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Abstract 
 

Bassous, Guilherme Fonseca; Calili, Rodrigo Flora (Advisor). 

Development and validation of a low-cost data acquisition system for 

very short-term photovoltaic power forecasting. Rio de Janeiro, 2019. 87 

p. Dissertação de Mestrado ï Programa de Pós-Graduação em Metrologia, 

Pontifícia Universidade Católica do Rio de Janeiro.  

 

The rising adoption of renewable energy sources means we must turn our eyes 

to limitations in traditional energy systems. Intermittency, if left unaddressed, may 

lead to several power quality and energy efficiency issues. The objective of this 

work is to develop a working tool to support PV energy forecast models for real-

time operation applications. The current paradigm of intra-hour solar power 

forecasting is to use image-based approaches to predict the state of cloud 

composition for short time-horizons. For a more accurate model, it is also necessary 

to use deterministic components such as temperature and angle of incidence on the 

panels in addition to the stochastic effect of clouds. Since the objective of intra-

minute forecasting is to address high-frequency intermittency, data must provide 

information on and surrounding these events. For that purpose, acquisition by 

exception was chosen as the guiding principle. The system performs power 

measurements at 1 Hz frequency and whenever it detects variations over a certain 

threshold, it saves the data 10 s before and 4 s after the detection point. After post-

processing, this data was fed into a multilayer perceptron neural network to 

determine its relevance to the forecasting problem. With a thorough selection of 

attributes and network structures, the results show very low error with a normalized 

good fitting with R2 greater than 0.93 for both input variables tested with a time 

horizon of 60 s. In conclusion, the data provided by the acquisition system yielded 

relevant information for forecasts up to 60 s ahead. 
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Resumo 
 

Bassous, Guilherme Fonseca; Calili, Rodrigo Flora. Desenvolvimento e 

validação de um sistema de aquisição de dados de baixo custo para 

previsão de curtíssimo prazo da potência fotovoltaica. Rio de Janeiro, 

2019. 87 p. Dissertação de Mestrado ï Programa de Pós-Graduação em 

Metrologia, Pontifícia Universidade Católica do Rio de Janeiro.  

 

Dado o recente aumento da adoção de fontes renováveis de energia, é 

essencial reavaliar os sistemas tradicionais de energia. A intermitência pode causar 

diversos problemas ligados à qualidade e eficiência energética. O objetivo desta 

dissertação de mestrado é desenvolver uma ferramenta capaz de subsidiar modelos 

de previsão solar para aplicações visando a melhoria da operação em tempo real. O 

atual paradigma de previsão solar sub-horária consiste em usar imagens celestiais 

para prever a cobertura nebulosa para curtos horizontes temporais. Visando 

desenvolver um modelo mais exato, é necessária a utilização de componentes 

determinísticos, como a temperatura e o ângulo de incidência dos raios solares, em 

conjunto com a modelagem dos efeitos estocásticos das nuvens. Visto que o 

objetivo da previsão sub-minuto é permitir que se lide com variações de alta 

frequência, os dados devem possuir informação condizente com estas frequências. 

Por esse motivo foi feita a coleta de dados por exclusão. O sistema captura dados a 

cada 1 s e, quando detecta uma mudança suficientemente grande na potência do 

painel, salva essa informação, 10 s para trás até 4 s à frente da perturbação 

detectada. Os dados, depois de pré-processados, foram usados para treinar uma rede 

neural para determinar a relevância dos dados. Com cuidadosa seleção de atributos 

e arquitetura de rede, o modelo apresentou boa regressão com R2 maior que 0.93 

para ambas variáveis testadas com horizonte de 60 s à frente. Concluindo, portanto, 

que os dados obtidos são relevantes para previsões de até 60 s à frente. 
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Metrologia; Fotovoltaica; Previsão; Imagens celestiais; Redes neurais;  
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The most exciting phrase to hear in science, the one that heralds 

the most discoveries, is not "Eureka!" (I found it!) but ñThat's 

funny...ò 

 

 Isaac Asimov



 

1 
Introduction 

In the past few decades the world has experienced considerable growth in 

environmental awareness, especially regarding climate changes. This rise, allied 

with an ever-increasing population and limitations to fossil fuels, stimulates the 

development of Renewable Energy Systems (RES). In order to reduce greenhouse 

gas emissions, energy matrices must be composed of more low-carbon sources as 

opposed to the current fossil-reliant paradigm. Solar Photovoltaic (PV) and wind 

are the future of energy systems if the world is to meet the goals set by the Paris 

Agreement (UNFCCC1, 2015; IEA, 2018). 

However, each of those energy sources has its own limitations, such as 

geographical location and unreliability, mostly regarding weather. In the case of 

solar energy, particularly PV energy conversion to produce electricity, it possesses 

high variability from various sources (e.g. weather, Earthôs rotation and translation 

movements). 

Solar energyôs inherent intermittency creates several economical, technical, 

and political barriers against larger penetration (Can ķener et al., 2018; Denholm & 

Margolis, 2007; Reddy & Painuly, 2004). Most of the variability components are 

deterministic in nature, which means they can be easily forecasted and addressed, 

provided it is technically possible. 

One of the most detrimental variability components is the presence of clouds, 

which filter the solar radiation and decrease the amount of energy available for 

photovoltaic conversion. Particularly on days with partial cloudiness and fast 

moving clouds, the insolation variation in one solar plant output can reach well over 

50 % in one minute (Dragoon & Schumaker, 2010; Mills & Wiser, 2010). These 

fast variations in such a short time may cause technical problems in plant and grid 

operation, such as voltage variations and current harmonics (Bessa et al., 2014; 

Denholm & Margolis, 2007; Karimi et al., 2016; Liang, 2016; Reddy & Painuly, 

                                                 
1 United Nations Framework Convention on Climate Change 
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2004). In order to address these variations, it is necessary to forecast them. In the 

work done by Mills & Wiser (2010), they stressed the need for power system 

operators to be able to address generation and load profiles over short time-scales 

due to the stochastic variations caused by fast cloud transients. Numerous methods 

for short-term insolation or power forecasting exist, however, for plant and grid 

operation, conventional statistic forecasting methods based on time series are not 

well suited (Diagne et al., 2013). The most widely used physical methods for short-

term predictions are sky-image based (Sobri et al., 2018).  

A human being is capable of seeing clouds, tracking their movements and 

visually estimating where they will be in a couple of seconds, perhaps even minutes. 

Sky-image based forecasting methods follow the same principle, where the camera 

represents the observer, and the computer represents their brain, capable of 

detecting, tracking and estimating cloudsô positions in a near future. However, 

unlike a humanôs prediction, cameras and computer transform all the information 

from a sky image into numerical data. Computer vision is the field responsible for 

translating visual observations from the world (i.e. images) into useful numeric 

data, which can be used for detecting and classifying clouds (Cazorla et al., 2015; 

Chow et al., 2011; Tingting et al., 2015), estimating their speed and direction of 

movement (Chow et al., 2015; West et al., 2014; Wood-Bradley et al., 2012; Xu et 

al., 2015), and deriving new information such as insolation on ground level or PV 

power (Chow et al., 2011; Sobri et al., 2018). 

With this data it is possible to predict PV output in short term and to start 

addressing solar variability in PV plant operations. This can help reach smoother 

power curves for plants in partial cloudiness with fast transients and consequently 

increase solar PV powerôs reliability, quality, effectiveness and adoption (Diagne 

et al., 2013; Mills & Wiser, 2010). 

The forecasting problem can be divided in two key issues: (i) how to estimate 

PV power from sky images; and (ii ) how to forecast the position of the clouds. By 

using supervised machine learning methods such as Artificial Neural Networks 

(ANN or simply NN), it is possible to estimate values based on input data, provided 

there is a relationship between the input and output data. As for forecasting cloudsô 

positions, there are several methods for detecting and tracking objects, some 

specifically used for sky-image based applications (Chow et al., 2015; West et al., 

2014; Wood-Bradley et al., 2012; Xu et al., 2015). 
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Stepping from a broad view on the issue to a more focused and local scope, 

Brazil has seen exponential growth in solar PV energy in the past two decades. 

Especially in the past decade, going from 57.8 kW in 2009 to 15.4 MW in 2014 and 

2.2 GW by August 2019 (ANEEL, 2019), being projected to reach 4 GW by 

December 2023 (ONS, 2019). 

All these non-dispatchable2 sources have started to concern the National 

Electric System Operator (ONS) regarding security of the energy supply, especially 

on the North-eastern region of the country, where most solar farms are situated 

(ONS, 2018, 2019). Fortunately, regarding both yearly seasonality of renewable 

sources and daily behaviour of wind vs. solar, all sources complement each other 

(ONS, 2019). The main issue lies with intra-hour variability, making it difficult to 

plan ahead and being heavily dependent on local weather and micro-climate (ONS, 

2018). 

Short-term PV forecast for operational purposes might prove to be the solid 

foundation on which solar energy may grow to its full potential. It is a complex 

problem but with the proper tools, i.e., computer vision and machine learning, it 

should prove to be a feasible task.  

During the development of this masterôs dissertation, two papers were 

conceived and submitted to international conferences. Their full texts are included 

in the annexes of this dissertation. 

 

1.1.  
Research problem 

With the growing use of solar PV energy, new technical issues are bound to 

arise, and energy quality and security are likely to pose new challenges to further 

PV energy adoption. Having in mind the two key issues mentioned in the previous 

paragraphs, the main question to be answered by this masterôs dissertation is: 

ñHow to obtain pertinent and reliable data suitable for intra-hour photovoltaic 

power forecasting, in order to improve plant and grid operation?ò 

 

                                                 
2 The dispatchability of an energy source is whether a given generator of that source can be 

turned on or off as well as increase or decrease power output based on energy demand. The dispatch 

is made by the electrical system operators. 
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1.2. 
Motivation 

Due to the increasing share of PV energy on the distribution system, technical 

constraints such as energy quality and high frequency intermittence in power supply 

are bound to arise (Bessa et al., 2014; Denholm & Margolis, 2007; Dragoon & 

Schumaker, 2010; Karimi et al., 2016; Liang, 2016; Mills & Wiser, 2010). 

To be able to take the fullest advantage possible from RES, especially PV 

energy, forecasting techniques must be further advanced to successfully address the 

intermittency and uncertainty. According to Diagne et al. (2013), several models 

are able to make solar irradiance predictions within temporal and spatial resolutions 

high enough to produce useable information for plant operation. However, of these 

models, only sky image methods are able to use in situ physical information 

pertaining to cloud movement. For computer models, variability due to cloud 

transients has been inherently stochastic (Mills & Wiser, 2010), but the use of 

images change that aspect. 

Such as a human being is capable of knowing when a cloud will obscure the 

sun, so are computers, provided they can ñseeò in the same way as humans do. The 

field of computer vision is responsible for allowing machines to extract useful 

information and data from images. 

With more forecasting capabilities, PV plants, which have mostly operated 

passively in response to instant insolation, can employ more active solutions to 

problems due to high variability. More control capability means more efficiency, 

less barriers for adoption and more overall competitiveness of PV energy. 

Brazilôs energy system operator has already started expressing concern 

regarding fast expansion of non-dispatchable sources, such as PV plants (ONS, 

2018). With solar energy expected to reach 2 % of installed capacity by 2023, and 

because most solar farms are located on the North-eastern region, ONS fears they 

might negatively impact grid security (ONS, 2019). Without reliable and affordable 

means to forecast solar energy variations to meet operational time-horizon 

constraints, adoption of solar energy will be thwarted by the necessity of providing 

excessive backup power. 

 



16 
 

1.3.  
Objectives: general and specific 

To answer the proposed question, the main objective of this work is to 

develop a working tool to support PV energy forecast models for real-time 

operation applications. To achieve the main goal, the following specific objectives 

must be reached: 

¶ Identify the main detrimental technical factors to intensive PV energy 

adoption; 

¶ Survey the tools capable of estimating PV conversion in real-time; 

¶ Determine which of those tools is best suited to accurately estimate 

PV conversion in real-time; 

¶ Develop a data acquisition system capable of providing the required 

data for high-frequency PV modelling; 

¶ Test the data acquisition system in situ; 

¶ Analyse the acquired data to determine its relevance to the issue at 

hand; and 

¶ Validate the results provided by the data acquisition system using a 

suitable model for PV conversion forecast. 

 

1.4.  
Classifying the research 

1.4.1.  
Regarding the ends 

The research resulting in this masterôs dissertation can be considered 

descriptive, methodological, and applied. First, it is considered descriptive due to 

the extensive theoretical research and description of the issues and methods 

addressed. It is also methodological as it assesses the suitability of different data 

modelling methodologies and proposes its own data acquisition methodology. 

Finally, it is applied because it applies the proposed data acquisition methodology 

in a real situation, followed by the chosen data modelling technique aiming to 

validate it for real world applications. 
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1.4.2.  
Regarding the means of investigation 

In order to achieve the end results, the research means are bibliographical, 

experimental, and ex post facto in nature. Bibliographical due to the extensive 

bibliographical survey required to determine the methodology, the variables, and 

learning models to be used. It is heavily experimental for it revolves around 

acquiring real-world data and using it to generate relevant information on solar 

variability. And the final validation of the proposed model and variables for 

forecasting make it ex post facto as well. 

 

1.4.3.  
Regarding the nature of the research 

The research is quantitative in nature, given it will use real-world numeric 

data. 

 

1.5.  
Methodology 

For visual clarification of the main phases and steps taken throughout the 

research leading to this dissertation, a concise sketch is presented in Figure 1.



 
 

1
8

 

 

Figure 1 - Research sketch.
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On the first phase, or exploratory phase, a survey of the literature pertaining 

to short-term solar forecast was conducted in order to determine possible models 

and variables to be used. After setting the direction in which to follow, it was 

necessary to limit the depth and breadth of the scope while always having in mind 

the quality of the work to be done and the expected results. 

With the experimental roadmap and data acquisition system designed and 

developed, the next step was to start the measurements. Since the initial data 

provided was too raw to provide any insight, some post-processing and organizing 

was necessary to start implementing the selected model and analysing the results in 

order to validate the choices made on the exploratory phase. With the results, it was 

then possible to draw conclusions and make recommendations based on what was 

learned and new questions that had arisen during the development of this work. 

Going deeper into the exploratory phase, certain conceptual milestones were 

required before moving ahead with the research. Figure 2 presents these milestones 

that laid the foundation of the applied phase. They were split into: base concepts 

that guided this work; empirical studies from which to draw invaluable insight into 

testing the system and model; the steps taken in order to choose what data 

acquisition and modelling tools were most prone to yield solid results; and finally 

the culmination of the previous steps in the applied phase.



 
 

2
0

 

 

Figure 2 - Conceptual Mapping
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1.6.  
Structure 

This dissertation is divided into five chapters including this introduction and 

two annexes. 

Chapter 2 presents the photovoltaic concepts that cause the limitations 

addressed in this work. It is divided in five subsections: 1) a brief explanation of 

PV conversion; 2) enumeration of the short-term variability-originated problems 

that hinder the adoption of PV energy; 3) role of short-term forecasts in reducing 

problems caused by high-frequency variability; 4) an introduction to short-term 

solar forecast models; 5) brief history, and state of the art in solar forecasting using 

sky-imagery that based the work of this dissertation. 

Chapter 3 presents the materials and methods used in this work, the 

description of the experiment and result analysis. It also contains detailed 

descriptions of the hardware assembly used in said experiments. 

Chapter 4 presents the results obtained by the experiments detailed in the 

previous chapter. This includes both the raw data obtained and more detailed 

analysis to provide information on the data acquisition system, experiment premises 

and overall regarding very short-term solar variability. 

Chapter 5 presents the conclusions reached by this masterôs dissertation. 

These conclusions will hopefully help guide future work to further PV forecasting 

for plant and grid operation purposes. 

Annex 1 contains a paper presented in the 2018 International Conference on 

Energy Engineering and Smart Grids. This paper uses sky images for PV power 

estimation. 

Annex 2 contains a paper presented in the XIII SEMETRO addressing the 

information presented in Chapter 3 of this dissertation. 

 

  



 

2  
Photovoltaic energy conversion and short-term forecasting 

This Chapter presents the photovoltaic concepts that lead to the limitations 

addressed in this work, starting with the theory behind PV conversion. Given the 

properties of PV conversion, in particular the lack of inertia, the following section 

addresses the limitations caused by high-frequency variability of solar irradiance 

on the panelsô surface. Lastly, the role of accurate short-term forecasting in reducing 

the impacts of fast cloud transients in the electric system is presented, in order to 

introduce the following chapter and justify the efforts in researching better ways of 

short-term forecasting of PV conversion. 

This Chapter also addresses the theory behind short-term photovoltaic 

forecasting and the necessity for high fidelity modelling in achieving accurate 

forecasting. These are all key components essential to the increase of safe and 

reliable PV usage, as seen in the previous Chapter. 

 

2.1.  
Photovoltaic conversion 

Amongst the methods for harvesting solar energy, photovoltaic (PV) 

conversion is the most used for generating electricity. With an estimated 402 GW 

installed capacity by 2017 it is also the leading added capacity in the world with the 

addition of 98 GW in 2017 alone (REN21, 2018).  

The energy conversion occurs when light shines on structures that present a 

junction between different semiconductor materials, the photons being partially 

absorbed and creating charge carriers. That is, the energy from the photons causes 

electrons to be excited and, provided there is enough energy, jump from the valence 

band to the conduction band, thus creating a void in the valence band. This void, 

called hole, has the behaviour of a positively charged particle and their combination 

is called electron-hole pair (Smets et al., 2016). 

If left alone, the electron-hole pair tends to return to equilibrium and will 

recombine, with the energy dissipating either through radiative or non-radiative
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 recombination. To harness this energy in the form of work in a circuit, 

semipermeable membranes must limit the flow of electrons in one direction, forcing 

them to pass through a circuit in order to recombine with the holes. The most 

common solar cell designs use n-type and p-type materials to make these 

membranes (Smets et al., 2016; Würfel, 2005).  

Crystalline silicon based solar cells are the most commonly used type, 

amounting to 90 % of the world market (IEA, 2014). These solar cells are built with 

an emitter layer, most commonly made of a thin n-type silicon layer, on top of a 

thicker p-type silicon layer, also called absorber. N-type silicon is silicon doped3 

with electron donors, becoming conductive to electrons but not holes, whereas p-

type silicon is doped with electron acceptors, becoming a hole conductor. Metallic 

contacts on each of the terminals connect them in order to generate electrical current 

with electrons flowing from the n-type terminal to the p-type, creating useful power 

in the circuit. These small cells are then connected in series and parallel to form a 

PV panel with the desired voltage and current (Smets et al., 2016; Würfel, 2005). 

PV systems contain at least a module and load on the circuit, varying in size 

and application, mainly whether the system is connected to the power grid. Off-grid 

systems are entirely dependent on solar power and may include simple loads such 

as a water pump or may have more complex design with batteries and charge 

controllers for storage, and inverters to deliver both alternating and direct current 

(AC and DC respectively). On the other hand, grid-connected systems convert the 

DC from the PV panels into AC and feed it into the grid or grid-connected homes 

and buildings. Grid-connected systems vary in size from residential installations to 

large PV power plants (Smets et al., 2016). 

To comprehend some of the limitations from PV systems, it is crucial to 

understand the behaviour of solar irradiance and its effects on photovoltaic 

conversion. The solar radiation that reaches the planet does vary, however it is not 

within the scope of this work to consider these variations which are minimal if 

compared with the main sources of variability. 

The first source for variation of solar irradiance is due to the translational 

movement of the Earth around the sun. The yearly cycle of seasons occurs, in part, 

                                                 
3 Doping is the process in which impurity atoms replace the atoms of a semiconductor. They 

can be either donors, which have more valence electrons than necessary for chemical bonding in the 

lattice, or can be acceptors, which have less valence electrons than necessary for chemical bonding. 
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due to changes in the angle of incidence of solar radiation on the planet. These 

changes are largely proportional to latitude, the furthest from the Equator line the 

harshest being the changes in the angle of incidence. 

The second source of variation happens because of the rotational movement 

of the planet. Throughout the day, for a fixed position on the globe, the angle of 

incidence, as well as the position of the sun on the sky, varies. The variation of the 

position of the sun is described by two angles, altitude and azimuth. Solar altitude, 

or elevation, is the angle between the horizontal plane where the observer is 

standing and the position of the sun. On the other hand, the solar azimuth is the 

angle between the geographical North and the projection of the sunôs position on 

the horizontal plane (Smets et al., 2016). 

Both these sources of variation are deterministic in nature and can be 

calculated by well-known equations for any given time and place. Now, getting into 

the scope of this dissertation, the behaviour of solar irradiance begins to change 

when entering the atmosphere. The atmosphere acts as a filter for the incident light, 

and its filtering behaviour depends on atmospheric composition, as well as 

obstructions along the path of travel. Until now only the broad term ñirradianceò 

has been used, but when addressing the change of its behaviour due to the 

atmospheric filter more specific terms must be used to accurately represent its 

properties (Myers, 2016; Smets et al., 2016). 

Direct Normal Irradiance (DNI) represents the beam of radiation that hits the 

surface of the planet in a straight line from the sun. The remnant of the difference 

between the extra-terrestrial radiation and the DNI is what gets scattered or 

absorbed by the atmospheric components, such as gases, water molecules, particles, 

and clouds. The changes in density and presence of turbulence along the path of 

light also affects the beam radiation (Myers, 2016; Smets et al., 2016).  

Global Horizontal Irradiance (GHI) is the radiant flux (in watts) reaching a 

certain horizontal area (thus given in Wm-2). Given that the DNI travels in a fixed 

direction the beam will not necessarily be perpendicular to a horizontal surface, and 

according to Lambertôs law (Myers, 2016), the radiant flux per unit area (Wm-2) on 

a given surface is proportional to the cosine of the angle of incidence. In the case 

of GHI, the DNI component is dependent on the cosine of the solar elevation angle. 

The missing irradiance component of GHI is the Diffuse Horizontal Radiation 

(DHI), which occurs due to the scattering of DNI by the atmosphere. These 
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quantities can be measured by a pyranometer for GHI or DHI, if shaded from direct 

irradiance, and a pyrheliometer for DNI (Smets et al., 2016). 

 

2.2.  
Limitations of PV systems 

Since PV conversion depends on the intensity and angle of incident light on 

the panel surface, one of the main barriers to its adoption is the variability of 

insolation. Sunlight has many different components linked to its variability. First, 

not all light reaches the planet in the same way because, due to the translation 

movement around the sun, the angle of incidence in which solar rays reach the 

surface of the planet varies throughout the year, more extremely the furthest away 

from the equator line. Secondly, due to the rotation movement of the planet, light 

varies periodically, with small daily changes due to the translation movements, 

every 24 hours. 

These variations can be easily calculated and considered in energy resource 

management planning. The third variability aspect is due to atmospheric conditions 

that hinder the passage of light through it, most notably the presence of clouds and 

their strong impact on available DNI. Fast cloud transients can affect global 

insolation in a single PV plant by up to 80 % of the theoretical clear-sky insolation 

in a 1-minute interval (Mills & Wiser, 2010). This information extracted from a 1-

minute interval solar database draws attention to the need for higher frequency solar 

data in order to understand and address these fast changes in insolation due to cloud 

transients. This subject is well demonstrated in the work by Lave et al. (2015). 

The consequences from variations of this intensity and frequency may cause 

several problems on the power grid. Regardless of solar availability for PV 

conversion, the load must be met, and to achieve this there must be backup for when 

PV plants are not able to meet load demands. These backup plants increase 

operation costs for any RES, especially PV solar, which suffers the most from high 

frequency and high intensity fluctuations. Conventional generators cannot be 

expected to meet these ramps, especially in response to cloud transient events, 

resulting in energy quality issues proportional to the penetration of PV energy in 

the system and the generator profile, either distributed or concentrated (Karimi et 

al., 2016; Liang, 2016). 
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A key concept in understanding the impacts of RES variability in power 

economics is the capacity factor. It represents the amount of energy generated in 

proportion to the nominal capacity of that generator for a given period of time. The 

capacity factor plays an important role in determining the value of an intermittent 

energy source (Lamont, 2008). Due to several reasons, such as meeting ramp 

requirements and energy quality standards, intermittent sources such as solar may 

be curtailed4 in order to properly fit within grid operation (Bird et al., 2014). Energy 

curtailment negatively affects the capacity factor, which in turn results in lower 

value for that generator, reducing its attractiveness as an investment in capacity 

expansion. 

Several different energy quality issues may arise from increased integration 

of PV energy into the power grid. Among them, some are caused or intensified by 

the aforementioned high frequency variability, most notably voltage fluctuation and 

unbalance, frequency fluctuation, islanding operation challenges and stress on 

distribution transformer (Karimi et al., 2016; Liang, 2016). In order to address these 

issues and permit a larger share of PV energy, power electronics and energy storage 

systems (ESS) seem to be the most common solutions that do not involve energy 

curtailment (Denholm & Hand, 2011; IEC, 2011; Karimi et al., 2016; Liang, 2016; 

Petinrin & Shaabanb, 2016). However, to further strengthen these systems and 

generate better and cheaper power, being able to reduce the uncertainty of the solar 

resource variability is a key step, in other words, accurate forecasting of fast cloud 

transients is essential (Bessa et al., 2014; Diagne et al., 2013). 

As progressively smarter grids take the place of conventional ones, more 

control strategies will arise, being an example the scheme proposed by Maleki & 

Varma (2016), Varma & Salehi (2017), and Varma & Siavashi (2018). Smart grids 

use information and communication to improve grid operation and integration 

(Hossain et al., 2016). By having accurate short-term forecasting data available for 

both plant and grid operators, PV energy can be more reliably and cost-effectively 

adopted at a larger scale (Bessa et al., 2014). 

 

                                                 
4 Energy curtailment is an energy management technique consisting of reducing the output 

of a generator to adequate it to the grid demand. In the case of non-dispatchable sources, power 

output cannot be simply reduced, so most likely that energy will go to waste. 
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2.3.  
Reliability through forecasting  

Forecasting is essential in countless applications including energy 

management and market. As mentioned by Mills  & Wiser (2010), system operators 

need better information about the stochastic behaviour of cloud-induced variability, 

to increase reliability. Several time horizons and resolutions are necessary to meet 

the demands of each specific aspect in PV energy management. The focus of this 

dissertation is on very short-term forecasting to bolster PV plant operation 

capabilities, reliability, grid integration, and grid operation in a scenario of high 

penetration. Table 1 presents the terminology regarding forecasting horizons and 

their applications. 

Table 1 ï Forecast horizon categories, granularity and applications  

Category Time Horizon Granularity Applicability 

Very short-term Up to 15 min ahead Up to 1 min 

Plant operation 

Ramping events 

Power quality control 

Short-term 15 min to 1 h ahead 1 min to 5 min 
Load following 

Grid operation planning 

Medium-term 1 h to 6 h Hourly 
Load following 

Grid operation planning 

Long-term Day ahead Hourly 

Unit commitment 

Transmission scheduling 

Day ahead markets 

Source: Diagne et al. (2013); Stefferud, Kleissl & Schoene (2012) 

In the work done by Diagne et al. (2013), different irradiance forecasting 

methods are explored with the objective of proposing a small-scale insular grid 

forecasting system. Small isolated grids have less system inertia, therefore are more 

susceptible to the negative effects of RES, especially those caused by PV systems. 

Each different model available has its advantages and disadvantages and, for a 

holistic forecasting system, different models should be used in parallel.  

Persistence and image-based models fit well, for short-term forecasts, in 

terms of horizon, frequency and spatial resolution. Other statistical models, as 

Diagne et al. (2013) name it, also encompasses regression models (ARMA, 
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ARIMA , CARDS) and learning algorithms such as artificial neural networks 

(ANN). 

In recent years there has been a rise in research work on sky-image based PV 

or insolation forecasting (Barbieri et al., 2017; Schmidt et al., 2016). Sky-image 

models keep improving the reliability of very short-term forecasting, shown in the 

work done by Sobri et al. (2018). This tendency points towards the superiority of 

using sky-images over what Diagne et al. (2013) refer to as statistical models. In 

the study conducted by Kow et al. (2018) it becomes apparent just how powerful 

sky-image based forecasting can be, achieving a detection rate of over 90 % of 

power fluctuation events and mitigation of almost 80 % of power fluctuation events 

with minimal energy loss. 

While being a powerful tool, forecasting alone cannot solve the issues caused 

by high-frequency variability. However, coupled with other systems, such as energy 

storage systems and power electronics, especially in progressively smarter grids, 

forecasting can be a valuable aid in increasing PV penetration (Bessa et al., 2014; 

Denholm & Hand, 2011; IEC, 2011; Karimi et al., 2016; Liang, 2016; Petinrin & 

Shaabanb, 2016; Varma & Salehi, 2017). The results presented by Kow et al. (2018) 

depict the beneficial effect that short-term forecasting can have on the operation of 

PV plants. 

Having in mind the information presented in this section, it is safe to assume 

that very short-term forecasting can have a positive impact in plant level operations 

in order to increase reliability, but also to include it in longer time-scales grid 

planning. If the variability component is reduced, solar power can be modelled as a 

more reliable power source and can even be used as a power management tool. 

 

2.4. 
Very short-term photovoltaic forecasting 

As stated in the previous section, accurate very short-term forecasting is the 

first step in adding reliability to PV plant operation. The first step in forecasting is 

to build a model that describes the behaviour of the studied phenomenon. To that 

end, many different models are capable of describing or learning the behaviour of 

PV conversion, some more accurately than others. 
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Within the statistical category used by Diagne et al. (2013), persistence 

models are the best fit for the spatial and temporal requirements of very short-term 

forecasting for a single PV plant. However, it is a naïve predictor, serving as a 

baseline for more complex models. It assumes the predicted value ╧◄  to be best 

described by its value at a previous time ╧◄. In this case, the modelling and 

prediction are one and the same, it doesnôt take into consideration the several 

variables that affect the behaviour of real-world PV panels, and that is why it is 

considered a trivial predictor. 

 Still within linear models, the regression models addressed by Diagne et al. 

(2013) use historical data either from irradiance or clear-sky index to make 

predictions. While better than the previous, naïve, predictor in terms of fidelity to 

the real world, it is still unable to provide forecasts in the required time horizon and 

resolution. These models, however, fare well from 15 minutes to hourly forecasts 

(Reikard, 2009). In the 5 minutes resolution, results were mixed among the models 

tested by Reikard (2009), but the ARIMA model started to be outperformed, 

especially by neural networks. The author also pointed that the ARIMA model 

exhibited large errors at intermittent intervals, corresponding to the fast cloud 

transients that deeply impact PV reliability. These intermittent large errors are the 

events successfully predicted in the work by Kow et al. (2018). 

Switching over to the non-linear models addressed by Diagne et al. (2013), 

neural network models attempts to simulate the computational and learning process 

of the human brain (Haykin, 2008). The complexity, nonlinearity, and parallel 

computational power excel in pattern recognition and perception. The networks are 

composed of simple processing units commonly referred to as neurons. The 

network can acquire ñknowledgeò through a learning process that acts in the 

interconnection of the neurons, just as synapses would in a biological brain 

(Haykin, 2008). 

Neural networks, in their many architectures and sizes, are able to learn from 

data, in both supervised and non-supervised processes, and apply this knowledge to 

new data (Haykin, 2008). They are well suited to model complex problems, 

especially when involving complex relationships between the variables (Haykin, 

2008), such as forecasting energy conversion dependant on cloud passage, location, 

time and meteorological variables (Das et al., 2018; Raza et al., 2016). 
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As mentioned previously, neural networks start faring better against other 

forecast methods at higher temporal resolution (Reikard, 2009), however, by 

looking at other studies into the subject, there appears to be a time resolution 

limitation in these machine learning methods for short-term forecasts. Even in the 

most recent state of the art works with intra-hour forecasting, using time series 

prediction of irradiance or other atmospheric parameters, the minimum resolution 

is still 5 minutes (Kumler et al., 2019; Zendehboudi et al., 2018), which still falls 

short of the necessary frequency to properly characterize the local solar variability 

(Lave et al., 2015). Still within the 5 minutes time horizon, sky images can be used 

to boost forecasting accuracy when coupled with machine learning models and 

historic irradiance or power data (Pedro et al., 2018). 

The conclusion that can be drawn from the consistent number of time-series 

models limited to the 5 minutes time horizon is that the fault is in the type of data 

used to characterize the relationships involved in the high-variability of solar 

irradiance. As explained before, these models aim to predict the future state of a 

certain aspect of solar variability. The approaches using cloud tracking in sky 

images, as proposed by Chow et al. (2011) and Kow et al. (2018), add components 

of physical and geometrical modelling of cloud systems. Since the main actor in 

short-term variability is related to passing clouds, relevant information on their 

dynamic provides a more comprehensive characterization (Yang et al., 2018). 

Throughout the research process that laid the theoretical foundations of this 

dissertation, several key works stood out and greatly influenced the work developed 

here. Table 2 contains these important works in chronological order with their 

objectives, whether it is forecasting or modelling, and the materials and methods 

used in the pursuit of these objectives. 
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Table 2 ï Important works that shaped this master's dissertation.  

Work  Objective Materials and Methods 

Chow et al. (2011) Forecast of GHI from 30 s to 5 min ahead 

Sky images obtained from a Total Sky Imager (TSI) every 30 s 

Clear Sky Library (CSL) + Sunshine Parameter + Red-Blue Ratio (RBR) cloud 

classification 

Cloud Tracking through Cross-correlation 

GHI deterministically calculated 

Gohari et al. (2013) 
Forecast of Clear Sky Index up to 15 min 

ahead in 30 s intervals 

Comparison between TSI and UCSD-developed USI 

Sky images every 30 s + Irradiance measurements every second 

Geometric cloud tracking  

Solar ray tracing 

Chu et al. (2013) 
Forecast of 1-min-average DNI 5 min 

and 10 min ahead  

TSI images every 20 s + DNI every 30 s 

CLS + RBR adaptive threshold cloud classification 

Cloudiness indices from gridded image + time lagged DNI as inputs for NN 

Marquez & Coimbra (2013) 
Forecast of 1-min-average DNI 3 min to 

15 min ahead 

TSI images every minute + 30 second averaged DNI 

Cloud tracking using Particle Image Velocimetry software 

Hybrid threshold algorithm for cloud pixel classification 

Grid of cloudiness indices used to deterministically calculate DNI 

Quesada-Ruiz et al. (2014) 
Forecast of 1-min-average DNI from 3 

min to 20 min ahead 

TSI images every 20 s + 1 min averaged DNI  

Hybrid threshold algorithm for cloud pixel classification  

Cloud tracking using grid cloud fraction change 

DNI estimation using grid cloud fraction 

West et al. (2014) 

Forecast of DNI from 0 min to 20 min 

ahead in 10 s resolution and updated 

every 10 s 

Sky images + DNI every 10 s 

Cloud pixel detection using NN 

Cloud tracking through pixel-wise optical flow 

Image regions averaged and total cloudiness as feature to be forecasted and derived into 

DNI 

Chu et al. (2015a) Forecast of 10 min ahead GHI and DNI 

Images from 2 sky cameras every 60 s + Irradiance every 30 s 

Adaptive threshold cloud detection  

Gridded cloudiness + time lagged irradiance as inputs for NN 

Alonso-Montesinos & Battles (2015) Modelling of GHI, DNI, and DIF 
TSI images every 60 s + GHI + DNI every 60 s 

Correlations of digital image channels to model irradiance 

 



 
 

3
2

 

Table 2 ï Important works that shaped this master's dissertation (cont.) 

Alonso-Montesinos et al. (2015) 
Forecast of GHI, DNI, and DIF from 1 

min to 180 min at 15 min resolution 

Cloud tracking using cloud motion vectors (CMV) 

Pixel-wise cloud detection 

Pixel-wise irradiance using correlation of digital channel information 

Cazorla et al. (2015) Methodology for cloud detection 

SONA sky imager + GHI + DIF 

Multi-exposure (High Dynamic Range ï HDR) images every 5 min 

Adaptive RBR threshold method for cloud detection 

Chu et al. (2015b) 

Forecasting of prediction interval for 1-

min-average DNI 5, 10, 15, and 20 min 

ahead 

Sky images provide parameters for hybrid model 

Hybrid estimation/forecast model based on bootstrapped-ANN selected by SVM 

classifier using mean RBR, RBR standard deviation and entropy + time-lagged DNI and 

DIF measurements as inputs 

SVM for sky classification and model selection (high vs low cloud-derived variability) 

Chu et al. (2015c) 
Forecast of PV power 5, 10, 15 min 

ahead 

2 TSI providing images every 30 s 

3 methods as inputs for ANN reforecasting (deterministic based on cloud tracking, 

ARMA, and kNN) 

Preliminary forecast by one of the 3 methods followed by reforecast using ANN to 

enhance performance 

Genetic algorithm to select ANN inputs among several time-lagged power 

measurements and preliminary power forecasts for each of the horizons 

Lipperheide et al. (2015) 
Forecast of power ramp events 20 s to 

180 s ahead with 20 s resolution 

1 Hz power data from PV panels used in 4 different methods 

Persistence and ramp persistence forecast based on detection from PV panels within 

plant 

Cloud speed persistence forecast based on cloud motion vectors detected by PV panel 

power fluctuation 

Second order auto-regressive forecast model based on the modified covariance method 

Pedro & Coimbra (2015) 
Forecast of GHI and DNI from 5 to 30 

min ahead 

5 min averaged irradiance data 

Digital image channel individual information and relationshipsô properties such as mean, 

standard deviation and entropy 

kNN forecast model with images vs without images vs persistence 

Xu et al. (2015) 
Forecast of GHI from 1 min to 15 min 

ahead 

TSI images every 20 s 

complex cloud detection and tracking 

Pixel-wise classification using RGB values, RBR, and Laplacian of Gaussian (LoG) 

Cloud type classification through texture metrics and kNN classifier 

Comparison of persistence, linear regression and Support Vector Regression (SVR) with 

image inputs and NWP variables 
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Table 2 ï Important works that shaped this master's dissertation (cont.) 

Cervantes et al. (2016) 
Forecast of 5 min ahead DNI 

negative ramp events 

Low-cost sky-imager 

Cloud detection through RBR 

Cloud tracking with optical flow 

Shadow mapping using Cloud Base Height (CBH) data 

Mejia et al. (2016) Cloud optical depth modelling 

2 USI providing images every 30 s 

Estimation of irradiance from calibrated pixel values 

Usage of deterministic models to obtain optical depth from digital image channels, solar 

position, pixel position and clear-sky library 

Rana et al. (2016) 
Forecast of PV power from 5 min to 

60 min ahead with 5 min resolution 

5 min power average + meteorological data 

Univariate (solely power measurements) vs multivariate models NN ensemble vs SVR vs 

persistence 

Sanfilippo et al. (2016) 
Forecast of 1-min-average clearness 

index from 1 min to 15 min ahead 

GHI, DNI, and DHI measurements every 60 s 

Modelling of solar zenith-independent clearness index 

SVR, persistence and autoregressive models of different orders used for forecasting 

Schmidt et al. (2016) 

Forecasts of GHI from 15 s to 25 min 

GHI forecasts in grid form for the 

surrounding area, updated every 15 s 

with 15 s resolution 

Sky images every 15 s + GHI every 1 s from 99 pyranometers + CBH measurements 

averaged over 10 min 

Area of study of 10 km x 12 km 

RBR with clear-sky images for cloud pixel classification 

SVC cloud type classification from several features 

CMV cloud tracking 

Soubdhan et al. (2016) 
Forecast of PV power and GHI 1, 5, 

10, 30, 60 min ahead 

PV power data every 1 s + percentage cloud cover + ambient temperature + GHI every 1 s 

Persistence and smart persistence baselines 

Forecasting by Kalman filter with initialized parameters using Expectation-Maximization 

(EM) algorithm vs Auto Regressive (AR) estimation 

Comparison between with and without exogenous inputs 

Ai et al. (2017) 
Forecast of 30-s-average GHI 1, 2, 3 

min ahead 

Sky images every 30 s 

SVM-determined clear-sky model 

Adaptive threshold cloud detection 

Optical flow cloud tracking 

GHI deterministically determined using cloud fraction and clear-sky model 

Blanc et al. (2017) 

Forecast of 1-min-average DNI map 

15 min ahead with up to 10 m x 10 m 

spatial resolution 

Stereoscopic sky cameras providing images every 30 s 

CBH estimation from stereography 

Cloud layer CMV for each class of altitude 

Estimation of projection-pixel-wise DNI using beam clear-sky indexes computed per class 

of cloud combined with physical and geometrical information   
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Table 2 ï Important works that shaped this master's dissertation (cont.) 

Cheng (2017) 
Detection of irradiance ramp down 

events 5, 10, 15, and 20 min ahead 

Sky images every 60 s + 1 min averaged GHI 

Cloud detection and tracking through feature point clusters  

Elsinga & Van Sark (2017) 

Forecasts of 1 min average GHI from 

1 min to 30 min ahead for multiple 

sites 

202 rooftop PV systems acting as a sensor grid 

PV power data averaged every 1 min from inverter data every 2 s, then converted into GHI 

Hourly interpolated ambient temperature deterministically calculated 

GHI converted into clearness index 

Peer-to-Peer (P2P) forecasting method using correlations between the rooftop PV systems 

to determine time lag between correlated sites 

Ni et al. (2017) 
Forecast of power interval 5 min 

ahead 

Ensemble of single layer feed-forward NN (weights assigned using a least squares method 

in 1 step) 

Data from 3 kW micro-grid with 3 PV systems + photosynthetically active radiation + 

ambient temperature + relative humidity + wind speed + wind direction + GHI and 

precipitation (all averaged over 5 min) 

Richardson et al. (2017) Forecast of GHI 10 and 15 min ahead 

Cloud detection using RBR 

Optical flow cloud tracking 

Ray tracing for GHI forecast using a fixed ramp rate and clear sky GHI 

Kow et al. (2018) 
Forecast of PV power 30 s ahead 

coupled with mitigation system 

GHI every 1 s + ambient temperature every 1 s and PV system modelled power 

Self-organizing incremental neural network (M-SOINN) with active learning for forecasting 

power 

Non-supervised method capable of forecasting power output of PV system 30 s ahead 

Kuhn et al. (2018) 
Forecast of 1-min-average GHI from 

0 to 15 min ahead 

Cloud segmentation, detection, and georeferencing using 4 sky cameras and 4-dimensional 

CSL 

Irradiance maps validated with ground irradiance sensors and shadow camera 

GHI and DNI obtained from geo-located shadow map and radiometer measurements at 

previous time steps 

Bouzgou & Gueymard (2019) 
Forecast of GHI from 5 min to 3 h 

ahead 

Mutual information feature selection from time series of recent GHI 

Extreme learning machine (ELM) for investigating the relationship between the historical 

variables and the future value, and also for determining the best combination of variables 

Kumler et al. (2019) 
Forecast of GHI 5, 15, 30, and 60 

min ahead 

Cloud albedo and fraction modelling based on GHI 

Cloud optical thickness deterministically calculated 

Forecast based on 5 min exponential weighed moving average of cloud fraction, used to 

determine albedo and GHI 
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2.5. 
Very short-term photovoltaic forecasting with sky images 

The trend in researching sky-based approaches to very short-term solar 

forecasting began with the work by Chow et al. (2011), despite not being the first 

to approach the subject (Yang et al., 2018). The goal behind it is to use physical 

information from cloud systems, extracted from sky-images captured by 

hemispheric cameras. 

Initially, researchers used already existing sky imagers developed for 

meteorological purposes other than estimating solar quantities (Yang et al., 2018). 

In more recent years, other lower-cost alternatives have been developed for the 

specific purpose of estimating solar quantities (Richardson et al., 2017; Yang et al., 

2018). These newer, specific systems are fully programmable and expandable, 

leaving room for development and expansion as well as being suitable for use with 

a plethora of different forecasting models (Cervantes et al., 2016; Richardson et al., 

2017). 

Amongst the already mentioned advantages, specifically designed systems 

have proven to yield superior results to other non-specific sky imaging systems 

(Gohari et al., 2013; Richardson et al., 2017; Urquhart et al., 2015). Most likely this 

superior performance is due to the higher data acquisition frequency which provides 

better insight into local short-term solar variability (Lave et al., 2015). Another 

significant difference is that these specific devices do not have a shadow band to 

occlude the solar disk and part of the circumsolar region. This fact positively 

impacts the amount of information available for intra-minute forecasts. 

Given these advantages presented by sky-image based forecasting, the 

experimental work developed in this dissertation has made use of this framework. 

More specific details on the sky-imaging system and experimental work are further 

explained on the next Chapter. 

 

 



 

3 
Materials and methods 

This Chapter presents and explains the materials and methods used for the 

applied phase. First is the data acquisition system developed as one of the specific 

objectives of this masterôs dissertation. Following, the experimental work will be 

thoroughly explained to provide a better understanding of the resulting data and 

analysis. 

 

3.1. 
Data acquisition system 

As pointed out by Richardson et al. (2017), scientific grade sky imagers are 

far too costly to allow wide geographical dispersion, which is necessary when it 

comes to solar forecasting in larger operational scales. Therefore, the data 

acquisition system (DAS) proposed and developed in this dissertation will use 

affordable, off the shelf components in order to assess the quality of data and 

information provided. 

Following the reasoning laid by the previous Chapter, the system will be 

centred around sky images and their relationship with PV power. Subsection 3.1.1 

presents the information surrounding the hardware for the DAS. 

 

3.1.1. 
DAS hardware 

Having in mind the goal of keeping the costs low, the system is built around 

a single board computer (SBC) (Richardson et al., 2017). For this application a 

Raspberry Pi 3B+ was chosen due to low cost and easy access in Brazil, with ample 

online documentation and fully integrated and optimized Linux based systems. It 

boasts a 1.4 GHz quad-core CPU with 1 GB RAM memory, integrated wireless 

connection, General Purpose Input/Output (GPIO) pins for controlling other 

sensors that might be necessary and USB ports for connecting and controlling the 

camera.
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Moving on to the sky camera, the chosen model for this application was an 

ELP-USBFHD01M-L180 camera. It consists of only the printed circuit board 

(PCB) module with a CMOS OV2710 sensor able to provide images with 1920 

pixels by 1080 pixels resolution. This camera comes with a 180° field of view 

(FOV) C-mount lens. 

Ideally, the electrical quantity related to solar energy would be provided by 

multiple sensors in a PV power plant, however, due to the limited amount of time 

available to develop this dissertation, no plants capable of providing data at the 

required frequencies were secured. So, in order to link the sky images with a solar 

quantity, a 20 cm by 15 cm photovoltaic panel with 6 V and 1 A nominal rating at 

25° C was incorporated to the system. 

Voltage and current measurements from the solar panel were provided by an 

Adafruit INA219 DC sensor. This sensor was connected to the GPIO pins on the 

Raspberry Pi. The measurement circuit and acquisition software will be addressed 

in the following sections. 

When working with solar panels, temperature is a very important variable to 

PV conversion efficiency (Smets et al., 2016). A Maxim Integrated DS18B20 

temperature sensor was placed on the bottom of the solar panel, housed by an 

aluminium heat exchanger in contact with the panel. This ensemble was enveloped 

by a dense foam to reduce heat exchange between sensor and atmosphere, working 

to provide the best possible information on panel temperature. This sensor was also 

connected to the GPIO pins on the Raspberry Pi. 

The Raspberry Pi is supplied by a 5 V/3 A DC power supply connected to a 

110 V AC plug. Aside from the measurement components the housing units 

containing the electronic components are cooled using two computer cooling fans. 

The basic 3D model for the DAS is presented in Figure 3 to aid in visualizing the 

layout of the equipment. 



38 
 

 

Figure 3 ï 3D model of the DAS.  

In Figure 3, the top side of the support structure holds the sky camera enclosed 

by an acrylic dome for protection from the elements, and beside it the PV panel. 

Whereas on the bottom hang two housing units, the right one contains the power 

supply and DC-DC converter, the left houses the SBC and INA 219 sensor. 

 

3.1.2. 
Measurement circuit 

As mentioned on the previous section, the DAS encompasses a voltage and 

current sensor as well as a thermometer. This section presents the measurement 

circuit with the connections between the sensors, the GPIO pins, the solar panel and 

the circuit load. To be able to generate power, the PV panel must be in a closed 

circuit with a load component. The initial goal was to use a ceramic resistor, 

however, during the testing process, when higher currents were applied to the 

resistor, it started to overheat, so a dichroic light bulb was used instead. 

The thermometer was placed under the PV panel enclosed by the fins from an 

aluminium heat exchanger pad with the flat part attached to the bottom of the panel. 

It was then covered by thick dense foam to act as a heat insulator between the 

thermometer and the environment. Both thermometer and heat exchange pad were 

assumed to possess higher heat transfer coefficients than the panel and both have 

significantly less mass, meaning that they have lower thermal inertia. This causes 

the thermometer to quickly follow changes in panel temperature, which is a key 

variable in PV conversion efficiency (Smets et al., 2016). 

Camera 

Power 

Supply Raspberry Pi 

PV Panel 
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As for the INA 219 sensor, it measures both circuit voltage and determines 

current by measuring voltage across a 0.1 Ý shunt resistor. It is capable of 

measuring voltages up to 26 V and currents up to 3.2 A at a maximum ADC 

resolution of 12 bit. Both sensors have well developed Python libraries for use with 

the Raspberry Pi, which will be presented in the next section, along with all the 

software components used by the DAS.  

Both sensors are supplied by 3.3 V DC provided by the Raspberry Piôs 3V3 

pin. The INA 219 communicates, via I2C protocol, with the Pi through the SDA 

and SCL pins, located on the GPIO2 and GPIO3 pins respectively. Voltage and 

current are measured between the V+ connector and ground. The current enters the 

INA 219 through the V+ connector, passes through the internal measurement circuit 

and exits through the V- connector, then through the dichroic light bulb. 

The DS18B20 uses the 1-Wire communication protocol through GPIO4 pin. 

It requires a pull-up resistor of 10 kÝ to stabilize the signal when not 

communicating with the Pi. Figure 4 presents the measurement circuit schematics 

for temperature, voltage and current measurements. The green lines indicate 

connected terminals, and the camera was not included in this schematic because it 

uses a simple USB connection. 
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Figure 4 ï Measurement circuit schematics. 
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3.1.3. 
DAS software 

This section presents information regarding the software used for the 

measurements from both sensors and the camera. More specific numerical 

information about thresholds will be presented later, along with other experimental 

information. 

The Pi was running Raspbian Stretch, a Linux based OS specific to it, as well 

as OpenCV 4.0 and Python 3.7. OpenCV is a highly popular, open source, computer 

vision library available for several different platforms. Since the OS is highly 

optimized for use with the Python programming language, the chosen OpenCV 4.0 

distribution was for Python, as well as the libraries for both sensors. 

There exist several libraries for INA 219 and DS18B20, but amongst the most 

notorious, and with most documentation available are ñpi_ina219ò (Borrill et al., 

2019) and ñw1thermsensorò (Furrer, 2019). These libraries facilitate the access of 

information from the GPIO pins through high-level programming languages, in this 

case Python. 

Considering the high-speed intermittency caused by fast cloud transients and 

the approximately point-like dimension of the solar panel used in the DAS, a 

frequency of 1 Hz was used for data acquisition. This high frequency has been 

proven to provide highly useful information on very short-term solar variability 

(Lave et al., 2015). One downside from such an elevated acquisition frequency is 

the sheer amount of data it is able to generate, and this may be a hindrance when 

working with images. So, in order to attempt to provide both high-frequency and 

high-quality data surrounding high-amplitude fast variations in PV power output, 

the acquired data was screened for possible variation events before being saved. 

This strategy is called acquisition by exception, it is based on the principle of: 

if there is no drastic change to the system, there is no need to record the data. This 

is not applicable to every situation, but it is most welcome when studying 

variability. In practice, the acquisition software continuously acquired data during 

daytime at 1 Hz and temporarily stored this information using a queue structure 

(first in, first out). This queue had a maximum of 10 elements at a given time, and 

for every iteration where no variation event was detected, the oldest entry was 

deleted, making room for a new set of measurements. Each element was measured 
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1 s apart and comprised one sky image, one voltage and one current measurement 

as well as the calculated power from the PV panel. 

In order to detect a variation event a moving average of the previous 3 power 

values ï at t-3s, t-2s, and t-1s ï are calculated and compared with the most recent value, 

t0. If there is a variation greater than a certain threshold, either up or down, the 

program enters the data saving routine. It keeps acquiring data for 4 more seconds 

ï t+1s é t+4s ï then it saves these 15 s worth of data as well as one temperature 

measurement representative of this period. This structure of 15 s of measurements 

is henceforth referred to as an ñeventò. After recording an event, the system goes 

back into listening mode in order to detect other variation events. 

The reason behind using only one temperature measurement is that if the 

system were to include temperature measurements every time step, each iteration 

would take longer than 1 s, making it impossible to reach the desired 1 Hz 

acquisition frequency. Upon testing, this did not impact the quality of the data 

generated, due to the thermal inertia from the panel. Significant changes in panel 

temperature came at much lower frequencies than 1 Hz. Figure 5 presents a 

flowchart of the decision process and data flow from the DAS software. 
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Figure 5 ï Flowchart of decision process and data flow within DAS software. 
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3.2. 
Experimental phase 

In order to validate the data acquisition system, firstly it would be necessary 

to put it to use and start acquiring data, which would then be analysed in order to 

validate the designed system. The equipment was placed on a residential balcony 

located at 22.9354° S Latitude and 43.1756° W Longitude at an altitude of 46 

metres. Coordinates and altitude were obtained using Google Earth. Since the 

equipment could not be placed on the roof due to safety hazards, the balcony had to 

suffice, despite having a limited view of the sky, spanning solar position from early 

morning to about 12 h 30 min. 

As the experiment was carried out, some modifications to the program and 

physical structure of the device had to be made. Starting with the protective acrylic 

dome, due to repeated exposure to rain in the early testing phase, water managed to 

infiltrate the 3D printed support designed to hold the camera and dome. This water, 

when condensed on the dome, made it impossible to visualize the sky, rendering 

the images useless. The dome had to be removed in order to continue with the 

experiment, but the DAS could no longer be indefinitely placed outside, so it was 

removed whenever there was risk of rain. 

The official testing phase spanned from February 25th, 2019 at 9 h 21 min 48 

s to March 23rd, 2019 at 8 h 2 min 45 s. Despite the long span, records were taken 

for only 12 of those days non-consecutively due to very unstable or completely 

clear weather. Another hardware modification was the addition of a neutral density 

filter in order to darken the images and help with calibration of the cameraôs 

exposure parameter. More details on the reasoning behind and results from the 

addition of the filter will be presented on the next Chapter, containing the results 

from the experiment and analysis performed on the acquired data with the goal of 

validating the acquisition system.

 



 

 

4 
Results and data analysis 

This Chapter presents the data obtained from the DAS testing phase, as well 

as all the analysis conducted on them. The findings resulting from several steps of 

analysis are also discussed. 

 

4.1. 
Acquired data 

Once finished, the experimental phase yielded 500 events, the distribution for 

each of the successful acquisition data distributed in days is being presented in 

Figure 6. 

 

Figure 6 ï Distributio n of events among successful acquisition days. 

Some example images for four different days are presented in Figure 7 to 

better contextualize the data processing steps. 
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Figure 7 ï Raw images obtained on four different days. Starting top-left 

and moving clockwise: 25/02/2019 ï 06/03/2019 ï 14/03/2019 ï 19/03/2019. 

There is a clear difference between the two top and two bottom images in 

Figure 7 due to the placement of the neutral density filter placed on the 14th of 

March. It was done for two reasons: i) to reduce the brightness of the images; ii) to 

protect the camera since the acrylic dome had to be removed. An important impact 

of its placement is seen on these images: the size of the saturated area around the 

sun is smaller, enabling to obtain more information closer to the sun. 

The first validation of the 1 Hz data is made visible by Figure 8, the plot of 

power measurements throughout the measurement period of March 14th, the day 

with most abundant data. As shown in this graph, it is important to perceive that 

lower resolutions would miss important high-amplitude and high-frequency 

variations. The graph has non-contiguous lines because of the acquisition by 

exception resulting in the previously defined events. However, some sections 

present some longer contiguous lines, that is the result of an event detection 

occurring while part of the previous event was still in the data queue resulting in 

overlapping data. 
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Figure 8 ï All power measurements for March 14th. 

Next section starts introducing the data analysis processes conducted on the 

data presented here. 

 

4.2. 
Data processing and analysis 

The data processing and analysis necessary for developing this masterôs 

dissertation is presented in the following subsections.  

 

4.2.1. 
Preliminary visual analysis 

In processing the obtained data, the first step was to import it into the Matlab 

environment from the text files and convert it into proper structured data. Since the 

presence of buildings in the images would only be detrimental, a simple black mask 

was applied to the images in order to remove the undesirable parts without cropping 

the images. The initial goal was to study the data within the events and perform 

very short-term forecasting based on image subtraction information. By subtracting 

images, the changes from one frame to another become apparent, and this can be 

done by using subtracting one from the other in pixel-wise operations per digital 

channel5 but capping the subtraction at zero, so the pixel values remain within the 

                                                 
5 Each digital channel is a matrix corresponding to the red, green, and blue intensities from 

the image. 
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0-255 interval. Several event samples from different days were processed using this 

image subtraction method and visually analysed. The subtraction operation was 

performed on a grayscale image obtained by converting the red, green and blue 

(RGB) channels into one ñblack and whiteò image. The goal was to be able to 

visualize the cloud border while it approached the sun, so colour information would 

not be critical. Some image subtraction examples are presented in Figure 9. In order 

to ease visualizing the differences between subtracted frames, the resulting matrix 

was thresholded at an intensity of 5, meaning any values below 5 would be 

multiplied by zero. After thresholding the contrast was increased for the values to 

become more apparent to the human eye. 

 

Figure 9 ï Image subtraction results for different days with the solar 

region highlighted. 

The orange circles in Figure 9 highlight the solar region. It is possible to tell 

apart what seems to be some of the edges of the cloud formations, especially in the 

two leftmost examples, which belong to the same events as the first two images in 

Figure 8. However, those apparent edges are situated in the middle of the cloud 

formation.  

Another valuable information to be obtained from those samples is the 

difference in intensity between the two leftmost and the rightmost sample. All three 

images were subjected to the same processing, thresholding and contrast increase, 

but the rightmost example is from an image obtained after the neutral density filter 

was put into place. It may seem to provide less information to the naked eye, but 

the saturated region within the highlighted area is also smaller, meaning that the 

camera was able to obtain possibly useful information closer to the sun. For very 

short-term forecasting this may prove important to enhancing accuracy in intra-

minute forecasts. 
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These preliminary results indicated that visual information from within a 

single event with 15 s duration was insufficient to provide useful information 

despite it yielding important insight on power variations. The acquisition by 

exception is important to reduce the amount of data to be stored but might need to 

be adjusted in order to optimize the forecasting. 

In this sense, the acquired data that was originally structured event-wise was 

reframed into the calendar days, due to inter-day specificities. Thus, the 86,400 

seconds contained in each day were populated (sparsely) by the data contained 

within the events. The goal in the second phase of analysis, was to determine for 

which time horizon is it possible to obtain information from images that are 

correlated with power measurements. 

 

4.2.2. 
Correlation analysis 

As mentioned in the previous section, the original event structure was put 

aside, so for the remainder of the data analysis, it was separated only by day due to 

intra-day specificities. To determine a relevant time horizon for the correlation of 

images and power data, the first step was to bring the event information together in 

one data structure to generate interval-based data derived from the raw data. 

Generating these subsets was done by defining the time steps and then building the 

datasets for each step. For example: for a time-step of 10 s the values used would 

be the power difference between t0-10s and t0, as well as the actual measurements in 

both instants and measurement values for panel temperature at t0. For the image 

features, energy6 from a circular region of interest (ROI) around the sun was used. 

Firstly, image subtraction was performed between the two images corresponding to 

the time-step, then the energy value was calculated within the ROI of the subtracted 

image. This was done for each of the three digital image channels, red, green and 

blue.  

Due to the data being sparce, meaning it had empty gaps, some data points 

did not have a pair one time-step ahead, so these points were disregarded. Since 

cloud speed impacts cloud position between two different frames and it was an 

unknown variable, different datasets were made for different ROI raddi. The 

                                                 
6 Energy in image processing is the sum of pixel values from an image or a region of interest. 
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temperature values missing due to making only one measurement per event were 

linearly interpolated between two measured values. 

In order to determine the solar position in the image, a MATLAB-

implemented function was used to determine the solar elevation and azimuth angle 

for the measurement times and location (Koblick, 2009). With elevation and 

azimuth angles, the solar position on the image was determined by projecting the 

spherical coordinates of the sun onto the sensor plane using simple trigonometric 

functions. Figure 10 presents a draft of the ROI, not to scale. 

 

 

Figure 10 ï Example image with draft of the ROI used for calculating 

energy metrics. 

In total, there were 84 combinations of 12 time steps with ȹt = {1; 2; 5; 8; 10; 

15; 20; 30; 45; 60; 75; 90} seconds and 7 ROI radii r = {25; 50; 75; 100; 150; 200; 

250} resulting in 84 datasets (12 x 7). The indexes corresponding to each 

combination are shown in Table 3.  
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Table 3 ï Indexes corresponding to each combination of ȹt and ROI 

radius. 

  ȹt 

 
 

1 2 5 8 10 15 20 30 45 60 75 90 
R

O
I 
R

A
D

IU
S
 

25 1 8 15 22 29 36 43 50 57 64 71 78 

50 2 9 16 23 30 37 44 51 58 65 72 79 

75 3 10 17 24 31 38 45 52 59 66 73 80 

100 4 11 18 25 32 39 46 53 60 67 74 81 

150 5 12 19 26 33 40 47 54 61 68 75 82 

200 6 13 20 27 34 41 48 55 62 69 76 83 

250 7 14 21 28 35 42 49 56 63 70 77 84 

 

For each of these datasets, the correlation coefficients were calculated for 

each combination of the 2 target variables (power at t0: P0; and power difference 

between t0 and t0-ȹt: ȹP) with the 5 selected input variables (power at t0-ȹt: P-1; 

temperature at t0: T0; and ROI energy difference between t0 and t0-ȹt for each digital 

channel). Correlation coefficients measure linear proportionality in variations 

between two variables, so are useful for identifying variables with similar 

behaviours, provided their relationship is linear.  

The correlation values between power at t0 (P0) and the 5 input variables are 

shown in Figure 11. 

 

Figure 11 - Correlation between power at t0 (P0) and input variables (P1, 

T0, Red, Green, and Blue energy differences). 
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The horizontal axis represents the index from each combination of ȹt and 

ROI radius aforementioned. The image attributes present negative correlation 

coefficients, which means that their relationship to power at t0 (P0) is inversely 

proportional, but since the values are lower in module than 0.4, they do not boast 

good correlation.  

Temperature values also are weakly correlated to P0. Power at t0-ȹt  (P-1) is 

strongly correlated to P0 at shorter time intervals, and converges to zero as ȹt 

increases. Another important aspect that can be observed are the peaks for ROI 

radius = 75 pixels. 

The correlation values between ȹP (P0 ï P-1) and the 5 input variables are 

shown in Figure 12. 

  

Figure 12 ï Correlation between ȹP and input variables (P-1, T0, Red, 

Green, and Blue energy differences). 

In the case of ȹP the correlation with the input variables increases with ȹt 

with the exception of temperature. For all variables correlation vanishes for ȹt = 90 

s. For the first five ȹt values, the image attributes present a behaviour similar to that 

of the same variables with P0, but with an ascending trend. Overall the correlation 

levels between ȹP and the input variables are higher than for P0. 

The next step in analysing this data is to create regression models to determine 

the practical viability of the system and data. 


