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Abstract

Neumann, Guilherme Borba; Lifschitz, Sérgio (Advisor). A Fra-
mework Approach for Quality Feature Analysis of Genome
Assemblies. Rio de Janeiro, 2019. 79p. MSc Dissertation – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

The Genome Assembly research area has quickly evolved, adapting
to new sequencing technologies and modern computational environments.
There exist many assembler software that consider multiple approaches.
However, at the end of the process, one can always question the quality
of assemblies. When an assembly is accomplished, some quality features
may be generated, in order to qualify it. Nonetheless, the features do not
directly tell one about assembly quality, but only bring to the biologists
quantitative assembly descriptions. We propose a Domain Framework for
the feature analysis process post-genome Assembly. Our goal is to enable
data interpretation and assembly quality evaluation. The Genome Assembly
Analysis Framework (GAAF) was designed to work with distinct species,
assemblers and features. In order to validate our proposal, we have run a
few practical experiments with GAAF, which make us understand the way
it can be used, instantiated and extended.

Keywords
Genome Assembly; Feature Analysis; Evaluation Metrics; Geno-

mics; Quality Analysis;
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Resumo

Neumann, Guilherme Borba; Lifschitz, Sérgio. Uma abordagem
de Framework para Análise de Medidas de Qualidade da
Montagem de Genomas . Rio de Janeiro, 2019. 79p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

A área de pesquisa em Montagem de Genomas tem evoluído rapi-
damente, adaptando-se às novas tecnologias de sequenciamento e moder-
nos ambientes computacionais. Existem diversos softwares montadores que
usam múltiplas abordagens, porém persiste o questionamento sobre a qua-
lidade da montagem ao final do processo. Assim que uma montagem é fi-
nalizada, muitas medidas de qualidade podem ser geradas, a fim de que
a montagem seja qualificada. Todavia, essas medidas apenas fornecem aos
biólogos valores quantitativos acerca da montagem. Nós propomos nesta
pesquisa um framework de domínio para o processo de análise de medidas
pós montagem de genomas. Nosso objetivo é de prover a interpretação dos
dados e avaliação da qualidade das montagens a partir do Framework. O Ge-
nome Assembly Analysis Framework (GAAF) foi projetado para trabalhar
com espécies, montadores e medidas distintas. Para validar nossa proposta,
foram realizados testes com o GAAF que permitem entender como o mesmo
pode ser utilizado e de que maneira ele pode ser instanciado e/ou estendido.

Palavras-chave
Montagem de Genomas; Análise de Features; Métricas de Avaliação;

Genômica; Análise de Qualidade;
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1
Introduction: The Problem of Quality

We have been living a considerable revolution in Life Sciences since
the advent of Information Technology – the Era of data, technology, and
computation. In Genomics, it is not different. As technology evolves, data
structure changes and computation needs to respond to this evolution.

In the field of Genome Sequencing and Genome Assembly, we currently
face the problem of quality. The sequencing technology available nowadays
generates a significant number of pieces of DNA that are submitted to assembly
algorithms, in order to create an assembly as close as possible to the original
molecule.

However, we claim that the distance between real genomes and assemblies
is still an open issue in the area of Genome Assembly. Since high-quality
assemblies are expensive and hard to achieve, when applications do not strictly
require that, scientists leave assemblies at a level where they are called drafts
– they are not completely finished, in comparison to reference genomes.

In GenBank1, more than 80% of all bacterium genomes are considered
drafts (Land et al. 2014). Analyzing the Genomes OnLine Database (GOLD)2,
we found 121,000 permanent drafts, in contrast to only 4,000 complete assem-
blies (on 14th June 2018).

But to say whether it is a problem, we need to know the quality of the
drafts. On the one hand, Denton et al. have found extensive errors in the num-
ber of genes inferred from draft genome assemblies, mainly due to fragmen-
tation of genes (Denton et al. 2014). On the other hand, Land et al. reported
that 88% of all GenBank bacterium draft assemblies are good enough accord-
ing to some thresholds in contiguity and base analysis (Land et al. 2014). For
example, genome annotation, during Synteny Analysis (to an error rate below
5%), requires a minimum N50 of 200kb and 1Mb when gene density is 290 and
200 genes per Mb, respectively (Liu et al. 2018).

1GenBank is the NIH (National Institutes of Health) genetic sequence database
2 https://gold.jgi.doe.gov/
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Chapter 1. Introduction: The Problem of Quality 15

1.1
First Sequencing Generation

In only two decades, the modern biology has reformed whole science, after
human genome project conclusion in 2001 (Consortium 2004) — the project
spent more than ten years to find out what today is done in some weeks or
even days. Today, almost all research areas are influenced by Genetics and
Genomics, such as Energy, Agroindustry, Medicine and Engineering.

The first complete sequenced genome was from Bacteriophage MS2,
done in 1976 (Sanger et al. 1977a). The technology available that moment
was based on “plus and minus” method (Sanger and Coulson 1975), a variant
of the Sanger methodology to sequence DNA, in which deoxyribonucleotides
(dNTPs) are used in different reactions to generate assorted length sequences,
fractioned later by gel electrophoresis. That chemical sequencer was able to
generate a whole DNA fragment and was responsible for the beginning of the
Bioinformatics Era.

Frederick Sanger kept improving his technology, creating in 1977 the
famous chain-termination or dideoxy technique (Sanger et al. 1977b), which
is still used in many places until current days. It uses dideoxynucleotides
(ddNTPs), dNTPs analogs that lack 3’hydroxyl group — required for DNA
extension during its synthesis. Radiolabelled ddNTPs are mixed in four par-
allel synthesis reactions to generate the original sequences through an autora-
diography.

Several other changings had been made to improve this technique,
using phospho- or tritrium- radiolabeling with fluorometric based detection or
detection through capillary based electrophoresis (Heather and Chain 2016).
However, the machines could not produce reads more than one kilobase in
length, the reason why shotgun sequencing technique was developed later, in
order to assemble those reads into long contiguous sequences (contigs), by a
number of cloned and separately sequenced overlapping DNA fragments.

In addition, the creation of technologies such as polymerase chain re-
action (PCR) (Saiki et al. 1988) and recombinant DNA (Jackson et al. 1972)
made possible a much more quantity of pure DNA to sequence.

1.2
Second Sequencing Generation

New technologies (Shendure and Ji 2008) appeared using the lumines-
cent method (Nyrén and Lundin 1985) for measuring pyrophosphate synthe-
sis (Ronaghi et al. 1998): pyrosequencing was licensed to 454 Life Sciences, the
first big company to launch next-generation sequencing (NGS) technology. A
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Chapter 1. Introduction: The Problem of Quality 16

great transition was made, when they started mass parallelization of sequenc-
ing reactions, increasing the amount of DNA – producing millions of 400-500
base pairs (bp) long reads (Heather and Chain 2016).

Techniques comparable to 454 emerged in the following years, among
them, Solexa, later acquired by Illumina, using ‘bridge amplification’ method
(Fedurco et al. 2006). Although, the first Genome Analyzer (GA) machine
(by Solexa) was capable of generating very short reads – about 35bp long
–, it could produce paired-end (PE) data (forward and reverse DNA infor-
mation), improving the accuracy at mapping reads to a reference genome
(Heather and Chain 2016). The second GA version was later replaced by HiSe-
q/MiSeq, with longer read lengths – 150bp long (Quail et al. 2012).

Another important company was Applied Biosystems (Life Technologies
merged with Invitrogen, currently Thermo Fisher Scientific), owner of SOLiD
(McKernan et al. 2009), a ligation and detection sequencing system. SOLiD
was followed by Ion Torrent, a platform in which nucleotide incorporation
is detected by the difference in pH, caused by the release of protons during
DNA synthesis (Rothberg et al. 2011) — it can generate 200bp long reads
(Quail et al. 2012). However, interpreting homopolymer sequences is not an
easy task in Ion Torrent, due to the loss of signal of many simultaneous dNTP
incorporation (Loman et al. 2012).

The sequencing cost has been dramatically altered by these companies,
revolutionizing the complexity of microchips and increasing the number of
chemical methods to sequence (Heather and Chain 2016). Illumina, though,
has been considered the most successful sequencing platform, making this com-
pany a near monopoly (Greenleaf and Sidow 2014; Heather and Chain 2016).

1.3
Next Generation Sequencing

Currently, we are living Third-generation DNA sequencing
(Schadt et al. 2010; Heather and Chain 2016), a step into longer reads, real-
time sequencing, and new technologies. These technologies can sequence
single molecules lacking DNA amplification, needed in all previous sequencers
(Heather and Chain 2016).

A first Single Molecule Sequencing (SMS) machinery was commercialized
by Helicos BioSciences (Harris et al. 2008), working with the same methodol-
ogy Illumina is used to do, but with no bridge amplification — it avoids biases
and errors associated to amplified DNA.

But now, one of the most famous third-generation sequencings is the Sin-
gle Molecule Real-Time (SMRT) technology from Pacific Biosciences (PacBio).
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Despite the cost, PacBio has been used to generate much longer reads, up to
10kbase (van Dijk et al. 2014), necessary to assemble big genomes – as the 32-
gigabase-pair axolotl genome, the biggest genome ever assembled at the time
of writing (Nowoshilow et al. 2018) —, although, high base detection error is
still an issue to settle.

Nanopore technologies have also appeared as a promise to the future
of sequencing (Haque et al. 2013). The firsts nanopore sequencers were de-
veloped by Oxford Nanopore Technologies (ONT) – GridION and MinION
(Clarke et al. 2009; Eisenstein 2012) -–, and the latter were innovated by size,
similar to a USB drive (Loman and Quinlan 2014). Nanopore sequencers are
hoped to be a future solution to fast, low-cost and compact machines with long
and accurate reads (Heather and Chain 2016). For the moment, they can be
used in association with current accurate technologies due to their long reads
(Karlsson et al. 2015; Madoui et al. 2015).

1.4
Genome Assembly Strategies

After sequencing, genome assembly is needed, even when using Sanger
platforms. However, when one hears about the Genome Assembly, it may be
related to two different concepts: de novo and mapping. De novo genome
assembly intends to reconstruct DNA molecules in the absence of a reference
genome (an NP-hard problem). The Mapping or Alignment approach uses
a sequenced genome from the same or related species as a guide during
assembly – making it much easier when comparing to de novo genome assembly
(Pop 2009; Miller et al. 2010).

Many strategies to de novo assembly have already been proposed, and are
basically divided into three groups: Greedy, Overlap-Layout-Consensus (OLC)
and De Bruijn Graph (DBG); which are summarized as follows. String Graph
Algorithm (SGA) (Myers 2005) is not as usual as the other strategies, and will
not be discussed here. Let us define first, read, contig and scaffold.

Read is one sequence read/generated by the sequencing machine.
Contig derives from the word contiguous, and means a set of overlapping

DNA fragments (reads) that together produce a consensus region of DNA
(Staden 1980).

Scaffold is a series of contigs separated by gaps of known length.
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1.4.1
Greedy Assembly Algorithms

Similarly to any other greedy algorithm, greedy assembly algorithms se-
lect each operation the highest-scoring read/contig overlap, according to some
order; depending on the software (Miller et al. 2010). Therefore, contigs and
later on, scaffolds, are assembled as large as possible. The Greedy Approach
was widely used for assembling Sanger data, but also for NGS in assem-
blers such as SSAKE (Warren et al. 2007), SHARCGS (Dohm et al. 2007) and
VCAKE (Jeck et al. 2007).

1.4.2
Overlap-Layout-Consensus (OLC)

Alike greedy algorithm, a list of highest-scoring overlap to each read is
given in OLC (Staden 1980). The list is used for creating an overlap graph, in
which each read corresponds to a node, connected by edges that represent an
overlap between the corresponding nodes (Figure 1.1).

Figure 1.1: The identified overlaps list is generated from input reads. The
overlaps are used as edges connecting the reads, as nodes. So, the graph created
is used to find the best path which reconstructs the whole genome through
Hamiltonian path algorithm. Figure from (Commins et al. 2009)

A layout step is responsible for identifying paths throughout the graph in
order to generate genome fragments, or contigs. The ideal path would traverse
each node in the graph only once, reconstructing the whole genome (Pop 2009).
Finding this path is computationally difficult, an NP-hard problem, known
as the Hamiltonian Path. The overlap strategy has time complexity O(n2)
(Chen et al. 2017).
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1.4.3
de Bruijn Graph Algorithm (DBG)

De Bruijn is another graph approach, widely used for short reads, that
implements K-mer3 strategy (Idury and Waterman 1995). In de Bruijn graph,
k-mers are nodes, and exactly overlapping of length k - 1 between two adjacent
nodes are edges; each repeat is presented at once in the graph, with links to
different start and end positions (Zerbino and Birney 2008).

A path in the graph is found using a Eulerian path algorithm (O(n)).
There are several efficient algorithms for finding the Eulerian path, perhaps it
can generate an exponential number of Eulerian paths (Pop 2009). In addition,
finding a Hamiltonian path may be reduced to finding a Eulerian path in a
(k-1)-mer DBG (Chen et al. 2017).

However, a problem from k-mer approach leads to a loss of information
— “long-range connectivity information implied by each read” (Pop 2009). To
incorporate read information, Pevzner and colleagues (2001) created a Eulerian
path variation, called Eulerian Superpath Problem (Pevzner et al. 2001). This
superpath is produced from sub-paths corresponding to given reads.

The definition of K is an important decision when using DBGs. Compared
to read length, a smaller k-mer can improve the overlap between strings and
decrease the number of edges in the graph for storage. But also, it can generate
too many nodes, unfailing genome assembly. K-mers shorter than some repeat
regions (we discuss repeats in the next section) can cause graph disorder
and break up the contigs (Chen et al. 2017). Thereby, a longer k might be
desired but limited by read length – “if the overlapping region of two reads
is less than k characters, they do not have any common vertex in the graph”
(Chen et al. 2017).

All these concepts present in the assembly strategies will affect the final
quality. For that reason, we see many of them as descriptors or features of
assembly quality. We discuss that in Chapter 2.

1.5
Repetitive DNA

Another point that comes to mind when discussing genome assembly, is
undoubtedly repetitive DNA – very similar or identical sequences present in the
same genome (Treangen and Salzberg 2012). Genomes are filled with several
repeat regions. The Human genome, for example, is about 50% composed of
repetitive regions (Batzer and Deininger 2002).

3Oligomers of a given length K generated from sequenced reads
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Basically, it is difficult for an assembler to differentiate a sequencing error
from a polymorphism between almost identical repeat copies, and to detect the
correct positions of identical repeats (Phillippy et al. 2008).

Figure 1.2: Biases from repeat regions. Figure taken from (Chen et al. 2017).
(A) The sequencing machine detects six reads, namely, n1, n2, n3, n4, n5 and
n6 derived from the DNA sequence ‘TACCCGTCCCAACCCTT’. The DNA
sequence has three repeat regions (CCC) underlined. (B) Constructing the
overlapping graph with the six reads. (C) We can obtain two results (R1,
R2) by using the greedy algorithm, as there are two strategies that traverse
the map. From the observation, the greedy approach cannot obtain the correct
sequence and fails to determine the best result. Also, these reads are assumed to
come from two DNA sequences, namely, ‘TACCCAACCTT’ and ‘CCGTCCC’.
Two results (R1 and R2) are generated, so it is hard to decide the correct
sequence. Therefore, the repeat regions can generate ambiguous results and
lead to erroneous assembly. (D) Constructing six reads using the de-Bruijn
graph. The length of the k-mer is 3, and the repeat region (CCC) is presented
by the node dn3.

On the one hand, biologically, repeats represent an important feature
to study, to cite some: polyploidy, satellite DNAs4, transposons5 (44% of
the human genome), and duplicated genes. Repetitive sequences may be in
numbers of 10, 1,000 or even 105 copies in the genome; often interleaved with
single copy sequences (Snustad and Simmons 2012, p.240). In addition, high
demand proteins, such as actin and myosin, or ribosomal proteins, can be

4Repetitive short sequences disposed in tandem as part of groups are named satellite
DNAs. Depending on the length we can call them Microsatellites or Minisatellites. The
quantity is really variable. In mammals they represent <10% of the genome and in Drosophila
virilis around 50% (Lewin 2009).

5 Transposable elements or transposons are mobile sequences in the genome that may
change their position, generating new DNA copies.
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codified by several distinct genes, genes which are moderately repetitive. The
same occurs with ribosomal RNAs (Snustad and Simmons 2012, p.240).

On the other hand, computationally, repeats create a technical challenge,
since they appear as ambiguities in alignment and assembly, producing biases
and errors in the final sequenced genome (Treangen and Salzberg 2012). A
Greedy algorithm, for example, fails to detect repeats (Figure 1.1 C), since it
looks for the highest overlapping score (Chen et al. 2017). Substrings of length
k, the k-mer strategy, may handle the repeat regions, but still with some errors.
Figure 1.1 D shows that the de-Bruijn graph generates more than one answer
with the correct contig between them.

1.6
Genome Annotation

A final aspect to consider in the context of quality analysis is an assembly
post-process called Genome Annotation. There are many other applications to
a Genome Assembly, so read Genome Annotation as a main example. Genome
annotation is a non-standardized procedure that essentially describes genes
and their associated protein or RNA products, focused on their functions
(Koonin and Galperin 2003).

This process of annotation is really challenging because it is strictly re-
lated to contiguity and correctness (base-level reliability). Both in protein-
coding genes and in non-coding RNAs gene finding and annotation are con-
fronted with errors in the assembly step and to some inherent biological charac-
teristics of species, like repeat patterns. Then, wrong gene assembly, gene frag-
mentation (through distinct contigs), repeats and/or duplicated genes omis-
sion, misassemblies, or genes inversion etc., may affect a correct annotation
(Yandell and Ence 2012).

At this point, threshold quality metrics, such as those proposed by Liu
et al. (2018), may help to mitigate the problem of published bad quality drafts
and consequently incorrect annotations (Liu et al. 2018).

The next chapter will focus on listing some strategies to qualify assem-
blies, in the interest of creating a better understanding of drafts’ quality. Chap-
ter 3 describes our proposed solution to study quality features from genome
assemblies, and Chapter 4 tests this solution in a study case. The last chapter
summarizes our contributions and explains the next steps.
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2
Assembly Quality: a Systematic Mapping Study

"Too often, assembly quality is judged only by contig size, with
larger contigs being preferred. However, large contigs can be the
result of haphazard assembly and are not a good measure of quality.
It has been difficult to gauge assembly quality by other means,
because no automated validation tools exist."

(Phillippy et al. 2008, p.1)

Ten years ago, Phillippy complained about the way scientists were used to
qualifying assemblies. His work has motivated many others since then, creating
and recreating assembly evaluation metrics. In order to go deeper into the
problem of assembly quality, and to have a better description of the literature,
we conducted a Systematic Mapping on the Scopus database.

2.1
Methodology

In the Scopus database, we used the following search terms:

TITLE-ABS-KEY (genome AND assembly AND ((evaluation OR assess-
ment OR quality) AND analysis) AND (de AND novo))1.

We selected papers through exclusion and inclusion criteria, aiming to list the
approaches proposed in the last 10 years to evaluate an assembly. We also
applied backward snowball sampling to include related works.

Criteria to include an article:
1. The paper presented a new genome assembly evaluation strategy;
2. The assembly is not reference-guided;

1Applying the query TITLE-ABS-KEY ( "genome assembly" AND ( validat* OR evaluat*
OR assess* OR "quality analysis" ) AND ( metric OR measure* ) AND "de novo" ) we found
only 26 papers, and using the query TITLE-ABS-KEY ("genome assembly” AND ( validat*
OR evaluat* OR assess* OR "quality analysis" ) AND "de novo" ) , 192 works. Both queries
lacked classical papers, such as Assemblathon 1. For this reason, we chose to use a more
general search.
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3. The assembly evaluation method was based on a validated methodology or
validated its own methodology;
4. The paper was published from 2008 to 2018.

Criteria to exclude an article:
1. The paper was not written in English;
2. The study was a book or gray literature (posters, summaries of articles,
tutorials, and panels);
3. Metagenomics or transcriptome study2.

Firstly, we employed the criteria on title, abstract and year of publishing.
Secondly, the remaining articles were selected according to full-text, based
on the same inclusion and exclusion criteria. We collected data such as
title, authors’ name, year of publication, journal’s name, proposed evaluation
metrics, and tools.

2.2
Results

The search returned 623 papers, which were filtered by type (resulting in
610) and by language (605). Transcriptome studies (NOT (transcriptome OR
transcriptomic OR transcriptional)) were removed, and 245 articles remained.
Applying the inclusion and exclusion criteria on title and abstract, we chose 25
studies. After full-text reading, we selected 12 articles through inclusion and
exclusion criteria and 3 more through backward snowball sampling (QUAST,
BUSCO and Genome Assembly Forensics). All papers are listed in Table 2-1.
The papers are ordered by the number of citations.

On the one hand, the most cited work in this area, QUAST, was de-
veloped in 2013 to gather the most widely used metrics into a single tool
(http://quast.sourceforge.net). The software presents the metrics of the As-
semblathon competition (Earl et al. 2011) and GAGE (Salzberg et al. 2012),
and some modified Nx3 metrics (Gurevich et al. 2013). QUAST is
currently integrated with Icarus (Mikheenko et al. 2016), a visual-
izer for assembly contigs. QUAST is fundamentally based on Plan-
tagora (Barthelson et al. 2011), an out-of-date web-based plant genome
assembly evaluation platform, and on GAGE. It also integrates met-

2Out of scope
3 Considering a decreasing-ordered list of contigs, Nx (e.g., N50, N90) is the length of

the shortest contig from the sum group of all contigs from the list necessary to get x%
of total assembly length. NGx considers not the total assembly length, but the original
genome length. And NAx does the same job as Nx but using an aligned contigs list; contigs
containing misassemblies are broken into two new contigs (Gurevich et al. 2013).
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Table 2.1: Systematic Mapping Results ordered according to the number of
citations (by Google Scholar on 16th May 2018)

Author Title Year Citations
A.Gurevichet al. QUAST: quality assessment tool for

genome assemblies
2013 947

F. A. Simãoet al. BUSCO:assessing genome assembly
and annotation completeness with
single-copy orthologs

2015 892

D. Earlet al. Assemblathon 1: A competitive assess-
ment of de novo short read assembly
methods

2011 404

K.R. Bradnamet
al.

Assemblathon 2: Evaluating de novo
methods of genome assembly in three
vertebrate species

2013 391

A. M. Phillippy,
M. C. Schatz, M.
Pop

Genome assembly forensics: finding the
elusive missassembly

2008 240

M. Huntet al. REAPR: A universal tool for genome
assembly evaluation

2013 210

G. Narzisi, B.
Mishra

Comparing De Novo genome assembly:
The long and short of it

2011 131

A. Rahman, L.
Pachter

CGAL: Computing genome assembly
likelihoods

2013 68

F. Vezzi, G.
Narzisi, B.
Mishra

Feature-by-feature - evaluating De
Novo sequence assembly

2012 60

F. Vezzi, G.
Narzisi, B.
Mishra

Reevaluating Assembly Evaluations
with Feature Response Curves: GAGE
and Assemblathons

2012 57

A.E. Darlinget
al.

Mauve assembly metrics 2011 53

A. Mikheenkoet
al.

Icarus: Visualizer for de novo assembly
evaluation

2016 4

C. Lo, S. Kim, S.
Zakov, V. Bafna

Evaluating genome architecture of a
complex region via generalized bipar-
tite matching

2013 4

C.J. Castro,
T.F.F. Ng

U50: A New Metric for Measur-
ing Assembly Output Based on Non-
Overlapping, Target-Specific Contigs

2017 1

J. Abanteet al. HiMMe: Using genetic patterns as a
proxy for genome assembly reliability
assessment

2017 1
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rics from GeneMark.hmm (Lukashin and Borodovsky 1998) and Glim-
merHMM (Majoros et al. 2004), introducing, in addition, NA50.

On the other hand, the second most cited paper, Benchmarking Univer-
sal Single Copy Orthologs (BUSCO), utilizes a distinct strategy to validate/e-
valuate an assembly (Simão et al. 2015). BUSCO is a software that provides
quality metrics for genome assembly based on ortholog relationships. The met-
rics C:complete, D:duplicated, F:fragmented, M:missing and n:number of genes
used are generated comparing ortholog genes identified in the assembly against
genes available at their database4.

We could not forget one of the most classic works in this field of Genome
Assessment: the Assemblathon Competition. In its editions 1 and 2, the event
presented a series of metrics to qualify an assembly with the intention of using
assemblies’ quality as an assembler validation process. Assemblathon presents
more than 100 metrics, classified in groups, such as coverage, contiguity,
structure, base calling, or copy number.

Another widely used tool is REAPR (Recognition of Errors in Assemblies
using Paired Reads) (Hunt et al. 2013). REAPR is a tool developed by the
Wellcome Trust Sanger Institute, proposed to describe misassemblies (base
errors and scaffolding errors) quantitatively, mapping reads to an assembly. It
reports assembly errors and warnings, and also generates a new assembly by
breaking the genome when an error is called over a gap. Error regions within
contigs are replaced with Ns.

Both REAPR and Feature-Response Curve (FRCurve) were present
in the second edition of Assemblathon (Bradnam et al. 2013). FRCurve es-
tablishes a new curve constructed on features from the amosvalidate soft-
ware (Phillippy et al. 2008). The curve aims to better express the quality of
an assembly, primarily when comparing two or more assemblies. This strat-
egy came from ROC (receiver-operating characteristic) curves, exploiting the
relationship between the metrics used in evaluations.

Another proposed strategy was CGAL (Rahman and Pachter 2013), a
software application which implements a likelihood-based approach to assem-
bly evaluation. It evaluates the uniformity of coverage, according to errors in
the reads, inserts size distribution, and unassembled data. The authors re-
ported it as better than N50 and amosvalidate. Besides, they analyzed the
data in both the CGAL and FRCurve, leading to similar findings.

Mauve (Darling et al. 2011) was a method proposed in contrast to
amosvalidate (Phillippy et al. 2008). Its main contribution is related to new
features, which are: location of miscalled bases, missing segments, and other

4www.orthodb.org
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segments; GC content of the missing and extra regions; misassemblies identi-
fied as rearrangement breakpoints inside contigs; double cut and join (DCJ)
distance (Bergeron et al. 2006); and protein-coding sequences check. Also con-
structed on a base level, Lo et al. formalized a problem called Coverage Sensi-
tive many-to-many min-cost bipartite Matching (CSM), a generalization from
(one-to-one) weighted bipartite matching problem (Lo et al. 2013). Concretely,
they developed a java tool named SAGE (Scoring function for Assembled
Genomes).

More recently, we find the U50 (Castro and Ng 2017) and HiMMe
(Abante et al. 2017) strategies. U50 is a new type of N50 metric that counts
unique target-specific contigs against a reference genome. And HiMMe, similar
to BUSCO, is a tool that provides quality metrics for genome assembly based
on genetic content through Hidden Markov Models (HMM). Although, HiMMe
requires prior knowledge about the organism — since it analyzes how similar
the genetic patterns found in the input are to those already known –, it does
not require a reference genome. It works with sequences from closely related
species and/or with data previously known, persisted in a database made up
of homologous genes.

2.3
Discussion

From the myriad options arises a challenge: How are scientists supposed
to choose the best metrics, i.e., the ones which better explain assembly quality?
Vezzi et al. (Vezzi et al. 2012) analyzed amosvalidate (Phillippy et al. 2008)
features and metrics such as N50 and number of contigs, applying Princi-
pal Component Analysis (PCA) and Independent Component Analysis (ICA).
As a result, they found the famous N50 metric weak — “high N50 values
are simply a consequence of misassemblies and due to the fact that many
assemblers try aggressively to merge as many sequences/sub-contigs as possi-
ble” (Vezzi et al. 2012, p.6) — and most features redundant.

Phillippy et al. had already noticed that contiguity features exhibit
high sensitivity (higher than 98%), but low specificity (Phillippy et al. 2008).
Furthermore, the authors reduced the Feature-space through ICA to generate
a new FRCurve.

Since amosvalidate (Phillippy et al. 2008), analyzed in (Vezzi et al. 2012),
some other metrics have been proposed. In most cases, we can group them
into three major categories: Base errors, Contiguity and Genomic Analysis.
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Figure 2.1: Main Assembly Evaluation Strategies

2.3.1
Contiguity Analysis

The first characteristic analyzed, when an assembly is accomplished, is
its contiguity. The more contiguous and less broken an assembly is (i.e., with
fewer gaps), the better. In this group, we measure contigs size, number of
contigs, largest contig, scaffolds size, number of scaffolds, largest scaffold, N50,
NG50, NA50, NGA50, U50, N90, L50, etc.

However, contiguity metrics have been criticized by many scien-
tists (Vezzi et al. 2012; Rahman and Pachter 2013; Castro and Ng 2017).
The GAGE (Genome Assembly Gold Standard Evaluations)
project (Salzberg et al. 2012) reported a considerable variation in conti-
guity between assemblers, and no correlation with correctness metrics (base
errors). When we force to connect contigs, we risk producing artificially large
N50 values, amplifying misassemblies (Salzberg et al. 2012), and consequently
decreasing correctness.

2.3.2
Base Errors Analysis

In a nutshell, Base Errors are those which “change” the
right base during the assembly process (e.g., an A instead of a
C). Amosvalidate (Phillippy et al. 2008), Mauve (Darling et al. 2011),
CGAL (Rahman and Pachter 2013), REAPR (Hunt et al. 2013), and
SAGE (Lo et al. 2013) are tools that focus on pinpointing this kind of
error.

(Phillippy et al. 2008) proposed amosvalidate at the beginning of NGS
(Hunt et al. 2013), and then many others have innovated in the field. REAPR
(Recognition of Errors in Assemblies using Paired Reads) has been developed
to achieve better accuracy scoring assembly positions and identify misassem-
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blies without a reference genome (Hunt et al. 2013). It has become one of the
most common algorithms to assess an assembly. It outputs “error-free” and
“error” bases for each position of a sequence and generates a new assembly
broken at the error points.

2.3.3
Genomic Analysis

At this point, we compare genes. One approach is to verify an assembly
by aligning it against a reference genome. But in the case no reference is known,
we can still analyze ortholog genes, as done in BUSCO (Simão et al. 2015) or
HiMMe (Abante et al. 2017).

BUSCO has been recently updated (Waterhouse et al. 2017), and
now covers data for prokaryotes, vertebrates, arthropods, fungi, nema-
todes, protists, and plants. After concluding the identification of or-
thologs, BUSCO quantitatively reports complete, duplicated, fragmented,
and missing genes. HiMMe scores each contig and the whole assem-
bly, and also provides a HiMMe coefficient for the entire genome assem-
bly. QUAST (Gurevich et al. 2013) also seeks to predict the number of
genes, through GeneMark.hmm (Lukashin and Borodovsky 1998) or Glim-
merHMM (Majoros et al. 2004).

The process of genes analysis may be extended in Genome Annotation.
Undoubtedly, the quality of genes is related to contiguity and base correctness
and can be confirmed through transcriptome data and wet lab experimenta-
tion.

2.4
Final Considerations

The Genomics field is still somewhat recent and presents a large number
of practical issues to tackle. Assembly quality is one of these urgent issues
that have emerged, particularly in personalized medicine scenarios. At this
point, many metrics and strategies have been proposed in order to evaluate an
assembly.

Taking into account the proposed evaluation metrics, we now face the
problem of choosing those that give us a better understanding of the assembly
quality. In many contexts, this choice will directly influence assemblies selection
and consequently genome assembly application cases. In a clinical environment,
for example, assembly selection may affect the number of identified mutations
of medical importance.
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For that reason, it is essential to combine strategies from distinct cate-
gories, correctness (base errors), contiguity, and genomic analysis, expanding
the knowledge we have about the genome and the organism under investiga-
tion. The next chapter will expose our solution to understanding the correlation
and the applicability of some metrics.
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3
Genome Assembly Analysis Framework

As exposed in Chapter 2, given hundreds of quality features, we face
the problem of interpreting those features, in order to classify the quality
of assemblies. Since our primary motivation question (Which metrics are the
most relevant when evaluating an assembly?) does not have an easy and simple
answer, we propose a generalist environment where the quality metrics may be
analyzed for creating a better comprehension of the quality feature space. We
describe now a domain Framework for the Genome Assembly Quality Analysis.

The main goal is to permit features comparison, considering distinct se-
quencing, assembling, and genomic variables. We aim to detect the sequencing
and assembly parameters, and the genomic characteristics that affect the qual-
ity assembly metrics. Consequently, we could contribute to user selection of the
features which better respond to real-world assembling conditions.

Firstly, a brief introduction of Framework conceptions is given, followed
by the requirements of our proposed analysis application. We describe then,
the framework architecture and its class and sequence diagrams.

From now on, we call the metrics/measurements by features, such
as in Machine Learning. A Feature is a measurable property or char-
acteristic that describes an object or phenomenon under observation
(Christopher M. Bishop 2006). For that reason, we may say that this Frame-
work is responsible for a Feature Analysis Process of Genome Assemblies.

3.1
Framework Concept

Generally, we can define a framework based on four main re-
quirements: code reuse, abstraction, inversion control, and extensibility
(Landin and Niklasson 1995). Here, we will use and attempt to object-
oriented frameworks. According to Landin and Nikalasson, "an object-oriented
framework is intended to capture the functionality common to several similar
applications" (Landin and Niklasson 1995). In other words, if one identifies
a certain number of common requirements between independent applica-
tions, a framework would be proposed in order to provide common functions,
applicable to all applications.
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The requirements of a framework include the common requirements from
all applications; and the adaptability for the particular requirements. Since
our research question is very embracing, it could be by itself considered a
framework, including a lot of sub-applications. However, it also emerges totally
independent use cases that could be benefited from the framework. One of them
is the assembler choice, which refers to the decision-make of the best assembler
to use. The next section describes those framework requirements.

In addition, the requirements are consequently translated into frozen
spots and hot spots. Frozen spots compose the core of the framework,
immutable code common to all applications. Contrarily, the hot spots
are the changeable modules, the ones that may be absent, and the new
ones that may be often added to the application (Fayad and Schmidt 1997;
Markiewicz and Lucena 2000)

3.1.1
Requirements

In this section we describe the functional requisites of the framework.
Our Framework is a domain framework for the quality analysis of the Genome
Assembly, and must:

(1) handle as many types of assemblers as possible.
(2) work with multiple sequencing technology types
(3) test distinct genomic characteristics
(4) test distinct assembling parameters
(5) generate multiple features
(6) be able to add or remove any of the assemblers, features, or read

generators
(7) be able to work with external raw reads or to generate its own reads
(8) be able to test hypotheses concerning the whole experiment
Any other requisites may be part of the application, and work as hot

spots.

3.1.2
Architecture

We introduce the proposed architecture of GAAF as follows. The blue
color refers to frozen spots and the red color to hot spots. The architecture is
divided into layers, one for communication, one for control, and another for
service. The components of each layer are independents and may be needed or
not depending on each specific application.
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Figure 3.1: Framework Architecture

Management: all configuration, inputs, and outputs are managed
through the main core module called Management. It works as the main line of
communication between all other frozen spots, and between User and GAAF.
Such as a Manager in an Enterprise, it acts as a communicator, passing orders
to Control Layer.

Reads Generation: as the name mentions, Reads Generation Module
is responsible for generating artificial reads. The way it is done depends on the
chosen algorithm, e.g. pIRS (Hu et al. 2012) or Grinder (Angly et al. 2012) -
in Escalona article (Escalona et al. 2016) many options are listed. The Module
may receive or not a genome reference entry. When no input is available, the
reads are randomly generated, according to each algorithm. In addition, it
could also receive raw reads, in order to filter them in a quality trimming hot
spot, or by modifying them for any purpose. Reads Generation, as well as all
the other modules from Control Layer, may be seen as a Team Leader, who
receives orders from Manager and passes those to specific employees.

Genome Assembly: this is the module where the reads are assembled.
It may output contigs, or scaffolds, which may be analyzed in the Assembly
Evaluation Module, or may work as re-input to Genome Assembly, calling hot
spots capable of scaffolding, gap-filling, etc. It works with distinct assemblers,
file formats, and sequencing technologies.

Assembly Evaluation: the features qualifying the assemblies are gen-
erated in the Assembly Evaluation Module. Not only the evaluation metrics,
but also some other post-analysis could be included here, such as genome com-
parisons. Those results, according to each application, may be still analyzed
in the Statistics Module.
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Statistics: as a Team Leader from a group of statisticians, the Statistics
Module organizes feature data and requests its service modules to test and
create graphs of that data.

Generator: an abstraction of a service from Reads Generation Module
is the Generator Module. Hypothetically, a freelancer, according to Client’s
request, who is hired to generate reads.

Assembler: another service requested is assembling. The Assembler
Module is the most important service we have, it abstracts assembler software.
It varies in the way of working, how outputs and how receive input data.

Feature Calculator: a good Calculator Module is needed to calculate
the features. Feature Calculator may be a single class capable of calculating a
single feature or may be a complex module which calculates many features at
once, such as QUAST.

Statistics Calculator: finally we have a module where all statistical
tests and graphs are calculated and created, respectively. The Statistics
Calculator may be extended to a large variety of statistics.

The next section translates our architecture into classes, implemented in
Python. Further, we explain its flow through a sequence diagram.

3.2
Class Diagram

The five frozen spots modules are presented as concrete classes. The
hot spots are represented through abstract classes, which will be extended
into personalized concrete classes. Figure 3-3 presents the Class Diagram, that
directly reflects the architecture. Below we briefly describe the classes, please
see GAAF’s Manual and GAAF’s code documentation for more details.

Manager: deals with the communication between user and classes,
and between the classes. The Class includes the methods to generate reads,
assemble reads, evaluate assemblies, load features into dataframes, and analyze
those dataframes through statistical tests.

Reads_Generation_Controller: calls algorithms to generate artifi-
cial reads or to filter raw reads, given or not a reference genome input.

Generator: is an abstract class to read-generation tools. It reads a
dictionary containing all the needed parameters, such as Coverage, read length,
reference genome, phred score, mutation rate, sequencing technology and
others. During the process of generation, the class store the sample-read names
into a list.

Assembling_Controller: is responsible for managing all the assem-
blies required, given the chosen assemblers. It basically receives the reads, the
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Figure 3.2: GAAF Class Diagram

k-mer size, and the number of threads, and runs the software.
Assembler: is an abstract class to the assembler software. The way each

software works is implemented in a concrete class extending the Assembler
Class. And it shall be invisible to the Assembling_Controller.

Evaluation_Controller: calls algorithms to evaluate the assemblies.
It may call complete tools, such as QUAST, or calculate individual imple-
mented Features.

Feature_Calculator: is an abstract class to calculate specific metrics
over the assembly. It receives an assembly, and can receive a reference genome
and read files.

Statistics_Controller: is another concrete class responsible for an-
alyzing whole experiments. It has some methods already implemented in its
core, such as mean and median, but generally calls Statistics_Calculator to
calculate certain statistical tests.

Statistics_Calculator: is an abstract class to implement statistical
tests or graphs.
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3.3
Sequence Diagram

Given our architecture diagram and class diagram, we now describe a
basic flow throughout GAAF. Sequence Diagram is shown in Figure 3.4.

In our implementation, an executable file, called gaaf.py (user repre-
sentation), receives a config file (Figure 3.3) and some run-parameters and
pass them to a Manager object. Gaaf.py request artificial reads to Manager
(reads_generation()), and the Manager to Reads_Generation_Controller
(generate_reads()). Read datasets are generated then, by an extended Gen-
erator Class, for each parameter required. The datasets are returned and stored
in a predefined directory.

Figure 3.3: An example of config file input to gaaf.py

The second step is asking Manager to assemble reads (assembling()).
Manager now send the reads and a user list of selected assem-
blers to Assembling_Controller (run_selected_assemblers()).
Assembling_Controller runs all selected assemblers, returning the final
assemblies. They are also persisted in predefined directories.

Since user has the assemblies, one may request Manager to evalu-
ate them (evaluation()), applying the features (apply_features()) in
Evaluation_Controller Class. Features are calculated in one or more ex-
tended Feature_Calculator Classes, and stored in a directory.

Finally, the Manager converts feature files to dataframes and send them
to Statistics_Controller (test_hypothesis()), where they are organized
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Figure 3.4: GAAF Sequence Diagram
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and statistically tested in Statistics_Calculators (calculate_test()).
At the end, user receives a complete report containing all statistical results.

When some error occurs, and/or GAAF is interrupted, a log file permits
that future runs continue the process from where it was, without running
everything again. In addition, it also supports reanalysis, adding new data to
experiments, through new extended tools.

3.4
Extending Abstract Classes

The greatest advantage of using a framework is the easy way in how new
items are added. For example, given Figure 3.5, any gray box may be removed,
and any new gray box may be added.

We provide pIRS code as an example. The class is created without
__init__() method, receiving Generator, from reads_generation module
(line 5), as a Parameter (line 7). Then, generate() method is defined (line
29), doing whatever it needs to do. Extra methods may be created:

1 import os
2 import l ogg ing
3 import thread ing as thr
4 import time
5 from reads_generat ion import Generator
6

7 c l a s s P i r s ( Generator ) :
8 " " " Class r e sponsab l e f o r c a l l i n g pIRS and genera t ing i t s reads
9

10 Att r ibut e s
11 −−−−−−−−−−
12 exp : s t r
13 The Experiment Name
14 out : s t r
15 The output d i r e c t o r y to s t o r e the r e s u l t s and where the

reads are s to r ed
16 parameters : d i c t
17 A d i c t i ona ry conta in ing a l l the gene ra t i on parameters
18 datasets_generated : l i s t
19 The l i s t o f the samples generated
20

21 Methods
22 −−−−−−−
23 f a s t a 2 f a s t q ( f i l e , ql , name= ’ ’)
24 Converts a f a s t a f i l e to a f a s t q f i l e
25 generate ( sample )
26 Run the P i r s command to the sample
27 " " "
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28

29 de f generate ( s e l f , sample ) :
30 " " "
31 Run pIRS command .
32

33 Parameters
34 −−−−−−−−−−
35 sample : s t r
36 Sample name . I t names the read f i l e s .
37 " " "
38

39 t ry :
40 DO WHAT IS REQUIRED
41 s e l f . datasets_generated . append ( sample )
42

43 except IOError :
44 l o gg ing . e r r o r ( IOError )

Beside the methods created, Pirs already has fasta2fastq() method,
and exp, out, datasets_generated, a dictionary of parameters, and logging
attributes. Exp gives the name of the experiment and out the output directory
to store the reads. It is recommended to create “/reads” dir inside out. It
is important to save the sample names created into a predefined list called
datasets_generated. It will be used further by other modules.

Finally, the parameters dictionary gives the class all experiment param-
eters passed by user. Not all of them may be used. It is up to developer. At
least, one will probably use the following keys: ref, coverage, read_len, var
(meant read normal variation), phred and Error_rate.

Figure 3.5: GAAF Architecture with some Hotspots Instantiated
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The Framework Manual, provided on Github and in the Supplementary
Material, explains that procedure to each abstract class. It is always the same:
receive the abstract class as a parameter and define the abstract method and
extra methods required by specific applications.

3.5
Unit Tests

During implementation, some unit tests were performed to tes-
tify classes operation. The results can be accessed in unit_tests/tests
(https://github.com/neumannguib/GAAF-Framework).

The next chapter presents a Study Case, our motivation application, to
test and validate our Framework.
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4
Case Study

Considering our primary motivation question (Which metrics are the
most relevant when evaluating an assembly?), and a second auxiliar motiva-
tion question (What do the features represent in the genome assembly?), we
proposed GAAF, as exposed in Chapter 3. The layers and the modules pre-
sented are trying to provide the main steps needed in experiments that would
try to answer these motivation questions.

However, in order to answer them to the whole domain, including all
living beings, it is necessary to answer before the same questions to sub-
domains, or sub-groups. We decided then, to first respond that to a single
bacterium – Escherichia coli.

As a case study, to test our Framework, we analyzed the correlation be-
tween the Genome Assembly Evaluation Features and the following sequencing
parameters: read length, read coverage and phred quality. Moreover, we com-
pared four strains of Escherichia coli. The main goal was to detect the influence
of sequencing-parameters/genomic characteristics over the assembly features.
Hereafter, after analyzing a bigger Feature Space, and a wider range of param-
eters, it will be possible to infer, from the features, which parameters and/or
genomic characteristics are varying in the assemblies of Escherichia coli.

Firstly, Escherichia coli was chosen as our genomic model, since E.
coli naturally presents high intraspecific diversity. It has non-pathogenic and
pathogenic strains, living in several different environments, composed of some
distinct genomic configurations (Moriel et al. 2012) - see Table 4.1. The strain
k12 substrain MG1655 is the main reference genome for E. coli in terms of
genetic studies, well described in the literature. For that reason, we used
Escherichia coli strain k12 substrain MG1655 as our genome reference in the
first four experiments.

E. coli is highly repetitive, and a first look at that in 2000
(Gur-Arie et al. 2000) had already detected thousands of repeats. So the
fifth experiment will consider the natural repeat variation between E. coli
strains to evaluate how it affects assembly quality. Four strains were selected
based on repetitive regions, as described in Table 4.1. Those repetitions were
analyzed by DACCOR software (Seitz et al. 2018).
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Table 4.1: Strains of Escherichia coli and their repetitive patterns analyzed by
DACCOR (Seitz et al. 2018)

k12
MG1655

IAI39 O83:H1
str. NRG
857C

O104:H4
str. 2011C-

3493
Accession NC_000913.3 NC_011750.1 NC_017634.1 NC_018658.1
Genome
Length (bp)

4,641,652 5,132,068 4,894,879 5,437,407

GC (%) 50.8 50.6 50.7 50.7 . . .
Genes 4,566 5,092 4,532 5,081
tRNAs 86 88 84 94
rRNAs 22 22 22 22
Pseudogenes 147 160 1 2
Proteins 4,242 4,725 4,425 4,963
Repetitive
Regions

622 1,005 365 1,052

Different
Repetitive
Regions

248 361 168 506

Maximum
Repetition
length (bp)

2,815 5,230 2,770 6,581

Pursuing the motivation question, many parameters and genomic char-
acteristics may emerge. Read Length was selected since it is one of the first
parameters to ponder when sequencing. The technology and sequencing kit
one uses, defines read length. In terms of Illumina sequencing, reads currently
vary between 150bp and 300bp in length (Illumina 2019).

Secondly, coverage and phred quality are related to the sequencing
purpose. On the one hand, coverage can be understood as the number of
times a position in the genome is represented in the pool of reads - reads
that overlap that position. Coverage 10x, for example, means that each
position in the assembly appears at least in 10 reads (Sims et al. 2014). Read
coverage requirement depends on the application, for detecting human genome
mutations, SNPs, and rearrangements, for example, Illumina indicates coverage
between 10x to 30x, while 100x for ChIP-Seq (Illumina 2014).

On the other hand, phred says how many errors are implicitly present
in the Genome. It directly points to the probability of correct base detection
in the sequencing process. Normally, it is expected a phred greater than Q30
(Illumina 2011). This is equivalent to the probability of an incorrect base call 1
in 1000 times (Table 4-2). In scenarios where a single base is important, these
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two aspects of coverage and phred are crucial.

Table 4.2: Quality Scores and Base Calling Accuracy modified from
(Illumina 2011)

Phred Score Probability of
Incorrect Base Call

Base Call Accuracy

Q10 1 in 10 90%
Q20 1 in 100 99%
Q30 1 in 1,000 99.9%
Q40 1 in 10,000 99.99%
Q50 1 in 100,000 99.999%

Other parameters such as the Mutation rate, indels rate, k-mer size,
Duplication rate, Genomic Complexity etc., shall be analyzed further; not only
to E. coli, but also to other species and taxonomic groups.

We generated artificial Illumina reads, according to desirable character-
istics (see Table 4.3), using pIRS v2.0.0 (Hu et al. 2012). pIRS was selected
based on Escalona article, experiment requirements, and our requirements
for recent releases and available support (Escalona et al. 2016). For this case
study, we only generated Illumina reads due to fact that other sequencing
technologies, as discussed in Chapter 1, that generate longer reads, still have
high substitution error rate, around Q10, and are normally used in conjunction
with Illumina reads. For that reason, we decided to first analyze Illumina reads,
independently, and in future studies, use the other technologies too. Except
for the parameter in analysis (generated in pIRS, or present in the reference
genome), all other parameters are fixed.

All experiments run 8 distinct assemblers: SPAdes v3.13.0
(Bankevich et al. 2012), MIRA V5rc1 (Chevreux et al. 2004), Velvet
v1.2.10 (Zerbino 2010), ABySS v2.0 (Jackman et al. 2017), Minia v3.2.0
(Chikhi and Medvedev 2013), SSAKE v4.0 (Warren et al. 2007), Edena
v3.131028 (Hernandez et al. 2008) and Masurca v3.3.1 (Zimin et al. 2013).
These assemblers vary in algorithm strategies (Table 4.4), are commonly used,
and were present in GAGE-B work (Magoc et al. 2013) and in Assemblathon
1 (Earl et al. 2011). The assemblers choice was also based on our requirements
for recent releases and available support.

For the k-mer-based assemblers, even for those which use in-
ternal methods to discover the best k size, KmerGenie v1.7051
(Chikhi and Medvedev 2013) was applied to the generation of K size. The
goal was not to definitely find the best k, but just to use the same k parameter
for all assemblers.
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Table 4.3: Experiment Design for Strains of Escherichia coli

Experiments /
Parameters E1 E2 E3 E4 E5

Strain K12 MG1655 K12 MG1655, IAI39, 083:H1
NRG857C, O104:H4 2011C3493

Read Length
(bp)

50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

30-170
40-180
50-190
60-200
70-210
80-220
90-230
100-240
110-250
120-260
130-270
140-280
150-290
160-300
170-310
180-320

250 100 250

Coverage 30x

10x
30x
50x
70x
90x
110x
130x
150x

30x

Phred Q40

Q1
Q5
Q10
Q15
Q20
Q25
Q30
Q35
Q40

Q40
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We calculated the features using QUAST v5.0.2 (Gurevich et al. 2013),
from Contigs, generating Latex files. From these files, 18 features, from
the three groups presented in the second chapter, were selected: Reference
mapped (%), Total length, N50, NA50, NG50, L50, N75, Number of Contigs,
Largest Contig, GC Content (%), Mapped (%), Number of mismatches per 100
kbp, Number of misassemblies, Largest alignment, Average Coverage Depth,
Number of Predicted Genes (unique), Complete BUSCO (%), and Partial
BUSCO (%). All these selected features are described in Appendix A, according
to QUAST (Gurevich et al. 2013).

We analyzed these 18 features for each experiment through a Multisam-
ple Analysis of Variances such as ANOVA (Kaufmann and Schering 2014) or
Kruskal-Wallis (Kruskal and Wallis 1952), per parameter, and also per assem-
bler - see below our hypothesis. When the null hypothesis was denied, Ne-
menyi test (Nemenyi 1963) or Bonferroni test (Dunnett 1955) was applied to
the results. Shapiro–Wilk (Shapiro and Wilk 1965) performed Normality tests,
indicating the use of ANOVA or Kruskal-Wallis tests.

When any statistical difference was detected, Correlation analysis of
Pearson was applied, and Linear Regression to results when correlation was
above 0.80.

Related to Parameters:
H0: There is no significant difference in Feature X between

the values from parameter Y.
H’: The values from parameter Y have some influence over

Feature X.
Related to Assemblers:
H0: There is no significant difference in Feature X between

the assemblers.
H’: The assemblers have some influence over Feature X
We installed and run GAAF in Ubuntu 18.04.2 LTS System, 32GB RAM,

Intel Xeon E312xx 16 Cores machine.

4.1
Results

In this section, we present the main results for all experiments. The
complete reports are available in the Supplementary Material. The analysis
presented here are the ones applied to the features after the process of outliers
removing. The outliers were removed using Z-score test (z>|3|).
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Table 4.4: Assembly Strategies

Assembler Strategy K-mer Use
SSAKE Greedy yes
SPAdes de Bruijn graph yes
MIRA OLC no
ABySS de Bruijn graph yes
MaSuRCA hybrid (OLC + de Bruijn) yes
Minia de Bruijn graph yes
Velvet de Bruijn graph yes
Edena OLC no

4.1.1
Experiment 1: Read Length

Figure 4.1: Total Length (bp) results in read length datasets from 50 to 300
bp.

The First Experiment focused on the influence of Read Lengths over
the assembly features. We generated 26 read datasets from 50 bp to 300 bp,
which were assembled on 8 assemblers, totaling 208 assemblies. Assemblies
from SSAKE were eliminated from the analysis since it generated assemblies
much larger than the reference genome - Figure 4.1. In the discussion section we
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better comment that behavior. Except for SSAKE, all assemblers had assembly
sizes close to the reference: 4.6Mbp.

Table 4.5: Summary Results of Experiment 1. For each Feature, we can see
p-values when comparing distinct assemblers, and when comparing distinct
read lengths. A p-value below 0.05 means that there is a significant difference
between assemblers or read lengths at that Feature.

Feature p-value Assem-
blers

p-value Read
Length

Complete
BUSCO (%)

0.0603 0.5122

Partial
BUSCO (%)

0.1889 0.5625

GC Content
(%)

1.48e-21 0.0933

# Predicted
Genes

6.60e-23 0.1629

Mapped (%) 5.52e-15 7.50e-07
Avg cover-
age depth
(%)

4.49e-12 0.9969

Reference
Mapped (%)

1.0 1.0

Total length 1.76e-24 0.2344
L50 4.54e-16 1.30e-06
Largest
alignment

1.53e-17 0.0009

Largest con-
tig

6.62e-16 0.0011

N50 7.32e-17 3.98e-07
NA50 4.95e-17 5.21e-07
NG50 6.81e-17 5.49e-07
N75 7.54e-17 6.36e-07
# Contigs 8.92e-19 0.0002
#Misassem-
blies

2.07e-20 0.9743

# Mis-
matches per
100 kbp

2.06e-21 0.5315

KmerGenie (Chikhi and Medvedev 2013) was used to generate the best
k sizes to apply in all assemblers. However, as read lengths grew, some k sizes
needed to readjust. So the chosen sizes were as follows: 21 for Read Length
50bp, 31 for 60 to 160bp, and 81 for 170 to 300bp.
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Figure 4.2: N50 (bp) results in read length datasets from 50 to 300 bp.

Almost all features presented significant statistical differences between
the assemblers. Assemblers of distinct assembling strategies showed significant
differences in Nemenyi test, e.g. Masurca and Minia and Edena and Minia in
N50, ABySS, and MIRA in N75. However, still assemblers from the same
strategy groups had some differences, such as in N50, Minia and SPAdes,
and Velvet and Minia and Minia and SPAdes in N75 (see Complete Report
Experiment 1 of Supplementary Material for more details). It is clear in figure
4.2, for example, how assemblers work differently, in N50 output.

Related to the read length, the features L50, Largest Alignment, Largest
Contig, N50, N75, NA50, NG50, Number of Contigs, and Mapped (%),
presented statistically significant differences - see Table 4-4. However, no
punctual divergences were detected through Nemenyi between pairs of read
lengths. It may mean that only contiguity features have been influenced by
Read Length. In addition, almost all of them are correlated to Read Length
(Figure 4.3).

Analyzing Linear Regression, in the cases of Pearson correlation detec-
tion, except in Largest Alignment and Largest Contig for Masurca, all assem-
blers exhibited significant linear regression values.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 4. Case Study 48

Figure 4.3: Pearson Correlation Results between Read Length and Assemblers
for Contiguity Features in Experiment 1

4.1.2
Experiment 2: Normal Distribution of Read Lengths

The second experiment had the same objective as stated in experiment
1, changing just in the point where read lengths had a normal distribution,
such as in real world. It means a read dataset of length 100bp, with a variation
of 70bp, varies from 30bp to 170bp, but with an approximately mean length
of 100bp.

Sixteen datasets were assembled on 8 assemblers, totaling 128 assemblies.
SSAKE was also not considered into the analysis. K-mer sizes were 31 for reads
of 100 to 160bp, and 81 for 170 to 250bp.

It is interesting to observe that in this experiment all features diverged
between assemblers (Table 4-6), but fewer diverged in terms of read length, in
comparison to the first experiment. Total length, number of contigs and N75
do not statistically change when reads variate.

Both experiments 1 and 2 had Mapped (%) feature significantly changing.
That means larger reads better map to the assembly (Figure 4.4), as well
as generate assemblies with fewer gaps; without any statistical differences to
correctness ( #misassemblies and #mismatches) neither to genomic analysis
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Figure 4.4: Percentage of mapped reads to the assemblies in Experiment 2

(BUSCO, predicted genes, and GC content).
Those significant features also were correlated to read length (Figure

4.5), and the ones with a correlation value greater than 0.80 demonstrated a
significant regression coefficient too.
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Figure 4.5: Pearson Correlation Results between Read Length and Assemblers
for Contiguity Features in Experiment 2
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Table 4.6: Summary Results of Experiment 2. For each Feature, we can see
p-values when comparing distinct assemblers, and when comparing distinct
read lengths. A p-value below 0.05 means that there is a significant difference
between assemblers or read lengths at that Feature.

Feature p-value Assem-
blers

p-value Read
Length

Complete
BUSCO (%)

1.39e-15 0.9997

Partial
BUSCO (%)

2.42e-05 0.7227

GC Content
(%)

1.48e-21 0.9756

# Predicted
Genes

1.52e-14 0.2431

Mapped (%) 5.04e-13 0.0096
Avg cover-
age depth
(%)

1.89e-21 0.9999

Reference
Mapped (%)

1.0 1.0

Total length 1.05e-17 0.8082
L50 1.09e-12 0.0010
Largest
alignment

2.34e-05 4.59e-06

Largest con-
tig

4.40e-05 1.62e-05

N50 1.24e-12 0.0011
NA50 1.24e-12 0.0012
NG50 2.45e-07 2.20e-06
N75 7.33e-15 0.0900
# Contigs 1.02e-14 0.0719
# Misassem-
blies

1.24e-14 0.9928

# Mis-
matches per
100 kbp

9.83e-14 0.2242
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4.1.3
Experiment 3: Coverage

Experiment 3 focused on how coverage parameter affects the genome
quality features. Coverage varied between 10x and 150x, with 8 datasets
assembled on 8 assemblers, totaling 64 assemblies. However, the results from
coverage disregard SSAKE and MIRA assemblies.

Figure 4.6: Total Length (bp) in Experiment 3

On the one hand, SSAKE was removed due to the same reason from
the other experiments: poor assemblies. On the other hand, MIRA had a
hard time assembling high coverage. It did not assemble reads with coverage
of 90x,110x,130x or 150x (Figure 4.6). SSAKE and MIRA are the oldest
assemblers in this work and were developed in the context of a bite distinct
sequencing technologies. K size 17 was used for 10x, and 81 for 30 to 150x.

Such as in experiments 1 and 2, contiguity features demonstrated signif-
icant divergences between coverage parameters (through Kruskal test) - Table
4-7. However, Nemenyi tests only presented divergences in the features Com-
plete BUSCO and Partial BUSCO, between Coverage 10x and all the others.
We may conclude, then, that very low coverage affects conserved genes (below
10x), and, consequently, Complete BUSCO (Figure 4.7) and Partial BUSCO
may be indicators of low coverage. Contiguity features can be affected, but they
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Figure 4.7: BUSCO Results in Experiment 3

will be weaker indicators of changes in coverage, since they are also indicators
of Read Length.

Average coverage depth(%) feature helps us to confirm the changing in
read coverage, as expected. Number of misassemblies was also significant, but
it was caused yet by the high number of misassemblies in coverage 10x, as well
as smaller assemblies. We need, although, to review this experiment, since k
size was just different in coverage 10x, a potential bias to the presented results.
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Table 4.7: Summary Results of Experiment 3. For each Feature, we can see
p-values when comparing distinct assemblers, and when comparing distinct
coverage values. A p-value below 0.05 means that there is a significant
difference between assemblers or coverage values at that Feature.

Feature p-value Assemblers p-value Coverage
Complete
BUSCO (%)

0.9999 6.30e-08

Partial
BUSCO (%)

0.9999 6.28e-08

GC Content
(%)

1.74e-05 0.3046

# Predicted
Genes

2.432e-06 0.9915

Mapped (%) 8.78e-05 0.03568
Avg cover-
age depth
(%)

0.9991 6.54e-08

Reference
Mapped (%)

1.0 1.0

Total length 7.435e-05 0.02557
L50 6.25e-05 0.0174
Largest
alignment

7.84e-05 0.0233

Largest con-
tig

7.84e-05 0.0233

N50 6.47e-05 0.0260
NA50 6.47e-05 0.0260
NG50 6.43e-05 0.0270
N75 5.94e-05 0.0257
# Contigs 8.91e-05 0.0282
#Misassem-
blies

0.0955 0.0125

# Mis-
matches per
100 kbp

1.77e-06 0.9867
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4.1.4
Experiment 4: Phred

The fourth experiment took a deeper look at phred quality. We simulated
distinct phred values through the substitution error rate, as shown in Table
4.8. Approximately (error rate is a probability), though, phred varied between
Q10 and Q50, on 8 assemblers, totaling 72 assemblies.

Velvet was removed from the analysis because it did not assemble reads
for phred of Q5 and Q15, and generated assemblies bigger or smaller than
reference genome length. Even though, many assemblies were smaller than the
reference in phred below Q25 (Figure 4.8).

Table 4.8: Quality Scores and respective Substitution Error Rates

Phred Score Substitution Error
Rate

Q1 0.79
Q5 0.31
Q10 0.1
Q15 0.031
Q20 0.01
Q25 0.0031
Q30 0.001
Q35 0.00032
Q40 0.0001

Again, contiguity features had null hypothesis denied for the parameter
change, in this case, error rate. Notwithstanding, Complete BUSCO and
Partial BUSCO were also statistically divergent in phred change. And it totally
makes sense, since more errors may cause gaps in gene sequences (Figures 4.9
and 4.10). Despite that, Nemenyi did not detect specific pair divergences, for
BUSCO features.

The total length of assemblies was also smaller below Q25. Similarly, we
had smaller contigs and N50, NA50, NG50, N75. The curious point is the fact
that we could not deny the null hypothesis to Number of misassemblies neither
to Number of mismatches, even with higher error probabilities.
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Figure 4.8: Total Length(bp) in Experiment 4

Figure 4.9: Complete BUSCO (%) in Experiment 4
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Figure 4.10: Partial BUSCO (%) in Experiment 4
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Table 4.9: Summary Results of Experiment 4. For each Feature, we can see
p-values when comparing distinct assemblers, and when comparing distinct
phred values. A p-value below 0.05 means that there is a significant difference
between assemblers or phred values at that Feature.

Feature p-value Assemblers p-value Phred
Complete
BUSCO (%)

0.0022 0.0002

Partial
BUSCO (%)

0.1686 0.0303

GC Content
(%)

8.56e-05 0.8765

# Predicted
Genes

0.0023 0.6442

Mapped (%) 8.92e-05 0.0028
Avg cover-
age depth
(%)

0.0056 0.9823

Reference
Mapped (%)

1.0 1.0

Total length 4.62e-06 0.0140
L50 0.0020 0.2619
Largest
alignment

4.52e-05 0.0025

Largest con-
tig

4.05e-05 0.0022

N50 1.88e-05 0.0057
NA50 2.72e-05 0.0045
NG50 2.15e-05 0.0055
N75 1.07e-05 0.0101
# Contigs 0.0022 0.2681
# Misassem-
blies

5.87e-07 0.9923

# Mis-
matches per
100 kbp

3.43e-06 0.3350
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4.1.5
Experiment 5: Escherichia coli strains

Dislike other experiments, experiment 5 did not simulate, create nor
alter any parameters of sequencing. This experiment only compared those four
strains, as exposed in Table 4.1. We would think that in many species, to
compare intra-specific diversity will probably not cause statistical divergences
in assembly quality features. But when we talk about bacteria, and about E.
coli, it may change.

Figure 4.11: Percentage of total assembly length to strain genome length

Could N50 be affected by repetitive regions that differ in E. coli ? Yes,
and it definitely does. Table 4-10 shows, one more time, that contiguity features
statistically differ, and prove again how sensitive they are.

We had 32 assemblies. The features were normalized when necessary,
according to total length, aligned length or reference genome length. SSAKE
and Velvet were removed from the analysis, also by problems in total length
(Figure 4.11).

We have found some interesting results relating repetitive strains to some
features. As already exposed in Table 4.1, strain O104 has the highest number
of repetitive regions, while O83 the least. Let us firstly focus on genomic
analysis.
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The number of genes is known for each strain (Table 4-1). We analyzed
then, the difference between the number of predicted genes and the number
of known genes; in other words, the number of unpredicted genes. There is
a statistically significant difference between them (Table 4-10). O83 was the
one closest to the real number of genes - Figure 4.12. Curiously, the one with
the highest number of unpredicted genes was iai39, the second most repetitive
strain. But of course might be other factors affecting genes prediction, since
O104 was not the highest with unpredicted genes, not even the second highest.
Nemenyi findings point to differences only between O83 and iai39.

Figure 4.12: Number of unpredicted genes in Experiment 5

The same occurred in GC content. The strains are naturally quite
different (Table 4-1). But when comparing the difference between the reference
and the assemblies, we detected divergences within strains (Figure 4.13).
Nemenyi showed that O104 is statistically different from all other strains in
normalized GC content.

In contiguity features, N50 for example seemed to be very related to
repetition level. O83 had an N50 largely representing the assembly, while 0104
and iai39 shortly representing (Figure 4.14), corroborated by Nemenyi findings.

While on the one hand, contiguity and genomic features are somehow
related to repetitive regions in the genomes, on the other hand, base features
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Figure 4.13: Difference in GC Content in Experiment 5

do not. Number of mismatches and misassemblies, contrarily, presented no
pattern, despite significant differences between assemblies.
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Figure 4.14: Percentage of N50 representing the assemblies in Experiment 5
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Table 4.10: Summary Results of Experiment 5. For each Feature, we can see
p-values when comparing distinct assemblers, and when comparing distinct E.
coli strains. A p-value below 0.05 means that there is a significant difference
between assemblers or E. coli strains at that Feature.

Feature p-value Assemblers p-value Strains
Complete
BUSCO (%)

0.0638 0.5530

Partial
BUSCO (%)

0.4158 0.3916

Difference in
GC

0.3046 0.0042

# Not pre-
dicted Genes

0.8916 0.0001

Mapped (%) 0.0006 0.9905
Avg cover-
age depth
(%)

0.5235 0.0990

Reference
Mapped (%)

1.0 4.03e-05

Total length 0.0294 0.1074
L50 0.8257 0.0001
Largest
alignment

0.9723 0.0030

Largest con-
tig

0.9917 7.90e-05

N50 0.8393 0.0001
NA50 0.8914 0.0001
NG50 0.6507 0.0005
N75 0.7568 0.0001
# Contigs 0.7234 0.0002
#Misassem-
blies

0.0352 0.0249

# Mis-
matches per
100 kbp

0.8978 0.0001
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4.2
Discussion

4.2.1
Assembler’s Divergence

The first point we may discuss is about assemblers’ divergence. Except
for the last experiment, all others had differences between them. We could
try to define that to assembling strategies, and it may be right, but even
inside certain groups, as in the Bruijn assemblers, the strategies vary in some
aspects. So, it is our first contribution: the assembler choice is important and
will depend on the scientist’s goal.

The high divergence of SSAKE results seen in all experiments was prob-
ably caused by the fact that it uses an Overlap-and-Extend Greedy Strat-
egy, and was developed in the context of shorter reads (Warren et al. 2007).
SSAKE requires error-free reads and had already been proved with a worse per-
formance than traditional de Bruijn assemblers, in some features such as N50
and number of misassemblies (Paszkiewicz and Studholme 2010; Zerbino 2010;
Simpson et al. 2009).

Generally, we eliminated some assemblers’ outputs based on total length.
In many cases, they were really larger than the reference genome. It was
probably a consequence of incorrect repetitive regions in the assemblies,
e.g. duplication genes. When analyzing QUAST results we found a higher
duplication rate to those assemblies.

4.2.2
Sensitivity versus Specificity

However, we are not going far with assemblers subject. We will focus on
parameters divergences. We have seen contiguity features that were influenced
by all parameters. They demonstrated high sensitivity, in many cases with a
linear regression coefficient, positively or negatively correlated to studied pa-
rameters. It has already been discussed that such features have high sensitivity,
but lack specificity (Phillippy et al. 2008; Vezzi et al. 2012).

Imagine we know which assemblies have good quality and which do not
(Figure 4.15). When we say contiguity features have high sensitivity, we mean
they correctly identify good quality assemblies when they truly have good
quality. Moreover, when we say they lack specificity, we mean they wrongly
identify bad quality assemblies as good quality.

When N50, for example, grows as read length grows, and we consider
bigger N50 values as a synonym of good quality, we can correctly detect a
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Figure 4.15: Sensitivity versus Specificity. Modified from Wikipedia

good quality assembly, hence larger reads probably generate better assemblies.
But we also may mistake, since we could have a contiguous assembly with a
lot of incorrect bases detection. That is why other high specificity features are
necessary.

In addition, those contiguity features are redundant. They all vary
together. That was Vezzi (Vezzi et al. 2012) issue at his work, firstly to
generate new synthetic features through PCA (Principal Component Analysis),
and secondly to detect most informative features through ICA (Independent
Component Analysis); in order to eliminate redundancy, and avoid biases
when all features are considered together. However, his work at that time
just analyzed a few features and did not get high specificity as well.

Maybe the genomic features (Complete and Partial BUSCO, GC Con-
tent, Number of Predicted Genes) could confer that needed specificity. We have
seen they changing a little, only in specific situations. Additional experiments
and further studies are necessary to test this hypothesis. Also, more features
should be included in our Feature Space Analysis.

Indeed, we may conclude that GAAF provided enough tools and meth-
ods, attending initial requisites, to pursue responding to our motivation re-
search in Genome Assembly Quality subject. The next chapter briefly describes
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the next steps.
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5
Conclusions

The current work proposed to develop a Framework for the Domain of
Feature Analysis of Genome Assemblies. It has four main control modules,
capable of generating artificial reads, assembling, assembly evaluating and
statistics analyzing.

5.1
Main Contributions

Firstly, we contributed to the field through the Systematic Mapping,
listing the main proposed features, and classifying them into three groups:
Contiguity, Base Analysis, and Genomic Analysis. Secondly, the development
of GAAF contributed mainly to:

1. Reanalyzing entire experiments based on previous data;
2. Adding easily new tools (read generation software, features, assem-

blers) to the instantiated framework;
3. Abstraction;
4. Reproducibility.
The Framework contributes to the field in the way it is used and

instantiated. In comparison to a simple script which calls tools, GAAF creates
the possibility to reanalyze entire experiments, without running everything
from point zero. It means that when an error occurs, or when the experiment
is interrupted in the middle, one may continue running GAAF from where it
was in the process; beyond the fact that one may add a new assembler and
reanalyze the experiment considering the assemblies from that assembler, in
conjunction with the assemblies and features generated previously.

However, the greatest advantage is the easier practice of adding new
tools without previous knowledge about other GAAF components. It is just
necessary to extend an abstract class, and to create tool-specific functions.

In addition, logging support, config file, and complete report give user
enough experiment details to be easily reproduced by others.

Related to the case study, we may briefly list the following conclusions:
1. Sensitivity detection in contiguity features;
2. BUSCO features as indicators of low coverage and low phred quality;
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3. The potential influence of repetitive regions over contiguity, base
analysis and genomic features;

Initial studies in Escherichia coli have demonstrated how GAAF may be
used, and the conclusions we may take through it. We have seen that contiguity
features are highly sensitive, and varied according to read length, coverage,
phred quality and the number of repetitive regions 1.

5.2
Future and Ongoing Work

Now, many next steps emerge in GAAF development and in Feature
Analysis of Genome Assemblies.

For Escherichia coli, new parameters, e.g. k-mer size, and genomic
characteristics, e.g. duplication and mutation rates, need to be analyzed, as well
as more features. Then, other species and taxonomic groups may be analyzed
in order to create a better comprehension of the subject. Also, other sequencing
technologies and assembly levels, such as scaffolds, shall be contemplated.

In terms of Framework development, we may upgrade and test new
modules, making them more robust and even more flexible to attend as many
different sequencing and assembly technologies as possible.

These new modules could include a graphic interface, giving users ex-
perience more importance. This interface might include Experiment Design,
Process Status, Process Manipulation, and Data Access. Also, it is very impor-
tant to create a knowledge base, persisting experiments data, through a DBMS
(Database Management System). It will reinforce the possibility to reanalyze
and upgrade previous experiments.

1and other genomic characteristics

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



6
Bibliographic References

[Abante et al. 2017] Abante, J. et al. (2017). HiMMe: using genetic patterns as
a proxy for genome assembly reliability assessment. BMC Genomics, 18(1):694.

[Angly et al. 2012] Angly, F. E., Willner, D., Rohwer, F., Hugenholtz, P., and
Tyson, G. W. (2012). Grinder: a versatile amplicon and shotgun sequence
simulator. Nucleic acids research, 40(12):e94.

[Bankevich et al. 2012] Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A.,
Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski,
A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A.,
and Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. Journal of computational biology : a
journal of computational molecular cell biology, 19(5):455–77.

[Barthelson et al. 2011] Barthelson, R. et al. (2011). Plantagora : Modeling Whole
Genome Sequencing and Assembly of Plant Genomes. 6(12).

[Batzer and Deininger 2002] Batzer, M. A. and Deininger, P. L. (2002). Alu
repeats and human genomic diversity. Nature Reviews Genetics, 3(5):370–379.

[Bergeron et al. 2006] Bergeron, A., Mixtacki, J., and Stoye, J. (2006). A Unifying
View of Genome Rearrangements. Springer-Verlag Berlin Heidelberg 2006.

[Bradnam et al. 2013] Bradnam et al. (2013). Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species. GigaScience, 2(1):10.

[Castro and Ng 2017] Castro, C. J. and Ng, T. F. F. (2017). U50: A New Metric
for Measuring Assembly Output Based on Non-Overlapping, Target-Specific
Contigs. Journal of computational biology : a journal of computational molecular
cell biology, 24(11):1071–1080.

[Chen et al. 2017] Chen, Q., Lan, C., Zhao, L., Wang, J., Chen, B., and Chen, Y.-
P. P. (2017). Recent advances in sequence assembly: principles and applications.
Briefings in Functional Genomics, 16(6):361–378.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 70

[Chevreux et al. 2004] Chevreux, B., Pfisterer, T., Drescher, B., Driesel, A. J.,
Müller, W. E. G., Wetter, T., and Suhai, S. (2004). Using the miraEST assembler
for reliable and automated mRNA transcript assembly and SNP detection in
sequenced ESTs. Genome research, 14(6):1147–59.

[Chikhi and Medvedev 2013] Chikhi, R. and Medvedev, P. (2013). Informed and
automated k -mer size selection for genome assembly. Bioinformatics, 30(1):31–
37.

[Christopher M. Bishop 2006] Christopher M. Bishop (2006). Pattern Recognition
and Machine Learning. Springer.

[Clarke et al. 2009] Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S., and
Bayley, H. (2009). Continuous base identification for single-molecule nanopore
DNA sequencing. Nature Nanotechnology, 4(4):265–270.

[Commins et al. 2009] Commins, J., Toft, C., and Fares, M. A. (2009). Compu-
tational biology methods and their application to the comparative genomics of
endocellular symbiotic bacteria of insects. Biological procedures online, 11:52–
78.

[Consortium 2004] Consortium, I. H. G. S. (2004). Finishing the euchromatic
sequence of the human genome. Nature, 431:931 – 945.

[Darling et al. 2011] Darling, A. E. et al. (2011). Mauve Assembly Metrics.
Bioinformatics, 27(19):2756–2757.

[Delcher et al. 2007] Delcher, A. L., Bratke, K. A., Powers, E. C., and Salzberg,
S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer.
Bioinformatics, 23(6):673–679.

[Denton et al. 2014] Denton, J. F. et al. (2014). Extensive Error in the Number of
Genes Inferred from Draft Genome Assemblies. PLoS Computational Biology,
10(12):e1003998.

[Dohm et al. 2007] Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H.
(2007). SHARCGS, a fast and highly accurate short-read assembly algorithm
for de novo genomic sequencing. Genome Research, 17(11):1697–1706.

[Dunnett 1955] Dunnett, C. W. (1955). A Multiple Comparison Procedure for
Comparing Several Treatments with a Control. Journal of the American
Statistical Association, 50(272):1096–1121.

[Earl et al. 2011] Earl et al. (2011). Assemblathon 1: a competitive assessment of
de novo short read assembly methods. Genome research, 21(12):2224–41.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 71

[Eisenstein 2012] Eisenstein, M. (2012). Oxford Nanopore announcement sets
sequencing sector abuzz. Nature Biotechnology, 30(4):295–296.

[Escalona et al. 2016] Escalona, M., Rocha, S., and Posada, D. (2016). A
comparison of tools for the simulation of genomic next-generation sequencing
data. Nature reviews. Genetics, 17(8):459–69.

[Fayad and Schmidt 1997] Fayad, M. and Schmidt, D. (1997). Object-Oriented
Application Frameworks Naval Open Systems Architecture Strategy View project
Unified Software Engines (USEs): A unified approach to building software
systems View project. Article in Communications of the ACM.

[Fedurco et al. 2006] Fedurco, M., Romieu, A., Williams, S., Lawrence, I., and
Turcatti, G. (2006). BTA, a novel reagent for DNA attachment on glass
and efficient generation of solid-phase amplified DNA colonies. Nucleic acids
research, 34(3):e22.

[Greenleaf and Sidow 2014] Greenleaf, W. J. and Sidow, A. (2014). The future of
sequencing: convergence of intelligent design and market Darwinism. Genome
biology, 15(3):303.

[Gur-Arie et al. 2000] Gur-Arie, R., Cohen, C. J., Eitan, Y., Shelef, L., Hallerman,
E. M., and Kashi, Y. (2000). Simple sequence repeats in Escherichia coli:
abundance, distribution, composition, and polymorphism. Genome research,
10(1):62–71.

[Gurevich et al. 2013] Gurevich, A. et al. (2013). QUAST: quality assessment tool
for genome assemblies. Bioinformatics, 29(8):1072–1075.

[Haque et al. 2013] Haque, F., Li, J., Wu, H.-C., Liang, X.-J., and Guo, P. (2013).
Solid-state and biological nanopore for real-time sensing of single chemical and
sequencing of DNA. Nano Today, 8(1):56–74.

[Harris et al. 2008] Harris, T. D., Buzby, P. R., Babcock, H., Beer, E., Bowers, J.,
Braslavsky, I., Causey, M., Colonell, J., DiMeo, J., Efcavitch, J. W., Giladi, E.,
Gill, J., Healy, J., Jarosz, M., Lapen, D., Moulton, K., Quake, S. R., Steinmann,
K., Thayer, E., Tyurina, A., Ward, R., Weiss, H., and Xie, Z. (2008). Single-
Molecule DNA Sequencing of a Viral Genome. Science, 320(5872):106–109.

[Heather and Chain 2016] Heather, J. M. and Chain, B. (2016). The sequence of
sequencers: The history of sequencing DNA. Genomics, 107(1):1–8.

[Hernandez et al. 2008] Hernandez, D., François, P., Farinelli, L., Osterås, M., and
Schrenzel, J. (2008). De novo bacterial genome sequencing: millions of very
short reads assembled on a desktop computer. Genome research, 18(5):802–9.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 72

[Hu et al. 2012] Hu, X., Yuan, J., Shi, Y., Lu, J., Liu, B., Li, Z., Chen, Y., Mu, D.,
Zhang, H., Li, N., Yue, Z., Bai, F., Li, H., and Fan, W. (2012). pIRS: Profile-
based Illumina pair-end reads simulator. Bioinformatics, 28(11):1533–1535.

[Hunt et al. 2013] Hunt, M. et al. (2013). REAPR: a universal tool for genome
assembly evaluation. Genome Biology, 14(5):R47.

[Idury and Waterman 1995] Idury, R. M. and Waterman, M. S. (1995). A New
Algorithm for DNA Sequence Assembly. Journal of Computational Biology,
2(2):291–306.

[Illumina 2011] Illumina (2011). Quality Scores for Next-Generation Sequencing.
Technical report.

[Illumina 2014] Illumina (2014). Estimating Sequencing Coverage. Technical
report.

[Illumina 2019] Illumina (2019). Sequencing Platforms | Compare NGS platform
applications & specifications.

[Jackman et al. 2017] Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J.,
Yeo, S., Hammond, S. A., Jahesh, G., Khan, H., Coombe, L., Warren, R. L.,
and Birol, I. (2017). ABySS 2.0: resource-efficient assembly of large genomes
using a Bloom filter. Genome research, 27(5):768–777.

[Jackson et al. 1972] Jackson, D. A., Symons, R. H., and Berg, P. (1972). Bio-
chemical method for inserting new genetic information into DNA of Simian
Virus 40: circular SV40 DNA molecules containing lambda phage genes and the
galactose operon of Escherichia coli. Proceedings of the National Academy of
Sciences of the United States of America, 69(10):2904–9.

[Jeck et al. 2007] Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham,
M. T., Magrini, V., Mardis, E. R., Dangl, J. L., and Jones, C. D. (2007).
Extending assembly of short DNA sequences to handle error. Bioinformatics,
23(21):2942–2944.

[Karlsson et al. 2015] Karlsson, E., Lärkeryd, A., Sjödin, A., Forsman, M., and
Stenberg, P. (2015). Scaffolding of a bacterial genome using MinION nanopore
sequencing. Scientific Reports, 5(1):11996.

[Kaufmann and Schering 2014] Kaufmann, J. and Schering, A. (2014). Analysis
of Variance ANOVA. In Wiley StatsRef: Statistics Reference Online. John Wiley
& Sons, Ltd, Chichester, UK.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 73

[Koonin and Galperin 2003] Koonin, E. and Galperin, M. (2003). Genome Anno-
tation and Analysis. In Sequence - Evolution - Function: Computational Ap-
proaches in Comparative Genomics, chapter 5. Kluwer Academic, Boston, USA.

[Kruskal and Wallis 1952] Kruskal, W. H. and Wallis, W. A. (1952). Use of
Ranks in One-Criterion Variance Analysis. Journal of the American Statistical
Association, 47(260):583.

[Land et al. 2014] Land, M. L. et al. (2014). Quality scores for 32,000 genomes.
Standards in Genomic Sciences, 9(1):20.

[Landin and Niklasson 1995] Landin, N. and Niklasson, A. (1995). Development
of Object-Oriented Frameworks.

[Lewin 2009] Lewin, B. (2009). Genes IX. Artmed, 9 edition.

[Liu et al. 2018] Liu, D., Hunt, M., and Tsai, I. J. (2018). Inferring synteny
between genome assemblies: A systematic evaluation. BMC Bioinformatics,
19(1):1–6.

[Lo et al. 2013] Lo, C. et al. (2013). Evaluating genome architecture of a complex
region via generalized bipartite matching. BMC Bioinformatics, 14(Suppl 5):S13.

[Loman et al. 2012] Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou,
C., Gharbia, S. E., Wain, J., and Pallen, M. J. (2012). Performance comparison
of benchtop high-throughput sequencing platforms. Nature Biotechnology,
30(5):434–439.

[Loman and Quinlan 2014] Loman, N. J. and Quinlan, A. R. (2014). Poretools: a
toolkit for analyzing nanopore sequence data. Bioinformatics (Oxford, England),
30(23):3399–401.

[Lukashin and Borodovsky 1998] Lukashin, A. V. and Borodovsky, M. (1998).
GeneMark.hmm: new solutions for gene finding. Nucleic acids research,
26(4):1107–15.

[Madoui et al. 2015] Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand,
L., Alberti, A., Lemainque, A., Wincker, P., and Aury, J.-M. (2015). Genome as-
sembly using Nanopore-guided long and error-free DNA reads. BMC Genomics,
16(1):327.

[Magoc et al. 2013] Magoc, T., Pabinger, S., Canzar, S., Liu, X., Su, Q., Puiu,
D., Tallon, L. J., and Salzberg, S. L. (2013). GAGE-B: an evaluation of
genome assemblers for bacterial organisms. Bioinformatics (Oxford, England),
29(14):1718–25.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 74

[Majoros et al. 2004] Majoros, W. H., Pertea, M., and Salzberg, S. L. (2004).
TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders.
Bioinformatics, 20(16):2878–2879.

[Markiewicz and Lucena 2000] Markiewicz, M. E. and Lucena, C. J. P. (2000).
Understanding Object-Oriented Framework Engineering. Technical report, PUC-
Rio.

[McKernan et al. 2009] McKernan, K. J., Peckham, H. E., Costa, G. L., McLaugh-
lin, S. F., Fu, Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee,
C. C., Zhang, Z., Ranade, S. S., Dimalanta, E. T., Hyland, F. C., Sokolsky,
T. D., Zhang, L., Sheridan, A., Fu, H., Hendrickson, C. L., Li, B., Kotler, L.,
Stuart, J. R., Malek, J. A., Manning, J. M., Antipova, A. A., Perez, D. S.,
Moore, M. P., Hayashibara, K. C., Lyons, M. R., Beaudoin, R. E., Coleman,
B. E., Laptewicz, M. W., Sannicandro, A. E., Rhodes, M. D., Gottimukkala,
R. K., Yang, S., Bafna, V., Bashir, A., MacBride, A., Alkan, C., Kidd, J. M.,
Eichler, E. E., Reese, M. G., De La Vega, F. M., and Blanchard, A. P. (2009).
Sequence and structural variation in a human genome uncovered by short-read,
massively parallel ligation sequencing using two-base encoding. Genome re-
search, 19(9):1527–41.

[Mikheenko et al. 2016] Mikheenko, A. et al. (2016). Icarus: visualizer for de novo
assembly evaluation. Bioinformatics, 32(21):3321–3323.

[Miller et al. 2010] Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly
algorithms for next-generation sequencing data. Genomics, 95(6):315–27.

[Moriel et al. 2012] Moriel, D. G., Rosini, R., Seib, K. L., Serino, L., Pizza, M.,
and Rappuoli, R. (2012). Escherichia coli: great diversity around a common
core. mBio, 3(3).

[Myers 2005] Myers, E. W. (2005). The fragment assembly string graph. Bioin-
formatics, 21(Suppl 2):ii79–ii85.

[Nemenyi 1963] Nemenyi, P. (1963). Distribution-free multiple comparisons. PhD
thesis, Princeton University.

[Nowoshilow et al. 2018] Nowoshilow, S., Schloissnig, S., Fei, J.-F., Dahl, A.,
Pang, A. W. C., Pippel, M., Winkler, S., Hastie, A. R., Young, G., Roscito,
J. G., Falcon, F., Knapp, D., Powell, S., Cruz, A., Cao, H., Habermann, B.,
Hiller, M., Tanaka, E. M., and Myers, E. W. (2018). The axolotl genome and
the evolution of key tissue formation regulators. Nature, 554(7690):50–55.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 75

[Nyrén and Lundin 1985] Nyrén, P. and Lundin, A. (1985). Enzymatic method
for continuous monitoring of inorganic pyrophosphate synthesis. Analytical
Biochemistry, 151(2):504–509.

[Paszkiewicz and Studholme 2010] Paszkiewicz, K. and Studholme, D. J. (2010).
De novo assembly of short sequence reads. Briefings in Bioinformatics,
11(5):457–472.

[Pevzner et al. 2001] Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An
Eulerian path approach to DNA fragment assembly. Proceedings of the National
Academy of Sciences, 98(17):9748–9753.

[Phillippy et al. 2008] Phillippy, A. M., Schatz, M. C., and Pop, M. (2008).
Genome assembly forensics: finding the elusive mis-assembly. Genome Biology,
9(3).

[Pop 2009] Pop, M. (2009). Genome assembly reborn: recent computational
challenges. Briefings in Bioinformatics, 10(4):354.

[Quail et al. 2012] Quail, M., Smith, M. E., Coupland, P., Otto, T. D., Harris,
S. R., Connor, T. R., Bertoni, A., Swerdlow, H. P., and Gu, Y. (2012). A tale of
three next generation sequencing platforms: comparison of Ion torrent, pacific
biosciences and illumina MiSeq sequencers. BMC Genomics, 13(1):341.

[Rahman and Pachter 2013] Rahman, A. and Pachter, L. (2013). CGAL: comput-
ing genome assembly likelihoods. Genome Biology, 14(1):R8.

[Ronaghi et al. 1998] Ronaghi, M., Uhlén, M., and Nyrén, P. (1998). A Sequenc-
ing Method Based on Real-Time Pyrophosphate. Science, 281(5375):363–365.

[Rothberg et al. 2011] Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J.,
Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards,
M., Hoon, J., Simons, J. F., Marran, D., Myers, J. W., Davidson, J. F., Branting,
A., Nobile, J. R., Puc, B. P., Light, D., Clark, T. A., Huber, M., Branciforte,
J. T., Stoner, I. B., Cawley, S. E., Lyons, M., Fu, Y., Homer, N., Sedova,
M., Miao, X., Reed, B., Sabina, J., Feierstein, E., Schorn, M., Alanjary, M.,
Dimalanta, E., Dressman, D., Kasinskas, R., Sokolsky, T., Fidanza, J. A.,
Namsaraev, E., McKernan, K. J., Williams, A., Roth, G. T., and Bustillo,
J. (2011). An integrated semiconductor device enabling non-optical genome
sequencing. Nature, 475(7356):348–352.

[Saiki et al. 1988] Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn,
G., Mullis, K., and Erlich, H. (1988). Primer-directed enzymatic amplification
of DNA with a thermostable DNA polymerase. Science, 239(4839):487–491.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 76

[Salzberg et al. 2012] Salzberg, S. L. et al. (2012). GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Research, 22(3):557–567.

[Sanger et al. 1977a] Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson,
A. R., Fiddes, J. C., Hutchison, C. A., Slocombe, P. M., and Smith, M. (1977a).
Nucleotide sequence of bacteriophage φX174 DNA. Nature, 265(5596):687–695.

[Sanger and Coulson 1975] Sanger, F. and Coulson, A. (1975). A rapid method
for determining sequences in DNA by primed synthesis with DNA polymerase.
Journal of Molecular Biology, 94(3):441–448.

[Sanger et al. 1977b] Sanger, F., Nicklen, S., and Coulson, A. R. (1977b). DNA
sequencing with chain-terminating inhibitors. Proceedings of the National
Academy of Sciences of the United States of America, 74(12):5463–7.

[Schadt et al. 2010] Schadt, E. E., Turner, S., and Kasarskis, A. (2010). A window
into third-generation sequencing. Human Molecular Genetics, 19(R2):R227–
R240.

[Seitz et al. 2018] Seitz, A., Hanssen, F., and Nieselt, K. (2018). DACCOR-
Detection, characterization, and reconstruction of repetitive regions in bacterial
genomes. PeerJ.

[Shapiro and Wilk 1965] Shapiro, S. S. and Wilk, M. B. (1965). An analysis of
variance test for normality (complete samples). Biometrika, 52(3-4):591–611.

[Shendure and Ji 2008] Shendure, J. and Ji, H. (2008). Next-generation DNA
sequencing. Nature Biotechnology, 26(10):1135–1145.

[Simão et al. 2015] Simão, F. A. et al. (2015). BUSCO: assessing genome assem-
bly and annotation completeness with single-copy orthologs. Bioinformatics,
31(19):3210–3212.

[Simpson et al. 2009] Simpson, J. T., Wong, K., Jackman, S. D., Simpson, J. T.,
Wong, K., Jackman, S. D., Schein, J. E., and Jones, S. J. M. (2009). ABySS :
A parallel assembler for short read sequence data ABySS : A parallel assembler
for short read sequence data. pages 1117–1123.

[Sims et al. 2014] Sims, D., Sudbery, I., Ilott, N. E., Heger, A., and Ponting, C. P.
(2014). Sequencing depth and coverage: key considerations in genomic analyses.
Nature Reviews Genetics, 15(2):121–132.

[Snustad and Simmons 2012] Snustad, D. P. and Simmons, M. J. (2012). Funda-
mentos de Genética. Guanabara Koogan, 4 edition.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



Chapter 6. Bibliographic References 77

[Staden 1980] Staden, R. (1980). A new computer method for the storage and
manipulation of DNA gel reading data. Nucleic acids research, 8(16):3673–94.

[Treangen and Salzberg 2012] Treangen, T. J. and Salzberg, S. L. (2012). Repet-
itive DNA and next-generation sequencing : computational challenges and solu-
tions. 13(JANUARY).

[van Dijk et al. 2014] van Dijk, E. L., Auger, H., Jaszczyszyn, Y., and Thermes, C.
(2014). Ten years of next-generation sequencing technology. Trends in Genetics,
30(9):418–426.

[Vezzi et al. 2012] Vezzi, F., Narzisi, G., and Mishra, B. (2012). Feature-by-
Feature – Evaluating De Novo Sequence Assembly. PLoS ONE, 7(2):e31002.

[Warren et al. 2007] Warren, R. L., Sutton, G. G., Jones, S. J. M., and Holt,
R. A. (2007). Assembling millions of short DNA sequences using SSAKE.
Bioinformatics, 23(4):500–501.

[Waterhouse et al. 2017] Waterhouse, R. M. et al. (2017). BUSCO Applications
from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol.
Evol. 35(3):543–548, 35(3):543–548.

[Yandell and Ence 2012] Yandell, M. and Ence, D. (2012). A beginner’s guide to
eukaryotic genome annotation. Nature Publishing Group, 13.

[Zerbino 2010] Zerbino, D. R. (2010). Using the Velvet de novo assembler for
short-read sequencing technologies. Current protocols in bioinformatics, Chapter
11:Unit 11.5.

[Zerbino and Birney 2008] Zerbino, D. R. and Birney, E. (2008). Velvet: Algo-
rithms for de novo short read assembly using de Bruijn graphs. Genome Re-
search, 18(5):821–829.

[Zimin et al. 2013] Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg,
S. L., and Yorke, J. A. (2013). The MaSuRCA genome assembler. Bioinformat-
ics, 29(21):2669–2677.

DBD
PUC-Rio - Certificação Digital Nº 1721457/CA



A
Glossary

Genome: according to the Genetics Home Reference (ghr.nlm.nih.gov),
Genome is "an organism’s complete set of DNA, including all of its genes.
Each genome contains all of the information needed to build and maintain
that organism. In humans, a copy of the entire genome—more than 3 billion
DNA base pairs—is contained in all cells that have a nucleus".

Gene: according to the Genetics Home Reference (ghr.nlm.nih.gov), a
"gene is the basic physical and functional unit of heredity. Genes are made
up of DNA. Some genes act as instructions to make molecules called proteins.
However, many genes do not code for proteins".

Read: is one sequence read/generated by the sequencing machine.
Contig: derives from the word contiguous, and means a set of over-

lapping DNA fragments (reads) that together produce a consensus region of
DNA(Staden 1980).

Scaffold: is a series of contigs separated by gaps of known length.
According to QUAST Manual, the selected features are described as

follows:
Complete/Partial BUSCO (%): is the percent of BUSCO genes

found in the assembly completely (or partially).
# predicted genes: is the number of genes in the assembly found by

GlimmerHMM (Delcher et al. 2007).
Largest alignment: is the length of the largest continuous alignment

in the assembly. A value can be smaller than a value of largest contig if the
largest contig is misassembled or partially unaligned.

# contigs: is the total number of contigs in the assembly.
Largest contig: is the length of the longest contig in the assembly.
Total length: is the total number of bases in the assembly.
Total aligned length: is the total number of aligned bases in the

assembly. A value is usually smaller than a value of total length because some
of the contigs may be unaligned or partially unaligned.

N50: is the length for which the collection of all contigs of that length
or longer covers at least half an assembly.

http://quast.bioinf.spbau.ru/manual.html#sec3.1
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NG50: is the length for which the collection of all contigs of that length
or longer covers at least half the reference genome. This metric is computed
only if the reference genome is provided.

N75 and NG75: are defined similarly to N50 but with 75
L50 (L75, LG50, LG75): is the number of contigs equal to or longer

than N50 (N75, NG50, NG75) In other words, L50, for example, is the minimal
number of contigs that cover half the assembly.

NA50, NGA50, NA75, NGA75, LA50, LA75, LGA50, LGA75
: ("A" stands for "aligned") are similar to the corresponding metrics without
"A", but in this case aligned blocks instead of contigs are considered. Aligned
blocks are obtained by breaking contigs at misassembly events and removing
all unaligned bases.

GC (%): is the total number of G and C nucleotides in the assembly,
divided by the total length of the assembly.

#misassemblies:is the number of positions in the contigs (breakpoints)
that satisfy one of the following criteria: the left flanking sequence aligns over 1
kbp away from the right flanking sequence on the reference; flanking sequences
overlap on more than 1 kbp; flanking sequences align to different strands or
different chromosomes;

# mismatches per 100 kbp: is the average number of mismatches per
100000 aligned bases. True SNPs and sequencing errors are not distinguished
and are counted equally.

Avg. coverage depth: is the average depth of coverage
Mapped (%): is the percentage of reads that mapped to the assembly
Reference Mapped (%): is the percentage of reads that mapped to

the reference genome
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