
Elvismary Molina de Armas

A novel approach for de Bruijn Graph
construction in de novo genome fragment

assembly

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática.

Advisor: Prof. Sérgio Lifschitz

Rio de Janeiro
September 2019

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Elvismary Molina de Armas

A novel approach for de Bruijn Graph
construction in de novo genome fragment

assembly

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática. Approved by the
Examination Committee.

Prof. Sérgio Lifschitz
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcus Vinicius Soledade Poggi de Aragao
Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Prof. Nalvo Franco de Almeida Junior
Faculdade de Computação – UFMS

Prof. Daniel Cardoso Moraes de Oliveira
Instituto de Computação – UFF

Rio de Janeiro, September 23rd, 2019

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

All rights reserved.

Elvismary Molina de Armas
Graduation in Engineering in Computer Science in 2008 from
the University of Informatics Sciences, Cuba. In 2011 the
author received his degree of Master of Science in Applied
Informatics from the University of Informatics Sciences. Re-
ceives the Award of the Academy of Sciences of Cuba 2011,
titled New models for the prediction of mutations and drug
resistance of viruses such as HIV and influenza, as a part
group of other authors, Academy of Sciences of Cuba in 2011.
In 2012 receives the Award of the Rector of the University
of Informatics Sciences 2012, Category: Results that Reflect
the Advancement of Science, Technology, and Innovative of
Major Significance and Originality, Rector of the University
of Informatics Sciences. Has experience in Computer Science,
focusing on Bioinformatics and Data Management.

Bibliographic data
de Armas, Elvismary Molina

A novel approach for de Bruijn Graph construction in
de novo genome fragment assembly / Elvismary Molina de
Armas; advisor: Prof. Sérgio Lifschitz. – Rio de janeiro: PUC-
Rio , Departamento de Informática, 2019.

v., 104 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. grafo de Bruijn ;. 3. montagem
de genoma;. 4. k-mer. I. Lifschitz, Sérgio. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD:004

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Acknowledgments

First of all, I am really grateful for my family and friends. I am especially
grateful to my mother, my father and my husband, who have always been
supporting all the decisions in my life, and gave me a lot of encouragement
and emotional and practical support in these last years to be able to finish my
PhD. An extraordinary thanks to my daughter, for having come to the world
in this last period of my doctorate, making me grow more every day with her
smile and love.

Personal and professional thanks to my advisor, Sergio Lifschitz, who
guided my research for these almost 6 years and always believed in me.

I acknowledge the significant support I received from Clícia Gravitol,
Paulo Cavalcanti Gomes and the other members of the Instituto de Bioquimica
Medica da UFRJ that started me in the world of fragment genome assembly,
and from the jury, Prof. Edward Hermann Haeusler, Prof. Marcus Vinicius
Soledade Poggi de Aragao, Prof. Nalvo Franco de Almeida Junior and Prof.
Daniel Cardoso Moraes de Oliveira. Your attention and interest were crucial
to me.

Many thanks to BioBD students, and PhD student colleagues in particu-
lar to Julio, Alain, Rafael, Liester, Guilherme, Sonia, and Grettel, for listening
to me, criticizing, and sharing hard and good times.

Thank you very much to the Tecgraf Institute and my colleagues there,
for the support and the opportunity to work part-time during the last period
of my PhD.

I am thankful for receiving this opportunity to study at PUC, and now,
having the grace to become a PhD and going abroad as a scientist.

This study was financed in part by the Conselho Nacional de Desenvol-
vimento Científico e Tecnológico - Brasil (CNPq).

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Abstract

de Armas, Elvismary Molina; Lifschitz, Sérgio (Advisor). A novel
approach for de Bruijn Graph construction in de novo
genome fragment assembly. Rio de Janeiro, 2019. 104p. Tese de
doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Fragment assembly is a current fundamental problem in bioinforma-
tics. In the absence of a reference genome sequence that could guide the
whole process, a de Bruijn Graph data structure has been considered to im-
prove the computational processing. Notably, we need to count on a broad
set of k-mers, biological sequences substrings. However, the construction of
de Bruijn Graphs has a high computational cost, primarily due to main
memory consumption. Some approaches use external memory processing
to achieve feasibility. These solutions generate all k-mers with high redun-
dancy, increasing the number of managed data and, consequently, the num-
ber of I/O operations. This thesis proposes a new approach for de Bruijn
Graph construction that does not need to generate all k-mers. The solu-
tion enables to reduce computational requirements and execution feasibility,
which is confirmed with the experimental results.

Keywords
de Bruijn Graph; genome assembling; k-mer

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Resumo

de Armas, Elvismary Molina; Lifschitz, Sérgio. Uma nova abor-
dagem para a construção do grafo de Bruijn na montagem
de novo de fragmentos de genoma. Rio de Janeiro, 2019. 104p.
Tese de Doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

A montagem de fragmentos de sequências biológicas é um problema
fundamental na bioinformática. Na montagem de tipo De Novo, onde não
existe um genoma de referência, é usada a estrutura de dados do grafo
de Bruijn para auxiliar com o processamento computacional. Em parti-
cular, é necessário considerar um conjunto grande de k-mers, substrings
das sequências biológicas. No entanto, a construção deste grafo tem grande
custo computacional, especialmente muito consumo de memoria principal,
tornando-se inviável no caso da montagem de grandes conjuntos de k-mers.
Há soluções na literatura que utilizam o modelo de memória externa para
conseguir executar o procedimento. Porém, todas envolvem alta redundân-
cia nos cálculos envolvendo os k-mers, aumentando consideravelmente o
número de operações de E/S. Esta tese propõe uma nova abordagem para
a construção do grafo de Bruijn que torna desnecessária a geração de todos
os k-mer. A solução permite uma redução dos requisitos computacionais e a
viabilidade da execução, o que é confirmado com os resultados experimen-
tais.

Palavras-chave
grafo de Bruijn ; montagem de genoma; k-mer

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Table of contents

1 Introduction 13
1.1 de Bruijn graph and k-mers 13
1.2 Approaches for DBG construction 14
1.3 Research scope 15
1.4 Structure of the work 16

2 Principal concepts 17
2.1 Next-generation Sequence Data 17
2.2 Genome assembly 18
2.3 De novo assembly approaches 21
2.3.1 Overlap graph 21
2.3.2 The de Bruijn graph 21
2.4 Partial conclusions 26

3 Related works 27
3.1 Main classification of approaches 27
3.2 k-mers counters 28
3.3 Techniques to reduce memory footprint for DBG construction 29
3.4 External memory approaches 30
3.5 State of the art of plant genome assembly 33
3.5.1 Summary 34
3.6 Partial Conclusions 39

4 A novel approach for de Bruijn Graph construction 40
4.1 Motivation 40
4.2 Propositions of the new approach 42
4.3 Main idea 43
4.4 Novel algorithm for DBG construction 45
4.4.1 Extra-compacted de Bruijn Graph decomposition analysis 49
4.4.1.1 Decomposition in details 50
4.4.2 Analysis of the number of vertices per iteration 55
4.5 Computational requirements for extra-compacted DBG 60
4.5.1 Computational requirements for DBG construction 60
4.5.2 Memory requirements for extra-compacted DBG 62
4.5.3 Time complexity analysis 63
4.6 Processing pipeline. Profits of our approach 66
4.7 External memory processing at last step 67
4.8 Partial conclusions 70

5 Implementation and results 71
5.1 DBG implementation 71
5.1.1 Vertices and edges codification 71
5.1.2 Extra-compacted DBG representation 72
5.2 Experimental results 75

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

5.2.1 Number of skipped k-mers at each iteration 76
5.2.2 Memory analysis 80
5.2.3 Time analysis 82
5.2.4 Comparison with other assemblers 83
5.3 Partial conclusions 87

6 Conclusions 89
6.1 Contributions 90
6.2 Future work 90

A Decomposition details 98

B Results 100

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

List of figures

Figure 2.1 A read represented by de Bruijn graph. (a) Original read.
(b) DBG for k = 4. The graph has a node for every unique k-
mer in the read plus a directed edge for every pair of k-mers
that overlap by k − 1 bases in the read. In these examples, the
paths are simple because the value k = 4 is larger than the 2bp
repeats in the read. The read sequence is easily reconstructed
from the path in either graph. [Miller et al. 2010] 24

Figure 2.2 A pair-wise overlap represented by a DBG. (a) Two reads
have an error-free overlap of 4 bases. (b) DBG represents both
reads, with k = 4. The pair-wise alignment is a by-product of
the graph construction. (c) The simple path through the graph
implies a contig.[Miller et al. 2010] 24

Figure 2.3 Topological characteristics that could be presented in
the DBG: (a) An errant base call toward the end of a read
causes a “tip” or short dead-end branch. (b) An errant base
call near a read middle causes a “bubble” or alternate path.
Polymorphisms between donor chromosomes would be expected
to induce a bubble with parity of read multiplicity on the
divergent paths. (c) Repeat sequences lead to the “frayed rope”
pattern of convergent and divergent paths.[Miller et al. 2010] 25

Figure 4.1 Number of total k-mers. 41
Figure 4.2 Unique k-mers distribution. 41
Figure 4.3 Analysis of the number of k-mers and characters that

could be skipped to be processed. a) case of s1 with some
duplications. b) case of there is a substring l1 of s1, such as
|li| = l, k ≤ l < s and l1 has external copies 44

Figure 4.4 dk-mers representation over read r. The dk-mers have
dimension d. Adjacent dk-mers share k − 1 bases which defines
an edge. 46

Figure 4.5 DBG construction representation. On the left hand, from
left to right, is represented how the proposed new algorithm
generates DBG. From right to left, the traditional generation
approaches processing the entire collection of k-mers. In the
middle, the intersection is the final DBG. 48

Figure 4.6 Iteration 1: Getting dk-mers with d1 = 64 from one read
with m = 79. 51

Figure 4.7 Iteration 2: Getting dk-mers with d2 = 54 from a set of
two dk-mers. 52

Figure 4.8 Iteration 3: Getting dk-mers with d3 = 44 from a set of
three dk-mers. 52

Figure 4.9 Iteration 4: Getting dk-mers with d4 = 34 from a set of
four dk-mers. 53

Figure 4.10 Iteration 5: Getting dk-mers with d5 = 24 from a set of
five dk-mers. 53

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Figure 4.11 Iteration 6: Getting dk-mers with d6 = 14 from a set of
seven dk-mers. 53

Figure 4.12 Iteration 7: Getting dk-mers with d7 = 12 from a set of
twenty seven dk-mers. 54

Figure 4.13 Number of complete dk-mer. Formula representation. 56

Figure 5.1 Nested data structure used for extra-compacted DBG.
The main structure contains a prefix of dk-mers and a pointer
to a nested structure. Nested structure, contains the remaining
of dk-mer sequence, along with the multiplicity of the vertex
and a edge map bit codification 74

Figure 5.2 Number of k-mers processed using our approach com-
pared to overall number of k-mers 77

Figure 5.3 Comparison of cumulative percentage of skipped k-mers
over different executions starting with different d1 78

Figure 5.4 Comparison of cumulative percentage of skipped k-mers
over different executions with different step 79

Figure 5.5 Memory compared with the number of unique dk-mers. 81
5.5(a)Memory and unique dk-mers for R03 81
5.5(b)Memory and unique dk-mers for R06 81
5.5(c)Memory and unique dk-mers for R10 81
5.5(d)Memory and unique dk-mers for H1 81
5.5(e)Memory and unique dk-mers for H2 81

Figure 5.6 Proportion between number of elements processed and
execution time. 83
5.6(a)Execution for d1 = 12. DBG traditional construction 83
5.6(b)Execution for d1 = 64. DBG construction through multi-

ple iterations using our approach. 83
Figure 5.7 Comparison of execution time between our implementa-

tion and ABYSS 85
Figure 5.8 Comparison of memory between our implementation and

ABYSS 86

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

List of tables

Table 4.1 Iteration details. 55

Table 5.1 Experiments description. 76
Table 5.2 Saved number of k-mers in Experiment 1. 77
Table 5.3 Summary of executions for Experiment 2 to analyze how

impact d1. R10 with k=15, varying d1. 78
Table 5.4 Summary of executions for Experiment 3 to analyze how

impact the step. H1 with k=11, varying step parameter for
update function. 80

Table 5.5 Datasets R03, R06, R10, H1 and H2. Memory used in
each execution. Experiment 1. k = 12, d1 = 64, d is updated
decremented by 10 in each iteration. g′(i) is the number of
unique dk-mers and Mem. is the memory used in GB. 80

Table 5.6 Datasets R03, R06, R10, H1 and H2. Time comparison,
runtime DBG construction versus runtime DBG construction of
our approach. Experiment 4. 83

Table 5.7 Comparison of our approach with ABYSS. Experiment 5. 84
Table 5.8 Comparison of our approach with Velvet. Experiment 5. 86
Table 5.9 B2. Number of skipped k-mers for Experiment 6. 87

Table A.1 Decomposition details for Gdi,k. 98
Table A.2 Number of elements generated in each iteration varying

step for update function. 99

Table B.1 Dataset R03. Number of skipped k-mers. Experiment 1. 100
Table B.2 Dataset R06. Number of skipped k-mers. Experiment 1. 101
Table B.3 Dataset R10. Number of skipped k-mers. Experiment 1. 101
Table B.4 H1. Number of skipped k-mers. Experiment 1. 101
Table B.5 H2. Number of skipped k-mers. Experiment 1. 102
Table B.6 Dataset R10. Number of k-mers saved to processed vary-

ing d1, for step = 10. Experiment 2. 103
Table B.7 Dataset H1. Number of k-mers saved to processed for

constant d1, varying step. Experiment 3. 104

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

List of Abreviations

DBG – de Bruijn Graph
GAGE – Genome Assembly Gold Standard Evaluations
NGS – Next-Generation Sequencing
OLC – Overlap Layout Consensus
GB – Gigabytes, equivalent to 1024 Megabytes
hrs – Hours, equivalent to 60 minutes
bp – base pair. Refers to a nitrogenous base that building blocks of DNA and RNA:
adenine, guanine, cytosine, thymine and uracil. BF – Bloom Filter data structure.
FP – False positives.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

1
Introduction

The computational fragment assembly [El-Metwally et al. 2013] is a
fundamental problem for bioinformatics. As DNA sequencing technologies
cannot read whole genomes in a single run, one needs to reconstruct the
original sequences considering the large volume of short reads. Indeed, Next-
Generation Sequencing (NGS) projects break the genome randomly at several
places and generate several small fragments, the so-called reads of the genome.
NGS [Metzker 2010] machines commonly deliver a massive number of small
reads - varying from 35 to 400 base pairs depending on the specific technology
used-, with low cost comparing with previous Sanger generation.

Since fragments of DNA are broken in randomly positions, and sequencer
machines do not have a 100% of accuracy, it is needed to increase the
sequencing coverage. The coverage is measured in function of the average
number of reads covering a position in the genome.

Given the pieces taking from non-exact positions, and the great coverage,
a high level of redundancy is generated in the fragments. The number of reads
could be hundreds of millions; thus, the total volume of data may reach tens
or even hundreds of GB. For example, sequence data from Assemblathon2
competition includes BGI Illumina HiSeq 2000 reads for a parrot with 269 GB
of sequences, 219x coverage, with read lengths 90 and 151bp [Bradnam et al.
2013].

There is an additional challenge when dealing with de-novo [Schatz et al.
2010] assembling methods since there are no reference genomes to guide the
assembly procedure.

1.1
de Bruijn graph and k-mers

Some genome assemblers have been implemented based on a de Bruijn
graph (DBG) data structure, which helps to compute assembly overlaps
[Bradnam et al. 2013, Salzberg et al. 2012].

In order to build a de Bruijn graph, the set of short reads R = {r} are
firstly decomposed into k-mers (substrings with specific k length). A short read
r is a string over the alphabet Σ = {A, T, C,G}, with |Σ| = 4. Each character

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 1. Introduction 14

of the alphabet represents one of the four nitrogenous bases present in DNA:
adenine (A), guanine (G), cytosine (C) and thymine (T).

The short reading length m depends on the sequencing technology used,
which varies from 35 to 150 bp (base pairs) with low error rates of up to 300
bp, using Illumina technology, for example. However, it can reach 10 to 15 kbp,
but paying a higher error rate, when using Pacific Biosciences technology, for
example.

In a DBG, unique k-mers constitute nodes, and an edge is set between
two nodes when the k-mers of those nodes occur consecutively in at least one
read. The total number of k-mers present in one read (not only distinct k-mers)
is equal to m − k + 1, while the total number of k-mers present in n reads is
(m− k+ 1) ∗ n. Taking into account that the number of n can be in the order
of the millions, the number of k-mers can easily reach the billions.

The creation and manipulation of the de Bruijn graph has been identified
as the step with most memory and runtime consumption for some assembling
experiments [Li et al. 2009][Cook and Zilles 2009][Li et al. 2013]. In fact, the
fundamental computational drawback of the de Bruijn graph approach is that
it requires an enormous amount of memory for its construction. For example,
on the supplementary results for Assemblathon 2 [Bradnam et al. 2013], in
which software-based on de Bruijn graphs are included, there is a list of the
computational requirements of different assembly pipelines. It is not surprising
to see that they round over 14 hours run time with 512 GB RAM machine with
48 cores, depending on species and the software used.

1.2
Approaches for DBG construction

Several techniques have been proposed to reduce the memory and time
footprint during the assembly process [Kleftogiannis et al. 2013]. They use a
variety of data structures and processing approaches, focused directly or not
in the construction process. Most of them fit into three categories: those that
focus on reducing the amount of data, others that try to increase computational
resources, and yet those based on the external memory processing model.

The first category tries to reduce the amount of data as much as possible
by removing, sampling or using probabilistic data structures like Bloom Filters.
They are committed to the quality of the assembly. These solutions are not
exact representations of the DBG. The second group focuses on the allocation
of more resources over the cloud or increasing the degree of parallelism until
sufficiency to generate the assembly. The last one group, which include [Li
and XifengYan 2015], [Chikhi et al. 2014] and [Chikhi et al. 2016], is based on

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 1. Introduction 15

external memory models. They partition the data into smaller units such that
they can be processed in main memory and eventually merge the results. The
element of greater weight in these solutions is the number of I/O operations
when compared with random access memory times in main memory processing.
The last two approaches follow an exact representation of DBG.

One aspect that has a significant impact on memory consumption is the
number of elements (k-mers) that are necessary to process and keep in the
main memory. In addition, k-mers present a great level of redundancy since
they share k− 1 bases. For n reads, the redundancy level becomes really high.

It is important to note that the k value for the best assembly is not
known. The k value has a mainly role in de novo processing. Considering the
way that the graph is constructed, the k value defines the minimum substring
that two reads must share to be linked in a graph path. Also, k greatly impacts
the capacity of distinguishing between genome repetition, repetition generated
by a large coverage, or by a sequencing error.

Since a reliable k value for optimum assembly is not known beforehand,
the researchers usually generate several assemblies by varying k.

Depending on k and the dataset, the number of k-mers processed and
the number of unique k-mers could be higher or lower. Therefore, an amount
of memory M , enough to execute an experiment with k1, could be not enough
with k2 (k1 6= k2) for the same dataset.

We can succinctly define our scientific and technological problem as:
Computational requirements for DBG construction depend on k-mer

processing and a particular k. The number of k-mers, significantly affects the
execution time, while the number of unique k-mers significantly impacts the
amount of required RAM for a DBG exact representation.

1.3
Research scope

We propose in this thesis a new approach to generate the DBG based on
a reduction of the number of processed k-mers.

To explain and justify our approach, we present:

– the principal concepts associated with the problem.

– evaluation of state of the art, deepening the techniques used to satisfy
the need for high computational requirements.

– Identify the main parameters that may impact in computational require-
ments for DBG construction.

– Implement our approach and execute a set of relevant experiments.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 1. Introduction 16

– Evaluate our approach with real datasets.

In addition, it is also our interest to:

– Analyze the computational requirements of our approach.

– Evaluate the feasibility of our approach in the presence of limited main
memory.

– Evaluate the performance of our approach to reduce execution time.

Our research focuses on the exact representation of DBG. However, this
does not mean that it cannot bring improvements when used in conjunction
with an approximation technique.

1.4
Structure of the work

This text is structured as follows: we list and describe the fundamental
concepts of our research in Chapter 2, including the challenges of de novo
assembly and the construction of de Bruijn graphs. Chapter 3 contains a
description of the state of the art and main related works. Our novel approach
is described in detail in Chapter 4 through examples and computational
requirements analysis. Lastly, Chapter 5 explains our implementation and
analyzes the results of some experiments executed to validate our approach.
Finally, Chapter 6 summarizes our contributions and outgoing works.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

2
Principal concepts

Next-generation sequencing (NGS) technologies have brought rapid
progress for the biological research area. Nevertheless, the genome assembly
problem continues to be a challenge since we need to reconstruct a whole-
genome by joining a vast amount of short reads.

Assembly algorithms and their implementations are typically complex.
They could require high-performance computing platforms for large genomes.
Algorithmic success can depend on pragmatic engineering and heuristics
formulated by empirically derived rules of thumb.

For de novo assembly, without a known reference genome, the complexity
is higher. Some successful approaches are based on the use of de Bruijn graph.
However, the construction and use of de Bruijn graph demand a large amount
of main memory and execution time because of the large number of elements
(nodes and edges) to process.

In this chapter will be present in details the main concepts related to de
novo assembly, the technologies involved, and theoretical concepts about the
de Bruijn graph structure.

2.1
Next-generation Sequence Data

The field of biological research has changed rapidly since the advent of
massively parallel sequencing technologies, known as next-generation sequenc-
ing (NGS) [El-Metwally et al. 2013], [Claros et al. 2012].

Some commercial DNA sequencing platforms include the Genome Se-
quencer from Roche 454 Life Sciences (www.454.com), the Solexa Genome
Analyzer from Illumina (www.illumina.com), the SOLiD System from Ap-
plied Biosystems (www.appliedbiosystems.com), the Heliscope from Helicos
(www.helicos.com), and the commercialized Polonator (www.polonator.org).
A distinguishing characteristic of these platforms is that they do not rely on
Sanger chemistry [Sanger et al. 1980] as did first-generation machines. With
their arrival in the market in 2005 and rapidly developing since then, they
have dramatically lowered the cost per sequenced nucleotide and increased
throughput by orders of magnitude [Niedringhaus et al. 2011]. Their perfor-

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 18

mance increased dramatically the numbers of reads generated, many hundreds
of thousands or millions of reads, and all this in a relatively short time [Kleft-
ogiannis et al. 2013] and good genome coverage. For example, the highest
capacity sequencing instruments available today, such as the Illumina HiSeq
x Ten1, has an output system that generates 1.8 TB of sequence per instru-
ment run in 3 days, with an output rate per day of 600GB and a read length
of 150 (http://allseq.com/knowledge-bank/illumina/). A review of NGS
technologies appears in [Zhou et al. 2010], [Liu et al. 2012].

NGS has brought an essential impact in various biological areas such
as genomics, transcriptomics, metagenomics, proteogenomics, gene expression
analysis, noncoding RNA discovery, SNP detection, and the identification of
protein binding sites [El-Metwally et al. 2013]. The genome assembly problem
arises because it is impossible to sequence a whole genome directly in one read
using current sequencing technologies.

The application of NGS had a significant impact mainly on the sequenc-
ing projects in which there was a proper reference sequence, due to the much
shorter reading length (30 – 400 bp) compared to the Sanger sequence (500 –
1000 bp), because they are comparatively very cheap. However, for assemblies
with no reference genome, called de novo, assembling a large genome (> 100
Mbp) using short readings remains a challenge. While the cost of sequencing
no longer becomes a limiting factor for most large new projects, and sequence
fragment assembly becomes the biggest challenge.

NGS reads can vary from 400 bp to 100 bp or less (see 454 machines,
Solexa and SOLID machines) [Schatz et al. 2010], [Miller et al. 2010]. Since
shorter reads deliver less information per read, the computational problem of
assembling chromosome-size sequences gets worse. Consequently, for sure, high
coverage is necessary to capture most of the genome with the greatest certainty.
However, high coverage increases complexity and intensifies computational
issues related to large data sets.

2.2
Genome assembly

The process of reconstructing a whole-genome by joining these reads
together up to the chromosomal level is known as genome assembly.

An assembly is a hierarchical data structure that maps the sequence data
to a putative reconstruction of the target genome. It groups reads into contigs
and contigs into scaffolds. Contigs provide one representation by multiple

1that has specifically been created to bring down the price of human whole-genome
sequencing to under US$ 1,000

http://allseq.com/knowledge-bank/illumina/
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 19

sequence alignment of reads. The scaffolds sometimes called supercontigs or
metacontigs, define the contig order and orientation and the sizes of the gaps
between contigs. Scaffold topology may be a simple path or a network [Miller
et al. 2010]. In the following, we comment on some assembly challenges by
using NGS data:

– Read length:

DNA sequencing technologies share the fundamental limitation that read
lengths are much shorter than even the smallest genomes. The process of
determining the complete DNA sequence of an organism’s genome overcomes
this limitation by over-sampling the target genome with short reads from
random positions.

– Repeats:

Assembly software is challenged by repeated sequences in the target
genome. Genomic regions that share perfect repetitions may be indistinguish-
able, principally if the repetitions are longer than the reads. The repetition
resolution is more difficult in front of sequencing errors. However, it can be
assisted by high coverage and matched final readings, using an expansion
strategy. Careful estimates of the repetition resolution involve the ratio of the
reading length (or paired-end separation) to the repetition length, repetition
fidelity, reading accuracy and reading coverage.[Miller et al. 2010]

Concerning NGS data, shorter reads have less power to resolve genomic
repeats, but higher coverage increases the chance of spanning short repeats.

– Error sequencing:

Another essential aspect that complicates the assembly process is the
error profiles for each NGS platform, compared in [Zavodna et al. 2014]. While
implementations must tolerate imperfect sequence alignments to avoid missing
valid joins, this can brings false-positive joins. This is a problem, especially with
reads from inexact polymorphic repeats and polymorphic differences. False-
positive joins can induce chimeric assemblies.

Over-sampling the target genome with short reads from random posi-
tions, and high overages are techniques used to mitigate error profiles.

– Coverage:

Although the sequencing accuracy for each nucleotide is high, a large
number of nucleotides in the genome means that if an individual genome is

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 20

only sequenced once, there will be a significant number of sequencing errors.
Also, many positions in a genome contain single nucleotide polymorphisms
(SNPs). Therefore, to distinguish between sequence errors and true SNPs, it
is necessary to further increase sequence accuracy by sequencing individual
genomes in a large number of times.

The theoretical or expected coverage is the average number of times that
each nucleotide is expected to be sequenced, given a certain number of reads of
a given length and the assumption that reads are randomly distributed across
an idealized genome [Sims et al. 2014].

In other words, coverage represents the average number of how many
times a particular base position in the genome target is sequenced. Actual
empirical per-base coverage represents the exact number of times that a base in
the reference is covered by a high-quality, aligned read from a given sequencing
experiment. Therefore, a 30X, for example, means that each particular base
position was sequenced on average 30 times.

Very low coverage induces gaps in assemblies. As coverage increases, the
fraction of the genome sequenced increases while the number of gaps decreases.
However, each sequencing technology has its own biases that produce gaps in
coverage [Schatz et al. 2010].

Coverage variation is introduced by chance, by variation in cellular copy
number between source DNA molecules, and by the compositional bias of
sequencing technologies [Zhou et al. 2010]. In that sense, the assembly is
complicated by non-uniform coverage of the target.

Researchers typically determine the necessary NGS coverage level based
on the method they’re using, as well as other factors such as the reference
genome size, gene expression levels, specific application of interest, published
literature, and best practices from the scientific community [Illumina, Inc.
2019].

– Computational complexity:

Assembly operation could require high-performance computing platforms
for large genomes and the processing of larger volumes of data. Algorithms
are typically complex and depend on pragmatic engineering and heuristics.
Heuristics help to overcome complicated repetition patterns in real genomes,
random and systematic errors in real data, and the physical limitations of real
computers. Over more, the implementations and results are tied to a good
parameter instantiating. In case of de novo assembly, using a k-mer based
algorithms (see Section 2.3.2), the selection of k value is vital. These solutions
are lower sensitivity, thus could missing some true overlaps depending on k. The

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 21

probability that true overlap spans shared k-mers depends on the value of k,
the length of the overlap, and the rate of error in the reads [Zhou et al. 2010].
An appropriate value of k should be large enough that most false overlaps
don’t share k-mers by chance, and small enough that most true overlaps do
share k-mers. The choice should be robust to variation in reading coverage and
accuracy.

2.3
De novo assembly approaches

NGS assemblers can be organized into three categories, all based on
graphs. The Overlap-Layout-Consensus approach (OLC) is based on an overlap
graph. The de Bruijn Graph (DGB) approach relies on some form of k-mers as
vertices of the graph, and the greedy graph algorithms may use OLC or DBG.
Next, we will delve into the first two.

2.3.1
Overlap graph

Conceptually, the overlap graph models the overlaps between reads. Its
nodes represent the reads, and the edges represent the overlaps [Myers 1995].
Paths through the graph are the potential contigs.

The Overlap-Layout-Consensus (OLC) assembly strategy is used over
overlap graphs [Li et al. 2011]. As it is named, OLC works through three main
steps: first overlaps (O) between all the reads, then it moves out a layout (L)
of all the reads and overlaps information on a graph, and finally, the consensus
(C) sequence is inferred [Li et al. 2011]. OLC became successful with the wide
application of Sanger sequencing technology. Various widely used assembly
programs adopted OLC, an example of them is Celera Assembler [Myers et al.
2000].

2.3.2
The de Bruijn graph

The de Bruijn graph was defined outside the realm of DNA sequencing to
represent strings from a finite alphabet. The nodes represent all possible fixed-
length strings. The edges represent suffix-to-prefix perfect overlaps. [Miller
et al. 2010] In the context of genome assembly, the de Bruijn graph in the
could be defined as a graph formed by k-mers, following the next definitions:

Definition 2.1 Read: A read r is a string with length m that represent a
genome sequence, over the alphabet Σ = {A, T, C,G}, with |Σ| = 4. Each

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 22

character of the alphabet represents one of the four nitrogenous bases present
in DNA: adenine (A), guanine (G), cytosine (C) and thymine (T).

Definition 2.2 k-mer
A k-mer is a substring over a read with specific k length.

The k-mer is a string whose length is k, 1 < k < m. k defines the
minimum length of a substring that two reads must share to define an overlap,
linking two reads in the graph traverse as a result. Using a larger k value
involves more accuracy to discover repeated regions in the genome, but also
increases the chances of loose overlaps in reads, causing the loss of links in the
graph. Consequently, it is not easy to estimate the right k value for the best
assembly. The total number of k-mers present in one read is equal to m−k+1,
while the total number of k-mers present in n reads is (m−k+1)n. The unique
k-mers space for k value is 4k.

Definition 2.3 de Bruijn graph

De Bruijn graph, Gk(V,E) represents overlaps between k-mers, in which:

– The set of vertices is defined by V = S = {s1, s2, ..., sp}, where S is a set
of unique k-mers over a given set of reads.

– The set of edges is defined by E = {e1, e2, ..., eq}, where e = (si, sj) if
and only if the k− 1 suffix of si matches exactly the k− 1 prefix of sj. si
and sj must be adjacent k-mers in at least one read.

The life cycle of DBG for genome assembling can be resume as:

– Construction:

– Generate all k-mers.
– Generate a node per distinct k-mer.
– Generate an edge between two nodes if these k-mers have a k − 1

overlapped in at least one read.

– Processing:

– Simplification: Compaction and applying heuristics to resolve er-
rors.

– Traverse the graph to generate contiguous regions of genome called
contigs. Those are the assembly result.

Vertices, may contain additional information to the k-mer itself, such as
the read identification, position, and multiplicity.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 23

Definition 2.4 Multiplicity of a node of DBG
The multiplicity of a node is the number of times that the k-mer of this node
appears in the dataset.

A lower multiplicity could indicate sequencing errors. The multiplicity
could be used with the coverage to identify erroneous k-mers and suppress
them.

In order to build a de Bruijn graph, traditional approaches firstly
decomposes the set of reads R into k-mers. The read length m depends on the
sequencing technology used, being that for smaller values of length, a lower
rate of errors. Then it is needed to identify all distinct k-mers (set of vertices
V) from the collection of all k-mers, and map all duplicate k-mers into the
unique corresponding node in the de Bruijn graph, updating the edges.

An edge between two nodes is created whenever their corresponding k-
mers are adjacent in at least one short read. In other words, an edge is created
between two k-mers if they have an exact suffix-prefix overlap of length k-1
that occurs in at least one read. Therefore, a way to get the set of edges E,
once the set of vertices is built, is by creating them through scanning all the
reads in the short sequences file and querying nodes in V .

After the construction of DGB, in the second stage, it must be traversed
thought the paths of the graph in function to obtain contigs regions of the
genome target.

By construction, the graph contains a path corresponding to the original
sequence (Fig. 2.1). Each read induces a path. Reads with perfect overlaps
induce a common path. Thus, perfect overlaps are detected implicitly without
any pair-wise sequence alignment calculation (Fig. 2.2).

However, some problems are present for DBG representation:

– Repeats induce cycles, which would allow more than one possible recon-
struction of the target.

– DNA is double-stranded. Therefore, the forward sequence of any given
read may overlap the forward or reverse complement sequence of other
reads.

– The graph contains insufficient information to disambiguate the repeats
in real genomes that have complex repeat structures, including tandem
repeats, inverted repeats, and imperfect repetitions.

– Palindromes sequences induce paths that fold back on themselves. A
palindrome is a DNA sequence that is its own reverse complement.

– Real data includes sequencing errors that can generate false paths.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 24

Figure 2.1: A read represented by de Bruijn graph. (a) Original read. (b) DBG
for k = 4. The graph has a node for every unique k-mer in the read plus a
directed edge for every pair of k-mers that overlap by k − 1 bases in the read.
In these examples, the paths are simple because the value k = 4 is larger than
the 2bp repeats in the read. The read sequence is easily reconstructed from
the path in either graph. [Miller et al. 2010]

Figure 2.2: A pair-wise overlap represented by a DBG. (a) Two reads have an
error-free overlap of 4 bases. (b) DBG represents both reads, with k = 4. The
pair-wise alignment is a by-product of the graph construction. (c) The simple
path through the graph implies a contig.[Miller et al. 2010]

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 25

Some problems could be identified through the topological characteristics
of the graph. For example:

– Tips are short, dead-end divergences from the main path (Fig. 2.3 (a)).
They are induced by sequencing error toward one end of a read. They
can be induced by coverage dropping to zero.

– Bubbles are paths that diverge then converge (Fig. 2.3 (b)). They are
induced by sequencing error toward the middle of a read, and by a
polymorphism in the target.

– Paths that converge then diverge from the frayed rope pattern (Fig. 2.3
(c)). They are induced by repeats in the target genome.

– Cycles are paths that converge on themselves. They are induced by
repeats in the target. For instance, short tandem repeats induce small
cycles.

Figure 2.3: Topological characteristics that could be presented in the DBG:
(a) An errant base call toward the end of a read causes a “tip” or short dead-
end branch. (b) An errant base call near a read middle causes a “bubble” or
alternate path. Polymorphisms between donor chromosomes would be expected
to induce a bubble with parity of read multiplicity on the divergent paths. (c)
Repeat sequences lead to the “frayed rope” pattern of convergent and divergent
paths.[Miller et al. 2010]

Therefore, after the construction, DBG needs to be simplified and cor-
rected to reduce the complexity and generate the contigs. Since the detection
and elimination of errors and divergence paths are not trivial algorithms, some
heuristics and approximation algorithms are used in that step.

Compared to overlap graphs, de Bruijn graphs are more sensitive to
repeats and sequencing errors. Paths in overlap graphs converge at repeats

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 2. Principal concepts 26

longer than a read, but paths in de Bruijn graphs converge at perfect repeats
of length k or more, and k must be less than the read length. Each single-base
sequencing error induces up to k false nodes in the de Bruijn graph. Each false
node has a chance of matching some other node and thereby inducing a false
convergence of paths.

The DBG does not require all-against-all overlap discovery, it does
not (necessarily) store individual reads or their overlaps, and it compresses
redundant sequence. Conversely, the DBG graph does contain actual sequence
and the graph can exhaust available memory on large genomes.

2.4
Partial conclusions

Next-generation sequence data has significantly impacted several fields
of bioinformatics, greatly reducing costs. However, the genome assembly
continues to be a challenge for genomic researches since there is no technology
capable of sequencing the whole-genome, even for the smallest genomes.

Some aspects of NGS data difficult the assembly, such as the error
profiles for each NGS platform, the no-uniform coverage of the target, which
difficulties the resolution of genome repetitions. It fundamental limitation that
read lengths are much shorter than even the smallest genomes.

Two main approaches had lead the de novo assembly, OLC and de Bruijn
graph. The second has been more addressed in the NGS era. The construction
of de Bruijn graph is the main memory consumption step. The most important
parameter in the de Bruijn graph is the k value that impacts the accuracy of
the assembly, the number of vertices and edges, and the memory requirements.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

3
Related works

There are some assemblers that use DBG approach, for example Vel-
vet [Zerbino and Birney 2008] [Zerbino 2016], ALLPATHS [Butler et al.
2008], ABySS [Simpson et al. 2009], SOAPdenovo [Luo et al. 2012], and Con-
trail (https://sourceforge.net/projects/contrail-bio/). However, the
de Bruijn approach has as a drawback that de Bruijn graph can require an
enormous amount of memory (GB of RAM) and the construction and analysis
of a de Bruijn graph is not easily parallelized [Schatz et al. 2010]. As a result,
de Bruijn assemblers such as Velvet and ALLPATHS, which have been used
successfully on bacterial genomes, do not scale to large genomes. For a human-
sized genome, these programs would require several terabytes of RAM to store
their de Bruijn graphs [Schatz et al. 2010], and memory requirements may
be higher for more complex genome organisms, as is the case of many plants.
In order to know the magnitude of CPU/RAM requirements and runtime for
non-mammalian vertebrates (bird, fish, and snake species genomes), we sug-
gest reviewing the supplementary results for Assemblathon2 paper [Bradnam
et al. 2013].

This high memory consumption problem is expected to worsen in the
future because the NGS data generation rate has exceeded expectations based
on Moore’s law [Jackman and Birol 2010], meaning that the amount of raw
data is expected to grow much faster than the capacity of available memory
[Kleftogiannis et al. 2013]. Based on this affirmation, we assume that: no matter
how much main memory we have available; there may be an assembling case
for which this amount is not enough.

In this chapter, we present an overview of approaches that deal with high
memory consumption. We classify them into some categories and delving into
external memory approaches.

3.1
Main classification of approaches

Several techniques have been proposed to reduce the memory footprint
for the assembly process. Those approaches can be divided into two general
groups. First, include solutions that reduce the amount of data. The second

https://sourceforge.net/projects/contrail-bio/
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 28

group contains those solutions that increase the memory resources for the same
amount of data, through partitioning and/or distributing.

The first approaches try to reduce (by removing or sampling) as much
as possible the data until it is possible to execute the assembly with available
resources. However, it may affect the final quality of the assembly. Conversely,
the compression without loss of information also brings additional cost because
of the periodic process of zipping and unzipping.

In that group, also we include those approaches that use probabilistic
data structures. In that way, they can use a fixed amount of memory, indepen-
dently on the number of items to be processed. Compounding the problem,
there is no accurate measure to guide the reduction of the data. The mem-
ory consumption during the assembling process is highly sensitive to data and
the value of k. Thus the success of the reduction is only checked when the
assembling is achieved with the available memory.

These solutions that reduce the amount of data by removing, sampling,
or using probabilistic data structures like Bloom Filters, are considered in our
work as not exact representations of DBG.

The second group is based on greedy methods, allocating more resources
until they will be sufficient to generate the assembly. These approaches assume
that there are infinite resources, which is not real, for finite input data.

3.2
k-mers counters

The DBG construction implies a subrutine to identify distinct k-mers
and get their multiplicity. Identify distinct k-mers problem also has been
touched by counting k-mer tools [Marcais and Kingsford 2011], [Melsted and
Pritchard 2011], [Rizk et al. 2013], [Deorowicz et al. 2013], [Li and XifengYan
2015], [Deorowicz et al. 2015]. Although the k-mer counter tools have as main
objective to generate histograms about k-mers distributions, its processes
has some similarities to the process to get the vertices set of the DBG.
Identifying distinct k-mers have been approached by sorting [Deorowicz et al.
2013], [Deorowicz et al. 2015], hashing [Marcais and Kingsford 2011], [Rizk
et al. 2013], [Li and XifengYan 2015] or using Bloom Filters [Melsted and
Pritchard 2011], combined some times with parallel approaches to speed up
the process [Deorowicz et al. 2013], [Deorowicz et al. 2015]. Some of them
like [Rizk et al. 2013], [Deorowicz et al. 2013], [Deorowicz et al. 2015], and
[Li and XifengYan 2015] have been focused on distribution the k-mers in disk
partitions to counter them before, loading in main memory each partition at
time. Since the objective is only to get the frequencies of the k-mers, k-mer

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 29

counters have not the notion of vertices and edges. In addition, there are a lot
of them that processes the k-mers taking into some assumptions with the aim
of reducing the amount of data, for example, they do not count the k-mers
with frequencies smaller than a given value, or unify in a single category the
k-mers whose frequencies are larger than a given value, these criteria may not
be appropriate for the DBG construction.

3.3
Techniques to reduce memory footprint for DBG construction

More specifically, the techniques to reduce the memory requirements for
the assembly process found in the literature can be examined through the
following categories:

Pre-processing techniques:
First, there are preprocessing techniques such as Diginorm in [Titus

Brown et al. 2012], Quake [Kelley et al. 2010], ALLPATHS-LG error corrector
[Gnerre et al. 2011], that try to reduce the input size removing redundant
information and errors before the assembly process itself start.

Optimized data structures for graph representation:
To minimized the memory requirements during the k-mer unique iden-

tification process, were used effective indexes for identifying duplicate k-mers,
trying to reduce the space required and the number of operations. Hash ta-
bles in memory have been used successfully for many assemblers, such as in
[Zerbino 2016] [Simpson et al. 2009] [Luo et al. 2012], to identify duplicate k-
mers. However, for a large amount of NGS data, they do not work well because
the entire hash table does not fit in memory. Suffix-array is a data structure
used to compute overlaps. The FM-index [Simpson and Durbin 2010] has been
used to allow the compressed representation of input reads and fast compu-
tation of overlaps in string graph (equivalent to overlap graph), but it is not
tested yet in the construction of de Bruijn graph.

The succinct bitmap data structure in [Conway and Bromage 2011]
was also used to compress the representation of de Bruijn graph, but overall
need for space will continue to increase as the graph becomes “bigger”. Other
approaches are based on the idea of sparseness in genome assembly [Ye et al.
2012], where only a subset of k-mers present in the dataset is stored.

Bloom Filters have been arduously explored as solution to deal with DBG
computationally demanding [Melsted and Pritchard 2011], [Zhang et al. 2014],
[Chikhi and Rizk 2013]. Bloom Filters are used to store vertices (k-mers),
while the edges are implicitly deduced by querying the Bloom filter for the
membership of all possible extensions of a k-mer. However, this approach does

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 30

not correspond exactly to the edges contained in the reads. Some works have
been focused on propose mechanisms that avoid false positives using Bloom
Filters, for example, the works in [Chikhi and Rizk 2013], and [Salikhov et al.
2014].

Partition assembly algorithms were also proposed. For example, the
Minimum Substring Partitioning (MSP) [Li et al. 2013] technique allows us
to split the input reads into subsequences and distributes then into this disk
partitions, then processing one disk partition at a time. Moreover, the k-mers
partitions can be processed in a distributed manner, as well as the Contrail
proposed to avoid memory bottleneck.

Extending the computational resources:
Finally, in that category, we group solutions that proposed the use

of cloud resources to overcome the memory requirements limitations. In
[Kleftogiannis et al. 2013] were designed a set of assembler experiments using
the GAGE data sets and a group of program assemblers. All experiments
were performed in workstations on Amazon EC2 with the aim of comparing
the cost of use each platform. Financial analysis reveals that the assembly of
bacterial genomes, which takes a few minutes, can be processed on the cloud at
a minimal cost. Assembly of medium-sized genomes costs around US$1, which
is a significant improvement if we consider the cost of a machine equipped
with 32GB RAM. The cost for assembly of more complex genomes is higher
because such an operation requires more expensive virtual machines, and the
assembly takes several hours. The average cost ranged between US$10 and
US$1, decreasing with the use of programs that improve the trade-off between
memory consumption and execution time.

3.4
External memory approaches

Among the DBG construction strategies, we have found only a few
approaches that consider external memory processing. They fit into three
strategies: one based on external memory sorting, second based on k-mers
partitioning and disk distribution, and the last one based on the construction of
the graph embedded into a relational database management system (RDBMS).

External memory sorting is implemented in the solution proposed by
[Kundeti et al. 2010]. In this work, the authors present an efficient parallel
strategy for constructing large de Bruijn graphs, also extensible to the out-
of-core model. After the generation of all canonical edges, they sort them and
remove duplicates. Then, they detect duplicate k-mers by sorting all the edges
using radix sort algorithms in an external implementation. The authors prove

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 31

that replacing the radix sorting with an external R-way merge sort they get an
optimal number of I/O’s equal to Θ(N log (N/B)

B log (M/B)). Comparing this approach
with Velvet’s graph construction shows the superiority on time or RAM of the
new algorithm using 8 million unpaired reads obtained from sequencing a plant
genome at CSHL and k = 21. However, there are some questions unanswered.
There is not clear how this approach manages the possibility of insufficient
memory for the construction of the adjacency list of the graph. Moreover, the
program is not available for testing and use in actual assembling projects.

The distributed processing over disk partitions presents, in general, three
steps: distribution, process, and merging. Firstly, they distribute all k-mers
into disk partitions (not disjoint partition for all cases). Then it processes each
partition individually in the main memory. Later, it merges them to build a
DBG. The Minimum Substring Partition (MSP) approach [Li et al. 2013] shows
a solution that breaks the short reads into multiple small disjoint partitions
based on the minimum p-substring of the k-mers. It allows consecutive k-
mers to be distributed in the same partition, decreasing the number of I/O
operations. The number of distributed elements is the number of all k-mers
generated from the sequence ((m− k + 1)n).

The approaches presented in [Chikhi et al. 2014] and [Chikhi et al. 2016]
are also focused on distributing the process over disk partitions but with the
direct construction of a compressed graph. Given a set of short reads and a k,
the compacted graph Gc(S, k) is a graph obtained from G(S, k) by compression
of all its maximal non-branching paths. The work in [Chikhi et al. 2014]
proposes a new pipeline using first a DSK k-mer counter as an input of a
new algorithm to enumerate all the maximal simple paths (called BCALM)
and represent them using a new data structured called DBGFM using an FM
index.

First, DSK partitions the set of all k-mers and saves them into the disk,
using one file for each partition. Then each partition is separately loaded
in memory, and the count of each k-mer is processed. Finally, the result is
obtained by merging independent solutions. Despite its excellent results, DSK
assumes that its hash function can uniformly partition the set of distinct k-
mer. This assumption could incur in not balanced partition files size, which
affects the I/O throughput. This approach takes the output of DSK and
distributes the unique k-mer set by minimizers frequency while trying to
compact consecutive k-mers that constitute a simple path in the graph. In that
way, DSK + BCALM perform two cycles of disk distribution: DSK distributes
all k-mers in partition files and processes them, while BCALM distributes all
distinct k-mers.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 32

A sort of parallel version for the BCALM algorithm, called BCALM2,
is presented in [Chikhi et al. 2016]. It differs from BCALM in the fact that
datasets are not first processed using DSK. All k-mers are distributed to the
disk partitions using the same concept based on the frequency of minimizers
such as BCALM. However, it changes the criteria for k-mer distribution,
allowing that the same k-mer could be distributed in more than one file
partition.

Like the other approaches, BCALM2 generates and distributes all the k-
mers, but in that case, a k-mer could be distributed in more than one partition,
which increases the number of I/O operations.

Besides, a new approach to generate compacted DBG is proposed in
[Minkin et al. 2016]. TwoPaCo is a two-pass paralleled algorithm based on the
reduction of finding maximal non-branching paths problem into finding the set
of junction positions (the position of the k-mers that flanking maximal non-
branching paths). For that, they use boolean flags, which mark every position
of the genome (all k-mers are marked as flanking k-mer). To store all edges of
ordinary DBG, they use a BF data structure in the first pass. Then, for each
position in the boolean flag, the corresponding edges are finding in the BF,
and it is counted the in- and out-degrees. If this k-mer does not accomplish
the flanking k-mer condition, then its flag is set to zero. Due to false positives
that BF can generate, there is a second pass of the algorithm, using a hash
table to filtered to filter positive flags. If the hash table does not fit in main
memory, they propose to split the input k-mers into L-parts and round the
algorithm in L-rounds. As a conclusion of the paper, the authors noted that
the effectiveness of the algorithm relies on having whole-genome sequences.
Because of this, it is inapplicable to the case when genomes are represented
as short read fragments. Thus this approach can not be applied to de novo
assembling genome.

The last external memory processing approach relies on the construc-
tion of the graph as functions of a relational database management system
(RDBMS). [de Armas et al. 2016] described k-mer mapping process as part
of the DBG construction. A group of published works test the viability of an
RDBMS for management the main and external memory interchange in the
process, as specify tools designed for optimizes deals with the I/O. A case study
for k-mer mapping was implemented based on the algorithm of Velvet using
PostgreSQL. In [de Armas et al. 2016] is proposed a model to make a perfor-
mance comparison for different index structures in an ad-hoc cost model. Also,
was proposed an study of indexes like B+-tree, hash over k-mer in [de Armas
et al. 2017] and over k-mer p-minimum substring. This approach presents a

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 33

significant advantage that allows incremental processing without reprocessing
and recovery from failures [Silva et al. 2017] due to the operation is delegated
to the management of I/O operations to the DBMS. However, the improve-
ments in runtime given by index evaluation, the execution time resulting of
the experiments could still be considered high.

Summarizing, the external memory DBG construction approaches avail-
able in the literature rely on the use of external memory by sorting, disk
partitioning, or by using an RDBMS. Both works initially considering the to-
tal number of k-mers, to following obtain the vertices of the graph (unique
k-mers) and corresponding edges. Working with the total number of k-mers
implies maintaining a high level of redundancy. Consequently, high available
memory resources (main or external) and a more significant number of I/O
operations.

3.5
State of the art of plant genome assembly

The large complex plant genomes remain a particularly tricky chal-
lenge for de novo assembly due to a variety of biological, computational,
and biomolecular reasons. Since plant genomes can be nearly 100 times larger
than some of the currently sequenced animals, like birds, fish, or mammalian
genomes. Also, they can have much higher ploidy, and higher rates of heterozy-
gosity and repeats than their counterparts in other kingdoms [Schatz et al.
2012]. Due to this complexity, the computational requirements to generate a
good assembly increase. Notably, the memory requirements for the execution
of a de novo plant genomes assembling goes beyond the available RAM in
desktop computers, that commonly cover the range from 8GB to 32GB. Usu-
ally, de novo assembly for plant fragment genome requires the execution on
server computers with hundreds of GB of main memory, even cases have been
reported where the use of data centers that reach 1TB is necessary.

Added to that, neither of the major efforts to expose the state-of-the-art
of assembling technologies - Assemblathon 1 [Earl et al. 2011], Assemblathon
2 [Bradnam et al. 2013] and GAGE [Salzberg et al. 2012] -, used genome
plants as experimental data for their competitions. Furthermore, these studies
explored a range of genome from bacterial, non-mammalian vertebrates, and
human chromosome 14, as well as a simulated genome derived from human
chromosome 13. The data used represents a wide range of genome sizes from
3Mbp for S. aereus from [Salzberg et al. 2012] to 1.6Gbp for Boa constrictor in
[Bradnam et al. 2013]). However, those estimated genome sizes are considered
insignificant when compared to the estimated genome size, for example, of

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 34

sugar cane.
A case of plant genome assembly was carried out by the Laboratory

of Molecular Biology of Plants (IBqM), Institute of Medical Biochemistry at
Federal University of Rio de Janeiro. IBqM has as one of its goals the study
of the sugarcane genome into Brazilian species. The sugarcane is an essential
sector in Brazil’s economy. Beyond its role in the industrial production of sugar,
the sugar-energy sector has a critical role in the use of renewable energy sources
in Brazil, due to that only the product of sugarcane account for 15.7% of the
energy supply of the country (http://www.unica.com.br/sustentabilidade/).

For those reasons, the IBqM researchers designed a group of assays
combining the growing the SP70 sugarcane variety with drought, Nitrogen, and
pathogen treatments. The genotype gathered of the plants was sequenced using
Illumina Sequencer Technology, generating 24 libraries with five different read
lengths: 32bp, 72bp, 76bp, 100bp, and 152bp, being the most representative
the reads with 100bp. IBqM, in collaboration with BioBD Laboratory of
the Informatics Department of PUC-Rio University, assumes the challenge of
assembling approximately 300 million sequences of sugarcane. Using some pre-
processing and sampling techniques, was produced a de novo transcriptome
assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and
infection with Aaa [Santa Brigida et al. 2016]. This result allows taking account
of other studies as non-coding RNA regulation [Thiebaut et al. 2017].

3.5.1
Summary

Given the state of the art, we listed here the main focused points that
face the large amount of memory requirements of DBG construction. Those
can classify as follow:

– Set structures for fast lookup with lower overhead

(a) Hash tables

(b) Search trees

– k-mer codification for lees memory per element

(a) Lossless compression (find exact k-mer statistics). For example:

(i) Jellyfish: with f(m) bijective function, hash position encodes
part of the f(m)

(ii) DSK: classical 2bit k-mer codification
(iii) KMC1: remove p1 and p2 length prefixes.
(iv) Meraculous: lightweight hash (combination of hash family)

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 35

(b) Lossy data compression

(i) Bloom Filters (BF) with false positives.
(ii) Specialized probabilistic data structures based on BF.

– External memory processing

– Increasing available resources

(a) Parallelization

(b) Distribution in the cloud

(c) GPU and other memory systems

In Table 3.5.1, we summarize some approaches present in the literature,
noting the data structure used to represent the DBG and the k-mer codification
used, as possible.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter3.
Related

works
36

Citation Id. of the
approach.

Classification Description of the approach Data structure to store k-mers k-mer codification

[Marcais and
Kingsford
2011]

Jellyfish k-mer
counter

Main memory. Hash table merging in disk if not
memory available.

Hash table. Mapping Uk into [0, M-1], M = 2^l, pos(m, i) =
(hash(m) + reprobe(i))modM , hash(m) = f(m)modM . Use
a quadratic reprobing function reprobe(i) = i(i + 1)/2

Hash key codification. K-mer m is codifiying in f(m)
such as f : Uk → Uk bijection, for which it is eas-
ily compute both f and its inverse. Key compression
scheme that allows it to use a constant O(1) amount
of memory per key in the hash table for most ap-
plications, regardless of the length k. Store 2k − l

higher bits of f(m) concatenated with bits represent-
ing the reprobe count. Given a position x, k-mer store
is formed by the concatenation of [2k-l higher bits of
f(m)][x - reprobe(i) mod M in l bits of f(m)]

[Melsted and
Pritchard
2011]

BFCounter k-mer
counter

Bloom filter in main memory.Two pass algorithm to
correct false positive.

Bloom Filter. Bloom filter with 4 times as many bits as the
expected number of k-mers this corresponds to a memory usage
of 4-bits per k-mer and use a and the optimal number of hash
functions functions for the Bloom filter is d = 3. For the
implementation it is used the Google sparsehash library and
a Bloom filter library by A. Partow in (http://www.partow.net/
programming/hash-functions/index.html).

Store a 1-byte counter for each k-mer and by default
k-mers take 8-bytes of memory with a maximum k of
31, although if desired, larger k-mers can be specified
at compile time.

[Chapman
et al. 2011]

Meracolous assembler Reliance on the linear U-U component of the graph
as a starting point for making contigs.

Based on the construction of the U-U subgraph (compacted
graph), which requires the entire k-mer hash to be held in
memory. A novel lightweight hash for the de Bruijn graph.

Store k-mers with unique high quality extensions at
both ends (i.e., those designated U-U in the previous
step) in a hash where the “key” is the k-mer and the
“value” is a two-letter code [acgt][acgt] that indicates
the unique bases that immediately precede and fol-
low the k-mer in the read dataset. The k-mer is not
saved. A lightweight hash scheme uses a recursive col-
lision strategy with multiple hash functions to avoid
explicitly storing the keys themselves.

[Pell et al.
2012]

khmer space-
efficient
solutions for
dBG

Analysis of Bloom Filter, FP rate, percolation graph
analysis to study the similarity in the graphs over dif-
ferent FP rates, graph connected-components analy-
sis.

Bloom Filter.

[Rizk et al.
2013]

DSK
(Minia
assembler)

k-mer
counter

Disk distribution based on hashing. Hash table. Function maps a k-mer to a numeric value in [0; H],
where H is a large integer (typically 2^64). The set of distinct k-
mers values can be uniformly partitioned by this hash function.

Kmer is encoded using classical 2bits representation
in the smallest available integer type.

[Deorowicz
et al. 2013]

KMC1 k-mer
counter

Disk distribution. Partition is based on prefixes p1
and p2 of k-mers. Two stages processing. Sorting using
the least-significant-digit (LSD) radix sort.

k-mer entering in a process that are retired the p1 and
p2 prefixes

[Chikhi and
Rizk 2013]

Minia space-
efficient
solutions for
DBG

Bloom filter for nodes in main memory. In conjunc-
tion, cPF structure is used for a set of critical false
positives, which is created and accessed on disk.

Bloom Filter. It is used 1 bit to represents more than one k-
mer, along with the set of critical false positives. cFP structure,
with a fixed amount of memory, is used to removing critical
false positives. The set S and P are created and stored on
disk.

Memory usage is approximated by
1.44log2(16k/2.08) + 2.08 bits/k-mer. It does
not depend on k value. cFP structure, has a fixed
amount of memory.

http://www.partow.net/programming/hash-functions/index.html
http://www.partow.net/programming/hash-functions/index.html
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter3.
Related

works
37

[Zhang et al.
2014]

khmer k-mer
counter.

Count-Min Sketch in main memory. Not error correc-
tion is used. The measured counting error is analyzed.

Count-Min Sketch is used to storing the frequency distribu-
tions of distinct elements. The Count-Min Sketch permits on-
line updating and retrieval of k-mer counts in memory which is
necessary to support online k-mer analysis algorithms. In ex-
change, the use of a Count-Min Sketch introduces a systematic
overcount for k-mers. The implementation extends an earlier
implementation of a Bloom filter.

The data structure Count-Min Sketch stores only
counts; k-mers must be retrieved from the original
data set.

[Salikhov
et al. 2014]

Cascading
Bloom
filter

assembler Bloom filter with an additional representation of the
set of FP using a cascading BF.Extend the idia of
Minia, using a BF structure recursively to store the
critical false positives .

Cascading Bloom Filters to store false positives k-mers Bloom Filter

[Chikhi et al.
2014]

BCALM Compacting
de Bruijn
graph +
disk distri-
bution

Pipeline based on the use of DSK first, and second
the use of BCALM with the data structure based on
FM index. BCALM is an algorithm to enumerate all
the maximal simple paths without loading the whole
graph in memory, using a distribution on disk. The
input of BCALM is all k-mers from DSK, and the
output is the maximal simple paths.

DBGFM is a data structure to store no-branch path, codified
as FM index.

k-mers are used as in the DSK. After, it is used the
concept of minimizers and m-compactation.

[Deorowicz
et al. 2015]

KMC2 k-mer
counter

Disk distribution based on k-mer signatures (a care-
fully selected subset of all minimizers) to try to reach
a more uniform distribution of k-mers in the bins.
The amount of main memory needed is directly re-
lated to the number of k-mers in the largest bin.Two
stages processing. Sorting using the least-significant-
digit (LSD) radix sort.

Store super k-mers (k + x’)-mers instead k-mer itself

[Mamun
et al. 2016]

KCMBT k-mer
counter

Trie-based in-memory algorithm using Multiple Burst
Trees. Three phases algorithm: first phase for inser-
tion of compacted k-mers, the second phase to count,
unzip them and insert them into k-mer specific trees,
and the last phase employs a final traversal of these k-
mer trees to identify all the unique k-mers with their
counts.

Multiple Burst Trees (KCMBT), which uses cache efficient
burst tries to solve this problem. Their ideas include the use
of burst tries to store compacted k-mers, and unifying a k-mer
and its count in a single unit.

[Chikhi et al.
2016]

BCALM2 Compacting
de Bruijn
graph +
disk distri-
bution

Based on BCALM plus parallelization.

[Minkin et al.
2016]

TwoPaCo Compacting
de Bruijn
graph +
disk distri-
bution

Two-pass algorithm:- Filter the k-mers with a Bloom
Filter - Process each unique k-mers with a hash table
based on disk partitions. Must also maintain a C set
of junction position that represents each position of
the genome using a boolean flag. Relies on having
whole genome sequences, making it inapplicable to
the case when genomes are represented as short read
fragments.

BF with the set E of the edges of the ordinary DBG to filter
the first time. After, redoing the process using a T hash table
with E to remove FP edges.

Based on edges, insted of vertexes (k-mer). Use the
BF to store the edges.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter3.
Related

works
38

[Erbert et al.
2017]

Gerbil k-mer
counter

Disk distribution + GPU + minimizers for the effi-
cient counting of k-mers for k ≥ 32. Two-step ap-
proach. In the first step, genome reads are loaded from
disk and redistributed to temporary files. In a second
step, the k-mers of each temporary file are counted
via a hash table approach. Use GPUs to accelerate
the counting step.

Two hash functions, one for distributed and other for probing.
In general, the combination of two independent hash functions
leads to a more uniform distribution of k-mers.

[Kokot et al.
2017]

KMC3 k-mer
counter

Disk distribution with some improvements over KMC
and KMC2: better input/outpu (I/O) subsystem; sig-
natures are as-signed to bins in an improved way for
better balance of bin sizes; and second stage used a
fast most-significant-digit radix sort.

[Rahman
et al. 2017]

HaVec space-
efficient
solutions for
DBG.

Continuing the idea of Minia it is proposed the use
of Bloom Filter, plus saving the quotient of the hash
function division to verify false positives.

An auxiliary vector data structure is used to store the k-mers
along with their neighbor information. It constructs such a
graph representation that generates no false positives. For each
index in the table, it is necessary to keep track of a mapping
between hash values and quotients.

In the hash table, for each index, HaVec uses 40 bits,
that is, 5 bytes. In order to represent the hash value
of a k-mer, HaVec requires 2k bits.

[McVicar
et al. 2017]

FPGA-
solution

k-mer
counter

Hardware approach using BF in junction with a
FPGA boards for high capacity storage. K-mer count-
ing is used as a problem to test FPGA-attached Hy-
brid Memory Cube (HMC), new memory subsystem.
The HMC’s high random-access rate is ideal for large
Bloom filters, an efficient structure for checking mem-
bership in a set, or even counting occurrences.

Bloom Filter

[Pandey
et al. 2017]

Squeakr k-mer
counter

Representation is based upon a recently-introduced
counting filter data structure CQFs.

The CQF stores an approximation of a multiset S by storing
a compact, lossless representation of the multiset h(S), where
h : U → 0; ...; 2p − 1 is a hash function. To handle a multiset
of up to n distinct items while maintaining a false positive rate
of almost e, the CQF sets p = 1/4log2

[Ghosh and
Kalyanara-
man 2016]
[Ghosh and
Kalyanara-
man 2019]

FastEtch
algorithm

space-
efficient
solutions for
DBG.

Count-Min sketch, which is a probabilistic data struc-
ture for streaming data sets. The result is an ap-
proximate de Bruijn graph that stores information
pertaining only to a selected subset of nodes that
are most likely to contribute to the contig genera-
tion step. Besides, edges are not stored; instead, that
fraction which contributes to our contig generation is
detected on-the-fly.

CM sketch data-structure is a 2-D matrix of depth d and width
w, that stores d×w counts. The sketch uses d hash functions:
h1...hd: {1 . . . n} → {1 . . . w} that are from a pairwise
independent family.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 3. Related works 39

3.6
Partial Conclusions

Several techniques have been proposed to reduce the memory footprint
for the assembly process, especially the memory requirements to construct
DBG.

In this chapter, we classified those approaches into two main categories.
The first group includes the approaches that try to reduce the amount of data,
while the second covers those that increase the memory resources, through
partitioning and/or distributing the process.

The first group includes solutions based on probabilistic data structures,
the most explored Bloom filters. This data structure allows vertices to be stored
independently of their number, but at the cost of false positives.

Revisiting the literature, some solutions were found that propose the use
of external memory solutions to construct a graph with an exact representation.
They process all the k-mers in external memory.

The data sets used to test these programs usually include mammals,
bacteria, and human genomes, but the genome of plants has a limited presence
on these works.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

4
A novel approach for de Bruijn Graph construction

One of the aspects with the most significant impact in memory con-
sumption for DBG construction is the number of elements (k-mers) that are
necessary to process and the number of elements that it is necessary to main-
tain in main memory for fast access to obtain the nodes and edges of DBG.
A vast number of k-mers need to be processed to identify the set of unique
k-mers, which constitutes the set of vertices. Moreover, k-mers are units that
encapsulate a high level of redundancy since they share k − 1 bases.

In this chapter, we present our novel approach to construct the DBG
without the necessity of processing all k-mers.

We first present the main idea of our approach in an intuitive way,
for later formalizing it. To analyze our approach, we defined the number of
elements processed, which impact on the run-time, and the number of unique
elements, which defines the memory requirements. Our approach enforces
the idea of using external memory only at the end of execution, when it is
unavoidable, but taking advantage of available main memory.

We analyzed the number of I/O operations, which is reflected at the end
of the chapter.

4.1
Motivation

K -mers are units that encapsulate a high level of redundancy. Two
adjacent k-mers share k − 1 bases. Thus, given a (m − k + 1) k-mers, in
m length read, we have (m − k)(k − 1) repeated bases. For n reads, it
becomes (m−k)(k−1)n repeated bases. Because of this redundancy, there are
(m− k + 1)k/m symbols by one symbol in dataset, substantially increases the
amount of data to process. Since each vertex corresponds to a unique k-mer
in DBG, generating and process each k-mer to construct the DBG implies a
high level of redundancy in the process.

Regarding the k-mer itself, it is expected that they have a duplication
level in correspondence with the coverage parameter passed in the sequencing.
Since there are errors during the sequencing, the method tries to read some
times the same base to get a more reliable value. However, only the unique

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 41

k-mers are keeping in the main memory during the DBG construction in the
streaming approaches. Therefore, the number of repetitions is mapped as its
multiplicity.

To illustrate, some values for the number of k-mers and unique k-mers,
are exposed in the following experimental study using a sugarcane genome
library with 2 million reads. The read length is 100, and we have used a
sufficiently large k variation, over 39 to 75. The number k-mers decreases while
k increases, as well as the number of unique k-mers, for same data sequences
(Fig. 4.1 and Fig. 4.2). Graph 4.2 also reveals that the number of unique
k-mers does not exceed the 60% of the total number of k-mers for all k values
tested, proving the presence of high redundancy.

Figure 4.1: Number of total k-mers.

Figure 4.2: Unique k-mers distribution.

The construction of the DBG graph focuses on k-mer as its main element,
since the collection of k-mers determines the set of V and their k − 1-length
overlaps defines the edges.

The streaming approaches (4.5.1) to construct DBG, generates one k-
mer at a time and process it independently. Therefore is executing as many
operations as the number of total k-mers present in the dataset. However, the
number of unique k-mers is the only one that is required to remain in the main
memory.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 42

The external memory DBG construction approaches, studied in Chapter
3, relies on the use of external memory sorting or on disk partitioning. Both
works consider from the beginning the total number of k-mers, to following
obtain the nodes (unique k-mers) and edges. For vertices and edges sorting in
[Kundeti et al. 2010], the number of I/O operations will increase as the number
of items to sort. The approaches based on k-mer disk partitioning generate all
k-mers and then distribute them in partitions. Their processing focuses from
the beginning on exploiting disk memory. How many partitions and memory
size of each partition is unknown previously of its processing. As a partition
will be at least one element to process, it will be executed at less one I/O
per disk partition. The total disk size is the sum of the size of the partitions.
Then, the maximum memory size needed to process a partition in the main
memory is previously unknown, and it depends on the larger partition. If the
largest partition does not fit in memory, it has to be split again, increasing
the number of I/O operations. If some partitions are tiny, then they have to
be grouped into a single partition file, increasing the number of possible I/O
operations.

Working with the total number of k-mers implies maintaining a high level
of redundancy and, consequently, a more significant amount of memory (RAM
or external) and I/O operations.

In this chapter, it will be presented a novel approach to construct DBG
for the genome assembly domain. This approach is based on the main idea
that it is possible to build the DBG, for a specific set of sequences and k value,
iteratively processing a minor number of elements than the total number of
k-mers.

4.2
Propositions of the new approach

Our approach for DBG construction for genome fragment assembly, is
based on the following principles:

i Find overlaps regions greater than k earlier can save the corresponding
memory to store the redundant information for each k-mer and redun-
dant information for consecutive k-mer chains that are duplicated.

ii Avoid generate all k-mers using iterative reduction steps.

iii Use external processing, if it is necessary, only in the last steps of the
current DBG construction approaches with a minor number of elements.

This research has the hypothesis that it is possible to reduce runtime
and memory requirements for DBG construction by reducing the number of

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 43

elements to process iteratively from the beginning. It proposes the use of an
external memory processing at final steps, for a smaller number of elements
and when the number of presented elements are strictly unavoidable.

4.3
Main idea

Let be R = {r1, r2, ..., rn} a set of m length reads, for m << n, and k

the value for the length of the k-mers, then:

– the number of k-mers in R is (m− k + 1)× n

– the number of bases to represent R as k-mers is (m− k + 1)× n× k

If we have a substring si of some r in R, such as 0 ≤ i < m − s + 1,
|si| = s and s > k, then:

– the number of k-mers in si is (s− k + 1)

then, if there at least another substring, sj of some r in R, such as
0 ≤ j < m− s+ 1, |sj| = s and s > k, we have also:

– the number of k-mers in sj is (s− k + 1)

In the case of si = sj, we would not have to process these two substrings
independently since they are equals, and we are interested in mapping unique
substrings as vertices (k-length substring for DBG). If we are able to identify
this kind of substring overlap early during the generation of DBG, then, it
would be possible to avoid processing the repeated k-mers as independent
units. Therefore, we can keep si, which implicitly contains k-mers, and depends
on the number of repetitions of si, we have :

– (s− k + 1)× frequency(si) k-mers that will not have to be processed.

– (s−k+1)×k×frequency(si)−s bases that will not have to be processed.

A representation of this situation is showed in Fig. 4.3.a)

Since the construction of DBG implies to find read overlaps with a
minimum size k and s > k, it is necessary to decompose si with the aim
to analyze substrings of si. Following we analyze this context:

If there is a substring lg of si, 0 <= g < s − l + 1, such that |lg| = l,
k ≤ l < s and lg has external copies (not only in repetitions of si), we should
to decompose si to find these lg duplications. Notwithstanding the above, it is
possible to skip elements from being processed, since we would:

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 44

– (s−k+1)×(frequency(si)−1) k-mers that will not have to be processed.
– (s − k + 1) × k × (frequency(si) − 1) bases that will not have to be
processed.

Although we have to decompose si to search overlaps of length l, we still
have a set with a significant number of k-mers that we will not have to be
processed. A representation of this situation is shown in Fig. 4.3.b)

Figure 4.3: Analysis of the number of k-mers and characters that could be
skipped to be processed. a) case of s1 with some duplications. b) case of there
is a substring l1 of s1, such as |li| = l, k ≤ l < s and l1 has external copies

Applying the shown basic steps, we can propose the following pipeline.
First, each m-length read could be decomposed in s-length substrings. Then
it is possible to find repetitions of length s, keeping with the set of unique
elements. Each unique si, it is possible to decompose it in minor elements to
find repetitions with a minor length. Iteratively, we can reduce s in each step,
until it is reached k length. For each step, it would be possible to decompose
each element results from the previous iteration in a new group of elements.
Since only one copy of duplicates elements generated in the current iteration
will be kept, the number of elements to process will be reduced gradually in
each iteration. In the last iteration, when all decompositions have done, we will
have discarded all duplicated elements. Due to that, it will be avoided to have
to process all k-mers contained in input reads, and it is obtained the unique
k-mers set, which corresponds to the DBG vertices set.

Besides, we intend to reduce the redundancy during the generation of
k-mers. K -mers generation process implies new k-mer for each position in m-

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 45

length read, until reach m−k position. In other words, k-mers are generated as
the context of a sliding window of k-length, which is moved right one position
each time. Therefore, an (k − 1)-length overlap is present in two adjacent k-
mers, that links two respective vertices in DBG. Using the same idea, we could
generate s-length substrings for each m-length read, getting a (s-1)-length
overlap between adjacent s-substring and generating m− s+ 1 substrings for
each read. However, it implies a redundancy equivalent to using a k value equal
to s. To afford these, we define a distance between two elements based on (k-
1)-length overlap for adjacent s-length substrings. The idea is to maintain
only the link between two consecutive s-length substrings, si, and sj, using
the same criteria used to define an edge between two adjacent k-mers. At that
point of view, this link corresponds to the edge generated by the tail k-mer
included in si and the head k-mer include in sj. In that way, we are not going to
maintain more redundancy for edges than what already existed is in the DBG
edge definition. Those links would already constitute a subset of the edges set
of final DBG. As we would decompose s-substring in elements with a length
l, k ≤ l < s, in the next iteration, following the same criteria defined above,
it is warrantied that links for each l-length substring will be maintenance.
Iteratively, the collection of links would be increased, adding new links to the
previous iteration link set. Keeping a set of links implies that a single copy of
duplicate links will always be maintained. At the last iteration, being l = k

would be made all decompositions until reach a set of k-mers and a set of links
between them, being V and E of Gk(V,E) correspondingly.

4.4
Novel algorithm for DBG construction

Based on the idea explained in 4.3, it is proposed a new algorithm for
building the de Bruijn graph, avoiding to generate all k-mers.
Definition 4.1 dk-mer. A dk-mer is a substring of a genome piece with
specified d length (also called dimension in this thesis), with d ≥ k, over the
alphabet of bases Σ = {A, T, C,G}.

Two dk-mers, dk−mer1 and dk−mer2 are adjacent if they share k− 1
bases (k − 1 suffix of the first is equal to the k − 1 prefix of the second) and
they are adjacent in at least one read.

Definition 4.2 extra-compacted de Bruijn Graph. An extra-compacted
de Bruijn Graph Gd,k(Vd,k, Ed,k) is a graph G(V,E) in which the set of vertices
V corresponds to unique dk-mers of length minor or equals to d, and the set
of edges E corresponds to unique edges of dk-mers. Two dk-mers have an edge
if they are adjacent, sharing k − 1 overlap.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 46

Figure 4.4: dk-mers representation over read r. The dk-mers have dimension
d. Adjacent dk-mers share k − 1 bases which defines an edge.

The extra-compacted de Bruijn Graph definition is introduced in this
work to refer to the graph generated in each intermediate iterations. The last
iteration generates a DBG. The new algorithm steps are described below:

– Search overlaps regions with length d1, k < d1 < m, generating one
vertex for each unique d1k-mers and applying the suffix-prefix overlap
of (k − 1) length criteria to generate the edges. The result is d1k-mers
vertices and edges sets of extra-compacted de Bruijn Graph Gd1,k.

– Search overlaps regions with size d2, k < d2 < d1, decomposing each
vertex in Vd1,k into d2k-mers. Generate one vertex for each unique d2k-
mers to get a set of vertices and apply the suffix-prefix overlap of (k− 1)
length criteria to get the set of new edges. The union of new edges and
Ed1,k generates Ed2,k. The result is d2k-mers vertices and edges sets of
extra-compacted de Bruijn Graph Gd2k.

– Search iteratively duplicated regions with size di, k < di < d2 < d1,
decomposing each vertex in Vdi−1,k from into dik-mers. Generate one
vertex for each unique dik-mers to get a set of vertices and apply the
suffix-prefix overlap of (k − 1) length criteria to get the set of edges,
adding the edges from Gdi−1,k. The result is dik-mers vertices and edges
sets of extra-compacted de Bruijn Graph Gdi,k.

– Search for k overlaps at last iteration with dz = k, and dz < .. < di <

... < d2 < d1, decomposing each vertex in Vdz−1,k into dzk-mers. Generate
one vertex for each unique dzk-mers to get a set of vertices and apply
the suffix-prefix overlap of (k− 1) length criteria to get the set of edges,
adding the edges from Gdz−1,k. Since edges were generated using the
suffix-prefix overlap of (k− 1) length criteria that appear at least in one

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 47

read, and Vdz−1,k corresponds to the set of unique k-mers due to dz = k,
the result of this steps is a DBG Gk(V,E) (2.3).

It is worth to note that the suffix-prefix overlap of (k− 1) length criteria
for edges mentioned above, implies that this overlap exists in at least one read.

The figure 4.5 illustrates the general process showing how the new
algorithm, through some iterations, generates the same DBG Gk(V,E) that
is generated using traditional approaches.

In traditional approaches, from right to left in the figure, each k-mer
is processed in the collection Cv of all k-mers in reads R. In that way, it is
obtained V , which is a set of k-mers from Cv (set implies not duplication), and
E, which is a set of edges from Ce, the collection of all edges extracted from
R.

Our approach, from left to the right in the figure, starts using a dimension
value d1 to generate a set of vertices Vd1,k of Gd1,k(Vd1,k, Ed1k), discriminating
a certain number of elements of Cv that would be processed in traditional ap-
proaches. In that sense, we can say that we reduce the redundancy at this level
of d1. Being extract a function that extracts the k-mers implicitly contained in
a set of vertices, we have CVd1,k

= extract(Vd1,k), such as that |CVd1,k
| < |Cv|.

Besides, it is generated the set of edges Ed1,k of Gd1,k(Vd1,k, Ed1,k), we have
that Ed1,k ⊂ E. In terms of collections, to be possible to compare, if we define
CEd1,k

= Ed1,k, then we have |CEd1,k
| < |Ce|.

From the resulted Gd1,k(Vd1,k, Ed1,k), then it is decomposing each Vd1,k

using a new dimension value d2 which d2 < d1, obtaining Gd2,k(Vd2,k, Ed2,k). In
terms of vertices it is possible to see that |CVd1,k

| < |CVd2,k
| < |Cv|. In terms of

edges, since Ed2,k is the result to add new edges to Ed1k, doing CEd2,k
= Ed2,k,

we have Ed1,k ⊂ Ed2,k ⊂ E and |CEd1,k
| < |CEd2,k

| < |Ce|. Following the above
reasoning, for z iterations, it is resulted in |CEd1,k

| < |CEd2,k
| < ... < |CEdi,k

| <
... < |CEdz,k

| < |Ce| and |CVd1,k
| < |CVd2,k

| < ... < |CVdi,k
| < ... < |CVdz,k

| <
|Cv|, showing how our algorithm for each iteration always process a minor
number of elements than |Cv| and |Ce|.

In each iteration will be obtained a set of dik-mers which elements,
implicitly, including a subcollection of the collection of a total number of k-
mers and edges, in a compacted way, and were the redundancy iteratively will
be eliminated until it is reached the same DBG as the traditional approaches
do.

Algorithm sketch
The approach is presented through the next algorithm sketch, divided in

three sections (see Algorithms 1, 2 and 3). Algorithm in 1 is the main block,
while the others are detailed parts of the main.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 48

Figure 4.5: DBG construction representation. On the left hand, from left
to right, is represented how the proposed new algorithm generates DBG.
From right to left, the traditional generation approaches processing the entire
collection of k-mers. In the middle, the intersection is the final DBG.

Given R = {r1, r2, .., rn} a set of m length reads

Algorithm 1 Routine buildDBG
1: i = 1
2: di such as k ≤ di < m
3: initialize Vi
4: initialize Ei
5: for each s substring length di and overlap k − 1 in R do
6: if s does not exist in Vi then
7: Vi = Vi ∪ buildVertice(s)
8: updateEdges(Ei, edge(scurrent, snext))
9: update(di, step)

10: while di ≥ k do
11: initialize Vi
12: initialize Ei
13: for each v in Vi do
14: decompose(di, v)
15: update(di, step)

Algorithm 2 Routine decompose(di, v)
1: for each s substring length di and overlap k − 1 in v do
2: if s does not exist in Vi then
3: Vi = Vi ∪ buildvertice(s)
4: updateEdges(Ei, edge(scurrent, snext))
5: if s is tail then
6: update associated vertices from Ei−1 in Ei

In this algorithm sketch, we used s instead of dik-mer for simplicity.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 49

The step related to updating associated vertices from Ei−1 in Ei has
the objective to collect the vertices generated in the previous iteration and
transform in edges according to the current iteration transitively. In that way,
the graph created in each iteration will converge to DBG.

In that sense, it is essential to define data structures for Vi and Ei, with
the lowest overhead costs and asymptotic constant search time. The algorithm
has two important input parameters, d1, and function to update di. This
function could depend on a second parameter, the step, to reduce di, which
can influence the number of k-mers that will be avoided from being processed.
As di come close to k, the contraction of dk-mers will be increased, it could
take less advantage of the approach. On the other hand, if it used a high value
for d, and there are no large regions duplicated, then the algorithm may lose
its advantages over traditional approaches due to multiple iterations without
reducing the amount of data to process.

This new algorithm has the following specifications:

1. Input of the algorithm: fragment sequences file (reads) for iteration with
i = 1

2. Output of the algorithm: de Bruijn Graph for last iteration for dz = k

Intermediate iterations will have:

1. Input: vertices and edges of previous iteration for i > 1 .

2. Output:

– Gdi,k with vertices and edges updated for this iteration.
– Number of nodes (unique number of dk-mers).
– Number of total dk-mers processed.

3. At the end of each iteration, d is updated using a function di+1 =
update(di, step)

4.4.1
Extra-compacted de Bruijn Graph decomposition analysis

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 50

4.4.1.1
Decomposition in details

In each iteration it is getting the dik-mers by decomposition of each read
for i = 1, or by decomposition of each di−1k-mer in Vdi,k for i > 1, i ≤ z. A
detail of how to generate each dk-mer is showed in Algorithm 3, which is an
expand of how is obtained s in line 5 for Algorithm 1 and line 1 for Algorithm 2.
The term process is used to encapsulate the line block from 6 to 8 in Algorithm
1 and 2 to 6 in Algorithm 2.

Algorithm 3 Detailed decomposition of (s,di)
1: len = length(s)
2: alfa = k − 1
3: ganma = di − alfa
4: if len > dimension then
5: //decompose
6: for j = 0 ; j < len− di + 1; i+ = ganma do
7: //processing complete dk-mers with length = d
8: dk −mer = new dk −mer(source = s, startpoint = i, length = di)
9: process(dk −mer)
10: if (len− di) mod ganma > 0 then
11: //processing final dk-mers with length < d
12: dk −mer = new dk-mer (source = s, startpoint = i, len - i)
13: process(dk −mer)
14: else
15: //processing dk-mers with length < d inherited from a previous

iteration
16: process(s)

In the pseudo-algorithm 3 was defined α as overlap value between two
consecutive dk-mer, such as α = k − 1.

A visual representation of the decomposition is showed in a sequence of
figures from (4.6 to 4.12). For the purpose of illustration of how the algorithm
decomposition goes, we applied the algorithm over just one read r with 79
bases with the input parameter k = 12. Also, it is assumed that this read has
no repeated regions. We use the function update(di−1, step) (Equation 4.4.1.1)
with step = 10 to update d in each iteration for i > 1, and set d1 = 64. For
instance, we described the input and the output of each iteration i such as a
list of elements (r for i = 0, otherwise dk-mers), using the absolute indexes
over r and the length of the element. Hence, each element (dk-mer) is specified
by a triple: [start position index, last position index, length]. The edges are
specified by a tuple as [start position index, last position index], in which is
contained the first and the last index of the vertices that it links.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 51

di = update(di−1, step) =

k di−1 − step < k

di−1 − step otherwise.

The input of the first iteration (see Fig. 4.6), is one read r and d1 = 64.
From this input were generated two dk-mers by decomposition of r, one
dk-mer contains 64 bases, from 0 to 63 position, and the second dk-mer
contains 26 bases, from 53 to 78 position. Since there are no duplications,
Vd1,k = {[0, 63, 64], [53, 78, 26]} for the extra-compacted Gd1,k generated in
this iteration. Besides, just one edge was generated, Ed1,k = {[0, 78]}. In the
illustration, the orange sequences represent the input dk-mers, while green
represent generated dk-mers, which constitute the output of the iteration. Also,
shaded regions represent the edges. The elements outputted in each iteration
will be registered in Table A.1 in the Appendix.

Figure 4.6: Iteration 1: Getting dk-mers with d1 = 64 from one read with
m = 79.

The input of the second iteration (Fig. 4.7), i = 2, is the output of
iteration i = 1. Dimension value was updated to d2 = 54. From the first
element in the input, were generated two dk-mers, one dk-mer containing 54
bases, from 0 to 53 position, and the second dk-mer containing 21 bases, from
43 to 63 position. Because the second element of the input have a minor length
than d2, it is passed to the set of elements generated without be decomposed.
Since there are no duplications, Vd2,k = {[0, 53, 54], [43, 63, 21], [53, 78, 26]} for
the extra-compacted Gd2,k . Due to one vertex with edge was decomposed, this
edge must be updated became [43, 78] from [0,78]. Also, a new edge [0,53] was
generated, which was added to Ed1,k. Then, Ed2,k = {[0, 63], [43, 78]}

Third and fourth iterations (Fig. 4.8 and Fig. 4.9) occurs in the similar
way as i = 2. For i = 3, dimension value was updated to d3 = 44. From the
input [[0, 53, 54], [43, 63, 21], [53, 78, 26]], just only the first element could be

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 52

Figure 4.7: Iteration 2: Getting dk-mers with d2 = 54 from a set of two dk-mers.

decomposed because its length is greater than d3, generating two dk-mers. The
rest of the elements are included in the result, but they are no decomposed.
Also the edge associated with the dk-mer decomposed is updated (Table A.1).
Similar, from the output of third iteration, for i = 4, and d4 = 34, is only
decomposed the first element of the input. The resulting Vd4,k and Ed4,k are
listed in Table A.1). At that point the length of dk-mers begin to converge to
21 bases.

Figure 4.8: Iteration 3: Getting dk-mers with d3 = 44 from a set of three
dk-mers.

In the iteration i = 4, with d4 = 24 (Fig. 4.10), were decomposed two
elements from the input. From [0, 53, 54] it is generated two new dk-mers, [0,
23, 24] and [13, 33, 21], while from [53, 78, 26] is generated two new dk-mers,
[53, 76, 24], [66, 78, 13]. The resulting set of vertices and edges are listed in
Table A.1.

Iteration i = 5, is the first iteration that manages to decompose most of
the input elements, since d5 = 14 is getting significantly closer to the value of
k. In Fig. 4.11, is shown how the first and the penultimate element from the
input were decomposed in 5 dk-mers, while the remaining elements with length
21 were decomposed in 4 dk-mers. Just one element from the input was not
decomposed. The resulting set of vertices and edges are listed in Table A.1.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 53

Figure 4.9: Iteration 4: Getting dk-mers with d4 = 34 from a set of four dk-
mers.

Figure 4.10: Iteration 5: Getting dk-mers with d5 = 24 from a set of five dk-
mers.

Figure 4.11: Iteration 6: Getting dk-mers with d6 = 14 from a set of seven
dk-mers.

Since d reached its last possible number using the reduction by step = 10
(d5 = 14, such as 14 − 10 < k, then d5 = k), then d6 = 12. This is the last
iteration (Fig. 4.12), in which will generated finals k-mers and corresponding

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 54

DBG. All elements from the input that have not reach yet the length equals to
k, will be decomposed in dk-mers (in this last iteration dk-mers = k-mer). At
the end of this iteration, its obtained 68 k-mers and 67 edges. The elements of
vertices and edges are listed in Table A.1.

Figure 4.12: Iteration 7: Getting dk-mers with d7 = 12 from a set of twenty
seven dk-mers.

Summarizing, as we can see in Table 4.1, the number of dk-mers processed
in each iteration is minor that the number of total k-mers, 68 in iteration
6. Because we decided to use a read without duplications for simplicity, in
this case, our algorithm is inefficient. The total number of k-mers of the
read is equal to the number of unique k-mers, because of no repetitions.
Traditional approaches would have processed 68 k-mers while our algorithm
had to process an amount of 48 elements until the last iteration with 68
elements processed, totaling 116 elements. In this case, our algorithm will bring
gains over traditional approaches. The number of elements processed will be a
subject of discussion in the following subsections.

The results for a simulation using others values for step to update d,
keeping constant d1, k, the same input read length, and the condition of no
duplications, is showed in Table A.2 in the Appendix. It is possible to view
how variates the number of elements generated in each iteration, and the total
elements treated in the process as a whole. In that sense, for the smallest
number of iterations, the smallest number of elements in the process as a whole
will be processed. However, other variables of our model could impact the result
of each iteration, like the replication factor and the number of unique elements
that will be discussed in the following sections. These values that depend on
the distribution of duplications will determine the number of skipped k-mers,
i.e., the number of k-mers that will be avoided from being processed.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 55

Table 4.1: Iteration details.
m k i d

input output
number
of ele-
ments

length
of ele-
ments

number
of ele-
ments

length
of ele-
ments

79 12 1 64 1 79 1 64
1 26

2 54 1 64 1 54
1 26 1 26

1 21
3 44 1 54 1 44

1 26 1 26
1 21 2 21

4 34 1 44 1 34
1 26 1 26
2 21 3 21

5 24 1 34 2 24
1 26 4 21
3 21 1 13

6 14 2 24 20 14
4 21 1 13
1 13 6 12

7 12 20 14 68 12
1 13
6 12

4.4.2
Analysis of the number of vertices per iteration

A certain number of dk-mers will be generated in each iteration i for
n reads and di ∈ D = {d1, d2, d3, ..., dz−1, dz}, dz = k. The set of these
elements corresponds to the number of nodes of each Gdi,k(Vdi,k, Edi,k). Since
decomposition may not generate only entire d length dk-mers, we define:

Definition 4.3 Complete dk-mer:
dk-mers that have di length for i iteration

Definition 4.4 Partial dk-kmer:
dk-mers have length < di for i iteration

Be m the length of one sequence of bases, for specific d, and α = k − 1
(constant for all iterations), the number of completed dk-mers generated from
these sequence is given by f(d,m) (equation 4.4.2), while the number of partial
dk-mers, is given by f ′(d,m) (equation 4.4.2). With not duplications, we have
that the number of vertices of Gdk for these sequence will be is f(d) + f ′(d):

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 56

Number of completed dk-mers for sequence of length m and d (for
clarifications view Fig. 4.13):

f(d,m) =

0 m < d⌊
(m−d
d−α) + 1

⌋
otherwise.

Figure 4.13: Number of complete dk-mer. Formula representation.

Number of partial dk-mer for sequence of length m and d:

f ′(d,m) =

1 m < d or (m− d) mod (d− α) > 0

0 otherwise.

The length of partial dk-mer of sequence of length m and d is given by:

e(d,m) =

m m < d

((m− d) mod (d− α)) + α (m− d) mod (d− α) > 0

0 otherwise.

The number of dk-mer generated in each iteration depends on the number

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 57

and length of the dk-mers generated in the previous iteration. Also, as we
always keep with the set of unique dk-mers, the number of dk-mers generated
will be filtered by a factor of duplication, decreasing the number of dk-mers
that will be the inputted in the next iteration. For comprehension, we will start
to analyze the number of dk-mers assuming that there are no duplications.

Being m the length of input reads of i = 0, for each iteration i, we
defined Wi = (wi,1, wi,2, ..., wi,m−1, wi,m) as a m-dimensional vector, where wi,j
contains the number of dk-mers with length j, for j ∈ [1,m]. Then, ∀i, j, Wi

is initialized such as wi,j = 0, and be W0, such as w0,m = n, assuming that all
n reads have length m.

At the end of the iteration, Wi will be updated through t, as follow:

t(Wi,Wi−1, di) =

∀j, wi−1,j > 0, j > di :

wi,d = f(di, j) ∗ wi−1,j number of completed dk-mers

wi,e(di,j) = f ′(di, j) ∗ wi−1,j number of partial dk-mers

∀j, wi−1,j > 0, j ≤ di :

wi,j = wi−1,j partial dk-mers inherited

Then, for each iteration, the total number of dk-mers is:

g(i) =
m∑
j=1

wi,j in Wi, total number of dk-mers
(4-1)

where wi,j is updated through t(Wi,Wi−1, di), being W0 such as ∀i, j 6= m,
w0,j = 0, w0,m = n.

The accumulated number of elements processed until given iteration i is:

G =
z∑
i=1

g(i) for d ∈ D = {d1, d2, d3, ..., di, ..., dz−1, dz}, dz = k
(4-2)

Due to the coverage sequencing and replication inside genome sequences,
we assume that exists an important number of dk-mer duplications in each
iteration. The duplications degree will impact on the number of vertices for

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 58

each Gdi,k, and the degree of dk-mer duplications for the next iteration. At
that point, taking into account duplications in our analysis, we introduce a
concept of dk-mers replication factor B, to measure the degree of dk-mers
duplications. The dk-mers replication factor is the value by which we divide
the number of dk-mers for one iteration and gives us the unique number of
dk-mers for this iteration, i.e., the number of vertices for each Gdik. Then,
the number of elements in one iteration depends on the number of unique
elements in previous iterations for each dk-mer length. Moreover, the number
of duplications in iteration i+1 will be reduced by the filtrations of duplications
in iteration i, because duplicated di+1k-mers include duplicated dik-mers, but
not all duplications in dik-mers will be filtered in previous iteration.

Taking into account the unique elements, for each iteration i, we defined
Ui = (ui,1, ui,2, ..., ui,m−1, ui,m) as a m-dimensional vector, where ui,j contains
the number of unique dk-mers with length j, for j ∈ [1,m]. Then, ∀i, j, Ui is
initialized such as ui,j = 0, and be U0, such as u0,m = n, assuming that all n
reads have length m.

Including the replication factor in our analysis, for each dk-mer length,
there is a specific replication factor β-length that impacts in the values of Ui
and Wi. At the end of the iteration, Ui will be updated through t′ (4.4.2). The
t′ function takes into account the impact of β, as follow:

t′(Ui,Ui−1, di) =

∀j, ui−1,j > 0, j > di :

ui,d = f(di,j)∗ui−1,j

βi,j
number of completed dk-mers

ui,e(di,j) = f ′(di,j)∗ui−1,j

βi,j
number of partial dk-mers

∀j, ui−1,j > 0, j ≤ di :

ui,j = ui−1,j partial dk-mers inherited

g′(i) =
m∑
j=1

ui,j in Ui, number of unique dk-mers for i iteration
(4-3)

where ui,j is updated through t′(Ui,Ui−1, di), being U0 such as ∀i, j 6= m,
u0,j = 0, u0,m = n.

Then, number of nodes of Gdi,k is equal to g′(i) in 4-3. The accumulated

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 59

number of unique dk-mers processed until the last iteration is given by 4-4
taking into account the replication factor:

G ′ =
z∑
i=1

g′(i) for d ∈ D = {d1, d2, d3, ..., di, ..., dz−1, dz}, dz = k
(4-4)

As mentioned earlier, the number of dk-mer processed in each iteration
depends on the number and the length of the dk-mers generated in the
previous iteration, which are the unique elements resulting from the previous
iteration. In that sense, Wi will be updating using, t(Wi, Ui−1, di), instead of
t(Wi,Wi−1, di). In that way, the cumulative number of elements processed until
the given iteration i, G, comprises duplication in the dk-mers.

For traditional approaches, the number of elements processed (k-mers)
to build the graph is N = (m − k + 1)n. There is an expectation that our
algorithm could reduce the number of elements to be processed and brings a
reduction in computing resources needs.

In terms of k-mers, due to the reduction of dk-mers by replication factor,
there will a number of k-mers P that will not need to be processed. For an
amount of dk-mers in wi,j, for specific length j with βj replication factor, we
have (j−k+1) k-mers inside each dk-mer, and the number of k-mers that will
be avoided being processed is given by equation 4-5. Throughout our work,
we will refer to the number of k-mers that will be avoided being processed as
skipped k-mers.

The number of k-mers that will be skipped from being processed for a
dk-mer with length j is:

wi,j(βj − 1)
βj

(j − k + 1)
(4-5)

Then, for each iteration, the number of skipped k-mers for all j lengths
presents, is given by equation 4-6 and the accumulated number of skipped
k-mers until iteration z is given by equation 4-7

Number of skipped k-mers:

p(i) =
m∑
j=1

wi,j(βj − 1)
βj

(j − k + 1) in iteration i
(4-6)

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 60

P(z) =
z∑
i=1

p(i) accumulated until iteration z
(4-7)

4.5
Computational requirements for extra-compacted DBG

In order to analyze the computational requirements for extra-compacted
DBGs generated in each iteration, first, an analysis of the computational
requirements for DBG is made.

4.5.1
Computational requirements for DBG construction

The construction of DBG has the objective of identifying the set of
vertices and edges of the graph. The set of vertices is the set of k-mers from
the collection of all k-mers. In function to get the set of vertices, it is necessary
to identify the set of distinct k-mers V from a collection of all k-mers, Cv, such
|Cv| = (m − k + 1) × n, assuming the same m length for all reads and get is
multiplicity.

We classified the approaches to construct the graph found in literature
in two classes, one based on sorting the vertices, and the other based on a
streaming generation and comparison of the vertices.

In the first one, called by us as sorting approach, each k-mer from |Cv|
is sorted and all duplicates are removed. The memory requirements of this
approach during the sorting phase is given by Mv,sorted, which corresponds to
the memory needed for each k-mer times |Cv| (see equation 4-8).

Mv,sorted = |Cv| ∗ size(k −mer)
(4-8)

In terms of the number of k-mers processed, being N the number of
k-mers, and N = |Cv| = (m− k + 1)× n, Mv,sorted is given by equation 4-9.

Mv,sorted = N ∗ size(k −mer)
(4-9)

The execution time in the main memory is given in function of the number
of elements N and the cost of sorting and delete the duplicates. It will be
determined by the algorithm and data structure used to sort the vertices and
edges.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 61

The second solution, called by us as streaming approach, involves the use
of specialized data structures to maintain the set V . K -mers are generated one
at a time, it is asked about its previous existence, and if it is not yet present in
the graph, it is inserted. A priory, because only the subset of k-mers is required
to remain in memory (ϕ), the memory for streaming approachMv,streaming, for
a specific data structured (DT), is smaller than the sorting approach. However,
the memory overhead (ω) for used data structure must be taken into account
such is showed in the equation 4-10.

Mv,streaming = Nϕ ∗ size(k −mer) + ω, 0 < ϕ < 1
(4-10)

The execution time in main memory is given in function ofN , and include
the cost of generating the elements, and the time of searching and insertion over
the data structure. Given the fact that the number of elements to searching is
higher than the number of elements that will be inserted, assuming that exists
duplication, we only use in the formulation the first one variable (see Equation
4-11).

Tv,streaming = O(N(search_time))
(4-11)

For our research, we define the memory needed to get V as MV =
minimum(Mv,sorting,Mv,streaming)

The number of distinct k-mers (Nϕ ∗ size(k−mer)) impacts directly in
the memory requirement for main memory processing, while the number of all
k-mers processed (N) impact in the time.

The identification of the set of edges E is the process that from
a Ce collection of all binary relation u → v between two k-mers such as
N = |Ce| = (m − k) × n → relations, it gets the set E of distinct relations
corresponded with V . With the aim to get the set of edges, we found in
literature three approaches:

(a) From the collection of all edges, get the set of edges.

(b) For consecutive k-mers in a read, at time of k-mer generation, create an
edge, compare with the set of the edges, and insert if it was not previous
appear.

(c) For each distinct k-mer in V , after obtaining V , find possible edges
searching over the rest k-mers in the set.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 62

Edges generation also affects memory consumption and run time. This
influence will be tightly defined by the number of edges processed (for example,
the number of edges processed in is higher than those of) and the structured
data used during this processing. However, because the number of edges for
each k-mer is bounded by a maximum of 4 in each sense, we evaluated the
execution time for graph construction in terms of the number of k-mers, N ,
which is the variable that defines the input size and grows more.

The memory needed to store the graph using adjacency list in streaming
approach will be defined as:

MG = Nϕ(size(k −mer) + c ∗ size(edge)) + ω, 0 < ϕ < 1, c = 4

(4-12)
The size(k-mers) and size(edge) depends on the codification of vertices

(including k-mer data, multiplicity) and the codification of edges.
Summarizing, computational requirements in the construction of DBG,

are influenced by several aspects:

– The number of total k-mers N , such as N = (m−k+ 1)n assuming that
all reads has the same length m.

– It is not known which is the k value for best assembly.

– The number of unique k-mers Nϕ, 0 < ϕ < 1, without knowing in
advance.

– High level of redundancy between adjacent k-mers.

– Size overhead of data structure used to identify the set of V .

– Search time of the data structure used to store V .

– K -mer codification (vertex codification).

– K -mer adjacency codification (edges codification).

4.5.2
Memory requirements for extra-compacted DBG

It is required that the available main memory be enough to fit Gdi,k for
each iteration. The data structure that contains the set of Vdi,k and Edi,k, needs
to be in main memory to minimize the search and insertion time. Using an
adjacency list, the amount of memory need to store a Gdi,k for i iteration is
defined in 4-13:

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 63

MGdi,k
= g′(i) ∗ (size(dk −mer) + c ∗ size(edge)) + ω,

c = 4 due to the vertex has at most 4 edges (4-13)

The size(k-mers) and size(edge) depends on the codification of vertices
(including dk-mer data, multiplicity) and the codification of edges. The data
structure used defines ω. Given the fact that not all dk-mers have the same
length in i iteration, it is assumed that all dk-mers have the greater length
d. Then, emphasizing, assuming a constant number of edges, and exact
representation of dk-mers, the number of unique dk-mers and they length will
determine the memory needed in each iteration.

4.5.3
Time complexity analysis

In streaming traditional approaches, each sequence of n is decomposed
in (m− k + 1) elements (k-mer) that are processed. Each element is searched
in the structure. If it is no found, then it is inserted; otherwise, the multiplicity
of the element is updated in the data structure. Assuming that structure have
a constant asymptotic time for search and insertion, the time complexity is
(equation 4-14):

O((m− k + 1)n)
(4-14)

Our approach proposes a similar strategy, but with a different number of
elements (dk-mers) for I number of iterations. The asymptotic analysis shows
the time for our approach: In first iteration each n read, m-length sequences
will be decomposed in at most (f(m, d1) + 1) elements which will be processed
(see equation 4-15). Each element will be queried in the data structure. If it
exists, then its multiplicity just will be updated, else, it will be inserted as a
new element. As in equation 4-14 we assume that it is used a structure with a
constant asymptotic time for search and insertion.

In the next iteration, the set of elements resulting from i = 1, will be
traveled and each element will be decomposed in at most f(d1, d2)+1 elements.
For simplification will be use the upper bounded d1 (in 4-17), since it is the
maximum possible length of elements results of iteration i = 1. During the
third iteration, it will be repeated the process. Each element in the set resulting
from i = 2, will be decomposed in at most f(d2, d3) + 1 elements. As before,
for simplification, we will use d2 to represent this value. Also, we introduce n1

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 64

to represent the number of elements results from the previous iteration, such
as n1 = nd1 elements (see 4-18). Accordingly with this reasoning, for next
iteration we used n2 = n1d2 each iteration, and its is used d3. Consequently,
for the overall process, in each iteration, the elements of the set resulting from
the previous iteration will continue to be decomposed, until it is reached the
last iteration with i = z and d = k. In each iteration, for the worst case,
the number of elements processed will be a little greater than the number of
elements processed in the previous iteration. Therefore, the overall time of the
algorithm is upper bounded by the time of processing the iteration with the
highest amount of elements times the number of iterations (see equation 4-20).
The number of elements in last iterations is upper bounded by the number of
k-mers, hence the overall time of the algorithm T = O(((m − k + 1) ∗ n)I).
Because the number of iterations I does not depend on the number of elements,
it is possible to say that, in the worst case, our approach has an asymptotic
time equivalent to the traditional methods.

In practice, the execution time of our approach could have a variability
given the number of iterations, and the exact number of elements processed
in each iteration. In real datasets, in the presence of duplicated elements that
reduce the number of elements in each iteration, a reduction in execution time
is expected. Moreover, it is expected that P has a direct influence on runtime,
so a large number of accumulated skipped k-mer will decrease it.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 65

During i = 1, each read will be decompose using d1

O((f(m, d) + 1) ∗ n) for i = 1 (4-15)

With the sake of simplification

O(Fn) for i = 1 (4-16)

During i = 2, each element resulting from i = 1 will be decompose using d2

O(Fn+ Fnd1) for i = 2 (4-17)

During i = 3, each element resulting from i = 2 will be decompose using d3

O(Fn+ Fnd1 + Fn1d2) for i = 3 (4-18)

Consequently, for next iteration:

O(Fn+ Fnd1 + Fn1d2 + Fn2d3) for i = 3 (4-19)

Consequently for the all process:

O(Fn+ Fnd1 + Fn1d2 + Fn2d3 + ...+ Fnz−1k) for i = z, d = k

(4-20)

Since the last iteration will have the greater number of elements to process:

O((Fnz−1k) ∗ I) where I is the number of iterations (4-21)

Last iteration is bounded by the number of k-mers, hence

O((m− k + 1) ∗ nI) for k ≤ I < m (4-22)

(4-23)

The analysis of memory and execution time for our approach based on the
number of elements are independent of the data structure used, i.e., we analyze
the problem making an abstraction of that data structure used, assuming the
same data structure and elements codification if we compare our approach
with others.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 66

4.6
Processing pipeline. Profits of our approach

As was stated in section 4.5.2, the number of unique dk-mers in each
iteration determine the memory needed for the iteration, MGdi,k

. To describe
the different execution flows of our approach and its profits is introduced the
pipeline definition in the following.

Definition 4.5 Iteration pipeline is a sequence of executions using the same
update function and step parameter to get di+1

In case that main memory available M is insufficient to DBG construc-
tion, i.e. M < MG (Case A) , then M < MGk,k

. Even, in previous iterations
M could be less than MGdi,k

. In both cases, the algorithm will have reached a
p1 = p(i) k-mers that will not have to be processed. At that point it possible:

1. Stop the current pipeline and use the output as input for processing in
the external memory model. In this case, being p1 = p(i), p1 k-mers
where suppressed, which will be avoided being processed, reducing the
number of I/O operations.

2. Stop the current pipeline, and start another pipeline using a different
update function that makes g′(i) less, such as M > MGdi,k

.

– Start from the output of the last successful iteration, i.e. i− 1, and
uses a new value for di, such as M > MGdi,k

. Therefore, will be
possible to obtain p2 > p1. It is possible to extend the pipeline for
selected update function, or even change the function some times in
a tuning process, which the aim to reduce as much possible p(i).

– Start from the input sequences, since i = 1 with other d1 or/and
update function parameters with the aim to get p3 such as p3 > p1.

3. In cases where an external memory solution is undesirable, our approach
will also have benefits when using strategies with a non-exact represen-
tation of DBG, reducing the number of items that were processed and
globally processing a more significant number of items in an exact ap-
proach, without the presence of false positives, for example.

Even for executions thatM > MG, (Case B) , our approach could have a
profit. As the amount of processed items is expected to be less than the total
amount of k-mers, the execution time will be reduced.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 67

4.7
External memory processing at last step

Our approach promotes the idea to process the graph as much as possible
in the main memory, reducing the number of duplicated k-mers in each
iteration. Only when the available main memory becomes insufficiently to store
the structure of Gdi,k, the use of an external memory solution is suggested.
At that time, large duplicate regions have already been identified. This will
allow avoiding to process a significant amount of duplicated k-mers in external
memory, and consequently, reducing the number of I/O operations. Moreover,
before using external memory processing, it is possible to apply an intermediate
tuning solution to reduce even more the amount of data to processes in external
memory (section 4.6).

Using our approach is possible to build a macro representation of DBG (
i.e., the extra-compacted DBG) in main memory and, if only if necessary, use
a solution in external memory in the last iterations. In that sense, our vision
is to be able to take better advantage of the available RAM, reaching a higher
percentage of processing before going to processing using external memory.

For an iteration i, given i < z, in which M is not sufficient to storing
Gdi,k, it is possible to export Vdi−1,k and Edi−1,k, to be used as input of external
solutions. The dk-mers into Vdi−1,k could be exported so that they can be seen
as a set of reads R with multiplicities for other solutions. The set of edges
Edi−1,k is a subset of final E. Then, the set E of external solution could be
initialized making E = Edi−1,k.

The external memory model [Aggarwal and Vitter 1988] is also called
the "I/O Model" or the "Disk Access Model" (DAM). An external memory
model is commonly applied in algorithms developed to manage a massive
amount of data. It simplifies the memory hierarchy to just two levels. The
CPU is connected to a fast cache of sizeM ; this cache, in turn, is connected to
a much slower disk of effectively infinite size. Both cache and disk are divided
into blocks of size B, so there are M blocks in the cache. Transferring one
block from cache to disk B (or vice versa) costs 1 unit. Memory operations on
blocks resident in the cache are free. Thus, the fundamental goal is to minimize
the number of transfers between cache and disk. [Massachusetts Institute of
Technology 2012].

In that scene, using the case of sorting approach in [Kundeti et al. 2010],
the collection of all k-mers and edges will be sorted to identify the set of V
and E correspondingly using an optimal number of I/O in the equation 4-24.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 68

Θ(N log (N/B)
B log (M/B)) I/O operations to get V , given N k-mers

(4-24)

Using our approach, if there exist an iteration i, given i < z, in which
M is not sufficient to store Gdi,k, it is possible to build the DBG using this
sorting approach decreasing the I/O as shown in equation 4-25. In that sense,
N is reduced by the number of k-mers that will be avoided to processed P (i).

Θ((N − P (i)) log ((N − P (i))/B)
B log (M/B)) I/O operations to get V

(4-25)

Since the number of edges to process was reduced as the number of k-
mers during previous iterations, the same analysis for I/O could be applied to
the set of edges.

Now, we turn to the case of using a partition processing approach in
external memory. In that case, we analyzed the I/O in its three main steps:
distribution, processing, and merging.

In the first step, the collection of all k-mers and edges implicit will be
distributed in n partitions. The number of elements and the criteria used
to distribution will determine the size and the number of partitions. The
distribution of the collections is hard to know until the factual data has been
distributed. This fact can cause a re-partition in case the amount of data is
more extensive than what is supported to be processed in the main memory.
The number of I/O operations in this step is shown in equation 4-26.

IO1 =
j=n∑
j=1

size_of_partj
B

I/O operations in distribution phase
(4-26)

In the second step, each partition is read from the disk and processed.
Then the results are writing in the disk in a compiled partition. Compiled
partitions are less than initial partitions. The I/O of processing step is shown
in equation 4-27. It is used γ to represents the I/O operations consumed during
the write of compiled partitions.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 69

IO2 = (1 + γ)
j=n∑
j=1

size_of_partj
B

0 < γ < 1 I/O operations in processing step

(4-27)
Finally, the merging step reunites all compiled partitions to generate a

result, as is shown in equation 4-28.

IO3 = γ
j=n∑
j=1

size_of_partj
B

0 < γ < 1 I/O operations in merging step

(4-28)
The overall partition strategy I/O is given by equation 4-29

IO = 2(1 + γ)
j=n∑
j=1

(size_of_partj
B

) 0 < γ < 1 I/O operations in partition strategy

(4-29)
Therefore, during the execution of our approach, if there exist an iteration

i, given i < z, in which M is not sufficient to store Gdi,k, it is possible to
build the DBG using this distribution approach decreasing the I/O as shown
in equation 4-30. The number of k-mers impacts in the number and size
of partitions, given a reduction of initial k-mers by P (i). To represent this
reduction, we used the variable µ, with µ > 1.

IO = 2(1 + γ)
j=n′∑
j=1

(size_of_partj
µjB

) 0 < γ < 1 I/O operations in partition strategy

(4-30)
Finally, so that external memory implementations for the construction of

DBG can use our approach, we propose that the former implements an input
interface, such as:

– The sequence of dk-mers in Vdi−1,k will treated as reads.

– Initialize the multiplicity for each unique k-mer with the multiplicity of
the dk-mer.

– Initialize the set of edges with Edi−1,k.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 4. A novel approach for de Bruijn Graph construction 70

4.8
Partial conclusions

In this chapter was addressed our novel approach to the construction of
de Bruijn graph.

The motivation, steps, and gains of our approach were detailed in the
course of the chapter. Runtime and memory requirements were also deeply
discussed.

As was explained, our approach is viable to build the graph, in a macro
way, with available memory. Only in the last steps, if necessary, it is proposed
the use of an external memory solution to finish generating DBG, bringing a
decrease in the number of I/O operations. The detailed pipeline also shows the
profit possibilities of our approach, including tuning the parameters of d and
the update function.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

5
Implementation and results

We investigate in this chapter the way our theoretical ideas and contribu-
tions may behave in practice. Initially, we explain the data structures used for
DBG codification in our experiments. Mainly, we discuss in detail our choices
for the extra-compacted DBG with a sparse hash implementation. We conclude
with the practical results obtained when applying our strategy to three differ-
ent species datasets: bumblebee, human chromosome 14, and sugar cane. Our
analysis includes not only time execution performance and a comparison with
popular assemblers but also memory usage and the impact of the proposed
modifications concerning efficacy and efficiency.

5.1
DBG implementation

One of the most critical decisions during the implementation was to select
the data structure for the extra-compacted DBG. Our approach focuses on the
exact representation of k-mers and DBG. Therefore, the extra-compacted DBG
in each iteration requires a precise representation of dk-mers. This condition
impacts significantly in the data structure selection to store Gd,k, and the
codification used for vertices and edges of the graph.

5.1.1
Vertices and edges codification

For vertex codification we propose the use of classical 2 bits representa-
tion for base in the smallest available integer type for dk-mers as is used for
k-mer in [Rizk et al. 2013], [Zerbino and Birney 2008] [Ye et al. 2011].

Each dk-mer will need 2dlog2(2d)e bytes.
We may define the amount of memory needed at each iteration to store

each element independently as:

g′(i)× 2dlog2(2d)e

(5-1)

Moreover, we also used a compacted representation of dk-mers as a
strategy to minimize the amount of memory for the vertices. We implemented

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 72

this strategy by dividing the dk-mers into two parts, and saving only once the
k − 1 duplicated prefixes of dk-mers.

The multiplicity of vertices (see 2.4) will be obtaining by accumulating
it during decomposition. Given a vertex vi−1,1 in iteration i − 1, given a
multiplicity x implies that for all k-mer in that vertex have x repetitions.
In iteration i, for each dk-mer decomposed from vi−1,1, if not found in the
set of current vertices Vdi,k, it is inserted with multiplicity x. Otherwise, the
multiplicity in Vdi,k for this dk-mer will increase by x.

Finally, our approach also focuses on the exact representation of edges.
The above means that the edges correspond exactly to the sequences of bp in
the reads, and it is used an exact data codification. To represent the edges we
propose the use of the optimized variant used in [Simpson et al. 2009] and [Ye
et al. 2011]. To store the adjacency information between k-mers, a four bits
extension for each k-mers is used to map every possible one-base extension,
′A′,′C ′,′G′,′ T ′, in a single direction.

5.1.2
Extra-compacted DBG representation

For each iteration, the executed operations include searches and inser-
tions, no deletions occur. It is lookup-intensive processing since each dk-mer
must be searched in the set of vertices to update its multiplicity, and inserted
only if not previously exists.

Hash tables are widely used as a solution for DBG construction (e.g.
[Zerbino and Birney 2008] [Luo et al. 2012] [Li et al. 2013] [Zerbino and Birney
2008]). Hash tables has a theoretical O(1) search time. It’s primary advantage
is that lookup, insertion and deletion operations run in constant time, on
average.

To store Gdi,k we decided to use the google sparse hash implementa-
tion from (https://github.com/sparsehash/sparsehash), which offers sub-
stantial trade-offs between memory and speed. This implementation shows
the low memory usage in benchmarks [Welch 2009] and [Neustar, Inc. 2016],
roughly half the memory of Boost implementation (https://www.boost.
org/doc/libs/1_62_0/doc/html/unordered.html), the next most memory-
conservative implementation. Concerning the execution time, it is in the aver-
age of the implementations, which still basically means very fast [Welch 2009].

The Google sparse hash map uses a sparse array to minimize the overhead
of empty buckets [Penman’s 2017]. Dynamic arrays only store addressed
entries, no matter how ample the array address space may be. In this way,
the structure will need memory only for the entries that are used, plus some

https://github.com/sparsehash/sparsehash
https://www.boost.org/doc/libs/1_62_0/doc/html/unordered.html
https://www.boost.org/doc/libs/1_62_0/doc/html/unordered.html
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 73

bookkeeping overhead. Free buckets have 2 bits of overhead when using 32-
bit pointers, 2.7bits for 64-bit pointers. Despite using a sparse array, Google’s
implementation preserves the constant time complexity of lookup, insertion,
and deletion operations through intelligent bitmap manipulation techniques.
However, it is important to note that these operations may be slower by a
constant factor. It implements open-addressing schemes to resolve the collision,
using a quadratic probing to find available buckets.

Our initial design used a map such that entries are formed by:

– key: sequence of a dk-mer.

– data: multiplicity and edges of this dk-mer.

Since a dk-mer can be too long for initial iterations, we have designed
a nested data structure schema (see in Fig. 5.1) for compacting dk-mers, also
facilitating a fast graph traversal for the next assembling steps. At the first
level, we implemented a main sparse hash map, which maps entries as follows:

– key: sequence of k − 1-length prefix of dk-mer.

– data: pointer to another a nested sparse hash map.

At the second level, we implemented nested sparse hash maps, whit the
following entries:

– key: sequence that corresponds to the remaining part of a dk-mer.

– data: multiplicity and edges of this dk-mer.

With this structure, the k − 1 prefixes shared by two or more different
dk-mers, are stored only once in the main map, and the remaining part of those
dk-mers are saved independently in the nested maps. As a result, the length
of the independent elements and the general memory are reduced. For the
remaining part of those dk-mers, the same strategy could be applied, nesting
another level to save even more memory. However, our implementation has
only two levels.

We will call the above-nested structure a hash map table (HT).
One HT is necessary to represent one Gdi,k. Therefore, for i > 1, while

vertices in Gdi−1,k are decomposed and inserted into Gdi,k, it would be necessary
to have a HT for each graph.

For i = 2, assuming HT1 contains the input of the current iteration, and
HT2 the output, the length of a d1k-mer from HT1 could be:

– Greater than d2: In this case, it is decomposed in a sequence of d2k-mers.
The first d2k-mer in the sequence will have the same k− 1 prefix as d1k-
mer. Therefore, it will have the same entry in the main table as d1k-mer.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 74

Figure 5.1: Nested data structure used for extra-compacted DBG. The main
structure contains a prefix of dk-mers and a pointer to a nested structure.
Nested structure, contains the remaining of dk-mer sequence, along with the
multiplicity of the vertex and a edge map bit codification

Thus, its corresponding entry in the main map will be repeated in both
data structures.

– Smaller than d2: It will not be decomposed; rather, it will be copied to
HT2. The main map entry and the nested map entry will be repeated in
both data structures.

The maintenance of two HT in an iteration brings a waste of memory
as a consequence of repeated data. Also, intermediate deletions in HT1 are
inefficient, since main entries must exist until all nested elements are processed.
Furthermore, deletions are expensive in the middle of the evaluation and can
induce rehashes.

Consequently, we proposed and implemented a strategy to use only one
HT to store both Gdi−1,k and Gdi,k. At the beginning of the iteration i, the HT
only contains Gdi−1,k. It will be traverse to the last element, and each dk-mer
visited and processed will be marked. New elements will be inserted in Gdi,k as
they appear, inserting new main entries as necessary. It is important to note
that elements in Gdi,k will have length less or equal to di. The dk-mers from
Gdi−1,k with a length less than di, will not be copied, they will remain in the

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 75

same state, conceptually it is as if they had been inserted in Gdi,k. New recently
inserted elements can be visited. However, since their length is less than di,
they will be treated as elements of Gdi−1,k with length less than di, without
taking any action. At the end of the iteration, all dk-mers with a length greater
than di and marked will be cleaned up.

5.2
Experimental results

We implemented a test prototype using the C++ programming language
developed using IDE Netbeans 8.1. We have run our executions in a virtual
machine hosted in private cloud infrastructure, using one virtual machine with
Ubuntu 18.04, one CPU core Intel Xeon E312xx 2.2GHz, with 33GB of RAM
and 500GB of HD.

The datasets used in our experiments include three groups of organisms:
Sugar cane libraries. Fragment libraries collected from Brazilian

sugarcane species kept by UFRJ’s Institute of Medical Biochemical (IBqM):

– R03 with n = 8, 520, 922 and m = 72bp

– R06 with n = 5, 298, 464 and m = 72bp

– R10 with n = 5, 723, 392 and m = 76bp

where n represent the number of reads, and m is the read length.
Human Chromosome 14. Fragment library of Human Chromosome

14 (Ch14) available in http://gage.cbcb.umd.edu/data/:

– H1: Library 1 with n = 18, 166, 705 and m = 101bp in average.

– H2: Library 2 with n = 18, 166, 798 and m = 101bp in average.

Bombus impatiens (bumblebee). Fragment library of Bombus impa-
tiens available in http://gage.cbcb.umd.edu/data/:

– B2: Library 2 with n = 120, 000, 000 and m = 124bp in average.

Each one of these three configurations was executed in ABYSS to
construct the DBG. We have noticed that, for each execution, the number
of vertices and edges of DBG produced by ABYSS were equivalent to the
DBG output that our approach generates.

Table 5.1: shows our set of planned experiments that helps with the
comprehension of our actual contributions.

Results for each execution are available in the next sections and in the
Section B of the Appendix.

http://gage.cbcb.umd.edu/data/
http://gage.cbcb.umd.edu/data/
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 76

Table 5.1: Experiments description.

No. Datasets k d1 step Goal
1 R03, R06, R10,

H1, H2
12 64 10 Test the approach, and proof that

it is viable. Measure unique dk-
mers, memory and runtime.

2 R10 15 52,
55,
58,
61,
64

10 Shows how the d1 impact in the
number of k-mers skipped from
being processed, the accumulated
number of processed elements and
unique dk-mers.

3 H1 11 64 5, 8,
10,
15

Shows how each step impact in
the number of k-mers skipped
from being processed, the accu-
mulated number of elements pro-
cessed and unique dk-mers.

4 R03, R06, R10,
H1, H2

12 12 Measure runtime of traditional
approaches in our implementa-
tion.

5 R03, R06, R10,
H1, H2

12,
13

Comparing our approach with
the requerimentes for DBG con-
struction of other assemblers like
ABYSS and Velvet.

6 Bee 31 100,
55,
35,
31

10 Proving our approach in case that
DBG does not fit in main mem-
ory.

5.2.1
Number of skipped k-mers at each iteration

Figure 5.2 shows the number of k-mers processed using our approach
over the total number of k-mers. These tests reveal that our approach reduces
the need for processing a significant amount of k-mers. In Table 5.2 we show
the percentage of skipped k-mers. For all datasets, the percent of k-mers that
did not have to be processed was over 70%. The accumulate value P (i) means
the number of elements that are skipped from being processed. It also shows
the remaining elements to process if at that point, the execution needs to be
processed in external memory, or even by another approach (see Section 4.6).
The dataset R03 obtains the highest percentage, although the highest amount
of skipped k-mers was given for the Human Ch14 libraries. We may explain
this behavior as the number of reads in human libraries is, at least, two times
the number of reads when compared to the other datasets.

Analysis of d. How this affects the number of skipped k-mers.
To analyze the impact of d value in the number of saved k-mers, five

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 77

Figure 5.2: Number of k-mers processed using our approach compared to
overall number of k-mers

Table 5.2: Saved number of k-mers in Experiment 1.

Datasets N : total number
of k-mers

P (z): skipped k-
mers

k-mers
processed

% of
skipped
k-mers

R03 519.776.242 440.839.371 78.936.871 84,81
R06 323.206.304 235.029.980 88.176.324 72,72
R10 372.020.480 282.215.035 89.805.445 75,86
H1 1.635.003.450 1.227.017.635 407,985,815 75,05
H2 1.635.011.820 1.228.669.547 406,342,273 75,15

configurations over R10 were applied and executed, updating d at each iteration
through update(d) = di−1− 10 (Function 4.4.1.1). Depending on the initial d1,
the execution may have more or less number of iterations. As we can see in
Fig. 5.3, all iterations have the same trend over the cumulative percentage
of skipped k-mers for different di values. The execution that has the greater
number of skipped k-mers was the one whose last iteration had a d that
eventually came closer to k. The average of the replication factor for execution,
meanwhile, showed almost constant behavior overall executions, varying from
1.23 to 1.57, with an average of 1.31.

The observed variation in the number of skipped k-mers demonstrated
that it is possible to fine-tune d1 to obtain betters results. Unfortunately, with
these results, it was not possible to define a tendency between the number of

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 78

accumulated processed elements and the maximum number of unique dk-mers
for all iterations in correspondence with the d1 value.

Figure 5.3: Comparison of cumulative percentage of skipped k-mers over
different executions starting with different d1

Table 5.3: Summary of executions for Experiment 2 to analyze how impact d1.
R10 with k=15, varying d1.

d1 G: accumulated
number of ele-
ments processed

g′(i)max: maxi-
mum of unique
dk-mers

P (i): accumu-
lated skipped
k-mers

P (i)/N
(%)

52 228,206,307 27,574,544 199,178,456 56.13
55 226,958,946 16,663,215 182,085,221 51.31
58 231,130,061 36,752,813 231,296,700 65.18
61 235,668,807 29,291,765 207,335,327 58.43
64 227,049,233 17,768,889 200,898,166 56.61

Analysis of update function.
We are also interested in studying the way the the function that updates

d can affect the number of skipped k-mers. With this goal in mind, four
configurations were executed over H1 dataset, using the function in 4.4.1.1 with
a constant k = 11 and varying the step values. Detailed results are presented
in B.7.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 79

As we can see in Figure 5.4, all iterations have the same tendency over
the cumulative percentage of skipped k-mers for different di values. However,
the value for the greater step = 15 had a representative decrease compared to
the rest of values. Table 5.4 shows that not for more exhaustive searches, it is
possible to obtain better results for accumulative skipped k-mers.

As in the previous subsection, the executions that had the highest number
of skipped k-mers were those that the last iteration got d closer to k. In that
case, it happened for step=10 and step=5. For the latter, a more exhaustive
one, it achieved a slightly higher percentage.

Figure 5.4: Comparison of cumulative percentage of skipped k-mers over
different executions with different step

Again, with these results, it was not possible to define a trend between
the number of accumulated processed elements and the maximum number of
unique dk-mers for all iterations in correspondence with the step value. As
in previous analysis, the variation showed in the number of skipped k-mers,
demonstrated that it is possible to fine-tune the function or its parameters, like
the step. We could obtain betters results and a reduction of I/Os operations,
in case it is needed.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 80

Table 5.4: Summary of executions for Experiment 3 to analyze how impact the
step. H1 with k=11, varying step parameter for update function.

step

G: accumulated
number of ele-
ments processed

g′(i)max: maxi-
mum of unique
dk-mers

P (i): accumu-
lated skipped
k-mers

P (i)/N
(%)

15 1,069,719,344 105,203,153 656,412,143 39.71
10 851,702,944 86,794,358 1,171,691,777 70.88
8 1,053,403,745 92,690,341 997,267,892 60.32
5 1,276,742,648 97,421,806 1,188,872,847 71.91

5.2.2
Memory analysis

With the aim to study the memory used in the process, we have to
analyze the behavior of unique dk-mers. For each iterations, we can see how
the memory requirements fits to the number of unique dk-mers (see Table
5.5), reaching its highest value for iterations which greater number of unique
dk-mers.

Table 5.5: Datasets R03, R06, R10, H1 and H2. Memory used in each execution.
Experiment 1. k = 12, d1 = 64, d is updated decremented by 10 in each
iteration. g′(i) is the number of unique dk-mers andMem. is the memory used
in GB.

i R03 R06 R10 H1 H2
g′(i) Mem g′(i) Mem g′(i) Mem g′(i) Mem g′(i) Mem

1 9,604,846 1.00 8,385,453 0.96 6,807,003 0.91 29,919,316 2.33 29,939,425 2.34
2 12,840,309 1.28 11,842,147 1.25 9,784,098 1.15 42,743,049 3.09 42,778,322 3.09
3 15,113,476 1.45 14,626,588 1.45 12,292,626 1.34 61,420,685 4.19 61,469,230 4.19
4 16,517,971 1.57 16,634,211 1.60 14,595,400 1.50 77,411,456 5.12 77,471,870 5.12
5 17,616,768 1.65 18,114,159 1.70 16,810,095 1.65 89,340,932 5.81 89,413,646 5.81
6 31,321,779 2.57 35,010,061 2.79 34,635,823 2.78 69,397,710 4.73 69,430,201 4.73
7 13,881,227 1.63 14,231,519 1.65 14,654,968 1.68 13,736,339 1.60 13,741,195 1.60

In case of datasets R03, R06, R10, they reach their maximum number
of unique dk-mers for i = 6 with more than 30 millions of unique dk-mers,
demanding 2.57GB, 2.79GB and 2,78GB of RAM to store those elements.
In the same way, the datasets corresponding to Human Ch14 have similar
behavior with respect to the memory requirements and reach their peak for
i = 5, using 5.81GB for around 89 million of dk-mers. The graphic for the
number of unique dk-mers versus the memory used (Fig. 5.5) shows that the
curves for the number of unique dk-mers and memory have similar behavior
for each dataset.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 81

5.5(a): Memory and unique dk-mers for
R03

5.5(b): Memory and unique dk-mers for
R06

5.5(c): Memory and unique dk-mers for
R10

5.5(d): Memory and unique dk-mers for H1

5.5(e): Memory and unique dk-mers for H2

Figure 5.5: Memory compared with the number of unique dk-mers.

Given a hypothetical X software, which uses the traditional approach to
build DBG, with exact codification for unique k-mers, then, if the available
memory M is not enough for X to build the DBG (Case A in 4.6), for k = 12,
our approach could process up to at least iteration 2 for R03 and R06, and
until iteration 4 for R10, skipping to being processed the 35.59% and 14.60 %

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 82

of k-mers for R03 and R06 correspondingly, and 42.77% of k-mers for R10.
In fact, our implementation is even more performing. The results show the

behavior of our data structure optimized for long dk-mers, to take advantage
of k− 1 prefix duplication of unique dk-mers. While d is going to approximate
to k, it is more likely that a minor number of dk-mers shares the same k − 1
prefix. When d reaches the k value, at most, four elements reside in each nested
table, weighting more the overhead of the table. These are the reason that for
the last iteration, the memory used is higher than other iterations with a
greater number of unique dk-mers. For example, for R03 in the last iteration,
the number of unique dk-mers is around 13 million for 1.63GB of memory.
However, until the iteration i = 4, while the number of unique dk-mers grows
from 9 million to more than 16 million, the memory requirements do not over
1.63GB. The same behavior is present in R06 and R10.

In the case of Human Ch14 libraries, with the parameters used in the
experiments, no iteration had the number of unique dk-mers less than the
number of kmers for the DBG built. Therefore, in the presence of X, being
M insufficient to X build the DBG (Case A in 2), our approach could not
be executed with experimented configuration. However, another configuration
(Case A in 2) could be tested to see if the process can be carried out until
some point, at least to skipping from being processed a set of k-mers.

5.2.3
Time analysis

In order to analyze the execution time, we run Experiment 4 (Table 5.1)
using our prototype, with k=12 and d1 = 12 to simulate the execution of the
traditional approach, since each dk-mer will be a k-mer with overlaying k− 1.
Following, we compare the runtime results between Experiment 1 and 4, to
analyze how the number of elements processes affect the execution time. The
values (see Table 5.6) evidence that our approach builds the DBG with a minor
time, while the number of elements processed decreases.

Also, the curves in Fig. 5.6 shows the proportion between number of
elements processed and the execution time for Experiment 1 (Fig. 5.6(b)) and
Experiment 4 (Fig. 5.6(a)). Both graphs show that the two curves follow a
similar behavior, but the curve of the graph corresponding to "No. of elements
processed" is more pronounced than the other.

Returning to our hypothetical software X, for H1 and H2 datasets,
we previously commented that in case that memory M is not sufficient
for X to build the DBG (Case A in 4.6), our approach with experimented
configuration would not be able to execute. However, if M is sufficient to meet

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 83

Table 5.6: Datasets R03, R06, R10, H1 and H2. Time comparison, runtime
DBG construction versus runtime DBG construction of our approach. Exper-
iment 4.

Datasets d1 = 12 (without no iterations) d1 = 64 (with 7 iterations)
Time(hrs) G: accumulated

number of ele-
ments processed

Time(hrs) G: accumulated
number of ele-
ments processed

R03 0.87 519,776,242 0.50 244,084,848
R06 0.85 323,206,304 0.55 241,004,332
R10 0.78 372,020,480 0.46 230,123,404
H1 3.64 1,411,173,072 1.83 872,853,845
H2 3.16 1,412,922,661 1.81 873,518,772

5.6(a): Execution for d1 = 12. DBG tradi-
tional construction

5.6(b): Execution for d1 = 64. DBG con-
struction through multiple iterations using
our approach.

Figure 5.6: Proportion between number of elements processed and execution
time.

the requirements of this execution (Case B in 4.6), our approach would have
gains over execution time.

5.2.4
Comparison with other assemblers

To evaluate the performance of our approach, we compared its results
with common assemblers. In that case, we select ABYSS [Simpson et al. 2009]
and Velvet [Zerbino 2016] as they are commonly used. In competitions such
as Assemblathon and Gage they appear as assemblers most frequently used
among those selected by competing teams. In both cases, they construct an
exact representation of the DBG (in case of ABYSS we executed the version
with hast table instead of the BF version).

In the case of ABYSS, it starts generating all k-mers and save the uniques
in a hash table using a 2bit codification and a bitmap for edges representation.
After getting the set of vertices V , it is traversed, and the edges are generated
not over the reads but tested for each k-mer the existence of all possible

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 84

extensions in V .
Velvet, in turn, has different processing and data structures. Firstly, it

generates all k-mers and saves them into a hash table, specifically into a splay
tree that resides in each bucket to manage collisions. For each k-mer, the
position in the read and the read id is tracked, generating the Roadmap file.
After, using the Roadmap and the sequences files as inputs, are created the
vertices and the edges to finish the graph generation.

In Experiment 5, we tried to execute the assembly for the same datasets
used in Experiment 1 using ABYSS and Velvet with k = 12. Then, for these
executions, we measure the time and memory until the step of building DBG.

In Table 5.7, we present the memory and run time resulting from the
execution of our approach and ABYSS. Firstly, we present the results of our
implementation using d1 = 12, for a unique iteration, which is corresponded to
the construct directly the DBG (see Experiment 2). Secondly, it is presented
the results of the execution of our implementation for d1 = 64 (see Experiment
1), which corresponds to the execution of our approach with seven iterations.
For the last, it is shown memory peaks for the intermediate extra-compacted
DBGs and the iteration i in which they occur. In the same way, we showed the
minor memory needed, and the memory of the last iteration, which corresponds
to the final DBG. Finally, the values for ABYSS are presented.

It is possible to compare ABYSS with the execution of our implementa-
tion for d1 = 12, which is corresponded to the construct directly the DBG. As
well as, ABYSS could be compared with the execution of our implementation
using our approach through some iterations.

Table 5.7: Comparison of our approach with ABYSS. Experiment 5.

Datasets

Our
approach
(d1 = 12

without no
iterations)

Our approach (d1 = 64 with 7
iterations) ABYSS

Time
(hrs)

Mem. Time
(hrs)

Mem.
max

i Mem.
min

i Mem.
for
last i

Time
(hrs)

Mem.

R03 0.87 1.63 0.50 2.57 6 1.00 1 1.63 1.11 1.01
R06 0.85 1.65 0.55 2.79 6 0.96 1 1.65 1.03 1.02
R10 0.78 1.68 0.46 2.78 6 0.91 1 1.68 1.14 1.04
H1 3.64 1.60 1.83 5.81 5 1.60 7 1.60 5.61 1.00
H2 3.16 1.60 1.81 5.81 5 1.60 7 1.60 5.37 1.00

As shown in graph Fig. 5.7, the execution time follows the same behaviour
in the three cases. Nevertheless, ABYSS presents longer times, which are

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 85

around twice the times for our implementation with d1 = 64. The execution
using our approach with d1 = 64 and step = 10, got almost half of the time
to directly generate the DBG using d1 = 12. Comparing ABYSS with our
implementation for d1 = 12, given that both construct the graph using the
same traditional approach, it may be visible a significant difference of ABYSS
for Humans Ch14 datasets. It is worth to note that ABYSS generates all
vertices firstly and visits each one after to "found" its possible edges. Instead,
our approach generates the set of edges while getting the vertices.

Figure 5.7: Comparison of execution time between our implementation and
ABYSS

Another possible fair comparison would be between the memory used
by ABYSS and the memory used by our implementation for d1 = 12, when it
generated the final DBG directly. The latest is equal to the required memory for
final iteration i=7, when it is used d1 = 64. In that sense, our implementation
follows the same trend that ABYSS (see Fig. 5.8). It is appreciable an overhead
of around 0.6GB for executions with our implementation, which is justifiable
by the fact that our structure is not optimized for final k-mer. Rather, for
intermediates long dk-mers that could take the best advantage of its design.

Notwithstanding, the distribution of unique dk-mers for tested parame-
ters requires up to three times the memory needed for final DBG for human
datasets. This point was previously discussed in section 5.2.2.

Turning to Velvet, to our surprise, it does not permit executions when k
is an even number. Thus, we decided use k = 13.

As evidenced, Velvet’s memory consumption is higher than that reported
using our approach for each tested dataset. Even for human datasets, Velvet

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 86

Figure 5.8: Comparison of memory between our implementation and ABYSS

Table 5.8: Comparison of our approach with Velvet. Experiment 5.

Datasets
Our approach (d1 = 64 with 7

iterations) Velvet
Time
(hrs)

Mem.
max

i Mem.
min

i Mem.
for
last i

Time
(hrs)

Mem.

R03 0.60 4.39 7 1.23 1 4.39 1.26 5.71
R06 0.69 4.57 7 1.19 1 4.57 1.16 9.87
R10 0.78 4.75 7 1.17 1 4.75 1.45 11.65
H1 2.39 7.27 5 3.26 1 4.83 over

1.15
over
9.92

H2 2.37 7.27 5 3.26 1 4.83 over
1.37

over
9.99

was not able to finish the execution. For over 1 hour for both datasets and
9GB of memory allocated, it could not assign more memory to continue its
execution, reporting:

velvetg: Can’t calloc 1917461804 InsertionMarkers totalling
17257156236 bytes: Cannot allocate memory

Finally, we selected an experiment (Experiment 6 in Table 5.1) to
illustrate the advantages of our approach in case the memory is not enough
(Case A in 4.6). For that case we used the dataset for Bombus impatiens
(bumblebee), B2, and execute our experiment using k = 31, estimating
2,820,000,000 k-mers for 30 millions reads.

In the case of ABYSS, after 3.45hrs, with a load hash factor of 715400895
/ 2147483648 = 0.333 using 32.6GB, informs a memory problem:

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 87

sparsehash FATAL ERROR: failed to allocate 27 groups.
Turning to Velvet, during the execution of velveth, was reported in

0.65hrs:
[2343.799240] Inputting sequence 15535000 / 30000000
[2343.825408] No more memory for memory chunk!
Using our approach, we done following executions (see details in Table

5.9):

Table 5.9: B2. Number of skipped k-mers for Experiment 6.

i k d g′(i): num-
ber of
unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

Mem.
(Gb)

d1 = 55 , step = 2 and step = 10
1 31 55 99,761,700 120,000,000 497,591,712 497,591,712 17.65 21.77

d1 = 100 , step = 10
1 31 100 56,708,579 60,000,000 172,900,804 172,900,804 6.13 13.07
2 31 90 81,504,041 84,667,129 75,602,880 248,503,684 8.81 16.77
3 31 80 103,426,703 108,583,151 88,753,440 337,257,124 11.96 21.67
4 31 70 123,535,137 129,576,089 87,236,300 424,493,424 15.05 26.07
5 31 60 142,207,182 148,790,297 83,998,330 508,491,754 18.03 30.47

For d1 = 55, step = 2, the first iteration complete the execution in 0.8hrs
bringing a gain of 17.65% k-mers skipped to being processed. However, if only
the first iteration could be executed, the memory was insufficient for d2 = 53.
Then, we tested change step to 10.

For d1 = 55, step = 10, as in the previous one execution, a result higher
than 17.65% could not be achieved, because it was only possible to execute
the 1st iteration given the existing memory.

At this moment, we turn to new value for d1. Then was executed d1 = 100,
using step = 10. At this time it was possible to improve the result, obtaining
18.03%, what means 10,900,042 skipped k-mers more that the previous result.
The last iteration completed was i = 5, for d5 = 60 using 30.47GB of memory.

5.3
Partial conclusions

In this chapter, we presented details about the implementation used to
validate our approach. Some experiments were made in function to analyze
the number of skipped k-mers, i.e, k-mer that will not need to be processed,
and how the parameters d1 and step could affect them. Also, a subsection is

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 5. Implementation and results 88

dedicated to memory and time consumption, showing how they depend heavily
on the number of unique dk-mers and the number of total elements processed.

Also, we could somehow validate our implementation through the com-
parison with ABYSS and Velvet, two typical used assemblers, proving that the
results are not out of the range of traditional approaches.

Finally, we showed a real case in which the memory is not enough (Case
A in 4.6), reaching 18.03% of skipped k-mers, what means 508,491,754 k-mers
were skipped to being processed in external memory solution.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

6
Conclusions

The creation and manipulation of the de Bruijn graph have been iden-
tified as the step with most memory consumption for de novo assembly. The
computational requirements of DBG construction depends on the process of a
huge number of elements, k-mers.

The computational requirements for the construction of DBG are influ-
enced by several aspects:

– The number of total k-mers N , given by (m− k+ 1)n assuming that all
reads has the same length m.

– It is not known which is the k value for best assembly.

– The number of unique k-mers Nϕ, 0 < ϕ < 1, without knowing in
advance.

– High level of redundancy between adjacent k-mers.

– Size overhead of data structure to used to identify the set of V .

– Search time of the data structure used to store V .

– K -mer codification (vertex codification).

– K -mer adjacency codification (edges codification).

In this thesis, we present a new approach to construct de Bruijn Graph
without the necessity of process all k-mers. Through an iterative sequence of
reductions, it is possible to process the graph as much as possible in the main
memory, and only when the available main memory becomes insufficiently,
will be using an external memory solution. Then, large duplicate regions had
been already identified, avoiding processing a significant amount of duplicated
k-mers in external memory, reducing the number of I/O operations.

A prototype of our approach was implemented, and some tests were
executed. The analysis of the number of skipped k-mers in each iteration
showed that our approach saves a significant number of k-mers to be processed.
In order to need to externalize the process at some point, these results suggest
that a significant number of I/O operations will be saved, improving the
computational requirements.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Chapter 6. Conclusions 90

Also, we have shown that the number of processed elements affects the
execution time, while the unique number significantly impacts the amount of
memory required for an exact representation of DBG.

Finally, it is shown the impact of parameters in the amount of skipped
k-mers, which opens a new possibility for parameter tuning.

6.1
Contributions

Our proposed approach, as far as we know, is unique and innovative in
the sense that combines two principles for DBG construction:

– the reduction of the number of k-mers to be processed, bringing a positive
impact on the run time for both RAM-only and external memory model
processing.

– postpose the external memory processing (if needed) for the last steps
of the algorithm, reducing the total number of k-mers to be externalized
and, consequently, the number of I/O operations.

Furthermore, this thesis brings a set of additional contributions, as listed
below:

– Identification and formalization of the main variables that impact the
DBG construction.

– A survey of de Bruijn graph approaches, emphasizing the data structures,
processing algorithms, and disk distribution algorithms used.

– Possibility of tuning the parameters to obtain a higher number of k-mers
that do not have to be processed.

– A proposed implementation of the approach.

– Proposition and implementation of data structure optimized for large
dk-mers.

– Performance evaluation of the approach in real genome datasets, includ-
ing three kinds of organisms: animals, humans, and plants.

6.2
Future work

– Study of how much a dk-graph for specific i iteration is approximated to
a final DBG, and how it can be exploited in the assembly process.

– Study of the distributions of unique dk-mers to estimate d1 and step.

– Study of replication factor in order to estimate time execution.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references

[Aggarwal and Vitter 1988] Aggarwal, A. and Vitter, Jeffrey, S. (1988). The
Input/Output Complexity of Sorting and Related Problems. Commun. ACM,
31(9):1116–1127.

[Bradnam et al. 2013] Bradnam, K. R. et al. (2013). Assemblathon 2: evaluating
de novo methods of genome assembly in three vertebrate species. GigaScience,
2(1):1–31.

[Butler et al. 2008] Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Bel-
monte, M. K., Lander, E. S., Nusbaum, C., and Jaffe, D. B. (2008). ALLPATHS:
De novo assembly of whole-genome shotgun microreads. Genome Research,
18(5):810–820.

[Chapman et al. 2011] Chapman, J. A., Ho, I., Sunkara, S., Luo, S., Schroth,
G. P., and Rokhsar, D. S. (2011). Meraculous: de novo genome assembly with
short paired-end reads. PloS one, 6(8):e23501–e23501.

[Chikhi et al. 2014] Chikhi, R., Limasset, A., Jackman, S., Simpson, J. T., and
Medvedev, P. (2014). On the Representation of de Bruijn Graphs, pages 35–55.
Springer International Publishing, Cham, Switzerland.

[Chikhi et al. 2016] Chikhi, R., Limasset, A., and Medvedev, P. (2016). Com-
pacting de Bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics, 32(12):i201.

[Chikhi and Rizk 2013] Chikhi, R. and Rizk, G. (2013). Space-efficient and exact
de Bruijn graph representation based on a Bloom filter. Algorithms for Molecular
Biology, 8(1):22.

[Claros et al. 2012] Claros, M. G., Bautista, R., Guerrero-Fernández, D., Benzerki,
H., Seoane, P., and Fernández-Pozo, N. (2012). Why assembling plant genome
sequences is so challenging. Biology, 1(2):439.

[Conway and Bromage 2011] Conway, T. C. and Bromage, A. J. (2011). Succinct
data structures for assembling large genomes. Bioinformatics, 27(4):479–486.

[Cook and Zilles 2009] Cook, J. J. and Zilles, C. (2009). Characterizing and
optimizing the memory footprint of de novo short read DNA sequence assembly.

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references 92

In International Symposium on Performance Analysis of Systems and Software.
ISPASS 2009, pages 143–152.

[de Armas et al. 2016] de Armas, E. M., Haeusler, E. H., Lifschitz, S., de Holanda,
M. T., da Silva, W. M. C., and Ferreira, P. C. G. (2016). K-mer Mapping and de
Bruijn graphs: The case for velvet fragment assembly. In 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 882–889.

[de Armas et al. 2017] de Armas, E. M., Silva, M. V. M., and Lifschitz, S. (2017).
A Study of Index Structures for K-mer Mapping. In Proceedings Satellite Events
of the 32nd Brazilian Symposium on Databases. Databases Meet Bioinformatics
Workshop, pages 326–333.

[Deorowicz et al. 2013] Deorowicz, S., Debudaj-Grabysz, A., and Grabowski, S.
(2013). Disk-based k-mer counting on a PC. BMC Bioinformatics, 14(1):160.

[Deorowicz et al. 2015] Deorowicz, S., Kokot, M., Grabowski, S., and Debudaj-
Grabysz, A. (2015). KMC 2: fast and resource-frugal k-mer counting. Bioinfor-
matics, 31(10):1569.

[Earl et al. 2011] Earl, D. et al. (2011). Assemblathon 1: A competitive assessment
of de novo short read assembly methods. Genome Research, 21(12):2224–2241.

[El-Metwally et al. 2013] El-Metwally, S., Hamza, T., Zakaria, M., and Helmy, M.
(2013). Next-generation sequence assembly: Four stages of data processing and
computational challenges. PLoS Comput Biol, 9(12):1–19.

[Erbert et al. 2017] Erbert, M., Rechner, S., and Müller-Hannemann, M. (2017).
Gerbil: a fast and memory-efficient k-mer counter with GPU-support. Algorithms
for Molecular Biology, 12(1):9:1–9:12.

[Ghosh and Kalyanaraman 2016] Ghosh, P. and Kalyanaraman, A. (2016). A
Fast Sketch-based Assembler for Genomes. In Proceedings of the 7th ACM
International Conference on Bioinformatics, Computational Biology, and Health
Informatics, BCB ’16, pages 241–250, New York, NY, USA. ACM.

[Ghosh and Kalyanaraman 2019] Ghosh, P. and Kalyanaraman, A. (2019).
FastEtch: A Fast Sketch-Based Assembler for Genomes. IEEE/ACM Trans.
Comput. Biology Bioinform., 16(4):1091–1106.

[Gnerre et al. 2011] Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F. J.,
Burton, J. N., Walker, B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S.,
Berlin, A. M., Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke,
A., Nusbaum, C., Lander, E. S., and Jaffe, D. B. (2011). High-quality draft

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references 93

assemblies of mammalian genomes from massively parallel sequence data.
Proceedings of the National Academy of Sciences of the United States of
America, 108(4):1513–1518. 21187386[pmid].

[Illumina, Inc. 2019] Illumina, Inc. (2019). Sequencing coverage. https://www.
illumina.com/science/technology/next-generation-sequencing/
plan-experiments/coverage.html. Retrieved 2019-10-1.

[Jackman and Birol 2010] Jackman, S. D. and Birol, I. (2010). Assembling
genomes using short-read sequencing technology. Genome biology, 11(1):202–
202. 20128932[pmid].

[Kelley et al. 2010] Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010).
Quake: quality-aware detection and correction of sequencing errors. Genome
Biology, 11(11):R116.

[Kleftogiannis et al. 2013] Kleftogiannis, D., Kalnis, P., and Bajic, V. B. (2013).
Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud
Infrastructures. PLoS ONE, 8(9).

[Kokot et al. 2017] Kokot, M., Dlugosz, M., and Deorowicz, S. (2017). KMC 3:
counting and manipulating k-mer statistics. Bioinformatics, 33(17):2759–2761.

[Kundeti et al. 2010] Kundeti, V., Rajasekaran, S., and Dinh, H. (2010). Efficient
parallel and out of core algorithms for constructing large bi-directed de Bruijn
graphs. ArXiv e-prints.

[Li et al. 2009] Li, R. et al. (2009). De novo assembly of human genomes with
massively parallel short read sequencing. Genome Research.

[Li et al. 2013] Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X., and Suri, S.
(2013). Memory Efficient Minimum Substring Partitioning. Proc. VLDB Endow.,
6(3):169–180.

[Li and XifengYan 2015] Li, Y. and XifengYan (2015). MSPKmerCounter: A Fast
and Memory Efficient Approach for K-mer Counting. ArXiv e-prints.

[Li et al. 2011] Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li,
N., Hu, X., Liu, B., Yang, B., and Fan, W. (2011). Comparison of the two major
classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph.
Briefings in Functional Genomics, 11(1):25–37.

[Liu et al. 2012] Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu,
L., and Law, M. (2012). Comparison of Next-Generation Sequencing Systems.
Journal of biomedicine & biotechnology, 2012:251364.

https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references 94

[Luo et al. 2012] Luo, R. et al. (2012). SOAPdenovo2: an empirically improved
memory-efficient short-read de novo assembler. GigaScience, 1(1):1–6.

[Mamun et al. 2016] Mamun, A.-A., Pal, S., and Rajasekaran, S. (2016).
KCMBT: a k -mer Counter based on Multiple Burst Trees . Bioinformatics,
32(18):2783.

[Marcais and Kingsford 2011] Marcais, G. and Kingsford, C. (2011). A fast,
lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics, 27(6):764–770.

[Massachusetts Institute of Technology 2012] Massachusetts Institute of
Technology, E. D. (2012). Lecture notes in Advanced Data
Structures, MIT course number 6.851. https://ocw.mit.edu/
courses/electrical-engineering-and-computer-science/
6-851-advanced-data-structures-spring-2012/
calendar-and-notes/MIT6_851S12_L7.pdf.

[McVicar et al. 2017] McVicar, N., Lin, C., and Hauck, S. (2017). K-Mer Counting
Using Bloom Filters with an FPGA-Attached HMC. In 25th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines,
FCCM 2017, Napa, CA, USA, April 30 - May 2, 2017, pages 203–210.

[Melsted and Pritchard 2011] Melsted, P. and Pritchard, J. K. (2011). Efficient
counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics,
12(1):333.

[Metzker 2010] Metzker, M. L. (2010). Sequencing technologies - the next
generation. Nature reviews. Genetics, 11(1):31–46.

[Miller et al. 2010] Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly
algorithms for next-generation sequencing data. Genomics, 95(6):315–327.
20211242[pmid].

[Minkin et al. 2016] Minkin, I., Pham, S. K., and Medvedev, P. (2016). TwoPaCo:
An efficient algorithm to build the compacted de Bruijn graph from many
complete genomes. CoRR, abs/1602.05856.

[Myers 1995] Myers, E. W. (1995). Toward Simplifying and Accurately Formu-
lating Fragment Assembly. Journal of Computational Biology, 2(2):275–290.
PMID: 7497129.

[Myers et al. 2000] Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M.,
Fasulo, D. P., Flanigan, M. J., Kravitz, S. A., Mobarry, C. M., Reinert, K.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/MIT6_851S12_L7.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/MIT6_851S12_L7.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/MIT6_851S12_L7.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/MIT6_851S12_L7.pdf
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references 95

H. J., Remington, K. A., Anson, E. L., Bolanos, R. A., Chou, H.-H., Jordan,
C. M., Halpern, A. L., Lonardi, S., Beasley, E. M., Brandon, R. C., Chen, L.,
Dunn, P. J., Lai, Z., Liang, Y., Nusskern, D. R., Zhan, M., Zhang, Q., Zheng,
X., Rubin, G. M., Adams, M. D., and Venter, J. C. (2000). A Whole-Genome
Assembly of Drosophila. Science, 287(5461):2196–2204.

[Neustar, Inc. 2016] Neustar, Inc. (2016). Big memory, part 3.5:
Google sparsehash! https://research.neustar.biz/2011/11/27/
big-memory-part-3-5-google-sparsehash/. Retrieved 2019-09-10.

[Niedringhaus et al. 2011] Niedringhaus, T. P., Milanova, D., Kerby, M. B., Sny-
der, M. P., and Barron, A. E. (2011). Landscape of next-generation sequencing
technologies. Analytical chemistry, 83(12):4327–4341.

[Pandey et al. 2017] Pandey, P., Bender, M. A., Johnson, R., and Patro, R.
(2017). deBGR: an efficient and near-exact representation of the weighted de
Bruijn graph. Bioinformatics, 33(14):i133–i141.

[Pell et al. 2012] Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J., and
Brown, C. T. (2012). Scaling metagenome sequence assembly with probabilistic
de bruijn graphs. Proceedings of the National Academy of Sciences of the United
States of America, 109:13272–7.

[Penman’s 2017] Penman’s, T. (2017). Sparsehash internals. http://
tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/
#hash-collisions.

[Rahman et al. 2017] Rahman, M. M., Sharker, R., Biswas, S., and Rahman, M.
(2017). HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome
Assembly. International Journal of Genomics, 2017:1–12.

[Rizk et al. 2013] Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer
counting with very low memory usage. Bioinformatics, 29(5):652–653.

[Salikhov et al. 2014] Salikhov, K., Sacomoto, G., and Kucherov, G. (2014). Using
Cascading Bloom Filters to Improve the Memory Usage for de Brujin Graphs.
Algorithms for molecular biology : AMB, 9:2.

[Salzberg et al. 2012] Salzberg, S. L. et al. (2012). GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Research, 22(3):557–567.

[Sanger et al. 1980] Sanger, F., Coulson, A., Barrell, B., Smith, A., and Roe,
B. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA
sequencing. Journal of Molecular Biology, 143(2):161 – 178.

https://research.neustar.biz/2011/11/27/big-memory-part-3-5-google-sparsehash/
https://research.neustar.biz/2011/11/27/big-memory-part-3-5-google-sparsehash/
http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/#hash-collisions
http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/#hash-collisions
http://tristanpenman.com/blog/posts/2017/10/11/sparsehash-internals/#hash-collisions
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references 96

[Santa Brigida et al. 2016] Santa Brigida, A. B., Rojas, C. A., Grativol, C., de Ar-
mas, E. M., Entenza, J. O. P., Thiebaut, F., Lima, M. d. F., Farrinelli, L.,
Hemerly, A. S., Lifschitz, S., and Ferreira, P. C. G. (2016). Sugarcane tran-
scriptome analysis in response to infection caused by Acidovorax avenae subsp.
avenae. PLOS ONE, 11(12):1–30.

[Schatz et al. 2010] Schatz, M. C., Delcher, A. L., and Salzberg, S. L. (2010).
Assembly of large genomes using second-generation sequencing. Genome
Research, 20(9):1165–1173.

[Schatz et al. 2012] Schatz, M. C., Witkowski, J., and McCombie, W. R. (2012).
Current challenges in de novo plant genome sequencing and assembly. Genome
Biology, 13(4):1–7.

[Silva et al. 2017] Silva, M. V. M., de Holanda, M. T., Haeusler, E. H., de
Armas, E. M., and Lifschitz, S. (2017). VelvetH-DB: Persistência de Dados no
Processo de Montagem de Fragmentos de Sequências Biológicas. In Proceedings
Satellite Events of the 32nd Brazilian Symposium on Databases. Databases Meet
Bioinformatics Workshop, pages 334–341.

[Simpson and Durbin 2010] Simpson, J. T. and Durbin, R. (2010). Efficient
construction of an assembly string graph using the FM-index. Bioinformatics
(Oxford, England), 26(12):i367–i373.

[Simpson et al. 2009] Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E.,
Jones, S. J., and Birol, I. (2009). ABySS: A parallel assembler for short read
sequence data. Genome Research, 19(6):1117–1123.

[Sims et al. 2014] Sims, D., Sudbery, I., Ilott, N. E., Heger, A., and Ponting, C. P.
(2014). Sequencing depth and coverage: key considerations in genomic analyses.
Nature Reviews Genetics, 15:121 EP –. Review Article.

[Thiebaut et al. 2017] Thiebaut, F., Rojas, C. A., Grativol, C., Calixto, E. P. d. R.,
Motta, M. R., Ballesteros, H. G. F., Peixoto, B., de Lima, B. N. S., Vieira, L. M.,
Walter, M. E., de Armas, E. M., Entenza, J. O. P., Lifschitz, S., Farinelli, L.,
Hemerly, A. S., and Ferreira, P. C. G. (2017). Roles of Non-Coding RNA in
Sugarcane-Microbe Interaction. Non-coding RNA, 3(4):25. 29657296[pmid].

[Titus Brown et al. 2012] Titus Brown, C., Howe, A., Zhang, Q., Pyrkosz, A. B.,
and Brom, T. H. (2012). A Reference-Free Algorithm for Computational Nor-
malization of Shotgun Sequencing Data. arXiv e-prints, page arXiv:1203.4802.

[Welch 2009] Welch, N. (2009). Hash table benchmarks. http://incise.org/
hash-table-benchmarks.html. Retrieved 2019-09-10.

http://incise.org/hash-table-benchmarks.html
http://incise.org/hash-table-benchmarks.html
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Bibliography references 97

[Ye et al. 2011] Ye, C., Cannon, C. H., Ma, Z. S., Yu, D. W., and Pop, M. (2011).
SparseAssembler2: Sparse k-mer Graph for Memory Efficient Genome Assembly.
arXiv e-prints, page arXiv:1108.3556.

[Ye et al. 2012] Ye, C., Sam Ma, Z., Cannon, C., Pop, M., and Yu, D. (2012).
Exploiting sparseness in de novo genome assembly. BMC bioinformatics, 13
Suppl 6:S1.

[Zavodna et al. 2014] Zavodna, M., Bagshaw, A., Brauning, R., and Gemmell,
N. J. (2014). The Accuracy, Feasibility and Challenges of Sequencing Short
Tandem Repeats Using Next-Generation Sequencing Platforms. PLOS ONE,
9(12):1–14.

[Zerbino 2016] Zerbino, D. (2016). Velvet software. EMBL-EBI. https://www.
ebi.ac.uk/zerbino/velvet/. Retrieved 2019-6-15.

[Zerbino and Birney 2008] Zerbino, D. R. and Birney, E. (2008). Velvet: Algo-
rithms for de novo short read assembly using de Bruijn graphs. Genome Re-
search, 18(5):821–829.

[Zhang et al. 2014] Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C., and
Brown, C. T. (2014). These Are Not the K-mers You Are Looking For: Efficient
Online K-mer Counting Using a Probabilistic Data Structure. PLOS ONE,
9(7):1–13.

[Zhou et al. 2010] Zhou, X., Ren, L., Meng, Q., Li, Y., Yu, Y., and Yu, J. (2010).
The next-generation sequencing technology and application. Protein & cell,
1(6):520–536. 21204006[pmid].

https://www.ebi.ac.uk/zerbino/velvet/
https://www.ebi.ac.uk/zerbino/velvet/
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

A
Decomposition details

Table A.1: Decomposition details for Gdi,k.
i Vdi,k Edi,k

0 [0, 78, 79] []
1 [0, 63, 64], [53, 78, 26] [0,78]
2 [0, 53, 54], [43, 63, 21], [53, 78, 26] [0,63], [43,78]
3 [0, 43, 44], [33, 53, 21], [43, 63, 21], [53, 78, 26] [0,53], [33,63], [43,78]
4 [0, 33, 34], [23, 43, 21], [33, 53, 21], [43, 63, 21],

[53, 78, 26]
[0,43], [23,53], [33,63], [43,78]

5 [0, 23, 24], [13, 33, 21], [23, 43, 21], [33, 53, 21],
[43, 63, 21], [53, 76, 24], [66, 78, 13]

[0,33, [13,43], [23,53], [33,63],
[43,76], [53,78]

6 [0, 13, 14], [3, 16, 14], [6, 19, 14], [9, 22, 14],
[12, 23, 12], [13, 26, 14], [16, 29, 14], [19, 32,
14], [22, 33, 12], [23, 36, 14], [26, 39, 14], [29,
42, 14], [32, 43, 12], [33, 46, 14], [36, 49, 14],
[39, 52, 14], [42, 53, 12], [43, 56, 14], [46, 59,
14], [49, 62, 14], [52, 63, 12], [53, 66, 14], [56,
69, 14], [59, 72, 14], [62, 75, 14], [65, 76, 12],

[66, 78, 13]

[0, 16], [3, 19], [6, 22], [9, 23], [12,
26], [13, 29], [16, 32], [19, 33], [22,
36], [23, 39], [26, 42], [29, 43], [32,
46], [33, 49], [36, 52], [39, 53], [42,
56], [43, 59], [46, 62], [49, 63], [52,
66], [53, 69], [56, 72], [59, 75], [62,

76], [65, 78]

7 [0, 11, 12], [1, 12, 12], [2, 13, 12], [3, 14, 12], [4,
15, 12], [5, 16, 12], [6, 17, 12], [7, 18, 12], [8, 19,
12], [9, 20, 12], [10, 21, 12], [11, 22, 12], [12, 23,
12], [13, 24, 12], [14, 25, 12], [15, 26, 12], [16,
27, 12], [17, 28, 12], [18, 29, 12], [19, 30, 12],
[20, 31, 12], [21, 32, 12], [22, 33, 12], [23, 34,
12], [24, 35, 12], [25, 36, 12], [26, 37, 12], [27,
38, 12], [28, 39, 12], [29, 40, 12], [30, 41, 12],
[31, 42, 12], [32, 43, 12], [33, 44, 12], [34, 45,
12], [35, 46, 12], [36, 47, 12], [37, 48, 12], [38,
49, 12], [39, 50, 12], [40, 51, 12], [41, 52, 12],
[42, 53, 12], [43, 54, 12], [44, 55, 12], [45, 56,
12], [46, 57, 12], [47, 58, 12], [48, 59, 12], [49,
60, 12], [50, 61, 12], [51, 62, 12], [52, 63, 12],
[53, 64, 12], [54, 65, 12], [55, 66, 12], [56, 67,
12], [57, 68, 12], [58, 69, 12], [59, 70, 12], [60,
71, 12], [61, 72, 12], [62, 73, 12], [63, 74, 12],

[64, 75, 12], [65, 76, 12], [66, 77, 12], [67, 78, 12]

[0, 12], [1, 13], [2, 14], [3, 15], [4,
16], [5, 17], [6, 18], [7, 19], [8, 20],
[9, 21], [10, 22], [11, 23], [12, 24],
[13, 25], [14, 26], [15, 27], [16, 28],
[17, 29], [18, 30], [19, 31], [20, 32],
[21, 33], [22, 34], [23, 35], [24, 36],
[25, 37], [26, 38], [27, 39], [28, 40],
[29, 41], [30, 42], [31, 43], [32, 44],
[33, 45], [34, 46], [35, 47], [36, 48],
[37, 49], [38, 50], [39, 51], [40, 52],
[41, 53], [42, 54], [43, 55], [44, 56],
[45, 57], [46, 58], [47, 59], [48, 60],
[49, 61], [50, 62], [51, 63], [52, 64],
[53, 65], [54, 66], [55, 67], [56, 68],
[57, 69], [58, 70], [59, 71], [60, 72],
[61, 73], [62, 74], [63, 75], [64, 76],

[65, 77], [66, 78]

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Appendix A. Decomposition details 99

Table A.2: Number of elements generated in each iteration varying step for
update function.

d step = 5 step = 10 step = 15 step = 20
i No. Length i No. Length i No. Length i No. Length

input input input input
0 1 79 0 1 79 0 1 79 0 1 79
output output output output

64 1 1 64 1 1 64 1 1 64 1 1 64
1 26 1 26 1 26 1 26

59 2 1 59
1 26
1 16

54 3 1 54 2 1 54
1 26 1 21
2 16 1 26

49 4 1 49 2 1 49
1 26 2 26
3 16

44 5 1 44 3 1 44 2 1 44
1 26 2 21 1 31
4 16 1 26 1 26

39 6 1 39
1 26
5 16

34 7 1 34 4 1 34 3 1 34
1 26 3 21 3 26
6 16 1 26

29 8 1 29
1 26
7 16

24 9 2 24 5 2 24 3 4 24
8 16 4 21 2 18
1 13 1 13 1 13

19 10 2 19 4 5 19
10 16 4 18
1 13

14 11 14 14 6 20 14
13 13 1 13

6 12
12 12 12 68 7 68 12 5 68 12 4 68 12

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

B
Results

Experiments for analyses the number of k-mers avoiding to
process in each iteration (Section 5.2.1)

Experiments with k = 12, d1 = 64, update(di) = di−1 − 10 over:
Sugar cane libraries. Fragment libraries collected from Brazilian

sugarcane species by IBqM of UFRJ with n number of reads, and m is the
read length:

– R03 with n = 8, 520, 922 and m = 72 (Table B.1)

– R06 with n = 5, 298, 464 and m = 72 (Table B.2)

– R10 with n = 5, 723, 392 and m = 76 (Table B.3)

Table B.1: Dataset R03. Number of skipped k-mers. Experiment 1.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

1 12 64 9,604,846 17,041,844 150,295,814 150,295,814 28.92
2 12 54 12,840,309 16,107,994 34,675,825 184,971,639 35.59
3 12 44 15,113,476 19,282,882 54,244,493 239,216,132 46.02
4 12 34 16,517,971 21,010,378 62,355,237 301,571,369 58.02
5 12 24 17,616,768 21,074,014 38,444,116 340,015,485 65.42
6 12 14 31,321,779 70,630,865 100,823,886 440,839,371 84.81
7 12 12 13,881,227 78,936,871 65,055,644

Human Chromosome 14. Fragment library of Human Chromosome
14 (Ch14) available in http://gage.cbcb.umd.edu/data/ with n number of
reads, and m is the read length.:

– H1 with n = 18, 166, 705 and m = 101 in average. (Table B.4)

– H2 with n = 18, 166, 798 and m = 101 in average. (Table B.5)

http://gage.cbcb.umd.edu/data/
DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Appendix B. Results 101

Table B.2: Dataset R06. Number of skipped k-mers. Experiment 1.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

1 12 64 8,385,453 10,596,928 31,343,315 31,343,315 9.70
2 12 54 11,842,147 13,380,550 15,851,739 47,195,054 14.60
3 12 44 14,626,588 16,823,071 26,371,883 73,566,937 22.76
4 12 34 16,634,211 19,415,901 38,908,032 112,474,969 34.80
5 12 24 18,114,159 20,570,360 27,445,703 139,920,672 43.29
6 12 14 35,010,061 72,041,198 95,109,308 235,029,980 72.72
7 12 12 14,231,519 88,176,324 73,944,805

Table B.3: Dataset R10. Number of skipped k-mers. Experiment 1.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

1 12 64 6,807,003 11,446,784 136,662,950 136,662,950 36.74
2 12 54 9,784,098 10,555,137 9,293,103 145,956,053 39.23
3 12 44 12,292,626 13,484,271 13,145,708 159,101,761 42.77
4 12 34 14,595,400 15,939,353 14,348,854 173,450,615 46.62
5 12 24 16,810,095 18,172,179 13,911,612 187,362,227 50.36
6 12 14 34,635,823 70,720,235 94,852,808 282,215,035 75.86
7 12 12 14,654,968 89,805,445 75,150,477

Table B.4: H1. Number of skipped k-mers. Experiment 1.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

1 12 64 29,919,316 33,259,320 151,988,621 151,988,621 9.30
2 12 54 42,743,049 44,174,724 20,572,265 172,560,886 10.55
3 12 44 61,420,685 68,073,331 103,932,120 276,493,006 16.91
4 12 34 77,411,456 86,833,283 107,681,659 384,174,665 23.50
5 12 24 89,340,932 102,942,652 139,442,520 523,617,185 32.03
6 12 14 69,397,710 353,415,098 703,400,450 1,227,017,635 75.05
7 12 12 13,736,339 184,155,437 170,419,098

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Appendix B. Results 102

Table B.5: H2. Number of skipped k-mers. Experiment 1.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

1 12 64 29,939,425 33,289,534 17,465,919 152,684,377 9.34
2 12 54 42,778,322 44,210,681 20,535,333 173,219,710 10.59
3 12 44 61,469,230 68,135,253 104,137,617 277,357,327 16.96
4 12 34 77,471,870 86,902,468 107,770,109 385,127,436 23.56
5 12 24 89,413,646 103,020,694 139,510,165 524,637,601 32.09
6 12 14 69,430,201 353,707,028 704,031,946 1,228,669,547 75.15
7 12 12 13,741,195 184,253,114 170,511,919

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Appendix B. Results 103

Table B.6: Dataset R10. Number of k-mers saved to processed varying d1, for
step = 10. Experiment 2.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

d1 = 52
1 15 52 6,916,996 11,446,784 137,177,430 137,177,430 38.66
2 15 42 9,988,660 10,607,351 7,199,626 144,377,056 40.69
3 15 32 15,182,519 16,849,394 20,413,430 164,790,486 46.44
4 15 22 27,574,544 33,630,930 34,387,970 199,178,456 56.13
5 15 15 59,101,897 155,671,848 96,569,951

d1 = 55
1 15 55 6,892,657 11,446,784 136,005,687 136,005,687 38.33
2 15 45 9,951,063 10,597,598 7,566,401 143,572,088 40.46
3 15 35 12,174,757 13,603,573 19,447,985 163,020,073 45.94
4 15 25 16,663,215 18,545,908 19,065,148 182,085,221 51.31
5 15 15 59,101,897 172,765,083 113,663,186

d1 = 58
1 15 58 6,873,150 11,446,784 134,439,838 134,439,838 37.89
2 15 48 9,918,351 10,592,141 7,936,076 142,375,914 40.12
3 15 38 12,524,874 13,587,418 11,524,072 153,899,986 43.37
4 15 28 17,490,108 19,283,912 19,260,440 173,160,426 48.80
5 15 18 36,752,813 52,666,202 58,136,274 231,296,700 65.18
6 15 15 59,101,897 123,553,604 64,451,707

d1 = 61
1 15 61 6,856,642 11,446,784 132,506,466 132,506,466 37.34
2 15 51 9,889,146 10,590,836 8,334,716 140,841,182 39.69
3 15 41 12,474,151 13,574,532 11,981,837 152,823,019 43.07
4 15 31 14,881,465 16,102,006 12,720,337 165,543,356 46.65
5 15 21 29,291,765 36,439,672 41,791,971 207,335,327 58.43
6 15 15 59,101,897 147,514,977 88,413,080

d1 = 64
1 15 64 6,837,966 11,446,784 130,365,620 130,365,620 36.74
2 15 54 9,856,355 10,586,100 8,736,280 139,101,900 39.20
3 15 44 12,414,972 13,556,528 12,484,480 151,586,380 42.72
4 15 34 14,779,373 16,061,699 13,522,740 165,109,120 46.53
5 15 24 17,768,889 21,445,984 35,789,046 200,898,166 56.61
6 15 15 59,101,897 153,952,138 94,850,241

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

Appendix B. Results 104

Table B.7: Dataset H1. Number of k-mers saved to processed for constant d1,
varying step. Experiment 3.

i k d g′(i):
number
of unique
dk-mers

g(i): total
number of
dk-mers

p(i):
skipped
k-mers

P (i): ac-
cumulated
skipped
k-mers

P (i)/N
(%)

step = 15
1 11 64 29,904,698 33,268,422 154,397,787 154,397,787 9.34
2 11 49 43,097,386 44,372,297 25,606,013 180,003,800 10.89
3 11 34 63,563,605 70,285,182 123,791,109 303,794,909 18.38
4 11 19 105,203,153 149,484,225 352,617,234 656,412,143 39.71
5 11 11 4,044,294 772,309,218 768,264,924

step = 10
1 11 64 29,904,698 33,268,422 154,397,787 154,397,787 9.34
2 11 54 42,620,314 44,160,106 21,764,874 176,162,661 10.66
3 11 44 59,461,773 67,798,834 109,338,519 285,501,180 17.27
4 11 34 75,122,632 84,799,938 110,444,028 395,945,208 23.95
5 11 24 86,794,358 100,614,882 142,503,116 538,448,324 32.57
6 11 14 72,512,202 264,031,178 633,243,453 1171691777 70.88
7 11 11 4,044,294 257,029,584 252,985,290

step = 8
1 11 64 29,904,698 33,268,422 154,397,787 154,397,787 9.34
2 11 56 42,386,145 44,046,407 18,871,493 173,269,280 10.48
3 11 48 52,862,548 56,753,112 36,016,801 209,286,081 12.66
4 11 40 70,047,472 78,771,992 117,503,492 326,789,573 19.77
5 11 32 83,062,123 95,159,125 108,565,675 435,355,248 26.33
6 11 24 92,690,341 108,345,522 131,921,925 567,277,173 34.31
7 11 16 82,209,160 205,605,696 429,990,719 997,267,892 60.32
8 11 11 4,044,294 431,453,469 427,409,175

step = 5
1 11 64 29,904,698 33,268,422 154,397,787 154,397,787 9.34
2 11 59 41,627,120 43,916,396 15,751,159 170,148,946 10.29
3 11 54 50,930,181 55,780,883 27,962,264 198,111,210 11.98
4 11 49 58,563,142 65,196,799 36,506,193 234,617,403 14.19
5 11 44 70,961,904 83,638,585 110,739,595 345,356,998 20.89
6 11 39 79,893,175 95,353,060 89,449,175 434,806,173 26.30
7 11 34 86,568,205 104,681,902 100,915,153 535,721,326 32.41
8 11 29 91,486,025 111,480,035 108,581,045 644,302,371 38.97
9 11 24 95,040,778 116,306,280 113,110,868 757,413,239 45.82
10 11 19 97,421,806 119,482,690 114,121,784 871,535,023 52.72
11 11 14 65,512,073 207,789,082 317,337,824 1,188,872,847 71.91
12 11 11 4,044,294 239,848,514 235,804,220

DBD
PUC-Rio - Certificação Digital Nº 1521423/CA

DBD
PUC-Rio - Certificação Digital Nº 1412726/CA

	A novel approach for de Bruijn Graph construction in de novo genome fragment assembly
	Resumo
	Table of contents
	Introduction
	de Bruijn graph and k-mers
	Approaches for DBG construction
	Research scope
	Structure of the work

	Principal concepts
	Next-generation Sequence Data
	Genome assembly
	De novo assembly approaches
	Overlap graph
	The de Bruijn graph

	Partial conclusions

	Related works
	Main classification of approaches
	k-mers counters
	Techniques to reduce memory footprint for DBG construction
	External memory approaches
	State of the art of plant genome assembly
	Summary

	Partial Conclusions

	A novel approach for de Bruijn Graph construction
	Motivation
	Propositions of the new approach
	Main idea
	Novel algorithm for DBG construction
	Extra-compacted de Bruijn Graph decomposition analysis
	Decomposition in details

	Analysis of the number of vertices per iteration

	Computational requirements for extra-compacted DBG
	Computational requirements for DBG construction
	Memory requirements for extra-compacted DBG
	Time complexity analysis

	Processing pipeline. Profits of our approach
	External memory processing at last step
	Partial conclusions

	Implementation and results
	DBG implementation
	Vertices and edges codification
	Extra-compacted DBG representation

	Experimental results
	Number of skipped k-mers at each iteration
	Memory analysis
	Time analysis
	Comparison with other assemblers

	Partial conclusions

	Conclusions
	Contributions
	Future work

	Decomposition details
	Results

