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Abstract

Walker Urena, Miguel Beltran; Pimentel, Edgard (Advisor).
Regularity transmission by approximation methods: the
Isaacs equation. Rio de Janeiro, 2019. 58p. Dissertacao de mes-
trado — Departamento de Matematica, Pontificia Universidade Ca-
tolica do Rio de Janeiro.

[saacs equation is an important example of fully nonlinear elliptic
equation, appearing in a wide of disciplines. Of particular interest is the
fact that such equations are driven by nonconvex operators. Therefore,
it falls off the scope of the Evans-Krylov theory and poses additional,
delicate, challenges when it comes to its regularity theory. We describe
a series of recent results on the regularity theory of the Isaacs equation.
These cover estimates in Holder and Sobolev spaces. We argue through
a genuinely geometrical method, by importing information from a related

Bellman equation.

Keywords
[saacs equation; Regularity theory; Bellman operators; Regularity

in Sobolev spaces; Regularity in Holder spaces;
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Resumo

Walker Urena, Miguel Beltran; Pimentel, Edgard. Teoria de regu-
laridade por métodos de aproximacgao: a equagao de Isaacs.
Rio de Janeiro, 2019. 58p. Dissertacao de Mestrado — Departamento
de Matematica, Pontificia Universidade Catolica do Rio de Janeiro.

A equacao de Isaacs é um exemplo importante de equacao eliptica
totalmente nao-linear, aparecendo em uma grande variedade de discipli-
nas. Um fato de interesse particular é que tais equagoes sao dirigidas por
operadores nao convexos. Portanto, sao compativeis com a teoria de Evans-
Krylov e apresentam delicados desafios quando se trata de sua teoria da
regularidade. Descrevemos uma série de resultados recentes sobre a teoria
da regularidade da Equacgao de Isaacs. Estas cobrem estimativas nos espagos
Holder e Sobolev. Argumentamos através de um método genuinamente geo-

métrico, importando informacoes de uma equagao de Bellman relacionada.

Palavras-chave
Equacao de Isaacs; Teoria de regularidade; Operadores de Bellman

Regularidade em espagos de Sobolev; Regularidade em espacos de Holder;

I
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List of Abbreviations

In what follows we put forward a list of notations used throughout this

text. This is mostly based on [(E10), Appendix A.3].

Basic Notation:
(i) The d-dimensional Euclidean space is

Rd:{('xhx?a"wxn)’xi GR, VZ':LQ,_”?d}’

with norms

(71, 22, .. 20| = \/a:%—i-x%—i—u.—i-x%

and

(1,22, ..., ) ||oo = max {|x1|, |z2], ..., |20} -

(ii) Open ball of radius r:
B.(xg) ={z e R"|||z —xo|| <7} and B, = B,(0).
(iii) Open cube of side-length 7:
Qrlao) = {w e R [0~ wolloo < T} and @ = Qu0).

(iv) Lebesgue measure of a set O is denoted |O] or £(O).

Function Spaces and their norms: Let O C R%

(i) C(O) ={u: O — R|u continuous }.
C(O) ={u: O — R|u uniformly continuous }.

If O is a bounded set, C'(O) is a Banach space with

[ulle@) = sup u(z)].
€O
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(i

C*(O) ={u: 0O — R|uis k-times continuously differentiable }.

C*(O) = {u € C*(O) | D*u is uniformly continuous for all |a| < k }

where a = (a1, g, . . ., @) € N™ and

D olely
V= |la| =+ s+ -+ .
DSt - Patn e =+

If O is a bounded set, C*(O) is a Banach space with

[uller@) = sup sup |D%u(z)|
|a|<k z€O

We also denote,
= () C*O) and C>(O ﬂ Cc*(O
We denote C.(O), C*(O),..., the spaces comprised of C(O), C*(O), ...

functions with compact support.

If 0 < v <1, C%(0) is the space of Holder continuous functions with

exponent v, or v"-Hélder continuous. That is,

C*(0) = {u € C(0)|3C < oo, [f(z) = f()] < Cla —y|", Ya,y € O},

C%! is also called Lipschitz space, and if v # 1 we can write C? = C%".

In this case we have the seminorm

[wm—[bwwzsw{*ww‘wm}7

z,ye0 |l’ - y|’y
Y
and the y"-Holder norm
[ullcon@) = lullc) + [ulo

In general, Ck7(0) is the ~!-Hélder space
C*(0) = {u € C(O) | |[ullgraoy < =}
where

lullora@y = - 1ID%ullc@) + X2 [D%ul, 0

|| <k |a|=k
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The ~*"-Hélder Spaces are also Banach Spaces.

LP(O) = {u : O — R u is Lebesgue measurable and ||u||r»0) < oo} :
where for 1 < p < oo

[ull 20y = (/O |u(2)[? da );.

L>(0) = {u : O — R|u is Lebesgue measurable and ||u||z~ o) < oo} :

where

||| oo (0) = ess sup |u(x)| = inf{C’ €R ‘ |f(z)] < C ae. onO }
zcO

(vi) p-BMO(O) is the p*-bounded mean oscillation space of functions f €

(vii)

(viii)

Li..(0), with norm

B, (z)cO

1/p
£ lovioe) = sup {(ﬁw) 16) = Dar P }<oo,

where (f),, is the average value of f in B, (z):

(Par =N = F, S0 dy= 5 [ )y

We also denote (f) = (f)o1 and m(f)(z) = sup (f)zr.

r>0
WkP(O) = {ue€ LP(O)| D € LP(O),Va € N" s.t. |a| <k} is the
Sobolev space.

We have the norm

1/p
| ullwrr (O) = Z ||Dau||72p(o) ] in the case 1 < p < o0,

<] <k

and we have
||U||kaoo(0) = Ogﬂgék ||Dau||L°°(O)-

We also denote H* = Wk2,

WP (O) is the closure of C°(Q) in W*(O), so

WeP(0) = {u e WH(0) | 3 (un)new .t un € C2(0) and [[u, — ullwrsioy = 0}
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1
Background

The Isaacs equation appeared in the context of two-players zero-sum
(stochastic) differential games (Ruffus Isaacs, circa 1960), where an important
reference is (165).

The goal of this work is to examine the regularity of the solutions to the
Isaacs equation. We argue by importing information from a related problem,
namely the Bellman equation. Both are particular examples, introduced in
Remark 1.2 (page 14), of uniform elliptic fully nonlinear problems.

The strategy used is how follow: given a problem of interest we look for
an auxiliary model, from which information can be imported; examples of this

are,

— Au for Tr(A(z)D?u), in the basic PDE theory;
— F(D%u, ) for F(D?u, ), in Fully non linear PDE theory.

We argue through approximation techniques; the principal ingredients of
the strategy are, first, a preliminary compactness level that usually is the C%-
estimates; Next an approximation lemma, which import information from the
Bellman equation; Finally an iteration argument inspired on Caffarelli (Ann.
Math., 89).

Here, we examine results reported in (P19), and mostly of the theoretical
foundations are inspired by the so-called Caffarelli’s regularity theory. We
study regularity for weak (viscosity) solutions of fully nonlinear second order
elliptic equations. For that reason, we introduce here some relevant definitions
and results. See also (C89) and (CC95).

The second chapter studies the Sobolev regularity for the Isaacs equation,
following the tools introduced at the end the first one, where Lemma 2.1
(first approximation lemma) is the principal tool, and Theorem 2.5 (W?2?
regularity) is the first principal result; next Theorem 2.8 establishes a
generalization.

The last chapter focuses on the Holder regularity. Here, the main results
are the Ci-°® P regularity (Theorem 3.4) and the C>7 regularity (Theorem
3.7).
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Chapter 1. Background 12

1.1
The Krylov-Safonov and Evans-Krylov theories

In this section we collect basic facts and definitions. In particular, we
present the Krylov-Safonov and the Evans-Krylov theories. We starts with a

definition.

Definition 1.1 (Uniform Elliptic Operator) If S(d) is the set of real
symmetric matrices of dimension d X d and 0 < XN < A, an operator
F :8(d) — R is called (X, A)-elliptic if for all M, N € S(d) such that N >0,
we have

MIN| < F(M + N) = F(M) <A [[N],

where || N|| is the spectral norm (mazimum eigenvalue of N ).

Definition 1.2 Consider a fully nonlinear second order elliptic equa-

tion of the form
F(D?*u,z) = f(z) in B, CRY, (1-1)

where F' : S(d) x By — R is a (A, A)-elliptic operator and f : By — R is

continuous.

(i) A function w € C(By) is a viscosity subsolution to (1-1) if for all

¢ € C*(By) such that u — ¢ has a local mazimum at xo € By, we have
F(D*p(x0),20) > f(20).
We also say that
F(D*u,z) > f(x)
in the viscosity sense.

(ii) A function uw € C(By) is a viscosity supersolution to (1-1) if for all

¢ € C*(By) such that u — ¢ has a local minimum at Ty € By, we have
F(D*p(w0), 20) < f(20).

We also say that
F(D*u,x) < f(x)

in the viscosity sense.

(1ii) A function u € C(By) is a viscosity solution to (1-1) if it is both a

viscosity subsolution and supersolution of (1-1).
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Chapter 1. Background 13

Next we recall an result on the stability of the viscosity solutions.

Theorem 1.1 Let {Fy}r>0 be a sequence of (X, A)-elliptic operators and
{ug k>0 C C(B1) be such that

Fi(D*ug,z) = f(x) in B

in the viscosity sense. If {Fy} converges uniformly in compact sets and {uy}
is uniformly bounded in compact sets of By, then there exist u € C(By) and a

subsequence of {uy} that converges uniformly to u in compact sets of By and
F(D*u,z) = f(z) in B,

in the viscosity sense.

Proof. This is [(CC95), Proposition 4.11], proved by an application of the
Arzela-Ascoli Theorem. [ |

Definition 1.3 (Uniform Elliptic Matrices) A symmetric matriz A :
By — R% is called (X, A)-elliptic if

M < A(x) <A
for every x € By, or what is the same

MEN? < 3" aij(x) &8 < Allgl*, v¢ € R

uniformly on x € By, being A = [a; j]i j=12,..4-

It follows that the operators

F(M) :=Tr (As(x)M )
and
G(M,z) :=supinf [ — Tr (Anp(z)M) ]
acABEB
are (\, A)-elliptic, when Ag and A, s are uniform (A, A)-elliptic.
Remark 1.1 We say that F(M,x) is conver in M € S(d) if

F(tMy+ (1 —1)My) <tF(My,x) + (1—1t) F(Ma, ),
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Chapter 1. Background 14

for every t € [0,1] and My, My € S§(d). We also have that, F(M,x) is concave
in M if

F(tMy+ (1 =) My) >t F(My,x) + (1 —t) F(My, ).

We also note that, if F(M,x) is convex in M, then —F (M, x) is concave with
respect to M.

Remark 1.2 Some particular ezamples on which we have interest are:

(a) The Bellman Equation

érelé [ —Tr (Zg(x)DQu) } = f(x) in By,

where Ag : By x B — R? is a (A, A)-elliptic matrix. In this case, it

corresponds to the form (1-1) when

F(M,z) = élelg [ —Tr(ZB(x)M) ] :

Thus, for all My, M, € S(d)

F(¢ M+ (1—t) My, x)
= inf [ —Tr(25(x)(tM1+(1 — 1) Mz)) }

BeB
- ,}22{ —t Tr (Ag(x)My ) = (1) Tr (Ay(x)My ) |
Stérelg{ —Tr(Zg(x)Ml) }—I—(l—t) érellf’:#[ —Tr(Zg(x)Mz) },

then we have
F(t M+ (1—t) My ) <tF(My,z)+ (1—t) F(Ma, )

implies that F'(M, x) is a (A, A)-elliptic convex operator in M. Therefore,
many regularity results as the Evans-Krylov Theory can be applied to
it.

(b) A general form of a Bellman Equation is

. — 2 . .
érelg { —Tr (A[g(x)D u) —bg(x) - Du — fs(x) } =0 in By,
where A : By x B — R? is a (), A)-elliptic matrix, the coefficient
bs : By x B — R% is a vector field such that bs € LP(B;) uniformly and
fs: B1 x B— R is a real function.
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(¢) The Isaacs Equation

iléﬁérézfs’ [ —Tr (Aayﬁ(a:)D2u) } = f(z) in By,

where A3 : By x A X B — R? is a (A, A)-elliptic matrix. In this case,

it corresponds to the form (1-1) when

F(M,z) :=supinf [ —Tr (Aap(z)M) ]
acABEB

that in general, is neither convex nor concave with respect to M.

(d) A general form of an Issacs Equation is

sup inf [ —Tr (Aaﬂ(x)DQu) —bas(x) - Du— f,5(2) } =0 in DBy,

acABEB

where Ay p: B1 x AX B — R? is a (A, A)-elliptic matrix, the coefficient
bas 1 Bix AxB — R%is a vector field such that b, s € LP(B;) uniformly
and f,5: By x A x B — R is a real function.

We close this section which two foundational results.

Theorem 1.2 (Krylov-Safonov Theorem) Let F': S(d) — R be a (A, A)-
elliptic operator and u € C(By) a wviscosity solution to F(D*u) = 0 in B.
Then u € CY(By) and

ltllerag, ) < C (Il + [FO)]),
for some a € (0,1) and C > 0, universal constants.
Proof. It is [(CC95), Corollary 5.7] |

Theorem 1.3 (Evans-Krylov Theorem) Let u € C(By) be a wiscosity
solution to F(D?*u) = 0 in By, where F : S(d) — R is a concave or convex
(X, A)-elliptic operator. Then u € Co.%(By) and

ltllgzacm, ) < C (Il + [F(O)]),
for some a € (0,1) and C' > 0 universal constants.

Proof. See [(CC95), Theorem 6.6] |
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1.2
Approximation Technique

In order to illustrate the approximation technique used in this work, we
will present its application proving the Holder regularity of the gradient of the
solutions to F(D?*u) = f in By, with f € LP(B).

We start with an approximation lemma.

Lemma 1.4 (An approximation Lemma) Let u € C(B;) be a viscosity
solution of F(D?*u) = f in By, where F': S(d) — R is a (\, A)-elliptic operator
and f € L? (By), withp > d. For any 6 > 0 there exist e > 0 and h € CL%(By),
for some o € (0,1), such that if || f||r(5y) < €, then

Ju =Rl g,y <O

Proof. Suppose by contradiction that the statement of this lemma is false. Then
there are sequences (F},)nen, (fn)nen and (uy, )nen such that F,, is (A, A)-elliptic,
fan— 01in LP(By) and u,, € C(By), such that u, is a viscosity solution to

F,(D?u,) = f, in By,

with
[t — llzs,) > 00, Vh € Cit(By),

for some dp > 0. Since F,, is uniformly elliptic, F,, is also uniformly Lipchitz;
then it converges to some operator F,. By application of Theorem 1.1, there
exist u € C(By) and a subsequence of {u,} that converges uniformly to u in
compact sets of B;. Note that F, is still (A, A)-elliptic, us, € C(B) and

Foo(D*us) =0 in By,

so by the Theorem 1.2, u,, € C'*(By), for some o € (0, 1). Thus, if we take
h = ts, h € CY*(By) and there exists N > 0 such that

[tn — hllLe(By) = l|tn — Uool| Lo (By) < do,
but this is a contradiction. [ |

Remark 1.3 Given v € (0,1) and a bounded open set O C R%, we say that
u € C*7(O) when there exists a polynomial P of degree k such that

lu(x) = P(2)| < Cllz = 2ol Va, 29 € O.
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Particularly, u € CEY(By) if, for some p € (0,1), there exists C' > 0 such
that, for every n € N and any z¢ € B

u(w) = Pu(x) | < C prH,

sup
[z—zol|<pm™

for some polynomials P, of degree k.

Lemma 1.5 Let F': S(d) — R be a (A, A)-elliptic operator and f € L3 (By).

loc

If u is a viscosity solution of the equation
F(D*u)=f in B,
then there exist @ € (0,1) and h € C.%(By) such that

sup ’u(x) — h(0) — DR(0) - x’ <pt | Va e (0,a),

z€B,
for some p € (0,1).

Proof. By the Lemma 1.4, for any § > 0 and some @ € (0, 1), there exists
h € CL%(B,) such that
lu = hlle(s) <0,

and by properties of the Taylor polynomial, for some p € (0, 1),

sup ’ h(z) — h(0) — DR(0) x‘ < Cptte,

T€B,

Then, for all z € B,

| u(x) = h(0) = DA(0) - ) | < |u(x) = h(z) |+ | h(x) = h(0) — DA(0) -z |
<0+ Cptte.

Fix o € (0, @) and take

Thus we obtain

sup |u(x) — h(0) — Dh(0) -z | < p'™ , Va € (0,a).

z€B,
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Lemma 1.6 Let F : S(d) — R be a (A, A)-elliptic operator and f € L} (By).

If u is a viscosity solution of the equation F'(D*u) = f in By and ||u||c(§1) <1,
then there are C > 0, @ € (0,1), a, € R and b,, € R? satisfying

sup ‘u(:v) —a, — b, g;‘ < priita)

Q?EBPTL

and
|an - an—1| + pn_1||bn - bn—IH < Cp(n_l)(1+a)a

for any p € (0,1) and n € N.

Proof. We proceed by induction in n € N. In the basic case, take ag = a_; =0
and by = b_; = 0, which satisfy the conditions for n = 0.

Now, we suppose the case n is satisfied, and set v,, : B; — R as

— u(p"z) — a, — by, - (an)

Un(l') ’ pn(l—l—a)
Then o D)
2 _ P " u pnx _ n(l-a 2 n
Do () = ey P U= D2u(p"x),
which implies
DZU”(:E) 2 n n
F<pn(1_a)> :F(D u(p I)) = f(p ).

If we define

—Q M nil—oa n
FMM%:WO)F<W@M> and  fu(z) == p"'" f(p"2),

then we get that v, solves F,(D*v,) = f,(z) in Bj. So, by the Lemma 1.5
there exist h € C1%(B;) and C' > 0 such that

P > sup ‘Un($) — h(0) — DR(0) - x‘

z€B,
_ u(p"z) — a, — by, - (p"x)
- xS;lBPp pn(lJra) - h(O) - Dh(O) - X
u($) — an - bn - _
- — h(0) — Dh(0) - (p~"x) |.
veBome pr(i+a) 0) (0)- (o @‘

Then we obtain,

sup ’ w(x) —ap — by, -1 — p"HFIR(0) — pnIH) DR(0) - (p ") ’

xEBpn+1

< p1+a .pn(l—i-a)‘
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Thus, by setting
(pi1 = Gy + p"(Ho‘)h(O) and by := b, + p"*Dh(0),

we have that

Sup ‘ u(r) — ant1 — bpir - ’ < plnth+a),
CCEBpn

Moreover, there exists C' > 0 such that

st — ] £ 0"[brs — ball = 2 [B(O)] + 70 | DR(O)]
< C«pn(1+o¢)'

Hence, the statement is true in the case n + 1, completing the induction
argument. [

To illustrate the strategy behind regularity transmission by approxima-
tion methods, we establish the Krylov-Safonov theory in the non-homogeneous

setting.

Theorem 1.7 Let F : S(d) — R be a (A A)-elliptic operator and f €
LY (By). If u is a viscosity solution of the equation F(D*u) = f in By and
[ulle,) < 1, then there isa € (0,1) such thatu € Co%(By), for any o € (0,a).

loc

Proof. By the Lemma 1.6, we have that there are C' > 0, @ € (0,1), a, € R
and b,, € R? satisfying

sup ‘ u(z) —a, —b, -z ‘ < priite)
IEBPn

and
|an = ana| + p" by = by < Cplr= D+,

for any p € (0,1) and n € N. Then we have

|an = w(0)] = [u(0) — Bu(0)] < p"+),

and also

k=n+1

Z p(k—l)a

k=n+1

IN
Q

1— (m—n)a
_ e L
1 —p=
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for any m > n. Then a, and b,, are convergent because p € (0, 1), thus they
are bounded. Then a,, and b,, are bounded because At the end we have that u

is CL%(By) at 0. Next, by changes of variables we can conclude u € C2%(By).
|

1.3
Pucci Extremal Operators

The Pucci extremal operators described in this section are important for
the theory of fully nonlinear elliptic equations. They allow us to define the

class of uniform viscosity solutions in order to simplify some proofs.

Definition 1.4 (Pucci extremal operators) The Pucci extremal opera-
tors My, : S(d) — R are defined as follow:

M;,A(M> = inf TI'(AM) =A Z €; + A Z €;

AGSA’A(d) e; <0 e; >0
and

ML M) = sup TH(AM)=A Y ei+A Y e

A€Sy,a(d) e;>0 e;<0

where e; are the eigenvalues of M and Sy a(d) is the set of symmetric matrices

whose eigenvalues belong to [\, A].

Remark 1.4 Note that My, and M; , are concave and conver operators

respectively. The equations
M;\rA( “u) = f(x) and M;,A(DQu) = f(x)

are called Pucct equations and they are examples of nonlinear uniformly

elliptic equations.

Definition 1.5 (Viscosity solutions) Let f € C(B;). We say that u €
C(By) is in the class of supersolutions S(\, A, f) if

M;A(DQu)gf in By,

in the viscosity sense.

Similarly, uw € C(By) is in the class of subsolutions S(\, A, f) if
MI,A(DQU) > f in By,

in the viscosity sense.
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Finally the class of (A, A)-viscosity solutions is the set

SIMA ) =SOA f)NS(A A, f).
Remark 1.5 Noting that
M;:A(M) = _M,\_,A(_M)
and, for any (X, A)-elliptic operator F
M;,A(DQU) < F(DQU) < MIA( Qu)a

we have that +u € S(\, A, £f), when F(D?*u) = f. for any (\, A)-uniformly
elliptic operator F'.

Lemma 1.8 We have:

i) N <A<SALSN = SO\Af) C SWN,A,f); the same holds for S
and S.

(i) u e SI\A, f) = ue S\ A, —f).

(iii) u € S(\ A, f), then for all a, r > 0

v(y)::ozu(g) == vGS(A,A,Zf(})).

Theorem 1.9 Let F : S(d) x By — R be a (A A)-elliptic operator and
u € C(By). If F(D*>u,x) > f(z) [ resp. F(D*u,z) < f(x) ] in the viscosity

sense in By, then

u—¢es (2 A, f(z) — F(D?(x), x))

(A )
[resp.u—qSGS(d,A,f(x)—F(D ¢($),$)>]a
for any ¢ € C*(By).

Proof. Follows from [(CC95), Proposition 2.13] |

Theorem 1.10 (Interior Holder regularity) Ifu € S(\ A, f) in By, then
u € C“(El/g) and

lulleas, o) < C (Ilulle sy + I Fllzae) )

for some a € (0,1) and C' > 0 universal constants.
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Proof. Follows from [(CC95), Proposition 4.10 and Remark 5] |

1.4
Preliminaries on Sobolev Regularity

Here we present the basic elements in the study of Sobolev regularity.

Definition 1.6 Let O C R? be a C' bounded domain, i.e., for each point
x € 00 there is a neighborhood O, such that O(O N O,) is the graph of a
function of class Ct(O,).

(i) A convex paraboloid of opening M € [0,+00) is a function Py, : O — R
of the form
+ M- o
Pii(2) = €(2) + 12l
where £ : O — R is an affine function.

In the same way, a concave paraboloid of opening M € [0,4+00) is a
function Py, : O — R of the form

Pisle) = t(a) — ]

(ii) We define

O(u, 0)(x) ==1inf { M € R|3Py;, Piy(z) = u(z) A Pi(y) > u(y), Wy e O},

the infimum of all openings of the convex paraboloids touching u from

above at x in O, and

O(u, 0)(z) :=inf { M € R|3Py;, Py(z) = u(z) A Pyly) <uly),¥ye O},

the infimum of all openings of the concave paraboloids touching u from

below at z in O. We also have

O(u, O)(x) := max {@(u, O)(z), B(u, O)(x) }

The existence of Pj; touching the viscosity solution is ensured by
[(CC95), Proposition 2.4], which states by maximum principle, that viscosity
solutions in certain bounded domains, containing x are touched by paraboloids

from below and above, in an open neighborhood of .

Lemma 1.11 Let1 <p<o0, 0 <r < oo, u €C(B,) and O(u, B,) € L(B,).
Then D*u € LP(B,).
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Proof. We follow [(CC95),Proposition 1.1]. The proof starts from the fact
that
—O(u, Bs)(z) < Afeu(w) < O(u, Bs)(2),
where
u(x 4+ h) + u(z — h) — 2u(x)
1112

Afu(x) :=

For any ¢ € C*(B,),

/ua(pd:z:—hm uAegodx:hm/ 0 AZ udx.
de? o—

Since |A2, u| < O(u, B,) € LP(B,),

‘ / 0 AZ udx
B'r

< lellpr s, 11€(w; Byl Lr(s,) < o0
Therefore, by the Dominated Convergence Theorem, there exists
puy 1 2 p
v (lsl_I}(lJ Ajeou € LP(B,)

such that
/u@dx—/ puvdr.

= Oesrey LA ¥

LTy Ty
U, do
’/Br Pij

u € W*P(B,) <= D*uc L”(B,).

Now, noting that

we have

< 2[lell 1 (8, 10w, By) | o(,) < 00,

which implies

d
Lemma 1.12 Let p € (2,—I—oo) and O be a CH' bounded domain. If u €

W2P(0O), we have
1©(u, O)l|zr(0) < Cllullwar o)

where C'= C(d, p) is a nonnegative constant.

Proof. This proof is based on (LZ15) and [(CCS96),Appendix C]). Let @ be
the extension of u to R” and xy € O be a Lebesgue point of %, D and D?4.
We define h : R® — R such that

h(z) = () — [i(zo) + Dit(xo)(x — w0) + § (¢ — w0)" Do) (z — o) |


DBD
PUC-Rio - Certificação Digital Nº 1812624/CA


PUC-RIo- CertificagaoDigital N° 1812624/CA

Chapter 1. Background 24

d
Ifq*ziqd>df0rsomeq2ls.t.q§p<d,andr:||x—x0||,wehave

r |h(x) = h(zo)|
rd/q* Hx — x0||1_d/q*
7’|Bl|1/q*
= By (o) |V

h(x)] =
[h]CO,lfd/q*.

Next, as [h|coi-a/v < ||h|lcor-a/a, by Morrey’s inequality there exists a

universal constant C; > 0 such that

< e
| Br ()|

Cﬂ”
S U Dh
P ( [, . IDA@)

1/q 1/q*
Dh — (D) o |9 ][ D) oo |1 ,
(o 1= D0l )4 (£, DBl

because of the Minkowski inequality. Now we get

|h(z) ) ClHDhHLq*(BT(xO))

1/¢*
’ dy>

< Cyr

1/q*
< Cir ([ 1Dh= (DW)a]” )+ Cur (DB,
r\T0

After that, by Poincaré’s inequality there is a constant C > 0 such that

) 1/q* 1/q
(4, 1000~ DWmol” @) <cor (£ o)
B, (z) B, (z)

As D?h(z) = D?*u(x) — D*a(xy), then if C' = max{C}, C1Cy}, we obtain

1/q
ol < 0 (£, I0%a) = DAata“an) -+ Cor (D)o

[ 1/q 1/q
<o | (£, 10awia) + (£, 1paoia)
B, (z0) B (zo)

+ Cyr <Dh>Br(xo)

1/q
—ort |, IPairdy )+ 102t | + (DR)a
r\Z0o

<o {m( 1D%al )" (xo) + ||D2ﬂ<xo)!|] + (D), (w0)-
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Note that, there is C' > 0 (replace the actual C, if it is greater) such that

Dhyg, (x _][ Dh(y) d
< > (z0) B (o) (y> )

<C D?h(y) dy
By (zo)
<C sup D*(y) H dy + C || D*ii(xy)|

0<s<r JBs(zo)

< Cm( D%l ) (o) + C || D*i(0)l,
therefore we obtain, for almost every xy € O (and replacing C' 41 for C'), that
1/q
)l < € [ m(1D2lt) " o) + m( D%l ) (o) + 1 Dulao)]
Since D*u € LP(O)

[m(ND%l) |10, < €| 0

< 00.
Lr(0)

We also have that p > ¢ and ||D?ul|? € LP/7(O), then

| m( D)

o= [ (127u)

Lp/q(o)

< C | 1D%l"

Lp/a(0)
i il P

Thus
1/q
m( | D%ul|”) " (wo) + m( | D*u]l ) (wo) + || D*u(zo)|| € LP(O).
At the end, we have for a.e xy € O, since r = ||z — 20|,

u(z) — u(zo)| < || Dulzo)| - 7 + 3 | D?u(wo)]| - r2

+C m(HDQqu)%(ﬂ?o) +m([D*ul]) (z0) + [ D*u(zo)|

Then, according to the definition of O, for a.e xqg € O

O(u, 0)(x0) < || D*u(zo) |

+20 [ m(11D%u)) " (wo) + m{ 102l ) () + 1 Du(ao)]] |

This implies O(u, O) € LP(O). |
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Definition 1.7 Using the notation of Definition 1.6 , we set
Gu(u, O) = Gy (u,0) NGy (u, O),
where
Gur(u,0) := { re0 ‘ AP, Pi(z) = u(z) and Py (y) > u(y), Yy € O }
and
Guyl(u,O) = { xeQ ‘ APy, Py (x) = u(z) and Py (y) < u(y), Yy € O }

We also define,
Ap(u, 0) = O\ Gu(u, 0),

AM(U’ O) = O\QM(U7 O)

and

Remark 1.6 According to the Definition 1.6 and the Definition 1.7, note
that
O(u,0)(z) =inf { M € R|z € Gys(u,0) }

and
O(u,O)(z) =inf{ M e R|x € Gp(u,0) }.

Lemma 1.13 If O C R? is a CY' bounded domain and u € W*P(O), there
exists C' > 0 such that
|Ai(u, O)| < Ct7P.

Proof. Note that
A(u,0) ={6(u,0) >t} ={x € O|O(u,0)(z) >t}.

That is because

x € Ai(u,O) = Gi(u, 0) N Gy(u, 0)

)
) or z¢Gyu0)
>

[
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So by Markov’s inequality
A, 0)] = [ {01, 0) > 1}] < - [ 100, O)@)]" s
< 701, O) sy
By Lemma 1.12, O(u, O) € LP(O). Then, there exists C' > 0 such that
|Ai(u, O)] < Ct7P.
|

Lemma 1.14 (Calderén-Zygmund cube decomposition) Let A C B C
Q1 be measurable sets and o € (0,1). For a dyadic cube K C Q1, denote by K
its predecessor. If |A| < o and

IANK|>o|K| = K C B,

then we obtain
|A| <o |B|.

Proof. By the Calderén-Zygmund technique, we can choose a sequence of
dyadic cubes K, K2, ..., such that

K N A

|K"N Al <
— > 0,
| K|

AC UKia.e. s W

=1

> o and

and such that (W) L, are pairwise disjoint. We have that

IANK'|>0|K'| = K'C B= |JK'C B,
=1

then ~
Al <YK N A

=1

<> |KIN A

=1

m PR
<o Z d
i=1

=o|U K|
i=1

< ol|B].
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Lemma 1.15 Let g : O — [0,00) be a measurable function. Fort > 0, define

uolt) 1= | {z € Olgla) > t}]

Fixv >0 and M > 1; for p > 1, define

S =" M p,(vM*F).
k=1

Then
g€ LP(0) — S < .

Moreover, there exists a positive constant C' such that
C™'S <|lgllro) < C (O] + 8).

Proof. Note that p, : [0,00) — [0,00) is a decreasing function, so we can take

a negative Lebesgue-Stieltjes measure

n([a,0)) = p1y(b) = prg(a)
:—‘{xé@\agg(x) Sb}’

=—r <g_1([a,b))>.
Because the extension measure is unique, we have
w(E) =L (g7(E))

for all B C O measurable and du(t) = pu,(t)dt. So, for all measurable
¢+ 0,00) — [0,00)

Loog@dce) = ["sogogtyac(g70))
—— [T ot ey a
= =0 + [T IO m0

In particular, if ¢(t) = t?, we obtain
lgllinior = [ o) d ix) = = lim #y(6) + [ pt~ gy (0 at.

Since
—[lgllzro) < =tPpy(t) <0
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and M > 1 we have M* < M*+1 — oo; then

vMFE+1

2[l9l[70 (0 >/ P g (t) dt+Z/ ptP ! g (t) dt.
vMb+1
Z,ug(yM)/ ptP~t dt—i-z,ug(VMkH)/ . pt?~tdt
0 vM

v MFE+1

= [ (I/M tp‘ +ZM Mk‘-l—l P

vMk

= pup(vM) VP MP + Z pig (VMY P MPR(MP — 1)

k=1
= VPM? (v M) + > pg (v MF) P MPE=D (VP — 1)
k=2
P _ [e.o]
> v M ! ZMpk (vM*).

On the other hand,

vM o) yMFE+1
lgllze0) < “9(0)/0 ptrdt+ 3 g (VM) /Mk ptrdt
k=1 v

= 1 (0) VP MP + 3" pug(vMF) P MPF(MP — 1)
k=1

= |O| VP MP + vP(MP — 1) >~ My, (v M.
k=1

As a consequence,

vP MP —
5 < oy < M (10]+5),
so we can take

1 MP 1

= AP P <

5or r 1 , if M 1§1/\V§Vp

P NP

v JIEMP—1<1 A P> —

C = 2 Mpr—1 P
=

20PMP ,if]\/[p—lzl/\VPZ—p

v

2 MP 1
JIEMP—12>1 A VP < —.

VP P

Thus, there exists C' depending on v, M and p such that
C™S < lgllzro) < C (101 + ),

and g € L>(0) if and only if S < oco.
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Lemma 1.16 Ifu € S\ A, f) in By with || f||pas,) < 1 for some q > d, then

there exist universal constants C' > 0 and p > 0 such that
|At(U,7 Bl) N Q1| S Ct_“,
for every t > 0.

Proof. Follows from [(LZ15), Lemma 3.2]. See also [(HL11), Lemma 5.15]. W

An important result we detail in the next chapter concerns the transmis-
sion of Sobolev regularity from the Bellman equation to the Isaacs equation.
For that reason, we finish this chapter by examining the regularity of a Bellman

homogeneous problem in W?2?.

Theorem 1.17 (W?4-regularity for the approximate problem) Let
r€(0,1) andd < p < q. Let h € C(B,) be a viscosity solution to

,222[ —Tr (As(x)D?h) | =0 in  By(xp),

where Ag : By x A X B — R? is a (X, A)-elliptic matriz. Suppose further that

g\ 1/d
( 7[ ) <1/2,
Br'($0)

for every xy € By. Then h € W*4(B,) N C(B,+) and there exists a universal
constant C' > 0 such that ||h||w2e,) < C.

sup || A (x) = A(ao) |
peB

Proof. Follows from [(CC95), Theorem 7.1] |

Remark 1.7 Throughout this text, a constant is called universal, if it de-

pends only on d, A\ and Lambda.
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2
Estimates in Sobolev Spaces

In this chapter we examine the Sobolev regularity for the Isaacs equation.

To resort to results previously put forward here - especially Theorem 1.17 -

J\ 1/d
( 7[ ) < 1/2.
Br($())

It is well-known that such a smallness regime is usual when importing regu-

we assuime

sup || As(w) — As(wo) |
BeB

larity from an auxiliary problem with constant coefficients.
2.1
First Approximation Lemma
We continue with an approximation lemma, instrumental in the estab-

lishment of our W?P-estimates for the Isaacs equation.

Lemma 2.1 (First Approximation Lemma) Let u € C(B;) be a viscosity

solution to

sup inf [ —Tr (Aavﬁ(x)DQu) } = f(x) in By, (2-1)

acABEB

where App @ B1 x A X B — R s a (A, A)-elliptic matriz. Suppose that
Ag: By x B— R? satisfies

Hf||LP(B1) + H Aap — Zﬁ HLOO(BI) < €1,

for some e > 0 to be determined further. Then, there ezists

h € WQ’q(BUg) ﬂC(Eg/g) with HhHW“( ) <C, and

Bq/s
lw = Bl (B, 6) + [€llLrB,,6) < Ch (EY [wll oo () + HfHLp(Bo) :

where Cy and «y are non-negative constants depending on (d, A\, A, C,q,p), and

§(x) = fl@) = sup inf | = Tr (Aap(@)D*h(x) ) |.

Proof. Let h € C(Bs9) be the solution of the Dirichlet problem
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inf | —Tr ( Ag(z)D?h(z)) | =0 in By,
h=u on aBg/g.
Then by Theorem 1.17, h € W*%(Bz5) N C(Bs)) and there exists C
such that ||A[lw2a(B, ) < C. By the interior Holder regularity from Theorem
1.10 and [(CC95), Propositions 4.12 and 4.13], there exists C5 such that

ellgc, o) < C5 (ulleen + 1 fll oy ) (2-3)
and
1Pllesrea, 0y < C5 (lullesy + 1l ) (2-4)
for some 7 € (0,1).
Let 6 € (0,1/2), x9 € Bsjo—s and 21 € dBs(o). By applying W24 interior
estimates to h — h(x;) in Bs(xg) when d < p < ¢, we have

DR a(Bs (o)) < N = B(x1) [ W2ia(B, (o)) < Cslll = h(1)]] L 085 o))

where Cs = C}, 6 =
x € Bs(xo)

> ()}, for some universal constant C},. Note that for all

Ih@) = hen)] = | — a2 @)L R

~/2
o — 21 < (26)7 1Al e7/2(Bs (o))

Since Bs(x¢) C Bsgjg, by (2-4) we obtain

1Dl (55 w0y < Cs (26)72 |1l /2, a0
< C5 (2677 C5 (Nlull ooy + 1 fllosy) ) -
Then

C Cs (2072 C
5d

1Dl oByy) < T (Nl + 1 llersy )

because there is C' > 0 such that

2| Q2

”D2hHLq(Bs/9 5 = KHD h“Lq (Bs2(xo))-

Note that, for all « € A, 8 € B, 29 € Bgj9_s, we have
| Tr ((Aap — A)(x0) D?h(0) ) \ < C(d) || (Aap — A5 ) Do) |

(@ || (Aus = As) o) | - | Do)
< &1 C(d) | D*h(z0) .
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Hence
—e1 C(d) | D*h(wo) ||~ Tr (A5 D?h(w0) )
< —Tr (A s(w0) D*h(z0) )
< & C(d) | D*(wo) || — Tr (AsD*h(wo) ) ,
and, since
/lirellfs‘ [ —Tr (Zg(xO)DQh(xo)) ] =0,
we get

acABEB

sup inf | — Tr (A g(x0) D*h(z0) ) | | < & C(d) || D*h(0)]|.
Thus we produce

zlelg,élellf’j’ [ —Tr (Aa,g D2h) ]

LP(Bg/9_s)
<€ C(d) ”D2hHLq(BS/9—6)

C Cs (26)72C5
O (Wl + s )
d—

— 2q i*d
= e O5 T (Yl iy + v ) -

€1 C(d)

where

C=C0(d)C, 272 Cx.
A consequence is

— d=29,7 4
1€ o(os) < I FllirpeepFer-Co e 27 (Nulloosy + [ Fllogsy ) - (2-5)

By (2-3) and (2-4), noticing that u — h = 0 in 0By, and taking y € 0By,
we conclude

u(r) — h(z)

|37 — yﬁ/g < Hu - hHCV/Q(ES/Q)

< Nullesr2 (s, o) + Nllenr2 g, o)

< ||u||07(§8/9) + ||h||c7/2(§8/9)
<205 (I[ullzes) + | fllrm) ) -

Then

1

i =Bl <205 (lullm) + Il ) - (26)
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If C' = max (1,2C5, C ), by (2-5) and (2-6)

= bl e ) + 1€ 200

d—2q

~ ~ = 3_
< Olflirionynn+ € (8724 €06 ) (fullimisy + 1)

d

=co <1+615 ;q_d) [l ()

d—2q

+C <1+6V/2+615 a +g_d> | £l Lo (Bsjo_s)-

If we take
- _
d=a T = kR e
then
[ = Pl oo By o) + NN Lo (B s -s)
<20 €] |Jullpes) + C (1+2€]) [ fllLoBs o)
< O (e Nullzey + 11wy, 5 )
< O (€ ullz=on + 1 lnmn) )
where
C1 = max [26’ sup |u(z)|, C (1 +2€’1Y)1 .
r€B;
Taking
s<c8_T_1
9 8 72

we have By7/s C Bgjg_s. Then we conclude

e = Bl oo (1) + W€l zoBr,0 < Co (€] Nulloe sy + [ Fllzosn) ) -

Lemma 2.2 Under the hypotheses of Lemma 2.1, suppose further that
—ll|* < u(z) < [|z]* in By \ Br.
Then, if ||ul| LBy < 1, there exist M > 1 and o € (0,1) such that
| Agr(u, B1) N Q1] < 0.

Proof. If d < p < ¢, by Lemma 2.1 we can take h € W?*%(By5) N C(Bs)o)
such that, for

€= 7 =0 g [T (4osle) )


DBD
PUC-Rio - Certificação Digital Nº 1812624/CA


PUC-RIo- CertificagaoDigital N° 1812624/CA

Chapter 2. Estimates in Sobolev Spaces 35

”U, - hHLoo(Bws) + HSHLP(BWE;) < Cl (Efly + ||f”LP(Bl)> )
where () and ~ are non-negative constants depending on (d,\, A, C,q,p).
Extend h continuously to B such that h = w in B; \ Bg /9 and
||u - hHLoo(B1) = ||u - h||L°°(B7/8)'

Note that, by the maximum principle

HhHLOO(BUS) < ||h”L°°(338/9) = ||u||L°°(338/9) <1
assuming that A is the solution of the Dirichlet problem (2-2). So, for every
RS Bl \ Bs/g C Bl \ B7/g C Bl \ BG/77
it holds
()| < u(@)] + |7 = ull L= (5, )
< ||:L‘||2 + ||h||L°°(B7/8) + ||UHL°°(B7/8)
< ||z|]* + 2.

By combining the former inequality with the Lemma 1.13, we have
|Ai(h, B1) N Q1| < Ct71.

Next, if we define
u—h

- 2016?7
then, by Lemma 1.8 and Theorem 1.9

§(x)
ves ()\,A, 2016’{)

(Y

hence, by the Lemma 1.16, there exist universal constants C' > 0 and p > 0
such that, according to the definition of A,

u—nh

a7 70 < Ct_uv
201€¥ -

’Aztcle}(U—h,Bl)ﬂQl‘=|At< Bl>ﬂQ1

and

—H
|At (U — h7 B1 ) N Q1| S C ( ) = 0(201)”%?#75_#.

26’16’1y
According to the Definition 1.7, note that

Gt(u — h, Bl) N Gt(h, Bl) C Gzt(u, Bl)
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Thus, taking complements on B
Asi(u, By) C Ay(u — h, By) U A(h, By).
Finally,
| Aze(u, B1) N Q| < [Ay(u —h, By) N Q| + [Ai(h, B1) N Q)
< CQ2C)H et + Ct™1.
So, for the given o € (0,1)

| Ao (u, B1) N Q| < o,

when

= =y
thaX{l, {0(201)%}“-;] “,[C.‘;} q}.

Finally, take M = 2t > 1. [

Lemma 2.3 Suppose the hypotheses of the Lemma 2.1 hold true and let Q
be a cube such that Q C Q. Then,

Gi(u, B))NQ #0 = |Am(u, B)) NQ| < o,
for some M > 1.

Proof. Let xg € G1(u, B1)NQ, then zy € By and there exists an affine function

¢ such that
|2 — 2o?

ju(z) — ()] < < Csz|”,

for some C5 > 1 and every x € B;. Notice that

vim ot = olo)] <

Then, for all z € By \ Bg/r
—ll2|* < v(@) < |l=]|* in By \ Beyr.
Therefore, by the Lemma 2.2, there exists M > 1 such that
| Acymr(u, B)NQ| = | Azz(v, BN Q| < 0.

At the end we can take M = C5M. [
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Lemma 2.4 Under the hypotheses of Lemma 2.1, extend f by zero outside
of By and set
A = AMk+1(u, Bl> N Q

and
B = [Aya(u, B)NQ|U{z € Qlm(f?) = (CM*)"},

where C < ¢; - |By|~'/?. Then,
|Al <o |B|,
for some M > 1.

Proof. If there is a cube @ such that Q C @ and Gy(u, B;) N Q # 0, Lemma
2.3 implies the existence of M > 1 such that

A] = [Appess (u, B1) N Q| < |Ans(u, BY) NQ| < |Agz(u, By) N Q| < o,

for some o € (0,1), an setting M > M. Set the dyadic cube K = (/9 and
denote by K its predecessor. Next, notice that

IANK| > o|K| = K C B. (2-7)

Were (2-7) false, we would have
|JANK|>o|K| and K ¢ B.
Then there would exists 7; € K, such that z; € Ay (u, B1) N Q and

sup fP(z) de =m(fP)(x;) < (CMk)p.

r>0 Br(wl)

Let o2
(o) = g (w04 57 )

where

1 1 1 a
H.I'[)—.TngT—? and 2Z§r<27'(6'|31|1/p> .

Then By-i(z) C B.(z1) and
D¥u(y) = - p? J
u(y) =~ D*u (2o + 5 )

Therefore we have that @ is solution of

sup inf | = Tr (Aas(z) D7) | = F(),
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where

We also have that

- 1
T Wevi = 55 [, |7 (20+ %)
2id »
=gy @
<2 [ P de
— MP* JB.(x)
Qid
MPk
= (2'r)'C7 By

P
<e.

<

(CMF)P | B, (x1)]

Note that

u

GMk+1(u, Bl) = GM (W,

B, ) = 27" G (U, By-i(20)),
which implies

G (U, By-i(10)) N Q = 2 G1(u, By) N Q # 0.
So, by Lemma 2.3,

|Appes (u, Br) N Q)
| K|

= [Au (@, By-i(20)) N Q| < 0,
since | K| = 27" Then
AN K| < |Appsi(u, B1)NQ| <o - |K|.
This is a contradiction with the assumption
AN K| > o|K].
Finally, because (2-7) holds true, Lemma 1.14 leads to

Al <o [B].
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2.1.1
Sobolev Regularity

In what follows, we detail the proof of the main theorem in this chapter,

namely, the Sobolev regularity for the solutions to the Isaacs equation.

Theorem 2.5 Let u € C(By) be a viscosity solution to

sup inf [ —TI‘(Aaﬁ(I)DQu) } = f(x) in Bi.

acABEB

Under the hypotheses of the Lemma 2.1, u € W2P(B;) and

lullwzsp,,,) < C (HUHLOO(BI) + ||f||LP(Bl)> ;
where C' > 0 is a universal constant.

Proof. By the Lemma 1.11, we have that
O(u, Bijz) € LP(Byj2) = u € W?P(By ).
Because of Lemma 1.15,

O(u, Bij2) € LP(Byj2) ZMpk pe (M) < oo,
k=1

where
po(t) = | {x € Bij2|O(u, Bija)(w) >t}

Since
pe(t) < [A(u, By,

we have that u € W??(B 5) whenever

> M| Ay (u, Byp) | < oo (2-8)

k=1
Now we prove (2-8); set

ar = | Ay (u, B1) N Qs |

and
b = | {z € Qi m(f)(x) > (CM*) }|.

Then Lemma 2.4 leads to

ap+1 < o (ag + b)),
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for some M > 1 and o € (0,1). Next, for all £ > 1,

ar < oag_1 +oby_y

< (72 Qap—2 + O'2 bk,Q + O'bk,1

SUka0+0kb0+O’k_1b1+"'+0’2bk_2+0'bk_1.

Thus we obtain
k—1 k—1
ap < o ag+ Z ok, < o + Z o,
=0 =0
Setting
g(a) = [m(f))] ",
we have

be=|{o el [m(m)]"" = et} = (e,

Since f € LP(By), by the properties of the maximal functions,
P 1 py 1H/P p
m(f?) € L' (Byj2) = [m(f )] € LP(By2).

Thus, by Lemma 1.15,

ST MPFY = > M (CMY) < .
k=0 k=0

Finally, by taking (c M?) < 1, we have:

00 k—1
ZMpkak<ZMpk <0 +Zak zb)
k=1 k=1 =0

00 k—1
=S (oar) Y > 3" (0 MY,

k=1 1=0

aMpk+<i0Mp ) ZMPZ )

HM8

/\

Noting that By C Q,

’AMk(u, 31/2) ’ S ‘AMk(u, Bl) M Ql l = Qyf,

which implies (2-8). Then u € W??(By2) and the proof is complete.

40
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2.2
Second Approximation Lemma

In this section we include variants of the Isaacs equation with explicit
dependence on lower order terms. To that end, we start with a second

approximation result.

Lemma 2.6 (Second Approximation Lemma) Let u € C(B;) be a vis-

cosity solution to

2 _ .
igaégg{ —Tr (Aaﬂ(x)D u) —bas(x) - Du } = f(x) in By,

where Agp @ B x A x B — R is a (X A)-elliptic matriz and bag
By x A x B — R? is a vector field such that b, s € LP(By) uniformly. That is

sup sup ||bagl|lr(z) < Co, for some Cy > 0.
acA BeB

For every § > 0 it is possible to choose €; > 0 such that, if Ag: By x B — R%
satisfies
1fllzosy) + || Aass — As HLOO(Bl) < e,

there exists h € W24(By) satisfying

h=u on 0By,

with
Illwasa <€ and Jlu— Allimay < &

for some universal constant C' > 0.

Proof. Suppose by contradiction, that the statement is false. In that case, we
can take sequences (A7} 5)nen; (bp g)nen, such that A7 50 By x A x B — RY
are (A, A)-elliptic matrices and b’ 5 : By x A x B — R? are vector fields such
that b} ; € LP(B;) uniformly, and sequences of functions (u,)nen and (fn)nen

satisfying

sup inf [ Tr( (T )D2un> — by () - Dun} = fu(x) in By,

acABEB

with
a5 = As| + b3

oy T allze) <
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Moreover, there exists dg > 0 such that, for every solution h to

B[~ (Fs@Dh) [=0 i By,

h = u, on 0By,
we obtain
”un - h||LOO(B7/8) > 507

for any n € N.

By the assumptions, we have that A7 ; — Ag and f,, — 0 when n — +o0,
in the appropriate spaces. Moreover, by the regularity theory available for w,,,
it converges to a function u., (through a subsequence if necessary). By the

stability of the viscosity solutions, we have

érelg [ —Tr(ZB(x)D2uoo> } =0 in B.

Notice that by Theorem 1.17, u., € W>9(By/5) NC(Bs)9) with the appropri-

ate estimates. By taking h = u,, we obtain a contradiction. ]

2.2.1
Sobolev Regularity

Theorem 2.7 (Estimates in W'P) Let u € C(By) be a viscosity solution to

: 2 _ .
21613[131612{ —Tr (Aaﬁ(x)D u) — by s(x) - Du } = f(z) in By,

and suppose the hypotheses of the Lemma 2.6 are in force. Then we have
u € WEP(By) and there exists C > 0 such that

C
lllwiss,,, < C (lullzey + 1) ) .

for every p € (1,00).
Proof. Follows from [(S97),Theorem 2.1]. |

Theorem 2.8 (Estimates in W??) Let u € C(By) be a viscosity solution to

sup inf { —Tr (Aaﬁ(x)Dzu) —bas(x) - Du } = f(x) in By,

acABEB

and suppose the hypotheses of the Lemma 2.6 are in force. Thenu € VVI?)’p(Bl)

C

and

lullwee s, ) < C (HUHLW(Bn + sup sup ||ba,gl e (5,) + HfHLP(BQ) :
acA peB
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where C > 0 1s a universal constant.

Proof. Let
g(x) := sup inf [— Tr (Aaﬂ(l‘)DQU(l‘)) } :

acABEB

Because w satisfies

; 2 _ .
21612%122 [ —Tr (Aaﬁ(x)D u) — by s(x) - Du } = f(z) in By,

we have that, for every x € B,

_ : 2
o2 = sup [~ T (Aoole)PPut) ]|

< ‘ sup sup b, g(z) - Du(x) ‘

acA BeB
: 2
|sup it [ = T (Anale)DPu(0)) = Boale) - Dule) |
= sup sup ’ b, s(x) - Du(x) ‘ + | f(x)|
acA BeB
< Cp supsup | ba s(x) | - | Dul| + | f(2) ],
acA BeB

for some universal constant Cy > 0. Thus g € LP(B;), because of Theorem

2.7. Note that u is also a viscosity solution to

21613érelg { —Tr (Aaﬂ(x)DZu(a:)) } =g(x) in Bj.

Then, by Theorem 2.5, u € W2"(B;) and
llw=s(z,, < C (lullzeeoy + 9o, )

<c (Hu||m31> + supsup [basllis + ||f||Lp<Bl>) .
acA pBeB
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Estimates in Holder Spaces

In this last chapter we examine the Holder regularity of the Isaacs

equation. We begin with another approximation Lemma. Then, we establish

1,Log—Lip
Cloc

conclude, under suitable conditions, we proof 0120;’ -regularity for the solutions.

—regularity in By, which implies C.7-regularity for every ~ € (0, 1). To

3.1
Approximation Lemma

We open the chapter with another approximation lemma.

Lemma 3.1 (Third Approximation Lemma) Let u € C(B;) be a viscos-
ity solution of
. 2 . .
iggérelg [ —Tr <Aa75(:c)(D u+ M)) +c } = f(xz) in By,
where Ag g : By x AxB — R™ is a (\, A)-elliptic matriz, c € R and M € S(d)

satisfies

inf [ = Tr (As(0)M ) +c] =0.

For every & > 0 it is possible to choose €3 > 0 such that, if Ag: By x B — RY
satisfies
1f1lzr(s1) + sup | Ao s(@) = Ap(0) | < €,
z€B

there exists h € C.J(By) solution to

ocC

égg[—Tr(Zﬁ(O)(DthrM))w]:0 in Bgjo,

h=u on 0Bg),

such that
”hHCiJZ(Bl) <C and |u—hlLem,, <96

for some C >0 and vy € (0,1), universal constants.

Proof. Suppose by contradiction, that the statement is false. In that case, we
can take a sequence (A}, 5)nen such that A7 5 : By x Ax B — R% are (A, A)-


DBD
PUC-Rio - Certificação Digital Nº 1812624/CA


PUC-RIo- CertificagaoDigital N° 1812624/CA

Chapter 3. Estimates in Holder Spaces 45

elliptic matrices, and sequences of functions (uy,)nen and (fy,)nen satisfying

sup inf [ —Tr (Agﬁ(x)(DQun + M)) + c} = fu(x) in By,

acABEB

with |
sup | A2 5(x) = Ap(0)| + | full o) < =
r€By n
and there is 9y > 0 such that, for every solution h to
. —- 2 . .
[laleltfg[_Tr(Aﬂ(O)(D h+M))+c}—0 in  Bg)o,

h = u, on 0By,

we obtain

||un — h“LOO( ) > 50, Vn e N.

B7/s
By the assumptions made, we have that A ; — Ag(0) uniformly and f,, — 0
in the appropriate topology, when n — 4o00. Moreover, by the regularity
theory available for u,, it converges to a function us, (through a subsequence
if necessary). By the stability of the viscosity solutions, we infer that ., solves
the Bellman equation

. - 2 o .

érelg [ —Tr (AB(O)(D Uso + M)) + c] =0 in By,
so by the Theorem 1.3, u,, € C?7(Bj),), for some v € (0,1). By taking

h = us, we obtain a contradiction. |

3.2
Estimates in C.2¢P(B)

loc

In this section we establish the regularity of the solutions to the Isaacs

equation in ChHMe~lP_gpaces. We start with a definition.

Definition 3.1 (Log-Lipschitz Continuity) A function u : By — R is

called Log-Lipschitz continuous if there exists a constant C > 0 such that

1
u(@) — uly)| < C o -yl log< ) |
EE=
where
0<[lz—y| <1

The set of Log-Lipschitz continuous functions defined on the open set O is
denoted Ct&~1P(0).
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We observe that a log-Lipschitz continuous function is y-Hélder contin-

uous for every v € (0,1). In fact, notice that

1 _
lall < [l log () < (1= )Y al,

]

for any v € (0,1). Therefore, we have

CUN(By) € G2V (By) € CYY(By).

loc loc

Moreover, we say that u € Cor®® P(By) if Du € C% “P(By), and it is

loc loc

equivalent to say that there exist p € (0,1) and C' > 0 such that

1
sup |u(z) —u(zg) — Du(xg) - (x — x0) ’ < Cp’log () :
llz—zoll<p P
for any xg € B;.

In order to proof the Theorem 3.4 (C

and proof an iteration result (Lemma 3.3). We first proof the inductive step

1,Log-Lip

loc regularity), we establish

of the Lemma 3.3 as follows.

Lemma 3.2 Let u € C(By) be a viscosity solution of

sup inf [ —TI“(Aaﬁ(CE)DQU) } = f(z) in By,

acABEB

where App: By x AX B — R s q (A, A)-elliptic matriz. Suppose that, for
somen € N there exist 0 < p < 1 and a finite sequence of polynomials (Py)g<n,
of the form

Pi(z) :==ap +bg-x+ ;xTC’kx,

satisfying

érellfg[—Tr(zg(O)Ck)]:(ﬁ and lu = Pell s ) < P,

for some Ag : By x B — Rd2, a (A, A)-elliptic matriz. Moreover, suppose that

for every k < n, we have
lar — ax—1| + p" by, = by [| + P*F VO = Cra || < O,

Let v, : By — R be defined by
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Then for every § > 0 and vy € (0,1), there exist e, > 0 and h € C.J(By) the

solution of

{gﬁ—ﬁ@mmw%+aw]m in Byyo,

h=wv, on 0By,
such that, if

sup £ |f(2) = (/) de <& and  sup | Aup(x) — As(0)] < e,

re(0,1] Y Br z€B)

uniformly in o« and 3, then
[hllgso iy < € and [Jvn = hll o, < 5,
for some C' > 0 universal constant.

Proof. We have that

2nD2 n _ 2nCn
p n

and, for all x € By,

sup inf [ =T ((Aas(p"2) (D*0n(x) + C) ) | = £(p")

By taking f,(z) := f(p™z), we get that v, solves

sup inf [ —Tr (Aaﬂ(p”x)(DQUn + Cn)) } = fu(2) in Bj.

acABEB

Next, v, solves

sup inf [ = Tr (Anslp"a)(Du+ C)) = (N ] = ful) = (1) i B,

Noting that (f) = (f.) = (f),n, we have that

||fn <fn>||Lp (B1) an <fn>||Lp(31
=3 | 1@ = (Dl da

< sup £ [f(@) = (/). da
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Finally, by Lemma 3.1, for any § > 0, there exists h € CoJ (B;) solving

égg[—Tr(zﬁ(O)(D%Jrcn)) —(f)] =0 in By,
h =wv, on 0By,

such that
| vn — R ||Loo(31/2) <0,

where v € (0,1) is a universal constant, and since (f) is constant, we obtain

int [~ T (O + )] = (1)

and complete the argument. |

Lemma 3.3 Let u € C(By) be a viscosity solution of

sup inf [ —TI‘(Aaﬁ(I)D%L) } = f(x) in By,

acABEB

where A g : By x Ax B — RT is a (A, A)-elliptic matriz and lulles,) < 1/2.
Then there exist constants C' > 0, e > 0 and 0 < p < 1, and a sequence of
polynomials (P,)nen given by

1
P.(z) :=a,+b, x4+ 5 1O,
such that, if

sup F@) = (Fhromol” dx < 8 and  sup | Aqp(z) = As(0) | < &,
r€(0,70] By (0) zE€Br

for every xo € By and («, 5) € A x B, with ro = dist(xo, 0B1), then

inf [ —Tr (As(20)C ) | = (), sup |u(z) — Po(z)| < p*

peb mEBpn

and
‘an - an—l‘ + Pnilen - bn—IH + PQ(n71)||Cn - Cn—IH < CPZ(nilh

for every n > 0.

Proof. We proceed by induction in n € N and consider the case zy = 0.
In the basic case, take P_; = Py = 5 27 Cyx for Cy € S(d) such that

inf [ —Tr (A;(0)Co ) | = (f) amd [Col| <1
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Hence,
a_1 = Qg = 0 s b,1 = bo =0 and Cfl = Co,

which accounts for the case n = 0. Now, we suppose the case n is satisfied,

and set v, : B; — R as

(u—P)(p"x)
p3r '

vp(z) =

By the induction hypothesis and Lemma 3.2, there exists h € Cp7(Bj)
satisfying
. —- 2 . .
inf [~ Tr (A5(0)(D°*h + C,) )| = (/) in Byja.
such that
ég%[—Tr(Zg(O)DZh)] =0 in By,
and

| vn —h ”Loo(Bl/Q) <9,

for any 6 > 0 and 7 € (0, 1) being a universal constant. Now set
_ 1
P,(x):=h(0)+ Dh(0) -z + 5 T D?*h(0).
Then, by the triangular inequality and the regularity of h, we have
sup’vn—?n‘ < lon =gz, ) +sup‘h—?n‘
B, B,
<§+Cp

Make the universal choices

2 1/
_r _ 1)
0=75 and p= (20

to conclude

sup [un() — Pule)| < 7
z€B,
Since
_ ng) — P,(p"z)  —
Sup‘vn_Pn‘ = Sup U(p x) on (p x) - n(x)
B, zeB, P
_ Pn _ 2nﬁn —-n
N e 1C) 7 (™) |
IEBPn+1 p
we have
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Define
Poii(z) == Pu(z) — p2n ?n(p_nm)
1
= P,(x) + p* h(0) + p" Dh(0) - z + 5 " D?nh(0)z.
Also, set
i1 = an + P h(0), by := b, + p" Dh(0)
and

Cn+1 = Cn + DQh(O)

Notice that

inf Tr (A5(0)Cor ) = inf T (A5(0)(C + D*R(0)) ) = ().

and there is C' > 0 satisfying

|ant1 — an| + p"[[bry1 — by + p2n||0n+1 — Gyl
= p" [h(0)] + p*" [IDR(0)]| + p* || D*R(0) |

Hence, the statement is true in the case n + 1, completing the induction
argument.

The case xy # 0 follows from a change of variables. |

Theorem 3.4 (Estimates in C2%"?)  Let u € C(By) be a viscosity solu-

loc

tion to
sup inf [ —Tr (Aa”g(x)DQu) } = f(z) in Bi.

acABEB

Suppose the hypotheses of the Lemma 3.3 are in force and let xg € Byjo. Then

u € Cur® " (By) and there is a constant C such that

sup ‘u(x) — u(xg) — Du(xg) - (z — xo) ’ <C (—r2 ln(r)) ,

x€B(z0)

for any r <.
Proof. We prove the case xo = 0. Taking
L op
P,(x):= an+bn~x+§x C,x
from Lemma 3.3, we have that

|an — u(0)] = [P(0) — u(0)] < p™
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and there exists a constant C' > 0 such that

k=n+1
k=n+1
1— pmfn
—Ccpn.—
<Cp

for any m > n. Then a,, and b,, are convergent because 0 < p < 1. We also
have that
”On - On—l” S Ca

then .
1Call < [IColl + - Ik — Crall < IColl +nC.

k=1

Note that, for any n € N

u(x) — {u(O) —I—boo-x} ’

= u(x)—Pn(x)+an+bn-x+;xTC’nx—[u(O)—l—boo-x]

< u(e) = Polo)| +] an — u(0) | + | b~ b |+ 3 7 Cot]

< [ul@) = Pa(e) | + | an = w(0)| + [ b = bac | - el + 5 PGl
< [ule) = Pale) | + 92+ O el + 5 el (11 Coll + 0 C),

Where by = lim b, = Du(0) in fact. Then, for some r € (0,1/2)

sup
z€B(0)

u(z) — [u(()) + Du(0) - a:} ’ < xeSJIBHZo) ‘ u(z) — Py(x) ‘

+ p* + 1 Cp™ + 12| Col| +n Cr?.
Choosing n such that p"t! < r < p", then

sup |lu(z) — {u(O) + Du(0) - x}

z€B;(0)

‘ < p* 200" 4 p(|Col| + n Cp™.

Since p"t! <r < 1/2 and p7" < r~!, we have

21y (-1
on T rIn(r—) . .

— < ———= d nl <l :

p <p2<p21n(1/2) and nln(p™) <In(r™)
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At the end we get

sup |u(z) — {u(O) + Dh(0) - 3:}
z€B,(0)
r?In(r=t)  Cr?ln(r=t)
142

< (1426 +160) e * e

< Cr¥n(r ),
where

& — max 1+2C + |Gy C

B p*In(1/2) 7 p*In(p~?)
The case xy # 0 follows from a change of variables. |
3.3

Estimates in C.) (B,)

Finally, we present the arguments concerning the regularity of the Isaacs
equation in C?7. The result we detail branches in two variants; first, when the
source term is a well-prepared function, we obtain C?7-regularity around the
origin. Secondly, if f = 0, we obtain C?7- estimates locally in B;. We first
proof a lemma, which corresponds to the inductive step of the Lemma 3.5

(iteration result for C?7 regularity).

Lemma 3.5 Let u € C(By) be a viscosity solution of

ilelgflﬁglf’ﬁ[ —Tr (Aayﬁ(:c)DQu) } = f(x) in B,

where Aap @ B1 X A X B — R s a (A, A)-elliptic matriz. Suppose that,
for some n € N there exist v € (0,1), p € (0,1/2) and a finite sequence of
polynomials (Py)r<n, of the form

1
Pk(a:) =a,+ b+ 5 QSTCkZL’,
with Py = P_1 = 0, satisfying

éfelg [— Tr (X,B(O)Ck)] =0 and |u— P"?”L“(Bpk) < e+

for some Ag : By x B — R% (A, A)-elliptic matriz. Moreover, suppose that for

every k < n, we have

lag — ap_1| + p* by — b_1| + P2 E Y| O — Cry|| < CpHE—DE),
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Let v, : By — R be defined by

(u— Bo)(p")
o) = G

Then for every § > 0, there exist e3 > 0 and h € Clzo’Z(Bl) solution of

. - Cy, ,
égél—Tl”(Ag(O) (DQh—i-/W))] =0 in DBy,

h=uv, on 0DBg),
such that, if

][ \f(x)]P de < &r™®  and  sup ‘Aa,g(ac) — Az(0) ‘ < egr?,

r r€B,

uniformly in o and 3, then
[vn — Pl LB, ,5) < 9,
for some C > 0 universal constant.

Proof. We have that

p2nD2U(pnl') _ anCn

2 —
D ’Un(l‘) o pn(2+’}’)
_ D*u(p"z) - C,
= e 7

and, for all x € By,

f(p"z) = sup inf [ —Tr (Aa,g(p"x)DQU(p”x» } )

acAPEB
then
sup infl | = Tr (Aas(p"2) (0" Dun(x) + Ca) ) | = f (")
By taking .
ola) = 122,

we get that v, solves

sup inf [ —Tr (Aaﬁ(pngg) <D2vn + /i’f/)) ] = fu(x) in By,

acABEB

23
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where
1

o L el dr

1 » dx
v B F)l ||
1
= — |f(2)[” dax

P By

||fn||1£p(31) =

1
< e

Finally, by Lemma 3.1, for any § > 0 and some 7y € (0,1), there exists
h € C.)(B,) solving

: - Cy .
érelfé [—Tr(Aﬂ(O) <D2h+pm>>] =0 in By,

h=uv, on 0By,
such that

| vn —h ||Loo(31/2) <o.

Lemma 3.6 Let u € C(By) be a viscosity solution of

sup inf [ —Tr (Aayﬁ(:c)DQu) } = f(x) in B,

acABEB

where Aq g : By x Ax B = R% is a (\, A)-elliptic matriz and lulles,y < 1.
Then there exist v € (0,1), C > 0, e3 > 0, p € (0,1/2) and a sequence of
polynomials (Py,)nen, given by

1
P,(x):=a,+b, x4+ 3 1CLx,

such that, if

sup ‘Aaﬂ(x) - Zﬂ(xo) ’ < €3 7 and ][ |f(x)|p dr < eg 7"7”,
z€B, B,

for every xo € By and (alpha, ) € A x B, then

it [~ Tr (Ap(eo)C)| =0 = Pallyegs, g < 0"

and

|an — p1| + pn_1|bn — by, 1| + pz(n_l)HCn —Cpa < C«p(n—l)(z-m)’
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for any n > 0.

Proof. We proceed by induction in n € N and consider the case o = 0. In the

basic case, take P_1 = Fy = 0. Hence
aoza,lzo y b(]:bflzo and 002071:0,

which satisfy the conditions for n = 0.
Now, we suppose the case n is satisfied, and let v, : By — R be defined

by
(u — B)(p")
on() = pn(2+)

By the induction hypotheses and Lemma 3.5, for every § > 0, there exists
h € C.7(By) satisfying

inf [—Tr <A5(O) <D2h + C”) ) ] =0,
BeB pm

such that
|vn — h||L°°(B7/8) <o.

Set
P,(x) :=h(0) + Dh(0) -z + ;xTDQh(O)x.

Then, by the triangular inequality and the regularity of A, we have

sup’vn—ﬁn‘gﬂvn—hHLm( )+sup‘h—ﬁn‘§5+0p2+7.
B, B,

By
Choose )
24y 1 —
p Y=y
= 0= ()
g M PT oo
to ensure
sup ‘ Un(x) - Pn(x) ’ < p2+'y'
By
Hence,
sup | u(w) — Pa(x) = p" ) Py(p ") |
xEBpn+1

= sup |u(p"s) = Po(p"x) = p"**7) Pr(a)|
reB,

P

< pn(2+w)p2+w _ p(n+1)(2+7).
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Define
Pn+1 (I) = Pn(m) — pn(2+7) ?n(p—nl,) :
Also, set
tnp1 = an + p" TV (0), b1 = by + p " Dh(0)
and

Cpsr = Cy + p"D2h(0).

We finally have

éngs [—Tr (Zg(O)C’nH)} =p" érelg [—Tr (Ag(O) <D2h+ 5;) )] =0,

and there is C' > 0 satisfying
s — @l "By = Ball 07| Cois — Cull < €24,

Hence, the statement is true in the case n + 1, completing the induction

argument. The case xy # 0 follows from a change of variables. [ |

Theorem 3.7 (Estimates in C*7) Let u € C(B;) be a viscosity solution to

sup inf [ —Tr(Aaﬂ(x)Dzu) } = f(x) in Bi.

acABEB

Suppose the hypotheses of the Lemma 3.5 are in force. Then there exists
v € (0,1) such that u is of class C*7 at the origin. If f = 0, we have

u € Co)(By) and there exists a universal constant C > 0 such that

[ulle2(sy) < Cllullze(sy)- (3-1)
Proof. By Lemma 3.6, there are v € (0,1), p € (0,1/2) and a sequence of
polynomials (P, )en, of the form

1
P,(x):=a,+b, x4+ §xTCnx , Ph=P_1 =0,

satisfying
Ju— Pn”Loo(Bpn) < ),

with

|an — an—1] + pn_l‘bn —bya| + P2(n_1)HCn — Cpa < Cp(n_l)(z—w)
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for every n > 0. Hence
|an — u(0)] = [Pa(0) — u(0)] < p"*+7,

and

C
1—p7

|bm - bn| S O Z |bk: - bk—1| S C Z P(k_l)w S

k=n-+1 k=n-+1

M

for any m > n. Then a, and b,, are convergent because 0 < p < 1, thus they
are bounded. . We also have that

|Cy, — Cra || < C pF=10,

which implies

ICuIl < IColl + > ICk = Cra|

k=1
< ||Coll +C 7 ptn
k=1
1— pn7
=Gl +C 7
C -
<||CD”+1—W = (C < oo.

Thus, we conclude that u € C7(By).
Finally, the inequality (3-1) follows from the interior Holder regularity
(Theorem 1.10 and [(CC95), Propositions 4.12 and 4.13]). |
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