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ABSTRACT

Lagrangians for Electromechanical Systems

Electromechanical systems are very common. The importance of constructing the dy-
namical equations of motors coupled with mechanical subsystems suggests a new strategy
. In the literature, often, the derivation of the dynamical equations is wrong. One thinks
that the standard derivations of the dynamical equations of purely mechanical systems
can be mimicked to electromechanical systems. Unfortunately, it cannot. The main rea-
son is that in electromechanical systems one deals with the presence of electromagnetic
fields, continuous entities. These fields store electrical and mechanical energies. In purely
mechanical systems the conservative mechanical energy is stored as elastic or gravitational
energy , and the nonconservative terms enter the equation as nonconservative forces. This
cannot be done in electromechanical systems. This project shows the right way to derive
the dynamical equations applying the results for systems formed by a motor, a coupling
mechanism, and a mechanical subsystem.

Keywords : Electromechanical Systems. Coupled Systems. Lagrangians
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RESUMO

Formulação Lagrangiana para Sistemas Eletromecânicos

Sistemas eletromecânicos são muito comuns. A importância de construir as equações
dinâmicas de motores acoplados a subsistemas mecânicos sugere uma nova estratégia.
Na literatura, muitas vezes, a derivação das equações da dinâmica está errada. Pensa-se
que as derivações padrão da dinâmica de sistemas puramente mecânicos podem ser imi-
tadas para sistemas eletromecânicos. Infelizmente, isso não é posśıvel. A principal razão
é que em sistemas eletromecânicos se lida com a presença de campos eletromagnéticos,
entidades cont́ınuas. Esses campos armazenam energias eletromagnéticas e mecânicas.
Em sistemas puramente mecânicos, a energia mecânica conservadora é armazenada como
energia elástica ou gravitacional, e os termos não conservativos entram na equação como
forças não conservativas. Isso não pode ser feito em sistemas eletromecânicos. Este pro-
jeto mostra o caminho certo para derivar as equações da dinâmica, aplicando os resultados
para sistemas formados por um motor, um mecanismo de acoplamento e um subsistema
mecânico.

Palavras-chave : Sistemas eletromecânicos. Sistemas acoplados. Formulação La-
grangiana
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1 Introduction

Modeling plays a necessary role in the design of dynamical systems. It helps to describe
the behavior of a system and to acquire a better understanding of its functionality. In
the engineering domain, physical systems such as mechanical, electrical, fluid and thermo
can be explained by energy in its most diverse forms. Energy is always a common name
when dealing with a specifique nature. While studying systems composed by two different
parts, energy does not seem to be enough. It needs a complement. The complementary
energy - coenergy - has an important role in systems with mutual interactions. These sys-
tems share an unique characteristic: Coupling terms. Two subsystems are only together
if coupled. For that reason, energy alone is not sufficient. The coenergy helps to identify
terms of mutual interaction. If only energy is discussed, as it is done when dealing with
one system alone with no subsystems, it turns out to be impossible to identify coupling
terms. The difference between energy and coenergy must be presented. It is noticiable
that the pair energy-coenergy works as an universal language between physical systems.
With one it is easy to acquire the other through a variable modification. The Legendre
transformation links several energy functions in the physical domain. One of them is
the energy-coenergy transformation. Useful but not always possible. Another interesting
transformation enters the field of Thermodynamics, it relates the Internal Energy with
Helmholtz Free Energy, Enthalpy and Gibbs Free Energy. Other formulations such as
Lagrangians, Colagrangians, Hamiltonians and Cohamiltonians are also functions related
through a Legendre Transformation.

Couplings are not always connecting two different subsystems. It is possible to have
coupling between two parts of the same origin. For example, some electromechanical
systems examples in this project have both: An electromechanical and a mechanical
coupling. Electromechanical systems are characterized by a mutual influence between
mechanical and electrical parts [10, 9]. These parts share an electromechanical coupling,
necessarily. For the section of DC motors coupled to mechanical parts, two systems
are discussed. They have the same electromechanical coupling. Their difference lies in
the choice of the mechanical coupling mechanism. The first objective is to formulate a
Lagragian capable of describing any electromechanical system. The mechanical coupling
of the first system is made by a mechanism called slider-crank, see [3, 1]. The second uses
a mechanism called scotch-yoke, see [14, 16]. These systems have an interesting feature:
they work as a sort of master-slave condition. The motor rotates and the mechanical part
reacts.
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2 Legendre Transformations

The Legendre transformation is used to transitate between functions. It consists in
the change of one or more independent variables of a particular function, constructing a
new one. The new function is a new form of interpreting the old one. As an example, take
the fundamental relation Y (X). Notice this relation is a function of only one independent
variable X. Geometrically, it is represented by a curve in a plane with coordinates Y and
X. The derivative of the function Y in respect to X is the slope of the curve. Now, the
slope S is considered also as an independent variable, one can easily write Y (S). Now,
Y (X) and Y (S) represent the same curve. The objective is to demonstrate that a curve
can also be represented equally by a family of tangent lines. Every line is described by
two numbers S and B, where B is the value where the line crosses the Y axis. When
Y (X) describes a curve with a family of points, B(S) describes the same curve with a
family of lines.

Figure 1: (a) A curve in the XY plane (b) B is the value where the line crosses the Y axis
and S is the slope of the line (c) Notice that the curve can be represented by a family of
lines. Every curve has a pair (Y,X) and every line has a pair (B,S).

Take as an example a curve Y , which is a function of only one independent variable
X. The curve Y used in the following example is different from the one represented
in Figure 1 but both examples follow the same mechanism. Figure 1 is an important
graphical aproach of what is actually happening to any curve submitted to a Legendre
transformation. Take the derivation of this Y curve with respect to its variable to obtain
the slope S of the curve. Through a relation caractherized by the division of the difference
between two points of a line, basically a line equation, it is possible to correlate S, Y , X
and B (which is the value where the line crosses the Y−axis).

Y (X) → S(X) =
dY

dX
→ B(S), (1)

Y (X) =
1

4
X2 , S(X) =

dY

dX
=

1

2
X. (2)

Through the equation of the line, it is possible to define B(S) once Y and X are also
functions of S :

X(S) = 2S → substituting in Y (X) → Y (S) = S2, (3)

equation of the line: S =
Y −B
X − 0

or Y = B + SX → B(S) = −S2. (4)
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It is now evident that representing a curve with the function Y (X) is not the only
possibility. If necessary there are other ways to represent it. If the pair of points (X, Y )
is not an important information in the representation, the same curve can be represented
by the pair (S,B) which gives the slope of the curve and the value the line crosses the
vertical axis. It is interesting to analyse graphically the equation S = 1

2
X with the slope

S in the vertical axis and X in the horizontal axis. The relation between S and X is
linear. The areas beneath and above the line are Y (S) and Y (X), respectively. The areas
are equal, which means that both representations are the same quantity, the same curve
in different formalisms.

Each of the following alternative formulations presented throughout this section is ap-
propriate for specific problems. The reason independent variables are changed is a matter
of suitability. Some problems tend to be extremely complicated and even impossible in
wrong formalisms.

2.1 In Thermodynamics

The art of Thermodynamics lies in the selection of the particular formulation, [7]. In
this section four of the most common thermodynamic potetials related through a Legendre
transformation are presented. The Helmholtz Free Energy F (T, V ), which has natural
variables temperature T and volume V , is one of the partial Legendre transformations
of the Internal Energy U(S, V ), which depends on the variables entropy S and also the
volume V . The relationship between these two functions is made by changing one or two
variables. The Legendre transformation of U(S, V ) to F (T, V ) is characterized by the
change of the entropy S by the temperature T . If the volume V of U(S, V ) is changed
by the pressure P , the Internal Energy U(S, V ) is transformed to Enthalpy H(S, P ), it is
another example of Legendre transformation. Finally, if both variables are changed, S by
T and V by P , another potential called the Gibbs Free Energy G(T, P ) is created. All of
the functions F , H and G are Internal Energies U in other formalism. A representation
resuming all of the transformations is called the thermodynamic square.

Figure 2: Thermodynamic square.
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2.2 In Classical Mechanics

In Classical Mechanics, there are several formulations. Some are very famous, as
the Newtonian, Lagrangian and Hamiltonian formulations. Others are not frequently
used, as the Colagrangian and the Cohamiltonian. From the Newtonian, it is easy to
formulate the Lagrangian. They are not connected through a Legendre Transform, but
the equations of Newton and Lagrange are basically the same. With an exception of the
Newtonian, all other formulations present an energy approach. By changing independent
variables and modifing energy functions, Lagrangians, Colagrangians, Hamiltonians and
Cohamiltonians are also functions related through a Legendre Transformation.

Figure 3: Legendre Transformations in Classical Mechanics. Image taken from [13].

Taking f, q, p and q as independent variables:
From the Lagrangian to the Hamiltonian:

L(f, q)⇒ H(p, q). (5)

From the Lagrangian to the Cohamiltonian:

L(f, q)⇒ COH(f, e). (6)

From the Lagrangian to the Colagrangian:

L(f, q)⇒ COL(p, e). (7)
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3 Energy Considerations

3.1 Energy Balance Relationships

In this project, for a better understanding, electromechanical systems are considered
as lumped-parameter systems. They are described by a finite number of mechanical and
electrical variables. In these systems, interaction occurs through eletrostatic and eletro-
magnetic fields. These fields are called coupling fields. They are common to electrical
and mechanical parts. Both subsystems will always interact and the interaction causes
energy transfer.

Figure 4: Energy transfer in an electromechanical system.

A simplified form of an electromechanical system can be represented by Figure 4. It
shows how energy transfers from one point to another. Now it is apparent how electrical
and mechanical parts interact in a system. Electromechanical systems are coupled systems
by nature. They interact through a coupling field. Em is the energy transferred to the
coupling field by the mechanical subsystem, EmL the loss also associated to the mechanical
part and EmS is the energy stored in the mechanical elements. It is possible to describe
the total energy supplied by the mechanical part as EM . The same can be done for the
electrical part. Ee is the energy transferred to the coupling field by the electrical part, EeL

is the loss also associated to the electric subsystem and EeS is the energy stored in electric
or magnetic fields which are not coupled to the mechanical subsystem. It is possible to
describe the energy supplied by the electrical part as EE. Analysing the directions of the
arrows in figure 4, the following equations are easily obtained.
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For the energy supplied to both parts, one has

EM = Em + EmL + EmS, (8)

EE = Ee + EeL + EeS. (9)

Now for the total energy transferred to the coupling field we must separate the energy
stored from the energy dissipated. For EfS being the total energy stored and EfL the total
energy dissipated in the coupling field, it is possible to define the total energy transferred
to the coupling field as:

EF = Ee + Em = EfS + EfL. (10)

To demonstrate the equality of the equation 10 we define EfS and EfL. Both are the
difference between the total energy supplied and the sum of the energy stored with the
energy lost, for each subsystem :

EfS = Ee − (EeL + EeS), (11)

EfL = Em − (EmL + EmS), (12)

Substituting 11 and 12 in 10 we have:

EF = (Ee − EeL − EeS) + (Em − EmL − EmS), (13)

Substituting equations 8 and 9 in 13 gives,

EF = Ee + Em. (14)

The total energy transferred to the coupling field is independent of the energy dis-
sipated in the mechanical or electrical part. It is also independent of the energy stored
outside the coupling terminals. Thus, if the losses of the coupling field are not taken
into account, the field between the coupling terminals is said to be conservative. It can
be compared to a box that contains only an electric or a magnetic field. The value and
the energy storaged inside is affected by electrical and mechanical variables. The energy
put into the system by the mechanical and electrical pairs is stored in the field and can
be recovered completely. That is the reason an assumption of a conservative coupling
field is valid. Consider two examples of electromechanical systems. One has a magnetic
field storage between coupling terminals and the other an electric field storage. Both
fields interact with the mechanical subsystem by moving a plate. The electric subsystem
is composed by a voltage υ, a current q̇ representing the time derivative of the electric
charge q, an inductance l, a resistance r and a coupling voltage denoted by ef . The
mechanical subsystem has a plate of mass m, a spring of stiffness k, a force f externally
applied, a damper with damping coefficient b and a force of electric or magnetic origin fe.
In systems a and b, x is the displacement and x0 is the equilibrium position of the plate.
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Figure 5: (a) Electromechanical system with a magnetic coupling field (b) Electrome-
chanical system with an electrical coupling field

These two electromechanical systems are very simple. To obtain the equations of the
dynamics in this case is trivial. Newton’s and Kirchhoff’s law applied to systems (a) and
(b) gives

mẍ+ bẋ+ k(x− x0)− fe = f, (15)

lq̈ + rq̇ + ef = υ, (16)

After multiplying equation 16 by the current q̇ and equation 15 by the velocity ẋ
we get two powers. Integrating both equations in time, we get two equalities of energy
equations for∫

fẋdt =

∫
mẍẋ dt+

∫
bẋ2 dt+

∫
k(x− x0)ẋ dt−

∫
feẋ dt, (17)∫

υq̇ dt =

∫
lq̈q̇ dt+

∫
rq̇2 dt+

∫
ef q̇ dt. (18)
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Equations 17 and 18 also represent the energy supplied by the mechanical and the
electrical part. Comparing equation 8 to equation 17 leads to

EM =

∫
fẋ dt, (19)

EmS =

∫
mẍẋ dt+

∫
k(x− x0)ẋ dt, (20)

EmL =

∫
bẋ2 dt, (21)

Em = −
∫
feẋdt. (22)

Now comparing equation 9 to equation 18 we get

EE =

∫
υq̇ dt, (23)

EeS =

∫
lq̈q̇ dt, (24)

EeL =

∫
rq̇2 dt, (25)

Ee =

∫
ef q̇ dt. (26)

Substituting equations 22 and 23 in 14 gives

EF =

∫
ef q̇ dt−

∫
feẋ dt, (27)

or in differential form:

d

dt
(EF ) = ef q̇ − feẋ . (28)

The total energy transferred to the coupling field EF for systems (a) and (b) is denoted
by equation 28. The examples presented do not include all possibilities. Note that this
equation is valid only for one mechanical and one electrical terminal. Aiming to expand
the equation to other circunstances, it should not only increase the number of terminals
but also include a torque. This mechanical torque, as the mechanical force, can have a
magnetic or an electric origin. The rate of change in the angular displacement α̇ must
multiply the torque τe in order to form a power and be included in equation 28. For N
electrical and M mechanical terminals:

d

dt
(EF ) =

N∑
i=1

(ef q̇)i −

(
M∑
i=1

(feẋ)i +
M∑
i=1

(τeα̇)i

)
, (29)

d

dt
(EF ) =

N∑
i=1

(ef q̇)i −

(
M∑
i=1

(fe)i
dxi

dt
+

M∑
i=1

(τe)i
dαi

dt

)
. (30)
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Energy generated can be stored, but power can not. Conserving power is a way to
conserve the rate at which the energy is transmitted. Equation 30 shows that the rate of
the energy transferred to the coupling field is conserved, see [19]. In the systems presented,
the displacement x represents the influence of the mechanical part in the coupling field.
It could also be represented by an angular displacement α. These coordinates x and α are
not related through a constitutive equation. It is true that, when there is a constraint, one
can be written as a function of the other, but their relation is not always imposed. It is not
necessary. Therefore, it is possible to have one of them (x or α), or both, to represent the
state of the mechanical part. Note that for the electrical part, the choice is not so trivial.
The electric charge q and the flux linkage λ are often chosen as coordinates to represent an
electrical system. Once the electric coordinates are related through constutive equations
and as the derivative of the flux linkage (dλ/dt) equals the voltage between the terminals
of the couplig field (ef ). The constitutive equations for both possibilities are

q = c
dλ

dt
, (31)

λ = l
dq

dt
. (32)

Only one coordinate is necessary. The choice of the electrical variable must be unique
for any number of coupling terminals. Usually for systems with magnetic energy storage
as (a), the choice of λ seems to be motivated by how an increasing of the flux linkage
leads to an increasing of the energy transmitted to the system. The same approach is
made for systems like (b) with an electric energy storage, the choice of q is motivated
by how incremental changes in the coupling field influences in the energy transmission.
For now, this choice is suitable to understand the principles of the energy transfer. It is
chosen λ for the system with magnetic energy storage and q for the system with electric
energy storage. Later in this project, the choice of only one coordinate has to be made
to formulate an extended Lagrangian. It is not convenient to work with two coordinates
for a system while having a constraint, although working with two coordinates seems
to be possible, see interesting formulation of [11]. For now, it is possible to write the
equations for a magnetic and an electric energy storage represented by each of its chosen
coordinates. Being Tm and Ve the energy stored in a magnetic and in an electric field,
respectively.

For the energy transferred to a magnetic coupling field one has

d

dt
(Tm) =

N∑
i=1

(q̇)i
dλi

dt
−

(
M∑
i=1

(fe)i
dxi

dt
+

M∑
i=1

(τe)i
dαi

dt

)
. (33)

and for the energy transferred to an electric coupling field

d

dt
(Ve) =

N∑
i=1

(ef )i
dqi

dt
−

(
M∑
i=1

(fe)i
dxi

dt
+

M∑
i=1

(τe)i
dαi

dt

)
. (34)
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The left side of the equations 33 and 34 shows a term that represents the time rate of
increase in energy stored. In the right side, the difference between two other terms. The
first is the power input at the electrical terminals and the second is the power input at
the mechanical terminals. Second term has a negative sign because the force fe and the
torque τe are defined as acting on the mechanical node.

3.2 Energy and Coenergy Relations

In the study of electromechanical systems, the definition of coenergy must be pre-
sented. Energy and coenergy complements one another [13]. Take an example in the
mechanical domain: a particle with mass m moving in the positive x direction. This
model represents a non-relativistic situation. We are able to write the kinetic energy and
the kinetic coenergy of the particle with a constitutive law. This constitutive law will
relate the momentum p with the velocity v. By substituting the constitutive law in the
energy equation, the coenergy is obtained:

Energy:
p2

2m
, (35)

Constitutive law: p = mv, (36)

Coenergy:
mv2

2
. (37)

When plotting the constitutive law p = mv, with p in the y-axis and v in the x-axis,
the area underneath the line represents the energy and the area above the line the coen-
ergy. Notice that the kinetic coenergy is often called kinetic energy in most literatures.
The term coenergy is omitted. The reason that happens is that for linear systems the
energy equals the coenergy, making the introduction of a new concept unnecessary. For
relativistic situations, the constitutive law changes. Now, a nonlinear relation is analysed.
Energy and coenergy now differ. The linear equation for the momentum p used to give
the problem similar areas and consequently similar energies. The relativistic nonlinear
equation gives rise to different areas and different quantities. Finally, we define energy
functions for electrical systems as

Energy:

Tm = Tm(λ), (38)

We =We(q). (39)

Coenergy:

Wm =Wm(q̇), (40)

Ve = Ve(υ). (41)
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The magnetic energy Tm is described as a fuction of the flux linkage λ. Wm is the
magnetic coenergy described as a function of the current q̇. The electric coenergy Ve
varies with the voltage υ. The electric energyWe varies with the charge q. Although their
difference in the choice of independent variables, energy functions Tm and Wm, as well as
Ve andWe have the same units. Note that the magnetic energy and coenergy are functions
that can be related through a constitutive law and it depends on the characteristics of the
system, just like the example of the moving particle in the mechanical domain. The same
holds true to electric energy and coenergy functions. Again, it is important to emphasize
that these functions, for magnetic and electric parts separately, may not always be the
same, the equality is a characteristic of linear systems only. A benefit of the coenergy is
the advantage to calculate mechanical torques and forces of magnetic or electrical origin.
It is also interesting to analyze the relation between energies with a graphical approach.

Figure 6: Graphics of energy and coenergy for linear and non-linear systems .

These functions are related through theirs sum, which equals the sum of the multiplica-
tion of two independent variables, which are the chosen possibilities to describe electrical
systems: q and its derivative q̇ and λf and its derivative ef . To verify this information an
analysis of the graphics is sufficient. For N electrical terminals:

Tm +Wm =
N∑
i=1

(λf )iq̇i, (42)

Ve +We =
N∑
i=1

(ef )iqi. (43)
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4 Modeling Technique for Electromechanical Systems

4.1 Electromechanical Coupling

One of the most important subjects when electromechanical systems comes to mind
is the electromechanical coupling [19] and how it should appear in the equations of the
system. By a sum of energy functions of the electrical part (they are presented in section
3.2), it is possible to obtain the electromechanical coupling of the system. The energy
being discussed in these functions is the energy between coupling terminals. A coupling
terminal can store magnetic or electrical energy, or both.

First, it is shown how to obtain the electromechanical coupling of a system which
stores magnetic energy, then the same method is applied to a system with electrical
energy stored. To simplify calculus, it is supposed that the system has only one coupled
terminal:

Tm +Wm = q̇λ, (44)

d

dt
(Tm +Wm) =

d

dt
(q̇λ), (45)

d

dt
Tm +

d

dt
Wm =

d

dt
(q̇λ), (46)

(
q̇
dλ

dt
− fe

dx

dt
− τe

dα

dt

)
+
(dWm

dq̇

dq̇

dt
+
dWm

dx

dx

dt
+
dWm

dα

dα

dt

)
=
(
q̇
dλ

dt
+ λ

dq̇

dt

)
, (47)

(dWm

dq̇
− λ
)dq̇
dt

+
(dWm

dx
− fe

)dx
dt

+
(dWm

dα
− τe

)dα
dt

= 0 (48)

.

Now, the same is done for the electric part:

Ve +We = υq, (49)

d

dt
(Ve +We) =

d

dt
(υq), (50)

d

dt
Ve +

d

dt
We =

d

dt
(υq), (51)

(
υ
dq

dt
− fe

dx

dt
− τe

dα

dt

)
+
(dWe

dυ

dυ

dt
+
dWe

dx

dx

dt
+
dWe

dα

dα

dt

)
=
(
υ
dq

dt
+ q

dυ

dt

)
, (52)

(dWe

dυ
− q
)dυ
dt

+
(dWe

dx
− fe

)dx
dt

+
(dWe

dα
− τe

)dα
dt

= 0. (53)
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It is possible to satisfy the equations as dυ, dx, dq̇ and dα can have arbitrary values.
By requiring the coefficients to be zero one gets

�

dWe

dυ
= q,

�

dWe

dx
= fe,

�

dWe

dα
= τe,

�

dWm

dq̇
= λ,

�

dWm

dx
= fe,

�

dWm

dα
= τe,

Depending on the characteristics of the system, the coupling can be obtained by the
equations above and if the stored energy is known, the electrical and mechanical terminal
relations can now be calculated. To differ from the magnetic coenergy and the electric
energy, Wm and We, we represent the coupling term as W∗.

4.2 Lagrangians for Electromechanical Systems

By simply grouping the mechanical kinetic coenergy T and potential energy V with the
magnetic coenergyWm and electrical energyWe in the Lagrange’s equations, a formulation
for electromechanical system can be developed [6]. For a generalized coordinate z one gets

d

dt

(
∂

∂żi
(T +Wm)

)
−

∂

∂zi
(T +Wm) +

∂

∂zi
(V +We) = 0, (54)

d

dt

(
∂

∂żi
(T +Wm)

)
−

∂

∂zi
(T +Wm − V −We) = 0. (55)

Introducing the Lagrangian L for electromechanical systems

L = T − V +Wm −We, (56)

where the Lagrangian for mechanical systems L and electrical systems W are defined
by:

L = T − V, (57)

W =Wm −We. (58)
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As a result an extended Lagrangian is obtained:

L = L+W . (59)

By substituting in equation 55 we get:

d

dt

(
∂L
∂żi

)
−
∂L
∂zi

= 0. (60)

Now, a generalized function Q must be added to the right side of the equation 60. A
clever way to represent this generalized function is with an index i. For example, a Q1

could represent the imposed forces and the dissipation of the mechanical part and a Q2,
the imposed voltages and the dissipation of the electrical part. We define

Qi = Fi −
∂Di

∂żi
. (61)

The dynamical equations for electromechanical systems are obtained from

d

dt

(
∂L
∂żi

)
−
∂L
∂zi

= Qi, (62)

d

dt

(
∂L
∂żi

)
−
∂L
∂zi

= Fi −
∂Di

∂żi
. (63)

4.3 Step by Step: Lagrangians for Electromechanical Systems

[Step 1: Identifying the problem]

First step consists in identify how many mechanical and electrical variables the system
needs to be described. In this project the electrical part is described by the coordinate
q (for electric charges) and the mechanical part is described by the coordinates x (for
translational displacements) and α, φ, or θ (for angular displacements).

[Step 2: Electromechanical Coupling]

Step 2 consists in determining the electromechanical coupling of the system. Elec-
tromechanical couplings are not always evident. An identification of which terminals
demonstrate interactions between subsystems seems to be a good start. After finding the
coupling terminals, some other questions might need answers. It is important to know
from what kind of energy the coupling is originated and what equation to use.
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Couplings of electric origin can be identified by the equations

dW∗
e

dυ
= q, (64)

dW∗
e

dx
= fe, (65)

dW∗
e

dα
= τe. (66)

Couplings of magnetic origin can be identified by the equations:

dW∗
m

dq̇
= λ, (67)

dW∗
m

dx
= fe, (68)

dW∗
m

dα
= τe. (69)

After the coupling is obtained, it must be inserted inW . The sign of the coupling will
depend of its origin. If it is originated from a magnetic coupling field, the sign should be
positive. If it is originated from an electric coupling field, the sign should be negative.
The coupling must be added to its respective energy, namely

W = (Wm +W∗)−We (For a magnetic coupling), (70)

W =Wm − (We +W∗) (For an electrical coupling). (71)

[Step 3: Kinetic Coenergy and Potential Energy]

Describe kinetic coenergy and potential energy of the mechanical part.

Translational and rotational kinetic coenergy are represented by T .

Gravitational and elastic potential energy are represented by V .

[Step 4: Magnetic Coenergy and Electric Energy]

Describe magnetic coenergy and electrical energy of the non-coupled electrical part.

Magnetic coenergy is represented by Wm.

Electrical potential energy is represented by We.

20



[Step 5: Lagrangian for Electromechanical Systems]

We write the Lagrangian:

L = L+W , (72)

L = T − V +Wm −We ±W∗. (73)

[Step 6: Generalized Forces]

We introduce the function Q.

Where D is a dissipative function for resistances and viscous frictions. F includes
imposed forces and voltages. For each degree of freedom i, the Q function takes the form:

Qi = Fi −
∂Di

∂żi
. (74)

[Step 7: Lagrange’s Equations]

Being zi a generalized coordinate:

d

dt

(
∂L
∂żi

)
−
∂L
∂zi

= Fi −
∂Di

∂żi
. (75)
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5 Dynamics of Electromechanical Systems

5.1 Scotch-Yoke Mechanism

Figure 7: Cart-motor system with a scotch-yoke mechanism.

Figure 8: DC motor.
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As previously stated, the first electromechanical system analysed in this project is
composed by a cart driven by a DC motor coupled by a mechanism called scotch-yoke.
This system has been an object of study to analyze the behavior of electromechanical
systems, see[16, 14]. Where υ is the voltage source, q̇ is the electric current, α is the an-
gular displacement of the disk, l is the electric inductance and r is the electric resistance.
The motor is coupled to the cart through a pin that slides into a slot machined in a plate
that is attached to the cart, d is the distance related to the eccentricity of the pin. In
this system, there are two coupling mechanisms. One of them is the electromechanical
coupling. It exists when a disk is attached to a motor. The other is a mechanical cou-
pling. It exists when a mechanical part is coupled to another mechanical part. In this
case, the scotch-yoke mechanism is transforming the rotational movement of the disk in
a translational movement of the cart.

[Step 1: Identifying the problem]

This system has three movements involved. The rotational movement of the disk, the
translational movement of the cart and the moving charges in the electrical part. It has
one constraint due to the scotch-yoke mechanism. It has two degrees of freedom. The
electrical part is described by the charge q and the mechanical part by the angular dis-
placement α.

[Step 2: Electromechanical coupling]

For the electromechanical coupling, as it stores magnetic energy in the coupling ter-
minal, it is interesting to analyse the equation

dW∗
m

dα
= τe. (76)

In most DC motors, the torque τe is proportional to the armature current q̇ and the
strength of the magnetic field denoted by ke, which is the motor electromagnetic force
constant [12] .

τe = keq̇. (77)

Substituting equation 77 in 76 gives

dW∗
m

dα
= keq̇, (78)

dW∗
m = keq̇ dα. (79)

Now, the magnetic energy stored in the terminals of the coupling equals the electrome-
chanical coupling of the system. For W∗

m =W∗:

W∗ = keq̇α. (80)
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[Step 3: Kinetic coenergy and potential energy]

T =
jmα̇

2

2
+
mcẋ

2

2
. (81)

Where jm is the inertia moment of the motor. Besides the electromechanical coupling,
there is another one. The coupling between the motor and the cart is made by a mech-
anism called scotch yoke, which transforms the rotational movement of the motor in the
translation motion of the cart, leading to the relations

x = dcos(α), (82)

ẋ = −dsin(α)α̇, (83)

Substituting 83 in 81 gives

T =
jmα̇

2

2
+
mc[−dsin(α)α̇]2

2
. (84)

This system has no potential energy for the mechanical part, i. e.

V = 0. (85)

[Step 4: Magnetic coenergy and electric energy]

For the electrical subsystem we write the magnetic coenergy:

Wm =
lq̇2

2
+W∗, (86)

Substituting 80 in 86 leads to

Wm =
lq̇2

2
+ keq̇α, (87)

This system has no electrical potential energy.

We = 0, (88)

[Step 5: Lagrangian for electromechanical systems]

L = L+W , (89)

L = T − V +Wm −We, (90)

L =
jmα̇

2

2
+
mc[−dsin(α)α̇]2

2
+
lq̇2

2
+ keq̇α. (91)
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[Step 6: Generalized forces]

For the mechanical coordinate α:

F1 = 0, (92)

D1 =
bmα̇

2

2
, (93)

Q1 = F1 −
∂D1

∂α̇
, (94)

Q1 = −bmα̇. (95)

For the electrical coordinate q:

F2 = υ, (96)

D2 =
rq̇2

2
, (97)

Q2 = F2 −
∂D2

∂q̇
, (98)

Q2 = υ − rq̇. (99)

[Step 7: Lagrange’s equations]

d

dt

(
∂L
∂α̇

)
−
∂L
∂α

= Q1, (100)

d

dt

(
∂L
∂q̇

)
−
∂L
∂q

= Q2. (101)

For equations 100 and 101, respectively:

α̈[jm +mcd
2sin2(α)] + α̇[bm +mcd

2sin(α)cos(α)α̇]− keq̇ = 0, (102)

lq̈ + rq̇ + keα̇ = υ, (103)
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5.2 Crank-Slider Mechanism

Figure 9: Electromechanical system with a crank-slider mechanism.

Figure 10: DC motor.

The second system analysed in this project consists of a crank-slider mechanism linked
to a pendulum of mass mp and length lp. There is not much difference to the previous
system when it comes to the electrical subsystem. The coordinates of the electrical sub-
system are the same. The particle with no mass in the mechanical part substitutes the
cart. This system has also a DC motor. There are viscous frictions in the disk coupled to
the motor (bm), in the displacement of the particle with no mass (bc) and in the movement
of the pendulum (bp). It differs from the first in the choice of coupling mechanism. The
distance related to the eccentricity of the crank is d. The length of the shaft is ds. The
angles in the crank and in the shaft are given by α(t) and φ(t), respectively. The angular
displacement of the pendulum is given by θ(t).

[Step 1: Identifying the problem]

This system has four movements involved. The rotational movement of the disk, the
rotational movement of the shaft, the rotational movement of the pendulum and the mov-
ing charges in the electrical part. It has one constraint due to the crank-slider mechanism.
It has three degrees of freedom. The electrical part is described by the charge q(t) and
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the mechanical part by the angular displacements α(t) and θ(t) .

[Step 2: Electromechanical coupling]

Comparing to the first system analysed, the first coupling do not change:

W∗ = keq̇α. (104)

[Step 3: Kinetic coenergy and potential energy]

For the kinetic coenergy and the potential energy of the mechanical part:

T =
jmα̇

2

2
+
mp(ẋ

2 + ẏ2)

2
, (105)

besides the electromechanical coupling, there is another one made by the crank-slider
mechanism. First, we begin by writing the position of the pendulum:

x = dcos(α) + dscos(φ) + lpsin(θ), (106)

y = −lpcos(θ). (107)

The angles α and φ are related by

cos(φ) =

(
1−

d2

d2s
sin(α)2

) 1
2

. (108)

Substituting in the equation and deriving in time gives

ẋ = −dα̇

sin(α) +
dsin(α)cos(α)

ds

(
1−

d2

d2s
sin(α)2

) 1
2

+ lpθ̇cos(θ), (109)

ẏ = lpθ̇sin(θ), (110)

introducing the function K(α):

K(α) = sin(α) +
dsin(α)cos(α)

ds

(
1−

d2

d2s
sin(α)2

) 1
2

. (111)

As a result, it is possible to simplify ẋ. For the horizontal and vertical velocities of
the pendulum:

ẋ = −dα̇K + lpθ̇cos(θ), (112)
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ẏ = lpθ̇sin(θ). (113)

Rewriting the kinetic coenergy:

T =
jmα̇

2

2
+
mp

2
[(lpθ̇cos(θ)− dα̇K)2 + (lpθ̇sin(θ))2]. (114)

For the potential energy of the system we write the gravitational potential energy:

V = −mpglpcos(θ). (115)

[Step 4: Magnetic coenergy and electric energy]

For the magnetic coenergy of the system:

Wm =
lq̇2

2
+W∗, (116)

Wm =
lq̇2

2
+ keq̇α. (117)

For the electric potential energy of the system:

We = 0. (118)

[Step 5: Lagrangian for electromechanical systems]

L = L+W , (119)

L = T − V +Wm −We, (120)

L =
jmα̇

2

2
+
mp

2
[(lpθ̇cos(θ)− dα̇K)2 + (lpθ̇sin(θ))2] +mpglpcos(θ) +

lq̇2

2
+ keq̇α. (121)

[Step 6: Generalized forces]

For the mechanical coordinate α:

F1 = 0, (122)

D1 =
bc(−dα̇K)2

2
+
bmα̇

2

2
, (123)

Q1 = F1 −
∂D1

∂α̇
, (124)
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Q1 = −bcd2K2α̇− bmα̇. (125)

For the mechanical coordinate θ:

F2 = 0, (126)

D2 =
bp((lpθ̇sin(θ))2 + (lpθ̇sin(θ))2)

2
, (127)

Q2 = F2 −
∂D2

∂θ̇
, (128)

Q2 = −bpl2pθ̇. (129)

For the electrical coordinate q:

F3 = υ, (130)

D3 =
rq̇2

2
, (131)

Q3 = F3 −
∂D3

∂q̇
, (132)

Q3 = υ − rq̇. (133)

[Step 7: Lagrange’s equations]

d

dt

(
∂L
∂α̇

)
−
∂L
∂α

= Q1, (134)

d

dt

(
∂L
∂θ̇

)
−
∂L
∂θ

= Q2, (135)

d

dt

(
∂L
∂q̇

)
−
∂L
∂q

= Q3. (136)

For equations 134, 135 and 136, respectively:

α̈[jm +mpd
2K2] + α̇[bm + bcd

2K2 +mpd
2KK̇] + θ̈[−mplpdcos(θ)K]+

θ̇[mplpdsin(θ)θ̇K]− keq = 0, (137)
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θ̈[mpl
2
p] + θ̇[bpl

2
p] + α̈[−mplpdcos(θ)α̇KK̇] + α̇[−mplpdcos(θ)K̇] +mplpgsin(θ) = 0, (138)

lq̈ + rq̇ + keα̇ = υ. (139)

6 Conclusions

The objective of this project was to formulate a Lagrangian for electromechanical
systems. It is not possible to deal with electromechanical systems without knowing the
electrical part, please see [15]. Some incorrect methods consist in mimicking the stan-
dard derivations of purely mechanical systems to electromechanical systems . There are
many articles, thesis and books that say they are able to find the equations of electrome-
chanical systems through a Lagrangian. Frequently, they solve problems only for the
mechanical part or make mistakes in the formulation that leads to the correct solution,
see [1, 2, 3, 4, 5, 8]. For more details about the errors, please see [17].

When systems composed by different parts are analysed, the term that makes the
connection between the two must be discussed. The electromechanical coupling is an
essential tool to formulate a Lagrangian. To introduce the electromechanical coupling, it
was necessary to present the difference between energy and coenergy and how energy is
transferred from one place to another in an electromechanical model.

In future works some developments may be followed: How to formulate a Lagrangian
for a three dimensional space ploblem and the possibility of formulating a Lagrangian for
another combination of physical systems such as mechanical with fluid or thermo.
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paramétrica por um mecanismo biela–manivela, Doctor thesis, USP-São Carlos
(2015).

[3] Rafael Henrique Avanço, Angelo Marcelo Tusset, José Manoel Balthazar, Airton
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