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Abstract

Chamorro Martinez, Jorge Andres; Feitosa, Raul Queiroz (Ad-
visor). Many-to-Many Fully Convolutional Recurrent
Networks for Multitemporal Crop Recognition Using SAR
Image Sequences. Rio de Janeiro, 2019. 67p. Dissertação de
mestrado – Departamento de Engenharia Elétrica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

This work proposes and evaluates deep learning architectures for
multi-date agricultural crop recognition from remote sensing image se-
quences. These architectures combine the spatial modelling capabilities of
fully convolutional networks and the sequential modelling capabilities of re-
current networks into end-to-end architectures so-called fully convolutional
recurrent networks, configured to predict crop type at multiple dates from
a multitemporal image sequence. Their performance is assessed over two
publicly available datasets. Both datasets present highly spatio-temporal
dynamics due to their tropical/sub-tropical climate and local agricultural
practices such as crop rotation. The experiments indicated that the pro-
posed architectures outperformed state of the art methods based on recur-
rent networks in terms of Overall Accuracy (OA) and per-class average F1
score.

Keywords
Fully Convolutional Networks; Recurrent Networks; Crop Recogni-

tion; Remote Sensing
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Resumo

Chamorro Martinez, Jorge Andres; Feitosa, Raul Queiroz.
Reconhecimento de culturas agrícolas utilizando redes
recorrentes a partir de sequências de imagens SAR. Rio
de Janeiro, 2019. 67p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Este trabalho propõe e avalia arquiteturas profundas para o reconhe-
cimento de culturas agrícolas a partir de seqüências de imagens multitempo-
rais de sensoriamento remoto. Essas arquiteturas combinam a capacidade de
modelar contexto espacial prórpia de redes totalmente convolucionais com a
capacidade de modelr o contexto temporal de redes recorrentes para a pre-
visão prever culturas agrícolas em cada data de uma seqüência de imagens
multitemporais. O desempenho destes métodos é avaliado em dois conjun-
tos de dados públicos. Ambas as áreas apresentam alta dinâmica espaço-
temporal devido ao clima tropical/subtropical e a práticas agrícolas locais,
como a rotação de culturas. Nos experimentos verificou-se que as arquitetu-
ras propostas superaram os métodos recentes baseados em redes recorrentes
em termos de Overall Accuracy (OA) e F1-score médio por classe.

Palavras-chave
Redes Totalmente Convolucionais; Redes Recorrentes; Reconheci-

mento de Culturas; Sensoriamento Remoto
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1
INTRODUCTION

1.1
Motivation

The projections of world population for the next decades demand more
efficient, comprehensive and precise agriculture. According to the United Na-
tions reports, the world population is expected to reach 8.6 billion by 2030,
9.8 billion by 2050 and 11.2 billion by 2100 [8]. It is therefore necessary to pro-
mote policies to increase global agricultural production to ensure food supply
with minimal environmental impact. In this context, crop monitoring is very
important to develop commercial plans, regulate internal stocks and perform
customized management decisions [9]. Crop recognition task is important be-
cause it is needed to obtain other relevant information such as prediction of
crop yield. Multitemporal remote sensing (RS) imagery has increasingly been
applied for this task as a cost-effective way for gathering timely, detailed and
reliable information over large areas [10].

Crop recognition from RS data is particularly challenging in tropical
regions, because the favorable climate associated with the use of modern
technologies makes agriculture highly dynamic [11].

In recent years, deep learning models have made breakthroughs in several
fields such as speech recognition and computer vision [12]. In remote sensing,
these models have also been successfully tested in diverse applications [13].
Such models can be roughly grouped in two main categories: Convolutional
Neural Networks (CNN) for understanding spatial context, and Recurrent
Neural Networks (RNN), mostly to model data sequences.

In [14], a type of CNN called Fully Convolutional Network (FCN) was
used for crop recognition having as input the stack of a multi-temporal
sequence. Although a good performance is reported, the method requires the
training of a particular model for each date. Thus, this solution can become
computationally expensive in many practical applications.

RNNs can be configured to allow sequential inputs and to produce a
single outcome that represents the semantic of the whole input sequence. Such
"many-to-one" configurations have been used for crop-recognition in temperate
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Chapter 1. INTRODUCTION 16

regions, where a single crop occurs in each field over the whole season.
In [15] two different RNN models, Long short-term memory (LSTM) and

Gated Recurrent Unit (GRU), were applied for crop classification upon multi-
temporal Sentinel-1 data. In [16], a CNN was proposed to provide the input
to a RNN for the many-to-one crop recognition task.

In [17], the internal fully connected LSTM layers were replaced by con-
volutional layers. This type of recurrent convolutional network (ConvLSTM)
is able to jointly model the spatial and temporal context from multi-temporal
sequences of images. This kind of RNN was used for precipitation forecasting.
Later, in [18], this ConvLSTM network was applied to the multi-temporal land
cover classification problem in a many-to-one configuration. Furthermore, the
same work used a bidirectional variant of ConvLSTM to eliminate bias toward
the later sequence elements. All aforementioned proposals follow the many-to-
one approach.

In areas with complex crop dynamics, such as in tropical regions, multiple
crops may come about in a field during the season. Thus, the single crop per
season assumption does not hold in those regions. Therefore, networks capable
of performing crop recognition at multiple dates are required.

Our work hypothesis is that many-to-many RNN configurations can be
applied for multidate crop recognition, to accurately identify crop classes
in tropical regions at each date represented in a multitemporal sequence.
Specifically, we introduce a novel many-to-many configuration of a bidirectional
ConvLSTM for multidate crop recognition from multitemporal RS data [18].

A limitation of the ConvLSTM approach from [18] is that it computes
convolutions at a single spatial scale. In contrast, modern FCN architectures
are designed to extract features at multiple spatial scales by successively
reducing the input image resolution or increasing the convolution kernel
size. This master thesis proposes hybrid architectures combining the FCN
multi-scale feature extraction capabilities with the ConvLSTM spatio-temporal
modeling properties. For these hybrid architectures, some of the most relevant
FCN approaches were considered: U-Net, Dense FCN and Atrous Spatial
Pyramid Pooling (ASPP).

The first proposed network uses a U-Net encoder to provide inputs at
a lower spatial resolution to a bidirectional ConvLSTM. After processing the
input provided by the encoder, the ConvLSTM delivers the output, which
is then applied to a decoder that generates the outcome, a pixel-wise label
image, at the original spatial resolution. The second architecture is a variant
of the first one, which comprises additional internal connections. The third
architecture applies an ASPP feature layer to the inputs extracting multi-
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Chapter 1. INTRODUCTION 17

scale spatial features, which are fed to a bidirectional ConvLSTM for spatio-
temporal feature extraction.

In addition, two convolutional many-to-one RNNs, introduced in earlier
works [18], were adapted to the many-to-many task and compared with the
proposed hybrid architectures. The experiments were carried out upon datasets
of two tropical regions charaterized by complex spatio-temporal dynamics and
crop rotation practices.

To the best of our knowledge, this is the first work that addresses many-
to-many convolutional recurrent networks as unique, end-to-end architectures,
for pixel-wise crop recognition of entire image sequences.

1.2
Objectives

1.2.1
General Objective

The general objective of this work is to propose a model for crop
recognition in tropical regions based on a hybrid deep learning approach
leveraging fully convolutional and recurrent networks for sequences of remote
sensing images.

1.2.2
Specific Objectives

The specific objectives of this work are the following:

1. Design a unique, end-to-end deep learning network capable of producing
pixel-wise classifications for entire sequences of remote sensing images
for crop recognition applications.

2. Consider spatial and temporal context in the designed architecture using
concepts from recurrent and fully convolutional networks.

3. Test the designed network performance on study areas with highly
dynamic spatio temporal crop dynamics.
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1.3
Contributions

The main contributions of this work are the following:

1. A novel recurrent network architecture that combines bidirectional
LSTM and FCN for multidate crop recognition

2. A performance assessment of some of the latest FCN architectures for
the proposed recurrent network.

3. An extension of convolutional LSTMs originally designed for single crop
per season applications to multidate crop recognition

4. An experimental analysis of the aforementioned network designs on
datasets that represent highly dynamic agriculture typical of tropical
regions.

1.4
Organization of the remaining parts of this thesis

Chapter 2 describes some of the most relevant approaches for multi-
temporal crop recognition using sequences of remote sensing images with a
focus on tropical environments. The main categories of these approaches are
OBIA, probabilistic graphical models, convolutional networks and recurrent
networks.

Chapter 3 describes the basic concepts and theory required to understand
the methods proposed in this work, including fully convolutional networks and
recurrent networks.

Chapter 4 presents the methods for many-to-many multi-temporal recog-
nition, including the proposed hybrid fully convolutional recurrent architec-
tures.

Chapter 5 details the experiments and their protocol including the
study areas and the network hyper-parameter configurations. Furthermore,
the results of those experiments are presented and discussed.

Chapter 6 summarizes the insights obtained from the experimental
results and outlines future lines of work that could be further researched.
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2
RELATED WORKS

This chapter presents an overview of different works applied to crop
recognition from multi-temporal satellite image sequences. First, classical
remote sensing methods like pixe-wise classification from vegetation indexes
are briefly explained. Then works related with deep learning are presented
with a focus on convolutional and recurrent networks.

Traditional remote sensing image analysis approaches use the spectral
information from each individual pixel location as the unit of analysis. In
this case, a supervised classifier is trained using pixels as individual training
samples. Different types of classifiers have been successfuly used such as Ran-
dom Forest (RF), Support Vector Machines (SVM) and K-Nearest Neighbors
(KNN) [19–21]. Rather than using the original pixel information, some works
perform manual feature extraction upon each pixel location to obtain more dis-
criminative representations. These features could be vegetation indexes such
as NDVI [22–24]. However, these approaches ignore any spatial relationship
among neighboring pixels. Some works have considered this spatial context by
extracting texture features such as the ones based on Gray Level Co-Occurence
Matrix [22]. In other works, this context has been successfuly extracted from
SAR data using polarimetric target decomposition [25]. Although this results
in a performance improvement, their discriminative level is limited.

With the increase of spatial resolution in remote sensing images, object
based image analysis (OBIA) has been proposed as an alternative to per-
pixel analysis, aimed at defining objects that are made up of groups of pixels
with similar spectral characteristics [26]. In general, this method has proved
to improve results compared to pixel based approaches in images with high
spatial resolution (minor to 10m). In images with larger spatial resolution
(between 10m and 100m), some works have found OBIA to improve the results
while others didn’t find any improvement [23, 27, 28]. These approaches aren’t
specifically designed to model the temporal dynamics from agricultural crops.

Probabilistic graphical models, such as Markov Random Fields (MRF)
and Conditional Random Fields (CRF) have successfuly been applied to multi-
temporal crop mapping. These models are able to capture the crops spatio-
temporal dynamics [29, 30]. However, these methods require an additional
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feature extraction step, which usually relies on hand-crafted features.
Recently, deep learning techniques have achieved state of the art perfor-

mance in multiple applications including remote sensing image analysis [31].
Particularly, convolutional neural networks (CNN) are able to automatically
learn feature representations which encode spectral and spatial information
from the original images. These networks have been used for crop mapping,
improving the results with respect to aforementioned approaches [32, 33]. In
[32], a CNN learns high-level features from hyperspectral images that feed a
Multi-Layer Perceptron (MLP) which assign crop classes to the image sites. In
[33], a 2-d CNN applied in the spatial domain was compared with a 1-d CNN
applied in the temporal domain. Both approaches achieved higher performance
compared to the classical RF and MLP models. In these cases, each pixel was
represented by the image patch centered on it A classifier was applied in a
sliding-window manner over all the image delivering a pixel-wise classification
outcome. Although this method effectively assigns a semantic class label to
every pixel of the original image, it is computationally expensive because it
involves a lot of redundant operations.

CNNs were originally designed for image classification. An extension of
CNNs called Fully Convolutional Network (FCN) predicts class labels for indi-
vidual pixels of an input image, making it efficient for semantic segmentation.
Starting with the work of Long and co-authors [34], several FCNs architectures
have been proposed and adapted to remote sensing applications [14, 35, 36].
In [35], a type of FCN called U-Net was used for multi-temporal crop mapping
from Sentinel-1 products in temperate regions. Similarly, in [14] a modification
of the U-Net architecture called Dense FCN was used for multi-temporal crop
recognition in a sub-tropical environment. Although these networks achieved
a high accuracy, they require to train a separate neural network for each date
represented in the sequence. This implies in high computational complexity
that increases with the sequence length.

Recurrent neural networks (RNN) were specifically conceived to process
sequential information such as time series data. However, the original RNN
design (also known as vanilla RNN) is only capable to exploit representations of
recent input events. In contrast, two RNN variants: Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU) can preserve representations of
much earlier events [37, 38]. These networks have been successfuly applied
for agricultural crop mapping [15, 39, 40]. In [39], the vanilla RNN, LSTM
and GRU networks were used for multi-temporal crop recognition. LSTM and
GRU architectures presented a performance gain in relation to the original
RNN design. Similarly, in [15] LSTM and GRU outperformed KNN, RF and
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SVM approaches in multi-temporal crop classification upon Sentinel-1 data.
A weakness of all RNN variants in their original design is that they only

consider temporal context but disregard spatial context. Contrarily, CNN can
easily take spatial context into account but were not conceived to consider
temporal dependencies. Hybrid approaches have been proposed to exploit the
strengths of both concepts. In [16] a CNN was proposed to provide feature
representations as inputs to a RNN using Sentinel-1 images. This network
classifies an entire input image patch, and assigns its value to the patch central
pixel. At test time, the network is applied to the image patches surrounding
each test pixel location. As with CNNs, this approach is computationally
expensive because too many redundant operations are needed. The authors
of [17] proposed a LSTM variant replacing all its internal operations by
convolutions (ConvLSTM). This type of network is inherently able to model
the spatio-temporal dependencies of a multi-temporal sequence of images.
In [18], the ConvLSTM was used for multi-temporal crop recognition in a
temperate region.

RNNs can be configured to allow sequential inputs and to produce a
single outcome that represents the semantic of the whole input sequence.
Such "many-to-one" configurations have been used for crop-recognition in
temperate regions, where a single crop occurs in each field over the whole
season. All aforementioned RNN proposals follow the "many-to-one" approach.
Such proposals are however inappropriate to model complex crop dynamics
typical of tropical and sub-tropical environments, where different crop types
may come about during a season. The present master thesis aims at filling this
gap by proposing hybrid deep network architectures that combine RNN and
FCN designs for crop mapping in a date-by-date basis, a so called "many-to-
many" design.
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3
FUNDAMENTALS

This chapter aims to provide a concise description of the concepts needed
to understand the approaches proposed in this master thesis for multi-temporal
crop recognition. First, a brief introduction to the SAR imaging sensor is
presented, as well as its pros and cons in relation to optical sensors. Then
the basic building blocks of deep learning architectures are presented, followed
by a description of the most relevant Fully Convolutional Network (FCN)
architectures for the problem of multi-temporal crop recognition. Finally, the
fundamentals of recurrent neural networks (RNNs) and their variants Long-
Short Term Memory (LSTM) and Convolutional Long-Short Term Memory
(ConvLSTM) are described.

3.1
Synthetic Aperture Radar (SAR)

Remote sensing sensors are diverse and designed to capture different
wavelength ranges from the electromagnetic radiation spectrum. Specifically,
optical sensors perceive the earth’s electromagnetic radiation close to the
optical spectrum including ultra-violet, thermal and infrared ranges. However,
such measurements are partially affected by earth’s atmospheric conditions
such as cloud coverage and weather conditions. In contrast, SAR sensors
operate in the microwave electromagnetic range, which makes them capable
of penetrating the atmosphere under most conditions [41]. This is illustrated
in Figure 1, where atmospheric transmittance is presented as a function of
wavelength (Transmittance is the effectiveness of a material in transmitting
radiant energy [42]). There is very few atmospheric absorption in the microwave
range, where SAR sensors operate.

While the earth does emit its own level of microwave radiation, it is
often too small to be measured for most remote sensing purposes. SAR sensors
work by sending microwave electromagnetic pulses to the earth and perceiving
echoes of the energy that is scattered back to the sensing platform (Figure 2).
Then the information of nearby back-scattered pulses is combined into image-
like data [41]. The signal wavelength strongly influences the resulting image.
For agriculture applications, the C-band (central frequency 5.4 GHz) has been

DBD
PUC-Rio - Certificação Digital Nº 1721747/CA



Chapter 3. FUNDAMENTALS 23

used in multiple works [43].
Typically, radar signals are transmitted in a plane of polarization that is

either parallel to the antenna axis (horizontal polarization, H) or perpendicular
to that axis (vertical polarization, V). Likewise, the radar antenna may be
set to receive only signals with a specified polarization. This results in four
typical polarization combinations (HH, VV, HV, and VH), where the first letter
indicates the transmitted polarization and the second indicates the received
polarization. Because various objects modify the polarization of the energy
they reflect to varying degrees, the mode of signal polarization influences how
the objects look on the resulting imagery. Thus, each polarization combination
may bring unique representations of the studied area [1]. A sample SAR image
with multiple polarizations for an agricultural area is presented in Figure 3.

Figure 1: The electromagnetic spectrum and the earth’s atmosphere transmit-
tance. Transmittance is close to 100% for microwave (radio) waves, which are
relatively unaffected by earth’s atmospheric conditions [1].
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SAR Antenna

SAR Antenna

Backscattered
Radar Pulse

Incident
Radar
Pulse

Ground TargetsGround Targets

Figure 2: Radar working principle. First an electromagnetic signal in the
microwave range is transmitted from the platform. Then the energy scattered
back to the platform at microwave wavelengths is recorded (Adapted from [2]).

Figure 3: Sample SAR image from an agricultural area (VH and VV polariza-
tions) [3].

3.2
Convolutional Neural Networks (CNNs)

A regular neural network consists of a series of fully connected layers,
whereby each neuron of a layer is connected to all the neurons from the pre-
vious layer. This means, that every output unit interacts with every input
unit. Depending on data being analyzed and on the number of layers this type
of network may involve an excessive number of parameters, whose estimation
through training may be very computationally expensive. Convolutional Neu-
ral Networks (CNNs) are a type of neural network specialized for processing
data with grid-like structures such as time series (1D grid with regular time
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intervals) or images (2D grid of pixels). They replace the fully connected layers
by convolutional layers, which do not require that each neuron in one layer is
connected to all the neurons of the preceding layer. This implies in a compar-
atively much smaller amount of training parameters.

A typical CNN architecture is presented in Figure 4. It contains convolu-
tional layers, followed by pooling operations and finally a fully connected layer
with a softmax activation function. These operations are explained next.

Input
layer

Output layer 
(softmax)

Fully-
connected

layer
Convolution 1

Convolution 2

Pooling 1

Pooling 2

Figure 4: A CNN basic architecture with two convolutional layers [4].

Convolutional layer

Input to a convolutional layer is of dimensions m × n × Ninput_features,
where m and n are the input spatial dimensions and Ninput_features is the
number of input feature maps. A convolution is applied to the input with
a defined number of kernels of size k × k × 1, where the number of kernels
corresponds to the amount of output feature maps and k is the kernel length.
A convolution operation consists of sliding the kernel over the input image. At
every location, an element-wise matrix multiplication with the kernel elements
is performed which results are added up to the output feature representation.
Generally, an activation function is applied to the resulting feature map.

Activation functions

Activation functions are non-linear mathematical operations typically
applied at the output of internal layers in a multi-layer neural network.
These functions introduce non-linearities which give the network capabilities
to accurately approximate arbitrarily complex functions [44]. Some of the
most common activation functions are Sigmoid, tanh, ReLU and Leaky ReLU.
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The mathematical definitions and plot figures for each of these functions are
presented in Figure 5.

1
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   1
1+e-x

σ(x) =

Sigmoid tanh

tanh(x)

ReLU

max(0,x)

Leaky ReLU

max(0.1*x,x)

Figure 5: Mathematical definition and signal waveform for some of the most
common activation functions.

Pooling layer

Input to a pooling layer is a tensor comprising the feature maps produced
by the convolution operations carried out in the prior layer. This operation is
typically used after a convolutional layer to reduce the feature map’s spatial
size and consequently minimize the amount of training parameters and the
computational complexity. The most common pooling operation is a 2 × 2
max. pooling. It replaces each 2 × 2 tile, by the maximum value within that
tile. An alternative operation is 2 × 2 average pooling, which replaces each
2 × 2 tile with its average value. These operations are applied separately to
each feature map, modifying the spatial dimensions while the number of feature
maps remains the same.

Batch Normalization

A problem with multi-layer neural networks is that the distribution of the
input at each layer varies during training because the weights in the preceding
layers are repeatedly being adjusted. This makes training difficult, particularly
for layers whose activation functions saturate for some input values. Batch
Normalization (BN) [45] aims to mitigate this problem by normalizing the
values at layer inputs. The normalization parameters are learned to force each
training batch to have zero mean and unit variance. This operation reduces
the dependency of training on the parameter initialization and improves
convergence.
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Fully-connected layer

Fully connected layers connect its neurons to every output from the
previous layer, as in the traditional Multi-Layer Perceptron (MLP). They are
computed by multiplying the inputs with a weight matrix and adding a bias
offset vector.

Dropout

Dropout is a method to reduce over-fitting [46]. The idea is to randomly
deactivate neurons with their corresponding connections during training. In
training, these deactivations result in multiple smaller versions of the original
layer. At test time, all the units are used. Dropout can be interpreted as a way
to emulate an ensemble of smaller networks with shared parameters.

Softmax function

The softmax operation is applied at the end of the network as a post-
processing step to obtain a normalized vector of class probabilities at the
output. In a CNN, the last layer is usually a fully connected layer with the
amount of neurons equal to the number of classes. The softmax normalization
ensures that the sum of these neurons is 1 and each of them is positive. In
other words, the output of this layer can be seen as a probability distribution
[47, 48]. The mathematical definition of this function is:

aj = ezj∑K
k=1 e

zk
for j = 1, 2, 3..., K (3-1)

Where aj is the activation result, zj is the value of the j-th element in
the vector to which the function is applied and K is the vector length, which
should be equal to the amount of classes.

3.3
Fully Convolutional Networks (FCN)

A FCN is an extension of CNN designed to assign a semantic label
to all pixels of the input image. Typical CNNs were designed for image
classification tasks, and they don’t produce pixel-wise classification outputs.
A Fully Convolutional Network is an extension of CNNs designed to produce
classifications for every pixel in the input image. An FCN replaces the fully
connected at the end layer of a typical CNN with convolutional layers,
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which combined with upsampling operations provide the final output, a pixel
classification map with the same spatial dimension as the input image.

A number of FCN architectures have been proposed in the last few year.
In the following we describe succinctly the network architectures our proposals
built upon.

3.3.1
Fully Convolutional U-Net

The U-Net FCN was first proposed in [5] for bio-medical image segmenta-
tion. Since then, it has been successfully adapted for multiple application areas
such as autonomous driving, microscopy cell counting and single-image depth
estimation [49–51]. This architecture comprises a spatial encoding (Contract-
ing) path which extracts coarse feature representations, followed by a spatial
decoding (Expansive) path to recover the input image spatial dimensions. The
original image undergoes a sequence of downsampling operations to capture
spatial information in different spatial resolutions.As in CNNs, each of these
downsampling operations is followed by a convolutional layer. At the end of the
encoder path, coarse feature representations of the input image are obtained.
This representation is passed to the decoder path, which consists of a sequence
of spatial upsampling operations to recover the input image size. To preserve
fine-grained details throughout the network, skip connections are used from
each downsampling layer in the encoder path to its corresponding upsampling
layer in the decoder path. These skip connections consist of copying the feature
maps from the contracting path and concatenating them to the corresponding
feature maps in the expansive path in order to preserve fine-grain spatial de-
tails at the final representation. This encoder-decoder structure is presented
in Figure 6.

3.3.2
Fully Convolutional Dense Network

The dense network was originally designed as a variation of CNNs for
image classification tasks. As CNNs become deeper, the information about the
input and the gradients during training can get lost after passing through
many layers. Dense networks address this issue with Dense Blocks (DB),
which consist of a series of convolutional layers with bypassing connections
from each layer to all the following layers within the block. These bypassing
connections strengthen feature propagation, encourage feature reuse and allow
more efficient gradient propagation during training [52]. A dense block is
presented in Figure 7.
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input
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output
segmentation
map

Contracting path Expansive path

Convolution 3x3, ReLU
Copy and concatenate

Max. Pool 2x2

Upsampling 2x2

Convolution 2x2

1 64 64

128 128

256 256

512 512

1024
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Figure 6: Original U-Net architecture for semantic segmentation. Each blue
box corresponds to a multi-channel feature map, where the number of channels
is denoted on top of the box. A contractive path applies multiple downsam-
pling operations to extract coarse features, and an expansive path computes
upsampling operations to recover the original resolution. Feature maps in the
contracting path are copied and concatenated to the expansive path to preserve
granular spatial details (Adapted from [5]).

A fully convolutional dense network [6] is a modification of the U-Net,
leveraging the concept of DBs to obtain a deeper architecture. This network
has been recently used in multiple areas such as optical flow prediction and
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Dense Block (DB)

Figure 7: Representation of a Dense Block (DB). Input is an image or a fea-
ture map with spatial dimensions. A layer consists of a convolution, followed
by batch normalization and ReLU activation function. Circles represent con-
catenation (Adapted from [6]).
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DB

DB

DB

TD

TD

INPUT

CONV.

TU

DB

TU

SOFTMAX

CONV.

Transition Down

Transition Up

Concatenation

Dense Block

Convolution

Skip Connection

DB

Figure 8: Dense FCN architecture. It consists of a downsampling path with
2 Transition Down (TD) blocks, and an upsampling path with 2 Transition
Up (TU ) blocks. Circles represent concatenation. Dashed lines represent skip
connections, which concatenate feature maps from downsampling stages to the
corresponding feature maps from upsampling stages (Adapted from [6]).

medical image segmentation [53, 54]. As the previous approach, it implements
a downsampling path which extracts coarse semantic features, followed by
an upsampling path responsible for recovering the input spatial resolution in
the final output (Figure 8). The downsampling path consists of successive
DBs followed by Transition Down (TD) blocks, each of which comprises a
convolution and a downsampling operation. Likewise, the upsampling path
consists of successive DBs followed by Transition Up (TU ) blocks. The
TU blocks contain a convolution layer and an upsampling operation. The
convolutions in TD and TU blocks allow the network to learn features at
multiple spatial scales. Skip connections are added to concatenate feature
maps from downsampling stages to the corresponding feature maps in the
upsampling stages.

3.3.3
Atrous Spatial Pyramid Pooling (ASPP)

Typical convolutions use small kernel sizes such as 3× 3, which consider
only local spatial context. In the previous FCN architectures, successive
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pooling operations inter-leaved with convolutional layers allow to consider a
larger spatial context (also known as field of view) without the need to enlarge
the convolutional kernel sizes. However, the successive use of downsampling
operations reduces the spatial resolution of the resulting feature maps. In
the early FCN architectures, this is partially mitigated using deconvolutional
layers, but these require additional memory and computation. An alternative
method has been recently used for FCNs, replacing the encoder-decoder
structures with atrous convolutions [7, 55, 56].

Figure 9: Atrous convolutions overview. A larger field of view is attained by
increasing the dilation rate [7].

Instead of reducing the input spatial resolution to consider a larger field
of view, atrous convolutions consider a larger spatial context by increasing the
convolutional kernel size. This would be inefficient for regular convolutions,
because increasing the kernel size would result in a quadratic increase of
training parameters. Atrous convolutions solve this problem using a filter with
holes, in which a 3 × 3 filter is upsampled by an atrous rate factor, filling
with zeros in between filter values. The atrous filter upsampling method is
illustrated in Figure 9 for different atrous rate. Note that an atrous convolution
with dilation rate 1 is equivalent to a regular convolutional layer.
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(a) Atrous Spatial
Pyramid Pooling

(b) Image Pooling

r=2

r=4

r=16

     Input 
feature map

   Output 
feature map

Figure 10: ASPP feature layer. It consists of parallel atrous convolutions with
multiple dilation rates. An image pooling layer is also added to consider contex-
tual information from the whole input image (Circle represents concatenation).

A feature layer named Atrous Spatial Pyramid Pooling (ASPP) replaces
the use of downsampling and upsampling operations with atrous convolutions
for FCN architectures. ASPP comprises a group of atrous convolutional layers
with increasing dilation rate values, applied in parallel to the same input
tensor. Resulting feature representations from these atrous convolutions are
then stacked together to form the ASPP output.

Although atrous convolutions consider spatial information at multiple
scales, they can’t extract contextual information from the whole input image.
Because of this, ASPP additionally incorporates image-level feature extraction
with global average pooling (GAP). This operation takes the average of each
feature map, resulting in a global representation of size 1×1×Nfeatures, where
Nfeatures is the number of feature representations [57]. Each of these feature
maps is then upsampled to the input feature dimensions and the result is
concatenated to the ASPP output. The ASPP layer is presented in Figure
10. This feature layer has increasingly been used in multiple application fields
[58, 59].

3.4
Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are a type of neural network designed
for processing sequential data. These models are regarded as the state-of-the-
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art for temporal modeling tasks [60]. RNNs can be seen as neural networks
with feedback. Given an input sequence (xxx = xxx0,xxx1, ...,xxxT ), the output of such
network is given by the equations:

hhht = f(bbb+WWWhhht−1 +UUUxxxt) (3-2)

yyyt = g(ccc+ VVV hhht) (3-3)
where hhht is the state at time step t, WWW , UUU and VVV are weight matrices, bbb and
ccc are bias vectors and yyyt is the network output for time step t. f and g are
activation functions, usually tanh and softmax, respectively.

Because of their recurrent nature, RNNs can compute a different value
at its output for each time step in the input sequence. A many-to-one network
considers only one element of the output sequence (e.g. the last of them).
In contrast, a many-to-many recurrent network considers the entire output
sequence. In the latter case, the training total loss computed by the sum
of the losses over all time steps. This configuration is useful for multidate
crop recognition because classifications for the entire image sequence can
be obtained by a single model. Figure 11 shows on the left the basic RNN
architecture and on the right its unrolled representation for three time steps.

ht

xt

ŷt
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W U

g

Unfold V

W U

V

W U

V

W Uh0

h1 h2 h3

x1 x2 x3

f f f

ŷ1 ŷ2 ŷ3

f

g g g

Figure 11: Many-to-many basic RNN.

To produce the outcome xxxt at time t the basic RNN relies on the current
input xxxt and on a summary of prior time steps coded in the previous state
hhht−1. When available, inputs at posterior instants can be used to improve
the classification results at time t. This is achieved by bidirectional RNNs.
They consist of two RNNs trained simultaneously. The first RNN is trained
in the temporal forward direction, whereas the second one is trained in the
backward direction [61]. Correspondent state vectors from both RNNs, ~hhht and
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hhht are usually concatenated to form the unified state vector hhht. This scheme is
illustrated in Figure 12 for a sequence of length equal to 3.
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Figure 12: Bidirectional RNN for three time steps (Unfolded representation).

3.5
Long Short Term Memory Networks (LSTM)

LSTMs are a special type of RNN that are capable of modeling both long
and short term time dependencies. The main improvement against traditional
RNNs is a memory cell CCCt which can be accessed, written and cleared by
trainable gates (See Figure 13). Specifically, the model uses an information gate
iiit to select which information is added to the cell; a forget gate fff t to discard
useless previous knowledge and an output gate ooot to produce the final result.
In the original architecture, the LSTM internal operations are implemented as
fully connected neural network layers.

Given an input sequence xxx = xxx0,xxx1, ...,xxxT , equations for this model are
as follows, where "◦" denotes the Hadamard product:

iiit = σ(WWW xixxxt +WWW hihhht−1 +WWW ci ◦CCCt−1 + bbbi)
fff t = σ(Wxfxxxt +WWW hfhhht−1 +WWW cf ◦CCCt−1 + bbbf )
CCCt = fff t ◦CCCt−1 + iiit ◦ tanh(WWW xcxxxt +WWW hchhht−1 + bbbc)
ooot = σ(WWW xoxxxt +WWW hohhht−1 +WWW co ◦CCCt + bbbo)
hhht = ooot ◦ tanh(ccct)

In these equations, hhht is the hidden vector at timestep t;
WWW xi,WWW hi,WWW ci,WWW xf ,WWW hf ,WWW cf ,WWW xc,WWW hc,WWW xo,WWW ho,WWW co are weight matri-
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ces and bbbi, bbbf , bbbc, bbbo are bias vectors.

Figure 13: LSTM structure diagram.

3.6
Convolutional Long Short Term Memory Networks (ConvLSTM)

LSTM’s major drawback in handling spatial data is the usage of fully
connected layers for its input-to-state and state-to-state transitions, which do
not take spatial context into account. To overcome this problem, a ConvLSTM
cell takes the original LSTM (Figure 13) and replaces the fully connected layers
from the forget, information and output gates with convolutional layers . Inputs
x1, ...xt, hidden states h1, ...ht and cell outputs C1, ...Ct are 3D tensors whose
first two dimensions are spatial dimensions (rows and columns), and the third
dimension corresponds to the number of feature representations [17]. The state
equations for a ConvLSTM are as follows, where ‘∗’ denotes the convolution
operator and ‘◦’ denotes the Hadamard product:

iiit = σ(WWW xi ∗XXX t +WWW hi ∗HHHt−1 +WWW ci ∗CCCt−1 + bbbi)
fff t = σ(WWW xf ∗XXX t +WWW hf ∗HHHt−1 +WWW cf ∗CCCt−1 + bbbf )
CCCt = fff t ◦CCCt−1 + iiit ◦ tanh(WWW xc ∗XXX t +WWW hc ∗HHHt−1 + bbbc)
ooot = σ(WWW xo ∗XXX t +WWW ho ∗HHHt−1 +WWW co ◦CCCt + bbbo)
HHHt = ooot ◦ tanh(CCCt)

In these equations, XXX t is the input tensor at timestep t and HHHt is the
hidden state tensor.
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4
RNN ARCHITECTURES FOR MULTIDATE CROP
RECOGNITION

In this section we present the recurrent network architectures proposed in
this thesis for crop mapping from multitemporal RS data. Firstly, we describe
two networks adapted from [18] for many-to-many tasks that served as baseline
in our research. Next, the proposed architecture is presented.

4.1
Unidirectional Convolutional LSTM

The first architecture considered in this work is the Unidirectional Con-
volutional LSTM (UConvLSTM), a unidirectional version of the architecture
proposed in [18], which was adapted to many-to-many tasks. Its architecture is
shown in Figure 14a. The input sequence goes first through a ConvLSTM net
followed by 1×1 convolutions which produces as many activation maps as the
number of classes. Next, batch normalization and ReLU activation functions
are applied. In the final layer, a softmax function assigns posterior probabili-
ties to each pixel.

4.2
Bidirectional Convolutional LSTM

The second architecture tested in this work is the Bidirectional Convolu-
tional LSTM (BConvLSTM), illustrated in Figure 14b. The BConvLSTM also
derives from the architecture proposed in [18] and it was adapted for many-
to-many tasks. It can be regarded as a bidirectional version of UConvLSTM,
whereby the plain ConvLSTM layer is replaced by a bidirectional ConvLSTM
layer. The BConvLSTM network comprises two ConvLSTMs: one processes
the input data in the forward direction, while the other operates in reversed,
backward direction. The outputs of both ConvLSTM are concatenated to form
a single output tensor. From this point on, the architecture does not differ from
the previous one. 1×1 convolutions are applied to aforementioned tensor pro-
ducing one activation map per class, followed by batch normalization and by a
ReLU activation function. A softmax layer delivers posterior probabilities for
each pixel.
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Figure 14: RNN architectures adapted to many-to-many tasks: (a) UConvL-
STM, (b) BConvLSTM. Input is a sequence of images. The output corresponds
to a sequence of images with the class probabilities predicted for each image
pixel.

4.3
Hybrid Fully Convolutional Recurrent Approaches

Previous approaches use convolutions exclusively at the original input
scale. In this case, each output pixel will be classified using only information
from a k×k neighbouring area in the input images, where k is the convolutional
kernel size. This limits the network’s capabilities to exploit context informa-
tion at multiple spatial scales. The proposed hybrid networks combine elements
of the previous recurrent architectures with the FCN inherent capabilities to
perform multi-scale spatial feature extraction. Some of the most relevant FCN
architectures were considered for this hybrid design: The U-Net, Dense FCN
and ASPP. Thus, three recurrent FCN architectures are proposed: BUnetCon-
vLSTM, BDenseConvLSTM and BAtrousConvLSTM. These architectures are
described in the following subsections.

Bidirectional Recurrent U-Net (BUnetConvLSTM)

The BConvLSTM network classifies considering the input spatial and
temporal context. However, it lacks the ability to extract features at multiple
spatial scales. The proposed BUnetConvLSTM (Figure 15) combines elements
of the BConvLSTM architecture with the U-Net fully convolutional network
(FCN) from [5], which extracts features at multiple spatial resolutions by suc-
cessively downsampling the input image dimensions in between convolutional
layers. The U-Net FCN comprises a downsampling path, so called encoder,
which extracts coarse semantic features, followed by an upsampling path, so
called decoder, responsible for recovering the input spatial resolution in the
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Figure 15: BUnetConvLSTM architecture. Input is a sequence of images.
The output corresponds to a sequence of images with the class probabilities
predicted for each image pixel.

final output. In the proposed architecture, the input sequence of images is
passed through the U-Net encoder to extract coarse features. Then the result-
ing values are presented to a bidirectional ConvLSTM, which returns the entire
sequence of elements at its output. Finally, a decoder is applied to each element
in the sequence to recover the spatial resolution from the input images. In this
architecture, each element in the downsampling path is formed by a down-
sampling operation followed by a convolutional layer. Likewise, each element
in the upsampling path is formed by an upsampling operation followed by a
convolutional layer. Finally a convolution with 1 × 1 kernel size and softmax
activation function produces the per-pixel posterior class probabilities.

Bidirectional Recurrent Dense FCN (BDenseConvLSTM)

Similar to the previous approach, the BDenseConvLSTM combines the
encoder-decoder structure from the Dense FCN presented in [6] with a bidi-
rectional ConvLSTM network. First, a spatial encoder is applied to the input
sequence. This encoder consists of subsequent Dense Blocks followed by Tran-
sition Down blocks. Then the resulting sequence of feature representations is
passed to a bidirectional ConvLSTM. Finally, a spatial decoder is applied to
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Figure 16: BDenseConvLSTM architecture. The input is a sequence of images.
The output corresponds to a sequence of images with the predicted class
probabilities for each image pixel.

each element in the sequence to recover the input spatial resolution, which
consists of a series of Transition Up blocks followed by Dense Blocks.

Recall that the elements of a Dense FCN network were previously
explained in Section 3.3.2. The proposed BDenseConvLSTM architecture is
presented in Figure 16. In this architecture, Dense Blocks (DB) are composed
of a sequence of convolutional layers with multiple bypassing connections
among them. Transition Down (TD) blocks are composed of a convolution
and a downsampling operation, while a Transition Up (TU ) block performs
an upsampling operation. Skip connections are used between downsampling
and upsampling stages.

Bidirectional Recurrent ASPP (BAtrousConvLSTM)

The previous hybrid architectures used an encoder-decoder structure to
consider spatial context at multiple scales. As an alternative approach, this ar-
chitecture replaces the encoder-decoder structure with the more recent Atrous
Spatial Pyramid Pooling (ASPP) module from [55], which uses atrous con-
volutions to extract features at different spatial scales without the need to
use downsampling or upsampling operations. The proposed BAtrousConvL-
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Figure 17: BAtrousConvLSTM architecture. The input is a sequence of images.
The output corresponds to a sequence of images with the predicted class
probabilities for each image pixel (Circle represents concatenation).

STM architecture combines elements from the BConvLSTM network with the
inherent multi-scale feature extraction properties from ASPP.

First, an ASPP module is applied to each of the images in the input
sequence. This module uses multiple atrous convolutions in parallel with in-
creasing dilation rates, and additionally extracts global image-level representa-
tions with a Global Average Pooling (GAP) layer. The results of these atrous
convolutions and GAP layer are then concatenated to form the ASPP output.
These features are passed to a bidirectional ConvLSTM to further extract
spatio-temporal features, which is configured to return the entire sequence of
representations. Finally a convolution with 1 × 1 kernel size and softmax ac-
tivation function gives the posterior class probabilities for each pixel in the
sequence of input images. This architecture is presented in Figure 17.
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5
EXPERIMENTAL ANALYSIS

This chapter describes the experiments carried out to validate the
methods proposed in the previous chapter. First, the study areas in which
the experiments were carried are detailed. Then the experimental protocol is
explained, including a description of the hyperparameter configuration used in
each network architecture. Finally the results are presented and discussed in
terms of average F1 score and Overall Accuracy (OA) performance metrics.

5.1
Datasets

Two publicly available datasets for multitemporal crop recognition in
tropical regions were used for performance assessment. The first region is
located in Campo Verde municipality, Mato Grosso, Brazil, with an extension
of 4,782 km2 [11]. It is located at a latitude of 15°32’48" south and longitude
of 55°10’08" west (Figure 18). It features a sequence of 14 pre-processed, dual
polarized Synthetic Aperture Radar (SAR) images from Sentinel-1 acquired in
the Interferometric Wide Swath, Ground Range Detected Level-1 mode with
250 km swath and 10 m spatial resolution. These images were taken between
October 2015 and July 2016, with one or two images per month. However,
no image was available in April. The dates corresponding to each image are
presented in Table 1. The class distribution greatly varies over time (see Figure
19). Soybean is the main crop type from October 2015 to February 2016 and
its replaced by Cotton and Maize in the following months.

The second region is located in Luis Eduardo Magalhães (LEM) munici-
pality, Bahia state, Brazil, with an area of 3,940 km2 [62]. It is at a latitude of
12°05’31" south and longitude of 45°48’18" west. Its location is also presented
in Figure 20. A set of 13 pre-processed Sentinel-1 SAR images obtained be-
tween June 2017 and June 2018 was used in our experiments (See Table 2).
The images were acquired in the Interferometric Wide Swath, Ground Range
Detected Level-1 mode with 10 m spatial resolution. In both cases, the pre-
processing step included radiometric and terrain correction, and the VV and
VH bands in linear scaling were converted to dB. Similar to Campo Verde, the
class distribution in LEM dataset is non uniform along the year, as shown in
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Figure 21. The main crop types are Soybean, Maize, Cotton and Millet.

Figure 18: Campo Verde dataset is located in the state of Mato Grosso, Brazil.
It comprises 513 parcels with 50% used for training and 50% for testing. Taken
from [3].

Table 1: Acquisition dates for Campo Verde dataset. A sequence of 14 images
was used.

Year Month Date

2015
October 29
November 10, 22
December 04, 16

2016

January 21
February 14
March 09, 21
April -
May 08, 20
June 13
July 07, 31

DBD
PUC-Rio - Certificação Digital Nº 1721747/CA



Chapter 5. EXPERIMENTAL ANALYSIS 43

Oct/15 Nov/15 Dec/15 Jan/16 Feb/16 Mar/16 Apr/16 May/16 Jun/16 Jul/16

Images

0

10

20

30

40

50

60

70

80

90

100
P

e
r
c
e
n

ta
g
e
 o

f 
sa

m
p

le
s 

p
e
r
 c

la
ss

  Soybean     Maize     Cotton     Sorghum     Beans       NCC    

  Pasture  Eucalyptus     Soil    Turf grass   Cerrado  

Figure 19: Percentage of classes per date in Campo Verde study area. Taken
from [4].
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Figure 20: The LEM dataset is located in the state of Bahia, Brazil. It
comprises 794 parcels, from which 75% is used for training (Parcels in dark
gray) and 25% is used for testing (Parcels in light gray). Taken from [4].

Table 2: Acquisition dates used for LEM dataset. Images from 13 dates were
considered.

Year Month Date

2017

June 12
July 06

August 11
September 16
October 10
November 15
December 09

2018

January 14
February 19
March 15
April 20
May 14
June 19
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Figure 21: Percentage of classes per date in LEM study area. Taken from [4].

5.2
Experimental Setup

This section describes the experimental setup to test the methods pre-
sented in Chapter 4 using the datasets from Section 5.1.

Hyperparameter Configuration

Different hyperparameter values were tested for each method. In this sec-
tion, the configurations that attained the best results are presented. Parameter
setups for UConvLSTM and BConvLSTM networks are shown in Tables 3 and
4, where T represents the temporal sequence length. Following [18], 256 convo-
lutional filters were used in the UConvLSTM network for each LSTM internal
gate. Likewise, the BConvLSTM model was configured with 256 recurrent fil-
ters per gate: 128 for each direction.

Layer Output Shape Filters
Input T × 32× 32 2

ConvLSTM T × 32× 32 256
Conv. T × 32× 32 #classes

Table 3: UConvLSTM parameter configuration - T is the sequence length

Following [14], the BDenseConvLSTM network was built with two convo-
lutional layers per dense block and 20% as dropout factor. Further details from
this architecture are presented in Table 5. Likewise, parameter configuration
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Layer Output Shape Filters
Input T × 32× 32 2

Bidirectional
ConvLSTM T × 32× 32 256

Conv. T × 32× 32 #classes

Table 4: BConvLSTM parameter configuration - T is the sequence length.

for BUnetConvLSTM and BAtrousConvLSTM is shown in Table 6 and Table
7. In BDenseConvLSTM and BUnetConvLSTM, Average Pooling was empiri-
cally selected as downsampling operator. Except for the last convolution, 3×3
filters were adopted in all cases.

Layer Output Shape Filters
Input T × 32× 32 2
DB T × 32× 32 80

Downsampling T × 16× 16 80
DB T × 16× 16 112

Downsampling T × 8× 8 112
Bidirectional
ConvLSTM T × 8× 8 256

DB T × 8× 8 32
Upsampling T × 16× 16 144

DB T × 16× 16 32
Upsampling T × 32× 32 112

Conv. T × 32× 32 #classes

Table 5: BDenseConvLSTM parameter configuration - T is the sequence
length.

Layer Output Shape Filters
Input T × 32× 32 2
Conv. T × 32× 32 16

Downsampling T × 16× 16 16
Downsampling T × 8× 8 32
Downsampling T × 4× 4 64
Bidirectional
ConvLSTM T × 4× 4 256

Upsampling T × 8× 8 64
Upsampling T × 16× 16 32
Upsampling T × 32× 32 16

Conv. T × 32× 32 16
Conv. T × 32× 32 #classes

Table 6: BUnetConvLSTM parameter configuration - T is the sequence length.
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Layer Output Shape Filters
Input T × 32× 32 2
Conv. T × 32× 32 16
Conv. T × 32× 32 16
ASPP T × 32× 32 320

Bidirectional
ConvLSTM T × 32× 32 256

Conv. T × 32× 32 16
Conv. T × 32× 32 #classes

Table 7: BAtrousConvLSTM parameter configuration - T is the sequence
length.

Experimental Protocol

Parcels present in the dataset were randomly separated in training and
testing sets, whereby the training set contained about 50% of all pixels for
Campo Verde and 75% for LEM. These distributions were selected equal to
previous works with these datasets for comparison purposes [4, 14]. In each
study area, the image was split into non-overlapping image patches to be
independently processed by the network. Following [14], the spatial dimensions
for the image patch size were selected as 32 × 32 pixels, corresponding to an
area of 320× 320m . Thus, the input patch shape was 14× 32× 32 pixels for
Campo Verde and 11×32×32 for LEM. In Campo Verde, 4988 image patches
were used for training and 4671 for testing. For LEM, 7420 image patches were
used for testing and 2562 image patches for testing. After training, the patch-
wise classification results for the test areas were arranged in a mosaic for the
final output.

Data augmentation strategies such as rotation, horizontal and vertical
flip were used, since they were empirically found to improve overall and per-
class performance metrics. Early stopping criteria was used to avoid overfitting,
with patience of 10 epochs. In all cases, Adagrad optimizer with learning rate
0.01 was used following [14]. Weighted categorical cross entropy function was
used to further compensate the class imbalance inherent in both datasets.
Experiments were carried out using Keras framework with Tensorflow backend,
on a NVIDIA GTX Titan GPU. The code of these architectures is available
upon request.

Results are presented in a per-month basis. In the case of Campo Verde
dataset, where 1 or 2 images per month are available, the image with the latest
date was selected for analysis.
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5.3
Results

Campo Verde Dataset
The results on Campo Verde dataset in terms of overall acuracy (OA) are

shown in Figure 22. The basic UConvLSTM approach (blueish bars) presented
lower scores compared to its bidirectional counterpart BConvLSTM (greenish
bars) for all dates, with a larger difference for the early dates. This occurred
because UConvLSTM doesn’t take enough multi temporal information into
account for the first dates.

BDenseConvLSTM (redish bars) and BUnetConvLSTM (cyanish bars)
displayed higher OA scores for all dates compared to BConvLSTM (greenish
bars). This indicates that adding spatial encoding and decoding layers allowed
the recurrent network to handle a more compact and discriminative represen-
tation over the sequence.

The BAtrousConvLSTM (purplish bars) obtained higher OA values than
the BConvLSTM. In terms of OA, it performed similar to the other encoder-
decoder approaches. This indicates that the atrous spatial pooling module is
a valid approach for multi-scale feature extraction without the need of image
downsampling stages.

The months with higher OA values were October and December. This
could be explained because in these months, more than 70% of the image
corresponds to a single class. In October, most of the areas correspond to
Soil class while Soybean class is predominant in December. In these months,
the network only needed to predict most pixels with the predominant class
to obtain a high OA score. However, December is also a month with high F1
score, meaning that the overall classification results were the most appropriate
in this month according to the studied metrics.

Per-date average F1 scores for Campo Verde are shown in Figure 23.
Compared to the remaining approaches, UConvLSTM performance (blueish
bars) was significantly low for the first dates, with 10% F1 score for the first
month. Then its performance gradually increased, achieving similar scores
to BConvLSTM (greenish bars) for the last months of May, June and July.
Encoder-decoder methods (reddish and cyanish bars) and BAtrousConvLSTM
(purplish bars) outperformed BConvLSTM (greenish bars) in terms of F1
score, with BAtrousConvLSTM (purplish bars) achieving slightly higher values
compared to BDenseConvLSTM and BUnetConvLSTM (reddish and cyanish
bars, respectively).

Another method to assess the networks performance is the per-class F1
score. Table 8 shows the F1 scores for the most representative crop types in
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Figure 22: Overall Accuracy for Campo Verde study area, computed in each
date.

Figure 23: Average F1-Score for Campo Verde study area, computed in each
date.

Campo Verde, with the best results highlighted in bold. With few exceptions,
the best performance was achieved by the models that use multi-scale feature
extraction: BDenseConvLSTM, BUnetConvLSTM and BAtrousConvLSTM.
This can be qualitatively assessed in Figure 26 that presents spatial results for
sample test areas. In this figure, the UConvLSTM presented a large amount
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Figure 24: Overall Accuracy for LEM study area, computed in each date.

of errors for the first dates compared to BConvLSTM. Then for the latter
date May 2015, results from UConvLSTM were close to its bidirectional coun-
terpart. The UConvLSTM and BConvLSTM architectures presented larger
amounts of salt and pepper noise compared to the proposed architectures.
This might have occured because the UConvLSTM and BConvLSTM com-
pute convolutions at the input image resolution only, with a fixed kernel size
of 3× 3. This means that every pixel was predicted using the spatial informa-
tion of a 3×3 neighborhood, which ignores the images spatial context at larger
scales. Instead, the hybrid approaches are designed to extract information from
the images at multiple spatial scales, either by successively downsampling the
image size (As in BUnetConvLSTM and BDenseConvLSTM) or increasing the
convolution kernel size (As in BAtrousConvLSTM). Because of this, the hy-
brid networks presented smoother classification maps compared to the basic
UConvLSTM and BConvLSTM.

The Eucalyptus class obtained F1 scores above 90% for all dates in the
hybrid networks. This might be because the parcels corresponding to this crop
type remain in the same locations across the entire temporal series, which
might make it easier for the network to correctly detect it.

Given the similar performance of the three proposed hybrid networks,
further in this document an analysis in terms of training and inference time is
presented for better understanding of their differences.
LEM Dataset
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Figure 25: Average F1-Score for LEM study area, computed in each date.

Figure 24 shows per-date OA for LEM. Consistent with previous results,
UConvLSTM (blueish bar) presented the lowest performance compared to the
other approaches. BConvLSTM (greenish bar) outperformed UConvLSTM in
about 28% in the first month and 5% in March. However, UConvLSTM ap-
proached BConvLSTM more and more in subsequent months. These values
indicate the importance of exploiting future and past multi-temporal infor-
mation, as in the bidirectional methods.The BDenseConvLSTM, BUnetCon-
vLSTM and BAtrousConvLSTM models (reddish, cyanish and purplish bars,
respectively) achieved higher metrics compared to BConvLSTM and UConvL-
STM (blueish and greenish, respectively), indicating the importance of their
multi-scale feature extraction capability.

The per-date average F1 scores in LEM is presented in Figure 25 lead
to similar conclusions. In UConvLSTM (blueish bars), the F1 score started
at a low value and gradually increased, although it only reached a value sim-
ilar to BConvLSTM (greenish bars) for the last date, indicating that future
multi-temporal information was useful also in terms of this metric. BConvL-
STM (greenish bars) achieved a per-date F1 average score of 50%, whereas
UConvLSTM (reddish bars) stayed at 25% from UConvLSTM. The BDenseC-
onvLSTM, BUnetConvLSTM and BAtrousConvLSTM networks achieved the
highest scores with 60, 61 and 62% respectively.

Per-class F1 score for LEM study area are presented in Table 9 and
Table 10. Clearly, the multi-scale extracting models obtained the best per-
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formance across all classes. This could have occurred because of these net-
works’ properties for taking larger spatial context information into account.
Spatialized results for LEM dataset are presented in Figure 27 for qualitative
assessment. In the figure, BConvLSTM significantly outperformed UConvL-
STM while BDenseConvLSTM, BUnetConvLSTM and BAtrousConvLSTM
produced less noisy results, reducing the salt and pepper effect observed in
the results of BConvLSTM network. This is also due to their capability of
exploiting information at multi-scales.

Inference and training time

Another aspect to address in an analyze of the proposed networks is
the inference and training times. Lower inference times might be important
for real-world applications. Inference times measured in the experiments on
Campo Verde test areas are presented in Table 11. The proposed BUnetCon-
vLSTM presented a significantly lower inference time compared to the basic
UConvLSTM and BConvLSTM. This occurred because the computational load
associated to the convolutional layers are directly related to the amount of data
being processed. In BUnetConvLSTM, the input image is successively down-
sampled during the encoding stage, reducing the computational complexity. In
contrast, the UConvLSTM and BConvLSTM perform all the computations at
the original image size, which results in larger computational complexity.

BDenseConvLSTM involved a longer inference time compared to BUnet-
ConvLSTM. This might be because the added complexity of the BDenseCon-
vLSTM architecture. Finally, the BAtrousConvLSTM presented the highest
inference time. This could be because convolutions are applied at the origi-
nal input spatial resolution which results in larger computational costs. These
inference times could be improved by applying further software optimizations
which weren’t taken into account during this work.

Table 11: Inference times for the proposed network architectures.

Network
Inference time [s]

Campo Verde LEM
UConvLSTM 23.9 15.5
BConvLSTM 22.4 12.2

BUnetConvLSTM 12 7.1
BDenseConvLSTM 22.5 13.5
BAtrousConvLSTM 42.7 22.7
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Crop
Type

Month (%)
Oct Nov Dec Jan Feb Mar May Jun Jul

U
C
on

vL
ST

M

Soybean 0.0 57.6 90.4 82.0 76.5 39.2 - - -
Maize 0.0 0.0 10.9 15.2 26.2 54.4 81.6 64.2 45.9
Cotton - - 47.0 52.3 27.7 77.1 89.1 87.8 85.2
Sorghum - - 0.2 0.5 2.8 8.4 50.3 50.9 53.1
Beans - 15.4 39.1 - - - 36.2 - -

Eucalyptus 4.9 39.5 61.8 70.2 75.3 81.2 83.8 84.7 86.0

BC
on

vL
ST

M

Soybean 27.0 74.5 96.6 85.8 84.5 37.3 - - -
Maize 44.3 73.5 57.5 0.6 3.0 70.1 87.3 66.1 42.1
Cotton - - 73.2 71.4 43.7 80.2 91.8 89.1 86.1
Sorghum - - 14.7 13.4 12.3 11.8 50.5 49.8 50.4
Beans - 28.3 29.8 - - - 33.9 - -

Eucalyptus 95.3 94.4 93.4 93.1 93.2 89.1 85.8 85.6 86.3

BD
en

se
C
on

vL
ST

M Soybean 32.9 78.7 98.2 88.4 86.0 37.7 - - -
Maize 68.3 89.1 80.9 64.5 71.0 72.8 90.3 72.8 43.6
Cotton - - 75.0 78.0 46.1 81.6 92.6 90.6 87.6
Sorghum - - 38.3 44.4 31.3 18.0 52.4 53.1 50.0
Beans - 41.9 60.6 - - - 35.5 - -

Eucalyptus 95.5 95.1 95.1 94.5 92.9 93.3 92.4 92.6 92.4

BU
ne

tC
on

vL
ST

M Soybean 34.7 79.4 98.3 88.7 86.6 36.0 - - -
Maize 56.4 84.9 80.0 59.3 44.1 73.8 89.6 71.2 43.1
Cotton - - 65.9 73.5 58.7 79.8 92.0 89.7 86.9
Sorghum - - 27.9 30.1 21.8 15.4 43.5 43.3 39.7
Beans - 64.8 73.7 - - - 40.3 - -

Eucalyptus 96.4 96.6 96.4 96.4 95.8 95.8 95.0 94.7 93.8

BA
tr
ou

sC
on

vL
ST

M Soybean 40.0 79.4 98.1 88.2 86.7 31.0 - - -
Maize 56.1 86.8 86.8 75.4 65.2 72.6 90.0 71.7 44.5
Cotton - - 75.7 70.6 55.6 80.8 92.3 90.7 87.6
Sorghum - - 27.4 27.6 22.3 13.0 50.8 50.2 47.3
Beans - 43.9 54.9 - - - 62.7 - -

Eucalyptus 97.2 97.0 96.9 96.2 96.1 95.3 94.9 93.0 93.1

Table 8: Average F1 score for the most relevant crop types in Campo Verde
study area, computed at each date from October 2015 to July 2016
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Crop
Type

Month (%)
Oct Nov Dec Jan Feb Mar May Jun Jul

U
C
on

vL
ST

M

Soybean 0.0 57.6 90.4 82.0 76.5 39.2 - - -
Maize 0.0 0.0 10.9 15.2 26.2 54.4 81.6 64.2 45.9
Cotton - - 47.0 52.3 27.7 77.1 89.1 87.8 85.2
Sorghum - - 0.2 0.5 2.8 8.4 50.3 50.9 53.1
Beans - 15.4 39.1 - - - 36.2 - -

Eucalyptus 4.9 39.5 61.8 70.2 75.3 81.2 83.8 84.7 86.0

BC
on

vL
ST

M

Soybean 27.0 74.5 96.6 85.8 84.5 37.3 - - -
Maize 44.3 73.5 57.5 0.6 3.0 70.1 87.3 66.1 42.1
Cotton - - 73.2 71.4 43.7 80.2 91.8 89.1 86.1
Sorghum - - 14.7 13.4 12.3 11.8 50.5 49.8 50.4
Beans - 28.3 29.8 - - - 33.9 - -

Eucalyptus 95.3 94.4 93.4 93.1 93.2 89.1 85.8 85.6 86.3

BD
en

se
C
on

vL
ST

M Soybean 32.9 78.7 98.2 88.4 86.0 37.7 - - -
Maize 68.3 89.1 80.9 64.5 71.0 72.8 90.3 72.8 43.6
Cotton - - 75.0 78.0 46.1 81.6 92.6 90.6 87.6
Sorghum - - 38.3 44.4 31.3 18.0 52.4 53.1 50.0
Beans - 41.9 60.6 - - - 35.5 - -

Eucalyptus 95.5 95.1 95.1 94.5 92.9 93.3 92.4 92.6 92.4

BU
ne

tC
on

vL
ST

M Soybean 34.7 79.4 98.3 88.7 86.6 36.0 - - -
Maize 56.4 84.9 80.0 59.3 44.1 73.8 89.6 71.2 43.1
Cotton - - 65.9 73.5 58.7 79.8 92.0 89.7 86.9
Sorghum - - 27.9 30.1 21.8 15.4 43.5 43.3 39.7
Beans - 64.8 73.7 - - - 40.3 - -

Eucalyptus 96.4 96.6 96.4 96.4 95.8 95.8 95.0 94.7 93.8

BA
tr
ou

sC
on

vL
ST

M Soybean 40.0 79.4 98.1 88.2 86.7 31.0 - - -
Maize 56.1 86.8 86.8 75.4 65.2 72.6 90.0 71.7 44.5
Cotton - - 75.7 70.6 55.6 80.8 92.3 90.7 87.6
Sorghum - - 27.4 27.6 22.3 13.0 50.8 50.2 47.3
Beans - 43.9 54.9 - - - 62.7 - -

Eucalyptus 97.2 97.0 96.9 96.2 96.1 95.3 94.9 93.0 93.1

Table 9: Average F1 score for the most relevant crop types in LEM study area,
computed at each date. The sequence starts in June 2017 and finishes in June
2018 (Part 1: From June 2017 to December 2017)
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Crop
Type

Month (%)
Jan Feb Mar Apr May Jun

U
C
on

vL
ST

M
Soybean 88.0 91.4 91.5 58.6 74.2 77.2
Maize 63.5 64.3 64.9 73.7 62.0 35.8
Cotton 29.6 69.4 80.8 95.9 98.0 97.8
Coffee 39.6 42.4 45.4 48.6 50.6 51.5
Beans - - 63.1 48.4 43.0 -

Sorghum - - - - - -
Millet - 0.0 0.0 11.7 16.1 0.0

Eucalyptus 27.8 28.3 28.6 28.7 28.7 28.2

BC
on

vL
ST

M

Soybean 94.1 95.0 94.4 60.6 83.4 84.5
Maize 80.3 75.0 72.2 75.3 61.6 25.9
Cotton 77.8 99.3 98.9 97.7 98.7 97.5
Coffee 64.0 62.8 64.3 65.5 68.3 70.1
Beans - - 85.7 69.6 59.3 -

Sorghum - - - - - -
Millet - 0.0 0.0 27.1 20.9 0.0

Eucalyptus 33.8 32.5 31.6 31.0 30.7 29.7

BD
en

se
C
on

vL
ST

M Soybean 96.1 96.4 96.6 65.4 88.9 88.1
Maize 90.6 87.0 86.8 86.9 74.6 41.6
Cotton 80.5 99.7 99.6 99.4 99.8 99.8
Coffee 85.8 88.7 89.5 89.3 89.8 89.6
Beans - - 79.8 77.8 77.7 -

Sorghum - - - - - -
Millet - 2.3 9.6 55.7 49.1 0.1

Eucalyptus 64.7 63.2 63.8 65.5 66.1 62.1

BU
ne

tC
on

vL
ST

M Soybean 96.4 96.8 96.8 70.7 85.2 88.1
Maize 91.9 87.6 86.0 88.7 73.6 42.4
Cotton 70.8 99.8 99.7 99.5 99.6 99.7
Coffee 86.7 86.3 86.2 88.5 89.3 86.9
Beans - - 77.9 71.2 76.9 -

Sorghum - - - - - -
Millet - 0.4 14.0 64.5 65.1 0.1

Eucalyptus 54.7 56.4 57.4 57.4 58.3 54.6

BA
tr
ou

sC
on

vL
ST

M Soybean 96.7 97.2 97.1 48.5 87.4 86.4
Maize 91.5 87.2 86.5 90.0 76.8 47.5
Cotton 72.8 99.8 99.7 99.6 99.5 99.0
Coffee 86.0 89.8 90.4 88.7 87.0 85.2
Beans - - 79.5 76.2 80.0 -

Sorghum - - - - - -
Millet - 2.9 15.2 51.2 50.3 13.5

Eucalyptus 58.2 64.5 65.7 61.8 61.5 58.8

Table 10: Average F1 score for the most relevant crop types in LEM study
area, computed at each date. The sequence starts in June 2017 and finishes in
June 2018 (Part 2: From January 2018 to June 2018)
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Table 12 presents training times for the proposed networks. In gen-
eral, the BUnetConvLSTM obtained the lowest training times among all ap-
proaches. This might be due to its downsampling stages which reduce the
computational cost. Even so, the BDenseConvLSTM required larger train-
ing times compared to BUnetConvLSTM and the basic approaches on both
datasets, which is likely related to the deeper architecture from BDenseCon-
vLSTM due to its structure based upon dense blocks. The model with larger
training time was BAtrousConvLSTM. As with inference times, this high value
could be because it applies convolutions at the original spatial resolution, which
is computationally expensive. The time measurements were estimated on an
equipment with an NVIDIA RTX 2080 Ti GPU.

Table 12: Training times for the proposed network architectures.

Network
Train time [Hours]
Campo Verde LEM

UConvLSTM 6.76 5.37
BConvLSTM 8.48 4.74

BUnetConvLSTM 4.59 3.87
BDenseConvLSTM 6.5 5.02
BAtrousConvLSTM 8.66 7.04
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6
CONCLUSIONS

This work introduced an extension of the traditional ConvLSTM net-
works for multitemporal crop recognition. In contrast to existing similar ap-
proaches, which assign to image sites a single crop type per season, the pro-
posed networks are able to classify crops at each date in the sequence, in the
so called many-to-many configuration.

Furthermore, three novel fully convolutional bidirectional recurrent net-
works called BUnetConvLSTM, BDenseConvLSTM and BAtrousConvLSTM
were proposed. These networks use a hybrid approach which combines the
multi-scale spatial feature extraction capabilities of FCNs with the spatio-
temporal modelling properties of ConvLSTM networks. In particular, BUnet-
ConvLSTM comprises a spatial encoding path to extract coarse features, fol-
lowed by a ConvLSTM network to further extract spatio-temporal information.
Then a spatial decoding path recovers the input spatial resolution for the final
pixel-wise predictions. The BDenseConvLSTM is a variation of BUnetConvL-
STM which allows to use a deeper architecture by leveraging Dense Blocks in
its contracting and expanding paths. BAtrousConvLSTM is an alternative to
the previous approaches which uses atrous convolutions to extract multi-scale
spatial information without the need of downsampling or upsampling stages.

The networks were validated upon two public datasets of tropical regions
characterized by highly complex crop dynamics.

In all cases, the bidirectional networks outperformed the unidirectional
approach for the first elements of the temporal sequence. This result empha-
sizes the superiority of bidirectional recurrent networks variants over the uni-
directional counterparts in the target application.

The UConvLSTM and BConvLSTM networks produced a salt and pep-
per effect at their outputs. In contrast, the proposed hybrid approaches, which
include an additional spatial encoding stage, reduced this effect and produced
smoother predictions at higher accuracy. Thus, the experiments indicated the
effectiveness of these convolutional recurrent architectures in exploiting infor-
mation at multiple spatial scales, improving upon the state of the art archi-
tecture from [18] for recurrent approaches in multi-temporal crop recognition.
Given that all hybrid architectures presented similar performance metrics, a
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comparison was made in terms of training and inference times. Amongst the
hybrid architectures, the BUnetConvLSTM presented lower processing times
compared to its counterparts. Because of this, the BUnetConvLSTM resulted
in the most cost-effective alternative across the evaluated approaches.

Future works will focus in making the proposed approaches more oper-
ational and usable in a real-world application, by training the networks on
multiple datasets and using additional meta information as input to the net-
work such as the date from each image. Besides, attention models could be
researched to enhance the recurrent capabilities of the proposed networks. Al-
though SAR data has multiple advantages over other sources of information,
the network performance could be further improved by aggregating additional
data. Therefore, an adaptation of the proposed networks for data fusion be-
tween SAR and other remote sensing sensors such as optical are research di-
rections worth being investigated. Likewise, meteorological data has been used
for crop recognition and its aggregation could be useful to further improve the
prediction results. Besides, this information is available online [63, 64]. These
data fusion approaches could provide higher performance metrics due to the
added information while maintaining the robustness to atmospheric obstruc-
tions provided by SAR.

Although SAR data provides multiple advantages, it’s usage is also
challenging because its signal is a function of surface roughness and dielectric
constant, largely depending on soil moisture. This makes it difficult for the
networks trained in one study area to generalize to other unseen areas. Because
of this, future works should focus on evaluating the generalization capabilities
of the proposed approach to unseen area. Furthermore, the proposed networks
were evaluated in each dataset separately. Future works should also focus on
evaluating the inter-dataset network performance and consider training the
architectures in multiple datasets to further improve generalization.

Finally, the spatio-temporal modeling capabilities of the proposed ap-
proach could be applied to other related problems with spatio-temporal de-
pendencies in diverse areas such as environmental monitoring and petroleum
leakage detection.
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