3 Adaptação da Malha Computacional Procedimento de Empobrecimento

3.1 Considerações Iniciais

As técnicas de malha adaptativa são mais freqüentemente utilizadas para reduzir as dimensões características dos volumes elementares em regiões de interesse do escoamento, melhorando assim a resolução dos fenômenos físicos simulados. Estas regiões podem ser aquelas onde gradientes significativos de uma ou várias propriedades ocorrem ou, então, onde o erro da solução numérica aumenta demasiadamente. Freqüentemente a posição das regiões de grandes gradientes, sejam ondas de choque, zonas de cisalhamento ou de reações químicas, é desconhecida *a priori*.

Quando o método adaptativo usa enriquecimento de malha como procedimento para refinar as regiões onde gradientes fortes ocorrem, podem ser necessários vários refinamentos sucessivos para a obtenção de uma boa resolução dos fenômenos. Isto leva a um incremento significativo do número de volumes da malha. Este processo pode vir a resultar em uma concentração de volumes onde já não há necessidade de volumes refinados. Deve-se, então, aumentar as escalas espaciais características da malha nesses locais, de modo a obter ganhos no tempo de processamento. Diversas técnicas foram desenvolvidas para este fim, as quais são denominadas técnicas de empobrecimento de malha – *mesh coarsening*. Neste trabalho serão abordadas apenas aquelas pertinentes a malhas não estruturadas.

A técnica de adaptação hierárquica de malha foi utilizada por Kallinderis & Vijayan [33], e por Speares & Berzins [34] em malhas tridimensionais não estruturadas. Este método de empobrecimento da malha é um processo inverso ao do refinamento, atuando assim somente em regiões previamente refinadas. A cada passo de empobrecimento apenas a estrutura local da malha prévia pode ser recuperada. Com este método não é possível obter escalas maiores que as da malha inicial. Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito\$35

Dompierre *et al.* [35] e Webster *et al.* [36] usaram o método do colapso de arestas para empobrecer malhas não estruturadas em configurações bidimensionais. Neste método os nós que formam uma aresta são fundidos em um só nó, o que leva a retirada de volumes ao redor da aresta removida, como mostrado na fig. 3.2.

Enquanto o primeiro método se adapta melhor a simulação de fenômenos transientes, posto que a estrutura inicial da malha pode ser recuperada em qualquer instante; o outro método, colapso de arestas, é mais indicado para a simulação de fenômenos estacionários. Além disto, esta técnica é a que melhor se integra à estrutura de dados do código númerico utilizado.

Um outro procedimento que também é adaptado a estrutura de dados do programa utilizado consiste em escolher um nó a ser removido. Em torno deste nó é utilizada uma técnica de troca de diagonais (*diagonal swap*), mostrada na fig. 3.1 [3], com o objetivo de que apenas três arestas concorram a este nó. Uma vez que isto é realizado, três volumes podem ser removidos juntamente com o nó e com as arestas em questão.

Uma outra possibilidade, que não parece ter sido explorada, segundo a literatura disponível, é a utilização de um procedimento de triangulação de Delaunay [37] para reconstrução de regiões da malha nas quais triângulos tenham sido removidos.

Ambos estes procedimentos acarretam dificuldades importantes na gestão da estrutura de dados da malha. Além disto, o procedimento que utiliza a triangulação de Delaunay dificulta a atribuição de propriedades da malha original à nova malha.

Figura 3.1: Esquema da técnica de empobrecimento de malha por troca de arestas (*diagonal swap*).

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito\$36\$

3.2 Procedimento de Empobrecimento

O procedimento desenvolvido neste trabalho baseia-se no método do colapso de arestas, ilustrado esquematicamente na fig. 3.2. Este método consiste em colapsar os nós (n1 e n2) que formam uma aresta em um só nó (n). Como resultado desta operação os dois volumes adjacentes à aresta são removidos.

Figura 3.2: Esquema da técnica de empobrecimento de malha por colapso de arestas.

3.2.1 Processo de Remoção de Nós

Partindo do resultado obtido para o escoamento em uma malha inicial, calcula-se o valor do gradiente normalizado das variáveis selecionadas para cada aresta do domínio computacional. A expressão utilizada em um volume é aquela dada pela eq. (2-39). O gradiente na aresta é calculado como a média entre os gradientes dos volumes adjacentes à aresta. As arestas que possuem valores de gradiente normalizado menores que um valor prédefinido são marcadas como candidatas para a remoção sendo, em seguida, ordenadas em uma lista segundo o valor crescente deste gradiente. A efetiva remoção de uma aresta selecionada só ocorre caso a qualidade da malha resultante não seja comprometida. A medida de qualidade da malha utilizada será definida na seção 3.2.2.

A qualidade dos volumes resultantes depende diretamente da posição do novo nó (n). Como mostrado na fig. 3.3 o procedimento examina as seguintes posições: Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito\$37

- 1. O centro geométrico do polígono formado por todos os volumes envolvidos (fig. 3.3-a).
- 2. O ponto médio da aresta a colapsar (fig. 3.3-b).
- 3. Cada um dos dois nós da aresta em questão (fig. 3.3-c, d).

Dentre estas posições, será escolhida aquela que levar à melhor qualidade dos volumes resultantes. Caso nenhuma dessas novas posições seja capaz de resultar em uma malha satisfatória, a aresta é retirada da lista e não é removida.

Figura 3.3: Representação das quatro diferentes possibilidades de colapso de arestas.

Uma vez marcada uma aresta para remoção, e com o propósito de não gerar um crescimento excessivo dos volumes, verifica-se que um mesmo volume não deve ter mais de uma aresta marcada para remoção. Da mesma forma, não se permite que o novo nó seja deslocado duas vezes no mesmo passe do procedimento de empobrecimento. Estas restrições levam a definir um domínio de influência da aresta a colapsar, como mostrado na fig. 3.4. Todas as arestas que compartilham um nó com uma aresta a ser removida são retiradas da lista.

Para volumes que possuem arestas definindo os contornos, cuidado especial é necessário. O presente procedimento não considera o colapso de arestas que definem os contornos, uma vez que não se dispõe de informação da forma dos mesmos. No tocante a arestas que possuem um só nó nos

Figura 3.4: Domínio de influência do colapso da aresta.

contornos o único resultado possível do seu colapso seria o colapso no nó da fronteira, uma vez que as faces que definem os contornos não podem ter suas escalas incrementadas. A implementação realizada não contempla o colapso de arestas que possuem pelo menos um nó no contorno por não resultar em acréscimo da escala de comprimento característico na fronteira.

Note-se que o prejuízo por não colapsar arestas nos contornos não é significativo, pois o número de volumes na fronteira é pequeno quando comparado com a quantidade de volumes que podem ser removidos do interior do domínio.

Uma vez terminado o processo de remoção de nós, a estrutura de dados da malha encontra-se modificada pela ausência de volumes e nós. No presente contexto de volumes finitos centrado na célula de cálculo, são necessárias reordenações e renumerações nas tabelas de posições (coordenadas dos nós), de conectividade (nós que definem um volume), de vizinhança (volumes vizinhos), e de volumes de fronteira. Simultaneamente à renumeração dos volumes no domínio computacional se faz a atribuição das propriedades para cada volume. Esta atribuição é feita mantendo-se as propriedades de cada volume antes do processo de empobrecimento.

O processo de ordenação faz basicamente uso de duas lista, a primeira é a lista de nós removidos, a qual tem dimensão 2φ e contém, em ordem crescente de numeração, os nós retirados (n1 e n2). A segunda é a lista de novos nós, de dimensão φ , que contém a numeração de cada nó criado (n) e dos volumes que possuem este nó dentre seus vértices . Note-se que o número de novos nós é a metade do número de nós removidos.

A reordenação da tabela de posições se faz por atribução direta da

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito 39

numeração dos primeiros φ nós removidos aos novos nós, com atualização simultânea das coordenadas. Para os φ nós restantes, partindo-se do último elemento da lista de nós removidos faz-se um processo de deslocamento da pilha.

Quanto à reordenação da tabela de conectividade, durante a atribução dos primeiros φ nós da primeira lista para os novos nós consulta-se a segunda lista, que aponta os volumes que concorrem a um dado nó. Com esta numeração dos volumes percorre-se a tabela de conectividade, efetuando-se assim a mudança da numeração do nó. Para os φ nós restantes, ao mesmo tempo que faz-se descer a pilha da tabela de posições, percorre-se a tabela de conectividade procurando os nós afetados a cada passo do processo de deslocamento da pilha. Caso os nós sejam afetados faz-se a mudança necessária na tabela de conectividade.

Com as tabelas de posições e de conectividade reordenadas, procede-se à reconstrução das tabelas de vizinhança e de volumes de fronteira.

3.2.2 Considerações de Qualidade dos Volumes

Neste trabalho a qualidade de um volume é definida como sendo uma medida que permite determinar o seu grau de alongamento. Para este fim, foi escolhida neste trabalho a relação *raio inscrito/ raio circunscrito* ao volume:

$$Q_{\triangle} = 2\frac{r}{R},$$

onde $r \in R$ são os raios dos círculos inscrito e circunscrito ao triângulo, respectivamente, como mostrado na fig. 3.5-a. O critério de qualidade adotado no procedimento de empobrecimento de malha está definido pela seguinte desigualdade:

$$C \le Q_{\triangle} \le 1.$$

No caso de um triângulo equilátero (fig. 3.5-b) $Q_{\triangle} = 1$. O valor de C, arbitrário, exprime o valor da qualidade mínima aceita. Valores de C entre 0,70 - 0,75 têm sido usados com bons resultados. Para se ter uma idéia da aparência dos volumes dentro da faixa de qualidade estipulada, triângulos isósceles com ângulos maiores que 26° ou menores que 102°, como os mostrados na fig. 3.5 - c, d, possuem valores de Q_{\triangle} maiores que 0,70.

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito40

Figura 3.5: Esquema representativo de volumes com diferentes valores do parâmetro Q_{\triangle} .

3.3 Testes e Resultados

O procedimento de adaptação foi testado em duas situações de escoamento supersônico de um gás inerte. A primeira diz respeito à estabilização de uma OCO sobre um diedro, e a segunda à interação entre uma OCO e um leque de expansão. Para estes dois casos, foram comparados os resultados obtidos em uma malha fixa com aqueles obtidos quando 3 passes de refinamento foram realizados, e também quando os 2 últimos passes de refinamento são precedidos por passes de empobrecimento. O valor do sensor eq. (2-39) utilizado nos passes de refinamento é de 0,01, enquanto que nos passes de empobrecimento utiliza-se 0,75.

A fig. 3.6 mostra os resultados da simulação numérica para um escoamento supersônico no qual $M_{\infty} = 2, 25$, $p_{\infty} = 1$ atm, $T_{\infty} = 300$ K, sobre um diedro plano de semi ângulo $\delta = 20^{\circ}$. Nesta figura são mostrados a malha e os contornos de pressão. Foi utilizada uma malha inicial com 751 nós e 1391 volumes, mostrada na fig. 3.6-a. O resultado usando somente três passes de refinamento leva a uma malha final com 3630 nós e 7126 volumes, como pode ser visto na fig. 3.6-b. O tempo de processamento foi de 6, 0 horas.

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito 41

A solução usando os processos de refinamento e empobrecimento é mostrada na fig. 3.6-c. Neste caso efetuou-se também três passes de refinamento, mas empobrecendo a malha duas vezes, antes do segundo e do terceiro refinamento, levando assim a uma malha final com 2843 nós e 5552 volumes. O tempo de processamento necessário foi de 4,8 horas. O uso conjunto dos processos de refinamento-empobrecimento levou a uma redução de 22% no número de volumes e 20% no tempo de processamento, quando comparado à utilização apenas do processo de refinamento.

A fig. 3.7 mostra os resultados de uma simulação numérica para um escoamento supersônico sobre um diedro que possui uma rampa de comprimento finito, $\delta = 40^{\circ}$, com valores do escoamento não perturbado $M_{\infty} = 8$, $p_{\infty} = 1$ atm, $T_{\infty} = 300$ K. São mostradas a malha e os contornos de pressão. A malha inicial, mostrada na fig. 3.7-a, possui 1105 nós e 2065 volumes. A solução usando apenas três passes do processo de refinamento é mostrada na fig. 3.7-b, a malha final possui 6500 nós e 12798 volumes. O tempo de processamento necessário foi de aproximadamente de 8,5 horas. O resultado usando os processos de refinamento-empobrecimento é mostrado na fig. 3.7-c. Aqui também refinou-se a malha três vezes, mas a empobrecendo previamente duas vezes, antes do segundo e do terceiro passe de refinamento, levando assim a uma malha final com 5262 nós e 10322 volumes. O tempo total de processamento necessário foi de 6,9 horas. Para este caso a redução de tempo foi de 18,8% e a redução no números de volumes foi de 19,3%.

A solução do escoamento, para ambos casos em que a adaptação da malha é realizada, practicamente não é afetada pelo uso do procedimento de empobrecimento. Isto pode ser observardo na fig. 3.8, na qual mostram-se as evoluções da densidade, temperatura e pressão ao longo da linha "0", a qual foi traçãda na fig. 3.7 para o caso do escoamento de ar sobre um diedro de rampa finita.

As figs. 3.9 e 3.10 mostram os resíduos da densidade correspondentes aos resultados das figs. 3.6-b, c e 3.7-b, c. Nestes gráficos observa-se o incremento abrupto nos resíduos cada vez que algum procedimento de adaptação é feito, seguido pelo decréscimo dos resíduos até atingir um valor quase constante. Em alguns casos, este patamar é bastante superior ao "zero" do método numérico, no entanto, a solução calculada não apresenta variações uma vez que este patamar é atingido. Esta diferença pode ser explicada pelo fato de não ter-se implementado um procedimento de "congelamento" do limitador [38].

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito 42

Figura 3.6: Malha e campo de pressão (atm) para o caso de um escoamento de ar sobre um diedro, $\delta = 20^{\circ}$, $M_{\infty} = 2, 25$, $T_{\infty} = 300$ K e $p_{\infty} = 1$ atm.

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito 43

Figura 3.7: Malha e campo de pressão (atm) para o caso de um escoamento de ar sobre um diedro de rampa finita, $\delta = 40^{\circ}$, $M_{\infty} = 8$, $T_{\infty} = 300$ K e $p_{\infty} = 1$ atm.

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito 44

Figura 3.8: Contornos de densidade (g/cm^3) , temperatura (K) e pressão (atm) ao longo da linha "0" (diedro de rampa finita (fig. 3.7), $\delta = 40^{\circ}$, $M_{\infty} = 8$, $T_{\infty} = 300$ K e $p_{\infty} = 1$ atm).

Estudo numérico da estabilização de ondas de detonação por rampas de comprimento finito 45

Figura 3.9: Resíduos máximos da densidade correspondentes ao caso da fig. 3.6.

Figura 3.10: Resíduos máximos da densidade correspondentes ao caso da fig. 3.7.