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Abstract 
 

Bassous, Guilherme Fonseca; Calili, Rodrigo Flora (Advisor). 

Development and validation of a low-cost data acquisition system for 

very short-term photovoltaic power forecasting. Rio de Janeiro, 2019. 87 

p. Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia, 

Pontifícia Universidade Católica do Rio de Janeiro.  

 

The rising adoption of renewable energy sources means we must turn our eyes 

to limitations in traditional energy systems. Intermittency, if left unaddressed, may 

lead to several power quality and energy efficiency issues. The objective of this 

work is to develop a working tool to support PV energy forecast models for real-

time operation applications. The current paradigm of intra-hour solar power 

forecasting is to use image-based approaches to predict the state of cloud 

composition for short time-horizons. For a more accurate model, it is also necessary 

to use deterministic components such as temperature and angle of incidence on the 

panels in addition to the stochastic effect of clouds. Since the objective of intra-

minute forecasting is to address high-frequency intermittency, data must provide 

information on and surrounding these events. For that purpose, acquisition by 

exception was chosen as the guiding principle. The system performs power 

measurements at 1 Hz frequency and whenever it detects variations over a certain 

threshold, it saves the data 10 s before and 4 s after the detection point. After post-

processing, this data was fed into a multilayer perceptron neural network to 

determine its relevance to the forecasting problem. With a thorough selection of 

attributes and network structures, the results show very low error with a normalized 

good fitting with R2 greater than 0.93 for both input variables tested with a time 

horizon of 60 s. In conclusion, the data provided by the acquisition system yielded 

relevant information for forecasts up to 60 s ahead. 

 

Keywords  

 

Metrology; Photovoltaic; Forecast; Sky images; Neural networks;   
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Resumo 
 

Bassous, Guilherme Fonseca; Calili, Rodrigo Flora. Desenvolvimento e 

validação de um sistema de aquisição de dados de baixo custo para 

previsão de curtíssimo prazo da potência fotovoltaica. Rio de Janeiro, 

2019. 87 p. Dissertação de Mestrado – Programa de Pós-Graduação em 

Metrologia, Pontifícia Universidade Católica do Rio de Janeiro.  

 

Dado o recente aumento da adoção de fontes renováveis de energia, é 

essencial reavaliar os sistemas tradicionais de energia. A intermitência pode causar 

diversos problemas ligados à qualidade e eficiência energética. O objetivo desta 

dissertação de mestrado é desenvolver uma ferramenta capaz de subsidiar modelos 

de previsão solar para aplicações visando a melhoria da operação em tempo real. O 

atual paradigma de previsão solar sub-horária consiste em usar imagens celestiais 

para prever a cobertura nebulosa para curtos horizontes temporais. Visando 

desenvolver um modelo mais exato, é necessária a utilização de componentes 

determinísticos, como a temperatura e o ângulo de incidência dos raios solares, em 

conjunto com a modelagem dos efeitos estocásticos das nuvens. Visto que o 

objetivo da previsão sub-minuto é permitir que se lide com variações de alta 

frequência, os dados devem possuir informação condizente com estas frequências. 

Por esse motivo foi feita a coleta de dados por exclusão. O sistema captura dados a 

cada 1 s e, quando detecta uma mudança suficientemente grande na potência do 

painel, salva essa informação, 10 s para trás até 4 s à frente da perturbação 

detectada. Os dados, depois de pré-processados, foram usados para treinar uma rede 

neural para determinar a relevância dos dados. Com cuidadosa seleção de atributos 

e arquitetura de rede, o modelo apresentou boa regressão com R2 maior que 0.93 

para ambas variáveis testadas com horizonte de 60 s à frente. Concluindo, portanto, 

que os dados obtidos são relevantes para previsões de até 60 s à frente. 

 

Palavras-chave 

 

Metrologia; Fotovoltaica; Previsão; Imagens celestiais; Redes neurais;  
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The most exciting phrase to hear in science, the one that heralds 

the most discoveries, is not "Eureka!" (I found it!) but “That's 

funny...” 

 

 Isaac Asimov
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1 
Introduction 

In the past few decades the world has experienced considerable growth in 

environmental awareness, especially regarding climate changes. This rise, allied 

with an ever-increasing population and limitations to fossil fuels, stimulates the 

development of Renewable Energy Systems (RES). In order to reduce greenhouse 

gas emissions, energy matrices must be composed of more low-carbon sources as 

opposed to the current fossil-reliant paradigm. Solar Photovoltaic (PV) and wind 

are the future of energy systems if the world is to meet the goals set by the Paris 

Agreement (UNFCCC1, 2015; IEA, 2018). 

However, each of those energy sources has its own limitations, such as 

geographical location and unreliability, mostly regarding weather. In the case of 

solar energy, particularly PV energy conversion to produce electricity, it possesses 

high variability from various sources (e.g. weather, Earth’s rotation and translation 

movements). 

Solar energy’s inherent intermittency creates several economical, technical, 

and political barriers against larger penetration (Can Şener et al., 2018; Denholm & 

Margolis, 2007; Reddy & Painuly, 2004). Most of the variability components are 

deterministic in nature, which means they can be easily forecasted and addressed, 

provided it is technically possible. 

One of the most detrimental variability components is the presence of clouds, 

which filter the solar radiation and decrease the amount of energy available for 

photovoltaic conversion. Particularly on days with partial cloudiness and fast 

moving clouds, the insolation variation in one solar plant output can reach well over 

50 % in one minute (Dragoon & Schumaker, 2010; Mills & Wiser, 2010). These 

fast variations in such a short time may cause technical problems in plant and grid 

operation, such as voltage variations and current harmonics (Bessa et al., 2014; 

Denholm & Margolis, 2007; Karimi et al., 2016; Liang, 2016; Reddy & Painuly, 

                                                 
1 United Nations Framework Convention on Climate Change 
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2004). In order to address these variations, it is necessary to forecast them. In the 

work done by Mills & Wiser (2010), they stressed the need for power system 

operators to be able to address generation and load profiles over short time-scales 

due to the stochastic variations caused by fast cloud transients. Numerous methods 

for short-term insolation or power forecasting exist, however, for plant and grid 

operation, conventional statistic forecasting methods based on time series are not 

well suited (Diagne et al., 2013). The most widely used physical methods for short-

term predictions are sky-image based (Sobri et al., 2018).  

A human being is capable of seeing clouds, tracking their movements and 

visually estimating where they will be in a couple of seconds, perhaps even minutes. 

Sky-image based forecasting methods follow the same principle, where the camera 

represents the observer, and the computer represents their brain, capable of 

detecting, tracking and estimating clouds’ positions in a near future. However, 

unlike a human’s prediction, cameras and computer transform all the information 

from a sky image into numerical data. Computer vision is the field responsible for 

translating visual observations from the world (i.e. images) into useful numeric 

data, which can be used for detecting and classifying clouds (Cazorla et al., 2015; 

Chow et al., 2011; Tingting et al., 2015), estimating their speed and direction of 

movement (Chow et al., 2015; West et al., 2014; Wood-Bradley et al., 2012; Xu et 

al., 2015), and deriving new information such as insolation on ground level or PV 

power (Chow et al., 2011; Sobri et al., 2018). 

With this data it is possible to predict PV output in short term and to start 

addressing solar variability in PV plant operations. This can help reach smoother 

power curves for plants in partial cloudiness with fast transients and consequently 

increase solar PV power’s reliability, quality, effectiveness and adoption (Diagne 

et al., 2013; Mills & Wiser, 2010). 

The forecasting problem can be divided in two key issues: (i) how to estimate 

PV power from sky images; and (ii) how to forecast the position of the clouds. By 

using supervised machine learning methods such as Artificial Neural Networks 

(ANN or simply NN), it is possible to estimate values based on input data, provided 

there is a relationship between the input and output data. As for forecasting clouds’ 

positions, there are several methods for detecting and tracking objects, some 

specifically used for sky-image based applications (Chow et al., 2015; West et al., 

2014; Wood-Bradley et al., 2012; Xu et al., 2015). 
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Stepping from a broad view on the issue to a more focused and local scope, 

Brazil has seen exponential growth in solar PV energy in the past two decades. 

Especially in the past decade, going from 57.8 kW in 2009 to 15.4 MW in 2014 and 

2.2 GW by August 2019 (ANEEL, 2019), being projected to reach 4 GW by 

December 2023 (ONS, 2019). 

All these non-dispatchable2 sources have started to concern the National 

Electric System Operator (ONS) regarding security of the energy supply, especially 

on the North-eastern region of the country, where most solar farms are situated 

(ONS, 2018, 2019). Fortunately, regarding both yearly seasonality of renewable 

sources and daily behaviour of wind vs. solar, all sources complement each other 

(ONS, 2019). The main issue lies with intra-hour variability, making it difficult to 

plan ahead and being heavily dependent on local weather and micro-climate (ONS, 

2018). 

Short-term PV forecast for operational purposes might prove to be the solid 

foundation on which solar energy may grow to its full potential. It is a complex 

problem but with the proper tools, i.e., computer vision and machine learning, it 

should prove to be a feasible task.  

During the development of this master’s dissertation, two papers were 

conceived and submitted to international conferences. Their full texts are included 

in the annexes of this dissertation. 

 

1.1.  
Research problem 

With the growing use of solar PV energy, new technical issues are bound to 

arise, and energy quality and security are likely to pose new challenges to further 

PV energy adoption. Having in mind the two key issues mentioned in the previous 

paragraphs, the main question to be answered by this master’s dissertation is: 

“How to obtain pertinent and reliable data suitable for intra-hour photovoltaic 

power forecasting, in order to improve plant and grid operation?” 

 

                                                 
2 The dispatchability of an energy source is whether a given generator of that source can be 

turned on or off as well as increase or decrease power output based on energy demand. The dispatch 

is made by the electrical system operators. 
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1.2. 
Motivation 

Due to the increasing share of PV energy on the distribution system, technical 

constraints such as energy quality and high frequency intermittence in power supply 

are bound to arise (Bessa et al., 2014; Denholm & Margolis, 2007; Dragoon & 

Schumaker, 2010; Karimi et al., 2016; Liang, 2016; Mills & Wiser, 2010). 

To be able to take the fullest advantage possible from RES, especially PV 

energy, forecasting techniques must be further advanced to successfully address the 

intermittency and uncertainty. According to Diagne et al. (2013), several models 

are able to make solar irradiance predictions within temporal and spatial resolutions 

high enough to produce useable information for plant operation. However, of these 

models, only sky image methods are able to use in situ physical information 

pertaining to cloud movement. For computer models, variability due to cloud 

transients has been inherently stochastic (Mills & Wiser, 2010), but the use of 

images change that aspect. 

Such as a human being is capable of knowing when a cloud will obscure the 

sun, so are computers, provided they can “see” in the same way as humans do. The 

field of computer vision is responsible for allowing machines to extract useful 

information and data from images. 

With more forecasting capabilities, PV plants, which have mostly operated 

passively in response to instant insolation, can employ more active solutions to 

problems due to high variability. More control capability means more efficiency, 

less barriers for adoption and more overall competitiveness of PV energy. 

Brazil’s energy system operator has already started expressing concern 

regarding fast expansion of non-dispatchable sources, such as PV plants (ONS, 

2018). With solar energy expected to reach 2 % of installed capacity by 2023, and 

because most solar farms are located on the North-eastern region, ONS fears they 

might negatively impact grid security (ONS, 2019). Without reliable and affordable 

means to forecast solar energy variations to meet operational time-horizon 

constraints, adoption of solar energy will be thwarted by the necessity of providing 

excessive backup power. 
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1.3.  
Objectives: general and specific 

To answer the proposed question, the main objective of this work is to 

develop a working tool to support PV energy forecast models for real-time 

operation applications. To achieve the main goal, the following specific objectives 

must be reached: 

• Identify the main detrimental technical factors to intensive PV energy 

adoption; 

• Survey the tools capable of estimating PV conversion in real-time; 

• Determine which of those tools is best suited to accurately estimate 

PV conversion in real-time; 

• Develop a data acquisition system capable of providing the required 

data for high-frequency PV modelling; 

• Test the data acquisition system in situ; 

• Analyse the acquired data to determine its relevance to the issue at 

hand; and 

• Validate the results provided by the data acquisition system using a 

suitable model for PV conversion forecast. 

 

1.4.  
Classifying the research 

1.4.1.  
Regarding the ends 

The research resulting in this master’s dissertation can be considered 

descriptive, methodological, and applied. First, it is considered descriptive due to 

the extensive theoretical research and description of the issues and methods 

addressed. It is also methodological as it assesses the suitability of different data 

modelling methodologies and proposes its own data acquisition methodology. 

Finally, it is applied because it applies the proposed data acquisition methodology 

in a real situation, followed by the chosen data modelling technique aiming to 

validate it for real world applications. 
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1.4.2.  
Regarding the means of investigation 

In order to achieve the end results, the research means are bibliographical, 

experimental, and ex post facto in nature. Bibliographical due to the extensive 

bibliographical survey required to determine the methodology, the variables, and 

learning models to be used. It is heavily experimental for it revolves around 

acquiring real-world data and using it to generate relevant information on solar 

variability. And the final validation of the proposed model and variables for 

forecasting make it ex post facto as well. 

 

1.4.3.  
Regarding the nature of the research 

The research is quantitative in nature, given it will use real-world numeric 

data. 

 

1.5.  
Methodology 

For visual clarification of the main phases and steps taken throughout the 

research leading to this dissertation, a concise sketch is presented in Figure 1.
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Figure 1 - Research sketch.
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On the first phase, or exploratory phase, a survey of the literature pertaining 

to short-term solar forecast was conducted in order to determine possible models 

and variables to be used. After setting the direction in which to follow, it was 

necessary to limit the depth and breadth of the scope while always having in mind 

the quality of the work to be done and the expected results. 

With the experimental roadmap and data acquisition system designed and 

developed, the next step was to start the measurements. Since the initial data 

provided was too raw to provide any insight, some post-processing and organizing 

was necessary to start implementing the selected model and analysing the results in 

order to validate the choices made on the exploratory phase. With the results, it was 

then possible to draw conclusions and make recommendations based on what was 

learned and new questions that had arisen during the development of this work. 

Going deeper into the exploratory phase, certain conceptual milestones were 

required before moving ahead with the research. Figure 2 presents these milestones 

that laid the foundation of the applied phase. They were split into: base concepts 

that guided this work; empirical studies from which to draw invaluable insight into 

testing the system and model; the steps taken in order to choose what data 

acquisition and modelling tools were most prone to yield solid results; and finally 

the culmination of the previous steps in the applied phase.
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1.6.  
Structure 

This dissertation is divided into five chapters including this introduction and 

two annexes. 

Chapter 2 presents the photovoltaic concepts that cause the limitations 

addressed in this work. It is divided in five subsections: 1) a brief explanation of 

PV conversion; 2) enumeration of the short-term variability-originated problems 

that hinder the adoption of PV energy; 3) role of short-term forecasts in reducing 

problems caused by high-frequency variability; 4) an introduction to short-term 

solar forecast models; 5) brief history, and state of the art in solar forecasting using 

sky-imagery that based the work of this dissertation. 

Chapter 3 presents the materials and methods used in this work, the 

description of the experiment and result analysis. It also contains detailed 

descriptions of the hardware assembly used in said experiments. 

Chapter 4 presents the results obtained by the experiments detailed in the 

previous chapter. This includes both the raw data obtained and more detailed 

analysis to provide information on the data acquisition system, experiment premises 

and overall regarding very short-term solar variability. 

Chapter 5 presents the conclusions reached by this master’s dissertation. 

These conclusions will hopefully help guide future work to further PV forecasting 

for plant and grid operation purposes. 

Annex 1 contains a paper presented in the 2018 International Conference on 

Energy Engineering and Smart Grids. This paper uses sky images for PV power 

estimation. 

Annex 2 contains a paper presented in the XIII SEMETRO addressing the 

information presented in Chapter 3 of this dissertation. 
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2  
Photovoltaic energy conversion and short-term forecasting 

This Chapter presents the photovoltaic concepts that lead to the limitations 

addressed in this work, starting with the theory behind PV conversion. Given the 

properties of PV conversion, in particular the lack of inertia, the following section 

addresses the limitations caused by high-frequency variability of solar irradiance 

on the panels’ surface. Lastly, the role of accurate short-term forecasting in reducing 

the impacts of fast cloud transients in the electric system is presented, in order to 

introduce the following chapter and justify the efforts in researching better ways of 

short-term forecasting of PV conversion. 

This Chapter also addresses the theory behind short-term photovoltaic 

forecasting and the necessity for high fidelity modelling in achieving accurate 

forecasting. These are all key components essential to the increase of safe and 

reliable PV usage, as seen in the previous Chapter. 

 

2.1.  
Photovoltaic conversion 

Amongst the methods for harvesting solar energy, photovoltaic (PV) 

conversion is the most used for generating electricity. With an estimated 402 GW 

installed capacity by 2017 it is also the leading added capacity in the world with the 

addition of 98 GW in 2017 alone (REN21, 2018).  

The energy conversion occurs when light shines on structures that present a 

junction between different semiconductor materials, the photons being partially 

absorbed and creating charge carriers. That is, the energy from the photons causes 

electrons to be excited and, provided there is enough energy, jump from the valence 

band to the conduction band, thus creating a void in the valence band. This void, 

called hole, has the behaviour of a positively charged particle and their combination 

is called electron-hole pair (Smets et al., 2016). 

If left alone, the electron-hole pair tends to return to equilibrium and will 

recombine, with the energy dissipating either through radiative or non-radiative
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 recombination. To harness this energy in the form of work in a circuit, 

semipermeable membranes must limit the flow of electrons in one direction, forcing 

them to pass through a circuit in order to recombine with the holes. The most 

common solar cell designs use n-type and p-type materials to make these 

membranes (Smets et al., 2016; Würfel, 2005).  

Crystalline silicon based solar cells are the most commonly used type, 

amounting to 90 % of the world market (IEA, 2014). These solar cells are built with 

an emitter layer, most commonly made of a thin n-type silicon layer, on top of a 

thicker p-type silicon layer, also called absorber. N-type silicon is silicon doped3 

with electron donors, becoming conductive to electrons but not holes, whereas p-

type silicon is doped with electron acceptors, becoming a hole conductor. Metallic 

contacts on each of the terminals connect them in order to generate electrical current 

with electrons flowing from the n-type terminal to the p-type, creating useful power 

in the circuit. These small cells are then connected in series and parallel to form a 

PV panel with the desired voltage and current (Smets et al., 2016; Würfel, 2005). 

PV systems contain at least a module and load on the circuit, varying in size 

and application, mainly whether the system is connected to the power grid. Off-grid 

systems are entirely dependent on solar power and may include simple loads such 

as a water pump or may have more complex design with batteries and charge 

controllers for storage, and inverters to deliver both alternating and direct current 

(AC and DC respectively). On the other hand, grid-connected systems convert the 

DC from the PV panels into AC and feed it into the grid or grid-connected homes 

and buildings. Grid-connected systems vary in size from residential installations to 

large PV power plants (Smets et al., 2016). 

To comprehend some of the limitations from PV systems, it is crucial to 

understand the behaviour of solar irradiance and its effects on photovoltaic 

conversion. The solar radiation that reaches the planet does vary, however it is not 

within the scope of this work to consider these variations which are minimal if 

compared with the main sources of variability. 

The first source for variation of solar irradiance is due to the translational 

movement of the Earth around the sun. The yearly cycle of seasons occurs, in part, 

                                                 
3 Doping is the process in which impurity atoms replace the atoms of a semiconductor. They 

can be either donors, which have more valence electrons than necessary for chemical bonding in the 

lattice, or can be acceptors, which have less valence electrons than necessary for chemical bonding. 
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due to changes in the angle of incidence of solar radiation on the planet. These 

changes are largely proportional to latitude, the furthest from the Equator line the 

harshest being the changes in the angle of incidence. 

The second source of variation happens because of the rotational movement 

of the planet. Throughout the day, for a fixed position on the globe, the angle of 

incidence, as well as the position of the sun on the sky, varies. The variation of the 

position of the sun is described by two angles, altitude and azimuth. Solar altitude, 

or elevation, is the angle between the horizontal plane where the observer is 

standing and the position of the sun. On the other hand, the solar azimuth is the 

angle between the geographical North and the projection of the sun’s position on 

the horizontal plane (Smets et al., 2016). 

Both these sources of variation are deterministic in nature and can be 

calculated by well-known equations for any given time and place. Now, getting into 

the scope of this dissertation, the behaviour of solar irradiance begins to change 

when entering the atmosphere. The atmosphere acts as a filter for the incident light, 

and its filtering behaviour depends on atmospheric composition, as well as 

obstructions along the path of travel. Until now only the broad term “irradiance” 

has been used, but when addressing the change of its behaviour due to the 

atmospheric filter more specific terms must be used to accurately represent its 

properties (Myers, 2016; Smets et al., 2016). 

Direct Normal Irradiance (DNI) represents the beam of radiation that hits the 

surface of the planet in a straight line from the sun. The remnant of the difference 

between the extra-terrestrial radiation and the DNI is what gets scattered or 

absorbed by the atmospheric components, such as gases, water molecules, particles, 

and clouds. The changes in density and presence of turbulence along the path of 

light also affects the beam radiation (Myers, 2016; Smets et al., 2016).  

Global Horizontal Irradiance (GHI) is the radiant flux (in watts) reaching a 

certain horizontal area (thus given in Wm-2). Given that the DNI travels in a fixed 

direction the beam will not necessarily be perpendicular to a horizontal surface, and 

according to Lambert’s law (Myers, 2016), the radiant flux per unit area (Wm-2) on 

a given surface is proportional to the cosine of the angle of incidence. In the case 

of GHI, the DNI component is dependent on the cosine of the solar elevation angle. 

The missing irradiance component of GHI is the Diffuse Horizontal Radiation 

(DHI), which occurs due to the scattering of DNI by the atmosphere. These 
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quantities can be measured by a pyranometer for GHI or DHI, if shaded from direct 

irradiance, and a pyrheliometer for DNI (Smets et al., 2016). 

 

2.2.  
Limitations of PV systems 

Since PV conversion depends on the intensity and angle of incident light on 

the panel surface, one of the main barriers to its adoption is the variability of 

insolation. Sunlight has many different components linked to its variability. First, 

not all light reaches the planet in the same way because, due to the translation 

movement around the sun, the angle of incidence in which solar rays reach the 

surface of the planet varies throughout the year, more extremely the furthest away 

from the equator line. Secondly, due to the rotation movement of the planet, light 

varies periodically, with small daily changes due to the translation movements, 

every 24 hours. 

These variations can be easily calculated and considered in energy resource 

management planning. The third variability aspect is due to atmospheric conditions 

that hinder the passage of light through it, most notably the presence of clouds and 

their strong impact on available DNI. Fast cloud transients can affect global 

insolation in a single PV plant by up to 80 % of the theoretical clear-sky insolation 

in a 1-minute interval (Mills & Wiser, 2010). This information extracted from a 1-

minute interval solar database draws attention to the need for higher frequency solar 

data in order to understand and address these fast changes in insolation due to cloud 

transients. This subject is well demonstrated in the work by Lave et al. (2015). 

The consequences from variations of this intensity and frequency may cause 

several problems on the power grid. Regardless of solar availability for PV 

conversion, the load must be met, and to achieve this there must be backup for when 

PV plants are not able to meet load demands. These backup plants increase 

operation costs for any RES, especially PV solar, which suffers the most from high 

frequency and high intensity fluctuations. Conventional generators cannot be 

expected to meet these ramps, especially in response to cloud transient events, 

resulting in energy quality issues proportional to the penetration of PV energy in 

the system and the generator profile, either distributed or concentrated (Karimi et 

al., 2016; Liang, 2016). 
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A key concept in understanding the impacts of RES variability in power 

economics is the capacity factor. It represents the amount of energy generated in 

proportion to the nominal capacity of that generator for a given period of time. The 

capacity factor plays an important role in determining the value of an intermittent 

energy source (Lamont, 2008). Due to several reasons, such as meeting ramp 

requirements and energy quality standards, intermittent sources such as solar may 

be curtailed4 in order to properly fit within grid operation (Bird et al., 2014). Energy 

curtailment negatively affects the capacity factor, which in turn results in lower 

value for that generator, reducing its attractiveness as an investment in capacity 

expansion. 

Several different energy quality issues may arise from increased integration 

of PV energy into the power grid. Among them, some are caused or intensified by 

the aforementioned high frequency variability, most notably voltage fluctuation and 

unbalance, frequency fluctuation, islanding operation challenges and stress on 

distribution transformer (Karimi et al., 2016; Liang, 2016). In order to address these 

issues and permit a larger share of PV energy, power electronics and energy storage 

systems (ESS) seem to be the most common solutions that do not involve energy 

curtailment (Denholm & Hand, 2011; IEC, 2011; Karimi et al., 2016; Liang, 2016; 

Petinrin & Shaabanb, 2016). However, to further strengthen these systems and 

generate better and cheaper power, being able to reduce the uncertainty of the solar 

resource variability is a key step, in other words, accurate forecasting of fast cloud 

transients is essential (Bessa et al., 2014; Diagne et al., 2013). 

As progressively smarter grids take the place of conventional ones, more 

control strategies will arise, being an example the scheme proposed by Maleki & 

Varma (2016), Varma & Salehi (2017), and Varma & Siavashi (2018). Smart grids 

use information and communication to improve grid operation and integration 

(Hossain et al., 2016). By having accurate short-term forecasting data available for 

both plant and grid operators, PV energy can be more reliably and cost-effectively 

adopted at a larger scale (Bessa et al., 2014). 

 

                                                 
4 Energy curtailment is an energy management technique consisting of reducing the output 

of a generator to adequate it to the grid demand. In the case of non-dispatchable sources, power 

output cannot be simply reduced, so most likely that energy will go to waste. 
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2.3.  
Reliability through forecasting  

Forecasting is essential in countless applications including energy 

management and market. As mentioned by Mills & Wiser (2010), system operators 

need better information about the stochastic behaviour of cloud-induced variability, 

to increase reliability. Several time horizons and resolutions are necessary to meet 

the demands of each specific aspect in PV energy management. The focus of this 

dissertation is on very short-term forecasting to bolster PV plant operation 

capabilities, reliability, grid integration, and grid operation in a scenario of high 

penetration. Table 1 presents the terminology regarding forecasting horizons and 

their applications. 

Table 1 – Forecast horizon categories, granularity and applications  

Category Time Horizon Granularity Applicability 

Very short-term Up to 15 min ahead Up to 1 min 

Plant operation 

Ramping events 

Power quality control 

Short-term 15 min to 1 h ahead 1 min to 5 min 
Load following 

Grid operation planning 

Medium-term 1 h to 6 h Hourly 
Load following 

Grid operation planning 

Long-term Day ahead Hourly 

Unit commitment 

Transmission scheduling 

Day ahead markets 

Source: Diagne et al. (2013); Stefferud, Kleissl & Schoene (2012) 

In the work done by Diagne et al. (2013), different irradiance forecasting 

methods are explored with the objective of proposing a small-scale insular grid 

forecasting system. Small isolated grids have less system inertia, therefore are more 

susceptible to the negative effects of RES, especially those caused by PV systems. 

Each different model available has its advantages and disadvantages and, for a 

holistic forecasting system, different models should be used in parallel.  

Persistence and image-based models fit well, for short-term forecasts, in 

terms of horizon, frequency and spatial resolution. Other statistical models, as 

Diagne et al. (2013) name it, also encompasses regression models (ARMA, 
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ARIMA, CARDS) and learning algorithms such as artificial neural networks 

(ANN). 

In recent years there has been a rise in research work on sky-image based PV 

or insolation forecasting (Barbieri et al., 2017; Schmidt et al., 2016). Sky-image 

models keep improving the reliability of very short-term forecasting, shown in the 

work done by Sobri et al. (2018). This tendency points towards the superiority of 

using sky-images over what Diagne et al. (2013) refer to as statistical models. In 

the study conducted by Kow et al. (2018) it becomes apparent just how powerful 

sky-image based forecasting can be, achieving a detection rate of over 90 % of 

power fluctuation events and mitigation of almost 80 % of power fluctuation events 

with minimal energy loss. 

While being a powerful tool, forecasting alone cannot solve the issues caused 

by high-frequency variability. However, coupled with other systems, such as energy 

storage systems and power electronics, especially in progressively smarter grids, 

forecasting can be a valuable aid in increasing PV penetration (Bessa et al., 2014; 

Denholm & Hand, 2011; IEC, 2011; Karimi et al., 2016; Liang, 2016; Petinrin & 

Shaabanb, 2016; Varma & Salehi, 2017). The results presented by Kow et al. (2018) 

depict the beneficial effect that short-term forecasting can have on the operation of 

PV plants. 

Having in mind the information presented in this section, it is safe to assume 

that very short-term forecasting can have a positive impact in plant level operations 

in order to increase reliability, but also to include it in longer time-scales grid 

planning. If the variability component is reduced, solar power can be modelled as a 

more reliable power source and can even be used as a power management tool. 

 

2.4. 
Very short-term photovoltaic forecasting 

As stated in the previous section, accurate very short-term forecasting is the 

first step in adding reliability to PV plant operation. The first step in forecasting is 

to build a model that describes the behaviour of the studied phenomenon. To that 

end, many different models are capable of describing or learning the behaviour of 

PV conversion, some more accurately than others. 
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Within the statistical category used by Diagne et al. (2013), persistence 

models are the best fit for the spatial and temporal requirements of very short-term 

forecasting for a single PV plant. However, it is a naïve predictor, serving as a 

baseline for more complex models. It assumes the predicted value 𝑿̂𝒕+𝟏 to be best 

described by its value at a previous time 𝑿𝒕. In this case, the modelling and 

prediction are one and the same, it doesn’t take into consideration the several 

variables that affect the behaviour of real-world PV panels, and that is why it is 

considered a trivial predictor. 

 Still within linear models, the regression models addressed by Diagne et al. 

(2013) use historical data either from irradiance or clear-sky index to make 

predictions. While better than the previous, naïve, predictor in terms of fidelity to 

the real world, it is still unable to provide forecasts in the required time horizon and 

resolution. These models, however, fare well from 15 minutes to hourly forecasts 

(Reikard, 2009). In the 5 minutes resolution, results were mixed among the models 

tested by Reikard (2009), but the ARIMA model started to be outperformed, 

especially by neural networks. The author also pointed that the ARIMA model 

exhibited large errors at intermittent intervals, corresponding to the fast cloud 

transients that deeply impact PV reliability. These intermittent large errors are the 

events successfully predicted in the work by Kow et al. (2018). 

Switching over to the non-linear models addressed by Diagne et al. (2013), 

neural network models attempts to simulate the computational and learning process 

of the human brain (Haykin, 2008). The complexity, nonlinearity, and parallel 

computational power excel in pattern recognition and perception. The networks are 

composed of simple processing units commonly referred to as neurons. The 

network can acquire “knowledge” through a learning process that acts in the 

interconnection of the neurons, just as synapses would in a biological brain 

(Haykin, 2008). 

Neural networks, in their many architectures and sizes, are able to learn from 

data, in both supervised and non-supervised processes, and apply this knowledge to 

new data (Haykin, 2008). They are well suited to model complex problems, 

especially when involving complex relationships between the variables (Haykin, 

2008), such as forecasting energy conversion dependant on cloud passage, location, 

time and meteorological variables (Das et al., 2018; Raza et al., 2016). 
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As mentioned previously, neural networks start faring better against other 

forecast methods at higher temporal resolution (Reikard, 2009), however, by 

looking at other studies into the subject, there appears to be a time resolution 

limitation in these machine learning methods for short-term forecasts. Even in the 

most recent state of the art works with intra-hour forecasting, using time series 

prediction of irradiance or other atmospheric parameters, the minimum resolution 

is still 5 minutes (Kumler et al., 2019; Zendehboudi et al., 2018), which still falls 

short of the necessary frequency to properly characterize the local solar variability 

(Lave et al., 2015). Still within the 5 minutes time horizon, sky images can be used 

to boost forecasting accuracy when coupled with machine learning models and 

historic irradiance or power data (Pedro et al., 2018). 

The conclusion that can be drawn from the consistent number of time-series 

models limited to the 5 minutes time horizon is that the fault is in the type of data 

used to characterize the relationships involved in the high-variability of solar 

irradiance. As explained before, these models aim to predict the future state of a 

certain aspect of solar variability. The approaches using cloud tracking in sky 

images, as proposed by Chow et al. (2011) and Kow et al. (2018), add components 

of physical and geometrical modelling of cloud systems. Since the main actor in 

short-term variability is related to passing clouds, relevant information on their 

dynamic provides a more comprehensive characterization (Yang et al., 2018). 

Throughout the research process that laid the theoretical foundations of this 

dissertation, several key works stood out and greatly influenced the work developed 

here. Table 2 contains these important works in chronological order with their 

objectives, whether it is forecasting or modelling, and the materials and methods 

used in the pursuit of these objectives. 
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Table 2 – Important works that shaped this master's dissertation.  

Work Objective Materials and Methods 

Chow et al. (2011) Forecast of GHI from 30 s to 5 min ahead 

Sky images obtained from a Total Sky Imager (TSI) every 30 s 

Clear Sky Library (CSL) + Sunshine Parameter + Red-Blue Ratio (RBR) cloud 

classification 

Cloud Tracking through Cross-correlation 

GHI deterministically calculated 

Gohari et al. (2013) 
Forecast of Clear Sky Index up to 15 min 

ahead in 30 s intervals 

Comparison between TSI and UCSD-developed USI 

Sky images every 30 s + Irradiance measurements every second 

Geometric cloud tracking  

Solar ray tracing 

Chu et al. (2013) 
Forecast of 1-min-average DNI 5 min 

and 10 min ahead  

TSI images every 20 s + DNI every 30 s 

CLS + RBR adaptive threshold cloud classification 

Cloudiness indices from gridded image + time lagged DNI as inputs for NN 

Marquez & Coimbra (2013) 
Forecast of 1-min-average DNI 3 min to 

15 min ahead 

TSI images every minute + 30 second averaged DNI 

Cloud tracking using Particle Image Velocimetry software 

Hybrid threshold algorithm for cloud pixel classification 

Grid of cloudiness indices used to deterministically calculate DNI 

Quesada-Ruiz et al. (2014) 
Forecast of 1-min-average DNI from 3 

min to 20 min ahead 

TSI images every 20 s + 1 min averaged DNI  

Hybrid threshold algorithm for cloud pixel classification  

Cloud tracking using grid cloud fraction change 

DNI estimation using grid cloud fraction 

West et al. (2014) 

Forecast of DNI from 0 min to 20 min 

ahead in 10 s resolution and updated 

every 10 s 

Sky images + DNI every 10 s 

Cloud pixel detection using NN 

Cloud tracking through pixel-wise optical flow 

Image regions averaged and total cloudiness as feature to be forecasted and derived into 

DNI 

Chu et al. (2015a) Forecast of 10 min ahead GHI and DNI 

Images from 2 sky cameras every 60 s + Irradiance every 30 s 

Adaptive threshold cloud detection  

Gridded cloudiness + time lagged irradiance as inputs for NN 

Alonso-Montesinos & Battles (2015) Modelling of GHI, DNI, and DIF 
TSI images every 60 s + GHI + DNI every 60 s 

Correlations of digital image channels to model irradiance 
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Table 2 – Important works that shaped this master's dissertation (cont.) 

Alonso-Montesinos et al. (2015) 
Forecast of GHI, DNI, and DIF from 1 

min to 180 min at 15 min resolution 

Cloud tracking using cloud motion vectors (CMV) 

Pixel-wise cloud detection 

Pixel-wise irradiance using correlation of digital channel information 

Cazorla et al. (2015) Methodology for cloud detection 

SONA sky imager + GHI + DIF 

Multi-exposure (High Dynamic Range – HDR) images every 5 min 

Adaptive RBR threshold method for cloud detection 

Chu et al. (2015b) 

Forecasting of prediction interval for 1-

min-average DNI 5, 10, 15, and 20 min 

ahead 

Sky images provide parameters for hybrid model 

Hybrid estimation/forecast model based on bootstrapped-ANN selected by SVM 

classifier using mean RBR, RBR standard deviation and entropy + time-lagged DNI and 

DIF measurements as inputs 

SVM for sky classification and model selection (high vs low cloud-derived variability) 

Chu et al. (2015c) 
Forecast of PV power 5, 10, 15 min 

ahead 

2 TSI providing images every 30 s 

3 methods as inputs for ANN reforecasting (deterministic based on cloud tracking, 

ARMA, and kNN) 

Preliminary forecast by one of the 3 methods followed by reforecast using ANN to 

enhance performance 

Genetic algorithm to select ANN inputs among several time-lagged power 

measurements and preliminary power forecasts for each of the horizons 

Lipperheide et al. (2015) 
Forecast of power ramp events 20 s to 

180 s ahead with 20 s resolution 

1 Hz power data from PV panels used in 4 different methods 

Persistence and ramp persistence forecast based on detection from PV panels within 

plant 

Cloud speed persistence forecast based on cloud motion vectors detected by PV panel 

power fluctuation 

Second order auto-regressive forecast model based on the modified covariance method 

Pedro & Coimbra (2015) 
Forecast of GHI and DNI from 5 to 30 

min ahead 

5 min averaged irradiance data 

Digital image channel individual information and relationships’ properties such as mean, 

standard deviation and entropy 

kNN forecast model with images vs without images vs persistence 

Xu et al. (2015) 
Forecast of GHI from 1 min to 15 min 

ahead 

TSI images every 20 s 

complex cloud detection and tracking 

Pixel-wise classification using RGB values, RBR, and Laplacian of Gaussian (LoG) 

Cloud type classification through texture metrics and kNN classifier 

Comparison of persistence, linear regression and Support Vector Regression (SVR) with 

image inputs and NWP variables 
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Table 2 – Important works that shaped this master's dissertation (cont.) 

Cervantes et al. (2016) 
Forecast of 5 min ahead DNI 

negative ramp events 

Low-cost sky-imager 

Cloud detection through RBR 

Cloud tracking with optical flow 

Shadow mapping using Cloud Base Height (CBH) data 

Mejia et al. (2016) Cloud optical depth modelling 

2 USI providing images every 30 s 

Estimation of irradiance from calibrated pixel values 

Usage of deterministic models to obtain optical depth from digital image channels, solar 

position, pixel position and clear-sky library 

Rana et al. (2016) 
Forecast of PV power from 5 min to 

60 min ahead with 5 min resolution 

5 min power average + meteorological data 

Univariate (solely power measurements) vs multivariate models NN ensemble vs SVR vs 

persistence 

Sanfilippo et al. (2016) 
Forecast of 1-min-average clearness 

index from 1 min to 15 min ahead 

GHI, DNI, and DHI measurements every 60 s 

Modelling of solar zenith-independent clearness index 

SVR, persistence and autoregressive models of different orders used for forecasting 

Schmidt et al. (2016) 

Forecasts of GHI from 15 s to 25 min 

GHI forecasts in grid form for the 

surrounding area, updated every 15 s 

with 15 s resolution 

Sky images every 15 s + GHI every 1 s from 99 pyranometers + CBH measurements 

averaged over 10 min 

Area of study of 10 km x 12 km 

RBR with clear-sky images for cloud pixel classification 

SVC cloud type classification from several features 

CMV cloud tracking 

Soubdhan et al. (2016) 
Forecast of PV power and GHI 1, 5, 

10, 30, 60 min ahead 

PV power data every 1 s + percentage cloud cover + ambient temperature + GHI every 1 s 

Persistence and smart persistence baselines 

Forecasting by Kalman filter with initialized parameters using Expectation-Maximization 

(EM) algorithm vs Auto Regressive (AR) estimation 

Comparison between with and without exogenous inputs 

Ai et al. (2017) 
Forecast of 30-s-average GHI 1, 2, 3 

min ahead 

Sky images every 30 s 

SVM-determined clear-sky model 

Adaptive threshold cloud detection 

Optical flow cloud tracking 

GHI deterministically determined using cloud fraction and clear-sky model 

Blanc et al. (2017) 

Forecast of 1-min-average DNI map 

15 min ahead with up to 10 m x 10 m 

spatial resolution 

Stereoscopic sky cameras providing images every 30 s 

CBH estimation from stereography 

Cloud layer CMV for each class of altitude 

Estimation of projection-pixel-wise DNI using beam clear-sky indexes computed per class 

of cloud combined with physical and geometrical information   
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Table 2 – Important works that shaped this master's dissertation (cont.) 

Cheng (2017) 
Detection of irradiance ramp down 

events 5, 10, 15, and 20 min ahead 

Sky images every 60 s + 1 min averaged GHI 

Cloud detection and tracking through feature point clusters  

Elsinga & Van Sark (2017) 

Forecasts of 1 min average GHI from 

1 min to 30 min ahead for multiple 

sites 

202 rooftop PV systems acting as a sensor grid 

PV power data averaged every 1 min from inverter data every 2 s, then converted into GHI 

Hourly interpolated ambient temperature deterministically calculated 

GHI converted into clearness index 

Peer-to-Peer (P2P) forecasting method using correlations between the rooftop PV systems 

to determine time lag between correlated sites 

Ni et al. (2017) 
Forecast of power interval 5 min 

ahead 

Ensemble of single layer feed-forward NN (weights assigned using a least squares method 

in 1 step) 

Data from 3 kW micro-grid with 3 PV systems + photosynthetically active radiation + 

ambient temperature + relative humidity + wind speed + wind direction + GHI and 

precipitation (all averaged over 5 min) 

Richardson et al. (2017) Forecast of GHI 10 and 15 min ahead 

Cloud detection using RBR 

Optical flow cloud tracking 

Ray tracing for GHI forecast using a fixed ramp rate and clear sky GHI 

Kow et al. (2018) 
Forecast of PV power 30 s ahead 

coupled with mitigation system 

GHI every 1 s + ambient temperature every 1 s and PV system modelled power 

Self-organizing incremental neural network (M-SOINN) with active learning for forecasting 

power 

Non-supervised method capable of forecasting power output of PV system 30 s ahead 

Kuhn et al. (2018) 
Forecast of 1-min-average GHI from 

0 to 15 min ahead 

Cloud segmentation, detection, and georeferencing using 4 sky cameras and 4-dimensional 

CSL 

Irradiance maps validated with ground irradiance sensors and shadow camera 

GHI and DNI obtained from geo-located shadow map and radiometer measurements at 

previous time steps 

Bouzgou & Gueymard (2019) 
Forecast of GHI from 5 min to 3 h 

ahead 

Mutual information feature selection from time series of recent GHI 

Extreme learning machine (ELM) for investigating the relationship between the historical 

variables and the future value, and also for determining the best combination of variables 

Kumler et al. (2019) 
Forecast of GHI 5, 15, 30, and 60 

min ahead 

Cloud albedo and fraction modelling based on GHI 

Cloud optical thickness deterministically calculated 

Forecast based on 5 min exponential weighed moving average of cloud fraction, used to 

determine albedo and GHI 
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2.5. 
Very short-term photovoltaic forecasting with sky images 

The trend in researching sky-based approaches to very short-term solar 

forecasting began with the work by Chow et al. (2011), despite not being the first 

to approach the subject (Yang et al., 2018). The goal behind it is to use physical 

information from cloud systems, extracted from sky-images captured by 

hemispheric cameras. 

Initially, researchers used already existing sky imagers developed for 

meteorological purposes other than estimating solar quantities (Yang et al., 2018). 

In more recent years, other lower-cost alternatives have been developed for the 

specific purpose of estimating solar quantities (Richardson et al., 2017; Yang et al., 

2018). These newer, specific systems are fully programmable and expandable, 

leaving room for development and expansion as well as being suitable for use with 

a plethora of different forecasting models (Cervantes et al., 2016; Richardson et al., 

2017). 

Amongst the already mentioned advantages, specifically designed systems 

have proven to yield superior results to other non-specific sky imaging systems 

(Gohari et al., 2013; Richardson et al., 2017; Urquhart et al., 2015). Most likely this 

superior performance is due to the higher data acquisition frequency which provides 

better insight into local short-term solar variability (Lave et al., 2015). Another 

significant difference is that these specific devices do not have a shadow band to 

occlude the solar disk and part of the circumsolar region. This fact positively 

impacts the amount of information available for intra-minute forecasts. 

Given these advantages presented by sky-image based forecasting, the 

experimental work developed in this dissertation has made use of this framework. 

More specific details on the sky-imaging system and experimental work are further 

explained on the next Chapter. 
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Materials and methods 

This Chapter presents and explains the materials and methods used for the 

applied phase. First is the data acquisition system developed as one of the specific 

objectives of this master’s dissertation. Following, the experimental work will be 

thoroughly explained to provide a better understanding of the resulting data and 

analysis. 

 

3.1. 
Data acquisition system 

As pointed out by Richardson et al. (2017), scientific grade sky imagers are 

far too costly to allow wide geographical dispersion, which is necessary when it 

comes to solar forecasting in larger operational scales. Therefore, the data 

acquisition system (DAS) proposed and developed in this dissertation will use 

affordable, off the shelf components in order to assess the quality of data and 

information provided. 

Following the reasoning laid by the previous Chapter, the system will be 

centred around sky images and their relationship with PV power. Subsection 3.1.1 

presents the information surrounding the hardware for the DAS. 

 

3.1.1. 
DAS hardware 

Having in mind the goal of keeping the costs low, the system is built around 

a single board computer (SBC) (Richardson et al., 2017). For this application a 

Raspberry Pi 3B+ was chosen due to low cost and easy access in Brazil, with ample 

online documentation and fully integrated and optimized Linux based systems. It 

boasts a 1.4 GHz quad-core CPU with 1 GB RAM memory, integrated wireless 

connection, General Purpose Input/Output (GPIO) pins for controlling other 

sensors that might be necessary and USB ports for connecting and controlling the 

camera.
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Moving on to the sky camera, the chosen model for this application was an 

ELP-USBFHD01M-L180 camera. It consists of only the printed circuit board 

(PCB) module with a CMOS OV2710 sensor able to provide images with 1920 

pixels by 1080 pixels resolution. This camera comes with a 180° field of view 

(FOV) C-mount lens. 

Ideally, the electrical quantity related to solar energy would be provided by 

multiple sensors in a PV power plant, however, due to the limited amount of time 

available to develop this dissertation, no plants capable of providing data at the 

required frequencies were secured. So, in order to link the sky images with a solar 

quantity, a 20 cm by 15 cm photovoltaic panel with 6 V and 1 A nominal rating at 

25° C was incorporated to the system. 

Voltage and current measurements from the solar panel were provided by an 

Adafruit INA219 DC sensor. This sensor was connected to the GPIO pins on the 

Raspberry Pi. The measurement circuit and acquisition software will be addressed 

in the following sections. 

When working with solar panels, temperature is a very important variable to 

PV conversion efficiency (Smets et al., 2016). A Maxim Integrated DS18B20 

temperature sensor was placed on the bottom of the solar panel, housed by an 

aluminium heat exchanger in contact with the panel. This ensemble was enveloped 

by a dense foam to reduce heat exchange between sensor and atmosphere, working 

to provide the best possible information on panel temperature. This sensor was also 

connected to the GPIO pins on the Raspberry Pi. 

The Raspberry Pi is supplied by a 5 V/3 A DC power supply connected to a 

110 V AC plug. Aside from the measurement components the housing units 

containing the electronic components are cooled using two computer cooling fans. 

The basic 3D model for the DAS is presented in Figure 3 to aid in visualizing the 

layout of the equipment. 
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Figure 3 – 3D model of the DAS.  

In Figure 3, the top side of the support structure holds the sky camera enclosed 

by an acrylic dome for protection from the elements, and beside it the PV panel. 

Whereas on the bottom hang two housing units, the right one contains the power 

supply and DC-DC converter, the left houses the SBC and INA 219 sensor. 

 

3.1.2. 
Measurement circuit 

As mentioned on the previous section, the DAS encompasses a voltage and 

current sensor as well as a thermometer. This section presents the measurement 

circuit with the connections between the sensors, the GPIO pins, the solar panel and 

the circuit load. To be able to generate power, the PV panel must be in a closed 

circuit with a load component. The initial goal was to use a ceramic resistor, 

however, during the testing process, when higher currents were applied to the 

resistor, it started to overheat, so a dichroic light bulb was used instead. 

The thermometer was placed under the PV panel enclosed by the fins from an 

aluminium heat exchanger pad with the flat part attached to the bottom of the panel. 

It was then covered by thick dense foam to act as a heat insulator between the 

thermometer and the environment. Both thermometer and heat exchange pad were 

assumed to possess higher heat transfer coefficients than the panel and both have 

significantly less mass, meaning that they have lower thermal inertia. This causes 

the thermometer to quickly follow changes in panel temperature, which is a key 

variable in PV conversion efficiency (Smets et al., 2016). 

Camera 

Power 

Supply Raspberry Pi 

PV Panel 
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As for the INA 219 sensor, it measures both circuit voltage and determines 

current by measuring voltage across a 0.1 Ω shunt resistor. It is capable of 

measuring voltages up to 26 V and currents up to 3.2 A at a maximum ADC 

resolution of 12 bit. Both sensors have well developed Python libraries for use with 

the Raspberry Pi, which will be presented in the next section, along with all the 

software components used by the DAS.  

Both sensors are supplied by 3.3 V DC provided by the Raspberry Pi’s 3V3 

pin. The INA 219 communicates, via I2C protocol, with the Pi through the SDA 

and SCL pins, located on the GPIO2 and GPIO3 pins respectively. Voltage and 

current are measured between the V+ connector and ground. The current enters the 

INA 219 through the V+ connector, passes through the internal measurement circuit 

and exits through the V- connector, then through the dichroic light bulb. 

The DS18B20 uses the 1-Wire communication protocol through GPIO4 pin. 

It requires a pull-up resistor of 10 kΩ to stabilize the signal when not 

communicating with the Pi. Figure 4 presents the measurement circuit schematics 

for temperature, voltage and current measurements. The green lines indicate 

connected terminals, and the camera was not included in this schematic because it 

uses a simple USB connection. 

 

DBD
PUC-Rio - Certificação Digital Nº 1621700/CA



 
 

4
0

 

 

Figure 4 – Measurement circuit schematics. 
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3.1.3. 
DAS software 

This section presents information regarding the software used for the 

measurements from both sensors and the camera. More specific numerical 

information about thresholds will be presented later, along with other experimental 

information. 

The Pi was running Raspbian Stretch, a Linux based OS specific to it, as well 

as OpenCV 4.0 and Python 3.7. OpenCV is a highly popular, open source, computer 

vision library available for several different platforms. Since the OS is highly 

optimized for use with the Python programming language, the chosen OpenCV 4.0 

distribution was for Python, as well as the libraries for both sensors. 

There exist several libraries for INA 219 and DS18B20, but amongst the most 

notorious, and with most documentation available are “pi_ina219” (Borrill et al., 

2019) and “w1thermsensor” (Furrer, 2019). These libraries facilitate the access of 

information from the GPIO pins through high-level programming languages, in this 

case Python. 

Considering the high-speed intermittency caused by fast cloud transients and 

the approximately point-like dimension of the solar panel used in the DAS, a 

frequency of 1 Hz was used for data acquisition. This high frequency has been 

proven to provide highly useful information on very short-term solar variability 

(Lave et al., 2015). One downside from such an elevated acquisition frequency is 

the sheer amount of data it is able to generate, and this may be a hindrance when 

working with images. So, in order to attempt to provide both high-frequency and 

high-quality data surrounding high-amplitude fast variations in PV power output, 

the acquired data was screened for possible variation events before being saved. 

This strategy is called acquisition by exception, it is based on the principle of: 

if there is no drastic change to the system, there is no need to record the data. This 

is not applicable to every situation, but it is most welcome when studying 

variability. In practice, the acquisition software continuously acquired data during 

daytime at 1 Hz and temporarily stored this information using a queue structure 

(first in, first out). This queue had a maximum of 10 elements at a given time, and 

for every iteration where no variation event was detected, the oldest entry was 

deleted, making room for a new set of measurements. Each element was measured 
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1 s apart and comprised one sky image, one voltage and one current measurement 

as well as the calculated power from the PV panel. 

In order to detect a variation event a moving average of the previous 3 power 

values – at t-3s, t-2s, and t-1s – are calculated and compared with the most recent value, 

t0. If there is a variation greater than a certain threshold, either up or down, the 

program enters the data saving routine. It keeps acquiring data for 4 more seconds 

– t+1s … t+4s – then it saves these 15 s worth of data as well as one temperature 

measurement representative of this period. This structure of 15 s of measurements 

is henceforth referred to as an “event”. After recording an event, the system goes 

back into listening mode in order to detect other variation events. 

The reason behind using only one temperature measurement is that if the 

system were to include temperature measurements every time step, each iteration 

would take longer than 1 s, making it impossible to reach the desired 1 Hz 

acquisition frequency. Upon testing, this did not impact the quality of the data 

generated, due to the thermal inertia from the panel. Significant changes in panel 

temperature came at much lower frequencies than 1 Hz. Figure 5 presents a 

flowchart of the decision process and data flow from the DAS software. 
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Figure 5 – Flowchart of decision process and data flow within DAS software. 
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3.2. 
Experimental phase 

In order to validate the data acquisition system, firstly it would be necessary 

to put it to use and start acquiring data, which would then be analysed in order to 

validate the designed system. The equipment was placed on a residential balcony 

located at 22.9354° S Latitude and 43.1756° W Longitude at an altitude of 46 

metres. Coordinates and altitude were obtained using Google Earth. Since the 

equipment could not be placed on the roof due to safety hazards, the balcony had to 

suffice, despite having a limited view of the sky, spanning solar position from early 

morning to about 12 h 30 min. 

As the experiment was carried out, some modifications to the program and 

physical structure of the device had to be made. Starting with the protective acrylic 

dome, due to repeated exposure to rain in the early testing phase, water managed to 

infiltrate the 3D printed support designed to hold the camera and dome. This water, 

when condensed on the dome, made it impossible to visualize the sky, rendering 

the images useless. The dome had to be removed in order to continue with the 

experiment, but the DAS could no longer be indefinitely placed outside, so it was 

removed whenever there was risk of rain. 

The official testing phase spanned from February 25th, 2019 at 9 h 21 min 48 

s to March 23rd, 2019 at 8 h 2 min 45 s. Despite the long span, records were taken 

for only 12 of those days non-consecutively due to very unstable or completely 

clear weather. Another hardware modification was the addition of a neutral density 

filter in order to darken the images and help with calibration of the camera’s 

exposure parameter. More details on the reasoning behind and results from the 

addition of the filter will be presented on the next Chapter, containing the results 

from the experiment and analysis performed on the acquired data with the goal of 

validating the acquisition system.

 

DBD
PUC-Rio - Certificação Digital Nº 1621700/CA



 

 

4 
Results and data analysis 

This Chapter presents the data obtained from the DAS testing phase, as well 

as all the analysis conducted on them. The findings resulting from several steps of 

analysis are also discussed. 

 

4.1. 
Acquired data 

Once finished, the experimental phase yielded 500 events, the distribution for 

each of the successful acquisition data distributed in days is being presented in 

Figure 6. 

 

Figure 6 – Distribution of events among successful acquisition days. 

Some example images for four different days are presented in Figure 7 to 

better contextualize the data processing steps. 
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Figure 7 – Raw images obtained on four different days. Starting top-left 

and moving clockwise: 25/02/2019 – 06/03/2019 – 14/03/2019 – 19/03/2019. 

There is a clear difference between the two top and two bottom images in 

Figure 7 due to the placement of the neutral density filter placed on the 14th of 

March. It was done for two reasons: i) to reduce the brightness of the images; ii) to 

protect the camera since the acrylic dome had to be removed. An important impact 

of its placement is seen on these images: the size of the saturated area around the 

sun is smaller, enabling to obtain more information closer to the sun. 

The first validation of the 1 Hz data is made visible by Figure 8, the plot of 

power measurements throughout the measurement period of March 14th, the day 

with most abundant data. As shown in this graph, it is important to perceive that 

lower resolutions would miss important high-amplitude and high-frequency 

variations. The graph has non-contiguous lines because of the acquisition by 

exception resulting in the previously defined events. However, some sections 

present some longer contiguous lines, that is the result of an event detection 

occurring while part of the previous event was still in the data queue resulting in 

overlapping data. 
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Figure 8 – All power measurements for March 14th. 

Next section starts introducing the data analysis processes conducted on the 

data presented here. 

 

4.2. 
Data processing and analysis 

The data processing and analysis necessary for developing this master’s 

dissertation is presented in the following subsections.  

 

4.2.1. 
Preliminary visual analysis 

In processing the obtained data, the first step was to import it into the Matlab 

environment from the text files and convert it into proper structured data. Since the 

presence of buildings in the images would only be detrimental, a simple black mask 

was applied to the images in order to remove the undesirable parts without cropping 

the images. The initial goal was to study the data within the events and perform 

very short-term forecasting based on image subtraction information. By subtracting 

images, the changes from one frame to another become apparent, and this can be 

done by using subtracting one from the other in pixel-wise operations per digital 

channel5 but capping the subtraction at zero, so the pixel values remain within the 

                                                 
5 Each digital channel is a matrix corresponding to the red, green, and blue intensities from 

the image. 
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0-255 interval. Several event samples from different days were processed using this 

image subtraction method and visually analysed. The subtraction operation was 

performed on a grayscale image obtained by converting the red, green and blue 

(RGB) channels into one “black and white” image. The goal was to be able to 

visualize the cloud border while it approached the sun, so colour information would 

not be critical. Some image subtraction examples are presented in Figure 9. In order 

to ease visualizing the differences between subtracted frames, the resulting matrix 

was thresholded at an intensity of 5, meaning any values below 5 would be 

multiplied by zero. After thresholding the contrast was increased for the values to 

become more apparent to the human eye. 

 

Figure 9 – Image subtraction results for different days with the solar 

region highlighted. 

The orange circles in Figure 9 highlight the solar region. It is possible to tell 

apart what seems to be some of the edges of the cloud formations, especially in the 

two leftmost examples, which belong to the same events as the first two images in 

Figure 8. However, those apparent edges are situated in the middle of the cloud 

formation.  

Another valuable information to be obtained from those samples is the 

difference in intensity between the two leftmost and the rightmost sample. All three 

images were subjected to the same processing, thresholding and contrast increase, 

but the rightmost example is from an image obtained after the neutral density filter 

was put into place. It may seem to provide less information to the naked eye, but 

the saturated region within the highlighted area is also smaller, meaning that the 

camera was able to obtain possibly useful information closer to the sun. For very 

short-term forecasting this may prove important to enhancing accuracy in intra-

minute forecasts. 
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These preliminary results indicated that visual information from within a 

single event with 15 s duration was insufficient to provide useful information 

despite it yielding important insight on power variations. The acquisition by 

exception is important to reduce the amount of data to be stored but might need to 

be adjusted in order to optimize the forecasting. 

In this sense, the acquired data that was originally structured event-wise was 

reframed into the calendar days, due to inter-day specificities. Thus, the 86,400 

seconds contained in each day were populated (sparsely) by the data contained 

within the events. The goal in the second phase of analysis, was to determine for 

which time horizon is it possible to obtain information from images that are 

correlated with power measurements. 

 

4.2.2. 
Correlation analysis 

As mentioned in the previous section, the original event structure was put 

aside, so for the remainder of the data analysis, it was separated only by day due to 

intra-day specificities. To determine a relevant time horizon for the correlation of 

images and power data, the first step was to bring the event information together in 

one data structure to generate interval-based data derived from the raw data. 

Generating these subsets was done by defining the time steps and then building the 

datasets for each step. For example: for a time-step of 10 s the values used would 

be the power difference between t0-10s and t0, as well as the actual measurements in 

both instants and measurement values for panel temperature at t0. For the image 

features, energy6 from a circular region of interest (ROI) around the sun was used. 

Firstly, image subtraction was performed between the two images corresponding to 

the time-step, then the energy value was calculated within the ROI of the subtracted 

image. This was done for each of the three digital image channels, red, green and 

blue.  

Due to the data being sparce, meaning it had empty gaps, some data points 

did not have a pair one time-step ahead, so these points were disregarded. Since 

cloud speed impacts cloud position between two different frames and it was an 

unknown variable, different datasets were made for different ROI raddi. The 

                                                 
6 Energy in image processing is the sum of pixel values from an image or a region of interest. 
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temperature values missing due to making only one measurement per event were 

linearly interpolated between two measured values. 

In order to determine the solar position in the image, a MATLAB-

implemented function was used to determine the solar elevation and azimuth angle 

for the measurement times and location (Koblick, 2009). With elevation and 

azimuth angles, the solar position on the image was determined by projecting the 

spherical coordinates of the sun onto the sensor plane using simple trigonometric 

functions. Figure 10 presents a draft of the ROI, not to scale. 

 

 

Figure 10 – Example image with draft of the ROI used for calculating 

energy metrics. 

In total, there were 84 combinations of 12 time steps with Δt = {1; 2; 5; 8; 10; 

15; 20; 30; 45; 60; 75; 90} seconds and 7 ROI radii r = {25; 50; 75; 100; 150; 200; 

250} resulting in 84 datasets (12 x 7). The indexes corresponding to each 

combination are shown in Table 3.  
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Table 3 – Indexes corresponding to each combination of Δt and ROI 

radius. 

  Δt 

 
 

1 2 5 8 10 15 20 30 45 60 75 90 
R

O
I 

R
A

D
IU

S
 

25 1 8 15 22 29 36 43 50 57 64 71 78 

50 2 9 16 23 30 37 44 51 58 65 72 79 

75 3 10 17 24 31 38 45 52 59 66 73 80 

100 4 11 18 25 32 39 46 53 60 67 74 81 

150 5 12 19 26 33 40 47 54 61 68 75 82 

200 6 13 20 27 34 41 48 55 62 69 76 83 

250 7 14 21 28 35 42 49 56 63 70 77 84 

 

For each of these datasets, the correlation coefficients were calculated for 

each combination of the 2 target variables (power at t0: P0; and power difference 

between t0 and t0-Δt: ΔP) with the 5 selected input variables (power at t0-Δt: P-1; 

temperature at t0: T0; and ROI energy difference between t0 and t0-Δt for each digital 

channel). Correlation coefficients measure linear proportionality in variations 

between two variables, so are useful for identifying variables with similar 

behaviours, provided their relationship is linear.  

The correlation values between power at t0 (P0) and the 5 input variables are 

shown in Figure 11. 

 

Figure 11 - Correlation between power at t0 (P0) and input variables (P1, 

T0, Red, Green, and Blue energy differences). 
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The horizontal axis represents the index from each combination of Δt and 

ROI radius aforementioned. The image attributes present negative correlation 

coefficients, which means that their relationship to power at t0 (P0) is inversely 

proportional, but since the values are lower in module than 0.4, they do not boast 

good correlation.  

Temperature values also are weakly correlated to P0. Power at t0-Δt  (P-1) is 

strongly correlated to P0 at shorter time intervals, and converges to zero as Δt 

increases. Another important aspect that can be observed are the peaks for ROI 

radius = 75 pixels. 

The correlation values between ΔP (P0 – P-1) and the 5 input variables are 

shown in Figure 12. 

  

Figure 12 – Correlation between ΔP and input variables (P-1, T0, Red, 

Green, and Blue energy differences). 

In the case of ΔP the correlation with the input variables increases with Δt 

with the exception of temperature. For all variables correlation vanishes for Δt = 90 

s. For the first five Δt values, the image attributes present a behaviour similar to that 

of the same variables with P0, but with an ascending trend. Overall the correlation 

levels between ΔP and the input variables are higher than for P0. 

The next step in analysing this data is to create regression models to determine 

the practical viability of the system and data. 
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4.3. 
Data validation 

The final process was to validate the data acquired by the DAS. First, in order 

to define a baseline regression performance, the data was used to perform a 

multivariate linear regression to model P0 and ΔP as a function of: P-1, T0, and the 

image attribute of the blue channel, previously introduced. Only one channel (blue) 

was used due to a colinearity issue that could adversely affect the model regression.  

The coefficient of determination (R2) is a measurement of how well the model 

represents the data used for regression. The results of the linear regressions all had 

low coefficients of determination, even if they had low errors due to extremely low 

variation rates. This was in line with the findings from the correlation analysis, 

where for shorter time intervals, P0 and P-1 had high correlation coefficients. This, 

however, is not sufficient to provide a good regression model. The other variables 

were statistically insignificant to the model, despite being theoretically relevant. 

Since the linear model was not able to properly represent the data, given the 

theoretical relevance of the variables, a non-linear model would probably fare better 

in representing this data. This led to the following step, training a non-linear model 

with the same data and comparing it to the linear model. For this step, the chosen 

model was a regression neural network. 

Artificial neural networks aim to mimic a brain’s neuronal structure by 

assigning weights to the individual interconnections between neurons, and thus are 

capable of solving complex, non-linear problems (Haykin, 2008). By using larger 

and more complex network structures it is possible for the network to model more 

information from the available data, this is the main reason for the use of a neural 

network for validating the acquired data and selected image features. Despite the 

correlation analysis only looking into linear correlation between pairs of variables, 

most likely there are more complex relationships between these variables, and by 

increasing size and complexity of a neural network, it should be able to model these 

relationships. 

A Multilayer Perceptron (MLP) network was used for the purpose of 

validating the acquired data and selected image features. There are three basic 

characteristics of the MLP that give its capabilities: 
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• The individual neurons in the network use a nonlinear activation 

function that is differentiable; 

• The network contains at least one layer that does not directly interact 

with inputs or outputs, it is hidden; and 

• The neurons in the network are heavily interconnected and the 

importance of these connections depend on the synaptic weights 

(Haykin, 2008). 

The networks used in this phase were all fully connected, meaning that all 

neurons, or nodes, are connected to all neurons in the previous and next layers. It 

may seem like overkill, but the learning algorithm gets rid of irrelevant connections 

by assigning low synaptic weights to them. The selected training algorithm was the 

feed-forward backpropagation algorithm. Function signals, resulting of the 

response of the activation function to an input, whether it’s the raw input or a 

forwarded signal from a previous layer, move forward towards the output layer. The 

final output is compared to a previously known result and an error value is 

calculated, that error is then backpropagated towards the input layer and the 

synaptic weights are adjusted to minimize the error. This process may take several 

iterations depending on the complexity of the model and the network (Haykin, 

2008). 

This is known as supervised learning, since the output, or target, is known 

and is used to calculate errors and refine weights. The training process is an iterative 

task, in which, for each iteration, or epoch, the training error is supposed to 

converge towards a minimum. However, the overall objective is not to simply 

minimize the training error, but to minimize error while maintaining generalization 

ability. This means that even when presented with hitherto unseen data, the network 

is capable of producing accurate results (Haykin, 2008). 

In order to avoid overfitting the model, the opposite of a model that can 

generalize, several measures can be taken such as: i) ensuring that the training data 

is of sufficient size and representative of the problem; ii) using a proper architecture 

and size of network; iii) avoid problems with complexity beyond what the model 

can solve; iv) stopping the training process before the model is overfitted to the 

training data (Haykin, 2008). 

For the first issue, in the context of this master’s dissertation, the data 

acquisition procedure and feature selection were tailored to the problem at hand, so 
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the representativeness of the dataset should be sufficient. As for sample size, the 

system acquired data for as long as it could, the camera failed on the last day, most 

likely due to humidity damage to the circuitry or UV (Ultraviolet) damage to the 

camera sensor. 

Regarding the second issue, the MLP network was tested with several sizes 

and architectures in order to produce the highest accuracy and generalization 

possible. As for the complexity of the problem, that cannot be changed, but the 

representativeness of the variables used should provide the network with enough 

valuable information. Again, that is also a result of the tailoring of the data 

acquisition procedures to the very short-term forecast problem. 

Finally, regarding overfitting by overtraining, a cross-validation approach 

was used to the back-propagation learning. This means that the training sample was 

split into two subsets, one to perform the actual learning with error backpropagation 

and synaptic weights adjustment, and the other was used to validate the error on a 

fresh set of data that the model couldn’t have been overfitted to. By comparing the 

network performance on both subsets, it is clear when the model starts to get 

overfitted. Whilst the training set would keep reducing errors, the validation set 

would start to see increasing errors. This would mean that the model was overfitted 

to the training set and was losing generalization capability. 

 

4.3.1. 
Network training 

Network training is a process where the input variables are supplied to the 

network, the input layer being connected, in this case, to all neurons in the first 

hidden layer. Each connection has a synaptic weight assigned to it at random in the 

beginning of training. The input values multiplied by the synaptic weights are 

supplied to a function on each neuron, and its output is fed forward to the next layer, 

whether it’s hidden or not. This is repeated for every layer on the network until the 

output layer, which yields the final result or results. 

The next step is calculating the errors and adjusting the synaptic weights. This 

is done by calculating the error between the expected result and the calculated one. 

The error is then backpropagated proportionally to the synaptic weights and the 

gradient for the adjustment of the synaptic weight is calculated for each synaptic 
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connection all the way back to the input layer. These feed-forward signals and error 

backpropagations are performed multiple times to achieve the most accurate results. 

If indefinitely reiterated, the weights will be optimized to only the training 

data and will fail when presented with new data. For this purpose, an early 

validation stop is applied when it is determined that the model is being overfitted 

to the training data through cross-validation. In order to perform cross-validation as 

described previously, the dataset must be split into two subsets, one for training and 

one for validation as if it were completely new data. When the error for the 

validation set ceases to decrease with further iterations, the training is stopped and 

the network with the best validation error is the final result.  

Different networks with different architectures were trained for each 

combination of Δt and ROI radius in order to determine the best architecture for 

this model. Unlike the default random split employed by the Matlab neural network 

training tool, for this application an interleaved division algorithm was used to 

ensure that data from every day was available for training and validation, thus 

ensuring maximum representativeness. The proportion of training data was 70% of 

the set and consequently 30% was used for validation. Normalization is an 

important process for neural network training, framing all values between 0 and 1, 

so that the gradients applied to the synaptic weights updates are always decreasing 

(Haykin, 2008). 

The Matlab neural network training tool is highly customizable, but some of 

the default values for data fitting problems, such as these, were left unchanged: the 

specific type of backpropagation algorithm, Levenberg-Marquardt, the Mean 

Squared Error performance metric, and the hyperbolic tangent sigmoid (tansig) 

transfer function for the neurons. This was done because these default values 

yielded solid results and were beyond the machine learning scope of this master’s 

dissertation. 

 

4.3.2. 
Validation results 

Training was performed for both target variables, P0 and ΔP, since both had 

very different linear behaviours and none were successfully represented by linear 
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models. First, the P0 coefficient of determination is presented in Figure 13 for the 

different architectures and combination of Δt and ROI radius.  

The model was trained with all five input variables previously used for the 

correlation analysis and linear regression (P-1, T0, and the image attributes from all 

three channels). Each line on the plot represents a different network architecture, 

with either one or two hidden layers and several layer sizes listed in the legend. 

Thicker lines represent networks with two hidden layers. 

 

Figure 13 – R2 values for neural network regression models for P0. 

For the first two Δt values, all lines are indistinguishably close and boast good 

coefficients of determination, this being consistent with the results from the 

correlation analysis and linear regression. After this point there is a dip in regression 

performance consistent with the linear evaluations, it then starts improving again 

reaching even higher R2 than the more linear Δt range. 

Networks with 5 neurons on the first hidden layer seem to yield the worst 

results. Other architectures vary and not one architecture seems significantly better 

than another. That said, networks with two hidden layers seem to be very similar to 

one another in most cases, as well as seem to vary less in amplitude than networks 

with a single hidden layer. The performance starts decreasing again for the last two 

Δt values, this may be due to a less relevant relationship between input and output 

or due to less training samples availability. This occurs because the data is not 

contiguous and therefore, with larger time intervals, the amount of data points that 
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can be related decreases. These results show that P0 is more accurately modeled 

with a nonlinear method like neural networks. 

The same method, variables and architectures were used for modeling ΔP, 

and the R2 values for this step are depicted in Figure 14. 

 

Figure 14 – R2 values for neural network regression models for ΔP. 

This step showed that, for the first four Δt values, neither a linear nor a non-

linear method was capable of properly fitting this data. As of the fifth Δt value the 

neural network model starts presenting good R2, around 0.9. Similar to the previous 

plot, it is clear that networks with 5 neurons in the first hidden layer are inferior to 

the other tested architectures for most data points. After the fifth Δt value the R2 

behaves similarly in both plots, reaching the highest coefficient of determination 

for Δt = 60 s, closely followed by Δt = 15 s. For both intervals there are small peaks 

around ROI radius = 75 pixels and 200 pixels. 

One significant difference in both is the lack of the four drastically lower 

coefficient of determination points in the ΔP models, but that may be due to the 

lack of outlier analysis prior to model training. Since these regressions were made 

with all input variables, it was necessary to see if all variables were relevant to 

represent the target data. For this reason, the same training processes were 

performed for both target variables, but varying the inputs. The chosen architecture 

was with two hidden layers with 15 and 10 neurons respectively, which seemed to 

have some of the highest R2 values and varied less than others. The inputs used for 
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each model are displayed in Table 4. Each row represents one model and each 

column represents one of the five variables. X’s mark when a variable is used. 

 

Table 4 – Variables used in the second step of NN modelling. 

  Variables 

 
 

P-1 T0 R G B 

M
O

D
E

L
 

1 X X X X X 

2 X X X X O 

3 X X X O O 

4 X X O O O 

5 X O O O O 

6 O X X X X 

7 X X O X O 

8 X X O O X 

9 X X O X X 

10 X X X O X 

11 X O X X X 

 

The results from this training with different input variables for target variable 

ΔP are shown in Figure 15. Each line in Table 4 represents one line on the plot, and 

to save some room in the legend, the variables P-1 (power at instant 0 - Δt) and T0 

(temperature at instant 0), were shortened to P and T respectively. The red, blue, 

and green channel attributes were represented by R, G, and B respectively. In order 

to reduce some of the randomness attributed to the initialization of the variables and 

data division, each network was trained five times and the best result was selected. 
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Figure 15 – R2 values for neural network regression models for ΔP with 

varying input variables. 

The first information to stand out in this plot is the three lower performing 

models with either missing power, temperature or image attributes (P, T, or [R, G, 

B]). The best result was considered to be with all variables, reaching the highest R2 

value (> 0.98) and being the best result for several points. This result was achieved 

for Δt = 60 s and ROI radius = 250 pixels. 

The same methodology was applied to training with P0 as the target, with the 

same combinations of variables and the results are shown in Figure 16. 
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Figure 16 – R2 values for neural network regression models for P0 with 

varying input variables. 

Similar to Figure 15, the three worst variable selections have either power, 

temperature or image attribute missing, but in this case, power made a bigger 

impact. However, as Δt increases, the importance of P-1 decreases, not just linearly 

as previously thought. Also, for P0 the difference between using two or three image 

attributes is lower than for ΔP, but with all input variables, the models seem to fare 

overall slightly better, with ones using just the red and blue channels closely behind. 

The highest R2 (≈ 0.97) is with just red and blue (P, T, R, B) at Δt = 60 s and ROI 

radius = 250 pixels. 

It is safe to say both variables were successfully modelled using neural 

networks, especially compared with linear models. For both cases, previous power, 

temperature and image attributes from image subtraction proved important to model 

the targets. This is important because since cloud tracking and modelling is a highly 

researched matter, as is shown in Table 2, if the tracking and cloud forecast is 

accurately performed, it is possible to forecast power well up to 60 s head using this 

data acquisition system. 

Finally, the selected architecture of two layers with 15 and 10 neurons 

respectively was trained several times using all five input variables with data from 

the Δt = 60 s step and ROI radius = 250 pixels to provide further insight on their 

performance and finish the validation step. 
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First, the data was tested modelling P0 using all five input variables. The 

coefficient of determination obtained was R2 0.94 for the validation process. This 

means that when presented with data which was not used to train the network, it 

still was capable of estimating the output close to the real measured value.  

Figure 17 presents the regression plot from this model, the blue line represents 

the model and the points are the pairs of estimated value versus real value for each 

input sample.  

 

 

Figure 17 – Regression plot for the validation of a NN model of P0 with 

Δt = 60 s step and ROI radius = 250 pixels. 

In a perfect model, all points would stand on the line, but this result shows a 

very close representation of the relationship between input variables and the target 

variable. Next, the same process was applied to modelling ΔP, and the results are 

presented in Figure 18. 
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Figure 18 – Regression plot for the validation of a NN model of ΔP with 

Δt = 60 s step and ROI radius = 250 pixels.

In this case the validation R2 = 0.93, and the regression plot also shows how 

well the model represents the relationship between input and target variable. It is 

safe to claim that neural networks are well suited to model this type of data. 
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5 
Conclusions 

This master’s dissertation aimed to develop a working tool to support PV 

energy forecast models for real-time operation applications. Following the specific 

objectives listed in Chapter 1, firstly, the most detrimental actor in solar resource 

availability is cloud occlusion. Due to their mobile nature, the passing of clouds is 

responsible for the high amplitude and high frequency variations in PV power. 

After identifying the main actor, it was necessary to identify the tools with 

which to deal with these variations. After extensive research, a plethora of different 

modelling and forecasting tools were surveyed. Of these, considering the very short 

time scales, sky imaging methods were elected as the most suitable for dealing with 

this problem due to the physical and geometrical information added by the use of 

images. 

Another critical issue surveyed during the literature research was the need for 

relevant data in terms of acquisition frequency. Therefore, the data acquisition 

system developed for this master’s dissertation would need to provide sky images 

at high frequencies, as well as other relevant information such as PV power and 

panel temperature. This would in theory, based on the extensive survey, provide 

sufficient information for performing very short-term, more specifically intra-

minute, forecasts. 

After the acquisition system was finished, it was put to test and produced 

sufficient information for testing the relevance of all the variables chosen, as well 

as the acquisition frequency. It was initially pre-processed and analysed in order to 

determine the ideal forecast horizon and image features to be analysed. This was 

done through correlation analysis between the variables assumed to be relevant 

based on the literature survey conducted. 

Validation was performed on the data selected during the correlation analysis 

by using a linear model as baseline and a neural network regression as a nonlinear 

model. It was possible to model power variations with up to 60 s intervals based on 

the data acquired by the developed system. Both the characteristics of the data itself 
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and of the selected features used for training the neural network have been proven 

relevant to the intra-minute solar forecast problem. 

Given the high accuracy results, the data frequency and chosen variables were 

deemed relevant for intra-minute forecasting. The acquisition by exception proved 

to yield data rich in information surrounding solar variability, however, the event 

structure should be redefined in order to more accurately translate the reality. Since, 

through the data analysis, a 15 s to 60 s horizon was deemed ideal given the 

available data, and that assumption was validated by the neural network model, an 

event structure capable of fully encompassing this horizon is recommended. Based 

on the information provided by this experimental research, an event structure with 

90 s prior to the point of detection and 30 s after it should be enough to provide a 

clearer view on the subject of study. 

Through forecasting, renewable energy sources will become more reliable 

and help steer the energy paradigm into a less fossil-reliant reality. With the 

coupling of multi-horizon forecasting, power electronics, and energy storage 

systems, RES can lead to a new and clean energy era. To make this happen, more 

research into forecasting of the solar resource in different temporal and spatial 

scales is required, as well as the combination of forecasting with energy storage. 

The recommendations to improve upon the foundation laid by this master’s 

dissertation are as follows: 

• Increase geometrical complexity by using arrays of PV panels, 

mirroring real-world solar farms; 

• Test the system in different seasons, climates and micro-climates; 

• Couple the model with a cloud tracking and forecast algorithm to 

provide power forecasts with the system; 

• Model the impact of 60 s ahead forecasts for energy storage 

management and PV variability mitigation; and 

• Test the developed acquisition system with the NN model with 

entirely new data. 
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ABSTRACT 

Accurate short-term forecasting is a crucial step in increasing photovoltaic (PV) energy 

adoption. The first step in deterministically forecasting PV power from sky images is cloud 

detection, which is mostly done by thresholding or machine learning techniques. The objective of 

this manuscript is to estimate PV output based on solar occlusion, solar elevation angle and solar 

panel temperature, using multilayer perceptron networks for image classification and power 

estimation. The data used consists of power output from a 1 W solar panel, a cloud occlusion metric 

obtained from sky images, panel temperature at the instant of power measurement and solar 

elevation angle. The results show that this type of network is well suited for this application, yielding 

errors of less than 2% of the maximum power measured. 

KEYWORDS 

Solar power, photovoltaic, sky images, neural networks 

1 INTRODUCTION 

Forecasting is an important part of energy management, especially when it comes to 

renewable energy sources (RES). RES short-term variability can cause energy quality problems that 

limit the real-time operation and insertion of these resources [1, 2]. In particular, cloud cover has a 

great impact on photovoltaic (PV) energy conversion, since it impacts the direct sunlight reaching 

the solar panel surface (Parida et al., 2011). Fast cloud transients can also lead to economic problems 

such as negative prices due to energy curtailment (Chaves-Avila et al., 2017). Therefore, forecasting 

cloud cover and its impacts on PV panels’ performance is paramount to reduce uncertainty and 

energy quality problems.  

To be able to deterministically forecast cloud cover and trajectory, and consequently the 

behaviour and impacts of clouds on PV energy plants, imaging methods must be used (Diagne et al., 

2013). For short-term applications, such as addressing energy quality due to fast cloud transients, 

only ground-based imagery is suitable. Ground-based imagery can be used for larger time 
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and spatial resolutions than satellite-based imagery, as well as reduced costs and the ability to see 

small local clouds that satellite cameras can´t detect [5, 6]. 

The first step is object detection, which is the ability to determine that, for example, a pixel 

represents a cloud and not sky. There are different ways to detect clouds in an image, the simplest 

consisting of a fixed threshold based on the ratio of the red and blue channels in an RGB (Red Green 

Blue colour space) image, as presented by Long et al. (Long et al., 2006). More complex 

thresholding methods have been proposed, such as local thresholding based on different regions in 

an image (Tingting et al., 2015), and multi-exposure adaptive thresholding (Cazorla et al., 2015). 

Another method for cloud detecting is by using neural networks to classify the image pixels. 

Neural networks have been used to detect clouds for more than 20 years, one example being the 

research conducted by Lee et al. (Lee et al., 1990) using satellite imagery. More recently, researchers 

started using ground-based sky imagery for forecasting. Taravat et al. (Taravat et al., 2015) have 

achieved reliable results with multilayer perceptron (MLP) neural networks and support vector 

machine (SVM) deep learning approaches, superior to thresholding for some situations. Machine 

learning, especially some neural networks with high capabilities for pattern recognition is a powerful 

and versatile solution to the cloud detection problem due to their capacity of adapting to local 

specific data and ease to train. 

Neural networks have been thoroughly used for power estimation using several different 

input variables, as shown in the review by Yesilbudak et al. (Yesilbudak et al., 2016). Of those, 

some used total cloud cover as one of the inputs for the network, however none used a metric for 

solar occlusion. One of the benefits of using sky images is the possibility to extract spatial 

information from them. It is possible to derive shadow position from solar angle and cloud position 

(Stefferud et al., 2012). This is key information in estimating and short-term predicting PV output. 

The objective of this paper is to estimate PV output based on solar occlusion, solar elevation 

angle and solar panel temperature, using MLP networks for image classification and power 

estimation.  

The structure of this paper is as follows: section 2 describes the data used, section 3 

describes the methods for processing and analysing the data, section 4 presents the results obtained 

by the used method and section 5 contains the conclusions of this work and recommendations for 

future work on this line of research. 

   

2 DATA ACQUISITION 

The data acquisition was done by a system comprised of a USB-controlled camera, a 1 W 

PV panel, an Arduino microcontroller board, a circuit to measure current and voltage of the panel, 

and an Arduino-compatible thermometer (Figure 1). The system was mounted on a tripod and set so 

the image sensor from the camera and the panel would be horizontal. The system was mounted on 

a terrace of a 6-story high building in the main campus of the Pontifical Catholic University of Rio 

de Janeiro, roughly 22.98° S, 43.23° W and 43 m elevation. 

The camera had a 1920 x 1080 pixel resolution and a 180° field of view (FOV). Since the 

image sensor is rectangular and cropped part of the image, the system was oriented so the largest 

dimension from the camera was set approximately on the north-south direction. Since the site is in 

the southern hemisphere and the acquisition was done during winter, the southern half of the image 

could be cropped without significant loss of information, thus halving the processing and space 

requirements. All the data was stored in a laptop computer used to control the hardware, for post-

processing. 

As for power acquisition, the PV panel had a circuit connected to two analog pins in the 

Arduino board. One pin would measure the voltage of the entire load and the other, the voltage in a 

small shunt resistance, then inferring the generated current. The board was also responsible for 

interfacing the thermometer’s digital input through the serial door to a laptop computer.  

This computer was running a MATLAB script to acquire an image, voltage and current 

measurements every 1 second and temperature measurement every 50 seconds for a predefined 

period. The data were stored in the computer for future processing.  

After collecting for different periods in different days, the database had 5089 points 

consisting of images and power measurements, and 119 temperature measurements. Data were 
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acquired on four days with different cloud cover profiles, from 0 to 100% cloud cover, as for the 

time of day, acquisition spanned from 11 h to 17 h. Figure 1 shows the acquisition system during 

operation. 

 

 
Figure 1: Data acquisition system. 

 

3 METHODS 

3.1 Image Processing and Classification 

The first step was to crop and apply a mask to hide regions with undesired objects such as buildings, 

trees and hills. This step eases the learning process of the neural network, since the mask is applied 

by replacing the RGB pixel values on the mask region by (0,0,0), which is an easier pattern for a 

network to learn. The next step is to mask out the sun, by replacing the RGB values in the solar 

region by (250,150,0). To do so, since the images come from a 180° FOV camera, to calculate the 

solar position only the solar azimuth, elevation angle, and a radius value in pixels are required. Both 

angles can be calculated using the time and coordinates from the site. Figure 2 shows these steps 

previously mentioned for the same image. On the left, it is shown the original image, on the middle, 

the cropped image with background mask and on the right, the final image with a solar mask. 

 

 

Figure 2: Crop and masking steps.  

 

 The objective of the solar mask is to cover the solar region so that the neural network won’t 

confuse white cloud pixels with sun pixels. From these final images 8739 points were manually 

chosen to make up the training vector for the cloud classification network and split randomly 

70%/15%/15% into training, validation and test sets, respectively. Table 1 presents the used classes 

and number of samples used to train the network. 

Table 1: Classes and number of samples per class. 

Class Samples 

Background Mask 284 

Cloud 4537 

Sky 3485 

Sun Mask 433 
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A two-layer feed-forward network with sigmoid-activated neurons on the hidden layer and 

softmax in the output layer was used. For this problem and this dataset, a 3-10-4 network was used, 

yielding 99.9% overall classification accuracy. Still, to determine the presence of clouds on the solar 

region, another step is required, Tingting et al. (Tingting et al., 2015) used image inpainting to 

perform the interpolation of the area surrounding the sun and determine if there is occlusion. 

By simply inpainting the region of the solar mask, too much error was introduced due to 

misclassification of pixels around the mask. Instead of using a boolean value as to whether there 

was occlusion, a red-blue ratio (RBR) similar to the RBR mentioned by Chow et al. (Chow et al., 

2011) and Stefferud et al. (Stefferud et al., 2012) was employed. The difference is that the RBR was 

used as a metric for how cloudy is the solar region. After computing the mean RBR in the solar 

region and comparing it with the other inputs, it has shown to be correlated, so this was the chosen 

metric for training the following network along with solar elevation angle and panel temperature. 

Figure 3 shows all the steps in image processing and classification done in this work. It is shown 

from left to right: crop+background mask; solar mask; neural network classification; inpainting. 

 

 

 
Figure 3: Image processing and classification steps.  

3.2 Data Fitting  

For the data fitting problem, estimating the power output based on 3 input variables, a 

different network was trained. To find the best possible fit, several topologies and training 

parameters were tested: number of epochs, number of validation fails before early stopping training/ 

validation/ test proportions, number of layers, number of neurons in each layer, training algorithm, 

and transfer functions. 

For networks with one hidden layer, the following parameters were tested: 

▪ Number of neurons: between 5 and 60 in 5-neuron increments.  

▪ Transfer functions: hyperbolic tangent sigmoid, log-sigmoid and linear.  

▪ Training algorithms: Levenberg-Marquardt, scaled conjugate gradient, gradient descend 

with momentum and Bayesian regularization. 

▪ Subsets: between 50-80% for training, 10-25% for validation and 10-25% for test in 

different combinations of 5% steps. 

▪ Epochs: between 1,000 and 20,000. 

▪ Validation fails: between 20 and 200. 

 

For two hidden layers: 

▪ Neurons on first hidden layer: between 5 and 40 in 5-neuron increments. 

▪ Neurons on second hidden layer: between 5 and 15. 

▪ Transfer functions: hyperbolic tangent sigmoid and log-sigmoid. 

▪ Training algorithms: Levenberg-Marquardt, scaled conjugate gradient, gradient descend 

with momentum and Bayesian regularization. 

▪ Subsets: between 50-80% for training, 10-25% for validation and 10-25% for test in 

different combinations of 5% steps. 

▪ Epochs: between 1,000 and 20,000. 

▪ Validation fails: between 100 and 200. 

 

For three hidden layers: 

▪ Neurons on first hidden layer: between 10 and 30 in 5-neuron increments. 

▪ Neurons on second hidden layer: between 5 and 15. 

▪ Neurons on third hidden layer: between 3 and 10. 
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▪ Transfer functions: hyperbolic tangent sigmoid. 

▪ Training algorithm: Levenberg-Marquardt. 

▪ Subsets: between 50-80% for training, 10-25% for validation and 10-25% for test in 

different combinations of 5% steps. 

▪ Epochs: between 1,000 and 2,000 (the maximum number was reduced because the selected 

training algorithm didn’t require as many iterations as others). 

▪ Validation fails: between 100 and 200. 

 

Not all combinations of the parameters were tested, but the full range of parameters were 

tested on the three topologies that yielded the best results per number of layers tested. The best 

results were tested at least 20 times to mitigate the impacts of random weight initialization. 

4 RESULTS 

After testing numerous topologies with different training parameters, the best results were 

achieved by a network with two hidden layers, 25 neurons in the first and 10 in the second. Both 

layers have hyperbolic tangent sigmoid transfer functions. This network was trained using 

Levenberg-Marquardt backpropagation algorithm, with dataset division ratio of 80%/10%/10%, 

maximum of 2000 epochs and 100 validation fails.  

Figure 4 shows the training, validation, and test performances in mean squared errors 

(MSE) for each epoch. The training early stopped in epoch 762 due to 100 consecutive validation 

fails. Using 100 validation checks was enough to escape a local minimum and not prolonging the 

training without necessity. After this point the network starts to overfit to the training data, losing 

generalization and its ability to be applied to new data.  

 

Figure 4: Validation performance in MSE as function of training epochs. 

 

Figure 5 is a histogram with all the absolute errors for all steps on epoch 762. The higher 

concentration of errors closer to zero shows that most errors were small and can possibly be 

accommodated into a PV forecast system application. 
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Figure 5: Histogram with absolute errors from epoch 762. 

Table 2 contains the performance in MSE for the subsets, the whole dataset and the mean 

absolute error (MAE) for epoch 762. 

Table 2: Error values for each subset. 

Error Metric Error 

Overall MSE 0.000775 W² 

Training MSE 0.000793 W² 

Validation MSE 0.000724 W² 

Test MSE 0.000686 W² 

Mean Absolute Error 0.013458 W 

 

The results show that the multilayer perceptron model is well suited for estimating PV 

output from image-derived data, temperature and elevation angle. Despite operating in less-than-

ideal conditions, the mean absolute error was below 2% of the nominal power of the panel, even 

lower if the maximum power measured is considered, which was 1.14 W. 

5 CONCLUSIONS 

The aim of this paper was to estimate PV output based on solar occlusion, solar elevation 

angle, and solar panel temperature. It can be concluded that this objective was entirely achieved 

since the model using neural networks yielded a mean absolute error below 2 % of the maximum 

power observed. 

However, it´s important to note that this study has two main limitations: first is the data 

acquisition system, which should be permanently installed in the test site. And second is the 

simplification of using a single small PV panel, which doesn’t translate into commercial PV plant 

operation. 

With improvements in the data acquisition system, in the image-derived metrics and in the 

site´s characteristics, far better results should be achieved. As a recommendation for further works, 

besides improving the training data, the next step would be to expand from a small PV panel to 

arrays and eventually combining this estimation method with a computer vision system capable of 

predicting cloud movement. 

The main advantage of this paper is to confirm the ability of MLP networks to model the 

relationships between the chosen variables and PV output power. Future works can embed these 

models into PV power prediction and plant control systems aiming to reduce the impact of fast cloud 

transients in energy quality and solar energy adoption. 
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Abstract. With advances in solar energy research and increasingly accurate 

forecast techniques, intermittency no longer stands as a barrier to the adoption of 

solar energy. Coupling reliable data and knowledge on the inherent variability of 

the solar resource with advanced learning and forecast models, renewable energy 

can take an even bigger role in today’s energy paradigm. The objective of this 

work is to develop and test a low-cost data acquisition system able to provide 

relevant data for solar energy forecast models. The results yielded from the 

performed tests indicate high correlation between image derived attributes and 

power measurements 20 s ahead. 

Keywords. Solar energy; Sky-camera; High-frequency data; Photovoltaic; Short-

term forecast. 

Introduction 

For a long time, it’s been believed that the intermittency of Renewable Energy Sources 

(RES) is the main barrier to the massive adoption of greener energy sources, especially 

solar Photovoltaic (PV). In reality, evidence points towards politics and resistance to 

change from the traditional energy sector as being the main hindrance (Sovacool, 2009). 

However, depending on the level of penetration, the inherent intermittence of PV energy 

may lead to several technical issues and inefficient harnessing of this resource [2,3], 

especially in systems operation, planning and scheduling. 

In order to fully make use of solar PV energy, such problems caused by variability must 

be addressed. The first step in being able to address variability is to accurately forecast the 

behaviour of the PV system. The stochastic component of the variability can be split in 

terms of temporal and spatial resolution and, to each, its own optimal forecasting methods 

and models can be developed and applied (Diagne et al., 2013). 

The main issue preventing predictable PV operation is the presence of clouds casting 

shadows on the panel surface. Both theory and practice suggest that sky-image based 

approaches provide significant information for intra-minute and sub-kilometre forecasting 

[4,5], hence the decision to develop a low-cost system based on sky imagery. Passing 

clouds can trigger violent albeit short disturbances in global insolation at 1 minute intervals 

(Mills & Wiser, 2010), but to accurately understand the effect of these disturbances on grid 

studies, higher frequency data must be used (Lave et al., 2015). 
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The goal behind having a low-cost system capable of providing data at the required 

frequencies is increasing the geographical dispersion of data acquisition sites, which can 

provide more abundant and relevant information on the subject. Thus, this manuscript 

presents the development and tests of a prototype for a low-cost data acquisition system 

capable of providing all-sky images with an acquisition frequency up to 1 Hz. Due to the 

lack of a suitable testbed capable of providing 1 Hz PV conversion data at the time of this 

study, this prototype also encompasses a 6 W solar panel. 

This study is structured as follows: section 2 introduces sky imaging systems, design 

process and choices for hardware and software of the acquisition system. Section 3 contains 

information on testing circumstances and results obtained from measurement and data 

analysis. Finally, section 4 presents the manuscript conclusions and recommendations for 

furthering this investigation in future works. 

 Sky-imaging systems 

Sky imagers or total sky imagers are devices capable of imaging the whole sky dome with 

the use of a 180° field of view (FOV) lens. Some have cameras directly pointed towards 

the sky, while others are pointed down to dome-shaped mirrors reflecting the entire sky. 

Sky imagers were originally developed for meteorological use, mainly cloud cover 

analysis. For that reason, many devices have solar-occlusion mechanisms to prevent the 

high intensity direct solar beam from saturating a portion of the image due to forward 

scattering (Urquhart et al., 2015). Only in the past decade researchers have begun coupling 

sky imagers with solar forecasting, driving increased research focus on the area for intra-

hour application (Yang et al., 2018). 

Unfortunately, being of scientific grade, such equipment represents impeditive costs for 

the wide geographical dispersion needed for very short-term forecasting in an electrical 

system scale (Richardson et al., 2017). Even more so if one considers the solar resource 

availability in developing countries, whose currency inequivalence to the dollar or euro 

would further the inability to use these imagers in a national operation scale. Hence the 

need for affordable devices developed specifically for solar forecasting, with all the 

necessary functionalities cost-effectively wrapped in a small and simple equipment. 

Some research centres have developed their own equipment tailored for solar 

forecasting, and their results show that the increased specificity of the devices yield more 

relevant information [8,10,11]. Another important feature for PV-specific sky imagers is 

the necessity of higher frequency acquisition compared to meteorological applications. 

Image acquisition frequency should be high enough to describe distinguishable events 

within the desired temporal resolution. 

5.1.Hardware 

In order to keep the costs as low as possible, the imaging system was built around a single 

board computer (SBC) (Richardson et al., 2017). The selected SBC was a Raspberry Pi 

3B+ due to its easy access, low cost, ample documentation as well as easy access to Linux 

operating system. Connected to it via USB is an ELP-USBFHD01M-L180 camera 

consisting of a printed circuit board (PCB) module with a 1920 pixels x 1080 pixels CMOS 

OV2710 sensor and a 180° FOV lens. 

In order to provide an electrical quantity related to solar generation on the same 

frequency as the image acquisition, a 20 cm x 15 cm solar panel with nominal capacity of 

6 V and 1 A at 25° C was used. Current and voltage measurements were done using an 

Adafruit INA219 DC sensor and, since solar cell temperature has such a strong impact on 

conversion efficiency, a Maxim Integrated DS18B20 temperature sensor was attached to 

the bottom of the panel.  

Figure 1 shows a basic 3D model of the equipment. The camera and solar panel sit atop 

the main support structure, while on the bottom two housing units can be seen. One has the 

power supply components, 110 V AC to 5 V/3 A DC power supply for the SBC and minor 

cooling fans, plus a 5 V to 12 V DC-DC converter for the main cooling fan. The second 

unit houses the Raspberry Pi and INA219 DC sensor. 
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Figure 1: Basic 3D model of data acquisition system, atop sits the camera enclosed by 

an acrylic dome and the 6 W PV panel used to acquire solar related quantities. On the 

bottom left, the enclosure with the SBC and DC power sensor INA219.  

Measurement circuit 

Both sensor boards have embedded analog-to-digital converters and are Raspberry Pi 

compatible. The temperature sensor was placed on an aluminium heat-exchange pad with 

the fins bent into contact with the entire sensor area in order to maximize heat transfer from 

the panel. The pad was then covered with packing foam to reduce heat loss to the 

atmosphere. As for the electrical quantities’ measurement, the INA219 has an internal 

circuit capable of measuring DC up to 3.2 A by using a 0.1 Ω shunt resistor. A dichroic 

bulb was used as load on the solar panel, completing the circuit. Finally, the camera was 

powered and controlled via USB cable. Figure 2 shows a diagram of the measurement 

circuit. 

 
 

Figure 2: Diagram of measurement circuit. 
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Software 

The Raspberry Pi was running Raspbian Stretch, a Linux OS made for the SBC, with 

OpenCV 4.0 Python distribution and Python 3.7. OpenCV is an open source image 

processing and computer vision library available for several platforms. It was exclusively 

used for controlling the camera and saving the images. All post-processing was performed 

in Matlab 2017a.There are several Python libraries available for the INA219 and DS18B20 

for use with the Raspberry Pi’s GPIO pins, the most notorious, and with largest online 

documentation being “pi_ina219” (Borrill et al., 2019) and “w1thermsensor” (Furrer, 

2019). The final program integrated these libraries to record images, power and temperature 

data on the required frequency for studying cloud induced intermittency on PV power. 

As for the acquisition frequency, 1 Hz has proven to provide very useful information 

about the problem addressed (Lave et al., 2015). However, one image per second for several 

days yields too much data, with part of it not being useable at all. Hence the decision to go 

with the principle of acquisition by exception. As the main goal is studying high-amplitude 

fast variations of power, the system keeps getting images and power measurements every 

second, but it does not record all the data. Only when triggered by a variation larger than a 

certain predefined threshold, does the system record the measured data. 

In this case, the system keeps the previous ten measurements – t-10s … t-1s – and 

calculates a moving average of the past 3 values, so if the absolute difference between the 

present measurement and the calculated average is larger than a certain threshold the data 

recording process begins. Aside from the past 10 s, it also records the present measurement 

(t0) and keeps recording for 4 more seconds – t+1s … t+4s. Those 15 values with their 

corresponding images and time stamps, plus a temperature measurement, are then saved 

and the program goes back to listening for intermittence triggers. This data structure is 

called an “event” throughout this work. The reason for only one temperature measurement 

per event is that the sensor’s ADC often takes over 1 s to convert it, and this makes it 

impossible to achieve 1 Hz, but fortunately the temperature variations are minimal in only 

a couple seconds span due to the thermal inertia from the panel. Figure 3 presents the 

decision process and data flow from the acquisition software. 

 

 
Figure 3: Decision process and data flow from the acquisition software. 

Testing and results 

The Data Acquisition System was placed on a balcony located at Lat 22.9354° S / Long 

43.1756° W, at an altitude of 46 metres. Coordinates and altitude were obtained using 

Google Earth. Unfortunately, due to building obstruction, only the morning solar path was 

available, up to roughly 12 h 30 min.  

Initially, the camera was protected by an acrylic dome; however, due to exposure to rain 

and consequently infiltration of water into the dome, too much condensation rendered 

possible sky images unusable. A decision was made to remove the dome and to cover or 

expose the equipment depending on the forecast. 
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5.2.Testing 

The first successful capture occurred on February 25th, 2019 at 09 h 21 min 48 s, with the 

acquisition period spanning until March 23rd, 2019 at 8 h 2 min 45 s. Records were taken 

for 12 non-straight days due to very clear or cloudy/rainy days in this period. Midway 

through the period, after analysing the first images, an attempt was made at darkening the 

images due to oversaturation of the solar region and a large area around it. 

A neutral density filter was placed over the lens on March 14th, 2019 and, after adjusting 

the camera exposure parameter, the images appeared to have a smaller saturated area 

around the solar region. It also served as a shield protecting the camera from rain, so after 

its placement the equipment was no longer removed when it rained. 

5.3.Results and data analysis 

A total of 500 events were recorded over the twelve days. The first processing step was 

image subtraction to investigate the visible difference between each point in an event. For 

this, firstly the images were converted to grayscale, then the intensity matrices subtracted. 

The results depicted mostly noise, but on the scarce ones where more significant border 

information was available, the solar region was blacked out due to sensor saturation. This 

pointed towards an inadequacy of the event structure in yielding valuable information for 

a forecast model. Figure 4 shows image subtraction results for different sky conditions with 

a highlighted area tracing the solar region. Since the pixel differences are very small and 

therefore barely visible, the image contrast was increased for differences larger than 5. 

 

       
Figure 4: Two examples of raw images from different cloudy days and three cropped 

image subtraction results for diverse sky conditions with highlighted solar regions. 

 

Next step was to analyse the data as a continuous time series, only separating it by day 

due to the major differences between each one. The time series plots very clearly showed 

the fast high-amplitude variations as can be seen in figure 5. 
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Figure 5: Time series plot of power measurements for March 14th, 2019. 

 

The next goal was to find some relationship between the images and power data. The 

chosen attribute to be analyzed first was the energy of the pixels in a region of interest 

(ROI) around the sun. To achieve that, a derived dataset was put together with the power 

measurements, temperature measurements and ROI energy. Several different ROI radii 

were used along with differential values as a function of a time interval Δt. The differential 

values used were for power, temperature and 6 different energy values: absolute difference 

for each image channel and image subtraction for each channel. The image channels 

represent red, green and blue components of the colored images and the distinction between 

absolute difference and image subtraction is, whilst the former allows negative numbers, 

the latter does not.  

The final group of variables were: power at t0 and t0+Δt; power difference between those 

two measurements; temperature at t0 and t0+Δt (for some instances temperature values had 

to be filled in using a linear method); temperature difference between those two 

measurements, absolute difference between the ROI energies at t0 and t0+Δt; energy of the 

ROI from the image subtraction at t0 and t0+Δt. 

In total, 70 combinations of Δt and ROI radius pairs were computed for each of the 12 

days, with Δt = {1; 2; 5; 8; 10; 15; 20; 30; 45; 60} seconds and ROI radius = {25; 50; 75; 

100; 150; 200; 250} pixels. Then, the correlation coeficients were calculated for each 

combination for each day, resulting in 840 matrices of 12x12 correlation coefficients 

between the aforementioned variables. In order to more easily evaluate the results, the 

Identity matrix was subtracted from the correlation matrices, then the first 6 columns were 

binarized between larger and smaller than 0.8, then summated columnwise. This step 

produced 840 vectors of size 6 with the amount of correlation coefficients larger than 0.8 

in each of the first 6 columns. 

Through these compiled metrics, it was possible to determine the combination with the 

highest count of higher (> 0.8) correlation coefficients between the first 6 variables and all 

twelve. The best results happened with Δt = 20 s and ROI radius = 150 pixels. The 

compilation of the 840 vectors is presented in Table 1. 
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Table 1: Compilation of vector coefficients for each combination of Δt and ROI 

radius. 
  ΔT 

 
 

2 5 8 10 15 20 30 45 60 

R
O

I 
R

A
D

IU
S

 

25 0 2 9 12 17 19 8 4 19 

50 0 2 9 11 17 20 8 8 25 

75 0 2 9 12 18 21 8 7 25 

100 0 2 9 12 18 20 9 7 24 

150 0 2 9 12 18 25 9 4 22 

200 0 3 9 12 16 23 7 4 17 

250 0 3 11 12 15 19 7 4 16 

 

Figure 6 presents power measurements 20 seconds ahead from the reference point and 

ROI energy differences with Δt = 20 s for ROIs with 150-pixel radii. Values were 

normalized to help visualization. 

 

 
Figure 6: Time series plot of normalized power measurement 20 seconds ahead and 

different image energy calculations for March 14th, 2019 In blue, energy data from image 

subtraction and in orange, energy from absolute image difference.  

 

Figure 6 makes visually apparent the correlation between the attributes derived from 

image processing, – in blue and orange – and power measurements taken 20 s after the 

reference point – in green. Both curves vary proportionately on the same points save for 

some apparent outliers near 10:00. This was numerically determined in the previous step 

in data processing. Temperature measurements also boasted a good correlation coefficient 

but due to a low range of values they were not visually apparent and therefore kept off the 

plot to ensure clear visualization of the most critical relationships. 
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Conclusion and Future works 

This work presented the development and testing process of a low-cost data acquisition 

system aimed at providing data for solar energy forecast models. The initial assumptions 

using an event-based approach did not yield relevant information, but upon further data 

analysis, high correlation was found between images and power differences at a horizon of 

20 s. Future work should focus on three aspects: 

• Increasing ruggedness, reliability and control of the data acquisition system; 

• Validating the acquired data by using a nonlinear regression model such as a 

neural network; and 

• Increasing the geometrical complexity of the problem by using power and 

temperature data from an array of PV panels. 
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