
```

Ana Carla Gomes Bibiano

Understanding Characteristics and Structural
Effects of Batch Refactorings in Practice

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática .

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2019

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Ana Carla Gomes Bibiano

Understanding Characteristics and Structural
Effects of Batch Refactorings in Practice

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática . Approved by the
undersigned Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Leonardo Gresta Paulino Murta
Universidade Federal Fluminense – UFF

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 26th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



All rights reserved.

Ana Carla Gomes Bibiano
Ana Carla Bibiano is a Master’s student in Informatics at
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Brazil. She holds a Bachelor’s degree in Computer Science
from Federal University of Alagoas (2017). In 2014, she ear-
ned the Academic Excellence award by the Brazilian National
Council for Scientific and Technological Development (CNPq)
for her scientific initiation’s work. She has worked as a soft-
ware developer for companies from Maceió (AL), Blumenau
(SC), and Rio de Janeiro (RJ). Ana Carla is currently a rese-
arch scholar in Software Engineering for the OPUS Research
Group at PUC-Rio. Her main research interests are (not limi-
ted to): software refactoring, maintenance, and evolution.

Bibliographic data
Gomes Bibiano, Ana Carla

Understanding Characteristics and Structural Effects of
Batch Refactorings in Practice / Ana Carla Gomes Bibiano;
advisor: Alessandro Fabricio Garcia. – 2019.

82 f: il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2019.

Inclui bibliografia

1. Informática – Teses.
2. Refatoração em Lote;. 3. Manutenção de Software;. 4.
Anomalia de Código-Fonte;. 5. Revisão de Literatura;. 6.
Estudo Quantitativo.. I. Garcia, Alessandro. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Acknowledgments
First and foremost, I would like to thank God Almighty for the gift of living,
growing up, and contributing the His plan the way I can. I also thank the
Virgin Mary for being my role model and intercessor along the way. I am full
of gratitude for my parents, Mrs. Lourinete Bibiano and Mr. Antonio Bibiano
(in memoriam), my grandparents, brothers, and sister. Thanks for the kind
support support. Especial thanks to Mr. José Pedro Luiz (in memoriam), my
dear grandfather, for inspiring me to be a scientist. Thanks to all my friends
for the support and patience along the years, especially Jedson Amaro, who
helped me to reach my goals and was present in both happy and hard times,
my dear friend Jakson Leao that brought me happiness and advice, and my
brother Ladovanio Gomes that was my support all the time.

Many people became special to my academic formation throughout this
journey. I am grateful for their support along the last two years of study along
my Master’s course. I would like to thank Prof. Dr. Alessandro Garcia, my
advisor, for believing in my potential as a scientist. Thanks for helping me
reach my dreams. I also thank my dear friend MSc. Eduardo Fernandes who
became my research colleague but also a friend for life. During the last two
years, we grew together spiritually and academically. Thanks for believing and
supporting me, even when I did not believe in myself. I am grateful for the
reviews and improvements suggested to this Master’s dissertation, including
the literature review protocol.

Thanks to Dr. Diego Cedrim e MSc. Isabella Ferreira for supporting me
in the early phases of my research. You provided me with key support to build
the code smells versus batch refactoring database. Thanks also to BS Daniel
Oliveira for the support in collecting and validating data used in this work.
I extend my thanks to all OPUS Research Group members and collaborators
from other groups, especially Profs. Drs. Baldoino Fonseca (UFAL) and Marcos
Kalinowski (PUC-Rio). I am thankful for your feedback aimed to shape
the directions of my research. Especial thanks to the (anonymous) software
development companies that provided me with data for analysis. Thanks
to Profs. Drs. Leonardo Murta (UFF), Marcos Kalinowski (PUC-Rio), and
Simone Barbosa (PUC-Rio) for kindly accepting to integrate this Master’s
dissertation defense committee.

Doing science in Brazil is challenging and, in the context, I would like
to thank all agencies that provided me with funding, especially the Brazilian
National Council for Scientific and Technological Development (CNPq), plus
the partner companies of the Software Engineering Laboratory (LES/PUC-
Rio) for the student scholarship.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Abstract

Gomes Bibiano, Ana Carla; Garcia, Alessandro (Advisor).Unders-
tanding Characteristics and Structural Effects of Batch
Refactorings in Practice. Rio de Janeiro, 2019. 82p. Dissertação
de mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Code refactoring means applying transformations on the code structure of a
software project. Refactoring usually intends to remove poor code structures
that harm the software maintenance. Each single transformation rarely
suffices to fully remove poor code structures, even the simplest ones. For
instance, shortening a long method often requires many method extractions.
Up to 60% of the refactorings in software projects are constituted of
a set of interrelated transformations, the so-called batches, rather than
single transformations applied in isolation. Although batches are frequent
in practice, the knowledge of batch characteristics is fragmented across
studies. What is the usual size of batches? How do transformations vary
within a batch? There is no summary that helps to address these questions.
More critically, there is little empirical evidence of the batch effect on
maintenance. Are batches more likely to introduce or remove poor code
structures, especially those spotted by code smells? The current answer
to questions like this is insufficient to support the batch application in
practice. This Master’s dissertation presents two complementary empirical
studies that address both aforementioned literature gaps. The dissertation
starts with a literature review of batch refactoring with 29 studies. We
identified seven batch characteristics such as the scope in which batches
are applied to code structures, plus seven types of batch effect on software
maintenance, including code smell removal. All batch characteristics and
types of effect were summarized in a conceptual map. The dissertation ends
with the quantitative analysis of 57 open and closed software projects. From
4,607 heuristic-computed batches, we found that most batches occur entirely
within one commit (93%) but affect more than just one method (90%).
Surprisingly, batches mostly end up introducing (51%) or not removing
(38%) code smells. Our results enabled us to reveal certain forms of batches,
not documented by previous studies, that are useful to fully remove certain
types of code smells.

Keywords
Batch Refactoring; Software Maintenance; Code Smell; Literature

Review; Quantitative Study.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Resumo

Gomes Bibiano, Ana Carla; Garcia, Alessandro. Entendendo Ca-
racterísticas e Efeitos Estruturais de Refatoração em Lotes
na Prática. Rio de Janeiro, 2019. 82p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Refatorar código-fonte consiste em aplicar transformações sobre a estrutura
de código-fonte de projetos de software. Refatoração é bastante usada para
remover estruturas pobres que dificultam a manutenção de sistemas de soft-
ware. Poucas transformações isoladas são capazes de remover por completo
estruturas pobres, mesmo as mais simples. Por exemplo, encurtar um mé-
todo longo usualmente requer a extração de vários métodos. Até 60% das
transformações são inter-relacionadas e aplicadas em lotes, durante a dita
refatoração em lote, ao invés de aplicadas isoladamente. Embora lotes serão
frequentes na prática, o conhecimento sobre as características que consti-
tuem lotes está fragmentado na literatura. Qual o tamanho usual de lotes?
As transformações internas a lotes costumam variar? Não há uma suma-
rização de conhecimento que responda tais questões. Ademais, são poucas
as evidências sobre o efeito de lotes sobre a manutenção de sistemas. Lotes
tendem a introduzir ou remover estruturas pobres, especialmente aquelas
indicadas por anomalias de código-fonte? A resposta a perguntas como essa
é insuficiente para apoiar a aplicação de lotes. Esta dissertação de mestrado
apresenta dois estudos experimentais complementares visando resolver as
limitações supracitadas. A dissertação começa com uma revisão da litera-
tura sobre refatoração em lote baseada em 29 estudos. Nós identificamos
sete características de lotes tais como o escopo de código-fonte afetado pela
aplicação de um lote, mais sete tipos de efeito de lotes sobre a manutenção
de sistemas, tais como a remoção de anomalias. As características e tipos
de efeito identificadas foram sumarizadas por um mapa conceitual. A dis-
sertação encerra-se com uma análise quantitativa de 57 projetos de sistemas
abertos e fechados. Ao computar 4.607 lotes com uma heurística, nós des-
cobrimos que a maioria dos lotes leva um único commit para ser aplicada
(93%) mas afeta mais do que um só método (90%). Surpreendentemente,
a maioria dos lotes introduz (51%) ou não remove (38%) anomalias. Reve-
lamos também lotes até então desconhecidos mas capazes de remover por
completo certas anomalias. Esta dissertação sugere trabalhos futuros com
base em conflitos identificados na literatura quanto a características e tipos
de efeito de lotes.
Palavras-chave

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Refatoração em Lote; Manutenção de Software; Anomalia de Código-
Fonte; Revisão de Literatura; Estudo Quantitativo.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Table of contents

1 Introduction 12
1.1 Problem Statement and Limitations of Related Work 13
1.2 A Literature Review of Batch Refactoring 16
1.3 A Large Study of Batch Characteristics and Structural Effect 17
1.4 Dissertation Outline 19

2 Background and Related Work 20
2.1 Code Refactoring and Transformation Types 21
2.2 Batch Refactoring at a Glance 22
2.3 Poor Code Structures and Code Smells 24
2.4 Final Remarks 25

3 A Literature Review of Batch Refactoring 27
3.1 Literature Review Protocol 28
3.2 Study Steps 29
3.3 Conceptual Map of Batch Refactoring 32
3.4 Batch Characteristics 34
3.5 Batch Effect on Software Projects 37
3.6 Conflicting Batch Characteristics and Types of Effect 39
3.7 Threats to Validity 42
3.8 Final Remarks 43

4 Batch Characteristics and Effect on Code Smells in Practice 44
4.1 Study Design 45
4.1.1 Goal and Research Questions 45
4.1.2 Study Steps and Definitions 49
4.2 Results and Discussions 52
4.2.1 Manifestations of Batch Characteristics (RQ1) 52
4.2.2 Nature of Code Transformations within Batches (RQ2) 54
4.2.3 Batches Affecting Smelly versus Smell-Free Code Elements (RQ3) 57
4.2.4 Structural Effect of Batches on Code Smells (RQ4) 58
4.3 Threats to Validity 63
4.4 Final Remarks 65

5 Conclusion 67
5.1 Summary of Study Contributions 68
5.2 Insights to Enhance Current Refactoring Support 70
5.3 Research Publications 72

Bibliography 73

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



List of figures

Figure 2.1 An Example of Batch Refactoring Extracted from Elas-
ticsearch 23

Figure 3.1 Steps of the Literature Review 29
Figure 3.2 Number of Papers by Publication Year 33
Figure 3.3 Conceptual Map of Batch Refactoring 34

Figure 4.1 Study Steps 49

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



List of tables

Table 2.1 Transformation Types Exploited by this Dissertation 22
Table 2.2 Code Smell Types Exploited by this Dissertation 25

Table 3.1 Research Questions of the Literature Review 29
Table 3.2 Papers Selected through the Pilot Search 30
Table 3.3 Data Types Extracted from Each Paper 31
Table 3.4 Papers Selected from the Literature Review 32

Table 4.1 Manifestations of each batch characteristic 47
Table 4.2 Nature of Transformation Types 48
Table 4.3 Manifestations by batch characteristic 53
Table 4.4 Frequency of Batches According to their Single or Hybrid

Nature 54
Table 4.5 Frequency by Batch Category 58
Table 4.6 Batch effect on code smells by batch characteristic 59
Table 4.7 Effect of batches by category 60
Table 4.8 Batch Effect on Code Smells according to the Nature of

Code Transformations 62

Table 5.1 List of Research Publications 72

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



It’s just a spark but it’s enough to keep me
going / And when it’s dark out and no one’s
around it keeps glowing

Hayley Williams & Taylor York, Paramore’s Last Hope.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



1
Introduction

Code refactoring consists of applying one or more transformations on the
code structure of a software project (25). Refactoring has been largely employed
by developers, in major companies such as Google (71) and Microsoft (35), to
remove poor code structures that represent threats to code maintenance (25).
Software projects are usually considered maintainable when their code struc-
tures are easy to understand and modify (72). The motivations behind code
refactoring vary significantly by developer (60). These motivations often range
from enabling the addition of new software features to supporting developers in
fixing software bugs (46, 60). However, regardless the developer motivation, it
is expected that the code transformations applied along with code refactoring
can enhance the code structures (35, 60).

Applying code refactoring in practical settings is quite complex (35).
There is a plenty of code transformation types that developers can use
according to their maintainability enhancement goals (25). Each type defines
how a developer should modify the code elements, such as attributes, methods,
and classes (25, 43). An example is the Extract Method transformation type,
which consists of creating a new method from code statements of an existing
method (67). Extract Method can be used to better separate the software
features across different methods (25). Another example is Move Method,
which consists of moving a method across classes (66). This transformation
type is usually applied to allocate a method to the most appropriate class (8).

The types of code transformations that can be applied by developers
are quite varied, and so are the possible types of refactoring effect on code
maintenance. Fowler’ refactoring book (25) and other studies (29, 45) present
mechanisms for applying code transformations towards removing poor code
structures that indicate maintenance problems (35, 54, 60). These poor code
structures are usually represented by the so-called code smells (25, 74). One of
the most frequently investigated code smell types (16, 48, 54, 66, 74) is Feature
Envy. Instances of this type are characterized by (parts of) a method that uses
too much resources provided by other classes rather than its host class (38).
Removing Feature Envy instances can be enabled by the application of Move
Method from the original to the “envied” class (66).

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 13

A single transformation rarely suffices to achieve the developer motiva-
tions behind refactoring (46). That is the case of code smell removal, for which
two or more code transformations have to be combined to fully remove a code
smell instance (8). For instance, previous studies recommend the combination
of Extract Method and Move Method transformations aimed to fully remove
a Feature Envy instance (8, 25). A recent study has shown that about 40-
60% of code transformations are applied in batches, i.e., sets of two or more
interrelated transformations, rather than in isolation (46). The phenomenon
of applying one or more batches on software projects is called batch refactor-
ing (7). However, although batches are frequently applied in practice, there
are major problems concerning the knowledge about batch refactroing that
deserves attention. We summarize some of these problems in the next section.

1.1
Problem Statement and Limitations of Related Work

The current knowledge of batch refactoring is fragmented –
As aforementioned, batches have been largely applied by developers in real
settings (7, 46). Unfortunately, the current knowledge of batch refactoring is
considerably fragmented across previous studies. As far as the characteristics
that constitute a batch are concerned, there are major limitations in the lit-
erature. Each researcher seems to have a particular view of what constitutes
batch refactoring. In fact, past studies assume one or another batch character-
istic, such as the variety of transformation types within a batch (43, 55, 64).
However, the authors do not systematically evaluate if these characteristics
are common in practice. In other words, previous studies usually mention or
assume that batches are often constituted of a certain characteristic without
any empirical validation. More critically, due to the lack of empirical evidence,
previous studies usually contradict one another with respect to the assump-
tions underlying batch characteristics. That is the case of studies that consider
batches as composed of transformations that only share a single transforma-
tion type (46), contrarily to others that assume batches as composed of varied
transformation types (35, 64).

Moreover, there is limited knowledge about the effect of batches on code
maintenance. Some previous studies assume that batches are beneficial to the
code maintenance by fully removing poor code structures that each transforma-
tion in isolation cannot remove (7, 37, 43). Conversely, certain studies discuss
that batches can sometimes be detrimental to the code structure quality (43),
thereby introducing poor code structures like code smells (7) and hindering
maintenance tasks. Most of these studies lack empirical evidence, which ul-

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 14

timately makes their assumptions debatable. Such lack of empirical evidence
can lead to conflicts among studies as it occurs for batch characteristics. Thus,
developers may keep reluctant in refactoring their projects, because they fear
to worsen rather than enhance the code structures (35).

Future research on batch refactoring cannot be properly performed
without a summary of the currently fragmented knowledge about batch
refactoring. This summary could be formalized by a unified conceptual map
of batch characteristics and types of effect on code maintenance. A recent
doctoral thesis (7) defended by a PhD student of the OPUS Research Group 1

in 2018 has started to elicit batch characteristics for investigation, but not
in a systematic way. Consequently, the previously proposed summary is
quite limited and may not comprise a considerable number of studies. We
hypothesize that a comprehensive conceptual map could guide future research
by pointing out: (i) which batch characteristics and types of batch effect have
been empirically investigated and could be used as a basis for future work;
and (ii) which characteristics and types of effect are poorly investigated or
have been reported with conflicts among studies – thus, they should be also
further investigated.

Research Problem 1: The currently fragmented knowledge of batch
refactoring leads to conflicts among studies and hinders future investi-
gations.

The most frequent manifestations of batch characteristics re-
main unknown – According to the literature, each batch characteristic can
manifest differently in practice. For instance, the scope of a batch can vary.
Some batches can affect just one method of a particular class, while others
can have effect on a wider scope of the code structure (7, 25, 43, 55), i.e.,
batches can affect multiple methods, a whole class or even multiple classes.
Some batches can also be composed of the same transformation type, e.g., Ex-
tract Method only (46), while others can combine multiple types like Extract
Method and Move Method (7). Unfortunately, none of the previous studies
have systematically investigated what are the most frequent manifestations
of batch characteristics, especially through empirical studies. The closest that
we could find was the study presented by the aforementioned PhD thesis (7).
However, there are characteristics and manifestations that still lack investiga-
tion.

A clear understanding of how batch characteristics usually manifest
in software projects can be beneficial to future research in many ways. By

1http://opus.les.inf.puc-rio.br/wordpress/

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 15

characterizing the usual structure and size of batches, researchers can propose
more accurate heuristics for identifying batches applied along the version
history of existing software projects. Additionally, researchers could draw new
strategies to guide the batch application by taking advantage of less frequent
manifestations to enhance code structures. For instance, if batches rarely
combine multiple code transformation types, we could provide developers with
batch recommendations that combine types according to literature findings
and assist them to improve the code structure of their programs.

Research Problem 2: The limited empirical knowledge about the most
frequent manifestations of batch characteristics makes hard to guide batch
application in practice.

Empirical evidence of the batch effect on code maintenance
is quite scarce – The current knowledge about the types of batch effect
on code maintenance is limited. In fact, the literature (2, 8, 9, 10) has
ultimately focused on assessing the effect of each single code transformation
applied along refactoring rather than batches. Some studies like (2, 21) have
assessed to what extent code transformations prevent the introduction of
software bugs. The previous study results are mixed and point out that,
although single code transformations are prone to reduce bug introduction (2),
bugs do not occur that far from the transformations in the commit history
of software projects (21). Other studies show that not always the single
code transformations are beneficial to code structures (8, 10). In fact, single
transformation tend to either introduce 3% or not fully remove 95% code
smells (8). Unfortunately, little is discussed about the batch effect on code
maintenance, especially in terms of code smell introduction, which has been
exploited ad nauseam by previous work on isolated transformations.

The aforementioned PhD thesis (7) presented the very first study aimed
to investigate the effect of batches on code smells. The thesis has analyzed both
introduction and removal of code smells in a total of 48 software projects.
However, the effect of batches analysis conducted by the previous work is
limited because they only evaluated the effect of batches, such as the number
of code smells before and after the batch application. This previous study did
not report which categories of batches, with their different characteristics, have
different effects on the code structure.

Research Problem 3: The limited knowledge about the batch effect on
code smells hinders the recommendation of batches for use in practice.

This Master’s dissertations addressed the three aforementioned research
problems through two complementary empirical studies. With a literature

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 16

review of batch refactoring, we aimed to build a conceptual map of batch
characteristics and types of effect, thereby addressing Research Problem 1.
Through a large quantitative study, our goal was understanding the most
frequent manifestations of batch characteristics (Research Problem 2) and the
effect of batches on code smells (Research Problem 3) in order to contrast
our study results with previous ones in the context of either single code
transformations or batches. We summarize each study as follows.

1.2
A Literature Review of Batch Refactoring

The first study that composes this Master’s dissertation was a literature
review of batch refactoring. This study is intended to address our first research
problem. Due to the knowledge fragmentation presented by the literature, we
decided to perform a literature review based on well-known guidelines (36).
Thus, we expected to properly characterize the state-of-the-art on the topic.
Our study goal was three-fold:

1. Eliciting the batch characteristics either mentioned or explored by pre-
vious studies. A summary of characteristics could give us the big picture
of what does constitute batches from a researcher perspective.

2. Eliciting the types of batch effect on code maintenance as assumed by
the literature. The summary of assumed types of batch effect could guide
future research with focus on empirical validation.

3. Identifying conflicts among previous studies with respect to batch char-
acteristics and types of effect. Such identification could reveal opportuni-
ties for future research aimed to solve conflicts and leverage the current
empirical knowledge of batch refactoring.

We have found a total of 29 previous studies published on international
conferences and journals. From the full-text read of these studies, we were
able to identify: seven batch characteristics that regard both structural or
other aspects of batches; seven types of batch effect on code maintenance,
which range from internal to external effects on software projects; and seven
conflicts among studies about what does characterize batches and which
effects to expect from the application of batches in practice. Based on the
knowledge acquired from our literature review, we followed the feature model
principles (32) to build a conceptual map of batch refactoring. Thus, the first
contribution of this dissertation can be stated as follows.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 17

Contribution 1: A conceptual map of batch refactoring that encompasses
batch characteristics and types of effect reported by the literature so far.
Our conceptual map can guide future research towards leveraging the
current knowledge on what does characterize a batch and how it affects
code maintenance.

1.3
A Large Study of Batch Characteristics and Structural Effect

The second study that composes this Master’s dissertation was a large-
scale empirical study of batch refactoring. This study has two parts aimed to
address Research Problems 2 and 3 respectively. Both parts share a common
study design, which relied on the collection and analysis of data from 57 open
and closed projects. These projects were either downloaded from public GitHub
repositories or provided by Brazilian companies. We run a batch detection
heuristic introduced by a previous work (7) in order to collect a set of 4,607
batches applied on these projects. We were able to address our last two research
problems as explained below.

We first focused on understanding how the batch characteristics elicited
from our literature review (Chapter 3) manifest more frequently in real soft-
ware projects. For this purpose, we cherry-picked four batch characteristics.
For example, we selected the number of code transformations within a batch.
We analyzed the frequency of the possible manifestations of each character-
istic. Each characteristic had two possible manifestations. For example, the
characteristic number of transformations had two manifestations in our study:
(i) batches with the minimum cardinality. i.e, two transformations only, and
(ii) batches with three or more transformations.

We derived categories of batches based on the manifestations of each
batch characteristic. In total, we had 16 possible categories for batches based on
the possible combinations of the two manifestations of the four characteristics.
As a result, we have found that most batches follow a general trend: 93%
occur in one commit, 72% are constituted of the same transformation type
and 22% range from four to ten code transformations. Surprisingly, 60% of
batches applied on code elements affected by code smells were constituted
by transformations types of either extraction or motion natures (e.g., Extract
Method and Move Method). The second contribution of this dissertation can
be stated as follows.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 18

Contribution 2: An empirical study on the frequent manifestations of
batch characteristics in real software projects. The fact that most batches
(72%) are constituted of the same transformation type suggests that
batches recommended by Fowler’s refactoring book (25) to fully remove
code smells have been underutilized in practice. Additionally, the high rate
of batches (60%) composed by extractions and movements reinforces that
developers require guidance to apply batches in practice.

Finally, we assessed the effect of batches on code maintenance with re-
spect to the introduction and removal of code smells. We have used automated
tools for identifying 19 different types of code smells, such as Large Class and
Long Method. We then analyze the structural effect of applying the candidate
batch refactorings on the programs. We have computed the total number of
code smells before and after the application of each batch. We only consider
the code smells affecting code elements within the scope of the transforma-
tions in batches. In other words, we do not consider the other code elements
not affected by the refactoring. This procedure is important to make sure we
increase the likelihood of discarding changes that have no relationship with
the transformations in batches. Thus, we have computed three types of batch
effect on the code structure of software projects:

1. Positive effect: the number of code smell instances was reduced after the
batch application when compared to the number of instances affecting
the refactored code before the batch application.

2. Neutral effect: the number of code mells instances affecting the refactored
code has not changed after the batch application.

3. Negative effect: the number of code smell instances increased after the
batch application when compared to the number of instances affecting
the refactored code before the batch application.

Our results suggest that most batch refactorings either introduce (51%)
or do not suffice to remove (38%) code smells. This observation is quite similar
to that obtained for single code transformations by a previous work (8). More
importantly, this result suggests that, even with the potential to enhance code
structures, batches are still poorly applied by developers. Thus, mechanisms
for recommending useful batches capable to fully remove code smells are
desired. Nevertheless, our results pointed out some combinations of code
transformations that can be recommended to users but were not yet exploited
by the literature. For instance, a batch composed by Pull Up Methods to

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 1. Introduction 19

remove a Message Chain code smell. Thus, our third contribution can be stated
as follows.

Contribution 3: An empirical study of the batch effect on code smells.
Similarly to single code transformations, batches are poorly exploited by
developers and tend to introduce (51%) rather than remove code smells.
Developers need guidance to apply batches in practice, and our study
provided some hints of recommendable batches.

1.4
Dissertation Outline

The remainder of this Master’s dissertation is structured as follows.
Chapter 2 provides background information aimed to support the un-

derstanding of this dissertation. We discuss basic concepts of code refactoring,
batch refactoring (with an illustrative example), and the relationship between
poor code structures and code smells.

Chapter 3 presents our literature review of batch refactoring. We
introduce our review-based conceptual model of batch characteristics and types
of effect on code maintenance. Thus, we track some opportunities for future
work. We also discuss how this conceptual model is used as basis to the next
chapter.

Chapter 4 presents the quantitative results of our empirical study aimed
to investigate (i) the most frequent manifestations of batch characteristics and
(ii) the structural effect of batches on code smell instances in real software
projects. We discuss how these results can support future work on the support
to batch application.

Chapter 5 concludes this Master’s dissertation by summarizing our
research contributions, the outputs of this dissertation by means of ongoing
research papers, and some opportunities for future work.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



2
Background and Related Work

Code refactoring has been extensively employed to enhance code struc-
tures of software projects (35, 59, 60). Through the application of one ore more
transformations to code structures, developers can make the resulting program
easier to read, understand, and modify (46). Code transformations applied
along code refactoring vary in terms of type, which is defined by the nature of
modification to be applied on the code structure (25). Examples of code trans-
formations are extractions and movements of class members – whose applica-
tion has been often made by developers in real software projects (8, 10, 46, 60).
Each code transformation affects one or more code elements, e.g., methods and
classes (25).

Previous studies – e.g., (8, 10, 46) – have investigated the basic character-
istics of batches and their effect on code maintenance. Some studies assessed
how these characteristics are likely to manifest on software projects. These
studies have found that Rename Method, Extract Method, and Move Method
are the most frequently applied transformation types (7, 46). Other studies sug-
gest that developers have varied motivations behind code refactoring. These
motivations range from purely improving code structures to enabling the ad-
dition of new features or even fixing software bugs (52, 60). In any case, by
definition (25), code transformations applied along with code refactoring affect
the program structure. It should ideally improve or at least not worsen code
structures.

Contrary to expectations, recent studies reveal the drawbacks of per-
forming code refactoring. One study discusses that most single transformations
can worsen internal code attributes, such as cohesion and coupling, in a non-
ignorable rate (10). Another study shows that certain code transformations
tend to either introduce or not fully remove poor code structures represented
by code smells (8). These observations can at least partially explain why de-
velopers often have to apply two or more interrelated code transformations,
thereby forming batches (46), so that such developers can fully achieve their
motivations behind refactoring. This particular phenomenon, as known as batch
refactoring (7), has only been observed in code smell removal (7) so far.

Although batch refactoring has been frequently applied in practice, there

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 2. Background and Related Work 21

is little knowledge about batches. This Master’s dissertation aims at addressing
two key literature gaps through complementary empirical studies. The first
study (Chapter 3) relies on a literature review for building a conceptual map
of batch characteristics and types of effect on code maintenance. The second
study (Chapter 4) consists of quantitative analyzes aimed to understand the
frequent manifestations of batch characteristics in real projects, besides the
actual batch effect on introducing and removing code smells.

Aimed to support the understanding of this Master’s dissertation, this
chapter presents key concepts used throughout the dissertation chapters. We
summarize the definition and principles of code refactoring (Section 2.1). Then,
we introduce batch refactoring (Section 2.2) based on recent research and a
real-world example. After that, we provide a general view on the relationship
between poor code structures and code smells (Section 2.3). Section 2.4
concludes this chapter and introduces the next one.

2.1
Code Refactoring and Transformation Types

Major companies like Google (71) and Microsoft (35) have employed code
refactoring for leveraging the internal quality of their software projects. As a
software development practice, code refactoring consists of applying two or
more transformations on the code structure of a given project (25). Each code
transformation affects the code elements in order to make code structures
easier to read and modify (25, 43, 46, 66). Thus, the application of code
transformations along with code refactoring has been seen as beneficial to
the code maintenance (25).

There is a myriad of code transformations catalogued by the literature in
order to guide developers to enhance code structures. Examples of frequently
applied transformation types are Extract Method and Move Method (46, 60).
Extract Method is defined by extraction of specific code statements from an
existing method (66). The extracted code statements are used to build a new
method (25). Move Method consists of moving an existing method from the
original class to another class (67). Both transformation types can be used to
separate software features across methods and classes (25).

Table 2.1 lists and defines the 13 code transformation types exploited
by this Master’s dissertation. We carefully selected transformation types from
existing catalogs, especially Fowler’s refactoring book (25), in order to support
our study. The four types listed in the table regard class-level transformations,
i.e., code transformations that ultimately affect a class or an interface –
considering object-oriented programming languages like Java. The following

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 2. Background and Related Work 22

six types listed in the table regard method-level transformations and, therefore,
they affect methods within a class. The last three types regard the attribute-
level transformations, i.e., they consist of modifying attributes of a given class.
We chose all those 13 transformations based on their practical popularity as
reported by previous work such as (46) and (60).

Table 2.1: Transformation Types Exploited by this Dissertation
Type Definition based on (60) and (66)
Extract Interface Create common interface for existing classes
Extract Superclass Extract superclass from code shared by existing classes
Move Class Move class from one package to another package
Rename Class Rename a class
Extract Method Create method based on statements of an existing method
Inline Method Incorporate the body of a method into an existing method
Move Method Move method from one class to another class
Push Down Method Move method from a parent class to one or more child classes
Pull Up Method Move method from a child class to its parent class
Rename Method Rename a method
Move Attribute Move attribute from one class to another class
Push Down Attribute Move attribute from a parent class to one or more child classes
Pull Up Attribute Move attribute from a child class to its parent class

There is a plenty of possible developer motivations behind code refactor-
ing. A recent study (60) has empirically concluded that developers are often
motivated by either enabling the addition of new program features or fixing
software bugs. However, regardless the developer motivation behind refactor-
ing, it is expected that code transformations improve the code structures un-
derlying a software project (8, 9, 10). By definition, each transformation aims
to make code elements easier to maintain (25). Therefore, guidance aimed
to support code refactoring practices is desired. In this context, automated
tools such as JDeodorant (23) and FaultBuster (64) have been proposed for
supporting developers in applying isolated transformations for enhancing code
structures, regardless the major developer motivation with refactoring. Unfor-
tunately, these tools are insufficient to support developers in certain recurring
refactoring practices (e.g. batch refactoring), as discussed in the next section.

2.2
Batch Refactoring at a Glance

Developers are more likely to apply sets of interrelated code transforma-
tions in conjunction rather than single transformations (35, 46). Up to 60% of
code transformations are applied in batches (46). This Master’s dissertation
relies on previous studies (7) for defining a batch as follows: a set of two or
more interrelated code transformations applied in conjunction along
with code refactoring. An example of a batch is the resulting composi-

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 2. Background and Related Work 23

tion of Extract Method and Move Method aimed to separate program features
across methods (8, 25). We represent batches based on the traditional set nota-
tion. For instance, the batch exemplified above is represented as b = {Extract
Method, Move Method}. The phenomenon of applying one or more batches on
software projects is called batch refactoring (19, 43, 64).

A real-world example of batch refactoring. Figure 2.1 illustrates
how developers have been applying batches to their software projects so far.
This example of batch refactoring was extracted from three commits performed
in the context of the Elasticsearch software project. The source code is publicly
available at GitHub for consultation1,2,3. Other well-documented examples of
real batches applied on open source projects can be found in recent studies
like (19) and (20). The example below is intended to illustrate the application
of a non-trivial batch in practice.

Figure 2.1: An Example of Batch Refactoring Extracted from Elasticsearch

Along the commit history of the project, especially in Commits i,
i + 1, and i + 2, one developer has applied various code transformations on
the SEach class. In Commit i + 1, the developer has applied four Extract
Method instances on two methods implemented by the class in Commit i:
analyze() and write(). We hypothesize that the suffixes used for naming
the new methods ("...Array" and "...Iterable"), resulting from Extract
Method transformations, suggest an intentional separation of software features
implemented by the original methods, i.e., analyze() and write(). Thus, the
Extract Method instances applied in Commit i+ 1 are somehow interrelated.

1Commit i: https://github.com/elastic/elasticsearch/commit/8db9a971
2Commit i+1: https://github.com/elastic/elasticsearch/commit/6dace47
3Commit i+2: https://github.com/elastic/elasticsearch/commit/b3804c4

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 2. Background and Related Work 24

Additionally, in Commit i + 2, the developer has removed one ob-
solete method, namely analyzeIterable() and applied Inline Method on
analyzeArray(), thereby removing this method as well. We hypothesize that
these two last code transformations interrelate with the previous ones because
the latter were applied on methods created in Commit i + 1. At the end, we
could state that the developer has applied the batch b = {Extract Method1,
Extract Method2, Extract Method3, Extract Method4, Inline Method}.

Applying batches in practice is quite complex. As illustrated by
Figure 2.1, a developer can apply two or more interrelated transformations
in conjunction aimed at achieving his motivation. In this case, we assume
that the developer motivation behind code refactoring was separating the
software features across methods of the SEach class. However, applying these
sets of transformations can be challenging for developers due to various reasons.
Indeed, applying each transformation requires a careful analysis of the code
structure and how the refactored code elements interrelate to realize a software
feature (8, 20, 25). Developers may also reason about how the applied batch
will probably affect the code structure (8).

Developers are often reluctant in applying sets of interrelated code
transformations (35). Especially, it has been observed that developers may
give up if major refactoring is required in a certain code structure. Part of
this reluctance may be reinforced if they do not know the types of effect of
(certain types of) batches on code maintenance. Indeed, the aforementioned
study reports the real-world developers avoid refactoring because they fear to
worsen rather than improve code structures while applying batches (7). Aimed
to leverage the current refactoring support and make these developers less
reluctant in refactoring their projects, we assume that performing empirical
studies about batches is mandatory.

2.3
Poor Code Structures and Code Smells

Maintaining a software project requires from developers to properly read
and understand the existing code structures of that project (25, 35). The
easier for developers to read and understand a code structure, the higher is to
maintain the software project (25). Unfortunately, along the life cycle of any
software project, developers will eventually introduce, intentionally or not,
poor code structures that threaten the code maintainability (8). Poor code
structures are often represented by the so-called code smells (25). Shortly,
a code smell is an anomalous code structure that developers should remove
whenever possible, otherwise it can make hard to perform maintenance tasks

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 2. Background and Related Work 25

on the affected code structures (8, 10, 35).
The literature provides developers with several definitions of code smells

that vary by type (16, 25). Each code smell type characterizes a particular
poor code structure that affects specific program elements, such as methods
and classes. Table 2.2 lists the 19 code smell types exploited throughout
this Master’s dissertation. We carefully selected types that affect the code
structures at two basic levels: classes, whose types are presented in Lines 2
to 11 of the table, and methods, whose types are presented in Lines 12 to 20.

Table 2.2: Code Smell Types Exploited by this Dissertation
Code Smell Type Definition based on (25) and (38)
Brain Class Class overloaded with features
Class Data should be Private Class that overexposes attributes
Complex Class Too complex classes with sophisticated logic
Data Class Too simple class (only data persistence logic)
God Class Too many features centralized within a single class
Large Class Too long class
Lazy Class Class whose features do not pay off the class existence)
Refused Bequest Child class refuses to use feature from parent class
Spaghetti Code Class with complex control structures
Speculative Generality Useless abstract class
Brain Method Method overloaded with features
Dispersed Coupling Method that calls too many methods
Divergent Change Method that often changes when other change
Feature Envy Method envying features of classes other than its host
Intensive Coupling Method that depends too much from a few others
Long Method Too long and complex method
Long Parameter List Too many method parameters
Message Chain Too long chain of method calls across the classes
Shotgun Surgery Method whose changes affect many methods

Various studies such as (53) and (73) provide evidence that developers
actually perceive code smells as threats to code maintenance. Real-world
developers surveyed by these studies pointed out that code smell types like
Large Class and Long Method make hard to read, understand, and modify
certain code structures. As a consequence, code smells may cause delays in
the delivery of new software features, besides hindering bug fixes and other
maintenance tasks (40, 72). The bottom line is that developers should identify
and remove code smell instances from their projects whenever possible (17, 48).

2.4
Final Remarks

This chapter summarized key concepts to the understanding of this
Master’s dissertation. First, we overviewed code refactoring based on the
variety of transformation types and developer motivations reported by the
literature. Second, we discussed why batch refactoring is a recurring practice,

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 2. Background and Related Work 26

and we illustrate the complexity of applying batches in real settings based on a
real-world example. Finally, we discuss how code smells can indicate poor code
structures that are actually harmful to code maintenance. We have focused on
types of code transformations and code smells that are further exploited along
the empirical studies presented in Chapters 3 and 4.

The next chapter introduces the first empirical study that composes this
Master’s dissertation. Such study aimed to summarize the current knowledge
of characteristics and types of effect of batches on code maintenance. Our
major goal was solving the current knowledge fragmentation about batches in
order to guide future research on the topic.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



3
A Literature Review of Batch Refactoring

Code refactoring is a key practice for companies concerned about en-
hancing the maintainability of their software projects (35, 46, 60). Develop-
ment teams and developers worldwide have taken advantage of refactoring for
improving certain code structures that became hard to read and modify along
the life cycle of their projects (35). Refactoring is performed through the ap-
plication of program transformations (25). These transformations can at least
partially make code structures easier to read and modify (8, 10, 25). However,
applying code refactoring is quite complex in practice. Developers often apply
two or more interrelated code transformations in conjunction rather than a
single transformation in isolation (46). About 40-60% of transformations are
applied in batches, and this phenomenon has been called batch refactoring (7).

Although batch refactoring is quite common in practice, little is known
about batches. Each researcher seems to have a particular view of what
constitutes batch refactoring. Moreover, most of these views lack empirical
ground. Due to knowledge fragmentation, previous studies are often conflicting
about what does characterize a batch. For instance, certain studies (46, 64)
consider that all code transformations within a batch have the same type.
Conversely, other studies (35, 43) assume that batches may be composed by
two or more code transformations with different but complementary types.
In summary, a key question remains without being properly answered: What
does actually constitute a batch? Unless solid information is obtained about
the batch characteristics, researchers will find it hard to both identify and
recommend batches in the context of real software projects.

More critically, the current knowledge on batch refactoring helps little in
understanding the batch effect on the code maintenance. Again, the knowledge
fragmentation across studies generates lots of conflicting viewpoints about
what to expect from the batch application in practice. One the one hand,
previous publications such as (25, 35) assume that the application of batches
often removes poor code structures, which would otherwise threaten code
maintenance. On the other hand, certain studies like (7, 43) argue that certain
batches have the opposite effect, thereby harming the code maintenance. In this
particular case, one question remains: What is the structural effect of batches

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 28

on real software projects? The limited scope and conclusions of past research
makes hard to guide developers along their daily refactoring practices.

In this chapter, we present and discuss the results of a literature review
of batch refactoring. Our study goal is threefold. First, we want to understand
what are characteristics associated with batches in the literature so far. From
a researcher perspective, which are the characteristics that constitute a batch?
is the major question that we aim to address. Second, we intend to understand
the types of batch effects either mentioned or investigated by previous studies.
Third, we aim to identify recurring conflicts among previous studies on either
batch characteristics or their expected types of effect. We introduce the very
first conceptual map of batch refactoring aimed to summarize the currently
fragmented knowledge about the topic and guide future research.

The remainder of this chapter is organized as follows. Section 3.1 de-
scribes the literature review protocol. Section 3.2 introduces our study steps.
Section 3.3 provides a general view of the papers selected for analysis. Sec-
tion 3.4 discusses the batch characteristics extracted from the literature. Sec-
tion 3.5 discusses the types of batch effect assumed by previous work. Sec-
tion 3.6 presents the conflicts among previous studies on batch characteristics
and batch effect. Section 3.7 discusses threats to validity. Section 3.8 concludes
this chapter and introduces the next one.

3.1
Literature Review Protocol

We carefully designed and performed our literature review protocol based
on previous work (31, 36, 70). We describe below the study protocol.

Study Goal. Based on the Goal Question Metric framework (1), we
defined our study goal as follows: analyze the literature of batch refactoring; for
the purpose of (i) summarizing the characteristics of batch refactoring either
mentioned or exploited by previous studies, (ii) eliciting the possible types
of batch effect on software projects according to the assumptions of previous
studies’ authors, and (iii) identifying eventual conflicts among previous studies
about the batch characteristics and types of effect; from the viewpoint of
software engineering researchers; in the context of papers published from 1999,
i.e., Fowler’s refactoring book publication year (25), to the first half of 2018.

Research Questions. Table 3.1 presents the research questions (RQs)
that we designed for guiding our study. RQ1 aims at summarizing the frag-
mented knowledge about the characteristics that constitute a batch refactor-
ing from the viewpoint of previous studies. RQ2 aims at eliciting the types
of batch effect according to the literature reports. RQ3 aims at identifying

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 29

eventual conflicts among previous studies with respect to batch characteristics
and types of effect on code maintenance. With our three RQs, we expect to
support researchers in guiding their future research. For instance, researchers
could prioritize addressing the conflicting knowledge in their future empirical
studies.

Table 3.1: Research Questions of the Literature Review
ID Description
RQ1 Which batch characteristics have been reported by previous work?
RQ2 Which batch effect on software projects are assumed by previous work?
RQ3 Do previous studies assume conflicting batch characteristics and effects?

Paper Search Settings. We chose three web search engines to collect
papers: ACM Digital Library1, Google Scholar2, and IEEE Xplore3. ACM and
IEEE provide a wide variety of publications in computer science, including
software engineering. Google Scholar is a general purpose engine that can
complement the search made through the other engines. By using each engine,
we selected papers that were: (i) published from 1999 to the first half of 2018;
(ii) published in workshops, symposia, conferences, or journals ranked as at
least B2 based on the Brazilian Qualis classification system4; (iii) have been
written in English; and (iv) are available online to download.

3.2
Study Steps

Figure 3.1 presents the ten study steps designed to guide our literature
review. We describe each step as follows.

Figure 3.1: Steps of the Literature Review

Step 1: Run a pilot search. We have performed a pilot search in early 2017
as a preparation to the literature review. We retrieved the top-20 most relevant

1https://dl.acm.org/
2https://scholar.google.com
3https://ieeexplore.ieee.org
4https://sucupira.capes.gov.br/sucupira/ (in Portuguese)

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 30

papers from ACM Digital Library and Google Scholar only in order to assess
the most common key-terms used by these studies. We run a three-keyword
based search string based on our personal knowledge of batch refactoring:
(sequence of refactoring* OR batch refactoring* OR continuous refactoring*).
The “*” character indicates the inclusion of any variant words whose prefix
precedes this character. We have complemented our pilot search with a
snowballing procedure based on the references of each retrieved paper (31).
As a result, we selected eight papers listed in Table 3.2. These papers were
considered in our final set of papers for analysis because, after reading them, we
noticed the papers were explicitly addressing batch refactoring. Most of them
were published in journals or conferences with high reputation, including IEEE
Transactions on Software Engineering (TSE) and International Conference on
Automated Software Engineering (ASE).

Table 3.2: Papers Selected through the Pilot Search
Paper Title and Reference
Searching for opportunities of refactoring sequences: Reducing the search space (55)
Algebraic and cost-based optimization of refactoring sequences (37)
Search-based refactoring based on unfolding of graph transformation systems (57)
How we refactor, and how we know it (46)
Identifying refactoring sequences for improving software maintainability (43)
An empirical study of refactoring: Challenges and benefits at Microsoft (35)
FaultBuster: An automatic code smell refactoring toolset (64)
Designing and developing automated refactoring transformations (65)

Step 2: Define a final search string. Based on the pilot search, we decided
to discard continuous refactoring from our search string, because many of the
papers have used this term with purposes that extrapolates the scope of batch
refactoring. Thus, we have refined our literature review and the final search
string is: (sequence of refactoring* OR batch refactoring*). We justify each
term as follows. Sequence of refactoring is commonly adopted by previous
work such as (43, 55, 57, 64) to refer to interrelated code transformations
applied in conjunction. Additionally, batch refactoring has been more recently
adopted by the literature (7, 46, 65).

Steps 3 to 7: Select papers for analysis. By running our search string on the
three web search engines (Step 3), we have identified a total of 37 papers, from
which: 11 papers were retrieved from ACM Digital Library, 20 from Google
Scholar, and six papers from IEEE Xplore. When uniting all papers (Step 4),
we identified two duplicates that, after removal, resulted in a total of 35 papers
to be analyzed. When applying our selection criteria on the papers (Step 5),
31 papers remained for analysis. After reading the metadata for each paper

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 31

(Step 6), a half of the paper was discarded. Thus, only 15 papers remained
to be fully read. Finally, after the full-text read (Step 7) of all 15 papers plus
the eight paper retrieved from the pilot search, none of them was discarded.
At this point, our data set consisted of 23 selected papers.

Step 8: Snowballing. We have followed an existing guideline (31) to perform
additional paper research through snowballing procedures. We applied a single
round of backward snowballing procedures to retrieve the previous works that
already mentioned batch refactoring. Our goal to apply backward snowballing
was to understand: (i) how was the past knowledge characteristics and effect of
batches through the previous works; (ii) how this knowledge can contributed
for future citations of these characteristics and effect of batches. Basically, we
analyzed the list of papers cited by each study in order to complement our
data set. In the end, we have obtained five additional papers. Thus, our data
set was composed by a total of 28 research papers for analysis.

Step 9: Extract data. We relied on a previous work (36) to define which
data could help us in addressing our RQs. Table 3.3 lists the data types
extracted for each selected paper. All data was extracted from each paper,
plus a recent doctoral thesis (7) about batch refactoring defended later in
2018. We decided to add this thesis due to the extensive investigation of both
batch characteristics and the study targeting the effect of batches on code
smells. We will refer to this thesis as a regular paper for convenience.

Table 3.3: Data Types Extracted from Each Paper
Data type Description
Paper Title Full paper title
Authors Full authors list
Year Year of publication
Type Paper type, e.g., conference and journal
Venue Full name of the publication venue
Abstract Full abstract as constant in the paper
Keywords Paper keywords
Batch-related Term Synonyms of batch refactoring used by the paper
Batch Characteristics Any characteristics that constitute a batch refactoring

Step 10: Build conceptual map. We have applied some basic Grounded
Theory procedures (13, 63) on the extracted data. Basically, we performed both
coding and classification on excerpts extracted by paper in order to identify
the batch characteristics and types of effect. We followed a four-step protocol:
(i) we tabulated sentences that mention batch characteristics or effect; (ii) two

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 32

researchers validated the tabulated sentences in order to assure they mention
characteristics and types of effect; (iii) two researchers together grouped the
sentences by semantics, thereby extracting final characteristics and types of
effect; finally, (iv) we built a conceptual map of batch characteristics and types
of effect based on the current knowledge.

3.3
Conceptual Map of Batch Refactoring

Table 3.4 presents the full list of 29 papers (with the PhD thesis in-
cluded and assigned with “*”) selected for analysis. By the paper titles, we
observed that most of the previous studies have either proposed or evaluated
optimization strategies for composing batch refactoring in practice. In fact, un-
derstanding how to compose batches that achieve varied goals while enhancing
code structures is important to support developers in their daily work (20).

Table 3.4: Papers Selected from the Literature Review
Paper Title and Reference
A methodology for the automated introduction of design patterns (11)
A new software maintenance scenario based on refactoring techniques (69)
Algebraic and cost-based optimization of refactoring sequences (37)
An empirical study of refactoring: Challenges and benefits at Microsoft (35)
Composite refactorings for Java projects (12)
Designing and developing automated refactoring transformations (65)
DRACO: Discovering refactorings that improve architecture using fine-grained co-change dependen-
cies (14)
Evolving transformation sequences using genetic algorithms (15)
Experimental assessment of software metrics using automated refactoring (47)
FaultBuster: An automatic code smell refactoring toolset (64)
How we refactor, and how we know it (46)
Identifying refactoring sequences for improving software maintainability (43)
Improving refactoring speed by 10x (34)
Interactive and guided architectural refactoring with search-based recommendation (39)
Pareto optimal search based refactoring at the design level (30)
Recommendation system for software refactoring using innovization and interactive dynamic optimiza-
tion (44)
Refactoring with synthesis (58)
Scripting parametric refactorings in Java to retrofit design patterns (33)
Search-based detection of high-level model changes (5)
Search-based refactoring based on unfolding of graph transformation systems (57)
Search-based refactoring detection (41)
Search-based refactoring using recorded code changes (50)
Search-based refactoring: Towards semantics preservation (49)
Searching for opportunities of refactoring sequences: Reducing the search space (55)
Template-based reconstruction of complex refactorings (56)
The use of development history in software refactoring using a multi-objective evolutionary algorithm (51)
TrueRefactor: An automated refactoring tool to improve legacy system and application comprehensibil-
ity (28)
*Understanding and Improving Batch Refactoring in Software Systems (7)
WitchDoctor: IDE support for real-time auto-completion of refactorings (24)

Figure 3.2 presents the paper publication rate across the years, based
on the 29 selected papers. We have observed a slight increase in frequency of
papers published from 1999 (Fowler’s refactoring book publication year) to
2018 – according to the tendency line that crosses the figure). There seems to

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 33

be a growing interest on batch refactoring, which demonstrates the relevance
of this topic at least in academic settings.

Figure 3.2: Number of Papers by Publication Year

In total, we were able to find 29 studies published in different venues:
20 (70%) out of 29 studies were published in conferences such as International
Conference on Software Engineering (ICSE); 3 (10%) out of 29 studies were
published in workshops such as the International Workshop on Model-driven
Product Line Engineering (MDPLE); 2 (7%) out of 29 studies were published
in symposium such as International Symposium on Foundations of Software
Engineering (FSE); 2 (7%) out of 29 studies were published in journals such
as IEEE Transactions on Software Engineering (TSE); and one (3%) out
of 29 studies was published in a Joint Meeting on Foundations of Software
Engineering (FSE). Note that one (3%) of out the 29 referred studies is actually
a Doctoral thesis (7) and it was not published in conference or journal.

The Conceptual Map. Figure 3.3 introduces our conceptual model of
batch refactoring based on the literature. The blue-colored boxes represent
those batch characteristics related to the batch application, which is about the
mechanisms to apply a batch, related to: Who applies it? When was applied it?
How many commits was necessary to apply this batch? The gray-colored boxes
correspond to characteristics that say something about the batch structure, i.e.,
they regard the internal structure of a batch. The green-colored boxes are the
positive types of batch effect, i.e., those types whose effect is beneficial to the
code maintenance. Finally, the red-colored boxes are the negative types of batch
effect, that is, those types whose effect is detrimental to code maintenance. We
scrutinize the conceptual map content in Sections 3.4 and 3.5.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 34

Figure 3.3: Conceptual Map of Batch Refactoring

3.4
Batch Characteristics

The Application group is composed of three batch characteristics: developer,
time and commit. These characteristics regard the way who and how to
apply batches. Thus, these characteristics say something about the developer
practices along the batch application. These characteristics had two or more
manifestations described by previous studies. We discuss each characteristic
and its respective manifestations as follows.

Developer regards the number of software developers that contribute with
the batch application on a software project. Various studies (46, 50, 58) suggest
that each batch is applied by only one developer. This view is quite reasonable
when considering that motivations behind refactoring are often associated with
a problem faced by a particular developer (7). However, a few studies like (35)
assume that two or more developers can work together in order to fully apply a
certain batch. This approach works as a response to cases in which developers

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 35

join forces to plan and perform a complex batch.
The way how this characteristic manifests in practice strongly depends on

some organization aspects. On the one hand, large software projects have entire
development teams allocated to refactor code structures, which increases the
chances of batches being composed and applied by two or more developers
in conjunction. Conversely, small projects may have only a few (or just
one) developers allocated to perform code refactoring. By investigating the
developer characteristic, researchers can better understand how the allocation
of developers to refactor the code may eventually affect the quality of the
resulting code.

Time regards the time spent by developers for applying a batch in a
software project. Only a few studies refer to this batch characteristic, but still,
the authors have varied viewpoints. One particular study assumed that each
code transformation into a batch should be applied in up to 60 seconds after
the previous transformation (46), then the time spent for applying a batch can
be minutes. Other studies (35, 50, 64, 65) suggest do not constrain the time so
that consecutive code transformations can be applied at any time.

We have found different manifestations of the time characteristic across
the studies. They suggest the time computation by measuring working min-
utes (46), days (64), or weeks (35). In this case, the manifestations of this
batch characteristic also depend on specific team or organization practices. It
may be the case of developers having too little time to complete their batches
due to high demands for other maintenance tasks than code refactoring. Thus,
the time span for the batch application can be shorter than in teams or or-
ganizations in which developers can spend entire weeks with code refactoring.
In summary, we observed a clear opportunity for future research in order to:
(i) identify ways to compute time in real settings, and (ii) understand the
relationship between the resulting quality of a batch and the time spent on it.

Commit regards the how many commits were performed by developers
to apply a batch. A study assumes that a batch can be completed in one
commit (7). However, other studies have mentioned that a batch may take
many commits to be completely applied (50, 35). Note that how the commit
characteristic manifests in practice also strongly depends on organizational
practices.

The Structure Group is composed of four batch characteristics: scope,
variety, cardinality, and order. These characteristics regard internal aspects
of the batch composition. In order words, these characteristics reflect the
internal batch structure. All four identified characteristics had at least two

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 36

manifestations mentioned by previous studies. We provide below a detailed
discussion about each characteristic and its respective manifestations.

Scope regards the scope of code elements affected by the code trans-
formations that constitute a batch. Certain studies assume that a batch is
performed on a single method (43, 55), class (14, 37, 55). Conversely, other
studies such as (35, 50) consider that each batch may affect multiple code el-
ements together. Certain limitations may emerge depending on the scope of
code elements considered for computing a batch. For instance, by assuming
that batches are constituted by transformations exclusively applied on meth-
ods, the code transformations at attribute and class levels, such as Pull Up
Attribute and Extract Class, are overlooked. Thus, the understanding of how
batches affect the code structure of a software project is limited to the method
scope only.

Variety regards the variety of code transformation types applied along
a batch. Some studies (44, 46, 51) consider the number of occurrences by
transformation type as a means to differentiate batches. Other studies discuss
the so-called refactoring patterns, i.e., the varied combinations of different
transformation types in order to compose a batch (43, 55, 57, 58). The variety
of transformation types within a batch depends on the assumed scope of
batches. In fact, if batches strictly affect methods, all transformations at
attribute and class levels could be ignored in the batch composition. We
highlight that the approach used by a specific study (46) considers only
transformations of the same type. In this case, certain batches suggested by
previous work (43, 44, 57, 58), which combine transformations at different
levels to remove code smells, would be ignored. Future work could empirically
validate if the variation of types has different effects on code maintenance.

Cardinality regards the extension of a batch applied to the code structure.
Previous studies have different approaches for measuring the batch cardinality.
Many studies (14, 24, 34, 44, 46, 47, 55, 57, 64) rely on the number of
code transformations that constitute a batch. Other studies like (43) count
how many code elements are modified by the code transformations that
constitute the batch. These studies do not present empirical evidence about
what the common cardinality of batches in practice. But, one of the selected
studies present that most batches have a cardinality with a median of two
transformations only (7) on the context of 48 software projects. Besides, only
one study has speculated an upper limit to the batch cardinality (58). However,
we understand that the lack of consensus about which code elements are
usually affected by batches (see Scope) makes hard to compute the cardinality
of batches.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 37

Order regards on how the code transformations are organized in a batch.
Previous studies such as (28, 37, 43, 57) considered batches as two or more
code transformations whose their order does matter to distinguish one batch
from another. Certain studies state that transformations within a batch are
ordered. These studies refer to batches as chains (12), ordered lists (43, 49, 50),
and ordered sets of code transformations (5, 12, 58, 69). The transformation
order can be influenced by the developer motivation behind the application
of a batch. For instance, applying an Extract Method before a Move Method
can be used to remove a Feature Envy smell (25). The application of these
transformations in the reverse order would not remove such a smell. Other
study like (35, 7) considers that the transformation order within a batch does
not matter. These studies that do not consider the order to batch computation
suggest that this approach facilitate the computation of applying batches from
software projects that use platforms of version control such as Github. In fact,
project version data provided by platforms like GitHub are commit-focused
and provide little or no data about what happens within a commit. Thus, it
is quite hard to precisely characterize the order of transformations within a
commit.

3.5
Batch Effect on Software Projects

Three positive types of batch effect were either mentioned or exploited by
previous studies: software design improvement, internal quality improvement,
and external quality improvement. These types of effect reflect an enhancement
of design, internal and external quality aspects of software projects. With
design level, we mean that batches can have an effect on the architecture
or detailed design. With internal aspects, we mean any characteristic of the
internal code structure of a software project, such as coupling, cohesion and
code complexity. With external aspects, we mean those characteristics of a
project that are manifested externally to the code structure, usually by means
of requirements that system users can interact with. We list and define each
positive types of batch effect as follows.

– Software Design Improvement regards the effect that batches have on the
architecture or detailed design level. Various studies assume that, by ap-
plying batches on the software projects, developers can achieve a better
software architecture. Such enhancement can manifest in terms of design
metrics (39) or architectural quality indicators (14, 34, 39, 50, 57) such
as low coupling or high cohesion, and architecture decomposition (14, 39)

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 38

(specifically, a division of architecture’s modules). These design improve-
ment assumptions are quite reasonable if we consider that removing poor
code structures from a project, through a set of transformations, can also
help to eliminate high-level design problems (62).

– Internal Quality Improvement regards the possible effect of batches on
the internal code structures. Some studies assume that applying batches
can positively affect the code elements that constitute a project, thereby
improving software metrics such as code size, code coupling that can
be indicators of a maintainability improvement (10). This assumption
is quite expected due to the traditional expectation that single code
transformations can affect the indicators of code maintainability as
well. Such improvement can be assessed by means of code metrics (14,
35, 44, 49, 50) or special indicators of poor code structures like code
smells (28, 37, 43, 44, 51). Certain studies assume batches can remove
code smells (28, 37, 43, 44, 51) even without empirical evidence. In fact,
existing studies have observed that single transformations (8) can remove
certain types of code smells. However, other studies (7, 46) have also
reported that most of the transformations are applied in batches. Thus,
the effect that was observed for single transformations can be different
from the effect observed from the batch perspective.

– External Quality Improvement regards the effect that batches may have
on external attributes of software projects, such as evolvability. We have
found a considerable number of studies that assume that batches can
leverage the project evolvability (35, 43, 51), and correctness (49, 50).
Transformations that constitute a batch directly affect the code structure
and, therefore, it is expected an internal quality improvement of software
projects. However, studies show that each code transformation can
also affect external quality attributes such as correctness through code
transformations that aim to prevent code elements from becoming buggy
in the future (2). Thus, it is reasonable that some authors assume an
external effect of batches.

Four negative types of batch effect were identified in the literature: design
pattern removal, internal quality degradation, poor code structure introduction,
and maintenance cost increase. These types reflect different aspects of decay in
code maintainability. We introduce and discuss each characteristic as discussed
by previous studies as follows.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 39

– Design Pattern Removal regards the unexpected effect of removing
design patterns (26) that leverage the code maintainability after applying
the interrelated code transformations that constitute a batch. A previous
work (39) reports that some batches may non-intentionally remove a
design pattern from a project, thereby harming the code maintainability.
In fact, design patterns are realized by certain code structures with
the additions required by each software project in particular. Thus, the
assumption provided by the previous work (39) is reasonable, once code
transformations target code structures that may realize design patterns.

– Internal Quality Degradation regards how batches may negatively affect
the internal code structure of software projects. A previous study (47, 43)
discusses that batches may negatively affect certain parts of the code
structure, especially in terms of basic code metrics.

– Poor Code Structure Introduction regards the negative effect of batches
on the code structure of software projects. In fact, one study (43) has
warned that an undisciplined application of batch refactoring might
degrade the internal code structure of a project, especially by introducing
code smells. This phenomenon is also quite interesting and has been
explored by a very recent PhD thesis (7). Particularly, the thesis author
has shown that most batches tend to either introduce (5%) or not fully
remove (89%) code smells. However, additional studies are still required
to understand to what extent the code transformations that constitute
a batch are the root-cause for such poor code structure introduction.

– Maintenance Cost Increase regards the effect on applying batches on the
effort spent by companies and software developers with future mainte-
nance tasks. Software maintenance is highly expensive in practice (75)
and code refactoring has been employed by developers for decreasing
future maintenance costs. Thus, it is quite intriguing that a previous
work (43) points out that certain batches can harm the project maintain-
ability when improperly applied in practice. This particular phenomenon
should be further investigated by future work.

3.6
Conflicting Batch Characteristics and Types of Effect

We have found some cases of conflict among studies with respect to the
characteristics that constitute a batch. We discuss below each of these cases.

Conflict 1: Scope of a batch: one code element or several code
elements? The current knowledge about what code elements are affected by a

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 40

batch refactoring is ultimately conflicting. Some studies consider that the code
transformations constituting a batch should be constrained to the same code
element, e.g., a method or a class (14, 37, 43, 55). Conversely, other studies
assume that a batch refactoring can affect multiple classes (35, 50, 7). Each
study may have adopted a different manifestation of the scope characteristic
because it could facilitate their study goals. However, these studies did not
explain why they did not use other manifestations. There is a need for a
proper understanding of what are boundaries that determine the code elements
affected by a batch refactoring. Otherwise, it is hard to elaborate or choose a
heuristic to identify existing batches in a software project.

Conflict 2: Who is responsible for applying a batch refactoring?
There is also a conflict on the current knowledge about who is usually
responsible for applying the code transformations that constitute a batch
refactoring. Some studies assume that a batch refactoring is usually applied
by a single developer (46, 50, 58, 7). However, another study assumes that
a batch refactoring can be started by one developer and complemented by
other developers (35). We have found that each study may have used different
manifestations of the developer characteristic to facilitate the investigations
of their study goals. For instance, Kim et al. (35) have investigated on the
refactoring practices of a single team of developers in a specific software
company. Murphy-Hill et al. (46) have investigated on batches that were
applied in a specific timespan using the Eclipse IDE5. This work only took
into consideration the batches applied by a single developer. Cedrim (7) has
investigated batches as a set of interrelated code transformations performed
by a single developer. In summary, there is a lack of consensus about how
many developers are responsible for applying a batch refactoring. This lack of
consensus makes it difficult to identify batches in existing projects.

Conflict 3: How long does applying a batch refactoring last?
Our literature review also identified a conflict regarding the time spent by
developers to apply a batch refactoring. For convenience, one study assumes
that two subsequent code transformations that compose a batch refactoring
should be applied in up to 60 seconds one from another (46). One might
question whether this conservative threshold is reasonable. For instance, this
work unlikely captures batches that last for more than an hour as a developer
often has to intertwine refactoring edits with his other routine activities.
Conversely, other studies do not constrain the time spent to apply these code
transformations, thereby making possible to compute batch refactorings that
last days, weeks, and even months to be completed (35, 50, 64, 65, 7). In

5IDE - Integrated Development Environment

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 41

these cases, the lack of a threshold may lead one to the consideration of
non-cohesive batches. For example, there might be cases where two groups
of transformations are interrelated because they affected the same program
element. However, the time separating the two commits (where each group
of transformations took place) is higher than one year. If there is no time-
related constraint, one would consider these two groups of transformations as
composing a batch. In any case, existing studies lack empirical evidence about
how long should the application of a batch refactoring last in practice. Thus,
we have insufficient information to constrain the set of code transformations
that constitute a batch refactoring. Consequently, it makes difficult to identify
"cohesive" batches applied to exist projects.

Conflict 4: A single or various transformation types? We have
observed some conflicts in the way previous studies consider the variety of
transformation types that may constitute a batch refactoring. Some studies
suggest that multiple transformation types can co-occur into a batch refactor-
ing (44, 55, 58, 7). Conversely, another study assumes that the code trans-
formations that constitute a batch refactoring should have a single type (51).
This conflict can affect the analysis of the effect of batches in a program. If
a heuristic is used in a empirical study to detect only batches with a single
transformation type, the conclusions will be constrained to only these types of
batches. Batches of this kind might be not effective to remove various types of
structural problems in the source code.

We also found cases of conflict among studies with respect to the expected
effect of batches on software projects. We discuss these cases as follows.

Conflict 1: Do batches make a software project easier to main-
tain? Some studies assume that batches can effectively improve the maintain-
ability of software projects (35, 43, 51). They mainly expect an internal code
structure improvement through the removal of code smells (43). On the other
hand, one study (7) has presented batches frequently can either introduce or
end up not removing code smells. In order to better support developers in ap-
plying batches that are effective in making the code easier to maintain, future
work should empirically investigate these positive and negative types of batch
effect in depth. In fact, the study of Meananeatra (43) presents that certain
forms of batches can remove code smells, thereby improving the program main-
tainability. However, Cedrim (7) presents that batches often have a negative
effect on the code smell removal. Thus, the current knowledge is limited and
conflicting.

Conflict 2: Are batches more likely to improve internal code
structures rather than degrade these structures?We have found studies,

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 42

such as (35, 44, 51), that point out batches as means for improving the internal
quality of software projects. Conversely, a particular study (47) discussed that
undisciplined batch application can lead to the degradation of code structures.
Similarly to Conflict 1, we expect that future work can address this particular
issue in order to draw more assertive conclusions about the batch effect on the
internal quality of software projects.

Conflict 3: What is the actual batch effect at the architectural
level? Some studies (14, 34, 57) assume that batches likely affect negatively
the current architecture of software projects. These studies suggest that batches
can increase the coupling between modules of a software architecture. On the
other hand, a particular study (39) proposes that batches can be applied to
improve the software architecture by improving the cohesion and the coupling
of the software’s components. Thus, there is some lack of consensus on how
batches affect the architecture of software projects.

3.7
Threats to Validity

We discuss threats to the study validity (70) as follows.
Construct Validity. We carefully defined our study protocol prior the

conduction of the literature review. We defined the study goal and research
questions according to the Goal Question Metric framework (1). Thus, we
expected to minimize the chances of changing the focus of our study while the
literature review was performed and the data were analyzed.

Internal Validity. All data collection procedures were performed by
a pair of researchers in order to mitigate problems with missing, duplicated,
and invalid data. These procedures include running our search string in the
web search engines, for instance. Similarly, we paired two researchers in order
to tabulate the data so that we could easily perform the Grounded Theory
(GT) procedures of open and axial coding (13). By strictly following the
GT procedures, we expected to reduce problems with the identification of
batch characteristics and types of effect from the selected papers through the
literature review.

Conclusion Validity. We carefully analyzed all tabulated data in order
to: (i) aggregate the batch characteristics and types of effect extracted from
the literature in our conceptual mapping, and (ii) validate all analyzed data
in a pair. Thus, we expected to minimize biases in the identification of
characteristics and types of effect, but especially in the characterization of
conflicts among previous studies. In this particular case, we have promoted
meetings to discuss which characteristics and types of effect are conflicting

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 3. A Literature Review of Batch Refactoring 43

and deserved an explicit consideration.
External Validity. We have performed a limited search for papers in

the selected web search engines. As a consequence, our final set of papers
used to analyze and extract batch characteristics, effect types and conflicts
may not represent the whole current body of knowledge on batches. In order
to mitigate this threat, we have applied snowballing procedures in order to
collect as many papers as possible that have not being included through the
search in web engines.

3.8
Final Remarks

In this chapter, we presented the results of a literature review of batch
refactoring. We aimed to summarize the current knowledge on batches for: (i)
eliciting the characteristics that previous studies consider as constitutive of a
batch refactoring, (ii) eliciting the types of batch effect on software projects
as assumed by previous studies, and (iii) identifying eventual conflicts in the
literature about batch characteristics and types of effect. Our study enabled
us to identify seven batch characteristics, seven batch types of effect, and a
considerable number of conflicts that spot opportunities for future work.

The next chapter presents a quantitative study aimed at assessing the
frequency of certain characteristics of batch refactoring. For this purpose, we
present our first attempt at combining some of the characteristics elicited by
our literature review into a heuristic for identifying batch refactoring in existing
projects. With this heuristic, we have: collected batch refactorings applied in
57 closed and open software projects. Then, we classified batches in categories
according to their batch characteristics. At the end, we have analyzed the effect
of batches on poor code structures represented by various types of code smells.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



4
Batch Characteristics and Effect on Code Smells in Practice

In Chapters 2 and 3, we have introduced the concept of a batch refactor-
ing as the application of two or more interrelated code transformations along
with code refactoring (7, 46). Each set of interrelated transformations forms a
batch. A previous study shows that batches are frequently applied by devel-
opers on their software projects (7). Unfortunately, some developers are still
reluctant to apply batches in practice (35). The reason is due to the scarce
empirical knowledge about the effect of batches on code structures. Conse-
quently, developers may not benefit of batches to enhance code structures of
their projects.

Code smells represent code structures that are often hard to read and
modify (25). Thus, code smells indicate poor program structures that harm
code maintenance. In fact, past research has shown that developers actually
perceive code smells are harmful to code maintenance (53, 73). In summary,
code smells should be removed from the source code whenever possible (40, 48).
Code refactoring has been largely advertised as capable to remove code smells.
However, a single code transformation performed in isolation is rarely enough
to fully remove a code smell (8). Hence, one could wonder whether smells
are more often removed when developers combine code transformations in
batches. It might also be that batches often have a negative effect. Given their
complexity, they might end up introducing, rather than removing code smells.
Unfortunately, there is little empirical evidence about the effect of batches on
code smells.

To the best of our knowledge, a recent doctoral thesis (7) was the
first study aimed to empirically assess (i) how batches often manifest in
practice, based on presumed batch characteristics, and (ii) what is the effect of
batches on code maintenance in terms of code smell introduction and removal.
However, that study has a few limitations that should be addressed to reveal
more precisely how batches manifest and affect code smells in real software
projects. The previous study did not rely on the current knowledge of batches
provided by the literature to deeply understand the batch characteristics
and their manifestations. Besides, this study did not analyze the relationship
between batch characteristics and their effect on code smells. These gaps

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 45

limit the understanding about how developers apply batches in practice, on
what the code transformation types that often compose batches, and whether
the manifestations of a batch can be related to its effect on the code smell
introduction or removal.

In this chapter, we present a large-scale empirical study that extends
the previous study proposed by the aforementioned doctoral thesis (7). Our
study goal is two-fold. The first goal is analyzing the manifestations of four
batch characteristics most frequently mentioned by previous work but without
a definite understanding on how they manifest in practice. The second goal is
acquiring an empirical understanding of batch characteristics and the effect
of batches on code smell introduction and removal. We chose this effect
of batches because: (i) the literature showed a major concern about it in
practical settings (7, 35, 43), (ii) we observed non-ignorable conflicts in the
literature concerning whether batches are able to fully remove code smells
(Section 3.6); and (iii) the aforementioned doctoral thesis (7) lacked an in-
depth investigation about the relationship between batch characteristics and
code smell introduction or removal.

Through a quantitative study with 57 open and closed software projects,
we expect to reveal insights about batches in practice. We also expect our study
outcomes to support future research on batch recommendations to developers.
The remainder of this chapter is organized as follows. Section 4.1 describes
our empirical study settings. Section 4.2 presents our study results on (i)
the characteristics and effect of batches on code smells, (ii) how existing
recommendations for batch refactoring are applied in practice, and (iii) how
existing automated tools for batches can be used. Section 4.3 discusses threats
to the study validity. Section 4.4 concludes the chapter by summarizing our
results and their implications in practice.

4.1
Study Design

This section introduces the study goal and research questions that we
designed to investigate characterization and classification of batches and types
of batch effect.

4.1.1
Goal and Research Questions

We defined our study goal according to the Goal Question Metric
(GQM) template (1) as follows: analyze batch refactorings performed by
developers on their programs; for the purpose of understanding how batches

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 46

manifest in practice and how they affect code smells; with respect to batch
characteristics mentioned by previous work and the effect of batches on
code smell introduction and removal; from the point of view of software
engineering researchers; in the context of 4,607 batches applied by developers
on 57 open or closed software projects implemented in Java. All batches were
categorized in terms of their characteristics as summarized in our literature
review (Chapter 3). We considered all 13 types of code transformations
(Table 2.1) and 19 code smell types (Table 2.2) listed in Chapter 2. We designed
four research questions (RQs) in order to address our study goal.

RQ1. How often do batch characteristics manifest in real software
projects? – This research question intends to reveal the frequency of the man-
ifestations of certain batch characteristics. Our literature review (Chapter 3)
revealed seven batch characteristics. Three characteristics (developer, time,
and commit) regard the application of batches performed by developers. The
other four characteristics (variety, cardinality, scope, and order) regard the
internal structure of a batch. These characteristics can manifest differently in
each actual batch instance. For instance, the characteristic variety has two
manifestations: one type (i.e., one batch is composed by code transformations
that share a common type) and many types (i.e., one batch is composed by
code transformations with varied types). A batch can be classified according to
these manifestations. An investigation on these characteristics and their mani-
festations can reveal how often certain forms of batches are applied in practice
by developers.

We selected four batch characteristics based on our literature review
(Chapter 3) to investigate in this study: commit, scope, variety, and cardinality.
We followed two criteria for selecting these four characteristics. First, the
characteristics had to be feasible to compute based on data publicly available
at GitHub repositories. This criterion has made us to discard the time and
order characteristics since we are not able to track the application order and
application time between code transformations within a single commit. Most
batches (70.7%) indeed occur in a single commit (7). Second, the characteristics
had to be incorporated by our batch computation heuristic used to collect
batches in real projects (Section 4.1.2). We relied on an heuristic that computes
batches based on the developer characteristic. This heuristic considers a batch
has to be fully applied by the same developer. Thus, it does not make sense
to investigate the manifestations of this characteristic. Our heuristic does not
detect batches performed by multiple developers.

Table 4.1 describes the possible manifestations of each batch charac-
teristic. Previous studies (35, 43, 46, 64, 65) have focused on some of these

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 47

manifestations based on assumptions made by the authors. They have not
empirically evaluated the frequency of these manifestations. It might be the
case that certain manifestations rarely occur in practice. In this work, we aim
to address the lack of empirical knowledge by assessing the frequency of such
manifestations through the analyses of the software projects.

Table 4.1: Manifestations of each batch characteristic
Charact. Manifestation Description
commit one commit Batch completed in only one commit

many commits Batch completed in two or more commits
scope method Batch transformed only one method

class Batch transformed multiple methods or class
variety one type Batch has only one transformation type

many types Batch has two or more transformation types
cardinality 2 Batch has two transformations

≥ 3 Batch has three or more transformations

RQ2. What is the nature of code transformations that usually compose
a batch in practice? – One of the batch characteristics that we selected for
exploration in RQ1 is variety. A batch can be composed of transformations
of a single or multiple types. We analyzed the frequency of each of these
manifestations (RQ1). However, this analysis provides only a starting point
towards the understanding of the nature of transformations often comprising
batches. The nature of a transformation defines how this transformation
operates on a code element. For instance, some transformation types have
the Extraction nature. The transformation types of this nature (e.g Extract
Method) extract a source code from a code element, and create another code
element with the extracted source code.

An understanding on the natures of code transformations in batches
is relevant to know how developers compose batches. In particular, we can
reveal: (i) what are the most frequent natures of transformations used by
developers to compose a batch, and (ii) whether developers compose batches
with transformations of the same nature or from different natures. Through
RQ2, we aim to conduct a deeper analysis focused on the natures of code
transformations that often compose batches.

Table 4.2 presents the natures derived from the 13 code transformation
types listed in Table 2.1 and investigated in this dissertation. The first column
presents the identifier of each nature that we will use throughout this chapter.
For instance, the identifier EX represents the Extraction nature. The second
column characterizes the possible natures in six categories: Extraction, Inline,
Motion, Pull Up, Push Down, Renaming. For instance, Extraction regards
all code transformations that a extract new code element (e.g., a method)
from (parts of) an existing code element. Each nature may encompass code

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 48

transformations that modify the source code at different levels. For instance,
Extraction includes transformation types affecting methods (e.g., Extract
Method) and classes (e.g., Extract Class).

Table 4.2: Nature of Transformation Types
ID Nature Description included Transformation Types
EX Extraction The nature that extracts a source code

from a code element to another code
element

Extract Method, Extract Class, Ex-
tract Interface, and Extract Superclass

IN Inline The nature that removes a code ele-
ment and transfer its source code to
an existing code element

Inline Method

MO Motion This nature moves a code element from
a source code to another source code

Move Attribute, Move Method, and
Move Class

PU Pull Up This nature aims to pull up a code
element from a subclass to a super
class

Pull Up Attribute and Pull Up Method

PD Push Down This nature aims to push down a code
element from a superclass to a subclass

Push Down Attribute, and Push Down
Method

RE Renaming A nature that renames a code element Rename Attribute, Rename Method,
and Rename Class

RQ3. Are batches more likely to be applied on smelly code elements rather
than smell-free code elements? – The literature reports that code refactoring
has been largely employed by developers for many reasons, including the
removal of poor code structures represented by code smells (8, 25). In fact,
there is empirical evidence that a significant number of refactored code
elements were previously affected by code smells (8). The most studies have
investigated the application of single transformations on smelly code elements
only. There is little empirical knowledge (7) about the relationship between
batches and the smelliness of code elements. We aimed to address this literature
gap through RQ3. Thus, we aim to understand whether batches tend to be
applied on smelly code elements. In addition, we aim to understand what
manifestations of batch characteristics are often applied on smelly or smell-
free code elements.

To do so, we classified all computed batches in terms of 16 possible
categories, which represent the 16 possible combinations of the characteristics’
manifestations (Section 4.1.2). We then analyzed the application of batches in
smelly (or smell-free) code elements for each batch category. Our expectation
is acquiring an understanding of the typical characteristics of batches that
are applied on smelly code elements. A previous study has presented that
often batches introduce or do not remove code smells (7). It may be the
case of most batches affecting smelly code elements are composed of a single
transformation type. In this case, we could recommend batches proposed by
previous work (7, 25) that combine multiple transformation types.

RQ4. How do batches affect code smells in software projects? – Through
RQ4, we aimed to assess the effect of batches on code smells based on a

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 49

four-fold analysis. First, we assess the batch effect from the viewpoint of each
batch characteristic. Second, aimed at scrutinizing the effect of batches on
code smells, we assess such an effect by batch category. Third, we assess
the effect of each batch group through the nature of code transformations
that compose a batch. Based on insights of the previous analyses, we discuss
the effect of batches and their characteristics and classifications. We then
compared the effect of batches with the effect of single transformations (8).
Moreover, we discuss our results on the effect of batch refactoring in comparison
with the effect of batches already previously reported by the literature (7).
Besides, we evaluated whether certain forms of batches, which were previously
recommended to remove certain smell types (7, 25), indeed had the expected
effect in the analyzed projects.

4.1.2
Study Steps and Definitions

Figure 4.1 presents the six steps that we designed for guiding our study.
Each step is described as follows.

Figure 4.1: Study Steps

Step 1: Study Preparation. This phase consisted of selecting software
projects for analysis. We searched for open source software projects available
online at GitHub, which should be developed in the Java programming
language due to its worldwide popularity1 and ease of study replication. We
sorted all software projects by stars (6) and selected the 100 most popular
ones. Thereafter, we filtered the software projects in order to keep those with
at least 90% of source code written in Java and a variety of code transformation
types previously applied by the developers. The resulting set of 54 open source
projects sums up 13,400,686 Lines of Code (LOC) and 151,391 commits.
Finally, we added three closed source projects kindly provided to us by three
anonymous companies.

1https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 50

Step 2: Batch Data Computation. We have used a heuristic (7) to
detect batches along the commits of the software projects under analysis. This
heuristic detects every batch that satisfies all the following constraints: (i)
it consists of a set of two or more transformations, (ii) the transformations
are applied on one code element - either a class or a method, and (iii) those
transformations are applied by one developer. Once the scope of each detected
batch is constrained to as single code element, this heuristic is from now on
called element-based heuristic.

This heuristic returns a set of batches, each composed of a set of inter-
related transformations, i.e., those performed in a single code element, which
are performed by the same developer, even if the transformations affecting the
same code element were applied across different versions. For each software
project, we consider all the versions that are produced after each commit in
the system. This heuristic can also capture batches that are applied at long
term, i.e., the set of transformations may span several commits made in the
period of months or years. Thus, the heuristic does not take into consideration
whether the developer, while touching the element in more than one commit,
might be addressing different issues.

Our goal is to analyze how a developer is affecting the structure of a
method or class at short or long term after a set of transformations in this
element are applied, regardless what are the issues being resolved. In this
study, we have not analyzed batches on code elements larger than a class (e.g.,
a package). The consideration of a method or a class as the batch scope is
appropriate for assessing the effect of batches on code smells. In fact, the code
smells considered in our study are associated with either a class or a method.
We plan to study other forms of batches with larger scopes in the future. The
consideration of larger scopes (e.g., packages or the set of all elements edited in
a commit) may also increase the likelihood of detecting transformations that
are not cohesively related.

Step 3: Batch Classification by Nature. We have classified a total
of 4,607 batches according to the nature of their transformation types (Section
4.1.1). All batches were grouped based on natures listed in Table 4.2 (Extrac-
tion, Motion, etc.) that constitute a batch. Some batches are constituted by
a single nature (e.g., Extraction only), but others have multiple natures (e.g.,
Extraction and Motion combined). From the 4,607 batches and the six na-
tures investigated in this work, we derived 22 groups of batch by nature. This
information is used to address our second research question.

Step 4: Batch Classification by Category. In Step 2, we have
collected a total of 4,607 batches. We have classified all batches in categories

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 51

according to their characteristics (Table 4.1). Each batch category is defined
as C = [commit, scope, variety, cardinality], which is a combination of
manifestations for the four batch characteristics listed in Table 4.1. For
instance, let us consider a batch referred to as b = {Extract Method, Move
Method, Extract Method}. b was completed in only one commit and it
has transformed two methods through Extract Method and Move Method
refactorings. Thus, b belongs to the category C = [one commit, method, many
types, ≥ 3]. Once we elicited four batch characteristics, each with two possible
manifestations, we had a total of 16 batch categories.

Step 5: Code Smell Data Computation. We identified the 19 code
smell types listed in Table 2.2 as follows. First, we computed static code
metrics, such as Lines of Code (LOC) and Cyclomatic Complexity (CC) (42),
via the Understand tool2. Second, we combined these metrics in metric-based
strategies (18) for identifying code smells. We adopted the strategies, including
the metric thresholds, proposed by (4, 38, 40). These strategies were validated
by a previous work (4) with a resulting precision and recall (27) of 72% and
81%, respectively.

Step 6: Batch Effect Computation. We computed three possible
types of effects that batches have on code smells. The positive effect means that
the total number of code smell instances in the code elements affected by the
batch has reduced after the batch application. Conversely, the negative effect
the total number of code smell instances in the code elements affected by the
batch has increased after the batch application. In the borderline, the neutral
effect means that even if the code smell types affecting the refactored code
has changed, the total number of code smell instances remained unaffected.
We opted for an analysis of the code smell introduction and removal because,
by definition, program transformations are designed for (at least partially)
improving the program structure, thereby potential contributing to remove
code smells. However, as typically happens with each single transformation
applied in isolation, batches may also tend to not remove code smell instances.

Step 7: Data Analysis. This step consisted of analyzing the collected
data in order to address our RQs. Aimed to answer RQ1 and RQ2, we have
computed the frequency in which the five batch characteristics summarized in
Table 4.1 manifest in practice. In order to answerRQ3 andRQ4, we performed
two analyses: we computed the probability of each batch characteristic to
remove smells; we also computed the the frequency in which batches introduce
and remove code smells.

We computed the data distribution for the 57 projects analyzed with
2https://scitools.com/features/

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 52

respect to four metrics. About the number of code transformations: one quarter
of the projects have at least 376 transformations detected, which suggests a
considerable refactoring activity across projects. About the number of batches:
only a few batches were found in half of the projects (median = 15), but 25%
of projects had at least 71 batches; we found this result reasonable given the
restrictiveness of our heuristic (see Step 2). About the ratio of batches by
code transformations for each project: there seems to be a balance between
the number of projects with high ratio and low ratio (minimum = 4, median
= 24, and maximum = 33). About the number of commits performed during
the life cycle of each project: although values tend to be low (median = 144),
25% of the projects have at least 790 commits.

4.2
Results and Discussions

This section presents our study results. Section 4.2.1 reports on the fre-
quency of each characteristic manifestation (Table 4.1). Section 4.2.2 presents
the frequency of the natures of code transformations composing batches. Sec-
tion 4.2.3 presents the most frequent batch categories applied by developers in
57 software projects. Section 4.2.4 discusses the effect of batch characteristics
and their manifestations on code smells.

4.2.1
Manifestations of Batch Characteristics (RQ1)

Table 4.3 presents the frequency of all possible manifestations by batch
characteristic, as documented in Table 4.1. The frequencies are given in terms
of the 4,607 batches collected from the 57 software projects under analysis. We
discuss the main observations about the frequencies as follows.

Characteristic 1: commit. Most batches (93%) require only one
commit to be completed by the developer. Let us remind that our batch
computation heuristic considers all transformations applied on a single code
element as part of a batch. By combining this information with the high rates of
batches completed in one commit, one could assume that commits often mark a
change in the developers’ motivation for program refactoring. This observation
is reinforced by the fact that refactoring in the successive changes rarely touch
elements coupled to the elements affected by a batch. This observation can
also be further validated by interviewing actual developers in future studies.

Characteristics 2 and 3: scope and variety. Our study results sug-
gest that most batches (91%) affect multiple methods into a class and/or the
class itself. Only 9% affect a single method. This result is somehow expected be-

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 53

Table 4.3: Manifestations by batch characteristic
Charact. Manifestation # Batches Frequency
commit one commit 4,265 93%

many commits 342 7%
scope method 428 9%

class 4,179 91%
variety one type 3,330 72%

many types 1,277 28%
cardinality 2 2,605 57%

≥3 2,002 43%

cause many code smell types affect multiple methods of a class together. Thus,
it is reasonable that batches are mostly constituted of transformations affecting
various methods (or the entire class) together. As for variety of transformation
types, we observed that most batches (72%) consist of transformations with
one type; still, 28% are batches consisting of many types. This result was un-
expected because many batch recommendations (25) (39) strongly depend on
the combination of different transformation types for fully removing poor code
structures, especially code smell instances.

Characteristic 4: cardinality. More than half of batches (57%) are
constituted of exactly two code transformations. This result is quite intriguing
and unexpected. Again, we used a batch computation heuristic that consid-
ers all transformations applied by the same developer on the same code ele-
ment (without other transformations applied on other elements in between) to
form the batch (7). We have calculated the quartile of cardinalities aiming to
found frequent ranges of cardinalities from our dataset (36). The third quar-
tile shows that 411 out of 4,607 (9%) of batches have cardinality = 4. More-
over, the fourth quartile has a large concentration around cardinality = 5 to
cardinality = 10 representing 600 out of 4,607 batches (13%). Therefore, we
have 1,011 out of 4,607 (22%) batches range from four and ten code transfor-
mations. Moreover, 768 (17%) batches has only three transformations. This
result suggests that developers may be sub-using the possible combinations
of code transformations for removing code smell instances. For instance, in
order to fully remove a Large Class instance, developers may have to apply
various Extract Class, Move Method, and Extract Interface transformations in
conjunction (25). This observation may suggest that developers require proper
guidance for performing batches in order to fully remove complex poor struc-
tures, such as God Classes.

What is the novelty of our findings? Summary of RQ1. Through
a systematic characterization of batches, we found most batches (93%) occur

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 54

in one commit. Moreover, we found that most batches are constituted of a one
transformation type. This latter finding is interesting because recommended
batches in Fowler’s catalog tend to combine many transformations types.
In any case, a non-ignorable frequency (28%) of batches combine various
transformation types. We also found a considerable amount of batches (22%)
with four to ten code transformations. Finally, most batches (90%) affect
multiple methods into a class and/or the class. These results reveal that many
batches affecting a program element are quite complex in practice.

4.2.2
Nature of Code Transformations within Batches (RQ2)

This section answers our second research question. We classified the
detected batches according to six natures (Section 4.1.2) considered in this
Master’s dissertation. Each nature represents transformations of a similar kind.
Each batch may have either a single nature or a hybrid nature (i.e., two or more
natures). Table 4.4 presents the frequency of batches according to their single
or multiple natures. The first column presents the ID of a batch group, while
the second column captures the nature(s) of the transformations in batches
of that batch group. The ID of each nature was presented in Table 4.2. The
third column presents the amount of batches that belong to a batch group;
the amount is followed by the frequency in parentheses. We have found eight
most frequent batch groups (G1, G2, G3, G4, G5, G6), which are represented
in grey in Table 4.4. These groups are detailed as follows.

Table 4.4: Frequency of Batches According to their Single or Hybrid Nature
Group
ID

Nature ID(s) Batches (%)

G1 EX 1,449 (31.4%)
G2 MO 1,142 (25%)
G3 RE 580 (12.6%)
G4 PU 352 (7.6%)
G5 IN, EX 233 (5%)
G6 IN 221 (5%)
G7 EX, MO 153 (3.3%)
G8 EX, RE 105 (2.3%)
G9 PU, MO 84 (2%)
G10 MO, RE 59 (1.3%)
G11 PD 58 (1.3%)
G12 IN, MO 52 (1.1%)
G13 IN, EX, MO, RE 28 (0.6%)
G14 IN, RE 25 (0.5%)
G15 PU, EX 18 (0.4%)
G16 PD, EX 11 (0.2%)
G17 PD, PU, IN, EX, MO, RE 11 (0.2%)
G18 PU, IN 8 (0.2%)
G19 PU, RE 7 (0%)
G20 PD, PU 6 (0%)
G21 PD, IN 3 (0%)
G22 PD, RE 2 (0%)

Total 4607 (100%)

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 55

Extraction. The most frequent batch group (G1) is defined by the Ex-
traction nature. A tally of 1,449 out of 4,607 (31.4%) batches have at least
two extraction transformations. In this group, we found: 1,419 (30.8%) out
of 4,607 batches are composed by Extract Methods only; 13 batches are com-
posed by Extract Interfaces only; 14 batches are composed by Extract Methods
and other transformation types of extraction; two batches composed by Ex-
tract Superclasses only; and only one batch composed by Extract Interface
and Extract Superclasses. Besides, developers performed 559 hybrid batches
(12%) – out of 4,607 batches – involving both extractions and transforma-
tions of other nature(s). This is the case of the following batch groups: G5,
G7,G8,G13,G15,G16,G17.

Thus, we observed that Extraction is a nature which developers often
apply batches. The most common case (1,449 batches) is the application of
Extract Methods only. However, they may also compose extraction-related
batches involving more than one extraction-related transformation type and
also involving transformation of other nature(s). In group of G7, developers
produced 153 batches composed of transformations with both the Extraction
and the Motion natures; 43 (out of these 153) batches are composed by Ex-
tract Methods and Move Methods. Fowler (25) recommends batches composed
by these code transformation types to remove certain code smell types. How-
ever, our results suggest that batches composed by these code transformation
types are not often applied. Developers also apply hybrid batches involving
both extractions and renames (group G8). The most frequent code transfor-
mation types, applied in conjunction in this group, are Extract Method and
Rename Method. Developers applied 90 batches which extracted and renamed
a method. This form of batch represents the cases where developers are ex-
tracting to separate the responsibilities of methods, and renaming the method
for a most appropriate name according to its responsibility.

On the groups of G15 and G16, developers apply 29 batches of the ex-
traction nature combined with Pull Up and Push Down natures; these natures
involve modifications on the classes’ hierarchy. Developers are possibly extract-
ing methods to either pulling them up to a superclass or a pushing them down
to a subclass. Developers also applied 39 batches involved four or more natures
(see groups of G17 and G13) with at least one transformation type of each na-
ture. These batches were probably applied to support complex modifications
on the source code, which were required to extract methods or classes. The
group of G5 represents another interesting case. It is composed by batches
that have Inline Methods in conjunction with extraction transformations. The
vast majority (230) of these batches consist of Inline Methods and Extract

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 56

Methods.
Motion. The second most frequent group of batches (G2) in our data

set consist of transformation types of the motion nature. We found that 1,142
(25%) out of 4,607 batches have at least two motion-related transformations.
In this group, we have that 281 (6.1%) out of 4,607 batches are composed
by Move Methods only, 583 (12.7%) out of 4,607 batches are composed by
Move Attributes only. One batch is composed by Move Classes only, and two
batches composed by Move Attributes and Move Classes, that three (0.2%) of
4,607 batches. Besides, 273 (6%) out of 4,607 batches are composed by Move
Attributes and Move Methods. This result reveals that developers often move
methods or attributes in conjunction. Developers often apply complex batches
in which they need to move several methods or attributes for other classes.

Pull Up. The group of G4 has 352 (7.6%) out of 4,607 batches with
transformations that pulled up a code element from a subclass to a superclass.
We have found that 143 batches are composed by Pull Up Methods only, and
59 batches are composed by Pull Up Attributes only. We have also found
that 150 batches were composed by Pull Up Attributes and Pull Up Methods.
This can indicate that developers can be often applying batches to improve
the hierarchy of classes. In the group G20, developers applied four batches
composed by Pull Up Methods and Push Down Methods.

Inline. Developers applied more than 200 batches composed by Inline
Methods only (see group G6). This indicates that developers remove several
methods in conjunction and move the source code of these methods to existing
methods of the same class. Developers can be removing these methods because
they are possibly implementing the same responsibility of other existing
methods of the same class.

Renaming. The group of G3 has 580 (12.6%) out of 4,607 batches
composed by two or more renaming operations. We have found that 573
batches are composed by Rename Methods only. Our results also reveal that
developers also renamed methods and their hosting class, but there were only
three batches composed by Rename Methods and Rename Class. A previous
study has reported that Rename Method is the most common transformation
type when is evaluated a single transformation (60). Interestingly, our data
reveal that this transformation type is not the most commonly applied in
batches.

What is new about this finding? Summary of RQ2. Our results
reveals that more than 56% batches are composed by transformation types
of extraction or motion natures. Moreover, we can observe that Fowler’s
catalog (25), which are aimed to guide developers on improving the code

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 57

structure, recommend batches composed of code transformations of different
natures. For instance, when a method is more interested in methods of another
class, then is recommended to apply a batch composed by Extract Methods
and Move Methods, aiming to extract and move the source code of the
method for the interested class. However, these recommendations are not
very often applied in practice. In our results, we observed that some batch
recommendations in Fowler’s catalog, such as Extract Methods and Move
Methods only (43 batches only), Extract Superclasses and Extract Interfaces
(one batch only) are not often applied.

Our results have also revealed that batches are quite complex because
they are composed by code transformations of different natures. For instance,
they involve movement of source code among methods and classes as well as
pull up or push down methods or attributes among subclasses and superclasses.
These code transformations may have a considerable impact on the design as
they affecting the coupling or cohesion of multiple classes. This finding might
indicate the relevance of existing tools (39) that recommend batches to improve
the software design.

4.2.3
Batches Affecting Smelly versus Smell-Free Code Elements (RQ3)

In this research question, we aim to understand if batches are more likely
applied on smelly or smell-free code. To do so, we created the second batch
classification in terms of the four batch characteristics and their possible dual
manifestations (Section 4.2.1), thereby leading to 16 batch categories. Table 4.5
presents the frequency of batches by category (see Section 4.1.1 for details).
The first column lists all 16 batch categories (C01 to C16). Each cell under
the first column is composed by the ID of each batch category, followed by
the corresponding category details. The second and third columns present the
absolute number (Abs.) and relative (%) frequency of each batch category.
The third column is relative to the total number of batches (4,607 instances
in total) identified in the 57 analyzed software projects.

Our results suggest that the most frequent categories are C01, C02, C05,
and C06. Each of these categories comprise at least 448 (10%) of the batches
in our data set. Curiously, all these four categories share two characteristic
manifestations in common: they occur in the same commit (commit = one
commit) and affect just a single class (scope = class). This result reinforces
the prevalence of manifestations reported in Table 4.3. Surprisingly, the sum of
absolute numbers of batches of all four categories equals 3,929 batches (86%).

Table 4.5 also discriminates the frequency of batches applied on code

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 58

Table 4.5: Frequency by Batch Category
Batch Category Total Smelly

Abs. % Abs. %
C01=[one commit, class, one type, ≥3] 1,142 25 730 16
C02=[one commit, class, one type, 2] 1,700 37 1,152 25
C03=[many commits, class, one type, ≥3] 54 1 43 1
C04=[many commits, class, one type, 2] 70 2 41 1
C05=[one commit, class, many types, ≥3] 639 14 465 10
C06=[one commit, class, many types, 2] 448 10 301 7
C07=[many commits, class, many types, ≥3] 71 2 49 1
C08=[many commits, class, many types, 2] 55 1 31 1
C09=[one commit, method, one type, ≥3] 54 1 12 0
C10=[one commit, method, one type, 2] 234 5 53 1
C11=[many commits, method, one type, ≥3] 29 1 2 0
C12=[many commits, method, one type, 2] 47 1 7 0
C13=[one commit, method, many types, ≥3] 7 0 4 0
C14=[one commit, method, many types, 2] 41 1 19 0
C15=[many commits, method, many types, ≥3] 6 0 0 0
C16=[many commits, method, many types, 2] 10 0 2 0
All categories 4,607 100 2,911 63

elements affected by code smells (e.g., smelly code elements). The fourth and
fifth columns present absolute (Abs.) and relative (%) number of batches
affecting smelly code elements by category. Thus, we have to first characterize
to what extent batches are applied by developers on code elements, such as
methods and classes, that have code smells before, during, or after the batch
application. Surprisingly, we observed that only 63% of batches affect smelly
code elements (according to the fifth column). About the remaining 37% of
batches, we hypothesize that developers have other motivations than removing
code smells when applying these batches.

What is new about this finding? Summary of RQ3. We analyzed
the most frequent code transformation types affecting smelly versus smell-free
code elements in batches. We have found that: (i) 952 out of 1,696 (56%) of
batches that affect smell-free code elements are also constituted by renames
or code transformations types affecting attributes only, and (ii) 1,734 out
of 2,911 (60%) of batches affecting smelly elements are constituted by code
transformation types involving either extractions or motions of methods and/or
classes. Thus, batches with certain non-trivial code transformation types (e.g.,
moves) are often applied to the smelly program elements.

4.2.4
Structural Effect of Batches on Code Smells (RQ4)

Effect by Batch Characteristic. As discussed in Section 4.2.1, each batch
characteristic may assume varied manifestations in practice. This is the case
of the scope in which a batch is applied: batches can affect a method only or a
class. In our first analysis, we explore the batch effect on code smells by batch
characteristic, according to their respective manifestations. We are concerned

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 59

about identifying those manifestations that are more likely to either remove
or introduce code smells. For this purpose, we have computed the Fisher’s
exact test (22) using a confidence interval equals 95% (p-value < 0.05). This
test aims at computing the probability of a property (e.g., the manifestations
of a given batch characteristic) to co-occur with another property (e.g., the
introduction or removal of code smells).

Table 4.6 presents the Fisher’s test results by batch characteristic. For
each characteristic, we have created a contingency table in which: the lines
correspond to the possible manifestations (e.g., Lines 2 and 3); and the
columns are the absolute numbers of positive and negative effect of batches
on code smells (e.g., Columns 3 and 5). We then computed the Fisher’s
test with such table as an input. The test has provided us with two values:
Odds Ratio (OR) (17) and p-value. Odds Ratio informs the probability of
manifestation (e.g., one commit in Line 2) to have a positive effect on code
smells (Absolute in Column 3) when compared to the same probability for
the opposite manifestation (many commits in Line 3). Achieving a statistically
significant OR requires a p-value < 0.05.

Table 4.6: Batch effect on code smells by batch characteristic
Characteristic Manifestation Positive Negative ORAbsolute % Absolute %

commit one commit 328 11% 1,414 49% 0.92many commits 21 1% 80 3%

scope method 30 1% 52 2% *2.60class 319 11% 1,442 50%

variety one type 240 8% 1,051 36% 0.92many types 109 4% 443 15%

cardinality 2 189 6% 847 29% 0.90≥ 3 160 5% 647 22%
*p-value < 0.05

For the sake of illustration, let us consider the characteristic of commit.
Batches applied in one commit are 92% more likely to have a positive effect
on code smells than batches applied in many commits. In this case, the table
indicates that statistical significance was not achieved by the commit char-
acteristic. In fact, as the only batch characteristics whose OR is statistically
significant is scope. In this particular case, we have found that batches applied
on a single method are 260% more likely to have a positive effect on code smells
when compared to batches applied at the class level (i.e., batches applied on
either multiple methods or a class).

Effect by Batch Category. Aimed at complementing our analysis by charac-
teristic, we have investigated the batch effects by batch category. As presented

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 60

in Section 4.1.2, a batch category is a combination of different manifestations
for the batch characteristics following this format: C = [ commit, scope, vari-
ety, cardinality]. An example of a batch category is C01 = [one commit, class,
one type, ≥ 3]. Our goal was understanding which batch categories are more
likely to either negatively or positively affect code smells. Table 4.7 presents
the effect of batches on code smells by category. The first column lists all 16
batch categories (C01 to C16). The following columns present the absolute
(Abs.) and relative (%) frequency of batches whose effect is negative, neutral,
and positive. We discuss our results as follows.

Table 4.7: Effect of batches by category
Batch Category Negative Neutral Positive

Abs. % Abs. % Abs. %
C01 366 13% 280 10% 84 3%
C02 611 21% 418 14% 123 4%
C03 17 1% 25 1% 1 0%
C04 23 1% 15 1% 3 0%
C05 230 8% 176 6% 59 2%
C06 156 5% 110 4% 35 1%
C07 25 1% 15 1% 9 0%
C08 14 0% 12 1% 5 0%
C09 5 0% 1 0% 6 0%
C10 28 1% 4 0% 21 1%
C11 0 0% 1 0% 1 0%
C12 1 0% 5 0% 1 0%
C13 4 0% 0 0% 0 0%
C14 14 0% 5 0% 0 0%
C15 0 0% 0 0% 0 0%
C16 0 0% 1 0% 1 0%
All categories 1,494 51% 1,068 38% 349 11%

A previous work (8) has found that most code transformations, when
analyzed in isolation, tend to either introduce (33%) or not fully remove
(57%) code smells from software projects. However, analyzing the effect of
each single transformation on code smells may not suffice for understanding
the whole effect of code refactoring on the program comprehension. In the
particular case of batch refactoring, we have observed a similar scenario: most
batches are likely to introduce (51%) and not fully remove (38%) code smells
rather than removing them. This result is revealing in many ways. The batch
categories C01, C02, C05, and C06 have 1,363 (47%) out of 2,911 batches that
affect smelly code elements. These four categories represent batches that were
applied in one commit and on the class scope. Besides, the categories C05 and
C06 sums 386 (13%) out of 2,911 batches that affect smelly code, and these
categories have 286 (10%) batches that are neutral. This result can indicate
that even non-trivial batches, i.e., composed by more than one transformation
type, do not remove code smells and they can introduce code smells. This

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 61

finding suggest that developers are often not combining transformation types
to remove code smells. Specific compositions of transformation types in batches
are actually introducing code smells.

In summary, the results reveal that 2,347 (81%) out of 2,911 batches
affecting smelly code have either a negative or neutral effect. We observed
that 58% of these batches are composed by one transformation type only,
while 23% of such batches contain many transformation types. We also noticed
that batches applied on one commit, which are applied on the class scope, are
often either introducing or not removing code smells.

Effect by Batch Group. We observed that the analysis of the batch cate-
gories may not be sufficient to reveal certain details about the batch effect. As
a complement to that analysis, we decided to analyze the effect of the nature
of the transformation types on the introduction or removal of code smells.

We analyzed the batch effect based on the nature of code transformations
that constitute a batch. We followed a three-step analysis procedure. Step 1:
we grouped all 4,607 batches (Table 4.3) according to the natures of their
code transformations (Table 4.2). It is worth mentioning that a batch may be
composed of one or more natures; cases of multiple natures occurring together
in a single batch were grouped in isolation from the “pure” groups (with
only one nature). Step 2: we computed how many code smells were either
introduced or removed by group of batches. Step 3: we computed the rate
of code smells introduced by group according to the formula I(g) = i(g)

i(g)+r(g) ,
where: i(g) is the number of smell instances introduced by a group g, and r(g)
is the number of smell instances removed by g.

Table 4.8 summarizes the batch effect on code smells according to the
nature of transformations. The table data consider all 4,607 batches regardless
the manifestations of batch characteristics. In the second and third columns,
no batch was counted for more than one category. The remaining columns
present the I(g) values by code smell type analyzed in this work. We marked
with “*” all I(g) values for which i(g)+r(g) < 5; we aimed to warn about I(g)
values computed on only a few smell instances (which may not be as relevant
as values computed on many instances). Red-colored cells indicate I(g) > 50,
i.e., groups of batches that tend to introduce rather than remove code smells.
Green-colored cells indicate I(g) < 50, i.e., groups that tend to remove rather
than introduce smells. White-colored cells indicate either I(g) = 50%, i.e.,
groups of batches that introduce and remove smells in an equivalent rate, or
values marked with “*” and, therefore, considered of little practical relevance.
We display the results for ten out of the 19 code smell types under analysis

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 62

(Table 2.2). This decision was taken because the occurrence of many smell
types is very rare, which made it unfeasible to compute I(g) values. After
filtering the code smell types based on the criteria above, ten code smell types
remained. Batches were more likely to remove code smells for two smell types
only: Feature Envy and Message Chain.

Table 4.8: Batch Effect on Code Smells according to the Nature of Code
Transformations

Nature

Total Code Smell Type

Abs. % C
la

ss
D

at
a

s/
b

P
ri

va
te

C
om

pl
ex

C
la

ss

G
od

C
la

ss

In
te

ns
iv

e
C

ou
pl

in
g

Sp
ag

he
tt

i
C

od
e

Sp
ec

ul
at

iv
e

G
en

er
al

it
y

Fe
at

ur
e

E
nv

y

L
on

g
M

et
ho

d

L
on

g
P

ar
am

.
L

is
t

M
es

sa
ge

C
ha

in

G1 1,449 31 100 78.7 92.3 87.1 83.2 100 83.8 61.4 95.1 82.2
G2 1,142 25 98.5 85.5 89.3 *100 88.5 86.8 82.4 *100 *100 41.7
G3 580 13 100 100 91.7 100 80 100 98.7 94.1 100 97.8
G4 352 8 87.5 88.9 77.8 *100 57.1 95 47.8 *100 *33.3 28.6
G5 233 5 100 87.5 92.3 87.5 81 *100 84.8 88.2 81.3 80
G6 221 5 100 73.9 *66.6 88.9 75.0 *100 45.1 60 72.2 76.5
G7 153 3 100 78.4 88.9 *100 94.4 *100 98.1 73.7 100 37.5
G8 105 2 100 92.6 100 *100 100 *100 87.5 87.5 100 100
G9 84 2 *50 85.7 *50 *0 *50 100 *0 *0 *0 *0
G10 59 1 100 100 *100 *50 *50 *0 77.3 *66.6 *0 37.2
G11 58 1 *100 75.0 *0 *0 *0 100 *0 *0 *0 *0
G12 52 1 *100 75.0 *50 *100 *33.3 *0 35 66.7 40 *50
G13 28 1 100 100 *100 *100 *100 *0 100 100 *100 *100
G14 25 1 *100 100 100 *100 *100 *100 *100 *100 *100 *0
G15 18 0 *0 *0 *100 *0 *0 *0 50.0 *0 *100 *0
G16 11 0 *100 *66.6 *0 *0 *100 *100 80 *0 *0 *100
G17 11 0 *0 *0 *0 *0 *0 *66.6 *66.6 *0 *100 *0
G18 8 0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
G19 7 0 *0 *100 *0 *0 *0 *0 *0 *0 *0 *0
G20 6 0 *100 *0 *0 *0 *0 *100 *100 *0 *0 *0
G21 3 0 *0 *0 *0 *0 *0 *0 *20 *0 *0 *100
G22 2 0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
All 4,607 100 98.3 84.2 89.4 88.6 83.0 94.4 81.9 69.9 91.9 74.6

We discuss below our study findings by code smell type.
Regarding Feature Envy, batches of three natures (Pull Up (Group

of G4), Inline (Group of G6), and Inline/Motion) (Group of G12) removed
rather than introduced smells. Pull Up batches (all with at least one Pull
Up Method) removed 12 Feature Envy instances; the “envious” methods were
possibly moved to the superclass so that the smell affecting the subclass van-
ished. Inline batches with only Inline Method transformations removed 39
Feature Envy instances. Our results are quite surprising because previous cat-
alogs (25) (7) recommend Extraction/Motion batches to fully remove Feature
Envy. An example is combining Extract Method and Move Method (25), which
introduced 26 Feature Envy instances (contrary to expectations). Curiously,
Extraction/Motion batches had I(g) = 98.1 (Group of G7); thus, they rarely
remove Feature Envy, at least as they have been applied so far. Two scenarios
may justify this observation: (1) developers correctly applied Extract Method
on the “envious” code, but they did not apply Move Method precisely on the

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 63

extracted (and ”envious”) methods; (2) many “envious” methods were cre-
ated via Extract Method but not all of them were moved. Note that batches
with only Extract Method introduced 841 Feature Envy instances (Group of
G1); it reinforces how important is to combine Extract Method with other
transformation type to fully remove smells.

Regarding Message Chain, batches of four natures (Motion (Group
of G2), Pull Up (Group of G4), Extraction/Motion (Group of G7), and
Motion/Rename) removed rather than introduced smells (Group of G10). Our
results are quite revealing, once Fowler’s recommendation to fully remove
Message Chain instances is limited to Extract/Method batches (25). In the
case reported by Fowler, the recommended batch can reduce a too long
chain of method calls by moving methods that are closely related to the
same class. As expected, batches of this nature were successful in fully
removing Message Chain instances (I(g) = 37.5). As a complement, our results
indicate alternative batches, such as those of Motion/Renaming nature. In this
particular case, batches were able to remove 36 Message Chain instances; it is
possible that methods within a chain of method calls was moved across classes,
thereby reducing the chain size. Similar reasoning applies to Pull Up batches,
which removed 5 Message Chain instances. This particular case is tricky:
moving a method from subclass to superclass may have removed the smell
instance from the subclass but introduced a smell instance in the superclass.

Long Method. A batch composed by several Extract Methods is
recommended to remove a Long Method (25). However, we observed that 95
long methods can have removed by batches composed by this transformation
type (batch group G1) possibly introduced this code smell type rather than
removed it. This result suggests that developers may not have extracted enough
parts of the long methods. Thus, the code transformations were insufficient to
eliminate all Long Method instances. Similar scenario may apply to other batch
groups that often introduce long methods: batches from groups G5, G7, G8,
and G13 were usually composed of one or more Extract Method instances.
We highlight that the code smell detection tool employed to collect our data
(details in Section 4.1.2) captures as Long Method instances those methods
with 30 or more lines of code. Thus, fully removing Long Methods with one
hundred lines of code or more would require several code transformations.

4.3
Threats to Validity

We tried to carefully design and conduct the study. However, some
threats to validity (70) may have affected our empirical study. We discuss

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 64

each threat to validity and their mitigation strategies hereafter.
Construct Validity. Identifying instances of code transformations ap-

plied by developers along with program refactoring is quite complex (61). This
complexity is mostly due to the fact that developers usually apply these trans-
formations together with other changes (46). Aimed at mitigating threats
regarding misidentifying code transformations, we adopted the Refactoring
Miner tool (60) (68). This tool was designed for identifying 14 types of code
transformations with about 93% and 98% of recall and precision. The batch
computation heuristic proposed by a previous work (7) and selected to sup-
port our work has several threats. This heuristics computes batches applied by
the same developer on the same code element, which may have limited a lot
our data set. Nevertheless, we assumed that, from all heuristics proposed by
the previous work (7), this one is more likely to compute batches whose code
transformations are interrelated; we assume that a same developer applying
transformations on a specific code element has a common purpose with all the
applied transformations. Finally, we have built a Python script for automating
the batch identification through our heuristics (Section 4.1.2). We have double
validated our script for detecting and fixing bugs.

Internal Validity. We carefully designed our data extraction protocol.
We collected all code transformations and batches from the 57 projects under
analysis in our study. The data was tabulated and validated. Thus, we aimed
at mitigating threats regarding missing and duplicated data. For instance, our
procedures have helped us to delete duplicated batch instances.

Conclusion Validity. To conduct the quantitative data analysis, we re-
lied on similar studies (8) (10) and on guidelines provided by the literature (70)
for conducting the descriptive analysis. All analysis results were peer reviewed
to mitigate biases in the data analysis and misapplication of the analysis pro-
cedures. More importantly, counting the number of code smells before and
after the batch application may not suffice capture the batch effect on code
smells. In fact, we do not guarantee that the code transformations of a batch
actually caused the code smell introduction or removal. We were not able to ad-
dress this threat because we lacked fine-grained data about additional changes
that co-occurred with a batch. Future work could address such limitation by
separating code transformations from additional changes at the code level.

External Validity. In this work, we have investigated the program
refactoring practices only on Java software projects. Because of that, our
study results may be biased by the underlying code structure of Java-based
programs. Although this threat remained not addressed, we highlight that
Java is one of the most popular programming languages in both industry

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 65

and academia (Section 4.1.2). Additionally, although we have assessed both
open and closed source projects, the number of closed source projects is quite
low (only 3 projects) when compared to the number of open projects (the
other 54 projects) and we did not conduct additional analyses applying the
blocking principal to this characteristic yet. Hence, collecting data from more
(in particular closed source) projects and conducting such additional analyses is
part of future work. Finally, we have employed only one out of the three batch
computation heuristics proposed by a recent PhD thesis (7). This heuristic
was shaped to capture a very specific type of batches, i.e., batches composed
of transformations applied by the same developer on the same code element.
Consequently, our study results may be biased to this particular context and,
therefore, they may not represent cases in which batches are composed by
multiple developers and involve more than one class, for instance. Anyway,
from the heuristics proposed by the previous work (7), the element-based
heuristic explored in this dissertation seemed to be more reliable than the
others in capturing actual batches. We recommend researchers to further
explore the batch effect based on different heuristics in order to compare
results and understand to what extent our findings are general to any batch
application context.

4.4
Final Remarks

This chapter has introduced a large study about the batch characteristics
and the structural effect of batches on code smells. We have mined 57 open and
closed software projects in order to identify and analyze a total of 4,607 batches
applied by developers. We relied on four batch characteristics elicited from our
literature review (Chapter 3), such as the number of code transformations
that constitute a batch. In this chapter, we presented a series of data analyses
summarized as follows. The first analysis aimed at understanding the most
typical batch characteristics in the selected projects. We aimed to address the
following question: How do batch characteristics often manifest in real projects?
We have found that most batches follow a particular trend: 93% occur in
a single commit, 72% are constituted by a single code transformation type,
and 22% have from four to ten code transformations. The second analysis
investigated the natures of code transformations that more often compose
batches. We found that 56% batches are composed by Extractions and/or
Motions, and they revealed that larger batches (by means of the number of
internal code transformation) tend to have transformations of varied natures.

The third analysis investigated batches by means of categories that

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 4. Batch Characteristics and Effect on Code Smells in Practice 66

reflect their typical manifestations. We observed that batches affecting multiple
methods in conjunction with the same class (and, eventually, the class structure
itself) are very common. These batches, when applied on a single commit,
correspond to 85% of our data set. We concluded that batches are usually
complex in practice, once they affect the code structure in varied levels, from
multiple methods to whole class. The fourth analysis aimed to understand the
batch effect on code smells. Our results are quite promising: the program scope
affected by a batch (i.e., the extent of code elements changed along with the
batch refactoring) is strongly related with the removal of code smells. Batches
that affect the same method are 260% more prone to remove a code smell than
batches that affect many methods and/or the class. Moreover, we found that
regardless of the batch categories, there is a common trend: batches have a
negative effect on code smells rather than a positive or neutral one.

By scrutinizing our batch effect data, we revealed that quite interest-
ing aspects of the code smell introduction and removal. Batches composed by
transformations of the Pull Up, Inline, and Motion natures often may have re-
moved Feature Envies. Batches composed by transformations of Motion, Ex-
traction, and Pull Up natures may have removed Message Chains. Finally,
batches composed by transformations of Extraction natures may have intro-
duced Feature Envy or Long Method frequently. Based on these observations,
we stated that simply recommending a series of Extract Methods, as made
by Fowler (25), may not sufficient to fully remove a Long Method instance.
As a future work, we plan to extend our analyses to cover additional code
transformations and code smell types. Thus, we expect to can further evolve
the understanding on the batch application towards removing code smells of
varied types.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



5
Conclusion

In this Master’s dissertation, we have investigated a particular phe-
nomenon that has been poorly explored by previous studies in spite of its
frequency in practice: batch refactoring. Batch refactoring consists of applying
sets of interrelated code transformations on the code structures of software
project (7). These transformations are interrelated in such a way that they
may help developers to fully reach a common goal, such as fully removing
poor code structures that harm code maintenance (20, 64). Each set of in-
terrelated code transformations is called a batch (7). An example of a batch
consists of combining method extractions with method movements in order to
better separate the software features across different methods (8, 25).

Unfortunately, the current knowledge about batch refactoring is quite
scarce, which makes hard to support developers in their daily refactoring prac-
tices. Empirical studies tend to analyze each single transformation in isolation
even if they are often performed in conjunction. The analysis of characteristics
that constitute each single code transformation, e.g. the frequency of transfor-
mation types like Extract Method and Move Method (25), have been largely
reported in the literature (8, 10, 4). However, little is known about the charac-
teristics that constitute a batch in practice. Such a limited knowledge hinders
researchers in properly studying batch refactoring. It also hinders developers
in identifying and reasoning about batches applied on their software projects.
Moreover, there is limited empirical evidence about the effect of batches on
code maintenance (7). As an implication, developers may still feel reluctant
in applying batches on their projects (35), due to the fear of worsening rather
than enhancing code structures.

Aimed to address the literature gaps mentioned above and contribute
with a more empirically-grounded knowledge about batch refactoring, this
Master’s dissertation compiles two complementary studies. The first study
relies on previous work and summarizes the knowledge produced so far about
(i) characteristics that constitute batch refactoring and (ii) expected types of
batch effect on code maintenance. Thus, we were able to evaluate the possible
conflicts on the assumptions made by researchers on which characteristics
constitute batches and how batches affect software projects. The second study

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 5. Conclusion 68

relies on a large set of software projects and hundreds of heuristic-computed
batches. We analyzed the frequency of certain characteristics in such batches.
We also analyzed a particular type of batch effect: the introduction and
removal of code smells, which usually represent poor code structures that are
detrimental to code maintenance. We expect that some of the outcomes of this
Master’s dissertation can guide developers in their daily work while revealing
opportunities for future research work on the topic. Particularly, we expect to
provide insights for support the enhancement of current refactoring techniques
and tools, such as (39, 64).

5.1
Summary of Study Contributions

Through a series of empirical studies presented in this Master’s disserta-
tion, we have provided some contributions. We summarize these contributions
and their implications as follows.

A Conceptual Map of Batch Refactoring – Chapter 3 presented
the outcomes of a literature review of batch refactoring. We rely on a set of
29 studies collected with the support of literature review and snowballing pro-
cedures (31, 36). From these studies, we extracted seven batch characteristics
and seven types of batch effect on code maintenance. Many studies provide
only assumptions about these characteristics and types of effect without any
empirical evaluation. Not surprisingly, a consequence is that past studies often
provide either fragmented or conflicting viewpoints about: (i) which character-
istics actually constitute batches, and (ii) how batches affect the maintenance
of real software projects. All the knowledge obtained from previous studies was
summarized in a conceptual map of batch refactoring. We expect that this map,
combined with our discussions on some literature conflicts, can better guide
future research aimed to empirically evaluate both batch characteristics and
types of effect.

An Empirical Exploration of Batch Characteristics in Real
Projects – Part of Chapter 4 presents an empirical study on the most frequent
manifestations of batch characteristics. Aimed to fill the literature gap about
which characteristics more often apply to batches in practical settings, we
mined and analyzed 57 open and closed software projects. We have collected
batches through the element-based heuristic (7) in which this heuristic allows
us to do a restrictive investigation on the manifestations of a batch that was
applied on a code element. As a result, we observed that batches are quite
complex in practice: although most batches (93%) require only one commit
to be applied by developers, they are often composed of three or more code

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 5. Conclusion 69

transformations (28%) and affect much more than only one method (9%) on
the same class.

These results both reinforce and complement the findings of a study
recently reported in a PhD thesis on the topic (7). We were able to confirm the
inherent batch complexity observed by that thesis. We were also able to elicit
a more comprehensive set of batch characteristics, which were derived through
our literature review (Chapter 3). In that thesis, the batch characteristics
were arbitrarily chosen for investigation. The empirical understanding of
frequent manifestations of each batch characteristic may be a useful instrument
for researchers. This understanding can help them in refining heuristics for
computing batches applied by developers in practical settings. For instance,
we observed that it is common that code transformations in batches move a
code element to another class. Thus, a heuristic can compute a batch through
the code transformations applied on multiple classes.

A Large Study about the Batch Effect on Code Smells – Code
smells have been shown useful for assisting developers on spotting poor
code structures that harm code maintenance (17, 48, 53, 73). Therefore,
characterizing the actual effect of batches on smell introduction and removal is
essential to guide developers in enhancing code structures via code refactoring.
In fact, code refactoring has been largely employed by the industry for
removing poor code structures (35, 46, 60, 71). In this context, a previous
study (7) has presented the very first study aimed to empirically assess the
batch effect on code smell introduction and removal. Unfortunately, that study
had some key limitations that hindered a comprehensive view of such effect on
code maintenance, which implies little support to enhance current refactoring
practices.

Based on a larger data set of 57 software projects than the previous
work (7), plus a set of batch characteristics extracted from our literature
review (Chapter 3), we extended the current knowledge and revealed additional
aspects of the batch effect on code smells. Similarly to the previous work (7), we
found that most batches end up either introducing (5%) or not fully removing
(89%) code smells. Perhaps due to the extended data set, our study pointed out
a 51% higher rate of batches introducing code smells. However, by scrutinizing
the nature of code transformations that constitute these batches, we observed
that code smells are often introduced by batches composed of Extract Methods
and Move Methods. More critically, certain batches recommended by previous
work (8, 25) were more likely to introduce rather than remove code smells.
For these cases, our results revealed certain code transformations that can
complement existing batches to fully remove code smells.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 5. Conclusion 70

5.2
Insights to Enhance Current Refactoring Support

The empirical studies of this Master’s dissertation have enabled us to
reveal limitations on the current batch refactoring support. In other words,
the understanding of batch characteristics, their most frequent manifestations,
literature conflicts, and the batch effect on code smells have revealed the
existing limitations and some opportunities for refining current tools and
methods aimed to guide developers along with code refactoring. We discuss
these limitations and some suggestions for improvement as follows.

Extending Refactoring Tools to Recommend Batches for Code
Smell Removal – Previous studies (3, 66, 67) introduced tooling support and
recommendation systems for guiding the application of isolated code transfor-
mations along code refactoring aiming the code smell removal. Unfortunately,
these studies provide little or no support to the batch application. In fact,
most of the current tools do not guide developers (i) to reason about the inter-
relations of code transformations, and (ii) to understand how isolated trans-
formations can be composed towards a code smell removal. Once batches are
frequently applied by developers (7, 35, 46), the automated guidance of batch
refactoring is desired.

In this Master’s dissertation, we have observed that batches are usually
quite complex in practice (Chapter 4). Nevertheless, developers seem not to
make full use of varied code transformations while composing batches. We
expect that our results about the manifestations of batch characteristics in
real projects provide useful insights for researchers concerned about enhancing
the current refactoring practices. Thus, existing tools can better support the
composition and application of batches. Some examples are discussed below.

– Improving the Refactoring Recommendation for Long Method
Removal. An existing support tool, called JDeodorant (66), recom-
mends the Extract Method application aiming to remove a Long Method.
However, our results present that mere application of a single Extract
Method may lead to an extracted method that is also a Long Method.
The original method, which was the target of the Extract Method, was
too long and, even extracting part of it, the refactoring was not able to
fully solve the smell. In other words, the smell is being propagated to
the other method produced along the refactoring. The JDeodorant tool
could be extended to recommend a batch with the number of Extract
Methods to fully resolve the Long Method smell.

– Improving the Refactoring Recommendation for Feature Envy
Removal. The existing catalogs recommend batches composed by Ex-

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 5. Conclusion 71

tract Methods and Move Methods to remove a Feature Envy (25). In our
results, we have found that batches composed by these transformations
have been introduced Feature Envies. This is because developers can be
applying more Extract Methods than Move Methods or they are moving
other methods that are not envious. Thus, the extracted methods are en-
vious code and they are not moved to another class. In that context, an
automated support tool can recommend the batch application to remove
this code smell, but this tool also can alert the developer what methods
need be moved.

Batches are Relevant for the Software Architecture Improve-
ment. In our results, we have found that more than 42% batches are composed
by transformations that move code elements across classes. These classes may
play a key role in the architecture of a system. Moreover, the classes affected by
a batch are possibly located in different packages (which often represent com-
ponents in the software architecture). These observations indicate that batches
may affect (positively or negatively) the architecture of a software. Thus, de-
velopers should be provided with tools that recommend batches for software
architecture improvement. Lin et al. (39) proposed the Refactoring Naviga-
tor, a tool-supported approach that allows the developer to indicate the new
desired architectural design. The system needs to be re-structured to achieve
the new desired architectural design. The goal of the Refactoring Navigator
approach is to support this transition. To do so, the tool calculates one or more
batches that must be applied to achieve the intended architecture design, while
also improving the cohesion and coupling attributes of the program.

Future Work. We plan to work on providing developers with tool
support for performing their batches. In other words, we plan to address
the above insights in our next steps. We envisage to build a new tool that
support developers in applying our batch recommendations in a way that
is not detrimental to the quality of the software architecture. We plan to
build an interactive tool where developers are providing feedback for our
recommendations so that the tool takes it into consideration when suggesting
the new batches. We also plan to replicate our study considering: (i) the other
two batch characteristics (i.e., developer and time) not addressed in our study
of Chapter 4, and (ii) the use of other batch detection heuristics (e.g., those
defined in (7)), in particular heuristics that consider other forms of scope (e.g.,
packages, versions and the like).

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Chapter 5. Conclusion 72

5.3
Research Publications

This Master’s dissertation is composed of various empirical studies
which are also being reported in papers. We plan to submit these papers
to international conferences and journals for publication in the near future.
Table 5.1 lists the publications planned for each study presented throughout
the dissertation chapters. The table also lists those papers that are not derived
from the core research of this dissertation. We have either published them or
written drafts along the course of this Master’s dissertation.

Table 5.1: List of Research Publications
Type Paper Metadata Chapter

Master’s
dissertation

To be Defined. (2019). A Literature Review of Batch Refactoring. In: 13th
ESEM, pp. 1–12. (To submit)

3

Bibiano, A.C., Fernandes, E., Oliveira, D., Garcia, A., Kalinowski, M.,
Fonseca, B., Oliveira, R., Oliveira, A., Cedrim, D. (2019). How Do Batch
Refactorings Affect Code Smells? A Large Study of 57 Software Projects.
In: 13th ESEM, pp. 1–12. (To submit)

4

Other
studies

Uchôa, A., Fernandes, E., Bibiano, A.C., Garcia, A. (2017). Do coupling
metrics help characterize critical components in component-based SPL?
An empirical study. In: 5th VEM, co-located with the 8th CBSoft, pp.
46–53

N/A

Ferreira, I., Fernandes, E., Cedrim, D., Uchôa, A., Bibiano, A.C. et al.
(2018). The buggy side of code refactoring: Understanding the relationship
between refactorings and bugs. In: 40th ICSE: Poster Track, pp. 406–407

N/A

Fernandes, E., Uchôa, A., Bibiano, A.C., Garcia, A. (2019). On the
Alternatives for Composing Batch Refactoring. In: 3rd IWoR, co-located
with 41st ICSE, pp. 1–4

N/A

Oliveira, D., Bibiano, A.C., Garcia, A. (2019). On the Customization
of Batch Refactoring. In: 3rd IWoR, co-located with 41st ICSE, pp. 1–4

N/A

To be Defined. (2019). About the Developers’ Intentions behind Batch
Refactoring. In: 35th ICSME: Short Paper Track, pp. 1–5 (To submit)

N/A

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography

[1] BASILI, V.; ROMBACH, H.. The TAME project: Towards
improvement-oriented software environments. IEEE Transactions
on Software Engineering (TSE), 14(6):758–773, 1988.

[2] BAVOTA, G.; DE CARLUCCIO, B.; DE LUCIA, A.; DI PENTA, M.;
OLIVETO, R. ; STROLLO, O.. When does a refactoring induce bugs?
An empirical study. In: PROCEEDINGS OF THE 12THWORKING CON-
FERENCE ON SOURCE CODE ANALYSIS AND MANIPULATION (SCAM),
p. 104–113, 2012.

[3] BAVOTA, G.; LUCIA, A. D. ; OLIVETO, R.. Identifying extract class
refactoring opportunities using structural and semantic cohesion
measures. Journal of Systems and Software (JSS), 84(3):397–414, 2011.

[4] BAVOTA, G.; LUCIA, A. D.; PENTA, M. D.; OLIVETO, R. ; PALOMBA,
F.. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software
(JSS), 107:1–14, 2015.

[5] BEN FADHEL, A.; KESSENTINI, M.; LANGER, P. ; WIMMER, M.. Search-
based detection of high-level model changes. In: PROCEEDINGS
OF THE 28TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE (ICSM), p. 212–221, 2012.

[6] BORGES, H.; VALENTE, M. T.. What’s in a GitHub star? Under-
standing repository starring practices in a social coding plat-
form. Journal of Systems and Software (JSS), 146:112–129, 2018.

[7] CEDRIM, D.. Understanding and Improving Batch Refactoring in
Software Systems. PhD thesis, Informatics Department (DI), Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil, 2018.

[8] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.;
DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Understand-
ing the impact of refactoring on smells: A longitudinal study
of 23 software projects. In: PROCEEDINGS OF THE 11TH JOINT

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 74

MEETING OF THE EUROPEAN SOFTWARE ENGINEERING CONFER-
ENCE AND THE ACM SIGSOFT SYMPOSIUM ON THE FOUNDATIONS
OF SOFTWARE (ESEC/FSE), p. 465–475, 2017.

[9] CHAPARRO, O.; BAVOTA, G.; MARCUS, A. ; DI PENTA, M.. On
the impact of refactoring operations on code quality metrics.
In: PROCEEDINGS OF THE 30TH INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), p. 456–460,
2014.

[10] CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D. ; GARCIA,
A.. How does refactoring affect internal quality attributes? A
multi-project study. In: PROCEEDINGS OF THE 31ST BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 74–83, 2017.

[11] Ó CINNÉIDE, M.; NIXON, P.. A methodology for the automated
introduction of design patterns. In: PROCEEDINGS OF THE 7TH IN-
TERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM),
p. 463–472, 1999.

[12] Ó CINNÉIDE, M.; NIXON, P.. Composite refactorings for java
programs. In: PROCEEDINGS OF THE WORKSHOP ON FORMAL
TECHNIQUES FOR JAVA PROGRAMS, CO-LOCATED WITH THE 14TH
EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING
(ECOOP), p. 1–6, 2000.

[13] CRESWELL, J.. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications, 4th edition, 2014.

[14] DE OLIVEIRA, M. C.. DRACO: Discovering refactorings that
improve architecture using fine-grained co-change dependencies.
In: PROCEEDINGS OF THE 11TH JOINT MEETING ON FOUNDATIONS
OF SOFTWARE ENGINEERING (FSE), p. 1018–1021, 2017.

[15] FATIREGUN, D.; HARMAN, M. ; HIERONS, R.. Evolving transforma-
tion sequences using genetic algorithms. In: PROCEEDINGS OF THE
4TH INTERNATIONAL WORKSHOP ON SOURCE CODE ANALYSIS AND
MANIPULATION (SCAM), p. 65–74, 2004.

[16] FERNANDES, E.; OLIVEIRA, J.; VALE, G.; PAIVA, T. ; FIGUEIREDO,
E.. A review-based comparative study of bad smell detection
tools. In: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFER-
ENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEER-
ING (EASE), p. 18:1–18:12, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 75

[17] FERNANDES, E.; VALE, G.; SOUSA, L.; FIGUEIREDO, E.; GARCIA, A. ;
LEE, J.. No code anomaly is an island: Anomaly agglomeration
as sign of product line instabilities. In: PROCEEDINGS OF THE
16TH INTERNATIONAL CONFERENCE ON SOFTWARE REUSE (ICSR),
p. 48–64, 2017.

[18] FERNANDES, E.; SOUZA, P.; FERREIRA, K.; BIGONHA, M. ;
FIGUEIREDO, E.. Detection strategies for modularity anomalies:
An evaluation with software product lines. In: PROCEEDINGS OF
THE 14TH INTERNATIONAL CONFERENCE ON INFORMATION TECH-
NOLOGY: NEW GENERATIONS (ITNG), p. 565–570. 2018.

[19] FERNANDES, E.. Stuck in the middle: Removing obstacles to new
program features through batch refactoring. In: PROCEEDINGS
OF THE 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-
NEERING (ICSE): DOCTORAL SYMPOSIUM (DS), p. 1–4, 2019.

[20] FERNANDES, E.; UCHOA, A.; BIBIANO, A. C. ; GARCIA, A.. On the al-
ternatives for composing batch refactoring. In: PROCEEDINGS OF
THE 3RD INTERNATIONAL WORKSHOP ON REFACTORING (IWOR),
CO-LOCATED WITH THE 41ST INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE), p. 1–4, 2019.

[21] FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; UCHÔA, A.; BIBIANO, A. C.;
GARCIA, A.; CORREIA, J. L.; SANTOS, F.; NUNES, G.; BARBOSA, C. ;
OTHERS. The buggy side of code refactoring: Understanding the
relationship between refactorings and bugs. In: PROCEEDINGS OF
THE 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING (ICSE): POSTER TRACK, p. 406–407, 2018.

[22] FISHER, R.. On the interpretation of χ 2 from contingency tables,
and the calculation of p. Journal of the Royal Statistical Society,
85(1):87–94, 1922.

[23] FOKAEFS, M.; TSANTALIS, N. ; CHATZIGEORGIOU, A.. JDeodorant:
Identification and removal of feature envy bad smells. In: PRO-
CEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SOFT-
WARE MAINTENANCE (ICSM), p. 519–520, 2007.

[24] FOSTER, S.; GRISWOLD, W. ; LERNER, S.. WitchDoctor: IDE sup-
port for real-time auto-completion of refactorings. In: PROCEED-
INGS OF THE 34TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING (ICSE), p. 222–232, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 76

[25] FOWLER, M.. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1st edition, 1999.

[26] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J.. Design patterns:
Abstraction and reuse of object-oriented design. In: PROCEED-
INGS OF THE 7TH EUROPEAN CONFERENCE ON OBJECT-ORIENTED
PROGRAMMING (ECOOP), p. 406–431, 1993.

[27] GOUTTE, C.; GAUSSIER, E.. A probabilistic interpretation of pre-
cision, recall and F-score, with implication for evaluation. In:
PROCEEDINGS OF THE 27TH EUROPEAN CONFERENCE ON INFOR-
MATION RETRIEVAL (ECIR), p. 345–359, 2005.

[28] GRIFFITH, I.; WAHL, S. ; IZURIETA, C.. Truerefactor: An automated
refactoring tool to improve legacy system and application com-
prehensibility. In: PROCEEDINGS OF THE 24TH INTERNATIONAL
CONFERENCE ON COMPUTER APPLICATIONS IN INDUSTRY AND EN-
GINEERING (CAINE), p. 1–6, 2011.

[29] GUERRA, E.; FERNANDES, C.. Refactoring test code safely. In: PRO-
CEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON SOFT-
WARE ENGINEERING ADVANCES (ICSEA), p. 44–44, 2007.

[30] HARMAN, M.; TRATT, L.. Pareto optimal search based refac-
toring at the design level. In: PROCEEDINGS OF THE 9TH GE-
NETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO),
p. 1106–1113, 2007.

[31] JALALI, S.; WOHLIN, C.. Systematic literature studies: Database
searches vs. backward snowballing. In: PROCEEDINGS OF THE 6TH
INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEER-
ING AND MEASUREMENT (ESEM), p. 29–38, 2012.

[32] KANG, K.; COHEN, S.; HESS, J.; NOVAK, W. ; PETERSON, A.. Feature-
oriented domain analysis (FODA) feasibility study. Technical re-
port, CMU-SEI-90-TR-21 and ESD-90-TR-222, Software Engineering Instti-
tute (SEI), Carnegie Mellon University (CMU), 1990.

[33] KIM, J.; BATORY, D. ; DIG, D.. Scripting parametric refactorings in
Java to retrofit design patterns. In: PROCEEDINGS OF THE 31ST
INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND
EVOLUTION (ICSME), p. 211–220, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 77

[34] KIM, J.; BATORY, D.; DIG, D. ; AZANZA, M.. Improving refactoring
speed by 10x. In: PROCEEDINGS OF THE 38TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 1145–1156,
2016.

[35] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empirical study of
refactoring: Challenges and benefits at Microsoft. IEEE Transac-
tions on Software Engineering (TSE), 40(7):633–649, 2014.

[36] KITCHENHAM, B.; CHARTERS, S.. Guidelines for performing sys-
tematic literature reviews in software engineering. Technical re-
port, EBSE 2007-001, Version 2.3, Keele University and University of Durham,
2007.

[37] KUHLEMANN, M.; LIANG, L. ; SAAKE, G.. Algebraic and cost-based
optimization of refactoring sequences. In: PROCEEDINGS OF THE
2ND INTERNATIONAL WORKSHOP ON MODEL-DRIVEN PRODUCT
LINE ENGINEERING (MDPLE), CO-LOCATED WITH THE 6TH EURO-
PEAN CONFERENCE ON MODELLING FOUNDATIONS AND APPLICA-
TIONS (ECMFA), p. 37–48, 2010.

[38] LANZA, M.; MARINESCU, R.. Object-oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-oriented Systems. Springer Science & Business
Media, 1st edition, 2006.

[39] LIN, Y.; PENG, X.; CAI, Y.; DIG, D.; ZHENG, D. ; ZHAO, W.. Inter-
active and guided architectural refactoring with search-based
recommendation. In: PROCEEDINGS OF THE 24TH INTERNATIONAL
SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING (FSE),
p. 535–546, 2016.

[40] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ; VON STAA, A..
On the relevance of code anomalies for identifying architecture
degradation symptoms. In: PROCEEDINGS OF THE 16TH EUROPEAN
CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING
(CSMR), p. 277–286, 2012.

[41] MAHOUACHI, R.; KESSENTINI, M. ; Ó CINNÉIDE, M.. Search-based
refactoring detection. In: PROCEEDINGS OF THE 15TH GENETIC
AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO), p. 205–
206, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 78

[42] MCCABE, T.. A complexity measure. IEEE Transactions on Software
Engineering (TSE), SE-2(4):308–320, 1976.

[43] MEANANEATRA, P.. Identifying refactoring sequences for im-
proving software maintainability. In: PROCEEDINGS OF THE 27TH
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGI-
NEERING (ASE), p. 406–409, 2012.

[44] MKAOUER, M. W.; KESSENTINI, M.; BECHIKH, S.; DEB, K. ; Ó CIN-
NÉIDE, M.. Recommendation system for software refactoring us-
ing innovization and interactive dynamic optimization. In: PRO-
CEEDINGS OF THE 29TH INTERNATIONAL CONFERENCE ON AUTO-
MATED SOFTWARE ENGINEERING (ASE), p. 331–336, 2014.

[45] MONTEIRO, M.; FERNANDES, J.. Towards a catalog of aspect-
oriented refactorings. In: PROCEEDINGS OF THE 4TH INTERNA-
TIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOP-
MENT (AOSD), p. 111–122, 2005.

[46] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A.. How we refactor, and
how we know it. IEEE Transactions on Software Engineering (TSE),
38(1):5–18, 2012.

[47] Ó CINNÉIDE, M.; TRATT, L.; HARMAN, M.; COUNSELL, S. ;
HEMATI MOGHADAM, I.. Experimental assessment of software
metrics using automated refactoring. In: PROCEEDINGS OF THE
5TH INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGI-
NEERING AND MEASUREMENT (ESEM), p. 49–58, 2012.

[48] OIZUMI, W.; GARCIA, A.; SOUSA, L.; CAFEO, B. ; ZHAO, Y.. Code
anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems. In: PROCEEDINGS OF THE 38TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),
p. 440–451, 2016.

[49] OUNI, A.; KESSENTINI, M.; SAHRAOUI, H. ; HAMDI, M. S.. Search-
based refactoring: Towards semantics preservation. In: PROCEED-
INGS OF THE 28TH IEEE INTERNATIONAL CONFERENCE ON SOFT-
WARE MAINTENANCE (ICSM), p. 347–356, 2012.

[50] OUNI, A.; KESSENTINI, M. ; SAHRAOUI, H.. Search-based refactoring
using recorded code changes. In: PROCEEDINGS OF THE 17TH EU-

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 79

ROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING (CSMR), p. 221–230, 2013.

[51] OUNI, A.; KESSENTINI, M.; SAHRAOUI, H. ; HAMDI, M. S.. The
use of development history in software refactoring using a
multi-objective evolutionary algorithm. In: PROCEEDINGS OF THE
15TH GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE
(GECCO), p. 1461–1468, 2013.

[52] PAIXAO, M.; KRINKE, J.; HAN, D.; RAGKHITWETSAGUL, C. ; HARMAN,
M.. Are developers aware of the architectural impact of their
changes? In: PROCEEDINGS OF THE 32ND INTERNATIONAL CONFER-
ENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), p. 95–105,
2017.

[53] PALOMBA, F.; BAVOTA, G.; DI PENTA, M.; OLIVETO, R. ; DE LUCIA, A..
Do they really smell bad? A study on developers’ perception of
bad code smells. In: PROCEEDINGS OF THE 30TH INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (IC-
SME), p. 101–110, 2014.

[54] PETERS, R.; ZAIDMAN, A.. Evaluating the lifespan of code smells
using software repository mining. In: PROCEEDINGS OF THE
16TH EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND
REENGINEERING (CSMR), p. 411–416, 2012.

[55] PIVETA, E.; ARAÚJO, J.; PIMENTA, M.; MOREIRA, A.; GUERREIRO,
P. ; PRICE, R. T.. Searching for opportunities of refactoring
sequences: Reducing the search space. In: PROCEEDINGS OF THE
32ND INTERNATIONAL CONFERENCE ON COMPUTER SOFTWARE
AND APPLICATIONS (COMPSAC), p. 319–326, 2008.

[56] PRETE, K.; RACHATASUMRIT, N.; SUDAN, N. ; KIM, M.. Template-
based reconstruction of complex refactorings. In: PROCEEDINGS
OF THE 26TH INTERNATIONAL CONFERENCE ON SOFTWARE MAIN-
TENANCE (ICSM), p. 1–10, 2010.

[57] QAYUM, F.; HECKEL, R.; CORRADINI, A.; MARGARIA, T.; PADBERG,
J. ; TAENTZER, G.. Search-based refactoring based on unfolding
of graph transformation systems. In: PROCEEDINGS OF THE
5TH INTERNATIONAL CONFERENCE ON GRAPH TRANSFORMATION
(ICGT): DOCTORAL SYMPOSIUM (DS), p. 1–14, 2010.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 80

[58] RAYCHEV, V.; SCHÄFER, M.; SRIDHARAN, M. ; VECHEV, M.. Refac-
toring with synthesis. ACM SIGPLAN Notices, 48(10):339–354, 2013.

[59] SADOWSKI, C.; SÖDERBERG, E.; CHURCH, L.; SIPKO, M. ; BACCHELLI,
A.. Modern code review: A case study at Google. In: PROCEED-
INGS OF THE 40TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING (ICSE): SOFTWARE ENGINEERING IN PRACTICE TRACK
(SEIP), p. 181–190, 2018.

[60] SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why we refactor? Con-
fessions of GitHub contributors. In: PROCEEDINGS OF THE 24TH
INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE EN-
GINEERING (FSE), p. 858–870, 2016.

[61] SILVA, D.; VALENTE, M. T.. RefDiff: Detecting refactorings in
version histories. In: PROCEEDINGS OF THE 14TH INTERNATIONAL
CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR), p. 269–
279, 2017.

[62] SOUSA, L.; OLIVEIRA, A.; OIZUMI, W.; BARBOSA, S.; GARCIA, A.;
LEE, J.; KALINOWSKI, M.; DE MELLO, R.; FONSECA, B.; OLIVEIRA,
R.; LUCENA, C. ; PAES, R.. Identifying design problems in the
source code: A grounded theory. In: PROCEEDINGS OF THE 40TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),
p. 921–931, 2018.

[63] STOL, K.-J.; RALPH, P. ; FITZGERALD, B.. Grounded theory in
software engineering research: A critical review and guidelines.
In: PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE), p. 120–131, 2016.

[64] SZŐKE, G.; NAGY, C.; FÜLÖP, L.; FERENC, R. ; GYIMÓTHY, T.. Fault-
Buster: An automatic code smell refactoring toolset. In: PRO-
CEEDINGS OF THE 15TH WORKING CONFERENCE ON SOURCE CODE
ANALYSIS AND MANIPULATION (SCAM), p. 253–258, 2015.

[65] SZOKE, G.; NAGY, C.; FERENC, R. ; GYIMÓTHY, T.. Designing and de-
veloping automated refactoring transformations: An experience
report. In: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFER-
ENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING
(SANER), p. 693–697, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 81

[66] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of move
method refactoring opportunities. IEEE Transactions on Software En-
gineering (TSE), 35(3):347–367, 2009.

[67] TSANTALIS, N.; CHATZIGEORGIOU, A.. Identification of extract
method refactoring opportunities for the decomposition of
methods. Journal of Systems and Software (JSS), 84(10):1757–1782, 2011.

[68] TSANTALIS, N.; GUANA, V.; STROULIA, E. ; HINDLE, A.. A multidi-
mensional empirical study on refactoring activity. In: PROCEED-
INGS OF THE 23RD INTERNATIONAL CONFERENCE ON COMPUTER
SCIENCE AND SOFTWARE ENGINEERING (CASCON), p. 132–146, 2013.

[69] VILLAVICENCIO, G.. A new software maintenance scenario based
on refactoring techniques. In: PROCEEDINGS OF THE 16TH EU-
ROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGI-
NEERING (CSMR), p. 341–346, 2012.

[70] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M.; REGNELL, B. ;
WESSLÉN, A.. Experimentation in Software Engineering. Springer
Science & Business Media, 1st edition, 2012.

[71] WRIGHT, H.; JASPER, D.; KLIMEK, M.; CARRUTH, C. ; WAN, Z.. Large-
scale automated refactoring using ClangMR. In: PROCEEDINGS OF
THE 29TH INTERNATIONAL CONFERENCE ON SOFTWARE MAINTE-
NANCE (ICSM), p. 548–551, 2013.

[72] YAMASHITA, A.; MOONEN, L.. Do code smells reflect important
maintainability aspects? In: PROCEEDINGS OF THE 28TH INTER-
NATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM), p.
306–315, 2012.

[73] YAMASHITA, A.; MOONEN, L.. Do developers care about code
smells? An exploratory survey. In: PROCEEDINGS OF THE 20TH
WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE), p. 242–
251, 2013.

[74] YAMASHITA, A.; MOONEN, L.. Exploring the impact of inter-
smell relations on software maintainability: An empirical study.
In: PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE), p. 682–691, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA



Bibliography 82

[75] YAU, S.; COLLOFELLO, J.. Some stability measures for software
maintenance. IEEE Transactions on Software Engineering (TSE), SE-
6(6):545–552, 1980.

DBD
PUC-Rio - Certificação Digital Nº 1713265/CA


	Understanding Characteristics and Structural Effects of Batch Refactorings in Practice
	Resumo
	Table of contents
	Introduction
	Problem Statement and Limitations of Related Work
	A Literature Review of Batch Refactoring
	A Large Study of Batch Characteristics and Structural Effect
	Dissertation Outline

	Background and Related Work
	Code Refactoring and Transformation Types
	Batch Refactoring at a Glance
	Poor Code Structures and Code Smells
	Final Remarks

	A Literature Review of Batch Refactoring
	Literature Review Protocol
	Study Steps
	Conceptual Map of Batch Refactoring
	Batch Characteristics
	Batch Effect on Software Projects
	Conflicting Batch Characteristics and Types of Effect
	Threats to Validity
	Final Remarks

	Batch Characteristics and Effect on Code Smells in Practice
	Study Design
	Goal and Research Questions
	Study Steps and Definitions

	Results and Discussions
	Manifestations of Batch Characteristics (RQ1)
	Nature of Code Transformations within Batches (RQ2)
	Batches Affecting Smelly versus Smell-Free Code Elements (RQ3)
	Structural Effect of Batches on Code Smells (RQ4)

	Threats to Validity
	Final Remarks

	Conclusion
	Summary of Study Contributions
	Insights to Enhance Current Refactoring Support
	Research Publications

	Bibliography



