
Matheus Telles Werner

A fast and space-economical approach to Word
Mover’s Distance

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
April 2019

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Matheus Telles Werner

A fast and space-economical approach to Word
Mover’s Distance

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática – PUC-Rio

Prof. Marco Serpa Molinaro
Departamento de Informática – PUC-Rio

Prof. Raúl Pierre Rentería
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 24th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

All rights reserved.

Matheus Telles Werner

Bachelor’s in Computer Engineering (2016) at the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio).

Bibliographic data
Werner, Matheus Telles

A fast and space-economical approach to Word Mover’s
Distance / Matheus Telles Werner; advisor: Eduardo Sany La-
ber. – Rio de janeiro: PUC-Rio, Departamento de Informática,
2019.

v., 55 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Distância entre documentos. 2. Word Embeddings. 3.
Word Mover’s Distance. I. Laber, Eduardo Sany. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Acknowledgments

First and foremost, I would like to thanks my advisor Eduardo Sany Laber for
his guidance, professionalism and valuable discussions during all this work. To
Alexandre Renteria, whose key insight even if unintentionally, helped this work
to reach its present state. To the Informatics Department and its professors at
PUC-Rio. To all my friends at Galgos, in special to Georges and Luisa. Finally,
to my family, for helping and supporting my decision.
This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Abstract

Werner, Matheus Telles; Laber, Eduardo Sany (Advisor). A fast and
space-economical approach to Word Mover’s Distance. Rio
de Janeiro, 2019. 55p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The Word Mover’s Distance (WMD) proposed in Kusner et. al.
[ICML,2015] is a distance between documents that takes advantage of se-
mantic relations among words that are captured by their Word Embeddings.
This distance proved to be quite effective, obtaining state-of-the-art error
rates for classification tasks, but also impracticable for large collections or
documents because it needs to compute a transportation problem on a com-
plete bipartite graph for each pair of documents.
By using assumptions, that are supported by empirical properties of the
distances between Word Embeddings, we simplify WMD so that we obtain a
new distance whose computation requires the solution of a max flow problem
in a sparse graph, which can be solved much faster than the transportation
problem in a dense graph. Our experiments show that we can obtain a
performance gain up to 3 orders of magnitude over WMD while maintaining
the same error rates in document classification tasks.

Keywords
Document Distance; Word Embeddings; Word Mover’s Distance.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Resumo

Werner, Matheus Telles; Laber, Eduardo Sany. Uma abordagem
rápida e econômica para Word Mover’s Distance. Rio de
Janeiro, 2019. 55p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

O Word Mover’s Distance (WMD) proposto por Kusner et al.
[ICML,2015] é uma função de distância entre documentos que se aproveita
das relações semânticas entre palavras extraidas por suas Word Embed-
dings. Essa função de distância se mostrou bastante eficaz, obtendo taxas
de erro estado da arte para problemas de classificação, porém ao mesmo
tempo inviável para largas coleções ou grandes documentos devido a ser
necessário computar um problema de transporte em um grafo bipartido
completo para cada par de documentos.
Assumindo algumas hipóteses, que são respaldadas por propriedades empí-
ricas das distâncias entre as Word Embeddings, nós simplificamos o WMD
de forma a obter uma nova função de distância o qual requer a solução
de um problema de fluxo máximo em um grafo esparço, que pode ser re-
solvido mais rapidamente do que um problema de transporte em um grafo
denso. Nossos experimentos mostram que conseguimos obter ganhos de per-
formance até 3 ordens de magnitude acima do WMD enquanto mantendo
as mesmas taxas de erro na tarefa de classificação de documentos.

Palavras-chave
Distância entre documentos; Word Embeddings; Word Mover’s

Distance.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Table of contents

1 Introduction 12
1.1 Our Contributions 13
1.2 Related Work 14
1.3 Dissertation Organization 15

2 Background 16
2.1 Word Embeddings 16
2.1.1 Neural Network Language Model 16
2.1.2 Word2Vec 18
2.2 Document representations 21
2.2.1 Bag-of-Words 21
2.2.2 Enhanced Bag-of-Words 22
2.3 Network flow problems 23
2.3.1 Maximum flow problem 23
2.3.2 Minimum-cost flow problem 23
2.4 Document distances 24
2.4.1 Cosine Distance 25
2.4.2 Word Mover’s Distance 25
2.4.3 Relaxed Word Mover’s Distance 27

3 An efficient method for calculating the distance between documents via
word embeddings 28

3.1 On the distances between word embeddings 28
3.2 Algorithms exploiting distance assumptions 30
3.2.1 Preprocessing Phase 31
3.2.2 Related Word Mover’s Distance 31
3.2.3 Related Relaxed Word Mover’s Distance 32
3.2.4 Max Flow Word Mover’s Distance 33

4 Experiments 36
4.1 Datasets description 36
4.2 Distances 38
4.3 Results 38
4.3.1 Test Error 38
4.3.1.1 By dataset 39
4.3.1.2 By changing embeddings 39
4.3.1.3 Sensitivity to the number of related words 40
4.3.2 Computational Performance and Memory Requirements 41
4.3.2.1 By dataset 41
4.3.2.2 Sensitivity to the number of related words 42
4.3.2.3 By the size of the documents 43
4.3.3 Additional experiment 45
4.3.3.1 Test Error 46
4.3.3.2 Computational Performance 47

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

5 Final Remarks 48

Bibliography 49

A Experimental results 52

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

List of figures

Figure 2.1 Language Model example. 16
Figure 2.2 Neural Network Language Model. 17
Figure 2.3 Context window example. 18
Figure 2.4 Word2Vec training samples. 18
Figure 2.5 Word2Vec Models. 19
Figure 2.6 Two-dimensional PCA projection of the 1000-

dimensional Skip-gram vectors of countries and their capital
cities. 20

Figure 2.7 Examples of Enhanced Bag-of-Words representations.
Each document is represented by its collection of words (points)
in the word embedding space weighted by their respective
frequencies (between parentheses). 22

Figure 2.8 Pair of documents in word embedding space. 26
Figure 2.9 Distance between all pair of words from a pair of docu-

ments. 26

Figure 3.1 Distances from the embeddings of the words in Amazon
dataset to word “cat”. 29

Figure 3.2 Distribution of the distances between words from 2000
pairs of documents. 30

Figure 4.1 Execution time as a function of the product of the
number of distinct words in the pair of documents. 45

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

List of tables

Table 4.1 Datasets statistics. 37
Table 4.2 The behavior of test error for different distances/datasets. 39
Table 4.3 The behavior of test error for different distances/datasets,

replacing the Word2Vec with GloVe embeddings. 40
Table 4.4 The behavior of test error of the MF-WMD over different

r(w) values. 41
Table 4.5 The speed up factor w.r.t to WMD of different dis-

tances/datasets. 42
Table 4.6 The speed up factor w.r.t to WMD of the MF-WMD over

different r(w) values. 43
Table 4.7 The percentage of preprocessing time within the running

time for the MF-WMD. 43
Table 4.8 The behavior of test error for different distances on the

WIKIPEDIA dataset. 46
Table 4.9 The speed up factor w.r.t to RWMD of different distances

on the WIKIPEDIA dataset. 47

Table A.1 The behavior of the brute test error for different dis-
tances/datasets. 53

Table A.2 The behavior of the brute test error for different dis-
tances/datasets, replacing the Word2Vec with GloVe embeddings. 54

Table A.3 The running time (in seconds) of different dis-
tances/datasets. 55

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Nothing travels faster than light with the possi-
ble exception of bad news, which obeys its own
special rules.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

1
Introduction

Documents comparison is a fundamental step in a number of applications,
such as recommendation, clustering, search, and categorization. In its simplest
version, this task consists of computing the distance between a single pair of
documents.

The document representation is a crucial factor in the definition of
a distance. Arguably, the most employed document representations due to
their simplicity and good results are the Bag-of-Words (BOW) and the Term
Frequency - Inverse Document Frequency (TFIDF). These representations are
based on word counting and so may lose information that is relevant for some
applications, as the ordering among words in a document, co-occurrence and
semantic relations between different words. Therefore, richer representations
that take into account some of this information have been proposed [1, 2, 3].

Up to a few years ago, no representation used semantic relations because
there was no clear methodology of how to obtain them. Though they eventually
started using ontologies [4] as a palliative but making them dependent on an
external knowledge base. Another concern of that approach was that finding
such bases was also impossible for many languages and domains. However,
this restricted scenario changed with the emergence of Word2Vec [5, 6] and its
variants [7], a class of methods that allow to efficiently identify the relationship
between words and embed them into vectors, called word embeddings. As a
result, researchers have been looking for ways to combine these embeddings
with methods already proposed in the literature to refine them. Results of
these efforts can already be seen in works such as [8, 9, 10, 11] and indeed
improvements are obtained.

In particular, Kusner et al. [9] proposes the Word Mover’s Distance
(WMD), an application of the classic Earth Mover’s Distance (EMD) [12]
for the domain of documents, that takes advantage of the semantic relations
captured by the embeddings associated with their words. The idea is to com-
pute the minimum cost required to transform one document representation
into another by using the distance between embeddings as the cost of trans-
forming words. In fact, the distance is given by the cost of an optimal solution
of a transportation problem defined on a bipartite complete graph where the

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 1. Introduction 13

nodes correspond to the distinct words of the documents. In the same paper,
they show that this approach obtained very good results on document classifi-
cation tasks, outperforming a number of alternatives. The major drawback of
WMD, however, is its high computational cost since solving the transportation
problem in a complete bipartite graph is costly, requiring super cubic time.

Motivated by this scenario, the focus of our work is to develop a new
distance function that is as effective as WMD with the advantage of being
much more efficient with regards to computational resources consumption.

1.1
Our Contributions

To achieve this goal, in contrast to other approaches available, we explore
properties of the application domain, more specifically the distribution of
distances among word embeddings. Our starting point is showing that instead
of considering all the n2 distances between the embeddings of a vocabulary with
n words, we can focus on a much smaller set. This set consists of the distances
between related words, that is, words that are close in the embedding space,
for a suitable definition of closeness. This observation, supported by empirical
data, can be used to dramatically reduce the memory required to cache the
distances between embeddings. Such cache is essential for the fast computation
of WMD and related distances as we show in our experiments. Moreover, the
space savings is highly desirable for handling large vocabularies.

Our main contribution, which is also built upon the previous observation,
is a new distance function, namely Max Flow Word Mover’s Distance (MF-
WMD), whose computation relies on the solution of a max flow problem on a
sparse graph, a problem that can be solved much faster than the transportation
problem in a dense graph. The key idea for this reduction is the observation,
perhaps surprisingly, that we can consider only two distinct values to represent
the distances between words from a pair of documents, without losing much
information: One representing the related words while the other representing
the unrelated ones. The selection of related words can be defined via a global
parameter that allows to trade-off speed and accuracy. Experiments reported
over 8 datasets show that MF-WMD yields test error as good as WMD for
document classification task with a significant gain in terms of execution time.
Moreover, it is competitive with variants of the WMD such as Relaxed Word
Mover’s Distance (RWMD) [9] while consuming significantly less space.

As the reduction from all distances to two distances can be seen as
too aggressive, we also propose variants of the WMD and RWMD grounded
on those same assumptions, although only replacing the distances among

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 1. Introduction 14

unrelated words by a single distance. Reproducing the previous experiments
show that these variants achieve similar gains to the MF-WMD.

In addition, to contributing to the state-of-the-art of the topic under
discussion, we believe that the approach taken here could be useful to optimize
algorithms for other applications (for example, clustering) that involve the
computation of distances between embeddings.

1.2
Related Work

Our work is closely related with some approaches that have been pro-
posed to circumvent the high computational cost of WMD [9, 13].

Kusner et al. [9] proposes the RWMD, a distance that is defined over a re-
laxation of the transportation problem in which some constraints are dropped.
Given the matrix distance between the words embeddings of documents D and
D′, the RWMD can be calculated in O(|D|×|D′|) time, where |D| and |D′| are
the number of distinct words of D and D′, respectively. Thus, the bottleneck
of RWMD is to compute the distance matrix which costs O(|D| × |D′| × d)
time, where d is the dimension of the word embeddings space. Such cost can be
prevented by caching the O(n2) distances between all the n vocabulary words,
an approach that could be prohibitive for large n. Experiments from Kusner
et al. [9] shows that RWMD achieves test error competitive with WMD for
document classification tasks while incurring a lower computational cost, even
without using cache.

Atasu et al. [13] shows how to compute RWMD for any two documents D

and D′ from a collection C in O(|D|+ |D′|) time. To achieve this running time
they need to pre-compute and store the distance of word w to the nearest word
in document D, for each w in the vocabulary and each D in the collection.
Thus, it consumes O(n|C|) memory, where |C| is the number of documents in
C, which may be infeasible for large collections. Furthermore, this linear time
complexity does not hold for dynamic collections since the method requires
O(|Dnew| × n × d) for computing the distance matrix before calculating the
RWMD from a new document Dnew to some document D.

The main advantage of MF-WMD over RWMD is that it obtains compet-
itive results in terms of both test error and computational performance while
requiring significantly less memory, which makes it more suitable to handle
large vocabularies/collections as well as dynamic collections.

Our work is also related with some proposals to speed up EMD [14, 15].
Pele et al. [14] presents an optimized solution of the EMD for instances in
which the costs of the edges satisfies some properties that are motivated by the

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 1. Introduction 15

way human perceive distances.The optimization introduced by this approach
consists of reducing the number of edges in the transportation network and, as
a consequence, the running time. This works resembles ours in the sense that
both optimize the time complexity to solve the transportation problem by
taking into account how the costs behave in the domains under consideration.
In contrast to Pele et al. [14], our new distance relies on the computation of the
max flow problem, which can be solved much faster than the transportation
problem as aforementioned.

Cuturi et al. [15] uses an entropic regularization term to smooth out the
transportation problem so that it can be solved much faster via Sinkhorn’s
matrix scaling algorithm. This algorithm has O(|D| × |D′|) empirical time
according to [15] and it was used in a supervised version of WMD [16]. However,
similar to the RWMD, this method needs an O(n2) space cache in order to
prevent the O(|D| × |D′| × d) time required to compute the distances between
the words in D and D′. If not possible, then in reality the running time of this
method is O(|D| × |D′| × d) instead of O(|D| × |D′|).

1.3
Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we introduce our
notation and discuss some background that is important to the understanding
of our work. In the next chapter we develop our approach. In Chapter 4,
we present our experimental study comparing the new distance function with
WMD and RWMD both in terms of test error in classification tasks as well as
in terms of computational performance. Finally, Chapter 5 is regarded to our
final remark and discussion of future work.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

2
Background

In this chapter, we overview the concepts and methods needed to
understand the rest of this work. In Section 2.1, we briefly describe how we
can obtain the Word Embeddings and some of their nice properties that are
exploited by many of the distance functions used here. Next, in Section 2.2,
we discuss the documents representations employed in this work. In Section
2.3, we formally introduce the Maximum flow problem and Minimum cost
flow problem that, as already mentioned, are required to explain the distances
described in Section 2.4 and to develop our approaches in Chapter 3.

2.1
Word Embeddings

2.1.1
Neural Network Language Model

Bengio et al. [17] introduced the key idea of how to represent words as
continuous vectors using Neural Networks during its presentation of a Neural
Network Language Model (NNLM). The objective of a language model is to
compute the probability p(wi|w1, . . . , wm) of each word wi appearing right after
a sequence of m words w1, . . . , wm. Figure 2.1 displays an example with m = 2.

Figure 2.1: Language Model example.

The state-of-the-art algorithm at the time, the n-gram, suffered from
the lack of generalization because it could only compute the probability
distribution of sequences already seen during training. To overcome this
limitation, Bengio et al. [17] suggested a Neural Network model that learns
how the words in the sequence relate to the next word being predicted and

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 17

how their positions disturb its probability distribution. This new approach
surpassed the previous state-of-the-art results, but also unfold an issue related
to the computational cost required for training such complex model.

Figure 2.2: Neural Network Language Model.

The NNLM architecture (Figure 2) consists of three components denom-
inated layers: The first layer (bottom) is responsible for getting the embed-
ding of each word w in the input sequence {w1, . . . , wm}. Next, the second
layer (middle) uses them to infer more meaningful features to the task. Then,
the third layer (top) consumes these new features to estimate the probabil-
ity p(wi|w1, . . . , wm) of each word i of the vocabulary be next in the sequence.
Lastly, the model assigns the word with the highest probability as the following
word.

For tuning this model, we follow the supervised learning strategy. We
give the model a collection C of annotated sequences. And, for each one of
them, the model predicts the next word and checks whether it got it right. If
yes, it goes to the next sequence. Otherwise, we update the layers guided by
the gradient of the error. We repeat this procedure a few times through the
collection, commonly until convergence to a plateau or time limit.

The high computational cost as to do with the obligation of computing
the probability of all n words for each sequence, which makes the model costs
Ω(E × |C| × h × n), where E is how many times we go through them, |C| is
the number of sequences in the collection C and h is the number of features
inferred by the second layer.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 18

2.1.2
Word2Vec

The NNLM can be seen as an algorithm that solves two tasks at the same
time. The first task is to learn how to represent words into a vector space and
the second task is to build a generic language model using them as features.
Due to this clear division, follow-up studies [5, 6, 18] attempted to attack them
separately.

In special, Milokov et al. [5, 6] focused solely on developing an efficient
procedure for generating, in an unsupervised fashion, a vector space that
captures the semantic relations among words since its usually assumed to be
a quite time-consuming task.

Inspired by the ideas laid by Bengio et al. [17], Mikolov et al. [5] assumes
that semantically close words should frequently appear within a context
window of size c of each other which corresponds to the c nearest words before
and after a central word wt in the sentence. Figure 2.3 displays an example
with c = 2 where “jumps” is considered semantically similar to “brown”, “fox”,
“over” and “the”.

Figure 2.3: Context window example.

Mikolov repeats this process for all existing sentences and contexts
windows inside them for each document in a document collection, resulting
in an extensive list of similar words as displayed in Figure 2.4. Then he uses
this list as input to a shallow Neural Network for learning how to represent
each word as a vector, its Word Embedding, in the new vector space.

Figure 2.4: Word2Vec training samples.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 19

Mikolov et al. [5] proposes two versions of this shallow Neural Network.
The first model called Continuous Bag-Of-Words (CBOW) uses the context
words wt−c, . . . , wt−1 and wt+1, . . . , wt+c to predict the central word wt while
the second model called Skip-Gram do the opposite, it uses the central word
wt to predict the context words wt−c, . . . , wt−1 and wt+1, . . . , wt+c individually.
Figure 2.5 displays a plain version of both models.

Figure 2.5: Word2Vec Models.

In both architectures each word i in the vocabulary is represented by
vectors xI

i ∈ XI and xO
i ∈ XO, where the matrices XI , XO ∈ Rd×n store

the d-dimensional word embedding of each one of the n words. The former
encodes word i between input and projection layers while the later encodes it
between projection and output layers. At the end of the training phase, the
word embedding for word i is merely xi = xI

i + xO
i . This double representation

serves to symbolize both central and context word versions of the word i.
For the CBOW, the first layer (input) gets the embeddings in XI of the

context words wt−c, . . . , wt−1 and wt+1, . . . , wt+c. The second layer (projection)
sum these 2c vectors and create an aggregated word vector. Next, the third
layer (output) takes the dot product between the resultant “artificial” word
from previous layer and the vector xO

i of each word i in the vocabulary and
then compute the probability of each one using the softmax function. Finally,
similarly to the NNLM, the model assigns the word with the highest probability
as the predicted word. The computational cost of one training example is then
O(d× n).

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 20

For the Skip-Gram, the first layer gets the word vector xI
wt

and the second
layer just copies it. Then the third layer do the same computation done by the
CBOW. However, this time we repeat the same process 2c times, predicting
each context word separately. The computational cost of one training example
is then O(c× d× n).

Although the Skip-Gram is more computationally expensive, it performs
better in external applications and so is more used in practice. Nonetheless,
both are still expensive since training one example continues to be proportional
to the number of words in the vocabulary. As a solution, Mikolov et al. [6]
proposed applying a Noise Contrastive Estimation (NCE) which approximately
maximizes the log probability of the softmax but replaces the n by a k factor
where n� k. The idea is to slightly change the goal from “perfectly” learning
the probability of each pair of words to learning how to distinguish a real pair
of similar words from k fake ones drawn from the noise distribution Pn(w).

Together with this gain in efficiency, the Word2Vec gained general at-
tention because of the nice properties of the generated vector space. Word
vectors that are close in the space tend to be semantically close even if
they do not co-occur frequently in the documents, while distant vectors,
in general, have no semantic relation. Furthermore, they also noticed that
in the vector space one can find interesting relations like vec(German) +
vec(airlines) ≈ vec(airline Lufthansa) and vec(king) − vec(man) +
vec(woman) ≈ vec(queen). Figure 2.6 displays one of the relations found
by Mikolov et al. [6].

Figure 2.6: Two-dimensional PCA projection of the 1000-dimensional Skip-
gram vectors of countries and their capital cities.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 21

2.2
Document representations

When working with documents, the first step is to establish a repre-
sentation of them that can be easily manipulated by computers. Ultimately,
this representation is a simplification of the original that stores its relevant
information in a data structure, such as a vector or dictionary.

For that, we need to define a vocabulary determining all tokens –
unique words and phrases – that are going to be taken into account for the
representation. Usually the lexicon is just all words present in a given collection
of documents, however, it is a well-established practice in the field to apply a
preprocessing step before it to standardize these words. This is useful because
helps to reduce the noise in the documents, improving the quality of their
representations. In any case, we are not going to enter in details about this step.
Just consider that the n tokens identified after it composes the vocabulary.

2.2.1
Bag-of-Words

The Bag-of-Words (BOW) is a simple representation of a document where
only the frequencies of the words in the documents are taken into account. This
representation disregards both semantic and order among words. Formally, the
BOW stores in a feature vector the frequency of each word w of the vocabulary
in document D.

For example,

D: Obama speaks to the media in Illinois
D′: The President greets the press in Chicago

after the preprocessing step results in the following BOW representations:

Obama
speaks
media
Illinois

President
greets
press

Chicago

D

1
1
1
1
0
0
0
0

D′

0
0
0
0
1
1
1
1

Due to the number of words in a document is much smaller than the
number of words in the vocabulary, it is a common practice to employ sparse

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 22

vectors, instead of dense ones, for saving space.
Arguably, the BOW is the oldest and most fundamental document

representation. Many other document representations derived from it, such
as LSI[2] and LDA[3].

2.2.2
Enhanced Bag-of-Words

The Enhanced Bag-of-Words is an extension of the BOW. For the best
of our knowledge, a formal definition does not exist for it, but, regardless, we
informally define it as the inclusion of any additional information from the
documents to the BOW representation, such as the word order.

In our case, we are interested on including the Word Embeddings as side
information for the BOW which erases one of the known weakness of that
representation. However, this inclusion imposes an update on the document
representation. Figure 2.7 displays the updated version of the examples of the
Section 2.2.1.

Figure 2.7: Examples of Enhanced Bag-of-Words representations. Each docu-
ment is represented by its collection of words (points) in the word embedding
space weighted by their respective frequencies (between parentheses).

Again, for the sake of space efficiency, all Word Embeddings are stored
together in a Matrix X ∈ Rd×n. The vector xi ∈ Rd, corresponding to the i-th
column of X, represents the vector of word i of the vocabulary in dimension
d. When a document needs to access one of its embeddings, it does it through
that matrix. This way, we avoid replicating the embeddings throughout the
representations.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 23

2.3
Network flow problems

Network flow problems are a class of computational problems which the
input is some flow network G = (V, E), where V is the set of nodes in the
graph and E is the set of edges with numerical properties (for example, costs
and capacities), and the goal is to construct a flow F between these nodes that
optimizes a given objective function subject to a set of constraints.

2.3.1
Maximum flow problem

In this context, the Maximum flow problem is a problem whose goal is
to find the maximum amount of flow that can go from a source s to a sink t

without exceeding the flow capacity Dij of each edge eij ∈ E. Formally, the
Maximum flow problem follows the Linear programming formulation below:

max
∑

j|(s,j)∈E

fs,j (2-1)

s.t.:
∑

j|(i,j)∈E

fi,j =
∑

j|(j,i)∈E

fj,i ∀i ∈ V − {s, t} (2-2)

0 ≤ fi,j ≤ Dij ∀(i, j) ∈ E (2-3)

The literature provides a vast number of methods for solving this
formulation. One of the most commonly used is the Push-relabel algorithm
proposed by Golberg et al. [19] that costs O(|V |2 × |E|), while the fastest
algorithm developed, for the best of our knowledge, was proposed by Orlin et
al. [20] and costs O(|V | × |E|).

2.3.2
Minimum-cost flow problem

The Minimum-cost flow problem is similar to the Maximum flow problem
with 2 twists: The amount of flow F is already known from the start; Each
edge ei,j ∈ E begins to charge ci,j per unit flow passing by. Thereby, the idea
is to find the cheapest way possible of sending this amount F through the
flow network. Formally, the Minimum-cost flow problem follows the Linear
programming formulation below:

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 24

min
∑

(i,j)∈E

ci,jfi,j (2-4)

s.t.:
∑

i|(s,i)∈E

fs,i = F (2-5)

∑
j|(j,t)∈E

fj,t = F (2-6)

∑
j|(i,j)∈E

fi,j =
∑

j|(j,i)∈E

fj,i ∀i ∈ V − {s, t} (2-7)

0 ≤ fi,j ≤ Dij ∀(i, j) ∈ E (2-8)

(2-9)

Once again, the literature provides multiple methods for also solving this
formulation. However, this time, the fastest algorithm changes depending on
the characteristics of the network flow. Even so, arguably, the most commonly
used is the cost-scaling push-relabel algorithm proposed by Golberg et al. [21]
that costs O(|V |2×|E|× log(|V |×C)) where C is the value of the largest edge
cost in the graph.

2.4
Document distances

One of the by-products of the document representation is the ability of
computing distance between representations, which is an elementary operation
of any application that needs to compare documents. Naturally, these distance
functions are directly dependent of the representation chosen. Thus, we de-
scribe next distance functions that are compatible with the representations
presented in Section 2.2.

In this section we assume that we have a vocabulary of n words {1, . . . , n}
and a collection of documents C. For a document D, let |D| be the number of its
distinct words. To explain how to define the distance between two documents
D and D′ we assume that the set of distinct words of D and D′ are, respectively,
{w1, . . . , w|D|} and {w′1, . . . , w′|D′|}. Moreover, we assume that D and D′ are
represented as normalized sparse Bag-of-Words so that D = (D1, . . . , D|D|)
and D′ = (D′1, . . . , D′|D′|), with

∑
i Di = ∑

i D′i = 1, where Di and D′i are,
respectively, the normalized frequency of wi and w′i in documents D and D′.

As an example, reusing the two documents of Section 2.2 as our document
collection, we have vocabulary

{ 1 : “Obama”, 2 : “speaks”,3 : “media”, 4 : “Illinois”,
5 : “President”, 6 : “greets”, 7 : “press”, 8 : “Chicago” }

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 25

with documents D and D′ containing the set of words

{w1, w2, w3, w4} = {1, 2, 3, 4}

and
{w′1, w′2, w′3, w′4} = {5, 6, 7, 8}

respectively. Their respective sparse Bag-of-Words representations are

D: {D1, D2, D3, D4} = {1, 1, 1, 1}
D′: {D′1, D′2, D′3, D′4} = {1, 1, 1, 1}

while their normalized versions are

D: {D1, D2, D3, D4} = {0.25, 0.25, 0.25, 0.25}
D′: {D′1, D′2, D′3, D′4} = {0.25, 0.25, 0.25, 0.25}.

Furthermore, we assume that the words are represented by its embed-
dings in a vector space of dimension d and we use c(i, j) to denote the euclidean
distance between the embeddings of words wi and w′j.

2.4.1
Cosine Distance

The Cosine distance is a widely used distance function in practice that
is the complement of the cosine of the angle between two vectors. Arguably,
its popularity is due to simplicity, reasonable results and the fact that the
“accuracy” of a distance is more associated with the document representation
chosen than the distance function itself. Formally, the Cosine distance between
documents D and D′ is defined as:

COSINE(D, D′) = 1− D ·D′

||D|| × ||D′||
It is also interesting to recall that the Cosine Distance and the Euclidean

distance are equivalent for ranking applications when using unit vectors.

2.4.2
Word Mover’s Distance

In the traditional document distance computation, documents are vectors
encoded with their BOW representations or derived representations of them
that use together some pattern detection technique in the documents collection
such as the Latent Dirichlet Allocation (LDA) [3] or Latent Semantic Indexing
(LSI) [2]. However, as discussed earlier, it could be argued either way that they

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 26

could still be further improved if considering other relevant information, among
them the relations between words. Thus, a possible solution is replacing the
usual BOW by its enhanced version discussed in Subsection 2.2.2. Still, this
raises the question of how to compute distances using them (as displayed in
Figure 2.8) since we are only used to work with vectors.

Figure 2.8: Pair of documents in word embedding space.

Eventually, Kusner et al. [9] was able to propose a distance, namely
Word Mover’s Distance (WMD), employing these representations based on
the work of Rubner et al. [12] in which they define a metric for measuring
the distance between probability distributions over a region. In our case, the
idea is to compute the minimum cost required to transform the words of one
document D into the words of another document D′, where the cost c(i, j) of
transforming the word wi into word w′j is given by the distance between the
word embeddings of wi and w′j and limited by their representations Di and D′j

of documents D and D′. Figure 2.9 visually expresses this strategy.

Figure 2.9: Distance between all pair of words from a pair of documents.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 2. Background 27

Formally, the WMD between two documents D and D′ is defined as the
value of the optimal solution of the following transportation problem:

min
|D|∑
i=1

|D′|∑
j=1

c(i, j)Ti,j (2-10)

s.t.:
|D′|∑
j=1

Ti,j = Di ∀i ∈ {1, . . . , |D|} (2-11)

|D|∑
i=1

Ti,j = D′j ∀j ∈ {1, . . . , |D′|} (2-12)

Ti,j ≥ 0 for all i, j (2-13)

In the above formulation Ti,j is the flow between wi and wj.
The WMD, although well defined, suffers from efficiency problems since

solving the transportation problem on a complete bipartite graph is costly,
requiring super cubic time using the best-known minimum cost flow algorithms
or linear programming solvers [9].

2.4.3
Relaxed Word Mover’s Distance

To overcome the high computational cost of solving the transportation
problem, Kusner et al. [9] proposed the Relaxed Word Mover’s Distance
(RWMD), a variation of WMD in which relaxations of the transportation
problem are solved in order to obtain the distance between two documents.
These relaxations are obtained by either ignoring the set of constraints (2-11)
or the set (2-12). Let `1 and `2 be, respectively, the optimum values of the
relaxed problems that are obtained by ignoring constraints (2-11) and (2-12).
The RWMD between documents is defined as the maximum between `1and `2.

The advantage of RWMD is that, given the distance matrix, the optimal
solution of the relaxation can be found in O(|D| × |D′|) time, a significant
improvement over WMD in terms of computational efficiency. In fact, if we
drop the constraints (2-11), the optimal flow T ∗ works as follows: T ∗i,j = D′j if
ci,j is the minimum cost of an edge that reaches j and T ∗i,j = 0, otherwise. When
the constraints (2-12) are dropped the optimal flow is defined analogously.

Therefore, the bottleneck of RWMD is the computation of the distance
matrix between the words of D and D′ which can be prevented by using a
possibly huge cache.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

3
An efficient method for calculating the distance between
documents via word embeddings

WMD presents two sources of complexity: (i) the cost of calculating the
distances between the |D|× |D′| pairs of words from documents D and D′ and
(ii) the cost of solving a minimum cost flow problem.

In this chapter we argue that we can avoid the |D| × |D′| distance eval-
uations and we can replace the minimum cost flow problem with a maximum
flow problem, which yields a significant gain in terms of computational speed.

3.1
On the distances between word embeddings

In this section, we discuss the assumptions in which our new distance
function relies on. For that, we present examples of distances between words
that employ word embeddings. All of them, used here and in the next chapters,
were made available by Google 1. They trained the vectors with d = 300 using
the Word2Vec template of Word Embeddings [6] on top of a Google News
document base containing altogether about 100 billion words and 3 million
tokens. We also refer to some datasets that will be detailed in Chapter 4.

From a semantic perspective, it is reasonable to consider that, in general,
words are closely related to only a few other words. As the word embeddings
were designed to simulate semantic relations, it is expected that they present
a similar behavior, that is, each vector should be close to a few other vectors
and far away from the remaining ones.

As an example, if the words are ranked according to their distances to
the embedding corresponding to “cat” one should expect “dog” and “rabbit”
preceding both “moon” and “guitar”. However, it is not clear whether “moon”
or “guitar” comes first in the ranking since neither of them has an obvious
relation with “cat”. Figure 3.1 illustrates this behaviour by displaying the
distances between the embedding for “cat” and the embeddings from the words
of Amazon dataset (described in Section 4.1) sorted by increasing order of
distance. We note that there are few words with small distance while the vast
majority has distance concentrated in the range [1.2, 1.4].

1https://code.google.com/archive/p/word2vec/

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 29

Figure 3.1: Distances from the embeddings of the words in Amazon dataset to
word “cat”.

For checking whether this behavior repeats in general, we sampled 2000
pairs of documents containing at least 50 tokens from the Reuters dataset
(described in Section 4.1) and computed the distance between the embeddings
of each document pair. Figure 3.2 shows the distribution of these distances
clustered in bins for better visualization. Once again, we observe a high
concentration of the distances around the interval [1.2, 1.4], behaving similarly
to a Normal distribution.

Based on this discussion, we make the following assumptions:

(a) Given a word w, the remaining words can be split into two groups:
RELATED(w) and UNRELATED(w), with the former (latter) containing the
words related (unrelated) with w;

(b) The distances from every word in UNRELATED(w) to w, for every w, is a
same “large” value cmax.

For (a), we assume that given the behavior displayed in Figure 3.1 the
related words with respect to each word should be the ones with distance
smaller than the ‘elbow point’ distance in the graph while the unrelated ones
should have distances greater than it. Additionally, as already mentioned before
and displayed in Figure 3.2, this unrelated group seems to behave like a Normal

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 30

Figure 3.2: Distribution of the distances between words from 2000 pairs of
documents.

distribution, concentrating most of its distances around a single value, which
suggests that replacing them by its average should have little impact as implied
by (b).

To define which words lie in each group we use a parameter r(w) so that
the r(w) closest words to w with respect to the distance of their embeddings
lie in RELATED(w) and the remaining ones lie in UNRELATED(w). In Chapter 4
we discuss how to set r(w).

3.2
Algorithms exploiting distance assumptions

An algorithm with the flavor of WMD can benefit from our assumptions
as follows: first, the algorithm could include a preprocessing step to cache the
distance from w to its r(w) closest words for each word w in the vocabulary. By
doing so the algorithm prevents calculating the distance between the same pair
of words more than once. Note that this approach, without our assumption,
could be infeasible due to the large size of the cache (e.g. for the entire
Google collection containing 3M words we would need dozens of Petabytes). In

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 31

addition, as we explain further, the algorithm also benefits from the assumption
that all large distances are equal to cmax since it allows to significantly reduce
the number of edges in the flow problem.

In the next subsections we describe three algorithms that diminish the
WMD computation by relying on these assumptions. Apart from providing an
expected speed up with respect to the WMD, these algorithms do not lose in
terms of accuracy, as we show in Chapter 4.

We follow the same set up laid out on Section 2.4, where we assume that
every document D consists of a set of words {w1, . . . , w|D|} and is represented
as a sparse normalized BOW so that D = {D1, . . . , D|D|}, with

∑
i Di = 1.

3.2.1
Preprocessing Phase

Formally, we are given a matrix of word embeddings X ∈ Rd×n for a
vocabulary of n words. The vector xi, corresponding to the ith column of X,
represents the embedding of word i in dimension d.

Recall that r(w) is defined as the number of words related to w.
The preprocessing phase works as follows. For each word i, we compute its
Euclidean distance ‖xi − xj‖2 to every other word j and we add (i, j) as well
as its distance to a cache C if and only if ‖xi − xj‖2 ≤ ti, where ti is the
distance between i and its r(i)-th closest word. The cache C requires O(nr̄)
space, where r̄ is the average of all r(i). Meanwhile, all distances superior to
ti are accumulated and then average, resulting in the cmax value discussed in
the previous section.

For efficiently computing the cache C and cmax, we implemented this
preprocessing phase using a min-heap data structure, limiting its size to r(w).
For each word i, we compute its distance to the remaining vocabulary and
then push each distance to the heap Hi if its less than the greater distance this
heap, otherwise we added it to a global accumulator A. After we repeat this n

times, the cache C =
n⋃

i=1
Hi and cmax =

|A|∑
j

Aj

|A| . The first part of this algorithm

costs O(nd) while the second part cost O(n log r(wi)) per word, thus the total
cost of this phase is O(n2(d + log r̄)).

3.2.2
Related Word Mover’s Distance

The Related Word Mover’s Distance (Rel-WMD) between D and D′ is
defined as the optimum value of the transportation problem given by equations
(2-10)-(2-13), where the costs of the edges are as follows:

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 32

c(i, j) =

0, if wi = wj

‖xi − xj‖2, if (wi, wj) ∈ C

cmax, otherwise

(3-1)

Due to the saturation of many edges to cmax, it turns out possible to
considerably reduce the number of comparisons between edges during the
computation of the minimum cost flow problem. The key idea is that the
algorithm only needs to compare the pairs of words contained in C during
that computation. As the remaining pairs have the same value cmax, it implies
that using any of them will lead to the same optimal value as long as they
respect the constraints of the problem. Thus, the algorithm can just randomly
select any pair, excluding the necessity of having to compare them.

The Rel-WMD formulation follows the formulation proposed by Pele et
al. [14] as a faster alternative for the EMD [12] based on the same assumptions
described in Section 3.1. Essentially, the solution of the WMD can be infeasible
if we only focus on comparing the pairs of words in C. Because of it, we have to
include an “external” node t as an alternative path between any pair of words
but costing cmax — to only employ it when actually needed — which has the
effect described in the last paragraph.

min
|D|∑
i=1

|D′|∑
j=1

c(i, j)Ti,j +
|D|∑
i=1

cmaxTi,t (3-2)

s.t.:
∑

j|(i,j)∈C

Ti,j + Ti,t ≤ Di ∀i ∈ {1, . . . , |D|} (3-3)

∑
i|(i,j)∈C

Ti,j + Tt,j ≤ D′j ∀j ∈ {1, . . . , |D′|} (3-4)

|D|∑
i=1

Ti,t −
|D′|∑
j=1

Tt,j = 0 (3-5)

Ti,j, Ti,t, Tt,j ≥ 0 for all i, j (3-6)

3.2.3
Related Relaxed Word Mover’s Distance

The Related Relaxed Word Mover’s Distance (Rel-RWMD) is a variation
of the Rel-WMD, in which we drop constraints of the original formulation in
order to obtain a relaxation that can be computed more efficiently, similarly
to WMD and RWMD.

Instead of computing the optimal value of the problem defined by (3-2)-
(3-6), we ignore either the set of constraints (3-3) or (3-4) and compute the

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 33

optimal value of the relaxation as explained in Subsection 2.4.3. In the event
of a node not having any edge, we force it to select cmax from the constraint
(3-5) as their lowest cost edge.

Due to our assumptions, the computation of the optimal solution for the
relaxation decreases from O(|D| × |D′|) to O(r̄ × |D|+ r̄ × |D′|).

3.2.4
Max Flow Word Mover’s Distance

Our assumptions so far have allowed us to split the distances between
words embeddings into two groups of related and unrelated words and replace
all the distances in the latter by a single distance. That raises the question of
whether the same is also applicable for the former. If so, we could exploit this
new assumption together with the others to increase the computational speed
even more.

So now we turn our attention to the related words. On one hand, it is
clear that some words in RELATED(w) must be closer to w than others: arguably
“kitten” is more related to “cat” than “rabbit” to “cat”. On the other hand, it
may not be clear whether “feline” or “dog” is closest to “cat”. In this case, the
answer depends on the context. In addition, it is also not clear whether “cat”
is more related to “dog” than “piano” to “guitar”.

Taking into account the difficulty of precisely defining a distance between
related words and mainly motivated by performance issues, we add a new
assumption:

(c) When evaluating the distances between documents D and D′ all the
distances between words w ∈ D and w′ ∈ D′ for w′ ∈ RELATED(w) or
w ∈ RELATED(w′) are at the same distance crel(D, D′) that depends on
both D and D′.

For two documents D and D′ let crel(D, D′) be the average distance
of the related words from D and D′. Similarly to the Rel-WMD, The MF-
WMD between D and D′ is defined as the optimum value of the transportation
problem given by equations (2-10)-(2-13), where the costs of the edges are as
follows:

c(i, j) =

0, if wi = wj

crel(D, D′), if (wi, wj) ∈ C

cmax, otherwise

(3-7)

In this case, a key observation is that the transportation problem can be
reduced to the maximum flow problem presented below. In this formulation,

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 34

s and t are the source and the sink of the network, respectively. Moreover,
Ei = Di if word wi does not appear in document D′ and, otherwise, Ei =
max{Di − D′j, 0} where w′j is the word in D′ equals to wi. E ′j is analogously
defined for document D′.

max
∑
i∈D

fs,i (3-8)

s.t.: fs,i ≤ Ei i ∈ {1, . . . , |D|} (3-9)

fj,t ≤ E ′j j ∈ {1, . . . , |D′|} (3-10)

fs,i =
∑

j|(i,j)∈C

fi,j i ∈ {1, . . . , |D|} (3-11)

∑
i|(i,j)∈C

fi,j = fj,t j ∈ {1, . . . , |D′|} (3-12)

fs,i, fi,j, fj,t ≥ 0, for all i, j (3-13)

The next lemma relates the transportation problem with the maximum
flow problem.

Lemma 3.1 The optimal value of the problem defined by (2-10)-(2-13), with
edge costs given by equation (3-7), is equal to the optimal solution of the
maximum flow problem defined by (3-8)-(3-13)

Proof. First we note that there exists an optimal solution T ∗ with Tx,y =
min{Dx, D′y} for every edge (x, y) with c(x, y) = 0. Thus, if wx = wy, we can
fix Tx,y = min{Dx, D′y} and then replace the constraints

|D′|∑
j=1

Tx,j = Dx and
|D|∑
i=1

Ti,y = D′y

with the constraints

∑
j 6=y

Tx,j = max{Dx −D′y, 0} and
∑
i 6=x

Ti,y = max{D′y −Dx, 0},

respectively.
Thus, the new transportation problem has edges connecting wi to wj if

and only if wi 6= wj. Note that the total amount of flow send through the arcs
is the same for every feasible solution. Let F be this amount. Since there are
only two possibilities for the costs, cmax and crel(D, D′), then the cost of a
solution that sends Fcheap units of flow through arcs of cost crel(D, D′) is

Fcheap · crel(D, D′) + (F − Fcheap) · cmax.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 3. An efficient method for calculating the distance between
documents via word embeddings 35

Thus, an optimal solution is one that sends the maximum amount of flow
through arcs of cost crel(D, D′), that is, one that is optimal for the maximum
flow problem defined by (3-8)-(3-13) �

This formulation has the following advantages w.r.t the WMD formula-
tion. First, the number of edges required by the maximum flow formulation
is the number of distinct words in the documents plus the number of pairs of
related word between the documents. This quantity is in general significantly
smaller than |D| × |D′|, the number of edges required by WMD’s formulation.
The second advantage is that the maximum flow problem in a sparse graph can
be solved much faster than the transportation problem in a complete bipartite
graph.

Let f ∗ be a vector where each component corresponds to the flow of an
edge in the optimal solution of the maximum flow problem. The MF-WMD
between D and D′ is defined as

crel(D, D′)
∑

(i,j)∈C

f ∗i,j + cmax

1−
∑

(i,j)∈C

f ∗i,j

 .

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

4
Experiments

In this chapter we report our experimental study whose main goal is to
assess the quality of the Rel-WMD, Rel-RWMD and MF-WMD described in
Chapter 3.

Our experimental setting follows Kusner et al. [9], where different dis-
tances are evaluated according to their performance when they are employed
by the k-nearest neighbors (k-NN) method to address the document classifi-
cation task.

We run the k-NN using k = 19. In case of ties, k is divided by 2 until
there are no more ties. This is slightly different from Kusner et al. [9] where the
best value of k in the set {1, 3, . . . , 19} is employed. Motivations for using this
evaluation approach, based on k-NN, include its reproducibility and simplicity.

The methods were implemented in C++. The Eigen library 1 was used
for matrix manipulation and Linear Algebra while the OR-Tools library 2 was
used for the resolution of flow problems. All experiments were executed using
a single core of an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, with 8 GB of
RAM.

The code and the datasets are available in https://github.
com/anonymous-1234/mf-wmd and https://www.dropbox.com/sh/
9rnx8vwjvwjirsp/AADGwbT-aCqzZG7C_L1uNsY1a?dl=0, respectively.

4.1
Datasets description

For the document classification task we used the following 8 preprocessed
datasets provided by Kusner et al. [9] as well as its partitions, for the purpose
of cross validation:

– 20NEWS: Posts on discussion boards for 20 different topics.

– AMAZON: Product reviews from Amazon for 4 product categories.

– BBCSPORT: BBC Sport sports section articles for 5 sport between
2004 and 2005.

1eigen.tuxfamily.org/index.php
2https://developers.google.com/optimization/

https://github.com/anonymous-1234/mf-wmd
https://github.com/anonymous-1234/mf-wmd
https://www.dropbox.com/sh/9rnx8vwjvwjirsp/AADGwbT-aCqzZG7C_L1uNsY1a?dl=0
https://www.dropbox.com/sh/9rnx8vwjvwjirsp/AADGwbT-aCqzZG7C_L1uNsY1a?dl=0
DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 37

– CLASSIC: Sentences from academic works from 4 different publishers.

– OHSUMED: Medical summaries categorized by different cardiovascu-
lar diseases. For computational performance issues, only the first 10 cat-
egories of the database were used.

– RECIPE: Culinary recipes separated by 15 regions of origin.

– REUTERS: News from the Reuters news agency in 1987. The original
database contains 90 classes, however, due to problems of imbalance
between them, a reduced version with only the 8 most frequent ones
was created [22].

– TWITTER: Collection of “tweets” labeled by feelings “negative”, “pos-
itive” and “neutral”.

In a preprocessing phase, all documents had their words converted to
lowercase or removed if contained in a stopwords list 3 due to their little
semantic value. Next, non-alphanumeric characters were removed. Lastly, what
remained from the documents was split on the whitespaces, producing a set
of unique words that compose their respective vocabularies. For performance
reasons, the 20NEWS had all tokens with less than 5 occurrences on the
collection dropped, and each document limited to its 500 most frequent tokens.
Table 4.1 presents relevant statistics for each of the datasets.

Table 4.1: Datasets statistics.

Name #Docs #Vocabulary Average tokens
per doc Classes

20news 18820 22439 69.3 20
amazon 8000 30249 44.5 4
bbcsport 737 10103 116.5 5
classic 7093 18080 38.6 4
ohsumed 9152 19954 60.2 10
recipe 4370 5225 48.3 15
reuters 7674 15115 36.0 8
twitter 3108 4489 9.9 3

3http://www.lextek.com/manuals/onix/stopwords2.html

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 38

4.2
Distances

All the distances considered in our experiments make use of the Bag-of-
Words (BOW) representation. We concentrate our comparison on the following
distance functions:

COSINE: a widely used measure that is a natural baseline for other
distances. It is also an alternative to the Euclidean distance, which presented
poor results in the experiments reported in Kusner et al. [9].

WMD: it is also a natural competitor since one of the main goals of
our work is to achieve quality comparable to WMD spending significantly less
computational resources.

RWMD: the method that uses a relaxation of the WMD. Experiments
from Kusner et al. [9] suggest that RWMD has accuracy comparable to WMD
for the document classification task. In addition, it can be viewed as an
alternative to the Sinkhorn Distance [15] since both have a low computational
cost.

4.3
Results

We discuss the results with respect to test error, computational perfor-
mance and memory requirements. As we shall see, we approach each one of
these aspects from different angles, covering the critical factors that influence
the results of the distance functions.

Due to the number of experiments, we only report in the the body of
this work the most meaningful results during the analysis. In any case, the
complete list of experiments with their respective results can be seen in the
Appendix A.

During all experiments, unless stated otherwise, denote Rel-WMD, Rel-
RWMD and MF-WMD with r(w) set to 32, as their test errors had achieved
the lowest around that value and there is no reason to use larger values as we
will see in the next subsections.

4.3.1
Test Error

In this subsection, we present the behavior of the test error obtained by
the distances under consideration over the 8 datasets.

For better readability of all tables, the distance with lowest error is
assigned to 1 for each dataset, while the others get values equal to their error
over the error achieved by the best distance. Furthermore, for the sake of future

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 39

reference, the lowest test errors are presented in an extra column in the table,
denominated BEST.

4.3.1.1
By dataset

Table 4.2 compares the test errors obtained by our competitors against
the lowest errors obtained on average by our methods with a same r(w) over
the described datasets.

First, as expected, there are slightly differences between the values
obtained here and those reported in Kusner et al. [9]. One reason is the different
usage of the parameter k that is employed to select the number of neighbors
for classification.

Some observations are in order: clearly, COSINE is the worst of the
distances, a behavior that is not surprising since it does not capture semantic
relation between different words. Among WMD and its variants, there is a
balance in terms of test error, which collaborates with our assumptions that
only a small number of distances are required during the computation of WMD.
The variance of the results for BBCSPORT, essentially for WMD and RWMD,
should have to do with the small number of samples.

Table 4.2: The behavior of test error for different distances/datasets.

Dataset BEST COSINE WMD RWMD REL-WMD REL-RWMD MF-WMD

20news 24.03 1.27 1.00 1.03 1.01 1.01 1.00
amazon 6.91 1.87 1.04 1.00 1.14 1.11 1.16
bbcsport 4.36 1.10 1.23 1.19 1.04 1.12 1.00
classic 2.81 2.26 1.08 1.00 1.11 1.11 1.11
ohsumed 40.58 1.13 1.06 1.07 1.00 1.02 1.02
recipe 43.07 1.06 1.08 1.08 1.00 1.00 1.00
reuters 3.84 2.33 1.00 1.06 1.06 1.07 1.04
twitter 28.78 1.11 1.01 1.01 1.01 1.00 1.00

Average —– 1.52 1.06 1.05 1.05 1.06 1.04

4.3.1.2
By changing embeddings

Table 4.3 presents the same experiments of 4.3.1.1, but replacing the
Word2Vec [5] with GloVe [7] word embeddings to check the consistence of the
test errors through different embeddings. The GloVe embeddings [7] employed
were made available by the paper authors at their webpage 4.

4https://nlp.stanford.edu/projects/glove/

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 40

First, it is important to notice that the 20NEWS dataset is absent from
the table. The reason is that, in this specific case, the dataset made available
by Kusner only contains the embeddings of each word and their respective
frequencies in each document, which makes problematic to test alternative
embeddings.

The remaining datasets present a marginal increase in the test errors
with respect to the test errors previously obtained. There are two possible
explanations for this behavior: First, as we do not have the original documents,
the words used in this experiment are a subset of the ones used by the
Word2Vec. Second, the quality of the word embeddings varies in accordance
with the number of words in its training dataset [5]. The GloVe embeddings
used were trained in a dataset containing 6 billion words while the Word2Vec
embeddings were trained over 100 billion words. Still, these test errors are close
to the original values, implying that all methods should be compatible with
different word embeddings.

Table 4.3: The behavior of test error for different distances/datasets, replacing
the Word2Vec with GloVe embeddings.

Dataset BEST COSINE WMD RWMD REL-WMD REL-RWMD MF-WMD

amazon 7.14 1.81 1.00 1.01 1.07 1.04 1.12
bbcsport 4.36 1.10 1.10 1.00 1.10 1.04 1.15
classic 3.20 1.98 1.01 1.00 1.04 1.09 1.04
ohsumed 42.11 1.10 1.00 1.00 1.01 1.01 1.01
recipe 43.07 1.07 1.01 1.01 1.00 1.01 1.00
reuters 4.29 2.09 1.00 1.05 1.01 1.11 1.03
twitter 28.52 1.12 1.01 1.01 1.00 1.00 1.01

average —– 1.47 1.02 1.01 1.03 1.04 1.05

4.3.1.3
Sensitivity to the number of related words

Table 4.4 presents the effect of the r(w) parameter over the MF-WMD
method, where r = x denotes MF-WMD with r(w) set to x for all words
w. The Rel-WMD and Rel-RWMD are omitted because they exhibit similar
behavior while the WMD and RWMD are kept for comparison. Furthermore,
we only tested r = {1, 2, 4, 8, 16, 32, 64, 128} due to the considerable running
time required to run each configuration on some datasets.

For the MF-WMD, it becomes clear that the test error gets higher for
small values of r, which is somehow expected because small r progressively
captures less semantic. It is interesting to mention that even r = 1 yields
results significantly better than COSINE. Also interesting is the fact that the

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 41

error stabilizes around r = 32. As small values of r yield to faster executions,
there is no motivation to use values of r much larger than 32.

Table 4.4: The behavior of test error of the MF-WMD over different r(w)
values.

Dataset BEST WMD RWMD r=1 r=2 r=4 r=8 r=16 r=32 r=64 r=128

20news 24.03 1.00 1.03 1.05 1.06 1.04 1.03 1.00 1.00 1.01 1.00
amazon 6.91 1.04 1.00 1.43 1.37 1.33 1.24 1.20 1.16 1.11 1.09
bbcsport 4.27 1.26 1.21 1.06 1.15 1.00 1.13 1.00 1.02 1.19 1.26
classic 2.81 1.08 1.00 1.31 1.30 1.26 1.22 1.17 1.11 1.12 1.09
ohsumed 41.43 1.03 1.05 1.02 1.03 1.02 1.01 1.00 1.00 1.01 1.01
recipe 42.97 1.08 1.08 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.01
reuters 3.84 1.00 1.06 1.37 1.23 1.13 1.12 1.10 1.04 1.06 1.05
twitter 28.76 1.01 1.01 1.11 1.07 1.04 1.02 1.01 1.00 1.00 1.02

average —– 1.06 1.05 1.17 1.15 1.10 1.10 1.06 1.04 1.06 1.06

4.3.2
Computational Performance and Memory Requirements

In this subsection, we present the behavior of the computation perfor-
mance obtained by the distances under consideration over the 8 datasets.

Because our approaches cache all the k closest words to each word in the
vocabulary, it is fair to do the same for the competing distances. In practice,
we implement a cache version only for the RWMD because its complexity is
dominated by the computation of the distances between the embeddings.

If we chose to cache the distances between all words, it would be required
an O(n2) space in main memory, which is not feasible in general. Thus, we
opted for a more reasonable approach that only cache the essential distances
for the document being classified at each time. This way, we only cache the
distances between the words in the vocabulary and the p words in the current
document, reducing the space from O(n2) to O(np), where n� p. However, it
becomes necessary to recalculate the cache after each new document received.

For better readability of all tables, all running times are relative to that
of the WMD since it is the baseline of our comparisons.

4.3.2.1
By dataset

Table 4.5 presents the running times of the experiments on Subsection
4.3.1.1.

Of course, as we can see, the COSINE has the greatest speed up factor
with respect to the WMD, gaining up to 3 to 4 orders of magnitude which

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 42

is expected since the former is linear while the latter is super cubic. The
RWMD obtains similar gains to the ones formerly reported by Kusner et al.
[9], however, this gain considerably increases when we apply a cache strategy
in it what demonstrates the burdensome of the computation of the distances
matrix over the faster approaches. It is interesting to note that the cached
version of RWMD is also faster than the Rel-WMD, Rel-RWMD, and MF-
WMD. This occurs because all our methods contain a preprocessing step for
identifying the pairs of words between D and D′ in the RELATED set before
computing the distance between documents. This step should be negligible for
large documents, however, all datasets tested are mostly composed of small
documents as displayed in the Table 4.1.

Table 4.5: The speed up factor w.r.t to WMD of different distances/datasets.

Dataset COSINE RWMD RWMD
(CACHE) REL-WMD REL-RWMD MF-WMD

20news 2433.2 7.1 120.5 21.9 80.8 43.9
amazon 916.3 5.0 38.6 10.5 35.1 22.0
bbcsport 3972.2 7.2 37.7 10.7 35.9 32.6
classic 878.5 5.0 44.8 8.8 33.3 20.7
ohsumed 1306.7 6.8 57.1 9.9 42.1 27.5
recipe 1006.8 5.0 77.1 5.5 34.1 19.3
reuters 674.1 3.9 38.7 6.2 35.1 18.0
twitter 97.8 3.2 16.5 3.6 12.1 7.7

average 1410.7 5.4 53.9 9.6 38.6 24.0

4.3.2.2
Sensitivity to the number of related words

Analogously to the previous subsection, Table 4.6 presents the running
times of the experiments on Subsection 4.3.1.3.

As expected, the running time of the MF-WMD is naturally proportional
to value of r. Smaller r are as fast as the RWMD (cache) while larger r

slowly begins to approach the running time of the WMD, however there is
no motivation to use larger values because, as already stated earlier, the test
error stabilizes around r = 32.

All running times of the distances displayed are the sum of their prepro-
cessing and classification times. The WMD, RWMD, and RWMD (cache) only
have the latter because the computation of the distance matrices is an integral
part of the classification since it has to be done for each new document to be
classified. However, the MF-WMD is composed of both since it only computes
them once and then stores the results. This implies that if a collection is small

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 43

and its vocabulary is large, the preprocessing time can represent a significative
part of the total running time, covering the gains on the classification time. For
example, more than half of the running time of the MF-WMD with r(w) up
to 16 on the BBCSPORT - the dataset with the largest documents - is spent
on the preprocessing step. Thus, if that collection was larger, the performance
gain with small r would have been higher.

Figure 4.6 displays the percentages of the preprocessing time within
the total running times of the distinct versions of the MF-WMD run in this
subsection.

Table 4.6: The speed up factor w.r.t to WMD of the MF-WMD over different
r(w) values.

Dataset RWMD RWMD
(CACHE) r=1 r=2 r=4 r=8 r=16 r=32 r=64 r=128

20news 7.1 120.5 126.7 109.4 94.2 77.4 64.9 43.9 36.8 29.9
amazon 5.0 38.6 46.9 42.3 37.1 33.5 27.7 22.0 17.5 14.8
bbcsport 7.2 37.7 60.0 55.2 49.8 48.2 42.0 32.6 24.4 18.2
classic 5.0 44.8 56.8 47.5 41.4 34.3 27.3 20.7 16.7 14.5
ohsumed 6.8 57.1 79.0 67.6 58.8 49.7 38.2 27.5 20.4 17.2
recipe 5.0 77.1 55.9 50.2 41.9 35.3 26.5 19.3 14.2 11.2
reuters 3.9 38.7 43.5 38.4 33.9 28.6 22.4 18.0 15.0 12.4
twitter 3.2 16.5 17.3 14.5 11.4 10.1 8.8 7.7 6.6 6.1

average 5.4 53.9 60.8 53.1 46.1 39.6 32.2 24.0 19.0 15.5

Table 4.7: The percentage of preprocessing time within the running time for
the MF-WMD.

Dataset r=1 r=2 r=4 r=8 r=16 r=32 r=64 r=128

20news 3% 3% 2% 2% 2% 1% 1% 1%
amazon 36% 33% 30% 26% 22% 17% 15% 12%
bbcsport 69% 67% 64% 59% 49% 41% 29% 24%
classic 26% 23% 20% 16% 13% 10% 8% 7%
ohsumed 10% 8% 7% 6% 4% 3% 3% 2%
recipe 4% 4% 3% 3% 2% 1% 1% 1%
reuters 17% 15% 12% 12% 8% 7% 6% 5%
twitter 25% 24% 19% 18% 14% 14% 11% 11%

average 24% 22% 20% 18% 14% 12% 9% 8%

4.3.2.3
By the size of the documents

So far, we have described some limitations on the analysis while com-
paring the running times of the distances under consideration, being the main

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 44

ones: the documents are small which yields a small number of edges in the
WMD and its variants; The preprocessing time usually represents a consider-
able time of the running time. These limitations end up hindering part of the
comparisons between the distances because we do not know how they behave
under different document sizes and while disregarding the preprocessing time
at the same time.

With this in mind, we designed an auxiliary experiment to deeply
understand how the running times of the distances themselves behave under
the different documents sizes, expressed in this subsection by the number
of edges generated between the documents during the computation of the
distances. For that, we sampled 200 documents from 20NEWS and divided
them into two groups, each of them of size 100. The number of distinct words
in the documents of each group varies from 15 to 500. For the 10.000 pairs
obtained by picking one document from each group, we measured the running
time to compute the distances between them.

Figure 4.1 shows the behaviour of the running time for the different
distances as a function of the size of the transportation graph, measured by
the number of edges. The axis y correspond to speed up factors with respect
to the running time of WMD, without caching. In this graph, WMD (cache)
and RWMD (cache) are, respectively, the versions of WMD and RWMD that
use an O(n2) space cache to store the distances between the word embeddings
of the vocabulary. In this case, n = 22439. We do not use the same cache
strategy as before because there is no specific order of the document pairs
being computed this time.

Our first observation is that WMD does not benefit much from caching,
which is not surprising since its bottleneck is the computation of the optimal
solution of the transportation problem rather than computing the distances be-
tween embeddings. The maximum observed speed up factors for WMD (cache)
were less than 3. On the other hand, RWMD provides a more considerable
speed up, achieving factors around 20-30 for pairs of large documents. In con-
trast to WMD, its bottleneck is the computation of the distance matrix for
each pair of documents. In fact, when we add a cache to RWMD, it achieves a
more significant speed up, obtaining factors close to 500 for large documents.

The MF-WMD also yields significant performance gains. As expected,
the smaller the value of r the larger the speed up. For r = 32, the maximum
speed up factors were around 1000 while for r = 4 and r = 1 the maximum
values were close to 2500 and 3300, respectively. It is interesting to observe
that for pairs of smalls documents, RWMD (cache) is faster than MF-WMD.
This happens because, in this case, r is close to the number of distinct words

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 45

Figure 4.1: Execution time as a function of the product of the number of
distinct words in the pair of documents.

in the documents so that the graphs are not sparse and, as a consequence,
MF-WMD loses its key advantage. The COSINE distance, not included in the
graphs, is by far the fastest one, achieving speed up factors close 200.000.

Finally, with respect to memory consumption, MF-WMD is much more
efficient since it requires O(rn) space rather than O(n2) space. As an example,
for a vocabulary of 100.000 tokens, MF-WMD with r = 32, uses approximately
12Mb while RWMD (cache) requires around 20GB.

4.3.3
Additional experiment

We have seen in Subsection 4.3.2.3 that MF-WMD – similarly Rel-
WMD and Rel-WMD – performs better than its competitors as the size
of the documents becomes larger. However, so far we have analyzed their
behaviour over datasets mostly composed of small documents. For example,
among the datasets tested, the one with largest documents contains 100 tokens
per document in average which incurs 10.000 edges when computing distances
and falls under the lower end of the spectrum in Figure 4.1.

Thus, to complement our experiments, we created an additional dataset

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 46

with larger documents to analyze the behavior of a dataset with documents
in the higher end of the spectrum in Figure 4.1 as well. We extracted all
video game-related pages for six popular video game genres (action, RPG,
puzzle, platform, racing, shooter) from Wikipedia5. Pages presented in more
than one category were removed. Then we applied the same preprocessing done
to the other datasets: lowercase and remove punctuation, accents, numbers,
and stopwords. We also removed tokens that do not have a word embedding in
the Word2Vec pre-trained word embeddings made available by Google. This
resulted in 5200 pages, ranging from 300 to 1500 pages per category and having
275 tokens per page on average. The vocabulary is composed of 40.000 tokens.

Although being our base of comparison, the WMD is absent from all
the following tables, imposing some adjustments in them. This occurred
because, after running for five days, the experiment had not ended and needed
to be canceled. For the sake of comparison, for our previously most-time-
consuming dataset (20NEWS), the WMD had taken four days to finish the
classification task. Nonetheless, our prior experiments should have displayed
enough evidence to support the assumption that the WMD would remain
competitive in terms of test error and inferior in terms of running time.

4.3.3.1
Test Error

Table 4.8 presents the test error obtained by the distances under consid-
eration over the WIKIPEDIA dataset.

As before, the COSINE yields the worst test error since it does not
capture the semantic relations between different words. Between the remaining
distances, they all yield a similar test error which suggests again that just a
few pairs of distance are relevant. However, it is interesting that a smaller r

provides better results than a larger one. Possibly, the higher number of tokens
per document must be increasing the number of edges, bringing pairs of words
that are not so related and thus having larger distances. Consequently, this
must be smoothing the distance crel(D, D′) between documents D and D′.

Table 4.8: The behavior of test error for different distances on the WIKIPEDIA
dataset.

Dataset BEST COSINE RWMD REL-WMD REL-RWMD MF-WMD
r=1 r=4 r=32 r=1 r=4 r=32 r=1 r=4 r=32

wikipedia 22.43 1.24 1.00 1.01 1.00 1.05 1.00 1.02 1.04 1.01 1.01 1.05

5https://en.m.wikipedia.org/wiki/Category:Video_game_genres

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Chapter 4. Experiments 47

4.3.3.2
Computational Performance

Table 4.9 presents the running times obtained by the distances under
consideration over the WIKIPEDIA dataset. In this table, we replace the
WMD with the RWMD as our base of comparison since we could not finish
the WMD.

Even with respect to the RWMD, the COSINE still achieves a speed-up
of three orders of magnitude. However, this improvement over the RWMD is
probably due to the use of larger documents, since it should make more evident
the discrepancy between the linear and quadratic complexity of the respective
methods.

When comparing solely the Rel-WMD, Rel-RWMD and MF-WMD, we
can detect that Rel-WMD is up to one order of magnitude slower then the
others, without any advantage in terms of test error. Between the Rel-RWMD
and MF-WMD, the former continue consistently two times faster than the
latter. One possible reason for this constant factor between them comes from
the fact that the Rel-RWMD is straightforward algorithm to implement while
the MF-WMD needs to resolve a Maximum Flow algorithm which implies
copying all nodes and edges to the Library being used.

Additionally, we can confirm the behaviour displayed in Figure 4.1. The
WIKIPEDIA contains 275 × 275 = 75.000 edges on average, which means
that MF-WMD with r = 1, 2 and 32 should be approximately 5, 4 and 1.5
times faster than RWMD (cache). With respect to these values of r(w), the
MF-WMD performs a little slower than expected, obtaining a performance
improvement of 4, 3 and 1.5 times respectively. Nonetheless, it is still evident
that the difference between those methods increased in this dataset, since
RWMD (cache) was faster on average than MF-WMD with r ≥ 2 on the
datasets reported in Subsection 4.3.2.2.

Table 4.9: The speed up factor w.r.t to RWMD of different distances on the
WIKIPEDIA dataset.

Dataset COSINE RWMD
(CACHE)

REL-WMD REL-RWMD MF-WMD
r=1 r=4 r=32 r=1 r=4 r=32 r=1 r=4 r=32

wikipedia 2315.2 11.2 10.2 7.1 3.3 72.5 62.1 31.3 40.5 32.2 16.6

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

5
Final Remarks

In this work, we provided strong evidence that it is enough to focus on
the nearest words of each word w in the vocabulary during the computation of
WMD. This approach allows the replacement of the Transportation Problem
with a Max Flow Problem as well as a dramatic reduction is space consump-
tion, while still achieving error rates as good as the WMD. As our insight of
reducing all distances to only two can be seen as too aggressive, we also pro-
posed variants of the WMD and RWMD grounded on these same assumptions
and analyzed that they achieve similar gains.

In any case, we believe that our approach described in this work could
be similarly applied to other algorithms/applications of the field that relies on
the computation of distances between embeddings.

Regarding future works, recall that we use r(w) to the denote the number
of related word to each word w. Although we set r(w) uniformly in our
experiments, we understand that from a semantic perspective this number
should vary since some words are related to many more words than others.
Thus, one potential line of investigation is on how to choose these values
according to the characteristics of the word. One possible way relies on the
behaviour displayed in Figure 3.1 where we can see that most words converge to
the same value around 1.25. Intuitively, this “point” must varies depending on
the word w, as well as the number of words before it, which can be considered
as the ones related to w. So the idea is to find a way to automatically identify
this point for each word for selecting and set the r(w) in accordance to it.

Another interesting direction for future work is the application of the
approach proposed here in settings similar to Huang et al.[16], where accuracies
better than those achieved by WMD were reported via its supervised version.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Bibliography

[1] SHANNON, C. E.. A mathematical theory of communication. Bell
System Technical Journal, 27(July & October):379–423 & 623–656, 1948.

[2] DUMAIS, S. T.; FURNAS, G. W.; LANDAUER, T. K.; DEERWESTER,
S. ; HARSHMAN, R.. Using latent semantic analysis to improve
access to textual information. In: PROCEEDINGS OF THE SIGCHI
CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, p.
281–285. Acm, 1988.

[3] BLEI, D. M.; NG, A. Y. ; JORDAN, M. I.. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[4] HOTHO, A.; STAAB, S. ; STUMME, G.. Ontologies improve text
document clustering. In: DATA MINING, 2003. ICDM 2003. THIRD
IEEE INTERNATIONAL CONFERENCE ON, p. 541–544. IEEE, 2003.

[5] MIKOLOV, T.; CHEN, K.; CORRADO, G. ; DEAN, J.. Efficient esti-
mation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[6] MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO, G. S. ; DEAN, J..
Distributed representations of words and phrases and their com-
positionality. In: ADVANCES IN NEURAL INFORMATION PROCESSING
SYSTEMS, p. 3111–3119, 2013.

[7] PENNINGTON, J.; SOCHER, R. ; MANNING, C.. Glove: Global vectors
for word representation. In: PROCEEDINGS OF THE 2014 CONFER-
ENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESS-
ING (EMNLP), p. 1532–1543, 2014.

[8] LE, Q.; MIKOLOV, T.. Distributed representations of sentences
and documents. In: INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, p. 1188–1196, 2014.

[9] KUSNER, M.; SUN, Y.; KOLKIN, N. ; WEINBERGER, K.. From word
embeddings to document distances. In: INTERNATIONAL CONFER-
ENCE ON MACHINE LEARNING, p. 957–966, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Bibliography 50

[10] DAS, R.; ZAHEER, M. ; DYER, C.. Gaussian lda for topic models
with word embeddings. In: PROCEEDINGS OF THE 53RD ANNUAL
MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL
LANGUAGE PROCESSING (VOLUME 1: LONG PAPERS), volumen 1, p.
795–804, 2015.

[11] LI, C.; WANG, H.; ZHANG, Z.; SUN, A. ; MA, Z.. Topic modeling for
short texts with auxiliary word embeddings. In: PROCEEDINGS OF
THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH
AND DEVELOPMENT IN INFORMATION RETRIEVAL, p. 165–174. ACM,
2016.

[12] RUBNER, Y.; TOMASI, C. ; GUIBAS, L. J.. A metric for distributions
with applications to image databases. In: COMPUTER VISION, 1998.
SIXTH INTERNATIONAL CONFERENCE ON, p. 59–66. IEEE, 1998.

[13] ATASU, K.; PARNELL, T.; DÜNNER, C.; SIFALAKIS, M.; POZIDIS, H.;
VASILEIADIS, V.; VLACHOS, M.; BERROSPI, C. ; LABBI, A.. Linear-
complexity relaxed word mover’s distance with gpu acceleration.
In: BIG DATA (BIG DATA), 2017 IEEE INTERNATIONAL CONFERENCE
ON, p. 889–896. IEEE, 2017.

[14] PELE, O.; WERMAN, M.. Fast and robust earth mover’s distances.
In: COMPUTER VISION, 2009 IEEE 12TH INTERNATIONAL CONFER-
ENCE ON, p. 460–467. IEEE, 2009.

[15] CUTURI, M.. Sinkhorn distances: Lightspeed computation of opti-
mal transport. In: ADVANCES IN NEURAL INFORMATION PROCESS-
ING SYSTEMS, p. 2292–2300, 2013.

[16] HUANG, G.; GUO, C.; KUSNER, M. J.; SUN, Y.; SHA, F. ; WEINBERGER,
K. Q.. Supervised word mover’s distance. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS, p. 4862–4870, 2016.

[17] BENGIO, Y.; DUCHARME, R.; VINCENT, P. ; JAUVIN, C.. A neural
probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155, 2003.

[18] MIKOLOV, T.; KOPECKY, J.; BURGET, L.; GLEMBEK, O. ; OTHERS.
Neural network based language models for highly inflective lan-
guages. In: 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS,
SPEECH AND SIGNAL PROCESSING, p. 4725–4728. IEEE, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Bibliography 51

[19] GOLDBERG, A. V.; TARJAN, R. E.. A new approach to the maximum-
flow problem. Journal of the ACM (JACM), 35(4):921–940, 1988.

[20] ORLIN, J. B.. Max flows in o (nm) time, or better. In: PROCEEDINGS
OF THE FORTY-FIFTH ANNUAL ACM SYMPOSIUM ON THEORY OF
COMPUTING, p. 765–774. ACM, 2013.

[21] GOLDBERG, A. V.. An efficient implementation of a scaling
minimum-cost flow algorithm. J. Algorithms, 22(1):1–29, 1997.

[22] CACHOPO, A. M. D. J. C.; OTHERS. Improving methods for single-
label text categorization. Instituto Superior Técnico, Portugal, 2007.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

A
Experimental results

Tables from A.1 to A.3 display all the results obtained during this work
for the distances under consideration on different datasets. For the sake of
future reference, test errors and running times are present in their brute values,
differing from the approach done in Chapter 4.

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Appendix A. Experimental results 53

Ta
bl
e
A
.1
:T

he
be

ha
vi
or

of
th
e
br
ut
e
te
st

er
ro
r
fo
r
di
ffe

re
nt

di
st
an

ce
s/
da

ta
se
ts
.

D
is
ta

nc
e

20
ne

w
s
am

az
on

bb
cs
po

rt
cl
as
si
c
oh

su
m
ed

re
ci
pe

re
ut

er
s
tw

it
te

r
w
ik
ip
ed

ia

C
O
SI
N
E

30
.4
5

12
.9
0

4.
82

6.
34

45
.7
4

45
.7
1

8.
95

31
.9
7

27
.7
5

W
M
D

24
.0
9

7.
21

5.
36

3.
04

42
.8
5

46
.5
6

3.
84

29
.1
4

—
–

RW
M
D

24
.6
4

6.
91

5.
18

2.
81

43
.3
3

46
.4
7

4.
07

29
.0
6

22
.4
8

RW
M
D

(c
ac

he
)

24
.6
4

6.
91

5.
18

2.
81

43
.3
3

46
.4
7

4.
07

29
.0
6

22
.4
8

R
E
L-
W
M
D

r=
1

25
.3
1

9.
80

4.
36

3.
67

42
.2
1

43
.2
0

5.
16

31
.8
7

22
.7
1

r=
2

25
.4
8

9.
48

4.
73

3.
71

42
.8
1

43
.5
2

4.
75

30
.7
7

22
.6
8

r=
4

25
.1
6

8.
99

4.
73

3.
54

42
.1
3

43
.1
9

4.
39

29
.9
1

22
.5
2

r=
8

24
.8
0

8.
66

4.
91

3.
45

41
.5
5

43
.1
6

4.
43

29
.3
3

23
.0
4

r=
16

24
.1
7

8.
33

4.
73

3.
21

41
.0
2

43
.3
3

4.
11

29
.1
2

23
.2
0

r=
32

24
.2
1

7.
91

4.
55

3.
12

40
.5
8

43
.1
0

4.
07

28
.9
7

23
.6
5

r=
64

23
.8
9

7.
57

4.
91

3.
14

41
.3
2

42
.9
4

4.
20

28
.6
1

23
.8
2

r=
12
8

24
.2
7

7.
38

5.
27

3.
05

41
.8
4

43
.2
6

3.
97

28
.9
9

23
.7
7

R
E
L-
RW

M
D

r=
1

25
.3
9

9.
73

4.
36

3.
68

42
.5
0

43
.3
4

4.
93

31
.4
4

22
.4
3

r=
2

25
.1
6

9.
17

4.
55

3.
54

42
.9
3

43
.2
3

4.
66

30
.7
3

22
.9
4

r=
4

25
.2
3

9.
11

4.
27

3.
42

42
.1
5

42
.8
7

4.
25

29
.4
6

22
.9
2

r=
8

24
.6
7

8.
49

5.
36

3.
32

41
.5
5

42
.7
9

4.
48

29
.3
8

23
.3
4

r=
16

24
.8
4

8.
22

4.
36

3.
17

40
.8
1

42
.7
6

3.
88

29
.1
0

23
.5
3

r=
32

24
.2
5

7.
69

4.
91

3.
11

41
.5
1

43
.1
4

4.
11

28
.8
6

23
.4
2

r=
64

24
.7
9

7.
50

5.
36

3.
03

41
.4
7

43
.1
1

4.
29

28
.4
1

23
.3
1

r=
12
8

24
.6
6

7.
11

5.
64

2.
94

41
.7
4

43
.1
9

4.
25

28
.6
7

23
.2
9

M
F
-W

M
D

r=
1

25
.2
3

9.
87

4.
55

3.
67

42
.3
8

43
.1
7

5.
25

31
.8
5

22
.6
6

r=
2

25
.4
7

9.
45

4.
91

3.
65

42
.5
6

43
.3
9

4.
71

30
.8
4

22
.8
5

r=
4

25
.0
6

9.
16

4.
27

3.
53

42
.3
8

42
.9
7

4.
34

29
.9
1

22
.6
5

r=
8

24
.7
9

8.
56

4.
82

3.
42

41
.7
2

43
.2
3

4.
29

29
.2
3

22
.8
1

r=
16

24
.0
9

8.
29

4.
27

3.
29

41
.5
7

43
.3
0

4.
20

29
.1
6

23
.2
1

r=
32

24
.0
3

8.
04

4.
36

3.
11

41
.4
3

43
.0
7

3.
97

28
.7
8

23
.5
4

r=
64

24
.2
2

7.
65

5.
09

3.
15

41
.8
4

42
.9
9

4.
07

28
.7
6

23
.7
9

r=
12
8

24
.1
3

7.
50

5.
36

3.
05

41
.8
0

43
.4
8

4.
02

29
.3
1

23
.5
4

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Appendix A. Experimental results 54

Ta
bl
e
A
.2
:T

he
be

ha
vi
or

of
th
e
br
ut
e
te
st

er
ro
r
fo
r
di
ffe

re
nt

di
st
an

ce
s/
da

ta
se
ts
,r

ep
la
ci
ng

th
e
W
or
d2

Ve
c
w
ith

G
lo
Ve

em
be

dd
in
gs
.

D
is
ta

nc
e

am
az

on
bb

cs
po

rt
cl
as
si
c
oh

su
m
ed

re
ci
pe

re
ut

er
s
tw

it
te

r

C
O
SI
N
E

12
.9
3

4.
82

6.
35

46
.1
9

45
.8
9

8.
95

31
.9
7

W
M
D

7.
14

4.
82

3.
22

42
.1
1

43
.3
0

4.
29

28
.8
2

RW
M
D

7.
24

4.
36

3.
20

42
.2
1

43
.6
0

4.
52

28
.9
3

R
E
L-
W
M
D

r=
1

9.
87

3.
91

3.
83

42
.6
2

43
.6
9

5.
16

31
.3
1

r=
2

9.
44

3.
91

3.
65

42
.7
3

43
.6
0

4.
80

30
.4
7

r=
4

8.
92

4.
36

3.
54

42
.4
0

43
.8
3

4.
48

29
.6
1

r=
8

8.
46

4.
55

3.
37

42
.1
3

43
.2
2

4.
48

29
.1
6

r=
16

8.
22

4.
73

3.
26

42
.1
1

43
.0
5

4.
29

28
.8
8

r=
32

7.
63

4.
82

3.
32

42
.5
8

43
.2
0

4.
34

28
.6
1

r=
64

7.
26

4.
82

3.
29

42
.2
7

43
.1
0

4.
29

28
.8
0

r=
12
8

7.
06

4.
91

3.
25

41
.9
8

42
.6
4

4.
34

29
.1
0

R
E
L-
RW

M
D

r=
1

9.
48

4.
09

3.
78

43
.0
4

43
.5
5

5.
16

30
.9
4

r=
2

9.
05

4.
18

3.
55

43
.1
0

44
.0
4

4.
61

30
.0
4

r=
4

8.
64

4.
09

3.
45

42
.6
7

43
.8
0

4.
66

29
.5
7

r=
8

8.
18

4.
73

3.
36

41
.9
4

43
.8
7

4.
52

29
.2
5

r=
16

7.
75

4.
73

3.
33

42
.4
2

43
.8
6

4.
71

28
.8
6

r=
32

7.
42

4.
55

3.
51

42
.4
2

43
.7
1

4.
75

28
.5
2

r=
64

7.
43

4.
36

3.
57

42
.9
1

43
.3
7

4.
80

28
.6
5

r=
12
8

6.
95

4.
18

3.
38

42
.5
4

43
.1
7

4.
84

28
.9
7

M
F
-W

M
D

r=
1

9.
86

3.
82

3.
91

42
.4
6

43
.7
8

5.
12

31
.2
9

r=
2

9.
41

4.
00

3.
61

42
.9
1

43
.5
9

4.
84

30
.2
1

r=
4

8.
96

4.
45

3.
50

42
.4
0

43
.5
9

4.
48

29
.7
6

r=
8

8.
52

4.
55

3.
36

41
.8
8

42
.9
7

4.
57

29
.3
3

r=
16

8.
15

4.
82

3.
35

42
.6
0

42
.8
1

4.
39

28
.7
6

r=
32

8.
01

5.
00

3.
32

42
.3
2

43
.0
7

4.
43

28
.7
3

r=
64

7.
48

5.
64

3.
23

42
.3
2

42
.9
9

4.
25

29
.1
2

r=
12
8

7.
41

5.
09

3.
22

42
.3
2

42
.9
1

4.
48

29
.3
8

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

Appendix A. Experimental results 55

Ta
bl
e
A
.3
:T

he
ru
nn

in
g
tim

e
(in

se
co
nd

s)
of

di
ffe

re
nt

di
st
an

ce
s/
da

ta
se
ts
.

D
at
as
et

20
ne

w
s

am
az

on
bb

cs
po

rt
cl
as
si
c

oh
su
m
ed

re
ci
pe

re
ut

er
s
tw

it
te

r
w
ik
ip
ed

ia

C
O
SI
N
E

15
3.
97

23
.0
1

0.
32

14
.5
3

46
.0
0

6.
29

16
.1
0

2.
03

22
.2
3

W
M
D

37
46
46
.6
9
21
08
1.
31

12
60
.2
7

12
76
7.
47

60
10
7.
19

63
36
.8
1
10
85
3.
37

19
9.
02

—
–

RW
M
D

52
73
7.
47

41
90
.0
0

17
4.
38

25
75
.0
9

88
41
.5
2

12
56
.9
6

27
53
.7
1

62
.2
9

51
46
2.
71

RW
M
D

(c
ac

he
)

31
10
.2
0

54
6.
35

33
.4
4

28
5.
13

10
53
.5
4

82
.2
0

28
0.
21

12
.0
7

45
98
.6
8

R
E
L-
W
M
D

r=
1

64
26
.4
1

73
4.
25

44
.7
6

42
4.
96

19
50
.6
4

33
7.
80

58
5.
02

16
.0
0

50
45
.6
6

r=
2

75
43
.1
7

92
9.
42

50
.6
9

57
2.
67

25
99
.2
4

41
7.
74

69
2.
69

22
.1
6

58
81
.9
5

r=
4

89
69
.4
7

10
95
.2
6

58
.7
2

73
6.
72

34
07
.6
0

52
0.
73

79
1.
19

29
.8
9

72
01
.9
4

r=
8

10
68
3.
73

13
29
.3
0

68
.6
0

86
4.
07

40
38
.1
0

65
2.
28

11
05
.3
3

36
.8
8

92
83
.7
9

r=
16

13
01
6.
65

16
51
.5
8

87
.4
9

11
13
.5
6

47
80
.5
1

84
6.
20

13
05
.6
6

47
.8
2

11
79
2.
25

r=
32

17
11
7.
32

20
06
.8
4

11
7.
24

14
43
.0
1

60
82
.2
2

11
50
.7
3

17
43
.9
4

56
.0
2

15
58
0.
05

r=
64

22
87
3.
38

24
47
.8
0

15
7.
82

18
54
.9
3

79
11
.9
8

15
08
.1
5

21
73
.0
3

74
.4
5

21
56
3.
10

r=
12
8

30
39
7.
09

29
26
.6
4

21
7.
35

22
79
.0
5

95
51
.1
6

20
33
.8
5

26
93
.1
7

94
.1
9

31
01
3.
59

R
E
L-
RW

M
D

r=
1

17
07
.8
0

28
9.
30

21
.9
0

15
8.
27

46
5.
71

51
.4
9

12
1.
56

11
.0
9

70
9.
88

r=
2

16
88
.8
3

30
1.
86

21
.5
0

17
0.
10

47
7.
99

58
.8
1

13
3.
70

11
.5
5

75
1.
54

r=
4

19
98
.2
0

33
2.
54

23
.1
6

18
5.
18

53
6.
24

67
.9
1

15
2.
54

12
.9
4

82
8.
13

r=
8

22
82
.9
0

38
1.
30

24
.7
0

21
9.
09

66
4.
58

85
.8
0

18
0.
21

15
.0
6

95
2.
21

r=
16

34
10
.2
3

46
6.
39

28
.3
7

28
6.
16

94
8.
76

12
3.
77

23
3.
21

15
.6
2

11
95
.2
5

r=
32

46
35
.9
8

60
0.
92

35
.1
5

38
3.
65

14
27
.0
1

18
6.
01

30
9.
31

16
.4
0

16
43
.1
7

r=
64

67
43
.2
0

74
3.
13

45
.6
9

48
5.
84

19
41
.5
8

24
0.
45

38
8.
82

18
.3
0

24
96
.7
0

r=
12
8

87
65
.0
4

87
8.
83

61
.8
2

56
2.
69

21
33
.3
9

26
3.
93

45
7.
18

18
.8
9

40
07
.5
7

M
F
-W

M
D

r=
1

29
56
.3
7

44
9.
41

21
.0
1

22
4.
86

76
1.
29

11
3.
36

24
9.
22

11
.5
3

12
70
.5
0

r=
2

34
25
.3
3

49
8.
38

22
.8
4

26
8.
57

88
9.
04

12
6.
32

28
2.
39

13
.7
0

13
95
.9
3

r=
4

39
77
.1
4

56
8.
55

25
.3
0

30
8.
03

10
22
.5
3

15
1.
11

32
0.
14

17
.4
0

16
00
.3
8

r=
8

48
40
.1
4

63
0.
02

26
.1
5

37
2.
60

12
08
.7
7

17
9.
75

37
9.
93

19
.7
2

18
49
.9
5

r=
16

57
72
.1
8

76
1.
50

30
.0
2

46
7.
64

15
74
.3
8

23
9.
28

48
3.
49

22
.7
0

23
02
.6
5

r=
32

85
37
.0
8

95
9.
93

38
.6
6

61
7.
28

21
86
.4
2

32
7.
55

60
4.
12

25
.7
9

31
03
.6
5

r=
64

10
18
5.
05

12
04
.0
8

51
.5
5

76
3.
82

29
52
.1
0

44
5.
55

72
2.
53

29
.9
5

44
34
.7
4

r=
12
8

12
54
8.
92

14
22
.4
1

69
.2
4

88
2.
31

34
90
.8
7

56
3.
86

87
6.
83

32
.5
2

71
05
.8
8

DBD
PUC-Rio - Certificação Digital Nº 1712670/CA

	A fast and space-economical approach to Word Mover's Distance
	Resumo
	Table of contents
	Introduction
	Our Contributions
	Related Work
	Dissertation Organization

	Background
	Word Embeddings
	Neural Network Language Model
	Word2Vec

	Document representations
	Bag-of-Words
	Enhanced Bag-of-Words

	Network flow problems
	Maximum flow problem
	Minimum-cost flow problem

	Document distances
	Cosine Distance
	Word Mover's Distance
	Relaxed Word Mover's Distance

	An efficient method for calculating the distance between documents via word embeddings
	On the distances between word embeddings
	Algorithms exploiting distance assumptions
	Preprocessing Phase
	Related Word Mover's Distance
	Related Relaxed Word Mover's Distance
	Max Flow Word Mover's Distance

	Experiments
	Datasets description
	Distances
	Results
	Test Error
	By dataset
	By changing embeddings
	Sensitivity to the number of related words

	Computational Performance and Memory Requirements
	By dataset
	Sensitivity to the number of related words
	By the size of the documents

	Additional experiment
	Test Error
	Computational Performance

	Final Remarks
	Bibliography
	Experimental results

