. 

Delay 4: NRI- Notification Routine Interval (NRI =T5−T4). Time elapsed 

between the sending of the notification and its receipt by the health provider.  

These delays were calculated to serve as a concrete measure of how quickly 

and proactively the solution can respond to the environment, as well as to support 

the assertion that this system performs anomaly detection in real time. 

 

4.1.5.3  
Patient Monitoring and Anomalies Detection 

Our solution transforms large-scale sensor data into more significant 

information that meets specific application requirements for patient monitoring 

task. In this case, the large volume of data (collected from sensors in the sensing 
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phase) is processed autonomously (by software agents) in the monitoring phase. 

The monitoring parameters are contained in a knowledge base specified by medical 

experts. By consulting this database, the agents are able to detect anomalies, that is, 

physiological patient data outside the expected limits. In the monitoring stage, each 

knowledge base, handled by the agents monitoring a particular patient is built based 

on the assessment of each individual patient, bringing us to the concept of 

personalized medicine. 

The information resulting from the monitoring phase - the anomaly - triggers 

a notification to the end user of the system - the health professionals in charge of 

responding to these events. Notifications are also performed automatically by 

software agents and can be delivered via SMS, email or Bluetooth messages. 

 

4.1.5.4  
EEG Sensing Technology  

Electroencephalography has been used by neuroscientists and psychologists 

to monitor brainwaves since 1937 (Purdon et al., 2013). Usually, encephalograms 

require patients to remain immobile as movements interfere with the brain's 

impulses. Fortunately, current technology allows scientists to observe how the brain 

works in much more realistic configurations. This is justified by the fact that 

brainwave detection technologies have evolved considerably, allowing 

encephalography realization in a wireless and mobile mode. 

It is now even possible to monitor the mental state of patients through 

autonomous wearable sensors. Modern technology eliminates the wires between the 

device reading EEG signals and the computer, smartphone or other device that 

collects, analyzes and processes these data. For this experiment, we utilized 

wearable devices to wirelessly monitor brain electrical activity. 

 

4.1.6. 
Results 

To confirm the fulfillment of our research goals in this case study, we will 

present the architecture of the SmartDoAMonitoring App and the results of its main 

functionalities, namely sensing, visualization, monitoring and notification.  
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4.1.6.1  
The SmartDoAMonitoring App’s Architecture 

The following Figure 10 shows the architecture of the application, structured 

in 3 layers: L1- Data persistence layer; L2- Communication layer between layer L1 

and layer L3; L3- Application Layer manages the application data for the collection, 

visualization, monitoring and notification processes. 

 

 

 
Figure 10 - The Smart Depth of Anesthesia Monitoring Application Architecture. 

 

 

 

 

4.1.6.2  
Sensing Results: The Smart DoA Monitoring App’s Database 

As a result of the sensing process, we have an effective capture of the 

electrical activity collected by Mindwave, via Bluetooth. Table 3 shows the 

structure of the SmartDoAMonitoring App dataset and some examples of the data 

collected during our sensing phase.  

 

4.1.6.3  
Visualization Results: Real-time EEG Data Streams 

Figure 11 and Figure 12 show the visualization results comprising times 

series representing EEG Data streams. 
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Figure 11 - Times series representing brainwaves patterns exhibited in real-time. 

 

4.1.6.4  
Monitoring Results: Anomalies Detection and Notification  

To confirm the fulfillment of the main research goal, we conducted the 

experiment described above and tabulated the relevant results. Table 4 shows 

examples of timestamps for agents’ behavior and task delays  for EEG sensing, 

attention monitoring and notification activities, where the EEG Attention level is 

monitored to evaluate DoA levels. In case of anomalies detection for attention 

values (illustrated in red circles in Figure 12) the agents act by sending SMS 

messages to the healthcare providers (Figure 13). 

 

 

Table 3 - Illustration of the SmartDoAMonitoringApp dataset structure. 

Poor 

Qual. 

Atten-

tion 

Medi-

tation 
Delta Theta 

Low 

Al-

pha 

High 

Al-

pha 

Low 

Beta 

High 

Beta 

Low 

Ga-

mma 

Mid 

Ga-

mma 

TSLP 

0 40 30 196432 60147 10941 5514 5568 9479 10191 2227 996 

0 53 23 498363 115836 8379 5299 8525 4763 1738 1221 1000 

0 53 27 144949 23748 2548 11834 11824 4622 2658 2129 996 

0 54 34 1826689 68866 12433 5217 9615 5372 1226 902 992 

0 38 38 747555 73652 25398 4817 4982 3081 1384 1560 995 

0 37 30 210412 437968 20324 7202 22952 14467 4360 3148 994 

0 27 48 578487 54416 146371 7289 23104 14258 2717 3080 997 

0 34 61 89963 15677 11993 7637 10805 3170 916 854 997 
0 53 77 475890 9452 40504 12196 10967 12096 2683 6502 999 

0 63 93 231761 316959 28718 55932 18963 28373 8026 4817 998 

0 78 75 379599 60849 20685 10395 12611 24556 3153 5998 998 

0 94 75 51382 41581 33890 19928 22637 29279 4328 5499 1000 

0 93 60 146485 63617 25516 14234 17593 14652 6129 2420 991 

0 84 70 318539 36694 27196 4782 6263 2557 722 857 993 

0 60 74 395389 52250 22242 4771 10872 2802 1006 531 1001 

0 44 80 265306 37419 20958 33109 8810 7952 1920 3103 1001 

0 41 84 295009 66752 14009 43472 5443 14610 3301 2747 990 

0 47 67 193669 71237 5590 7878 8708 4447 1769 2083 997 

0 47 50 438916 52121 1482 3352 3339 1903 685 601 998 
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Table 4 - Results for monitoring and notification tasks performed by agents. 

Timestamp 

T1 

Timestamp 

T2 

Timestamp 

T3 

Timestamp 

T4 

Timestamp 

T5 

DAI 

(s) 

NSI 

(s) 

NP 

(s) 
2017-05-14-

142415 

2017-05-14-

142418 

2017-05-14-

142418 

2017-05-14-

142419 

2017-05-14-

1415 

3 0 1 

2017-05-14-

142421 

2017-05-14-

142425 

2017-05-14-

142425 

2017-05-14-

142427 

2017-05-14-

1416 

4 0 2 

2017-05-14-

142433 

2017-05-14-

142436 

2017-05-14-

142436 

2017-05-14-

142439 

2017-05-14-

1416 

3 0 3 

 

 

Figure 12 - Times series representing Attention levels with the illustration of the 

anomalies detection process shown in red circles. 

 

 

Figure 13 - SMS Message sent by notification agent in anomalies detection task. 

4.1.7. 
Discussion 

We can conclude that we achieved our expected results and reached our 

research goals, since our solution proved to be effective for its purpose. It has been 

effective in achieving the challenge of performing, in simulated conditions, DoA 

monitoring in an autonomous way by using wireless sensing and agent-based 

technologies. All simulated electrical DoA monitoring was performed through the 

use of wearable devices with Bluetooth communication capabilities, which allows 

more mobility and flexibility to carry out the sensing. Our solution is an alternative 

to expensive and reduced mobility equipment used in DoA monitoring. As a result 

of the monitoring phase, we have an effective detection of anomalies in EEG data 
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and consequent notifications to the professionals involved. This task was performed 

effectively and autonomously by software agents 

As future work, we can utilize, as they become available, BIS number and 

EEG signatures to serve as baselines for anomalies values (monitoring parameters) 

in our monitoring process instead of the use of MindWave Attention level. In 

addition, we can contemplate the development of applications that carry out 

Electrical DoA monitoring, using other techniques mentioned in this thesis, e.g., 

clinical monitoring of DoA and monitoring of the expired fraction of anesthetic 

gases. To monitor the expired fraction of anesthetic gases, in the sensing phase, we 

can use gas sensors to monitor the gases expelled by the patient after anesthesia. 

For clinical monitoring, we can use the biometric sensors we are currently 

working with to monitor physiological data, such as blood pressure, heart rate, 

respiratory pattern changes, pulseoxiometry, among others. We also intend to use 

the multiparametric monitors we are also currently working with to perform this 

monitoring activity (LES PUC-Rio). 

As we mentioned above, one of the consequences of very deep anesthesia is 

that it can affect the patient's cardiovascular system. In this case, we can use sensors 

that monitor the cardiovascular system to control this negative consequence of 

anesthesia, simultaneously with electrical DoA monitoring techniques. We also aim 

to utilize the Mindwave device to develop other apps, such as: monitoring of 

patients with epilepsy, in order to report situations of abnormality in his/her patterns 

of brain electrical activity and predict new epileptic seizures; monitoring of sleep 

disorders; monitoring of brain activity of people with depression, amont others. 

The database that was created as the result of the sensing and monitoring 

processes could be used as an input dataset for training and validation of a model 

to be used with machine learning techniques to predict the occurrence of anomalies. 

The knowledge produced at the end of the prediction phase could be used to support 

decision-making processes. 

 

4.2. 
Case Study II: Statistical Analysis and Predictions on Monitoring 
Brainwave Activity 

This Section describes our second example of aplication (Chrystinne 

Oliveira Fernandes, Moreira, Barbosa, & de Lucena, 2017) developed to perform 
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brainwave monitoring activity. We present next the motivation, research goals, 

methodology and results of this experiment carried out to make statistical analysis 

and predictions based on EEG results.  

4.2.1. 
Motivation 

Physicians have been monitoring brainwave activity to recognize sleep 

patterns and epileptic seizures. Moreover, devices with EEG sensors are also being 

used not only for medical purposes but also for entertainment in order to detect 

emotional states such as excitement, frustration and boredom, all of which help 

create patterns that can be used in games, for example. Similarly, such devices are 

being used to create applications that interact with virtual objects, such as pushing 

or lifting these objects, based on mental effort levels. Some examples of other 

applications are: assisting people with motor paralysis to interact with the world; 

alerting individuals suffering from migraines about an impending headache; 

adjusting computerized learning to suit the student's individual rhythm.  

In this case study, we utilized Mindwave devices to monitor the electrical 

activity of the brain, to collect data offered by the device (attention levels, 

meditation levels, brainwave patterns) and to assemble a dataset through this 

collection process. Further, we explored these data to perform pre-processing, 

analysis and prediction activities. 

There is a broad spectrum of publications in the field of brain monitoring 

ranging from sensor design (Abhishek, Poojary, Rao, & Narayanan, 2013) to injury 

prevention (Goldman et al., 2009), and drug use detection (Craig, Tran, Wijesuriya, 

& Nguyen, 2012).  

Our work is related to the work of Craig et al., but instead of identifying just 

fatigue by analyzing brain wave graphs, we are more interested in identifying 

individuals and activities. Since we can identify an individual by its brain wave 

pattern, we can use this as part of a biometric security authentication process as 

future work. 
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4.2.2. 
Research Goals 

4.2.2.1. 
Main Goal 

The main goal of this experiment was to perform pre-processing, analysis, 

prediction and visualization activities in EEG data collected through the use of 

Mindwave.  

4.2.2.2. 
Specific Goals 

We defined the following specific goals:  

1. Assemble a dataset comprising the following information: a) EEG 

data provided by Mindwave devices; b) Processed data generated through 

pre-processing activity; c) Annotation of user name, shift (day or night) and 

activity performed by the participants of the experiment during the 

collection process;  

2. Filter the dataset by pre-processing the EEG data to achieve the 

subset capable of providing the best analysis and prediction results;  

3. Plot pre-processed data, choosing proper graphs to visualize 

attention and meditation levels, brainwave patterns and statistical 

calculations such as mean, median and moving average of attention and 

mediation values;  

4. Analyze the distribution of attention and meditation levels by shift 

(day or night) and by the activity performed by the user, taking into 

consideration each participant, individually; 

5. Perform prediction experiments to identify the subject that was using 

the EEG sensor as well as the shift and activity information. Shift and 

activity predictions were also performed considering each subject 

individually.       

 

4.2.3. 
Methodology  

4.2.3.1  
EEG Sensing 

The first step of this work was the specification of the dataset we utilized to 

perform analysis and prediction activities in the EEG data collected through the 

wearable sensors. The dataset structure (specification of columns and data types) 

was defined based on the data provided by Mindwave, as well as on information 
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that were added to enrich the dataset, via features derivation mechanisms and 

annotations. Our dataset was populated with the EEG data collected from two 

participants of the machine learning experiments and are herein referred to as 

Subject 1 and Subject 2. 

4.2.3.2  
Data Collection 

We developed two applications to collect data: (i) via Arduino Micro-

controller, and (ii) via Mobile App.  

Our first data collection strategy received Mindwave data via Bluetooth, with 

the use of the hardware prototype shown in Figure 10. 

Collection files had 3600 registers approximately, since the duration of each 

collection performed by the participants took approximately one hour. The 

frequency of collection in both applications was one collection per second.  

The Arduino implementation did not provide an annotation support for each 

data collection section and lacked the description of the activity and the name of 

the user performing the experiment. Our initial data collection infrastructure needed 

to be improved to support further features such as activity annotation, user 

annotation, and ubiquity. 

To overcome those limitations, we developed an Android application using 

the android studio SDK to collect data. In this application, we did not use the 

mindwave SDK; instead, we developed a parser for the mindwave's thinkgear 

protocol in pure Java language to extract the information we needed from the 

bitstream. A series of performance tests were done to evaluate the ability of the 

application to maintain a constant rate of decoding, since Java uses garbage 

collection that is not controlled by the programmer and could cause some 

interference with the data collection sustainability rate. After some fine-tuning, this 

problem was solved and the impact of the garbage collection was kept at a minimum 

in terms of delay.  

Our application, as shown in Figure 14, asks the user to inform the activity 

and the username prior to starting the data collection, which, in turn, will activate 

the start capture button.  

The application worked standalone in the Android system, without 

transmitting data, just saving the information obtained in the local file system, so 
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we did not have concerns about security issues regarding data transmission after 

collection, and the brainwave device uses standard Bluetooth technology.  

 

Figure 14 - Mobile App developed to capture EEG data provided by Mindwave. This 

solution works on Android smartphones. 

4.2.3.4  
Data Storage and Data Processing  

The pre-processing activities were performed through the following steps: 

1. Transforming old contents of data files collected via Arduino into a standard 

format corresponding to the dataset structure specified in this work and 

storing them in .csv files; 

2. Renaming previous files of data collection to a defined pattern for file names 

(YYYY_DD_MM_HH_MM_SS.csv), which was utilized in visualization 

and analysis scripts; 

3. Deleting: a) data with quality of signal lower than 100%; b) data whose 

quality of signal was 100% but had extremely low values to brainwave 

patterns (lower than 100, in absolute values); 

4. Creating a new column in dataset to contain information about the shift 

(day/night) in which the collection occurred. We considered day collections 

those that were performed between 6:00 and 17:59 and night collections 

those occurred between 18:00 and 5:59; 

5. Finally, removing file collections with few data, i.e., with extremely short 

periods of collection; 

4.2.3.5  
Dataset Annotations 

We defined the following annotations for our app: (i) username 

("Username"); (ii) information about how focused a user was on his/her activity at 

the time ("I´m working with focus") and (iii) the activity performed by the user at 
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the collection time ("Activity"). These activities were comprised of the following 

categories: 

1. Reading papers;  

2. Having classes;  

3. Working;  

4. Watching TV;  

5. Watching movies;  

6. Playing videogames; 

Figure 14 shows samples of annotations ("Username", "Activity", "I’m 

working with focus"). 

4.2.4. 
Results 

4.2.4.1  
The Pre-processed Dataset 

The resulting dataset of the pre-processing phase was an only .csv file with 

12.7 MB, which was stored in the Azure Machine Learning Studio platform (Azure 

Machine Learning Studio). The dataset was structured with 101.094 rows and 23 

features. Table 5 shows our dataset structure. 

 

 

 

 

 

 

 

 

 

 

Table 5 - Some samples of our dataset. 

Index 1 2 3 

PoorQuality 0 51 0 

Attention 53 53 64 

Meditation 34 34 43 

Delta 869278 1473793 2433755 
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Theta 131673 71673 129964 

LowAlpha 9404 27216 108148 

HighAlpha 50536 10793 20345 

LowBeta 93913 32962 46389 

HighBeta 50798 14194 60667 

LowGamma 16638 10852 31269 

MidGamma 7856 4224 5956 

TLSP 993 994 997 

Focused 1 1 1 

Username 2 2 2 

Activity reading reading reading 

Sequence 1 2 3 

TimeoffsetFStart 993 1987 2984 

DateTimeCStart 
2016-10-

13T12:30:37 

2016-10-

13T12:30:37 

2016-10-

13T12:30:37 

DataCaptureOK 1 0 1 

ImpossibleData 0 0 0 

GoodData 1 0 1 

Night 0 0 0 

4.2.4.2  
Analysis 

Our analysis activities were performed in R language, using the RStudio 

(RStudio)  tool, comprising the following steps: 

1. Statistical analysis to indicate the percentage of: a) Bad records, i.e., 

data with quality of signal lower than 100%, which corresponded to 

values higher than 100, in absolute values); b) Impossible records, i.e., 

data with quality of signal equal to 100% (equal to 200, in absolute 

values, but with brainwave patterns Delta, Theta, etc lower than 100, 

in absolute values);     c) Good records, i.e., data kept after elimination 

of bad records and impossible records;  

2. Calculation of mean, median and moving average for attention levels, 

considering each activity and each collection file containing records 

of approximately one hour of duration per collection);  

3. Calculation of mean, median and moving average for meditation 

levels, considering each activity and each collection file containing 

records of approximately one hour of duration per collection).  
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Figure 15 displays statistic results from the pre-processing phase, with the 

following information: Impossible Records (IR); Possible Records (PR); Bad 

Capture (BC); Good Capture (GC). Script 1 shows the script we utilized to pre-

process our dataset. 

 

Figure 15 - Statistical analysis for pre-processing activity. 

 

Script 1. Script of statistical analysis for dataset pre-processing.  

PrepareAndStandarizeDataFrame = function(df,fname){ 

   localdf <- within(df, TimeoffsetFileStart<-cumsum(TSLP)) 

   localdf[,"DateTimeCaputreStart"]<-    

                            GetFileDateAndTime(fname) 

   localdf[,"X"] <-NULL 

   dropcolums <- c("X") 

   localdf[,"DataCaptureOK"]<- localdf$PoorQuality == 0 

   localdf[,"ImpossibleData"]<-(localdf$PoorQuality == 0) &     

        (localdf$Theta<MindWavePowerThreshold &     

        localdf$LowAlpha<MindWavePowerThreshold &   

        localdf$HighAlpha<MindWavePowerThreshold &   

        localdf$LowBeta<MindWavePowerThreshold &  

        localdf$HighBeta<MindWavePowerThreshold &    

        localdf$LowGamma<MindWavePowerThreshold &   

        localdf$MidGamma<MindWavePowerThreshold) 

   localdf[,"GoodData"]<-localdf$DataCaptureOK &      

                             (!localdf$ImpossibleData) 

   return (localdf[,!(names(localdf)  %in% dropcolums ) ]) 

} 
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4.2.4.3  
Visualization 

In the visualization section we present the results for our analysis activities, 

using part of the graphs we generated to plot the results for statistics calculation of 

mean, median and moving average. 

All graphs were generated using R language. Graph shown in Figure 16 used 

the zoo (Zeileis, Achim; & Grothendieck, Gabor) library to plot data. Graphs shown 

in Figure 17 and Figure 18 used the ggplot2 (Wickham, 2009) library and a generic 

plot function developed for those specific graphs, where parameters were used to 

specify the graph data and title. Graph in Figure 19 used a generic procedure created 

by using ggplot2, to show density.  Graphs in Figure 20 and Figure 21 demanded 

the creation of a function to compute movable average centered, ahead or delayed. 

Every execution of this function creates a new column in the graph data, which is 

melt using the melt function from the package reshape2 (Wickham, 2009) and 

plotted using the ggplot2 basic graph function.   

Figure 16 shows times series representing, from top to bottom of the graph, 

brainwave patterns Delta, Theta, LowAlpha, HighAlpha, LowBeta, HighBeta, 

LowGamma and MidGamma, respectively.  

 

Figure 16 - Time series representing brainwave patterns. 
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 Figure 17 shows times series (plotting in blue color) representing attention 

levels for subject 2. This collection was made during the day while the subject was 

working. The visualization also indicates the mean (plotted in red) and the median 

(plotted in grey) for his/her attention.  

 

Figure 17 - Time series representing attention levels (axis y) over time (axis x). The mean 

is plotted in blue color and the median in red. 

Figure 18 shows times series (plotting in gray color) representing meditation 

levels for subject 2. This collection was made during the day while the subject was 

working. The visualization also indicates the mean (plotted in red) and the median 

(plotted in blue) for his/her attention.  
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Figure 18 - Time series representing meditation levels (axis y) over time (axis x). The red 

line represents the mean and the blue line represents the median. 

 Figure 19 represents the distribution of attention for subject 1. This graph 

was generated considering all the data collected from this subject.  

 

Figure 19 - Distribution of Attention for Subject 1. 

We plotted two graphs of the moving average with a window of 50 elements, 

of attention and meditation shown in  Figure 20 and  Figure 21, respectively.  
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The option to use movable average was to minimize fluctuations that 

normally occur during the execution of activities. Another option we chose was to 

use the moving average delayed (picking the last fifty measures), the centered 

average (calculating the average of the 25 previous elements and the 25 following 

elements) and the average ahead (which calculates the following 50 elements 

average).  

 

Figure 20 - Attention moving average for subject 1. The ahead mean is plotted in blue, the 

centered mean is plotted in black and the delayed mean in green. 

 

Figure 21 - Meditation moving average for subject 1. The ahead mean is plotted in blue, 
the centered mean is plotted in black and the delayed mean in green. 

By analyzing those graphs we noticed that meditation and attention oscillate 

at the beginning of the capture, like a cold-starting machine, and that at some point 

they stabilize at just about an average level. This level then oscillates and stays at a 
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higher level for a while. However, after performing the activity for some time, both 

meditation and attention levels drop to an all-time low. We do not have enough data 

to support by the sensor data alone that the subject was fatigued, but the subject 

reported being fatigued while performing the experiment. 

4.2.4.4  
Predictions 

We performed the three following machine learning experiments, using the 

Azure Machine Learning Studio platform:  

I- Identifying the user. In this experiment, we aimed at identifying which 

participant was using the sensor , based on his/her EEG data;  

II- Identifying the shift. It was developed to identify the shift (day or night) 

in which the user was using the wearable sensor, based on his/her 

Electroencephalography.  

III- Identifying the activity. Based on his/her brainwave patterns, we aimed 

at identifying the activity performed by the user of the sensor. 

 

The experiments II e III were performed considering each participant 

individually.  

Experiment I – Identifying the User 

For model training, we utilized the Two-Class Support Vector Machine in the 

standard configuration offered by ML Studio (Figure 22). The Two-Class Support 

Vector Machine option creates a binary classification model using Support Vector 

Machine (SVM) algorithm (Pal & Mather, 2005).  
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Figure 22 - Configuration workflow of Experiment I in Azure ML Studio. 

Initially, we filtered our dataset keeping only "Good records" (that is, in this 

step we deleted bad records and impossible records). This step removed 10,786 

samples (approximately 10.67 % of the samples) in total and it was performed via 

the "Split Data" option available in ML Studio. It divided the dataset into two 

distinct subsets. In this filtering step we utilized relative expression.  

The split of the dataset into two subsets for training/validation and final test 

of our model was conducted using random split. The first subset (for training) 

comprised 90% of all data and the second one (for final test) comprised 10% of all 

data. The training subset was also split into two other subsets using random split, 

resulting in a subset for model training (85% of the total) and other subset for model 

validation (15% of the total). 

1. Total of instances (total of samples): 90,308; 

2. Total of instances for training: 90% of all samples (81,277); 

3. Total of instances for final test: 10% of all samples (9,031); 

4. Total of instances for model training: 85% of all samples available for 

training (69,085); 

5. Total of instances for model validation: 15% of all samples available for 

validation (12,192); 

 

All the experiments followed this splitting strategy.  

The execution time of the model training was 3 seconds, approximately.  
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Table 6 shows the accuracy results for our models in the validation and final 

test phases. 

Table 6 - Accuracy results for our validation model and final test model. 

 Validation Final test 

Accuracy 97.70 % 98.20 % 

Precision 99.70 % 99.90 % 

Recall 89.00 % 91.20 % 

F1 Score 94.00 % 95.40 % 

Positive Label subject1 subject1 

Negative Label subject2 subject2 

True Positive 2206 1642 

False Negative 274 158 

False Positive 6 2 

True Negative 9706 7229 
 

Experiment II – Identifying the Shift (Subject 1 Results) 

As in Experiment I, for model training we utilized the Two-Class Support 

Vector Machine algorithm in the standard configuration offered by ML Studio 

(Figure 23). The execution time of the model training was 5 seconds, 

approximately. 

 

Figure 23 - Configuration workflow of Experiment II in Azure ML Studio. 

In Experiment II, we had the following splits for subject 1:  

1. Total of instances (total of samples): 18,247; 

2. Total of instances for training/validation: 90% of all samples (16,422); 

3. Total of instances for final test: 10% of all samples (1,825); 
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4. Total of instances for model training: 85% of all samples available for 

training (13,959); 

5. Total of instances for model validation: 15% of all samples available for 

validation (2,463). 

 

For model training, we utilized the Two-Class Support Vector Machine in the 

standard configuration offered by ML Studio (Figure 23). The execution time of the 

model training was 4 seconds, approximately.  

Table 7 shows the accuracy results for our models in the validation and test phases. 

Table 7-  Accuracy results for our validation model and final test model 

 Validation Final test 

Accuracy 100 % 100 % 

Precision 100 % 100 % 

Recall 100 % 100 % 

F1 Score 100 % 100 % 

Positive Label 1 1 

Negative Label 0 0 

True Positive 1022 744 

False Negative 0 0 

False Positive 0 0 

True Negative 1441 1081 

 

Experiment II – Identifying the Shift (Subject 2 Results) 

In Experiment II, we had the following splits for subject 2:  

1. Total of instances for subject 2 (total of samples): 72,061; 

2. Total of instances for training/validation: 90% of all samples (64,855); 

3. Total of instances for final test: 10% of all samples (7,206); 

4. Total of instances for model training: 85% of all samples available for 

training (55,127); 

5. Total of instances for model validation: 15% of all samples available for 

training (9,728). 

Table 8 shows the accuracy results for our validation and test phases.  

Table 8 - Accuracy results for our validation model and final test model 

 Validation Final test 

Accuracy 77.80 % 78.10 % 

Precision 70.80 % 71.00 % 

Recall 80.90 % 79.60 % 

F1 Score 75.50 % 75.00 % 

Positive Label 1 1 

Negative Label 0 0 

True Positive 3331 2374 

False Negative 785 608 
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False Positive 1377 971 

True Negative 4235 3253 

 

Experiment III – Identifying the Activity (Subject 1 Results) 

In this experiment, for model training we utilized the Multiclass Logistic 

Regression algorithm in the standard configuration offered by ML Studio (Figure 

24). 

 

 

Figure 24 - Configuration workflow of Experiment III in Azure ML Studio. 

In Experiment III, we had the following splits for subject 1:  

1. Total of instances for subject 1 (total of samples): 18,247; 

2. Total of instances for training/validation: 90% of all samples (16,422); 

3. Total of instances for final test: 10% of all samples 1,825); 

4. Total of instances for model training: 85% of all samples available for 

training (13,959); 

5. Total of instances for model validation: 15% of all samples available for 

validation (2,463). 

 

Table 9 shows the accuracy results for our models in the validation and final 

test phases, while Tables 10 and 11 present the confusion matrix results of our 

validation and final test phases, respectively. 
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Table 9 - Accuracy results for our validation model and test model 

 Validation Final test 

Overall accuracy 100 % 100 % 

Average accuracy 100 % 100 % 

Micro-averaged precision 100 % 100 % 

Macro averaged precision 100 % 100 % 

Micro-averaged recall 100 % 100 % 

Macro-averaged recall 100 % 100 % 

 

Table 10 - Confusion matrix results for our validation model 

 Playing Having class Watching Working 

Playing 100%    

Having class  100%   

Watching    100%  

Working    100% 

 

Table 11 - Confusion matrix results for our test model 

 Playing Having class Watching Working 

Playing 100%    

Having class  100%   

Watching    100%  

Working    100% 

 

Experiment III – Identifying the Activity (Subject 2 Results) 

In Experiment III, we had the following splits for subject 2:  

 

1. Total of instances for subject 2 (total of samples): 72,061; 

2. Total of instances for training/validation: 90% of all samples (64,855); 

3. Total of instances for final test: 10% of all samples 7,206); 

4. Total of instances for model training: 85% of all samples available for 

training (55,127); 

5. Total of instances for model validation: 15% of all samples available for 

validation (9,728). 

 

The execution time of the model training was 23 seconds, approximately. 

Table 12 shows the accuracy results for our models in the validation and final test 

phases. Tables 13 and 14 show the confusion matrix for our models in the validation 

and final test phases. 
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Table 12 - Accuracy results for our validation model. 

 Validation Final test 

Overall accuracy 87.20 % 87.64 % 

Average accuracy 93.60 % 93.82 % 

Micro-averaged precision 87.20 % 87.64 % 

Macro averaged precision 85.30 % 85.77 % 

Micro-averaged recall 87.20 % 87.64 % 

Macro-averaged recall 86.22 % 86.83 % 

 

Table 13 - Confusion matrix results for our validation model. 

 Reading Surfing Having class  Watching 

Reading 89.3 %  9.4 % 1.2 % 

Surfing  99.9 %  0.1 % 

Having class 43.9 %  56.1 %  

Watching 0.4 %   99.6 % 

 

Table 14 - Confusion matrix results for our test model. 

 Reading Surfing Having class  Watching 

Reading 89.5 %  9.2 % 1.3 % 

Surfing  100 %   

Having class 41.4 %  58.6 %  

Watching 0.8 %   99.2 % 

 

4.2.5. 
Discussion 

In our experiment we explored the brainwave sensor data, and although only 

two subjects took part in the experiment, we were able to use machine learning to 

identify each subject, the period of the day he/she was using the wearable sensor 

and his/her activity with a good accuracy. Furthermore, just by analyzing the 

movable mean graphs of attention and meditation gives us an idea of how fatigue 

is reflected in the sensors reading. 

As future work, we are considering the possibility of using raw data provided 

by Mindwave. Other planned improvements are: (i) the use of tools (such as Rescue 

Time) to support the annotation task; (ii) the definition of the subjects’ profiles by 

identifying which ones have a day-shift profile and which ones have a night-shift 

profile, based on the time of the day when they are more productive in performing 

their activities.       
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Another possibility is to make recommendation about the best time of the day 

to perform a given activity. We could, for example, suggest the best time of the day 

to write a paper, taking into account the time of the day in which the subject is most 

focused and his attention level is at its best.       

We also consider the improvement of the data collection app to inform the 

user when the data quality is not good, as well as the implementation of a machine 

learning algorithm to detect fatigue.  
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5 
Reasoning about How to Notify to Avoid Alarm Fatigue 

In this chapter, we discuss the algorithm we developed to mitigate alarm 

fatigue by reasoning about how to notify caregivers by grouping similar 

notifications (Fernandes, Chrystinne, Miles, Simon, Cowan, Donald, & Lucena, 

C.J.P. de, 2019). Our proposed solution to address this issue decides how to notify 

caregivers about anomalies detected by a patient monitoring system where a large 

volume of alarms could lead to alarm fatigue. In other words, we aim to reduce the 

number of notifications received by health care staff, so they can be focused on the 

activities that truly require attention. Our experiments were configured to alert 

nurses and were evaluated through the use of a dataset comprising a wide range of 

real patient monitoring data recorded during 32 surgical cases where patients 

underwent anesthesia at the Royal Adelaide Hospital (Liu, Görges, & Jenkins, 

2012).  

Our main goal for this chapter is to find out whether to group a set of alarms 

that occurs within a short period of time to deliver them together without 

compromising patient safety. Our specific goal is to avoid that alarms of the same 

type for the same patient can be alerted more than once within a short period by 

using a notification delay strategy. 

To pursue our goals, we aim at addressing the following Sub-Question: 

SQ1: How to reason about whether to group alarms to avoid alarm fatigue?   

5.1 
Explaining the Reasoner 

The main concept behind the reasoner is to choose the best way to notify 

caregivers to avoid alarm fatigue. As has been mentioned, the default behavior of 

our anomaly detection process is to trigger an alarm every time an anomaly occurs. 

For example, a notification would occur even though a number of other alarms of 

the same type are occurring. However, even though an alarm has been triggered by 
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our patient monitoring system, the decision of how to notify the caregivers is 

decided by the Reasoner, using the following rule R1, which states:  

 R1. Our system must limit to one the number of notifications (of the 

same type for the same patient) that caregivers can receive within a 

defined period of time. 

We define Minimum_Notification_Interval (MNI) as the minimum interval 

of time between receiving 2 notifications by the caregivers. The R1 rule is only 

applied when we are considering notifications of the same type (TYPE_β) for the 

same patient P.  

Let μj and μj-1 be 2 notifications of the same type for a given patient P. As 

shown in Equation (9), a notification can be formally defined as μ=<TYPE_μ, Tμ, 

P>, and in this case we can assume that TYPE_μj is equal to TYPE_μj-1 and also 

that Pj is equal to Pj-1. The time Tμ, at which the notification occurs, allows 2 

notifications to be distinguished from each other. The MNI can be formally defined 

in terms of the notifications μj and    μj-1 as shown below: 

 

Tμj−Tμj-1>=MNI  (TYPE_μj=TYPE_μj-1) ∧ (Pj=Pj-1) (10) 

The MNI value must be configured for each patient individually based on 

patient’s context (both of the alarm sources, and patient’s criticality). 

 

5.2 
The Inputs for Our Reasoning Algorithm Related to a Notification 

After explaining rule R1, we define the inputs (I) for our algorithm as 

follows:  

 I1—CURRENT_ALARM_TRIGGERING_TIME (Tβr). Let βr be the 

current alarm that has been triggered and is involved in the reasoning 

process, so the algorithm can decide whether to add a delay to its delivery. 

The first input for our algorithm is Tβr, that is, the time when the alarm βr 

was triggered. 

 I2—LAST_NOTIFICATION_TIME (Tμk). Let μk be the last notification (of 

the same type as βr) received by the caregivers. The second input for our 
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reasoning algorithm is the time when caregivers received μk, which we 

represent as Tμk. 

As we only consider here current alarms under reasoning and last 

notifications of the same type and from the same patient, we assume that the alarm 

types and patients are identical, that is, TYPE_βr = TYPE_μk and Pβr=Pμk. 

Another definition is the Last_Notification_Period (LNP), which is the 

period of time between the 2 inputs for our reasoning as shown in Equation (11). 

LNP = Tβr - Tμk  (11) 

5.3 
The Outputs of Our Reasoning Algorithm Related to a Notification 

We next define the outputs (O) for our reasoning algorithm as the 2 

properties of notifications that can vary depending on the circumstances under 

which they occur: 

O1—NOTIFICATION_DELAY (Dμ). As discussed previously, in Equation 

(4), Dμ is the period of time between the alarm triggering event and the delivery of 

that notification to the caregivers. 

O2—NOTIFICATION_DATA (DATAμ). DATAμ refers to the type of data 

a notification might contain, which depends on the context of the alarm-triggering 

process, and it might range from a single alarm βj to a set of alarms βSET. 

As much as possible, we try to keep the NOTIFICATION_DELAY at a 

minimum so as not to prejudice patient safety. However, to avoid alarm fatigue, the 

value for this property can range over an acceptable range of time defined as the 

BUFFERING_PERIOD, indicating that a DELAY_PERIOD (ɛ) might be added to 

the delivery time of the notification under specific conditions (defined in the next 

section). The BUFFERING_PERIOD is the period of time one or more alarms can 

be delayed (ie, be held in a buffer) before being delivered to caregivers. See 

Equation (12). 

0 < BUFFERING_PERIOD < MNI  (12) 
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From Equation (12), we show that an alarm might need to be delayed up to 

a period equal to MNI. However, the BUFFERING_PERIOD specified for an alarm 

or a set of alarms should not surpass the value of MNI. 

5.4 
Defining the Grouping Criteria for Notification Delivery—When We 
Shall Put an Alarm Into Our Buffer 

As we said previously, the Reasoner decides the way of delivering the alarm 

under reasoning (βr) by making choices about whether to add a delay ɛ to its 

delivery and whether to group βr with other alarms. To make these choices, the 

Reasoner must take into consideration our defined inputs (Tβr and Tμk). By analyzing 

these inputs, the Reasoner decides whether to queue the current alarm βr, based on 

the following grouping criteria:  

 Criteria 1. A same-type alarm was already notified within the MNI.  

If caregivers were already notified in the LNP, then the current alarm βr 

must be queued up into a buffer for the period BUFFERING_PERIOD. After 

BUFFERING_PERIOD has passed, βr is delivered along with other possible alarms 

in the buffer as a unique notification. 

Just to clarify, when the circumstances for the alarms do not meet the 

abovementioned grouping criteria, a notification containing an individual alarm is 

sent to the caregivers as soon as an alarm has been triggered, that is, immediately 

after Tβr.  

As important as it is to avoid alarm fatigue, the Reasoner must handle the 

notification delivery process without putting patients at risk. In this case, the delay 

added to the notification delivery must not prejudice the requirements established 

regarding patient safety.  

5.5 
The Pseudocode for Our Reasoning Algorithm About How to Notify 

The pseudocode for our reasoning algorithm about how to notify is shown 

in Textbox 1. 

Textbox 1. The pseudocode for the reasoning about how to notify. 

DEFINE LNP, Tβr, Tμk, MNI; 
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// Receive Input CURRENT_ALARM_TRIGGERING_TIME Tβr; 

INPUT Tβr; 

// Receive Input LAST_NOTIFICATION_TIME Tμk; 

INPUT Tμk; 

// Calculate LNP  

LNP = Tβr - Tμk;  

// If LNP is equals to Tβr (meaning that no notification μk occurred to the patient in the last 

MNI-period) or LNP is higher than or equal to MNI (which means that a notification μk 

occurred more than MNI-period ago) then notify βr immediately. Otherwise, put βr into the 

buffer 

If (LNP == Tβr || LNP >= MNI) then 

//There is no need for putting βr into the buffer. Notify it immediately 

Notify(βr); 

Else {  

// We need to put βr into the buffer and deliver it after some delay 

QueuedUp(βr)  

 // If βr is the first alarm been put into the buffer then { 

Ìf (isAlarmTheFirstOneQueuedUp(βr)) then { 

   // Define buffer’s property STARTING_TIME as the time the alarm was 

triggered;  

  STARTING_TIME:= Tβr; 

   // Create a new thread for handling the buffer in parallel. This thread 

needs to 

                                // control the BUFFERING_PERIOD (BP) for notifying caregivers after BP 

has passed 

  Create a new thread;  

 Start BUFFERING_TIME; 

  If BUFFERING_PERIOD has passed then 

  //Release the content of buffer to caregivers by wrapping the set of alarms 

  //(alarmsSet) into a single notification and sending it 

   Notify(alarmsSet); 

} 

} 

 

5.6 
Methods 

In this chapter, we present a new approach to cope with the alarm fatigue 

problem. Our proposed solution focuses on an automatic reasoner that is used to 
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decide how to notify caregivers about anomalies detected by a patient monitoring 

system through the use of a notification delay strategy. 

To confirm the fulfillment of the main research goal, the experiment 

described next was conducted and results are tabulated in the Discussion section. 

5.6.1  
Hypotheses 

We defined the following hypotheses for our case study: 

H1. The caregivers should not receive more than one notification about 

the same type of anomaly for the same patient within the MNI. 

H2. Patient safety will not be compromised by the use of the reasoning 

algorithm about how to notify.  

5.6.2 
Methodology 

To illustrate the operation of our reasoning algorithm, we conducted 5 

experiments to evaluate how the algorithm works under different scenarios, 

considering mainly the number of alarms generated in each experiment. 

5.6.3 
Applications Settings 

As shown in Table 15, to run an experiment, we need to define the following 

settings for our application scenarios:  

 The number of wards occupied by patients 

(NUMBER_OF_WARDS). 

 The number of patients being monitored 

(NUMBER_OF_PATIENTS) by a caregivers team. 

 The number of sensors used during monitoring 

(NUMBER_OF_SENSORS). 

 The interval in which the sensor readings are being monitored 

(SENSORS_READING_INTERVAL). 
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 The number of sensor readings (NUMBER_OF_READINGS). This 

information, along with the SENSORS_READING_INTERVAL, 

tells us how long the patients in our experiment are being monitored. 

Table 15 - Defining the configuration for our 5 experiments. 

Number of wards 1 
Number of patients 1 
Number of sensors 1 
Sensors reading interval (ms) 1000 
Number of readings 60,000 

 

We also need to define the thresholds for each sensor and the MNI, 

considering each patient individually (Table 16). As has been mentioned earlier, the 

MNI is defined by taking into account both of the alarm sources, and the patient’s 

criticality to respect patient safety constraints. In our simulated environment, we 

defined the MNI value as 5 minutes for every patient and we assume the delivery 

of the type of anomalies triggered in our context (which are related to heart rate 

values) can be delayed up to this period without representing any danger for the 

patients. 

All the inputs for our reasoning were provided through a vital signs 

streaming app, we developed for streaming vital signs retrieved from a dataset 

comprising real patient data. The dataset provides clinical anesthesia monitoring 

data from 32 entire surgical cases, including a wide range of vital signs variables, 

such as electrocardiograph, pulse oximeter, capnograph, noninvasive arterial blood 

pressure monitor, airway flow, and pressure monitor, and in a few cases, a Y-piece 

spirometer, an electroencephalogram monitor, and an arterial blood pressure 

monitor. The monitoring data were collected using Philips IntelliVue MP70 and 

MP30 patient monitors and Datex-Ohmeda Aestiva/5 anesthesia machines. In this 

dataset, a single stream of raw monitoring data was recorded in a comma-separated 

values (CSV) text file format at a sampling resolution of 10 milliseconds (Liu et al., 

2012). 

We evaluated our algorithm by using data that we selected from 3 out of the 

32 surgical cases in the dataset (cases 4, 7, and 14). Experiment 1 was conducted 

using data from case 4, while, in experiment 2, we utilized data from case 14, and, 

finally, experiments 3-5 were executed using data from case 7. In all the 
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experiments, we utilized the version of processed data available in the CSV format 

for monitoring patients based on their heart rate parameter at 1-second intervals 

(our algorithm uses this frequency instead of the 10-millisecond sampling 

resolution available at the dataset). However, the number and type of vital signs 

used in every experiment could vary to simulate other configurations for sensors 

and monitoring devices in an ICU.  

To define when a given heart rate reading represented an anomalous value 

that should trigger an alarm, we defined the thresholds in Table 16 for each patient. 

Table 16 - Defining the anomaly thresholds of heart rate sensor for each patient. 

Experimen
t 

Patient_I
D 

Min_heartrat
e 

Max_heartrat
e 

1 1 60 100 
2 2 55 100 
3 3 50 105 
4 4 50 100 
5 5 50 102 

 

5.7 
Results 

5.7.1 
Application Details - Technologies Utilized 

The application was developed in the Java language along with the use of 

the RabbitMQ (RabbitMQ) message broker. RabbitMQ is an open-source message 

broker that accepts, stores, and forwards messages. The basic concepts behind this 

technology are Queue, Producer, and Consumer (Figure 25). A Queue is essentially 

a large message buffer that stores the messages, while a Producer and a Consumer 

are both user applications. The former is a program in charge of sending messages 

to the queue through the exchanges, and the latter consists of a program that 

receives messages from the queue. A program can be both a Producer and a 

Consumer at the same time.  
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Figure 25 - Basic concepts and information flow in RabbitMQ. 

As can be seen from Figure 25, a broker receives messages from publishers 

(producers) and routes them to the consumers. The information flow involved in 

this process occurs in 2 steps, described as follows:  

 Step 1. The producers send messages to exchanges that act by distributing 

messages to queues using rules called bindings. 

 Step 2. The broker either delivers messages to consumers subscribed to 

queues or consumes pull messages from queues on demand. 

In this application, we used the Advanced Message Queuing Protocol 0-9-1 

Java client provided by RabbitMQ, which is an open and general-purpose protocol 

for messaging.  

Owing to the high volume of notifications we are dealing with in our 

application, we decided to utilize a solution that could take care of the nonfunctional 

requirements of our system. By using a solution to handle problems related to 

scalability and safety, we could focus on the functional requirements of our 

application. Therefore, we decided to use the RabbitMQ to meet the high 

availability, throughput, and scale requirements of our application domain. This 

message broker solution offers features related to data safety such as reliable 

delivery, which means it can ensure that messages are always delivered, even 

encountering failures such as network failures and consumer application failures. 

5.7.2 
Explaining How Our Application Works 

In a high abstraction level, the main idea of this app is to have an application 

that sends alarms to a broker that routes them to a consumer app that represents the 

receiving of these alarms by the health care team. 

We chose the type of exchange called topic for routing the messages. The 

topic exchange routes messages to one or many queues based on matchings between 
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a message routing key and the pattern that is used to bind a queue to an exchange. 

We declared one queue named sensor_readings to where the publisher sends the 

data and the consumer receives data. We also declared the binding key for our 

consumer (ie, the class that is consuming heart rate data) as #.heartrate (Figure 26). 

The routing key is defined based on the pattern 

<patientID>.<heartrateValue>. For example, we could have a routing key as 16.88, 

representing a patientID=16 and heartrateValue=88.  

The notifications sent to health providers are created based on this message. 

In this case, the final notification received by nurses contains information related to 

the patient, such as identification, location, and vital signs. 

 

 

Figure 26 - RabbitMQ scheme utilized in our application. 

 

5.7.3 
Application Modeling - Class Diagram 

 

Figure 27 - The class diagram for our application, where the consumer application monitors 

a specific vital sign based on the anomalies settings defined for each patient. 
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 In Figure 27, as can be seen from the class diagram for our application, the 

consumer application monitors a specific vital sign based on the anomalies settings 

defined for each patient. The consumer app invokes the reasoning mechanism 

through the ReasoningAboutHowToNotify class, which knows how to notify based 

on the defined notifications settings (eg, the MNI value configured for each patient). 

We present the results of our algorithm by using graphs we generated using 

the R language and the ggplot2 library. The graphs shown in Figure 28 illustrate the 

delivery process of all notifications related to the patient monitored in experiment 

5 (PatientID=5). We show whether the algorithm decided to deliver an alarm 

immediately or after a delay by grouping alarms to deliver them together. 

To better visualize the results of experiment 5 through the graphs, we split 

the output data of our algorithm for this experiment (comprising a total of 204 

alarms) into 4 pieces of data containing 51 alarms each. Thus, we plot each piece 

of data into a graph, showing the alarm triggering time through the x-axis and the 

notification time on the y-axis. As can be seen from Figure 28, the occurrence of 

the first notification (NotificationID=1) of an alarm of heart rate for patient 5 

occurred at the notification time 2019-10-01 02:21:41.767, that is, almost 

immediately after the occurrence of the first alarm (that occurred at the alarm 

triggering time 2019-10-01 02:21:41.746). Following the strategy of our reasoning 

algorithm, the next notification of an alarm of heart rate for this patient should not 

be received by the caregivers before MNI. As in this experiment MNI corresponds 

to 5 min, the timestamp for the next delivery of a heart rate alarm related to patient 

5 should occur at least 5 min after 2019-10-01 02:21:41.767. As can be seen in 

Figure 28, the next heart rate alarms for patient 5 were held in the alarms buffer and 

delivered together at the timestamp 2019-10-01 02:26:41.77 as a unique 

notification (NotificationID=2) with a delay of approximately 5 min. 
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Figure 28 (a-d) - Illustrations of the results of the alarm triggering and delivery processes 
related to the patient monitored in our experiment 5 (PatientID=5). 

 

Figure 29 illustrates the results of the delivery processes related to all 

patients monitored in our experiments (PatientID = 1,2,3,4, and 5, respectively). 
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Figure 29 - (a-e). Illustrations of the results of the delivery process related to all our 
experiments. 
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We show the results for all of our experiments summarized in Table 17, 

where we can compare the number of alarms triggered by our system in each 

experiment with the number of notifications delivered to the caregivers.  

Table 17 - Results of our experiments to evaluate our reasoning algorithm about how to 

notify caregivers considering the reduction of the number of notifications received by them. 

Experiment Number of 
heart rate 
alarms 

Number of 
heart rate 
notifications 

Notifications in 
relation to the total 
of alarms (%) 

Reduction in 
alarms 
received (%) 

1 407 4 0.9 % 99.0 % 

2 423 3 0.7 % 99.2 % 
3 308 3 0.9 % 99.0 % 
4 586 4 0.6 % 99.3 % 
5 204 2 0.9 % 99.0 % 

 

5.8 
Discussion 

5.8.1 
Conclusions 

The first hypothesis (H1) we want to evaluate with this case study says that 

the caregivers should not receive more than one notification about the same type of 

anomaly for the same patient within the defined MNI. By executing our reasoning 

algorithm throughout the experiments, we saw that H1 holds for all of them, as 

within all the occurrences of notifications for each patient, there is no occurrence 

of a notification of the same type within the defined MNI. We support this 

affirmation by presenting, in Figure 29, a summary of the results from our 

experiments using graphs containing all notifications that occurred in each 

experiment. As can be seen, considering all experiments, there was no occurrence 

of delivery of notifications of the same type for the same patient that occurred 

before the specified delay, that is, the MNI value of 5 minutes. 

The hypothesis H2, in turn, stating that patient safety will not be 

compromised by the use of the reasoning algorithm about how to notify also holds, 

as the notification interval (MNI) we defined is no longer than 5 min. This means 

that a group of alarms that are occurring to a given patient can be held in a buffer 

for, at most, 5 min before the buffer is fully released to the caregivers as a unique 

notification. However, in order not to prejudice patient safety, the first occurrence 
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of an alarm is always delivered to the caregivers immediately after its occurrence. 

In this case, only the next occurrences of the alarms are delivered to caregivers with 

the addition of a given delay.  

In Table 17, we made a comparison between the number of alarms triggered 

by our system and the number of notifications delivered to the caregivers, in each 

experiment. These results show that the reduction of the notifications received by 

the caregivers can be up to 99.3% (582/586) of the total of alarms, with a mean of 

99.17% (1912/1928) of reduction in the number of total alarms, considering all the 

experiments. 

According to Winters et al, nearly all studies assume that a reduction in the 

number of total alarms and/or false alarms will reduce alarm fatigue (Winters et al., 

2018). Thus, by presenting these results, we expect that our algorithm can be used 

as a useful strategy for avoiding alert fatigue. We also expect our approach can be 

useful for helping to prevent its negative consequences, such as disruption of patient 

care, disabling of alarm systems by staff, reduction in responding, lack of caregiver 

response, and real events being less likely to be acted on, among others.  
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6 
Reasoning about How to Detect False Alarms by Analyzing 
Alarm-context Information 

In this chapter, we discuss how we can reason about adding an indication of 

a false alarm probability to a notification (FAP_LABEL) (Fernandes, Chrystinne & 

Lucena, C.J.P. de, 2019). The FAP_LABEL is calculated according to false alarm 

indicators we defined based on our literature review. The idea is to use these 

indicators to decide when an anomaly reported through a notification could be 

analyzed with a low priority level. In this case, the FAP_LABEL could be utilized 

to assist caregivers in prioritizing the next alarm to attend to. 

6.1. 
Problem Definition 

In the systems built through our software framework (e.g., the depth of 

anesthesia monitoring app), the anomaly detection process worked by triggering an 

alarm every time an anomaly occurs, independently of the circumstances 

(Chrystinne Oliveira Fernandes & de Lucena, 2015; Chrystinne Oliveira Fernandes, 

de Lucena, de Lucena, & de Azevedo, 2016). However, many times these alerts are 

false alarms that do not represent real danger for patients. In this case, the lack of 

use of any intelligent filter to detect an indication of false alarms before alerting 

health providers can culminate in a context of a sensory overload for the medical 

team. This context can result in alarm fatigue and compromise the health providers’ 

attention, leading them to miss relevant alarms that might indicate significant 

harmful events.  

As a strategy to mitigate the alarm fatigue issue, in this chapter we present a 

new approach to monitor patients by using a notification process supported by a 

reasoning mechanism. This mechanism associates a FAP to alarms based on its real-

time context information, including: (i) information about a patient’s 

circumstances, such as his/her repositioning in bed, and localization (which is 

tracked in real-time by the use of wearable devices with Global Positioning System 
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(GPS)), and (ii) information about sensors, including battery charge life, the last 

time the patient’s skin was prepared to receive electrodes and the last time 

electrodes were changed, among others.   

After receiving this context information as inputs, the Reasoner’s work begins 

by analyzing each alarm and calculating the FAP associated to it according to the 

false alarm indicators we defined. Thus, the Reasoner uses the FAP calculated for 

each alarm to decide whether to include an indication of false alarm probability 

(FAP_LABEL) to a notification that can be visualized by caregivers. 

6.2. 
Goals and Contributions 

This chapter’s main goal is to propose a solution to mitigate alarm fatigue by 

using an automatic reasoning mechanism to assist caregivers in their decision-

making process of choosing the next alarms to which they should respond. Our 

specific goal is to attribute a false alarm probability to an alert based on the context 

in which it has been generated, such as: patient’s conditions and information about 

monitoring devices and sensors. We aim at reasoning about the probability of an 

alarm being a false alarm in order to decide whether to enrich the notifications sent 

to caregivers with this information (FAP_LABEL).   

We addressed the following Sub-Questions:  

SQ2. How can an automatic reasoning system calculate an indication of FAP 

for an alarm generated by sensors and monitoring devices?  

SQ3. How to reason about whether, or not, to add an indication of a false 

alarm probability to a notification that could be visualized by the healthcare team?     

The main contributions achieved in this chapter were: (i) a list of the false 

alarm indicators we defined that can be utilized and possibly extended by other 

researchers; (ii) a novel approach to assess the probability of a false alarm using 

statistical analysis of multiple inputs representing the alarm-context information; 

(iii) a reasoning algorithm that uses alarm-context information to detect false alarms 

in order to decide whether to notify caregivers with an indication of FAP to avoid 

alarm fatigue. 
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6.2 
Material and Methods 

With regard to methodology, we present a new approach to mitigate the alarm 

fatigue issue. We developed an application that attributes a FAP to the alarms based 

on the false alarm indicators we defined. Our reasoning algorithm uses the 

calculated FAP to decide whether to include an indication of FAP to a notification 

(FAP_LABEL) before sending it to caregivers in order to assist them in the complex 

task of choosing the next alarms to which they should respond.   

To achieve our main research goal, the experiment described below was 

conducted and results are displayed in the Discussion session. 

6.2.1 
Hypotheses 

We defined the following hypotheses for our case study: 

H3. Our reasoning algorithm should associate a FAP value to every 

alarm generated by sensors and monitoring devices in our experiments. 

H4. Our reasoning algorithm should add an indication of a false alarm 

probability (FAP_LABEL) based on which the reasoner should decide 

whether, or not, to notify caregivers. 

H5. Patient safety should not be compromised when, and if, the 

reasoning algorithm decides to add a FAP_LABEL to the notification. 

6.2.2 
Reasoning Model to Decide Whether to Include a FAP Label to a 
Notification   

In our system, a notification is a type of message that is sent to caregivers and 

contains information about a detected alarm (or a group of alarms). A FAP is a false 

alarm probability associated to an individual alarm that we calculate according to 

the false alarm indicators we describe next.  While a FAP_LABEL, on the other 

hand, corresponds to the probability of a notification containing a false alarm.  

We calculate the FAP of every alarm triggered by our system. However, the 

reasoning algorithm decides whether to include the indication of FAP to a 
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notification (as the FAP_LABEL) based on the false alarm indicators. The 

FAP_LABEL is the piece of information that can be visualized by caregivers. 

The inputs for our algorithm are a notification and its context information, 

including information about the patient’s conditions and sensors. After receiving 

these inputs, the Reasoner starts working by analyzing the notification content and 

calculating the FAP_LABEL associated to it. 

The processes to calculate the FAP and FAP_LABEL are described below. 

Figure 30 presents a state machine diagram of the FAP reasoning process 

considering each alarm individually. In Figure 30, we present the reasoning 

modeling process that decides whether to notify caregivers through a FAP_LABEL 

indication. 

6.2.3 
Explaining how we calculate FAP based on the False Alarm Indicators 
(FAI) 

To calculate the FAP associated to each alarm, we defined four indicatives of 

false alarms based on the information we gathered in our literature review. 

According to Kerr & Hayes, the main events that cause false alarms are patient 

movement or repositioning in bed and poor placement of sensors. Another common 

issue that triggers alarms is related to technical problems, such as the lack of a 

battery in the monitoring devices. 

The four false alarm indicators defined in this case study represent 

information about (i) the duration of a sensor battery and the last time it was 

changed, (ii) the last time the patient’s skin was prepared to receive electrodes and 

the last time they were changed, (iii) the patient’s mobility, and (iv) the patient’s 

position in bed. To calculate the false alarm indication percentage, in our 

experiment we considered that each indicator has the same weight. We list below 

our false alarm indicators:  

- FAI1: Sensor battery false alarm indicator (SENSOR_BATTERY_FAI). 

This is an indication of the FAP associated to the battery charge level of the 

sensors attached to the patient; 
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- FAI2: Placement of sensor false alarm indicator 

(PLACEMENT_OF_SENSOR_FAI). FAI2 is related to the placement of a 

sensor, i.e., if a sensor is properly in touch with the patient’s skin;  

- FAI3: Patient mobility false alarm indicator 

(PATIENT_MOBILITY_FAI). This indicator is related to patient mobility, 

which means that it can evaluate the probability that the alarm has been 

triggered due to his/her movement from the bed to other places;   

- FAI4: Patient repositioning false alarm indicator 

(PATIENT_REPOSITIONING_FAI). This indicator can be used to 

calculate the FAP related to patient repositioning, i.e., if the alarm has been 

sent simply because the patient may have changed his/her position in bed; 
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Figure 30 - State Machine Diagram showing how we calculate the FAP associated to an 
alarm. 

6.2.4 
Inputs for our reasoning algorithm about whether to add a 
FAP_LABEL 

As shown in Table 18, we defined eight inputs for our algorithm. There are 

four types of information that need to be manually inserted into our system by 

caregivers (Inputs 1-4), two types of data automatically collected via sensors 
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(Inputs 5 and 7), and, finally, two inputs (Inputs 6 and 8) that are retrieved from the 

database by the system as historical patient data.  

Every input mentioned above is related to one of the four false alarm 

indicators, as described below:  

Table 18 - Inputs for our reasoning algorithm. 

Input Input name 
It used to 

calculate the 

following FAI 

Description 
Type of related 

monitoring 

device 

1 
LEVEL_OF_ 

BATTERY 

FAI1 (SENSOR_ 

BATTERY_FAI) 

Level of battery for 

each monitoring 

device (including 

multi-parametric 

monitors) 

Monitoring 

devices that use 

battery 

2 
LAST_TIME_ 

BATTERY_ 

CHANGED 

FAI1 (SENSOR_ 

BATTERY_FAI) 

Last time device’s 

battery was 

changed 

Monitoring 

devices that use 

battery 

3 
LAST_TIME_  

SKIN_ 

PREPARATION 

FAI2 

(PLACEMENT_OF

_SENSOR_FAI) 

Last time skin 

preparation 

occurred 

Sensors that use 

electrodes 

4 
LAST_TIME_ 

ELECTRODES_ 

CHANGED 

FAI2 

(PLACEMENT_OF

_SENSOR_FAI) 

Last time electrodes 

were changed 

Sensors that use 

electrodes 

5 
CURRENT_ 

PATIENT_ 

LOCALIZATION 

FAI3(PATIENT_ 

MOBILITY_FAI) 

The current 

patient’s 

localization 

Sensors used to 

track patient 

localization 

6 
LOG_LAST_ 

PATIENT_ 

LOCALIZATION 

FAI3 (PATIENT_ 

MOBILITY_FAI) 

A log of patient’s 

last localization 

Sensors used to 

track patient 

localization 

7 
CURRENT_ 

PATIENT_POSI-

TION_IN_BED 

FAI4 

(PATIENT_REPO-

SITIONING_FAI) 

The current position 

a patient occupies in 

a bed 

Sensors used to 

track patient 

position in bed 

8 
LOG_LAST_ 

PATIENT_POSI-

TIONS_IN_BED 

FAI4 

(PATIENT_REPO-

SITIONING_FAI) 

The last positions a 

patient has 

occupied in a bed 

Sensors used to 

track patient 

position in bed 

 

6.2.5 
Output of our reasoning algorithm 

There is one output of our algorithm: 

- Output1: The probability of an alarm be false (FAP); 
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6.2.6 
Application’s Details – Technologies utilized, Scenario and Settings 

To test our reasoning algorithm, we developed a system comprising an 

application (the Producer App) that sends alarms to a broker who routes them to 

consumer applications that receive these alarms on behalf of the healthcare team. 

The system was developed in the Java language using the RabbitMQ message 

broker. The reason we decided to use RabbitMQ to handle the features related to 

data safety and scalability is to allow us to focus mainly on our functional 

requirements, since we are dealing with a high volume of alarms in our system. 

6.2.7 
Applications Scenario  

The application scenario consists of a group of four patients being monitored 

in an ICU by using sensors and monitoring devices, such as: multi-parametric 

monitors (Figure 24), wearable devices, and external sensors that can be utilized 

with micro-controllers (Figure 31). 

In our simulated scenario, a group of caregivers is in charge of dealing with 

the alarms generated. In addition to other demanding tasks, caregivers need to 

update the system with information about monitoring devices (i.e., the inputs for 

our reasoning algorithm that need to be manually inserted by them). However, our 

algorithm also receives other inputs automatically via sensors, such as the patient’s 

localization, and  the patient’s position in bed. To retrieve the patient’s localization, 

we used a wearable device, such as a GPS-equipped bracelet. The patient’s position, 

in turn, is given via a body position sensor (Figure 32-c) (E-Health Sensor 

Platform). Figures 31 and 32 show examples of monitoring devices we utilized 

during this research to collect biometric patient data. 

6.2.8 
Monitoring Devices to Collect Biometric Patient Data 

The CM100 Efficia Philips monitor (CM100 Efficia Philips Monitor) is 

commonly utilized to collect vital signs, such as ECG, breathing, temperature, 

noninvasive blood pressure (PNI), oximetry (SpO2), capnography (EtCO2), 

invasive blood pressure (IBP).  
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Figure 31 - The CM100 Efficia Philips Monitor. 

The e-Health Sensor Platform Complete Kit (E-Health Sensor Platform) 

(Figure 32-c) contains an e-Health Sensor Shield (Figure 32-b) compatible with 

Arduino (Figure 32-a) and Raspberry Pi (Raspberry Pi) microcontrollers along with 

10 sensors to collect biometric data (Figure 32-c): pulse, oxygen in blood, airflow 

(breathing), body temperature, electrocardiogram (ECG), glucometer, galvanic skin 

response, blood pressure, patient position (accelerometer) and 

muscle/electromyography sensor (EMG). 

   

 

Figure 32-a. Arduino micro-controller. 32-b. e-Health Sensors Shield. 32-c. e-Health 

Sensor Platform Complete Kit.  

6.2.9 
Application Settings 

In our simulated environment, patients were monitored through the use of two 

sensors: heartrate and temperature. The sensor readings were generated by the vital 

signs simulator we developed. Regarding the sensor data simulated for each sensor, 

the temperature readings were generated randomly by the simulator within the 35.0-
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42.0 range and the heartrate readings were randomly selected from the 40-188 

range. To define when a given temperature and heartrate reading represented an 

anomalous value that should trigger an alarm, we defined the thresholds shown in 

Table 19 for each patient. 

Table 19 - Defining the anomaly thresholds of temperature and heartrate sensors for each 

patient. 

Patient_I

D 

Min_temperatur

e 

Max_ 

temperature 

Min_heartrat

e 

Max_ 

heartrate 1 35.5 39.0 60 100 

2 35.0 38.5 55 95 

3 35.5 39.5 60 100 

4 35.5 38.5 50 100 

 

In our experiment, we set at 75% the FAP_NOT_MIN (i.e., the value used as 

a reference to decide whether to add the FAP_LABEL to the notification). This 

means that every time the calculated FAP for an alarm is higher than or equal to 

75%, our Reasoner adds the FAP_LABEL to the notification. Otherwise, we set the 

FAP_LABEL in our dataset as "UNDEFINED", meaning that it will not be included 

in the notification as an additional piece of information for caregivers (see Table 20 

and Table 21). We chose to use this strategy because we believe that only if this 

value is significant it will be useful to send the caregivers this false alarm indication. 

Since we are working with an experimental version of our system, the choice of 

75% for the FAP_NOT_MIN was selected arbitrarily. However, it is important to 

say that the medical staff can configure this value according to their preferences. 

6.3 
Results 

We present, in Tables 20 and 21, the results from our experiments. We 

illustrate a part of the output of our reasoning algorithm showing the first ten 

notifications related to the temperature and heartrate vital signs, respectively. As 

one can see, FAP values were attributed to the alarms, and FAP_LABEL were 

added to notifications by the Reasoner. The first four columns represent, 

respectively: Notification ID (NID), Ward ID (WID), Patient ID (PID) and Alarm 

ID (AID). 
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Table 20 - Results of our experiments for notifications related to alarms of temperature. 

NID WID 
PI

D 
AID 

Sensor 

Type 

Sensor 

Value 

Alarm_ 

timestamp 
FAP 

Notificatio_  

timestamp 
FAP_ 

LABEL 

1 1 1 1 
Tempe

-rature 
35.0 

2019-07-02 

21:51:06.291 
50.0 

2019-07-02 

21:51:06.334 

UNDE- 

FINED 

2 1 4 2 
Tempe

-rature 
42.0 

2019-07-02 

21:51:08.328 
25.0 

2019-07-02 

21:51:08.328 

UNDE-

FINED 
 

3 1 3 4 
Tempe

-rature 
41.0 

2019-07-02 

21:51:12.457 
50.0 

2019-07-02 

21:51:12.457 

UNDE-

FINED 
 

4 1 2 9 
Tempe

-rature 
41.0 

2019-07-02 

21:51:43.223 
75.0 

2019-07-02 

21:51:43.223 
75.0 

5 1 1 12 
Tempe

-rature 
42.0 

2019-07-02 

21:52:03.697 
50.0 

2019-07-02 

21:56:06.334 

UNDE- 

FINED 

5 1 1 15 
Tempe

-rature 
42.0 

2019-07-02 

21:52:20.053 

100.

0 
2019-07-02 

21:56:06.334 
100.0 

5 1 1 16 
Tempe

-rature 
41.0 

2019-07-02 

21:52:24.135 
75.0 

2019-07-02 

21:56:06.334 
75.0 

5 1 1 17 
Tempe

-rature 
35.0 

2019-07-02 

21:52:32.309 
25.0 

2019-07-02 

21:56:06.334 

UNDE- 

FINED 

5 1 1 18 
Tempe

-rature 
42.0 

2019-07-02 

21:52:42.594 
50.0 

2019-07-02 

21:56:06.334 

UNDE- 

FINED 

5 1 1 20 
Tempe

-rature 
41.0 

2019-07-02 

21:52:50.774 
50.0 

2019-07-02 

21:56:06.334 

UNDE- 

FINED 

 

Table 21 -  Illustration of the results of our experiments, with the addition of FAP and 

FAP_LABEL for the first ten notifications related to heartrate vital signs. 

NID WID 
PI

D 
AID 

Sensor 

Type 

Sensor 

Value 

Alarm_ 

timestamp 
FAP 

Notification

_ timestamp 

FAP_ 

LABEL 

1 1 2 1 
Heart-

rate 
108.0 

2019-07-02 

21:51:09.375 
75.0 

2019-07-02 

21:51:09.39 
75.0 

2 1 1 2 
Heart-

rate 
145.0 

2019-07-02 

21:51:11.432 
25.0 

2019-07-02 

21:51:11.432 

UNDE-

FINED 

3 1 4 6 
Heart-

rate 
123.0 

2019-07-02 

21:51:21.721 
50.0 

2019-07-02 

21:51:21.722 

UNDE-

FINED 

4 1 3 8 
Heart-

rate 
116.0 

2019-07-02 

21:51:25.827 
50.0 

2019-07-02 

21:51:25.827 

UNDE-

FINED 

5 1 2 3 
Heart-

rate 
156.0 

2019-07-02 

21:51:15.539 
0.0 

2019-07-02 

21:56:09.397 

UNDE-

FINED 

5 1 2 5 
Heart-

rate 
159.0 

2019-07-02 

21:51:19.667 
50.0 

2019-07-02 

21:56:09.397 

UNDE-

FINED 

5 1 2 7 
Heart-

rate 
44.0 

2019-07-02 

21:51:23.776 
75.0 

2019-07-02 

21:56:09.397 
75.0 

5 1 2 9 
Heart-

rate 
164.0 

2019-07-02 

21:51:27.874 
50.0 

2019-07-02 

21:56:09.397 

UNDE-

FINED 

5 1 2 16 
Heart-

rate 
184.0 

2019-07-02 

21:51:44.254 
25.0 

2019-07-02 

21:56:09.397 

UNDE-

FINED 

5 1 2 23 
Heart-

rate 
51.0 

2019-07-02 

21:52:00.641 
0.0 

2019-07-02 

21:56:09.397 

UNDE-

FINED 
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6.5 
Discussion 

6.5.1 
Conclusions and Future Work 

In this chapter, we tried to fill the gap of having feasible solutions to mitigate 

the alarm fatigue problem by focusing on the issue of false positive alarms, known 

to be a serious problem that yet remains unsolved. We presented a reasoning 

algorithm to detect false alarms based on alarm-context information provided 

automatically by the use of sensors and wearable devices and manually by the 

inputs of caregivers.  

We created a database of simulated alarm-context information to establish a 

basis for the development of our algorithm in order to confirm the hypotheses H3 

and H4 in experimental settings. As we can see in Tables 25 and 26 (in the FAP 

column), every alarm generated by the sensors and monitoring devices in our 

experiment had a FAP value associated to it by our reasoning algorithm. Our 

algorithm also added an indication of a false alarm probability (FAP_LABEL) to 

the notifications sent to caregivers. This information is available in the 

FAP_LABEL column of our dataset (See Tables 25 and 26). 

Regarding the hypothesis H5, which declares that patient safety will not be 

compromised by the use of the reasoning algorithm about whether to add a 

FAP_LABEL to a notification, we can assume that H5 is confirmed, since our 

algorithm does not stop an alarm from being triggered even when the FAP found is 

considered very high. We can see an example of this information in the sixth row 

of Table 20, where the alarm (AlarmID=15) still triggered a notification 

(NotificationID=5) even though it had a calculated FAP of 100%.  

As future work, we are planning to evolve our solution to support an 

optimized version of our reasoning algorithm that calculates the optimal 

FAP_NOTIF_MIN based on the real-time volume of alarms being triggered in an 

ICU. 

Another plan for future work is to develop a machine learning-based 

algorithm capable of predicting both FAP and FAP_LABEL based on a dataset that 
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contains the ICU information history, such as patients’ conditions, sensors and 

alarms. 
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7 
Reasoning about Who to Notify 

 

In this chapter, we discuss about how to choose the best caregiver to notify 

within a set of caregivers based on real-time circumstances in an ICU, including: 

(i) alarm-context information, (ii) patients’ conditions (e.g., their level of severity), 

and (iii) caregivers’ information such as their experience, along with other 

circumstances that change dynamically (e.g., how far they are, physically, from the 

patient that needs help and how many notifications they have already received 

previously).  

This chapter’s main goal is to propose a solution for mitigating alarm fatigue 

by using an automatic reasoning mechanism to choose the best caregiver to be 

assigned to a given notification. The implementation attributes a value 

correspondent to the benefit of each possible assignment and decides the best option 

within all of the benefits by using a greedy strategy.  

To pursue our goal, we defined the following Sub-Question: 

SQ4. How can we reason about who to notify within the caregivers team?  

We formalized this problem as a Constraint-Satisfaction Problem (CSP) and 

we present, in this chapter, one example of how it can be solved. We designed a 

case study where patients’ vital signs were collected through a vital signs’ generator 

that also simulates anomalies that trigger alarms. We conducted five experiments 

to test our algorithm considering different situations for an ICU. In each experiment, 

we vary the number of patients, number of caregivers, caregivers’ capacity etc. The 

evaluation of our algorithm was made through the comparison between the results 

of the choices made by our reasoning algorithm and another strategy that we call 

“blind” strategy, which randomly assigns caregivers to notifications.  
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7.1  
Problem Definition 

In our previous chapter, we mentioned the most common alarm-related 

issues that may lead to Alarm Fatigue, including the excessive number of alarms, 

alarms generated by many different types of alarm devices, and the high percentage 

of false alarms. In addition to these issues, the healthcare teams need to deal with 

other critical information in ICUs, such as the perceived alarm urgency, and the 

perceived true alarm rate of the alarm systems. 

All of this information has to be processed by the healthcare teams who need 

to follow their own strategies to properly answer to alarms. Caregivers are 

consistently under pressure: they should analyze the high volume of inputs they are 

receiving in order to answer to them quickly and correctly, by making decisions in 

real-time about the response to the next alarm based on their context information. 

This scenario may culminate in an overwhelmed and fatigued healthcare team that 

is desensitized and slow to respond to alarms. Under alarm fatigue conditions, the 

staff may ignore and/or silence alarms, putting patients in risky situations (Keller, 

2012).   

To assist caregivers in their daily routine activities of responding to alarms, 

we provide a reasoning mechanism that decides who is the best caregiver to notify 

based on the analysis of alarm-context information, patients’ and caregivers’ 

conditions. The idea is to assign a member of a caregivers’ team as the receiver of 

a given alarm, by choosing the member of the team that is the most capable of 

attending to the alarm, given the circumstances in an ICU.  

7.2 
Constraint-Satisfaction Problem  

Constraint-Satisfaction is a powerful framework used for expressing and 

solving search problems. The idea is to find a consistent assignment of values to a 

predefined set of variables. The variables typically have pre-enumerated domains 

of discrete values and a set of constraints over subsets of these variables that limits 

their possible values (Mittal & Falkenhainer, 1990).  

A number of problems in Artificial Intelligence and other areas of computer 

science can be viewed as special cases of the Constraint-Satisfaction Problem 
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(Kumar, 1992).  In this work, we are focusing on the type of CSP that can be stated 

by a given set of variables, a finite and discrete domain for each variable, and a set 

of constraints, along with soft constraints or preferences. Our goal is to find one 

assignment to the variables such that the assignment satisfies all the constraints.  

A CSP is typically specified by a set of variables V = {v1, …, vn} and a set 

of constraints on subsets of V limiting the values that may be assigned in a 

consistent manner. Each variable vi has an associated domain Di = {di1,…,dini} 

which specifies its set of possible values. The constraint satisfaction task is to find 

assignments of values for {v1,…,vn} that simultaneously satisfy all the constraints 

(Mittal & Falkenhainer, 1990). Considering our problem, the set of variables V 

would be represented by the set of receivers of the notifications, while the domain 

D, in turn, would consist of the set of possible receivers, i.e., caregivers to whom a 

notification can be assigned to.  

7.3 
Modeling our Problem 

For this chapter, we describe the formalization for our research problem as 

a constraint-satisfaction problem. We present below our modeling process based on 

the notation we defined in this work. 

As we mentioned above in Equation (9), we define a notification in terms of 

the alarm that triggers it and the timestamp in which the notification is sent. Let N 

= {n1, n2,...,nn} be the set of notifications that should be sent to a member of a 

caregivers’ team notifying him/her about anomalies that happened to a given set of 

patients P = {p1, p2,…, pn} in an ICU during a period of one day.  We also have a 

set of caregivers C = {c1, c2,…,cn} to whom each alert should be assigned. 

Examples of information that can be used to decide the best caregiver to choose 

from the available ones at the time the alert is triggered are: the probability for an 

alarm to be true, the severity of a patient’s condition, and the caregiver’s ability to 

deal with an alarm based on their experience, among other factors.  

Our problem is to create an assignment e that attributes a given notification 

n to a given caregiver c. In this case, an assignment e can be defined as e = (n,c), 

where (n,c) ∈ E, and E is the set of all the assignments that satisfies all the 

constraints defined for this problem (13).  
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e = (n,c)  (13) 

Where: 

- E = {(ni,ci), … , (nk, ck)}, with ni, nk ∈ N (the set of Notifications) and cj, 

ck ∈ C (the set of caregivers); 

Our goal is to find out who is the best receiver for each alarm given the 

circumstances of alarms, patients and caregivers, without putting patients at risk 

and caregivers in alarm fatigue conditions. Before showing the solution we arrived 

at, we show an illustration of a possible solution for a generic assignment problem, 

i.e., a set of assignments E that we are assuming it satisfies all its constraints.  

Suppose we have a set of ten notifications N = {n1, n2, n3, n4, n5, n6, n7, n8, 

n9, n10} and a set of six caregivers C = {c1, c2, c3, c4, c5, c6}. Consider that one of 

them - c5 -, is not available to receive notifications. We show below how a possible 

assignment can be done and the final set of assignments E1. 
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Figure 33 - Example of a possible assignment E1. 

The final set for E1 is: E1 = {(n1,c2), (n2,c1), (n3,c3), (n4,c3), (n5,c2), (n6,c1), 

(n7,c6), (n8,c4), (n9,c6), (n10,c4)}.    

7.4 
Explaining how we choose who to notify 

Let’s now consider a more general case of our problem, where a given 

notification ni in a set of notifications N = {n1,n2,…,ne} should be assigned to a 

given caregiver ci within the set of caregivers  C = {c1, c2, …, cn}.  

Our strategy for deciding the best assignment ei = (ni,ci) for each notification 

ni is to calculate the benefit function benefit(e) for each possible assignment, where 

the possible assignments are those that remain, after excluding the ones that do not 

respect our constraints, as listed below (Table 22): 
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Table 22 - List of our constraints and soft constraints (preferences). 

Constrain

t 
Type Description 

C1 Unary 

Caregivers should only receive notifications according to his/her 

capacity CAPACITY(c). CAPACITY(c) gives us the maximum 

number of notifications a caregiver c can receive 

C2 Unary 
A caregiver can only receive a notification ni if he/she is available 

at the instant the notification occurs 

C3/SC3 Unary 
A notification should be preferably assigned to the caregiver that 

has more experience (measured in years) 

C4/SC4 Unary 
A notification should be preferably assigned to the caregiver that 

is physically closer to the patient 

C5/SC5 Unary 
A notification should be preferably assigned to caregivers that 

have received less notifications 

 

Let be be the benefit of the assignment e, i.e., be is the benefit of sending a 

notification ni to a caregiver ci. Our goal is to calculate the benefit for all the possible 

assignments for a notification ni (by doing this calculus immediately after ni has 

occured) in order to choose the best caregiver to receive ni. With this strategy, we 

aim at maximizing the following sum of benefits for a set of notifications assigned 

to caregivers during a period of one day:   

∑   beXE ,    XE  =     {1, if notification e is assigned  (14)                                                                                                                                                                          

e∈E            0, otherwise} 

The benefit function Benefit(e) is calculated as follows: 

Benefit (e) = 1/Probability(a,false) x Severity(p) x Ability (c)       (15)                                                               

x 1/Distance(c,p) x 1/NumberOfNotificationsReceived(c) 

Where: 

- Probability(a, false): The probability of an alarm a to be “false”;  

- Severity(p): The severity of a patient p; 

- Experience(c): The ability of a caregiver c to deal with a notification n based 

on his/her experience; 

- Distance(c,p): The distance between a caregiver c and a patient p; 

- NumberOfNotificationsReceived(c): The number of notifications received 

by a caregiver c. 
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Figure 34 - Illustration of possible assignments, where b(n1,c1) is the benefit for assigning 

the notification n1 to caregiver c1. 

The sum of all notifications assigned Xn to a given caregiver should be lower 

than, or equal to, his/her capacity to attend to. Equation 16 shows the restriction of 

the number of notifications that can be assigned to a caregiver c.  

∀ caregiver c ∈ C,   (16) 

∑   Xnc   <= CAPACITY(c)                                                                                                                                                                           

nT 

Where: 

- Xn specifies whether a notification n was assigned to a caregiver c. The 

above sum specifies that the total of notifications assigned to a given 

caregiver must be lower than, or equal to, its capacity (CAPACITY(c)); 

- nT is the total number of notifications assigned to c; 

Every notification n should be assigned to one caregiver. Equation 17 shows 

the restriction of the number of caregivers that can receive a given notification n. 

∀ notification n ∈ N,  (17) 

∑ Xnc = 1                                                                                                                                                              
(n,c) ∈ E 
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7.5 
Methods 

Our proposed solution represents a new approach for mitigating the alarm 

fatigue issue that focuses on a reasoning algorithm that is used to decide the best 

caregiver to whom a notification should be assigned.  

We describe next the experiment we developed as an example of solution 

for this problem. The results are presented in the Discussion session. 

7.5.1  
Goals 

Our main goal with this case study is to decide which caregiver is the most 

capable of attending to a given notification based on alarm-context information and 

information about patients’ and caregivers’ conditions.   

Our specific goal is to maximize an objective function that gives us the sum 

of the benefits of the notification assignments that occurred during one day.   

7.5.2 
Hypotheses 

We defined the following hypotheses for our case study: 

H6. A notification assignment should prioritize the caregiver that is the 

most capable of attending to it within the group of caregivers available 

at the time the notification occurs, considering the probability of a 

notification to be false, patient’s severity, caregivers’ experience, the 

distance between caregivers and patients, and the number of 

notifications caregivers have received. 

H7. The assignment of notifications to caregivers should be limited to 

his/her capacity of receiving notifications. 

7.5.3 
Applications Scenario  

As we mentioned above, in our case study, patients’ vital signs were 

collected by using a vital signs’ generator that also simulates anomalies that trigger 

alarms. We conducted five experiments to test our reasoning algorithm considering 
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different situations for an ICU. In each experiment, we changed the configuration 

of our simulated environment (ICU) in terms of number of patients, number of 

caregivers, and number of sensor readings to evaluate the response of our algorithm 

to different circumstances (Table 23).  

Table 23 - Configuration of the experiments comprising number of patients, caregivers and 

sensor’s readings in each experiment. 

Experiment 

Number of 

Patients 

Number of 

Caregivers 

Number of 

sensor readings 

1 2 7 1200 

2 4 7 2400 

3 8 9 4800 

4 16 14 9600 

5 32 30 19200 

 

Other additional information, such as patients’ severity, caregivers’ 

availability, experience and capacity, was also pre-configured in each experiment. 

Tables 24 and 25 present the initial configuration for caregivers and patients defined 

in experiment 2, whose results we will discuss later on.  

Table 24 - Initial configuration for the set of caregivers in experiment 2. 

Caregiver ID Experience 

level 

Is_Available Ward Capacity 

1 3 true 1 260 

2 1 true 8 260 

3 2 true 5 260 

4 4 true 7 260 

5 5 true 6 260 

6 4 true 2 260 

7 2 true 3 260 

8 2 true 4 260 

9 3 True 9 260 

 

Table 25 - Initial configuration for the set of patients in experiment 2. 

Patient ID Severity Ward 

1 2 2 

2 4 3 

3 3 4 

4 5 5 

5 1 6 

6 2 7 

7 3 8 

8 4 9 
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7.6 
Results 

In the next sections, we describe the results of the experiments conducted to 

evaluate our application - developed in the Java language using the RabbitMQ 

broker - to test our algorithm. 

7.6.1 
Inputs for our reasoning algorithm about who to notify 

We defined the following inputs for our reasoning algorithm (Table 26).  

Table 26 - Inputs for our reasoning algorithm. 

Input Input name Description 

1 Patients The set of patients (P) 

2 Notifications The set of notifications (N) 

3 Caregivers The set of caregivers (C) 

4 Severity Severity of a given patient p (Severity(p))  

5 Probability 
Probability of a notification n to be false 

(Probability(n,false)) 

6 Experience Caregivers’ experience (Experience (c)) 

7 Distance Distance between patient and caregiver (Distance(c,p)) 

8 Capacity Caregivers’ capacity (CAPACITY(c)) 

9 NotificationsReceived 
The number of notifications received by a caregiver 

NumberOfNotificationsReceived(c) 

7.6.2 
Output of our reasoning algorithm 

There is one output of our algorithm (Table 27). 

Table 27 - Output of our reasoning algorithm. 

Output Output name Description 

1 Receiver The identity of a caregiver to whom a notification should be 

assigned 

 

7.6.4 
Evaluation 

The evaluation of our algorithm was made through the comparison between 

the results of the sum of benefits of the assignments chosen by our reasoning 

algorithm and the sum of benefits for the assignments made by another strategy we 

called “blind” strategy, which randomly assigns caregivers to notifications. As we 

explained previously, every time an alert is triggered, our reasoning algorithm 

calculates the benefit for all the possible assignments to the available caregivers and 

chooses the one that has the higher value (as a greedy strategy). The benefit is 
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calculated by computing the Benefit (e) function shown in Equation 15. On the 

other hand, the blind version randomly assigns a caregiver to a notification 

independently of the circumstances. After the blind algorithm chooses an 

assignment, we calculate the assignment’s benefit in order to have the sum of all 

benefits for this approach so we can use as a parameter of comparison with our 

reasoning algorithm. 

In this case, for each experiment, we calculated the sum of benefits for both 

versions of the algorithms: the blind version and the reasoning version we are 

providing as a solution for the alarm fatigue issue. We considered each sensor 

separately to calculate the sum. The results are presented in Table 28.  

 

 

 

 

 

 

Table 28 - The final sum of benefits for all assignments made by the reasoning and the 

blind algorithms in our five experiments. 

Experiment Sensor Algorithm Number of 

alerts 

Sum of 

benefits 

1 

Temperature Blind 297 387.50 

Temperature Reasoning 305 663.08 

Heartrate Blind 449 585.77 

Heartrate Reasoning 446 855.38 

2 

Temperature Blind 639 581.09 

Temperature Reasoning 868 674.16 

Heartrate Blind 631 1302.47 

Heartrate Reasoning 881 1568.70 

3 

Temperature Blind 1289 707.13 

Temperature Reasoning 1722 787.22 

Heartrate Blind 1307 1577.44 

Heartrate Reasoning 1719 1804.46 

4 

Temperature Blind 2471 1479.34 

Temperature Reasoning 3417 1740.36 

Heartrate Blind 2431 2772.10 

Heartrate Reasoning 3473 3207.85 

5 

Temperature Blind 5005 1530.16 

Temperature Reasoning 6873 1844.85 

Heartrate Blind 4896 3900.05 

Heartrate Reasoning 6823 4638.95 
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We present below a comparison of the sum of benefits for the two 

approaches evaluated in this case study. Table 29 shows the percentage of the 

improvement we achieved for the sum of benefits we aimed at maximizing. The 

comparison column represents how much higher the sum of benefits achieved by 

our reasoning algorithm is when compared to the blind version.   

Table 29 - Percentage of the improvement of the sum of benefits we achieved by using our 

reasoning algorithm compared to the results for the blind algorithm. 

Experiment Sensor Algorithm Comparison (in %) 

1 
Temperature Reasoning 71.12 

Heartrate Reasoning 46.03 

2 
Temperature Reasoning 124.14 

Heartrate Reasoning 132.69 

3 
Temperature Reasoning 123.08 

Heartrate Reasoning 129.22 

4 
Temperature Reasoning 87.39 

Heartrate Reasoning 84.32 

5 
Temperature Reasoning 154.88 

Heartrate Reasoning 151.45 

 

 

Regarding the total of notifications received by each caregiver, we present 

below the results for the reasoning algorithm and for the blind algorithm in Tables 

30 and 31, respectively.   

 Table 30 - Notifications received by each caregiver for the reasoning algorithm in 

Experiment 2. 

Caregiver ID 
Caregiver's 

experience 

Total of 

notifications received 

5 5 260 

4 4 260 

6 4 260 

1 3 236 

9 3 183 

3 2 160 

7 2 160 

8 2 110 

2 1 90 
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Table 31 - Number of notifications of heartrate received by caregivers in Experiment 2 for 

the blind algorithm. 

Caregiver ID 
Caregiver’s 

Experience 

Total of 

notifications received 

3 2 206 

4 4 204 

2 1 199 

8 2 193 

9 3 189 

7 2 189 

5 5 188 

6 4 184 

1 3 170 

 

7.7 
Discussion 

7.7.1 
Conclusions and Future Work 

Regarding the hypothesis H6 that says that an assignment of a notification 

should prioritize the caregiver that is available and is the most experienced and 

capable of attending to it, we can assume it holds for our reasoning algorithm. This 

result can be seen in Table 15 above. In our experiments, the levels of experience 

range from 1 to 5, where 5 is the highest level and 1 is the lowest. As one can see, 

caregivers with higher levels of experience received more notifications than the 

ones with lower levels. The caregiver with the highest experience (level 5) received 

260 notifications, while the one with the lowest experience (level 1) received 90 

notifications. It is important to point out that other information (i.e., inputs 4-10 

shown in Table 26) also had impact on this result. 

In turn, the results for the blind algorithm in the same Experiment 2 show 

that the caregiver that received more notifications (a total of 206) was one with a 

low level of experience (level 2), while the one with the highest level of experience 

was only the 7th caregiver to receive more notifications within a group of 9.  

This result means that, compared to the random strategy  for assignments, 

our reasoning algorithm achieved a better result in terms of prioritizing the 

assignments we wanted to make based on our defined criteria: patient’s severity, 

the distance between caregivers and patients, caregivers’ experience, the probability 
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of a notification to be false, and the number of notifications caregivers have 

received. It is important to point out that our reasoning algorithm had taken into 

account all of these criteria to calculate the best benefit for an assignment, even 

though we chose the caregivers’ experience parameter to illustrate that we achieved 

our goal in our prioritization task.  

The hypothesis H7 analyzed in this case study (that says that the assignment 

of notifications to caregivers should be limited to his/her capacity of receiving 

notifications) was also confirmed, since for our reasoning algorithm we limited the 

number of notifications a caregiver can receive (Capacity(c)) in each experiment in 

order to respect this constraint. In Experiment 2, the maximum number of 

notifications of heartrate that a caregiver could receive was 260. As we can see in 

Table 30, there is no caregiver with more than 260 notifications received. In fact, 

after caregivers 5, 4, and 6 (i.e., CaregiverID=5, CaregiverID=4, and 

CaregiverID=6) had reached their capacity, the algorithm made them non-available 

to receive other notifications, and this constraint was respected by the system in all 

our conducted experiments. 

As future work, we are planning to evolve our reasoning algorithm to deal 

with resource negotiation, in the sense that, if we reach a situation where all 

caregivers are non-available to receive more notifications (i.e., if all of them reach 

their capacity), we can start a negotiation for new resources. The idea is to ask for 

members of other caregivers teams to be allocated in teams that are over their 

capacity to respond by doing all of the negotiation process automatically through 

the system.  

Another future plan is to evaluate the distribution of the notifications to the 

caregivers’ teams made by the algorithms. We expect that our solution may offer a 

better distribution of notifications compared to the blind version. Therefore, we aim 

to analyze the results of our experiments in order to confirm our expectations.  
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8 
Final Remarks and Future Work 

Alarm safety is a complex problem to solve, influenced by a number of factors 

that extrapolate technology challenges and limitations, such as human influences, 

difficult patient conditions, a wide variety of environmental conditions, and even 

staffing cultures (Keller, 2012). Alarm hazards are still a big challenge for members 

of the healthcare teams in ICUs. As practice settings continue to become more 

technology driven, effective interventions for alarm hazards in ICU settings are 

crucial. Feasible strategies should be provided in order to allow nurses to respond 

to the call to ensure patient safety in an increasingly complex care environment 

(Tanner, 2013).  

As healthcare units become more dependent upon monitoring devices for 

patient care purposes, the alarm fatigue issue has to be addressed as a major concern 

for the healthcare team, as well as to enhance patient safety. Nonetheless, although 

alarm safety is a critical issue that needs to be addressed to improve patient care, 

hospitals have not given serious consideration to the manner in which their staff 

should respond to clinical alarms.  

The lack of use of any intelligent filter to detect recurrent, irrelevant and/or 

false alarms before alerting healthcare providers can culminate in a complex and 

overwhelming scenario of a sensory overload for the medical team.   

This thesis proposes a new approach to cope with the alarm fatigue problem. 

The solution we provide to manage this undesirable issue uses an automatic 

reasoning mechanism to decide how to notify caregivers about anomalies detected 

by a patient monitoring system where a large number of alarms might lead to alarm 

fatigue.  

8.1  
Main Contributions 

The main contributions described in this thesis are:  
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1. An architecture for health systems that support patient monitoring, 

notification, and reasoning capabilities;  

2. A model to support reasoning algorithms that decide how to notify 

caregivers to avoid alarm fatigue without compromising patient 

safety;  

3. A reasoning algorithm that specifies how to notify caregivers by 

deciding whether to aggregate a group of alarms;  

4. A reasoning algorithm that specifies how to detect false alarms and 

notify caregivers with an indication of false alarm probability;  

5. A reasoning algorithm to decide who is the best caregiver to notify 

within the set of available caregivers in an ICU. 

Regarding the third contribution, we demonstrated through our experiments 

that providing a reasoning system can reduce the notifications received by the 

caregivers by up to 99.3% of the total alarms generated. These experimental results 

strongly suggest that this reasoning algorithm is a useful strategy to avoid alarm 

fatigue.  

In the fourth contribution, we showed that the Reasoner entity was able to 

calculate FAP values to alarms based on false alarm indicators in order to reason 

about whether to notify caregivers with a FAP label indication without putting 

patients in risky situations. Experiments were conducted to demonstrate that we 

could reason about how to detect false alarms by analyzing alarm-context 

information.  

In our fifth contribution, we showed that our reasoning algorithm achieved 

better results in terms of assignments prioritization when compared to the blind 

strategy of notification assignments. We defined the following prioritization 

criteria: caregivers’ experience, probability of a false notification, patient’s 

severity, distance between caregivers and patients, and number of notifications 

caregivers have already received. We demonstrated that our algorithm prioritized 

the caregivers that were the most capable of attending to the notification within the 

group of available ones. The results of our experiments showed that, in our 

simulated environment, caregivers with higher levels of experience received more 

notifications than the ones with lower levels of experience. 
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8.2  
Future Work 

As a future plan, we aim at evolving our solution provided to reason about 

how to detect false alarms based on alarm-context information. We aim to support 

an optimized version of our reasoning algorithm that calculates the optimal 

FAP_NOTIF_MIN based on the real-time volume of alarms triggered in an ICU. 

Another plan is to develop a machine learning-based algorithm capable of 

predicting both FAP and FAP_LABEL based on a dataset that contains the ICU 

information history, such as context information about patients’ conditions, sensors, 

and alarms. The idea is to provide a reliable classification system in which 

caregivers may trust so the FAP label added to the notification can help them 

prioritize their work, especially when they are under alarm fatigue conditions.  

Another future work is to evolve our reasoning algorithm about who to notify 

to deal with resource negotiation, in the sense that, if we reach a situation in which 

all caregivers are unavailable to receive more notifications (i.e., if all of them reach 

their capacity), we could start a negotiation for new human resources. The idea is 

to ask that members of other caregivers teams be allocated to teams that are over 

their capacity to respond to alarms, where all of the negotiation process would be 

done automatically through the system.  

Our last future plan is to evaluate the distribution of the notifications to the 

caregivers teams made by the reasoning algorithm that decides who to notify. We 

expect that our solution may offer a better distribution of notifications compared to 

the blind version. Therefore, we aim to analyze the results of our experiments in 

order to confirm our expectations.  

Note that our system is experimental and does not consider security, 

something that needs to be taken very seriously in an operational healthcare alarm 

system. 
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