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Abstract

Hoeltgebaum, Henrique Helfer; Fernandes, Cristiano (Advisor);
Adams, Niall (Co-Advisor). Statistical models with
parameters changing through an adaptive mechanism. Rio
de Janeiro, 2019. 122p. Tese de Doutorado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

This thesis is composed of three papers in which the common ground
among them is statistical models with time-varying parameters. All of
them adopt a framework that uses a data-driven mechanism to update
its coefficients. The first paper explores the application of a new class
of non-Gaussian time series framework named Generalized Autoregressive
Scores (GAS) models. In this class of models the parameters are updated
using the score of the predictive density. We motivate the use of GAS
models by simulating joint scenarios of wind power generation. In the
last two papers, Stochastic Gradient Descent (SGD) is adopted to update
time-varying parameters. This methodology uses the derivative of a user
specified cost function to drive the optimization. The developed framework
is designed to be applied in a streaming data context, therefore adaptive
filtering techniques are explored to account for concept-drift. We explore this
framework on cyber-security and instrumented infrastructure applications.

Keywords
Generalized Autoregressive Scores; Dynamic copula; Streaming data;

Machine learning; Adaptive filtering;
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Resumo

Hoeltgebaum, Henrique Helfer; Fernandes, Cristiano; Adams, Niall.
Modelos estatísticos com parâmetros variando segundo
um mecanismo adaptativo. Rio de Janeiro, 2019. 122p. Tese
de Doutorado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Esta tese é composta de três artigos em que a ligação entre eles são
modelos estatísticos com parametros variantes no tempo. Todos os artigos
adotam um arcabouço que utiliza um mecanismo guiado pelos dados para a
atualização dos parâmetros dos modelos. O primeiro explora a aplicação de
uma nova classe de modelos de séries temporais não Gaussianas denominada
modelos Generalized Autegressive Scores (GAS). Nessa classe de modelos,
os parâmetros são atualizados utilizando o score da densidade preditiva.
Motivamos o uso de modelos GAS simulando cenários conjuntos de fator
de capacidade eólico. Nos últimos dois artigos, o gradiente descentente
estocástico (SGD) é adotado para atualizar os parâmetros que variam no
tempo. Tal metodologia utiliza a derivada de uma função custo especificada
pelo usuário para guiar a otimização. A estrutura desenvolvida foi projetada
para ser aplicada em um contexto de fluxo de dados contínuo, portanto,
técnicas de filtragem adaptativa são exploradas para levar em consideração
o concept-drift. Exploramos esse arcabouço com aplicações em segurança
cibernética e infra-estrutura instrumentada.

Palavras-chave
Generalized Autoregressive Scores; Cópula dinâmica; Streaming data;

Aprendizado de máquina; Filtragem adaptativa;
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1
Introduction

Many modern statistical problems feature data for which typical

statistical assumptions are unjustified. When considering the big data hype,

for example, statistical properties of the studied data, such as stationarity,

might change over the observation period. These problems of unknown

temporal variation paved the way to the development of statistical models

that can cope with such phenomena. Statistical models with time-varying

parameters have a wide range of applications, including fraud detection (1),

cyber-security (2) and mortality rates forecast (3) to name a few.

One way to capture the structure of such processes is by introducing, in

the statistical model, parameters that evolve in time. In (4), a classification

of models with time-varying parameters was proposed, namely parameter

and observation driven models. All papers that compose this thesis deal

with the development and implementation of observation driven framework,

in which the parameter updating mechanism is a function of the observed

data via an optimization criterion. Such mechanisms should adequately cope

with some sources of alteration to the statistical properties of the data

generating processes. The effectiveness of both were assessed considering real-

world applications and extensive simulation studies.

The use of the density score, namely the second derivative of the log-

likelihood function, as the driving force to update the parameters is explored in

Chapter 2. This framework is known in the time series literature as Generalized

Autoregressive Scores (GAS) model (5) or Dynamic Conditional Scores (DCS)

model (6)1. More specifically, in GAS models, conditional on past observations,
1Although there are two acronyms, this thesis uses the acronym GAS.
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Chapter 1. Introduction 14

an appropriate probability model is chosen for the response variable. The use

of the score for updating time-varying parameters is intuitive, given that it

defines the steepest ascent direction for improving the model’s local fit in

terms of the likelihood or density, given the current parameter position. By

construction, such an updating mechanism uses information from the entire

density to track the evolution of time-varying parameters, not only first- or

second-order moments. This modelling feature allows GAS models to capture

relevant nonlinear information of the time series dynamics.

The aforementioned aspects motivate the use of this framework in one

real world application. In Chapter 2 we simulate wind power generation

considering both time- and spatial-dependent scenarios, as published in (7).

Our case study shows, based on real data from the Brazilian power system, that

the proposed methodology is capable of producing predictive scenarios with

coherent temporal and spatial dependence that are needed for power system

studies.

The second updating mechanism considered in this thesis is Stochastic

Gradient Descent (SGD) (8, 9), used in Chapters 3 and 4. More specifically,

this framework is explored on streaming data sets, which consist of

potentially unending sequences of data values arriving at high frequency.

When analysing big data streams, one needs to provide algorithms with fixed

memory and processing speed. Moreover, there are challenges related to

constructing procedures that can handle concept drift – the tendency of

future data to have different underlying properties to current and historic

data.

The issue of handling temporal structure, such as trend and periodicity

in an online manner, remains a difficult problem for streaming estimation. In

Chapter 3 we propose RAC (Real-Time Adaptive Component), a penalized-

regression modelling framework which satisfies the computational constraints

of streaming data, and provides capability for dealing with concept drift. To
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Chapter 1. Introduction 15

handle this collection of issues, techniques from adaptive filtering (9) were used.

Finally, experiments with simulated data suggest the procedure has merit for

a variety of scenarios, and an illustration with real cyber-security data further

demonstrates the promise of the method.

SGD methods are further adapted to a class of problem motivated by a

data set collected from an instrumented railway bridge. The instrumentation

on the bridge consists of a network of spatially distributed fibre-optic sensors,

from which data is recorded at high-frequency (10). The application objective

of Chapter 4 is to detect train passage events in this bridge data.

Methodologically, this required the development of a novel time-varying and

incremental Principal Component Analysis (PCA) method, again based on

adaptive filtering techniques. This estimation procedure is complemented by

an anomaly detection method based on conformal prediction (11, 12).

Finally, the performance of this method is evaluated, for both estimation

accuracy and train event detection, using simulated and real data set.

The reminder of this thesis is divided in three chapters. Each chapter

makes reference to one article. The mathematical notation for each chapter is

described within each and are not the same across chapters. Moreover, the first

paper was produced under the supervision of Professor Cristiano Fernandes

while the last two under the supervision of Professor Niall Adams.
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2
Generating joint scenarios for renewable generation: The case
for non-Gaussian models with time-varying parameters

Keywords: Dynamic copula, probabilistic forecasting, score-driven models,
time-varying parameters, wind power.

Abstract: The development of medium/long-term studies for power-system
operation and planning under the uncertainty of renewable generation is a
key challenge faced by power-system agents worldwide. There is a vast
literature on stochastic optimization models devoted to addressing the
relevant issues on both operation and planning applications.
Notwithstanding, few papers focus on addressing the gaps within the subject
of joint scenario generation despite the high sensibility of stochastic
optimization models with regard to their input scenarios. Characterizing
wind power generation (WPG) stochastic processes to devise time- and
spatial-dependent scenarios, based on simulation procedures, for time
horizons of one to a few years is a difficult task. Multiple regimes and
non-Gaussian distributions are two of the main issues that significantly
change the risk described through generated scenarios. In this paper, a new
methodology to simulate long-term joint scenarios for multivariate WPG
time series is presented. The proposed framework, known as Generalized
Auto Regressive Score (GAS) models, is derived based on a new class of
time-series model with time-varying parameters and an arbitrary
non-Gaussian distribution. Our case study shows, based on real data from
the Brazilian power system, that the proposed methodology is capable of
producing scenarios with coherent temporal and spatial dependence that are
needed in power system studies.
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Chapter 2. Generating joint scenarios for renewable generation: The case for
non-Gaussian models with time-varying parameters 17

2.1
Introduction

Renewable energy expansion has been growing worldwide, mainly in

response to governmental incentives for reducing greenhouse gas emissions. In

particular, wind power generation (WPG) is one of the largest sources of

renewable energy, and according to the International Energy Agency, it will

account for 18% of global power by 2050 (13). However, the uncertainty

associated with its nondispatchable nature may jeopardize the reliability of

electricity supply. In attempting to minimize this type of risk, it is highly

desirable to produce reliable probabilistic forecasts for WPG time series

suitable for scenario generation procedures such as Monte Carlo-based

methods. The importance of such scenarios emerges in many instances where

complex optimization-based decision models are used, e.g., (i) energy trading,

(ii) unit commitment, (iii) grid expansion planning, and (iv) investment

decisions (see (14, 15, 16, 17) and references therein). There is a vast

literature on stochastic optimization models devoted to addressing the

relevant issues on the aforementioned power-system applications.

Notwithstanding, few papers focus on addressing the gaps within the subject

of joint scenario generation despite the high sensibility of the stochastic

optimization models with regard to their input scenarios.

For example, (18) and (19) use importance sampling to model tail

dependencies under a reduced number of scenarios for stochastic unit

commitment and transmission planning, respectively. While in (18) a

transformed wind speed time series is modeled by an autoregressive process

to generate wind power scenarios, in (19), an interesting clusterization

method is applied to historical data to capture empirical information of the

wind power variability. Furthermore, (20) focus on two-stage transmission

planning using a sample of hourly data to empirically characterize the

correlations in demand and wind power generation among different regions.

Within the subject of two-stage robust optimization models applied to
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Chapter 2. Generating joint scenarios for renewable generation: The case for
non-Gaussian models with time-varying parameters 18

planning and operation, in (14) a robust model is proposed to address

reliability in co-optimized generation and transmission planning, while in

(21), a unit commitment problem is addressed under wind power uncertainty.

Both (14) and (21) apply Monte Carlo simulation techniques based on static

and Gaussian distributions to evaluate the performance of the developed

robust strategies. It is worth noting that, except for (18) that used a linear

autoregressive model, all previously reported works make use of scenario

generation approaches based on either empirical or Gaussian static models to

address relevant operation and planning problems affected by renewable

variability. Hence, the development of novel time series models applied to

generate accurate scenarios for renewable energy constitutes a relevant and

timely research topic that might be of interest for many power system

applications.

In contrast to the main objective of WPG simulation methods, which

aim to produce scenarios that characterize all the conditional density and

its fit to the observed quantile data, much research has been devoted to

devise short-term forecast methods for wind speed and WPG time series (for

instance, see (22)). In some applications on medium- and long-term forecasting,

model construction is based on conventional ARMA models with seasonal

lags, or SARIMA models, under a Gaussian distribution (see (23) for a high-

dimension estimation process based on LASSO). In its original formulation,

SARIMA models present a fixed conditional variance. To add extra flexibility

to these models, (24) proposes an ARIMA model with a GARCH effect,

allowing the conditional variance of the WPG distribution to vary over time.

In addition, to provide a description of the spatial correlation of wind-speed

time series, (25) proposed an Autoregressive Fractionally Integrated–GARCH

model (ARFIMA-GARCH). In these and other models, conditional on the

past, the distribution of the response variable is assumed to be Gaussian.

The non-Gaussian nature of WPG time series is well reported in the
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literature (see (26, 27, 28, 29, 18), and references therein). However, only

very limited classes of non-Gaussian time-series models are available for

modeling WPG. The state-of-the-art literature on short-term probabilistic

modeling of renewable energy time series (wind and solar) mainly relies on

nonparametric models. For instance, in (26, 29, 30), nonparametric approaches

were devised to forecast conditional distributions based on kernel density

estimators, quantile regression, and extreme learning machine, respectively.

Despite the virtues found in nonparametric methods, these models require a

large amount of data to be fitted and are mainly devised for the univariate

case. Thus, the development of new parametric models capable of properly

characterizing the full multivariate non-Gaussian distribution for WPG time

series is a relevant research theme, which has not received much attention so

far. Relevant applications arise from risk assessment in both medium- and long-

term planning and investment studies, which mainly rely on a few data points

to characterize conditional estimates of extreme quantiles (31, 32, 33, 17, 34).

In (5) and (6), a general framework for time-series models with time-

varying coefficients was proposed by considering any univariate or multivariate

non-Gaussian conditional distribution, either discrete or continuous. Such a

model has been named in the recent literature as a Generalized Autoregressive

Score (GAS) model (5) or a Dynamic Conditional Score (DCS) model (6). In

(5), it has been shown that several well-known time-series models from the

econometric literature are a particular case of GAS models1. More specifically,

a GAS model is built based on a user-defined conditional probability function

whose parameters follow a data-driven dynamic equation that uses the score

as its driving force. The use of the score function for updating time-varying

parameters is an intuitive choice. It is defined as the steepest ascent direction

(gradient) for improving the local fit of the model in terms of likelihood. In such

an updating mechanism, information from the whole density is used within the
1For instance, GARCH models that address heavy-tailed distributions (35),

autoregressive conditional duration models (36) to tackle asymmetric distributions, and
the Poisson count models of Davis (37) are particular cases of GAS models.
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model to track the evolution of time-varying parameters through a nonlinear

transformation of past data. This modeling feature allows GAS models to

capture relevant nonlinear information of the time-series dynamics, which is

not possible through linear models.

To generate joint scenarios for WPG time series of power plants

belonging to different geographical areas, it is important to capture the

spatial dependence among these units (23, 18, 38). Within the GAS

framework, in (39), the authors provided an empirical application of a

multivariate Student t density to a panel of daily-equity returns, where both

the variance and correlation matrix are updated through a GAS mechanism.

They indicate the link between their framework and time-varying copulas,

but no results and tests were provided. Furthermore, it is possible to combine

linear models with copulas that also have time-varying parameters as shown

in (40, 41, 42). However, none of these works have proposed a GAS

mechanism to update time-varying parameters of marginal densities and

copulas simultaneously.

Most of the applications using GAS models have focused on problems

in finance and economics. We refer the interested reader to the main on-

line repository on GAS papers (43). Notwithstanding its virtue in properly

addressing nonlinearity and non-Gaussianity of real time series, to the best of

the authors’ knowledge, there is no publication in the power-system literature

using such a framework. Moreover, the inclusion of a seasonal structure in the

updating mechanism for the time-varying parameters has not been addressed

in the GAS literature so far, despite being a relevant structure shared by a

wide range of time series such as WPG (see (44, 45, 31, 23), and references

therein).

As previously reported, accurate scenarios characterizing

non-Gaussianity and non-linearities found in WPG time series are highly

demanded in power system applications such as planning and operations
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(18, 19, 20, 14, 15, 16, 17, 21). Hence, the objective of this paper is to

propose a new methodology to generate synthetic non-Gaussian and

multivariate scenarios for WPG time series using copulas and GAS models.

Thus, in our proposed framework, both time and spatial dependence are

captured through a new parametric time series model based on GAS

updating mechanisms. More specifically, the contributions of our paper are

twofold:

– A new framework based on GAS models is proposed to fit and generate

a non-Gaussian univariate (predictive) density of individual WPG time

series. In such models, parameters are made time varying through an

updating equation based on the score vector (the first derivative of the

log-predictive density). By construction, the form of the parameter’s

updating equation will depend on the particular choice of the predictive

density. Model diagnostics and multistep ahead prediction procedures

are also presented as part of the proposed framework.

– A method for the generation of joint WPG scenarios, where spatial

dependence among the different units is captured by a time-varying

Student t copula. In our proposed framework, the copula parameters,

namely, entries of the correlation matrix, have their evolution in time

driven by a second GAS updating mechanism allowing spatial

dependence to change along seasons. In this paper, the newly proposed

time-varying copula updating mechanism uses the individual predictive

density devised in the first contribution to generate the multivariate

scenarios. Nevertheless, we highlight that it can also be used with other

univariate methods for the same end, thereby constituting a broader

contribution to the state-of-the-art literature on renewable-energy

scenario generation2.
2Note that many nonparametric models based on quantile regression and other related

methods are not directly extensible to the multivariate framework. In such cases, our
proposed time-varying copula scheme can be viewed as a second-step procedure used to
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The rest of this paper is organized as follows. In Section 2.2, the

proposed univariate GAS model framework with seasonal dynamics is

presented; estimation, diagnostics, and forecasting procedures are also

provided in this section. In Section 2.3, a dynamic elliptical-copula model is

presented based on the results of (39). In Section 2.4, a case study using real

data from the Brazilian power system is presented to illustrate the

application of the proposed framework in simulating joint scenarios for

multivariate WPG time series. Finally, Section 2.5 presents the conclusion of

this study.

2.2
GAS models

In GAS models, the choice of candidate (conditional) densities for a given

response variable is based on the support of the variable being modeled. As

WPG time series have normalized support in the range [0, 100), also known

as capacity factor (generation in percentage of the maximum power), it is

natural to consider a beta density to describe such process. More precisely,

in our application, the i-th WPG time series, from a set K = {1, ..., K}, is

described by a beta probability density function (PDF) where the first shape

parameter, fit, varies over time, whereas the minimum (ait) and maximum

(bit) parameters varies according to each month. The minimum and maximum

are ex ant estimated through a standard maximum likelihood method based

on static (unconditioned) betas. Thus, the univariate probability models are

given by

p(yit|fit,Fi,t−1; θi)

= Γ(βit + αi)
Γ(βit)Γ(αi)

· (yit − ait)βit−1(bit − yit)αi−1

(bi − ait)βit+αi−1

(2-1)

characterize spatial dependencies and extend existing univariate simulation methods to the
multivariate case.
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∀ i ∈ K and t ∈ T . In (2-1), yit represents the WPG injected by unit i ∈ K at

time t, Ft−1 is the past information of time series i up to time t− 1, βit is the

exponential of the underlying time-varying parameter, fit, and α is the second

shape parameter, assumed to be fixed. The vector of fixed parameters of the

GAS model is θ, and in our methodology, it encompasses α, the coefficients

associated with explanatory and dummy variables, when they exist, and the

parameters that are part of the updating mechanism that defines ft, as given

in Expression (2-2).

The time-varying parameter GAS(p, q) updating mechanism for

parameter fit, ∀ i ∈ K and t ∈ T , is given by

fi,t+1 = ωi +
p∑
l=1

Ai,lsi,t−l+1 +
q∑
l=1

Bi,lfi,t−l+1. (2-2)

In (2-2), si,t−l+1 is the score of the beta PDF for unit i at time t− l + 1, and

ωi, Ai,l, and Bi,l are fixed parameters.

To complete the description of the updating mechanism presented in

(2-2), it is necessary to define si,t, the scaled score. This is given by the following

nonlinear transformation of the data (see (5)):

si,t = I−di,t|t−1 · ∇i,t, (2-3)

∇i,t = ∂ ln p(yi,t|fi,t,Fi,t−1; θi)
∂fi,t

, (2-4)

Ii,t|t−1 = Et|t−1[∇′i,t∇i,t] (2-5)

∀ i ∈ K and t ∈ T , where p(yi,t|fi,t,Fi,t−1; θi) is the conditional PDF chosen

to model the time series and Ii,t|t−1 is the Fisher information matrix. Such a

matrix acts as a scaling factor for the score normalizing the variance of si,t.

More details can be found in (5). In practice, the choice of d can be decided

empirically: for a given model, one chooses the value of d ∈ {0, 1/2, 1} that

produces the best model diagnostics and forecasting.

As mentioned before, because the beta parameter can only assume
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positive values, it is conveniently reparameterized as the exponential of fi,t. In

addition, the model can accommodate the effect of explanatory (exogenous)

variables through the equation that defines the time-varying beta parameter

as follows:
βi,t = eφ

′
iXi,t+fi,t . (2-6)

In (2-6), Xi,t represents the vectors of explanatory variables for time series i at

period t. Within such framework, the effect of any external factor that might

improve the data fit (seasonal dummy variables, weather condition indexes,

etc.) can be estimated and used in the simulation step to generate conditional

scenarios.

2.2.1
Estimation

The estimation of the vector of fixed parameters θi for each time series

i ∈ K is based on the maximization of the log-likelihood function, that is,

θ̂i = argmax
θi

li(θi). (2-7)

In our case, where the predictive density is beta (see Equation (2-1)), the

log-likelihood is given by

li(θi) =
T∑
t=1

− ln(bit − ait)(βit + αi − 1) + ln Γ(βit + αi)

− ln Γ(βit)− ln Γ(αi) + βit ln(yit − ait)

− ln(yit − ait) + αit(bit − yit)− ln(bit − yit)

.
(2-8)

Given that fi,t is a function of θi (recall that the coefficients in (2-2) are

all part of the vector of fixed parameters, θi), to solve the estimation problem

(2-7), a numerical nonlinear optimization procedure has to be used. In this

work, we apply the Nelder–Mead algorithm to find initial points to the BFGS

algorithm (46). Given the recursive nature of the updating equation for fit, one

needs initial values for fi,0, fi,−1, . . . , fi,1−q and si,0, si,−1, . . . , si,1−p. These are
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obtained by fitting individual beta distributions, one for each month, under

the assumption that both beta parameters are fixed in time. More precisely,

each WPG time series i is split into 12 monthly series, i.e., {Y (i)
Jan, . . . , Y

(i)
Dec},

where Y (i)
v stands for the vector comprising the data for month v and unit i.

Then, for each of these time series, {Y (i)
v }12

v=1, a fixed beta density is estimated

via maximum likelihood, resulting in the estimates {α(i)
v }12

v=1 and {β(i)
v }12

v=1.

These are then used to initialize the recursion in (2-2) for each evaluation

of the log-likelihood function. The minimum and maximum parameters are

also obtained in this step based on the monthly static estimation. Thus, the

function that is passed to the BFGS algorithm is a numerical function that

receives as input a trial value for vector θi, calculates the value of fi,t according

to the recursive rule in (2-2), and returns as output the value of Expression

(2-7). Based on multiple randomly generated initial values for θi, the BFGS

algorithm iterates until a local maximum is found and the best solution is

used. Although customarily used in non-linear statistical estimation schemes,

it should be noticed that this technique does not guarantee a global optima,

but an improved local solution.

2.2.2
Diagnostics

Diagnostics in GAS models can be obtained using quantile residuals,

an appropriate type of residuals for nonlinear and non-Gaussian time-series

models that has been defined in (47). The observed quantile residual is given

by
rt,θ̂i = Φ−1[F (yi,t|fi,t,Fi,t−1; θ̂i)] (2-9)

∀ i ∈ K and t ∈ T , where F (·) is the cumulative distribution function

(CDF) associated with the proposed beta density, i.e., p(yi,t|fi,t,Fi,t−1; θi),

and Φ−1[·] is the quantile function of a standard Gaussian distribution. Under

correct model specification, these residuals should be normally distributed and

show no temporal dependence. These can be checked, for example, using the
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standard Jarque–Bera test for normality, the Ljung–Box test for absence of

serial correlation, and the Ljung–Box (on squared residuals) test to test for

the absence of nonlinear dependence, such as an ARCH effect.

2.3
Time-varying spatial dependence model

Once the proposed beta GAS models are individually fitted to each of the

K WPG time series, the observed dependence among the different units can

be captured by applying a Student t copula to the set of probability integral

transforms (PITs) derived from the individual beta PDF’s. The PITs are

uniformly distributed values, u1t, u2t, . . . , uKt, whose components, associated

with each unit i ∈ K and period t ∈ T , can be obtained from the observed

data and the respective univariate CDFs as follows:

ui,t = F (yi,t|fi,t,Fi,t−1, θ̂i). (2-10)

A conditional copula is defined as a multivariate distribution, namely,

C(u1t, . . . , uKt|Ft−1), of the PITs values, conditional on the available set of

information Ft−1 (40). To that end, if we let Gν be the CDF of an univariate

Student t distribution with ν degrees of freedom, we can transform the PITs

to Student t variables, ỹit = G−1
ν (uit), and define our copula as a multivariate

Student t CDF with a time-varying correlation matrix. The associated copula

density function, which will be used in the estimation process, assumes the

following form ∀ i ∈ K and t ∈ T :

g(ỹt|Σt; ν) =

Γ
(
ν+K

2

)
Γ
(
ν
2

)
[(ν − 2)π]K/2|Σt|1/2

·
[
1 + ỹ′tΣ−1

t ỹt
(ν − 2)

]− ν+K
2

, (2-11)

where ỹt = [ỹ1t, ..., ỹKt]′ and Σt is a time varying-correlation matrix, assumed

to follow a GAS updating mechanism similar to that proposed in (48).
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To apply the GAS updating mechanism to the correlation matrix, it is

key to use a factorization scheme for Σt that allows always generating positive

definite matrices. Such a factorization scheme, proposed in (48), is used in this

work as follows:

Σt = diag(Qt)−1/2 ·Qt · diag(Qt)−1/2, (2-12)

where Qt is a symmetric positive definite matrix that guarantees a symmetric

positive definite matrix Σt with elements outside the main diagonal lying inside

the [−1, 1] range. The matrix Qt carries all the information regarding the

spatial dependence structure among different WPG time series. The idea of

adopting a time-varying mechanism to update the elements of Qt is to consider

the temporal variation of this dependence when generating joint scenarios for

WPG time series.

Updating the quantities of the time-varying Qt, is accomplished through

a second GAS mechanism as proposed in (39), i.e.,

vech(Qt+1) = Ω + Πst + Υvech(Qt), (2-13)

where

st = E[∇t∇
′

t]−d · ∇t, (2-14)

∇t = ∂ ln g(ỹt|Σt; ν)
∂(vech(Qt))

. (2-15)

In (2-13), vech(Qt+1) is the half-vectorization of Qt+1, which is a linear

transformation used to convert the lower triangular portion of K × K

symmetric matrices to K(K + 1)/2 vectors (recall K = |K|). In addition, Π

and Υ are diagonal matrices, and Ω is a K × 1 vector with elements equal to

one for updating the elements of the main diagonal of Qt to make the model

identifiable. Hence, the elements of Ω corresponding to the diagonal elements

DBD
PUC-Rio - Certificação Digital Nº 1612996/CA



Chapter 2. Generating joint scenarios for renewable generation: The case for
non-Gaussian models with time-varying parameters 28

of Qt can be multiplied by any arbitrary positive number without changing

the decomposition. Details and proofs regarding the Expressions

(2-14)-(2-15) for the multivariate Student t distribution can be found in (39).

2.3.1
Estimation of the copula parameters

We now briefly describe the method used to estimate the fixed parameters

of the GAS mechanism associated with the Student t copula, Θ = (ν,Ω,Π,Υ).

For this we applied the inference for margins (IFM) optimization procedure

(see (49), (50)). In IFM estimation, the vector of fixed parameters, {θ̂i}i∈K,

associated with the conditional density of each WPG time series is first

estimated individually using the optimization procedure described in Section

2.2.1. Then, the copula parameters are estimated via maximum likelihood in a

second step optimization procedure. By considering the K-dimensional vector

ỹt = [G−1
ν (u1,t), . . . , G−1

ν (uK,t)]′, the log-likelihood of the multivariate Student

t copula can be written as

L(Θ) =
T∑
t=1

 ln
[
Γ
(
ν +K

2

)]
− ln

[
Γ
(
ν

2

)]

− 1
2 ln |Σt| −

K

2 ln[(ν − 2)π]

− ν +K

2 ln
[
1 + ỹ′tΣ−1

t ỹt
ν − 2

]
(2-16)

∀ i ∈ K, where Σt follows a GAS updating mechanism given by (2-13).

Maximization of this log-likelihood function L is analogous to the univariate

optimization described in Section 2.2.1. The nonlinear optimization problem

is solved by using a Nelder–Mead algorithm to find initial values for the BFGS

algorithm. The degrees of freedom ν was estimated by using profile likelihood.

For the interested reader, we referrer to (51).

2.3.2

DBD
PUC-Rio - Certificação Digital Nº 1612996/CA



Chapter 2. Generating joint scenarios for renewable generation: The case for
non-Gaussian models with time-varying parameters 29

Generating joint scenarios

After the estimation procedure, the joint scenario generation process

proposed in this work is based on two steps that are repeated for every

period within the simulation horizon. In the first step, M individually

simulated scenarios, one for each WPG time series, are sampled from the

conditional beta univariate PDFs, where the time-varying parameters are

updated according to (2-2). In the second step, the spatial dependences

between different units is introduced applying the estimated Student t copula

with time-varying parameters being updated according to (2-13). After

performing these two steps for the whole simulation horizon, one multivariate

path (scenario) is generated. Then, this process is repeated (or parallelized)

as many times as necessary, according to the number of samples needed.

Assuming a simulation horizon set H with H periods, i.e., H = {1, ..., H},

the simulation procedure that generates M multivariate samples of WPG

according to the proposed methodology is as follows:

Part I: Univariate

1. Given {θ̂i}i∈K, obtained by the estimation process described in Section

(2.2.1) and the filtered vector {f̂i,T+1}i∈K obtained by applying recursion

(2-2), for each unit i ∈ K, draw M scenarios3, y(1)
i,T+1, . . . , y

(M)
i,T+1, from the

estimated conditional density (2-1) for period T + 1.

2. Use {y(1)
i,T+1, . . . , y

(M)
i,T+1}i∈K and the updating Equation (2-2) to obtain

{f̂ (1)
i,T+2, . . . , f̂

(M)
i,T+2}i∈K based on the values of {θ̂i}i∈K and {f̂i,T+1}i∈K.

3. Repeat steps 1 and 2, for periods h = T + 2, . . . , T + H, generating

scenarios y(1)
i,T+h, . . . , y

(M)
i,T+h for each unit i ∈ K and period h ∈ H.

3In the case where explanatory variables are considered, conditioned scenarios will be
generated based on future values for the exogenous variables Xi,T +h that should be provided
for all h ∈ H.
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In the sequel, the spatial-dependence structure is introduced on the

aforementioned individually-generated scenarios through the proposed copula

model.

Part II: Multivariate

1. Given the previously generatedM time series scenarios (temporal paths)

{y(m)
i,T+1, . . . , y

(m)
i,T+H}Mm=1, apply (2-10) to obtain {u(m)

i,T+1, . . . , u
(m)
i,T+H}Mm=1

and apply ỹit = G−1
ν (uit) to find {ỹ(m)

i,T+1, . . . , ỹ
(m)
i,T+H}Mm=1 for each unit

i ∈ K.

2. Using as initial value the estimated, or filtered, ΣT and sampled

quantities {ỹ(m)
i,T+1, . . . , ỹ

(m)
i,T+H}Mm=1 for each unit i ∈ K, apply recursion

(2-13) to find a set of M temporal scenarios of vectors

vech(Q̂(1)
T+h), ..., vech(Q̂(M)

T+h). Using (4-10), find M samples for the

correlation process, Σ(1)
T+h, ...,Σ

(M)
T+h, for all periods h within the

simulation horizon H.

3. To find the joint (multivariate) scenarios for the WPG time series,

apply the conditional sampling technique (see (52)) to produce

conditional vectors of PITs, {u(m)∗
T+h ∈ RK}Mm=1. The aforementioned

conditional sampling technique consists of (i) generating a sample of M

multivariate Student t scenarios, {ỹ(m)
T+h ∈ RK}Mm=1, with the estimated

ν̂ degrees of freedom and correlation matrices, Σ(1)
T+h, ...,Σ

(M)
T+h, and (ii)

using the univariate Student t CDF to find the PITs,

u(m)∗
T+h = [Gν̂(ỹ(m)∗

1,T+h), . . . , Gν̂(ỹ(m)∗
K,T+h)]′.

4. Finally, use the produced univariate temporal scenarios of time varying

parameter, {f̂ (m)
i,T+1, . . . , f̂

(m)
i,T+H}Mm=1 – obtained for each unit i ∈ K, to

calculate the set of multivariate WPG scenarios (K-dimensional vectors

accounting for spatial dependencies), {y(m)∗
T+1 , . . . ,y

(m)∗
T+H}Mm=1, where each

component is obtained as y∗(m)
i,T+h = F−1(u(m)∗

i,T+h|f̂
(m)
i,T+h,Fi,T+h−1, θ̂i).
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By following this Monte Carlo-based procedure applied to the proposed

GAS model, one obtains a set of M joint (multivariate) time series scenarios

for the future WPG of the K units, {y(m)∗
T+1 , . . . ,y

(m)∗
T+H}Mm=1. Hereinafter, we will

refer to the two-step simulation procedure presented in this section as t-GAS

methodology.

2.4
Case study: simulating medium- and long-term joint scenarios

Our data comprise monthly WPG time series, from January 1981 to

December 2011, measured at three wind plants located in northeast Brazil,

namely in Rio do Fogo (RF), Icaraizinho (IC), and Enacel (EN). The last three

years were removed from the estimation process for out-of-sample evaluation.

The intrinsic non-Gaussian nature of WPG time series can be checked by

observing the positive skewness suggested by the shape of the qq plots (see

Figure 2.1) and by the results of the Jarque–Bera test for normality, which has

been rejected for all WPG time series (p values < 0.001). From these, one can

conclude the inadequacy of adopting Gaussian models for such series.
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Figure 2.1: QQ plot of IC monthly WPG time series ranging from January
1981 to December 2011.

In this application, when fitting the beta GAS model, the same lag

structure was used for the three WPG time series, according to (2-2).

Estimated parameters are presented in Table 2.1. Dummy variables were

considered to remove the effect of outliers. To do that, an explanatory

variable was considered with Xi,t = 1 for those periods whose residuals were
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considered outliers and Xi,t = 0 for all other periods. In our application, an

outlier is defined by a residual whose absolute value is larger than three times

its standard deviation. For the analysed dataset, only one outlier was found

in the IC and EN time series as reported in the last row of Table 2.1.

Parameter RF IC EN
Estimate S.E. Estimate S.E. Estimate S.E.

A1 0.336 0.058 0.379 0.049 0.401 0.053
A2 0.282 0.056 0.155 0.066 0.374 0.068
A3 0.175 0.072 −0.079∗ 0.081 0.083∗ 0.057
A11 −0.012∗ 0.039 −0.031∗ 0.043 0.023∗ 0.038
A12 −0.146 0.038 0.048∗ 0.050 0.213 0.053
B1 0.127∗ 0.105 0.638 0.098 −0.055∗ 0.092
B2 −0.207 0.063 0.516 0.053 0.418 0.068
B3 0.574 0.073 −0.311 0.074 0.240 0.058
B11 0.398 0.046 0.389 0.043 −0.383 0.049
B12 −0.197 0.076 −0.426 0.041 0.400 0.071
ω 0.349∗ 0.203 0.229 0.063 0.357 0.143
α 3.448 0.250 3.705 0.273 2.855 0.207

φ
(Sep,1998)
t=201 — — −0.899∗ 0.453 −0.601∗ 0.490

SE stands for the estimated standard errors for each parameter and
* stands for non-statistically significant values at 0.05 a significance
level. We refer to (5) for further details.

Table 2.1: Maximum likelihood estimation of the beta-GAS model applied to
three Brazilian wind farms.

In the following, to investigate the correct model specification, a fully

detailed analysis based on quantile residuals was undertaken and reported

in Table 2.2. A Jarque–Bera test for normality (in which, under the correct

specification of the beta density, the residuals should be normally distributed),

a Ljung–Box test for the absence of autocorrelation, and a Ljung–Box on

the squared residuals to check for ARCH effects were considered (both were

conducted using until lag 30) (53, 54). As reported in Table 2.2, there were no

rejections of the null hypothesis in any of the tests. Hence, it can be concluded

that the proposed beta GAS models are adequate to describe the three WPG

time series.

In this study, the standard SARIMA model (23, 55) was used as

benchmark. Table 2.3 presents, for both beta GAS(12,12) and SARIMA
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Test RF IC EN
Normality 0.731 0.272 0.075

Autocorrelation 0.604 0.836 0.641
ARCH effect 0.477 0.145 0.390

Table 2.2: p values of standard diagnostic tests.

models, some measures of out-of-sample forecasting accuracy by considering

a forecasting horizon of 36 months. In all three measures of accuracy the beta

GAS(12,12) has been shown to be superior to the SARIMA model. In

addition to better point forecasts as given by the conditional density h steps

ahead mean, GAS models have much to offer in this context. First, they

deliver a sound conditional density, which respects the support of the

variable being modeled. Given that, extreme quantiles can be better

estimated through GAS models. Second, through the use of a Student t

copula, the spatial dependence among the WPG time series is duly captured

(and generally located at different geographical areas).

Model Fit RF IC EN
RMSE 6.438 8.976 8.789

beta GAS(12,12) MAE 5.527 7.573 7.358
Pseudo R2 0.676 0.856 0.773
RMSE 8.473 10.391 11.746

SARIMA MAE 6.850 9.059 10.218
Pseudo R2 0.460 0.812 0.677

Table 2.3: Forecasting evaluation between beta GAS(12,12) and SARIMA
models 36 months ahead.

In what follows, we will present the results of the multivariate modeling

from the fitting of a dynamic Student t copula to the three WPG time series

as described in the steps 1–4 of Part II of Section 2.3.2. The estimated values

of the copula parameters are displayed in Table 2.4 and include their degrees

of freedom, which have been estimated by using the profile likelihood. The

estimated value of ν̂ = 340 indicates that the Student t copula can be fairly

well approximated by a Gaussian copula.

From the third column of Table 2.4 (p-value), one can conclude that
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Parameter t-GAS
Estimate S.E. p-value

Ω 1.674 0.356 <0.001
Π 0.143 0.005 <0.001
Υ 0.994 0.001 <0.001

Table 2.4: Maximum likelihood estimation of the second-step GAS model
applied to the PIT variables of three Brazilian wind plants.

all parameters are statistically significant, at 5%, or less. In particular, the

significant value of the parameter Π plays a special role here, because it gives

empirical support for the adoption of a time-varying correlation matrix among

the three WPG time series. In Figure 2.2, the estimated (filtered) correlation

processes is shown. Interestingly, note that the correlation pattern between IC

and RF exhibits a relevant drop between 1990 and 1995, which may constitute

a significant information for portfolio investment applications such as (33, 17).

Figure 2.2: Correlation matrix updated by the GAS mechanism for
{ỹRF,t, ỹIC,t, ỹEN,t}t∈T

Following the steps given in Section 2.3.2, 2000 multivariate scenarios

were generated for the whole out-of-sample period (the last 36 months of the

dataset). To evaluate the quality of the simulated scenarios, we have compared

the empirical quantiles, Q(α%) ∀α ∈ {0.05, 0.25, 0.5, 0.75, 0.95}, of the WPG

time series (both in the original scale)4 with those obtained from the simulated

scenarios produced by both the t-GAS and SARIMA models. The results are

depicted in Figures 2.3 and 2.4.
4The monthly quantiles were calculated by segmenting the WPG time series into 12

monthly time series.
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Figure 2.3: Scenario evaluation of IC, for years 2009, 2010 and 2011, through
the beta t-GAS model against the real data set. Limits of dashed areas
represent the quantiles 5%, 25%, 75%, and 95% of the real data while the
black solid line shows the median.

From these figures, one can conclude that the quantiles obtained from

scenarios produced by the t-GAS model are closer to the historical quantiles

when compared with those obtained by the SARIMA model. In addition, it

is worth mentioning that the SARIMA model generated ∼1.24% of negative

scenarios for IC WPG and 0.061% of scenarios above 100%, which is the

physical limit of production.

To quantify this findings, we evaluate the distance between historical

quantiles and those obtained by both GAS and SARIMA models. We used a

simple forecasting accuracy metric such as the mean absolute percentage error

(MAPE) defined as

MAPEα = 1
T

T∑
t=1

∣∣∣∣∣qαt − ŷαtqαt

∣∣∣∣∣ , (2-17)

where qαt is the α-quantile from historical data and ŷαt is the quantile from

the scenarios produced by the competing models. Such results are presented

in Table 2.5.

The results of Table 2.5 indicate that the scenarios generated by our

proposed framework, especially on the extreme quantiles, are well estimated.

Such outcome was expected due to the fact that the copula model acts mainly

DBD
PUC-Rio - Certificação Digital Nº 1612996/CA



Chapter 2. Generating joint scenarios for renewable generation: The case for
non-Gaussian models with time-varying parameters 36

Figure 2.4: Scenario evaluation of IC, for years 2009, 2010 and 2011, through
the SARIMA model against the real data set. Limits of dashed areas represent
the quantiles 5%, 25%, 75%, and 95% of the real data while the black solid
line shows the median.

GAS SARIMA
α RF EN IC RF EN IC
5% 0.1020 0.1163 0.1471 0.2417 0.3788 0.4030
25% 0.0877 0.1220 0.1860 0.1338 0.3740 0.2263
50% 0.0615 0.0509 0.1005 0.0995 0.2388 0.1692
75% 0.0346 0.0518 0.0523 0.0867 0.1826 0.1136
95% 0.0317 0.0296 0.0466 0.1140 0.1534 0.1583

Table 2.5: Mean absolute errors.

on the behaviour of the extreme quantities of the proposed joint density.

2.5
Conclusion

In this paper, we proposed a framework to simulate joint (multivariate)

non-Gaussian scenarios of wind power generation (WPG) time series taking

into account the spatial dependence among different units. Such scenarios

are highly demanded for the development of many studies in power-system

planning, operations, and generation investment under the uncertainty of

renewable energy generation. The proposed framework was derived by making

use of a recently introduced class of time-series models with time-varying

parameters and arbitrary non-Gaussian distributions, known as Generalized

Autoregressive Score (GAS) models.

Our framework is customized for the range of values that WPG time
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series can assume, allowing the user to select a distribution that better fits

the data. The proposed copula scheme made it possible to capture the spatial

dependence among the WPG time series, producing a new tool for the power

system community to generate joint scenarios taking into account the time-

varying nature of the copula (correlation) parameters. It is worth emphasizing

that the proposed time-varying copula model is an independent model and

can be used to account for spatial dependencies regardless of the univariate

scenario-generation methodology. Hence, it constitutes a broader contribution

to the subject of renewable energy forecasting that can be explored in future

works. Finally, our framework delivers accurate extreme scenarios for WPG

time series (accounting for seasonal effects in both correlation and average),

which are of great importance in risk analysis for power system applications

such planning, operations, and energy trading.
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3
Estimation, forecasting and anomaly detection for
nonstationary streams using adaptive estimation

Keywords: Adaptive filtering, Data stream, Time-varying sparsity,
Forgetting factor

Abstract: Streaming data provides substantial challenges for data analysis.
From a computational standpoint, these challenges arise from constraints
related to computer memory and processing speed. Statistically, the
challenges relate to constructing procedures that can handle so-called concept
drift – the tendency of future data to have different underlying properties to
current and historic data. The issue of handling structure, such as trend and
periodicity, remains a difficult problem for streaming estimation. We propose
RAC (Real-Time Adaptive Component), a penalized-regression modelling
framework which satisfies the computational constraints of streaming data,
and provides capability for dealing with concept drift. At the core of the
estimation process are techniques from adaptive filtering. The RAC
procedure adopts a specified basis to handle local structure, along with a
LASSO-like penalty procedure to handle over-fitting. We enhance the RAC
estimation procedure with a streaming anomaly detection capability.
Experiments with simulated data suggest the procedure has merits for a
variety of scenarios, and an illustration with real cyber-security data further
demonstrates the promise of the method.
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3.1
Introduction

Streaming data – an unending sequence of data values arriving at high

frequency – is becoming ubiquitous due to advances in data acquisition

technology (56, 57). There is a clear demand for the development of streaming

statistical methods, considering applications in diverse areas such as cyber-

security (2), finance (58), fraud detection (1) and structural health monitoring

(10). Such data brings significant challenges, related to both demands arising

from sequential computation and the design of suitable estimators (59, 60).

An outstanding, open, problem relates to handling structure, such as

trend or seasonality, in the data stream. For the batch case, there is a

large arsenal of time series and related tools available to address such issues.

However, in the streaming case the data is revealed sequentially, with the risk

that statistical properties of the data may vary over time. This is known as

concept drift (56), which invalidates the use of methods that assume various

modes of stationarity. The contribution of this paper is to develop a forecasting

procedure and associated local anomaly detector, capable of dealing with the

many challenges of streaming data.

In (61) was considered the objective of characterising and forecasting

an arbitrary streaming data sequence. These authors made use of a partially

observed Markov process, where the evolution of the latent state is governed by

a continuous-time Markov process, which allows modelling of irregularly spaced

observations. The justification for irregular spacing arises from the sampling

frequency of sensors which are constantly interrupted and re-started. (61, Sec.

3) described a very elegant way to combine models, to capture the dynamics

of all possible latent state variables that constitute the underlying structure of

the stream. As an example, they used a composition of a Negative Binomial

model with two seasonal models, considering daily and weekly seasonality

effects respectively, to fit vehicle traffic monitoring data. However, a potential

shortcoming of their approach, is that the analyst must use prior knowledge,
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for instance to specify seasonal components (daily and weekly). This means

that any behaviour outside such specification cannot be accommodated. This

potentially limits the application of the method for tracking an infinite data

stream subject to random fluctuations and concept drift.

One approach which can, in principle, cope with arbitrary structure

in the data stream is based on estimation with Adaptive Forgetting Factors

(AFF) e.g. (62, 9, 63). The use of stochastic gradient descent (9) to update

a Forgetting Factor (FF) enables models to handle arbitrary changes in the

data generating process. The FF is intended to down weight historic data in

the estimation process. To cope with the concept drift, we will utilise adaptive

estimation methods in a number of ways, with the intention of constructing a

streaming regression model for a univariate response, where the explanatory

variables can be regarded as local auto-regressive terms. This model is well

suited to the streaming context, in terms of data storage and computational

requirements, and offers a choice of basis for the auto-regressive regression.

The proposed method, which we refer to as RAC (Real-time Adaptive

Component), relies on a penalised streaming regression-based framework. A

simple form of the streaming setting, described in (64), for a linear regression

model is
yt = x

′

tβt + εt,

where εt ∼ N(0, σ2) are independent and identically distributed (i.i.d.)

Gaussian random variables with known variance σ2. Data processing typically

proceeds as follows: Consider the time step t, acquire basis vector xt ∈ Rd and

use it to forecast ŷt ∈ R, the one step ahead forecast, using the sequentially

estimated weight vector β̂t ∈ Rd. Later, with the acquisition of the true value

yt, β̂t is updated to β̂t+1. In our case, the basis vector represents lagged and

transformed values of the response.

In the streaming context, the choice of basis for the regression, or

equivalently, the set of transformations and lagged variables is critical for
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successful forecasting, and hence anomaly detection. However, since streaming

data is subject to unpredictable temporal variation, the construction of a

suitable basis is challenging. There is the usual problem of ensuring the model

has sufficient complexity to capture underlying structure, while not affording

the opportunity for over-fitting.

This work proposes the use of a relatively large basis (the maximum

dimension defined by computational constraints), and then appeals to sparsity

inducing approaches to manage over-fitting. We use a scheme based on the

Least Absolute Shrinkage Operator (LASSO) technique, proposed by (65) and

further detailed in (66, 67). A vast literature showing that the LASSO attains

good performance under various assumptions on the basis is available (see

(68, 69, 70, 71, 72, 73) and references therein). In our context, the appealing

aspect of the LASSO is that it induces sparsity, which will provide a means for

managing over-fitting. To achieve this, we require a method for sequentially

determining the LASSO penalisation parameter. This issue was addressed in

(74). They proposed an adaptive extension of a LASSO Vector Autoregressive

(VAR) model to perform hourly wind power forecasts considering several wind

farms. Similar to AFF, the authors also used FF to handle the nonstationary

of the signal, albeit in their version it is a fixed quantity. Unfortunately,

despite the autoregressive coefficients of the VAR being updated sequentially,

the penalty term is not. By default, these models are fitted using a grid of

penalty parameters which are computationally unfeasible in streaming data

context. Similarly, (75) proposed an updating rule to the penalty term designed

to estimate the parameters as soon as new data arrives and assuming the

underlying distribution is nonstationary. Similar to AFF, (75) framework also

adopts adaptive filtering estimation based on stochastic gradient descent.

In this work we extend the results of (75) and deploy them in the context

of a penalised streaming regression model, to provide a temporally-adaptive

estimation procedure and corresponding anomaly detection tool.
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In summary, this work has two main contributions. First we extend

(75) to perform forecasting and anomaly detection, using a basis construction

strategy, that accurately tracks a time-varying quantity of interest. Second,

we developed a new method to sequentially perform anomaly detection. This

is achieved using a streaming method based on an approximation of a sum of

weighted i.i.d. chi-squared random variables (76).

3.2
Methodology

In this section the basic components of RAC are introduced. Specifically

the LASSO, adaptive estimation, optimization procedures, basis construction

and extension to anomaly detection are discussed.

3.2.1
The LASSO procedure

The batch LASSO estimator (65) was initially proposed as a variable

selection procedure. Considering the pair (X, y), where y denotes a

T -dimensional response vector and X be a T × d basis, with rows composed

by the vectors xt ∈ Rd, define the simple linear regression model

y = X
′
β + ε, (3-1)

with weight vector β ∈ Rd and ε being i.i.d. Gaussian random variables with

known variance σ2. Then the LASSO estimator is defined as

β̂(γ) = arg min
β

T∑
t=1

(yt − x
′

tβ)2 + γ||β||1, (3-2)

where γ ≥ 0 is the penalty parameter and || · ||1 denotes the `1 norm. Note that

we write β̂(γ) to emphasise the dependence on γ in the estimation of β. Denote

the set of variables as J = {1, ..., d}, define the active set of variables, i.e.,

which variables are selected, as A(γ) = {j ∈ J : β̂(j)(γ) 6= 0}, where β̂(j)(γ)

makes reference to the jth element of the vector. In practice the solutions

β̂(γ) are estimated on a grid of γ values, ranging from 0, where no shrinkage
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is applied, to
γ(max) = max

j∈J

∣∣∣∣ 1T X ′jy
∣∣∣∣ , (3-3)

for which all values of β̂(γ) will be exactly zero, except the intercept and

denote the jth column of X as Xj. Selection of the penalty parameter is

often made through data reuse methods, for example cross-validation (CV),

however this is not feasible for streaming data analysis due to computational

speed requirements.

Typically, prior to the estimation, one should first center the columns of

the basis X ( 1
T

∑T
t=1Xtj = 0) and fix unit variance ( 1

T

∑T
t=1X

2
tj = 1). This is

done to prevent the LASSO solution from depending on the predictor’s units

of measurement. In addition, the response values yt are also assumed to be

centred ( 1
T

∑T
t=1 yt = 0). These centering conditions allows one to omit the

intercept term β(0) when optimizing (3-2). Given the optimal LASSO solution

β̂(γ) on the centred data, it is possible to recover the optimal solutions for the

uncentred data, β̂(γ) remains the same and the intercept is

β̂(0) = ȳ −
d∑
j=1

X̄jβ̂
(j)(γ), (3-4)

where ȳ and {X̄j}dj=1 denotes the mean of the referred variables and are

calculated in the original scale. In the context of streaming data, computing

these values are challenging. Despite having useful properties, the batch

LASSO estimator is not feasible in streaming data environment. In the next

section we introduce adaptive estimation (9), which can be used to adapt the

results of batch LASSO to a streaming data environment, respecting memory

and speed constraints.

3.2.2
Adaptive estimation

The task of filtering corresponds to controlling the rate at which past

information is discarded while avoiding storing all the data in memory. The

most common filtering strategy discards information at a constant rate, fixing
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the value of FF – denoted here by λ. Adaptive filtering methods do not require

the data to be stationary (9). As an alternative to a fixed value of λ, which

may be difficult to set, much interest has focused on sequentially selecting an

adaptive forgetting factor (AFF) – λt, using an updating mechanism based

on stochastic gradient descent (9, 63, 62). Such methods are called adaptive

because the quantity of data discarded is not constant over time. Particularly,

the benefits of using such a strategy are highly relevant in nonstationary

environment.

Suppose we have a univariate stream

y1, y2, ..., yT−1, yT , ...,

then our goal is to accurately estimate the mean at time T . This estimator will

be used to detect anomalous behaviour in the stream. One way to estimate

the mean of the stream E[Yt] is

ȳT = 1
T

T∑
t=1

yt. (3-5)

This estimator makes sense only if E[Yt] = µ, a constant for all time points.

However, denoting τ ∗ as the change point instant, if there was a change at

τ ∗ < T such that

E[Yt] =


µ
′
, t = 1, 2, ..., τ ∗

µ, t = τ ∗ + 1, τ ∗ + 2, ..., T, ...
, µ
′ 6= µ

the arithmetic mean µ̂ = ȳT cannot estimate µ accurately if there is a big

difference between µ
′ and µ. In order to improve the estimation, one could

take the mean of those observations that occur only after the change point τ ∗,

µ̂ = 1
T − τ ∗

[yτ∗+1 + yτ∗+2 + ...+ yτ∗+T ] .
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However, the point τ ∗ is unknown, which makes this estimation unfeasible in

sequential settings.

Such drawback, motivates the use of adaptive estimation to calculate the

current mean process at time t, in which more weight is placed on more recent

observations, and do not store all data in memory. Using such methods results

in improved estimation of the data stream after the change point τ ∗ (62). This

is achieved by introducing an FF, λ ∈ (0, 1), in Equation (3-5) and using a

normalizing constant (wt,λ) to weight the estimation process,

ȳt,λ = 1
wt,λ

t∑
i=1

λt−iyi, wt,λ =
t∑
i=1

λt−i.

The advantage of this formulation is that it leads to a sequential formulation

for streaming contexts by defining the following updating mechanism for t ≥ 1,

mt,λ = λmt−1,λ + yt (3-6)

wt,λ = λwt−1,λ + 1 (3-7)

ȳt,λ = mt,λ

wt,λ
, (3-8)

with m0,λ = w0,λ = 0. Note that setting λ = 0 corresponds to forgetting all

previous observations, and only using the most recent observation, i.e. ȳt,λ = yt.

On the other hand, λ = 1 corresponds to no forgetting, and then the forgetting

factor mean, ȳt,λ, is simply the usual arithmetic mean given in Equation (3-5).

Note that practical algorithms restrict the range of λ to prevent it becoming

too small, see for example (62).

As pointed in (62), the updating mechanism of Equations (3-6)-(3-8)

bears some resemblance to the Exponential Weighted Moving Average

(EWMA) equations. Indeed, they are related; using the above equations it is
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possible to rewrite

ȳt,λ =
(

1− 1
wt,λ

)
ȳt−1,λ + 1

wt,λ
yt

= λ

(
1− λt−1

1− λt

)
ȳt−1,λ +

(
1− λ
1− λt

)
yt,

and then if λ ∈ (0, 1), as t→∞, this becomes

ȳt,λ = λȳt−1,λ + (1− λ)yt,

which is equivalent to the EWMA scheme.

The previous updating mechanism extends readily to the linear regression

framework of Equation (3-1). To achieve this, we require FF estimates of both

mean and covariance of response yt and basis vector xt at each time t. In

(62, 63, 75) an adaptive estimation framework for both sample mean vector,

and sample covariance matrix was used. Define Πt =
(
yt, x

(1)
t , x

(2)
t , ..., x

(d)
t

)′
∈

Rd+1 as the data vector, Π̄t,λ as the sample mean vector and Σt,λ ∈ R(d+1)×(d+1)

the sample covariance matrix. Considering a fixed FF λ, the sample mean

vector is sequentially updated as

Π̄t,λ =
(

1− 1
wt,λ

)
Π̄t−1,λ + 1

wt,λ
Πt, (3-9)

with wt,λ a normalizing constant defined in Equation (3-7) and Π0,λ =

(0, 0, ..., 0)′ a vector of zeros. Note that this is equivalent to applying recursions

(3-6)-(3-8) to yt and each element of the d-dimensional vector xt individually.

Further, the covariance matrix Σt,λ is updated as

Σt,λ =
(

1− 1
wt,λ

)
Σt−1,λ + 1

wt,λ
(Πt − Π̄t,λ)

′(Πt − Π̄t,λ). (3-10)

adopting as Σ0,λ an identity matrix. The effect of these initial values will vanish

when adopting a burn-in period of B observations. Similar to the sequential

algorithms proposed in (62, 63, 75), assuming that observations y1, ...yB will
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not face any change in the underlying structure, this set of observations will

be used to estimate the initial values of the sequential quantities.

3.2.3
Streaming LASSO

RAC relies on a penalised streaming regression-based framework.

However, as pointed out in the introduction, should the stream manifest

concept drift then weighted estimation procedures, as described in

Section 3.2.2, are clearly appropriate.

The formulation of linear regression in this context would feature

coefficients analogous to autoregressive weights in a time series model, called

tap weights in adaptive filtering (9). Restricting to linear forms for the

regression is limited and cannot readily handle trend or seasonality. Thus, we

will design bases for streaming regression with the potential to capture these

phenomena. These bases are potentially overparametrized and hence

streaming penalization methods, adapted from procedures such as LASSO,

are required. In this case, the choice of an optimal regularization parameter

may itself be time-varying (75). In order to sequentially fit the underlying

structure of yt, a time-varying penalty parameter γt ∈ R+ is introduced (c.f.

Equation (3-2)).

The regularization parameter is iteratively updated as

γt+1 = γt − ηγ
∂Ct+1

∂γt
, (3-11)

where Ct+1 = ||yt+1 − x
′
t+1β̂t(γt)||22 is the designated cost function to update

the stochastic gradient associated with γt, while ηγ > 0 is the step size. Here

– also in (75) – a quadratic cost function is adopted since the future mean

behaviour of yt is currently being tracked. Nevertheless, other cost functions

could also be used. For example, (63) define efficient update equations, based

on maximum likelihood, for the exponential family of distributions.

To calculate the derivative ∂Ct+1
∂γt

from Equation (3-11) using implicit
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differentiation,
∂Ct+1

∂γt
= ∂Ct+1

∂β̂t(γt)
∂β̂t(γt)
∂γt

. (3-12)

While the first term of the right hand side of Equation (3-12) is straightforward

to obtain by direct differentiation, the second is more involving. (77) show

that for the LASSO, under a squared error loss function and `1-norm of β,

the optimal coefficient path is piecewise linear, which implies that ∂β̂t(γt)/∂γt

is piecewise constant. A closed-form solution for this derivative, adapted from

(78), is presented in (75, Proposition 1) as

∂β̂t(γt)
∂γt

= −(x′txt)−1sign(β̂t(γt)) (3-13)

= −(Σt,λ)−1sign(β̂t(γt)). (3-14)

This result is equivalent to calculating the gradient of the LASSO solution

as suggested by the LARS formulae in (77, Equations (2.4) - (2.6)).

In addition, one should note that similar to the LARS gradient update,

Equation (3-14) is only nonzero over the active setAt(γt) = {j ∈ J : β̂(j)
t (γt) 6=

0} of regression weights, and zero elsewhere. Note that the subscript t was

added to emphasize that this is a time-varying active set. Therefore, at each

update of ∂β̂t(γt)/∂γt, one should consider the two scenarios

– Non-empty active set, At(γt) 6= ∅, which in this case, as proved in (75)

Equation (3-14) is well-defined;

– The active set is empty, At(γt) = ∅, then both algorithms, LARS and the

one of (75), take a step in the direction of the most correlated predictor

ĵ = arg max
j∈J

{
|∑T

t=1 ytx
(j)
t |
}
. Hence define the gradient as

∂β̂t(γt)
∂γt

(l)

= δ
(l)
ĵ
sign

(
T∑
t=1

ytx
(l)
t

)
,

where δ is the Kronecker delta function. All entries of ∂β̂t(γt)/∂γt will be

zero with exception of the corresponding to the most correlated predictor.
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Note that one could also include an adaptive forgetting factor for the

parameter estimates, Πt and Σt, which can be concurrently updated with γt

just by calculating

λt+1 = λt − ηλ
∂Lt+1

∂λt
,

where Lt+1 can be the squared loss as assumed in (62). However, non

reported experiments suggests that the forecasting performance is

dramatically degraded when compared to the fixed FF approach. This is

related to the fact that λt and γt interact, as described in (74). The

penalization parameter may increase to adapt the regression to, for example,

a new regime while the AFF value will be reduced to give weight to only

recent observations. Both parameters updates are attempting to adapt the

model to the new regime. Therefore, we opt to keep λ fixed and update only

γt as a time-varying quantity in RAC framework.

Adopting the concepts of adaptive filtering discussed in Section 3.2.2,

both Equations (3-9) and (3-10) are suitable for streaming data as they require

storing only a few parameters and data points in computer memory, instead

of all historical values. These concepts of adaptive filtering provide grounds

to propose sequential updates for Equations (3-3) and (3-4), which represent

the maximum value of the penalty parameter and the intercept, respectively.

Considering the operators max{·} and min{·} that returns the maximum and

minimum values, the maximum value of the penalty can be defined as

γ
(max)
t = max

{∣∣∣Π̄(1)
t,λΠ̄(2)

t,λ

∣∣∣ , ∣∣∣Π̄(1)
t,λΠ̄(3)

t,λ

∣∣∣ , ..., ∣∣∣Π̄(1)
t,λΠ̄(d)

t,λ

∣∣∣} , (3-15)

with | · | denoting the absolute value. Moreover, to sequentially ensure that

γt ∈ [0, γ(max)
t ], the following rule must be adopted after the update of both γt

and γ(max)
t ,

γt = max{min{γt, γ(max)
t }, 0}.

Regarding the intercept, Equation (3-4) is rewritten in terms of the elements
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in Π̄t,λ,
β̂

(0)
t (γt) = Π̄(1)

t,λ − (Π̄(2)
t,λ, ..., Π̄

(d)
t,λ)′ β̂t(γt), (3-16)

where different from Equation (3-2), the subscript t denotes that the updating

of β̂t(γt) is sequential and Π̄(j)
t,λ makes reference to the jth element of the vector.

3.2.4
Cyclic coordinate descent

Having defined the update of the penalty parameter, the next step is

to calculate the values of β̂t(γt) sequentially conditional to γt. Unfortunately,

there is no analytical solution to find the minimum in Equation (3-2). Several

approaches are already available to optimize such problems, as pointed out in

(75, 74, 66), when updating multiple regression weights sequentially, however

the most appropriate is the Cyclical Coordinate Descent (CCD) algorithm

(79, 80). The main advantage of CCD is computational efficiency, exploring an

analytic expression for Equation (3-2) taking into account a partial optimum

conditional to one specific weight, while the others remain fixed. Hence the

name cycles, because the analytical expression is considered to update all the

weights successively until convergence is reached.

As described by (66, Sec. 2.4.2), the algorithm will propose an arbitrary

order for the predictors and cycle trough them. In RAC, CCD is adopted

to update the regression weights using the columns of Σt,λ. At each step j

the weights β̂(j)
t (γt) are updated by minimizing the analytic expression for

Equation (3-2) in this coordinate, maintaining the values of remaining variables

β
(l)
t (γt), l 6= j fixed. To remove the effect of the other variables, CCD makes

use of a partial residual r(j)
t = Σ(1)

t,λ −
∑
l 6=j Σ(l)

t,λβ̂
(l)
t (γt).

Hence, the update is given by

β̂
(j)
t (γt)← S

(
β̂

(j)
t (γt) +

〈
Σ(j)
t,λ, r

(j)
t

〉
, γt
)
,

where 〈·, ·〉 denotes the inner product and S(·) makes reference to the soft
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threshold operator defined by

S(z, γ) = sign(z)(|z| − γ)+

=



z − γ, if z > 0 and γ < |z|

z + γ, if z < 0 and γ < |z|

0, if γ > |z|,

with (·)+ denoting the positive part.

Similar to the update proposed in (74) for the VAR coefficients, the

calculations of β̂t(γt) in RAC also involves a FF λ, used in Equations (3-9)

and (3-10).

3.2.5
Basis construction

At the core of our method is an autoregressive regression with basis

designed to capture local structure, overlayed with LASSO-inspired

complexity control to prevent overfitting. Of course, there are many

approaches to constructing a suitable basis which embodies such features.

The features of particularly interest relates to trend and simple curvature.

The two proposed specifications of basis X in this section are designed

to capture the streaming local structure. Such bases try to mimic several well

known time series unobserved components, namely trend and seasonality.

3.2.5.1
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Trig basis

Consider the basis based on a Fourier coefficient expansion for X =

[ψsin ψcos], with

ψcos =



| | . . . |
co

sω
1t

co
sω

2t

co
sω

j
t

| | . . . |


ψsin =



| | . . . |

sin
ω

1t

sin
ω

2t

sin
ω
j
t

| | . . . |


,

where the frequencies ω1, ..., ωj are defined by the user. This is closely related

to the so called `1 trend filtering from (81) where the authors proposed a slight

variation on the Hodrick-Prescott filter.

This basis is strongly recommended when the local structure of the

stream has smooth curvatures, typical of a stationary periodic signal. For

both simulations and real data application, the fixed quantities were defined

as ωj = e−2π + 0.2(j − 1) ∀j ∈ J as an attempt to mimic a Fourier transform.

3.2.5.2
Cycle basis

Define the vector

Λ(n,i) := ((1/n)i, (2/n)i, ..., (n/n)i)′ ,

and for some υ ∈ Rn, denote the indefinite concatenation operator of the

elements of υ by

υR = (υ1, υ2, ..., υn, υ1, υ2, ..., υn, υ1, υ2...)
′
.
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Let Ξmin and Ξmax denote the minimum and maximum sequence lengths,

respectively. The basis can be defined as the concatenation of the vectors

X = [ΛR
(Ξmin,1) ΛR

(Ξmin,2)

ΛR
(Ξmin+1,1) ΛR

(Ξmin+1,2)

...

ΛR
(Ξmax−1,1) ΛR

(Ξmax−1,2)

ΛR
(Ξmax,1) ΛR

(Ξmax,2)],

where the number of columns in X is a function of the quantities Ξmin and

Ξmax. The user needs to specify Ξmin and Ξmax, the minimum and maximum

sequence lengths in the columns of X. To avoid scaling problems, the jth

column Xj is scaled by its maximum value. As a consequence, all columns of

X are scaled to the interval [0, 1]. After this scaling, the X matrix contains in

the first column the sequence from 1 to Ξmin, the second column is the square

of the first, and so on until the last sequence from 1 to Ξmax and its square.

For illustration purposes, consider a small example with stream observed

up to time T = 8 and where the user chooses Ξmin = 6 and Ξmax = 7, the

Cycle basis X used in this case is

X =



1/6 1/36 1/7 1/49

2/6 4/36 2/7 4/49

3/6 9/36 3/7 9/49

4/6 16/36 4/7 16/49

5/6 25/36 5/7 25/49

6/6 36/36 6/7 36/49

1/6 1/36 7/7 49/49

2/6 4/36 1/7 1/49



.

A promising feature of this basis is the possibility to capture piecewise trends
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and quadratic structures caused by seasonal fluctuations. To avoid an extensive

discussion over the choices of these hyperparameters, henceforth in all sections,

Ξmin = 6 and Ξmax = 40. These choices are arbitrary, selected for illustration.

In practice we may set the latter to a large value based on available processing

resources.

3.2.6
Anomaly detection using a weighted sum of chi-squared random variables

To perform anomaly detection with a conditional model such as the RAC,

the most straightforward approach is to look for anomalous values in the

residuals ε̂1, ε̂2, ... at each time t. Intuitively, if the stream is well behaved,

the model should be able to fit the local structure of y1, y2, ..., which will result

in residuals close to zero. On the other hand, if the stream is poorly behaved,

the residuals will exhibit anomalous values.

After estimation of β̂t(γt) and the actual value yt+1 is observed, the

residual one-step ahead forecasting error is

ε̂t+1 = ŷt+1 − yt+1

where ŷt+1 = x
′
t+1β̂t(γt) denotes the one-step ahead forecast. In the streaming

context this generates an unending sequence of residuals, upon which we will

make inference on the quantity

ξt+1 =
(
ŷt+1 − yt+1√

φt+1

)2

,

where φt+1 is a scalar value associated with the variance of yt, i.e., the element

in the position [1, 1] of Σt+1,λ matrix (see Equation (3-10)). Assuming i.i.d.

data, this standardised quantity behaves as
(
ŷt+1 − yt+1√

φt+1

)
∼ N(0, 1) =⇒ ξt+1 ∼ χ2

1.

Since we are tracking a moving target it is convenient to estimate the

squared residual sequence using a forgetting mechanism, as described earlier
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(Section 3.2.2). This also provides a better means for calibration of the

residuals, by computing

κt,θ = θκt−1,θ + ξt (3-17)

νt,θ = θνt−1,θ + 1 (3-18)

ξ̄t,θ = κt,θ
νt,θ

, (3-19)

and using the quantity ξ̄t,θ as the object for inference. Of course, this is the

same recursive formulation as Equations (3-6) - (3-8). The random formulation

of this quantity is a weighted mixture of chi-square distributions, described by

(76), does not have closed form but can be well approximated in streaming

contexts by the Hall-Buckley-Eagleson method (HBE) (82). Using such result,

a sequential anomaly detector is constructed using the HBE method. The user

here needs to control the value of θ, which states how many observations will

be averaged to detect a change at each time t. This is essentially a second stage

of smoothing, using a fixed FF in Equations (3-17)-(3-19). Our experiments

suggest that performance is robust for 0.9 < θ < 1.

To evaluate if there is an anomaly at each time t, the p-value is computed

as
FHBE(ξ̄t,θ, ξt)

where FHBE(·) is the cumulative distribution function (cdf) of a positively-

weighted sum of chi-squared random variables using the HBE method with

coefficient vector ξ̄t,θ evaluated at quantile ξt.

3.2.6.1
False positives

Having developed an anomaly detection method, it is worthwhile to

consider if the expected number of false positive is close to the observed one.

To address this aspect of detection performance, 100 replicates of length 1000

from the following data generation processes (DGP) were used,
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yt = 6 cos
(

2π 1
24t+ 0.1

)
+ εt, with εt ∼ N(0, 4). (3-20)

Noting that there are no changes in this process, the results explore the average

number of false positive for different levels of significance, which we denote as

α ∈ {0.001, 0.01}. A burn-in period of B = 100 observations was adopted. The

results for the average number of observed false positive are displayed in Table

3.1 using the Cycle basis. This table suggests that, for well chosen ηγ and λ

the expected number of false positive is well-calibrated with respect to the

selected significance level, which gives support for the use of RAC for anomaly

detection.

α (ηγ.λ) 0.6 0.7 0.8 0.9 0.95 0.995

0.001

0.1 5.59 5.23 2.36 0.93 0.23 0.01
0.01 3.91 3.40 1.68 0.97 0.19 0.00
10−3 1.80 1.46 0.93 0.58 0.15 0.00
10−4 0.46 0.28 0.33 0.53 0.18 0.01
10−5 0.14 0.11 0.13 0.18 0.11 0.06
10−6 0.16 0.10 0.15 0.08 0.11 0.02

0.01

0.1 14.04 15.06 9.14 7.33 5.11 2.67
0.01 10.05 10.13 6.34 5.17 4.41 2.81
10−3 7.47 6.42 4.17 4.47 3.62 2.56
10−4 6.17 5.51 5.20 4.98 4.26 2.78
10−5 6.55 6.35 6.27 4.44 4.39 2.96
10−6 6.78 7.43 6.73 4.22 4.41 2.72

Table 3.1: Monte Carlo estimates of the observed number of false positive using
the method in Section 3.2.6 over 100 replicates of the DGP in Equation (3-20),
using the Cycle basis.

3.2.7
Algorithm

An illustration on how RAC is sequentially performed is presented in

Algorithm 1.

3.3
Simulation study

In this section we assess the performance of RAC in two respects,

Estimation and Detection. The first is concerned with the method’s forecasting

ability to track an arbitrary signal with underlying structure varying over time.

The second is concerned with the detection capabilities of the method when
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Algorithm 1 Real-Time Adaptive Component
Require: λ ∈ [0.6, 1), ηγ ∈ R+, θ ∈ [0.9, 1), γ0, B

1: for t← 1, ..., t, ... do
2: Receive (yt, x

′
t)

3: Update Πt,λ and Σt,λ

4: With β̂t(γt) calculated at time t− 1
5: β0t(Πt,λ, β̂t(γt))
6: ŷt = β0t + x

′
tβ̂t(γt)

7: εt = yt − ŷt
8: p-value(ε2

t , θ)
9: Update penalty term γt+1

10: ∂Ct+1
∂γt

(x′t,Σt,λ, β̂t(γt), εt)
11: γ

(max)
t (Πt,λ)

12: Calculate γt+1
13: Update regression weights β̂t+1(γt+1)
14: Calculate β̂t+1(γt+1)(γt+1,Σt,λ)

facing a change in the signal’s underlying structure. RAC will be compared to

other methods discussed in the literature, such as AFF (62) and online VAR1

(74). A simple benchmark, which we will refer to as the NAIVE benchmark is

based on using yt as the forecast ŷt+1 is also included.

Our experiments are based on the data generated by the following process

yt =


2 cos

(
2π 1

100t+ 0.1
)

+ εt, if t ≤ 5000

10 cos
(
2π 1

200t+ 0.1
)

+ εt, if 5001 ≤ t ≤ 10000
(3-21)

where εt ∼ N(0, 1). The results obtained in Sections 3.3.1 and 3.3.2 are based

on adopting B = 1000 observations, ηγ ∈ {0.1, 0.01, 10−3, 10−4, 10−5, 10−6}

and λ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.995}.

3.3.1
Estimation performance

A straightforward way to evaluate prediction performance is averaging

forecasting error metrics, such as Mean Square Error (MSE) and Mean

Absolute Error (MAE), over the 100 replicates for all methods. These metrics
1Note that here, as we are only considering one stream at a time, the VAR model is

actually a univariate autoregressive one.
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are defined as

MSE =
T∑

t=B+1

1
T − B

(ŷt+1 − yt+1)2, (3-22)

MAE =
T∑

t=B+1

1
T − B

|ŷt+1 − yt+1|, (3-23)

where T is the total length of the stream.

The averaged forecasting metrics are displayed in Table 3.2. It is clear

that RAC can provide good forecasting performance provided the control

parameters are selected appropriately. Notably, both NAIVE benchmark and

AFF have reasonably good performances. However, its performance for

anomaly detection is low, pointing to the dichotomy between forecasting

accuracy and anomaly detection capability. Considering the online VAR

model of (74), the computation became infeasible for λ < 0.9 because their

method is not appropriate for streaming data. Also, the values of MSE and

MAE for AFF and NAIVE are displayed in only one column. Regarding

AFF, the analyst just chooses ηλ, the step of gradient descent, to update the

forgetting factor λt, while NAIVE no choices are needed. Figures 3.1 and 3.2

show the averages of penalty term γt, p-value and number of non zero

coefficients for β̂(γt) using Cycle and Trig basis respectively. These plots

illustrates the combination of ηγ and λ that minimises the mean square error

(MSE) of one step ahead forecasting error.

Some observations about Figures 3.1 and 3.2. First, RAC is able to

continuously track an arbitrary target after its latent underlying structure faces

a change. Second, around the change point, τ ∗ = 5000, the average penalty

parameter, γt, increases as the average number of non zero weights decreases.

This is expected, because after the change point, RAC will re-estimate new

weights to filter the new underlying structure of the signal. This is consistent

with the findings of (75) that the optimal regularization parameter is time-

varying when the underlying distribution is nonstationary. Also, we note in

DBD
PUC-Rio - Certificação Digital Nº 1612996/CA



Chapter 3. Estimation, forecasting and anomaly detection for nonstationary
streams using adaptive estimation 59

MSE MAE
Basis Method (ηγ, λ) 0.6 0.7 0.8 0.9 0.95 0.995 - 0.6 0.7 0.8 0.9 0.95 0.995 -

- AFF

0.1 - - - - - - 1.6223 - - - - - - 1.0166
0.01 - - - - - - 1.4580 - - - - - - 0.9620
10−3 - - - - - - 1.4415 - - - - - - 0.9558
10−4 - - - - - - 1.4634 - - - - - - 0.9636
10−5 - - - - - - 1.8974 - - - - - - 1.1074
10−6 - - - - - - 3.4723 - - - - - - 1.4458

NAIVE - - - - - - - 2.0379 - - - - - - 1.1379

Cycle RAC

0.1 0.7597 1.2010 3.2935 6.3154 14.8134 33.8847 - 0.6139 0.7530 1.0195 1.6035 2.6562 4.4573 -
0.01 0.7387 1.1245 2.6802 5.9772 14.3902 33.3531 - 0.6144 0.7437 0.9852 1.5846 2.6263 4.4169 -
10−3 0.7686 1.1173 2.2985 5.6565 13.8614 31.0243 - 0.6305 0.7556 0.9803 1.5685 2.6027 4.2791 -
10−4 0.7940 1.1192 2.2305 7.3103 14.8228 30.7455 - 0.6733 0.8021 1.0572 1.6811 2.6729 4.2630 -
10−5 0.9705 1.3857 2.6985 8.6459 21.7764 31.0420 - 0.7580 0.9082 1.1953 1.8728 3.1087 4.2850 -
10−6 1.2111 1.8296 3.3745 12.5211 32.7619 35.1512 - 0.8477 1.0394 1.3295 2.2478 3.7446 4.5673 -

VAR - - - - 8.2948 9.1316 8.2312 - - - - 1.7803 1.9708 1.8042 -

Trig RAC

0.1 0.6531 1.0815 1.8610 3.2311 7.2563 8.0548 - 0.6154 0.7571 0.9736 1.4339 2.1468 2.1674 -
0.01 0.6347 0.9621 1.5317 3.1070 7.2131 8.0203 - 0.6175 0.7428 0.9295 1.4113 2.1358 2.1562 -
10−3 0.6408 0.9184 1.3027 2.7414 6.5646 8.1231 - 0.6340 0.7574 0.9018 1.3253 2.0184 2.1750 -
10−4 0.6897 0.9893 1.3444 1.8909 3.7482 8.7487 - 0.6614 0.7927 0.9213 1.0878 1.4542 2.2491 -
10−5 0.7556 1.0880 1.5119 2.0017 2.2885 7.9473 - 0.6933 0.8315 0.9776 1.1163 1.1734 2.1110 -
10−6 0.8323 1.1941 1.7840 2.4928 2.1407 6.2601 - 0.7271 0.8704 1.0594 1.2404 1.1576 1.8774 -

VAR - - - - 8.7856 8.3085 8.0287 - - - - 1.8632 1.7905 1.7484 -

Table 3.2: Average forecasting accuracy measures, MAE and MSE, over 100
replicates of the process displayed by Equation (3-21). Note that the results of
AFF are the same across columns because the forgetting factors are adaptive.
Also, the online VAR model for values of λ < 0.9 were not feasible to compute.

Figures 3.1 and 3.2 the average behaviour of the p-values around the change

point. Considering a 5% significance level, on average RAC rejects the null

hypothesis that the stream is not experiencing anomalous behaviour around

t = τ ∗. Finally, regarding the average non zero weights plots, a LOESS curve

(83, 84) is fitted to provide additional intuition. For both bases, on average, the

number of non zero weights in each segment appears reasonably stable, though

subject to substantial variability. The Trig basis, on average, seems better

suited to this specific signal. A possible explanation is that with the Cycle

basis, RAC selects quadratic terms to fit local curvatures. This is evident after

t = 5000, when the amplitude of the curve is higher, fewer quadratic terms are

selected – implying the slight decay in the LOESS curve.

3.3.2
Detection performance

The AFF (62) method has its own detection method while online VAR,

NAIVE and RAC will use the one proposed in Section 3.2.6. Allowing ϑ

observations after a change was proposed in (85), and also adopted in this

work, since there may be a slight delay after a change occurs. The average

false detection (FD) rate and average correct detection (CD) rate over 100
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Figure 3.1: Average quantities of the penalty term γt, p-value with a dashed
horizontal line at the 5% significance level and number of non zero weights β̂(γt)
with a smoothed LOESS curve over 100 Monte Carlo simulations using Cycle
basis. The title of the figures shows the parameters ηγ and λ that produces the
minimum Mean Square Error.

replicates are calculated as:

– For each replicate, false detection (FD) is calculated as the proportion
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Figure 3.2: Average quantities of the penalty term γt, p-value with a dashed
horizontal line at the 5% significance level and number of non zero weights
β̂(γt) with a smoothed LOESS curve over 100 Monte Carlo simulations using
Trig basis. The title of the figures shows the parameters ηγ and λ that produces
the minimum Mean Square Error.

of events that are defined as anomalous when yt /∈ (τ ∗, τ ∗ + ϑ);

– For each replicate, correct detection (CD) is a indicator function that
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assumes 1 if an anomaly is detected when yt ∈ (τ ∗, τ ∗ + ϑ) and zero

otherwise.

Tables 3.3 and 3.4 show the CD and FD rates of 100 replicates when adopting

ϑ = 20 for both basis Cycle and Trig.

CD
α Basis Method (ηγ, λ) 0.6 0.7 0.8 0.9 0.95 0.995 -

0.0001

- AFF

0.1 - - - - - - 0.00 (0.0000)
0.01 - - - - - - 0.00 (0.0000)
10−3 - - - - - - 0.00 (0.0000)
10−4 - - - - - - 0.00 (0.0000)
10−5 - - - - - - 0.00 (0.0000)
10−6 - - - - - - 0.27 (0.4461)

NAIVE - - - - - - - 0.00 (0.0000)

Cycle RAC

0.1 0.31 (0.4648) 0.30 (0.4605) 0.20 (0.4020) 0.04 (0.1969) 0.00 (0.0000) 0.00 (0.0000) -
0.01 0.22 (0.4163) 0.23 (0.4229) 0.24 (0.4292) 0.11 (0.3144) 0.00 (0.0000) 0.01 (0.1000) -
10−3 0.21 (0.4093) 0.25 (0.4351) 0.17 (0.3775) 0.08 (0.2726) 0.00 (0.0000) 0.00 (0.0000) -
10−4 0.16 (0.3684) 0.11 (0.3144) 0.10 (0.3015) 0.02 (0.1407) 0.00 (0.0000) 0.00 (0.0000) -
10−5 0.11 (0.3144) 0.09 (0.2876) 0.04 (0.1969) 0.01 (0.1000) 0.00 (0.0000) 0.00 (0.0000) -
10−6 0.04 (0.1969) 0.02 (0.1407) 0.06 (0.2386) 0.01 (0.1000) 0.00 (0.0000) 0.01 (0.1000) -

VAR - - - - 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -

Trig RAC

0.1 0.17 (0.3775) 0.12 (0.3265) 0.08 (0.2726) 0.02 (0.1407) 0.03 (0.1714) 0.31 (0.4648) -
0.01 0.17 (0.3775) 0.14 (0.3487) 0.22 (0.4163) 0.12 (0.3265) 0.08 (0.2726) 0.35 (0.4793) -
10−3 0.19 (0.3942) 0.20 (0.4020) 0.21 (0.4093) 0.17 (0.3775) 0.08 (0.2726) 0.28 (0.4512) -
10−4 0.20 (0.4020) 0.10 (0.3015) 0.11 (0.3144) 0.05 (0.2190) 0.10 (0.3015) 0.15 (0.3588) -
10−5 0.15 (0.3588) 0.13 (0.3379) 0.08 (0.2726) 0.04 (0.1969) 0.12 (0.3265) 0.21 (0.4093) -
10−6 0.11 (0.3144) 0.07 (0.2564) 0.06 (0.2386) 0.05 (0.2190) 0.04 (0.1969) 0.22 (0.4163) -

VAR - - - - 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -

0.01

- AFF

0.1 - - - - - - 0.00 (0.0000)
0.01 - - - - - - 0.00 (0.0000)
10−3 - - - - - - 0.00 (0.0000)
10−4 - - - - - - 0.00 (0.0000)
10−5 - - - - - - 0.00 (0.0000)
10−6 - - - - - - 0.45 (0.5000)

NAIVE - - - - - - - 0.04 (0.1969)

Cycle RAC

0.1 0.99 (0.1000) 1.00 (0.0000) 0.99 (0.1000) 0.99 (0.1000) 0.84 (0.3684) 1.00 (0.0000) -
0.01 0.99 (0.1000) 1.00 (0.0000) 0.99 (0.1000) 0.97 (0.1714) 0.77 (0.4229) 1.00 (0.0000) -
10−3 0.98 (0.1407) 0.98 (0.1407) 0.99 (0.1000) 1.00 (0.0000) 0.88 (0.3265) 1.00 (0.0000) -
10−4 0.98 (0.1407) 1.00 (0.0000) 0.97 (0.1714) 0.94 (0.2386) 0.76 (0.4292) 1.00 (0.0000) -
10−5 0.97 (0.1714) 0.98 (0.1407) 0.98 (0.1407) 0.93 (0.2564) 0.81 (0.3942) 1.00 (0.0000) -
10−6 0.88 (0.3265) 0.93 (0.2564) 1.00 (0.0000) 0.93 (0.2564) 0.87 (0.3379) 1.00 (0.0000) -

VAR - - - - 0.03 (0.1714) 0.01 (0.1000) 0.02 (0.1407) -

Trig RAC

0.1 0.98 (0.1407) 0.98 (0.1407) 0.94 (0.2386) 0.97 (0.1714) 1.00 (0.0000) 1.00 (0.0000) -
0.01 0.96 (0.1969) 0.98 (0.1407) 0.94 (0.2386) 0.97 (0.1714) 1.00 (0.0000) 1.00 (0.0000) -
10−3 1.00 (0.0000) 0.99 (0.1000) 1.00 (0.0000) 0.97 (0.1714) 1.00 (0.0000) 1.00 (0.0000) -
10−4 0.99 (0.1000) 1.00 (0.0000) 0.98 (0.1407) 1.00 (0.0000) 1.00 (0.0000) 1.00 (0.0000) -
10−5 1.00 (0.0000) 1.00 (0.0000) 0.99 (0.1000) 0.97 (0.1714) 0.98 (0.1407) 1.00 (0.0000) -
10−6 1.00 (0.0000) 0.97 (0.1714) 0.96 (0.1969) 0.87 (0.3379) 0.97 (0.1714) 1.00 (0.0000) -

VAR - - - - 0.02 (0.1407) 0.08 (0.2726) 0.04 (0.1969) -

Table 3.3: Average of Correct Detection (CD) over 100 replicates of the process
displayed by Equation (3-21). Note that the online VAR model for values of
λ < 0.9 were not feasible to compute.

The main points from Tables 3.3, 3.4, first, RAC appears accurate at

detect anomalies due to its high CD rates, and corresponding low FD rates,

second the performance of RAC is somehow dependent on the choice of control

parameters, third in this simulation both choices of basis perform comparably.

Finally, the effect of the significance on detection performance is as expected.

The poor CD performance of AFF is due to the fact that it cannot cope

with underlying structure in the data. It was designed to calculate a dynamic
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FD
α Basis Method (ηγ, λ) 0.6 0.7 0.8 0.9 0.95 0.995 -

0.0001

- AFF

0.1 - - - - - - 0.35 (0.0078)
0.01 - - - - - - 0.27 (0.0103)
10−3 - - - - - - 0.28 (0.0105)
10−4 - - - - - - 0.32 (0.0087)
10−5 - - - - - - 0.41 (0.0048)
10−6 - - - - - - 0.44 (0.1437)

NAIVE - - - - - - - 0.00 (0.0000)

Cycle RAC

0.1 0.00 (0.0003) 0.00 (0.0003) 0.00 (0.0004) 0.00 (0.0003) 0.00 (0.0001) 0.00 (0.0000) -
0.01 0.00 (0.0003) 0.00 (0.0003) 0.00 (0.0004) 0.00 (0.0003) 0.00 (0.0000) 0.00 (0.0000) -
10−3 0.00 (0.0002) 0.00 (0.0003) 0.00 (0.0003) 0.00 (0.0003) 0.00 (0.0000) 0.00 (0.0000) -
10−4 0.00 (0.0001) 0.00 (0.0001) 0.00 (0.0002) 0.00 (0.0002) 0.00 (0.0000) 0.00 (0.0000) -
10−5 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0001) 0.00 (0.0001) 0.00 (0.0000) 0.00 (0.0000) -
10−6 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -

VAR - - - - 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -

Trig RAC

0.1 0.00 (0.0001) 0.00 (0.0002) 0.00 (0.0002) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -
0.01 0.00 (0.0000) 0.00 (0.0001) 0.00 (0.0002) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -
10−3 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0001) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -
10−4 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -
10−5 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -
10−6 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -

VAR - - - - 0.00 (0.0000) 0.00 (0.0000) 0.00 (0.0000) -

0.01

- AFF

0.1 - - - - - - 0.40 (0.0057)
0.01 - - - - - - 0.36 (0.0078)
10−3 - - - - - - 0.37 (0.0069)
10−4 - - - - - - 0.39 (0.0056)
10−5 - - - - - - 0.44 (0.0035)
10−6 - - - - - - 0.43 (0.1206)

NAIVE - - - - - - - 0.00 (0.0005)

Cycle RAC

0.1 0.00 (0.0008) 0.01 (0.0008) 0.01 (0.0009) 0.01 (0.0010) 0.01 (0.0007) 0.00 (0.0001) -
0.01 0.00 (0.0006) 0.00 (0.0008) 0.01 (0.0008) 0.00 (0.0009) 0.00 (0.0007) 0.00 (0.0001) -
10−3 0.00 (0.0007) 0.00 (0.0007) 0.00 (0.0008) 0.00 (0.0009) 0.00 (0.0008) 0.00 (0.0001) -
10−4 0.00 (0.0007) 0.00 (0.0007) 0.00 (0.0008) 0.00 (0.0010) 0.00 (0.0007) 0.00 (0.0001) -
10−5 0.00 (0.0007) 0.00 (0.0007) 0.00 (0.0008) 0.00 (0.0009) 0.00 (0.0007) 0.00 (0.0001) -
10−6 0.00 (0.0008) 0.00 (0.0007) 0.00 (0.0008) 0.00 (0.0009) 0.00 (0.0006) 0.00 (0.0001) -

VAR - - - - 0.00 (0.0005) 0.00 (0.0005) 0.00 (0.0005) -

Trig RAC

0.1 0.00 (0.0008) 0.01 (0.0009) 0.01 (0.0009) 0.00 (0.0006) 0.00 (0.0004) 0.00 (0.0003) -
0.01 0.00 (0.0007) 0.00 (0.0008) 0.00 (0.0007) 0.00 (0.0007) 0.00 (0.0003) 0.00 (0.0004) -
10−3 0.00 (0.0005) 0.00 (0.0006) 0.00 (0.0005) 0.00 (0.0006) 0.00 (0.0004) 0.00 (0.0003) -
10−4 0.00 (0.0005) 0.00 (0.0004) 0.00 (0.0006) 0.00 (0.0006) 0.00 (0.0006) 0.00 (0.0003) -
10−5 0.00 (0.0005) 0.00 (0.0005) 0.00 (0.0005) 0.00 (0.0006) 0.00 (0.0005) 0.00 (0.0003) -
10−6 0.00 (0.0004) 0.00 (0.0005) 0.00 (0.0005) 0.00 (0.0005) 0.00 (0.0006) 0.00 (0.0004) -

VAR - - - - 0.00 (0.0005) 0.00 (0.0005) 0.00 (0.0005) -

Table 3.4: Average of False Detection (FD) over 100 replicates of the process
displayed by Equation (3-21). Note that the online VAR model for values of
λ < 0.9 were not feasible to compute.

average under the assumption of i.i.d. Gaussian observations. If seasonality

is present in the data, filtering the unconditional mean in this case will end

up resulting in p-values oscillating with the stream’s unconditional mean. The

good performance of RAC’s CD and FD rate, when comparing to NAIVE and

online VAR, provides evidence that this method has merits regarding Detection

performance.

3.4
Real data: Cyber-security

Cyber-crime is an increasing burden to society, costing around $600

billions per annum (86). (87) mention that operational anomaly detection

methods in this area predominantly rely on signature-based methods, which
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seek to identify events and behaviour of known form. Such methods are

incapable of dealing with so-called “zero-day” attacks – activities that have

not previously been seen (88). Moreover, the increasing intensity and

consequences of cyber-attacks suggests that existing signature-based methods

are insufficient. There is a burgeoning research area using automatically

collected computer and network data in conjunction with statistical and

machine learning methods which is focused on anomaly detection.

Specifically, detecting departures from “normal” behaviour (89, 90). These

data-driven methods are intended to complement existing signature-based

tools.

There are a number of challenges in developing statistical methods for

cyber-security. Some relate to the volume and velocity of the data – typical data

sources can be vast in a large enterprise, and as demonstrated later, data can

arrive at very high rates. Another type of challenge relates to practical usage.

Any data-driven anomaly detection method will suffer from false positives, and

these create a misleading and potentially costly false signal. In this section we

deploy RAC against cyber-security data sets provided by Los Alamos National

Laboratory (LANL). The data set is described in detail in (87) and is available

online2.

We focus on the host Log data, which comprises a subset of computer

event logs collected from all computers running the Microsoft Windows

operating system on LANL’s enterprise network. Events from the host log

included in the data set are all related to authentication and process activity

on each machine. We focus on this data source, rather than the more widely

studied Network Flow data because, as noted in (87), remote attackers and

malicious insiders increasingly use encryption, hence reducing the

effectiveness of communication-based detection mechanisms.

There are several kinds of events and log on-types described by (87). We

only consider those which are driven only by human behaviour, i.e., which do
2 https://csr.lanl.gov/data/2017.html
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not run any automated process periodically. The selected events were

– 4624: An account was successfully logged on;

– 4625: An account failed to logon;

– 4634: An account was logged off;

– 4800: The workstation was locked;

– 4801: The workstation was unlocked;

– 4802: The screensaver was invoked;

– 4803: The screensaver was dismissed.

For each of these event types, we construct a data stream,

y1, y2, ...yt, yt+1, ..., that counts the number of events per minute. For the

LANL data, this yields seven time series, each consisting of 129600 data

points. A one-minute window is a plausible size in this context, given

constraints on data collection and the requirement for timely detection. We

then want to assess RAC’s performance, in terms of Estimation and

Detection, compared to AFF, online VAR and NAIVE. For forecasting

accuracy, similar to the simulations in Section 3.3, MSE and MAE are

adopted.

The streams are formed from count data, and hence strictly non-negative.

RAC was not designed to specifically deal with this case – modifications are

possible, though challenging and hence left to future work. Here, we use a

simple rule whereby negative predictions from RAC are set to zero. While

this is perhaps the crudest possible fix, it can be applied consistently without

computational overhead.

To explore the capabilities of RAC, the results are considered in three

different contexts:

– W : The whole data set for each event will be used, i.e., t = 1, ..., 129600;

– At(γt) 6= ∅: Only predictions from those points where at least one weight

of β̂t(γt) is non zero will be considered;
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– At(γt) = ∅: Only predictions from those points where all the weights of

β̂t(γt) are equals to zero will be considered.

The results for Estimation metrics considering one step ahead forecasting

error over the sets W , At(γt) 6= ∅ and At(γt) = ∅ are depicted in Tables

3.5, 3.6 and 3.7. The initial values were fixed as follows. For burn-in, we use

B = 1440 observations, i.e., one day of data. The remaining control parameters

are selected as γ0 = 10, ηγ = 0.01, and λ = 0.6. The choices of ηγ and λ are

the values that produces minimum MSE in the simulations of Section 3.3,

while γ0 was fixed based on empirical evidence while running the simulations.

Regarding online VAR, we also fixed λ = 0.995 which was the best results

regarding MSE performance in the simulations.

Considering the forecasting errors when yt ∈ W , displayed in Table

3.5, RAC is able to accurately track a complicated target with underlying

structure varying over time. Considering MSE and MAE, RAC outperform

the other methods in all of the 7 cyber-security examples, regardless of the

selected basis. The complex structure of RAC allows for different combination

of basis functions, and notably allows for all regression weights to be forced

to zero. This provides some modelling advantage, as the results in Table 3.6

clearly illustrate. Such advantage takes into account, for the calculation of both

forecasting metrics, only events where At(γt) 6= ∅, i.e., ticks of yt where RAC

estimates weights β̂t(γt) 6= 0. In comparing bases, on average, the Trig basis

tends to select more coefficients than the Cycle basis, producing smaller errors

in At(γt) 6= ∅. This can be verified in the last two columns of Table 3.6, the

total number of points in which the weights β̂t(γt) are different from zero and

the proportion compared to the total number of observations T = 129000.

Finally, consider At(γt) = ∅, the case in which all RAC weights β̂t(γt)

equal zero. In this case, RAC outperformed the benchmarks in terms of

forecasting performance. This suggests that RAC is capable of handling periods

that are locally constant, in addition to periods exhibiting high non-linearity.
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This also provides evidence about the proposed updates in Equations (3-15)

and (3-16), since the forecast is produced only by the dynamic intercept β̂(0)
t (γt)

in this set.

Basis Error Metric EVENT AFF VAR NAIVE RAC

Cycle

MSE

4624 103.3800 113.5808 249.8860 62.6507
4625 2.1279 1.8457 4.6593 1.1388
4634 102.9293 113.2251 249.1380 62.4926
4800 15.7501 19.7395 40.7777 10.6797
4801 15.2402 17.0619 37.8169 9.7710
4802 5.5410 5.9006 12.8318 3.4723
4803 22.9722 21.8406 46.7114 14.5741

MAE

4624 4.8119 5.1336 7.6086 3.7678
4625 0.6953 0.6575 1.0016 0.5079
4634 4.8084 5.1311 7.6050 3.7660
4800 1.9622 2.2392 3.1527 1.5969
4801 1.9327 2.0996 3.0590 1.5265
4802 1.3198 1.3481 1.9611 1.0011
4803 1.3916 1.3624 2.0127 1.0252

Trig

MSE

4624 103.3800 113.1731 249.8860 61.5966
4625 2.1279 3.1763 4.6593 1.1086
4634 102.9293 112.8646 249.1380 61.9998
4800 15.7501 20.3095 40.7777 10.8447
4801 15.2402 17.5381 37.8169 9.1979
4802 5.5410 8.0557 12.8318 3.2608
4803 22.9722 25.8474 46.7114 13.9264

MAE

4624 4.8119 5.2245 7.6086 3.7522
4625 0.6953 0.8533 1.0016 0.5074
4634 4.8084 5.2258 7.6050 3.7546
4800 1.9622 2.3142 3.1527 1.5933
4801 1.9327 2.1636 3.0590 1.5190
4802 1.3198 1.6012 1.9611 0.9927
4803 1.3916 1.6308 2.0127 1.0175

Table 3.5: One step ahead estimation accuracy in cyber-security events by ID
using the whole set yt ∈ W . Response variable is the count of events by minute
over 90 days, which end up with 129600 observations. Both forecasting metrics
MSE and MAE are calculated as defined by Equations (3-22) and (3-23) with
a burn-in period of one day, i.e., B = 1440.

Regarding the Detection performance, it is nearly impossible to

evaluate on real cyber-security data sets since it is unlabelled, i.e., there is no

information regarding when, or if, an anomaly happened. We perform

anomaly detection using the approach described in Section 3.2.6, fixing a

p-value of 1/B observations, i.e., we intend to capture 1 anomaly per day and

forgetting factor θ = 0.95. Figures 3.3 and 3.4 show 6 days of the first week of

LANL’s host log data set for the 7 described events, excluding the first day,

which was used as burn-in. The vertical lines make reference to detected

anomalies. Some of them seem to capture unusual patterns, but as argued we

cannot prove these are actual anomalies due to the absence of labelled data.
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Basis Error Metric EVENT AFF VAR NAIVE RAC Size Prop

Cycle

MSE

4624 149.6860 172.0855 238.2412 101.1185 26251 20.26%
4625 6.0015 5.3002 8.5379 3.6542 12408 9.57%
4634 147.0458 170.0318 235.8500 100.4786 26108 20.15%
4800 19.3835 25.1502 34.9095 16.2884 26111 20.15%
4801 18.8977 21.9409 30.6779 14.4425 26249 20.25%
4802 8.9511 10.1686 14.1310 6.8977 28277 21.82%
4803 61.4953 51.5657 135.1770 44.4220 27721 21.39%

MAE

4624 4.2259 4.4351 5.1185 3.5842 26251 20.26%
4625 1.4401 1.3992 1.6096 1.1908 12408 9.57%
4634 4.1452 4.3580 5.0305 3.5313 26108 20.15%
4800 1.6654 1.8705 2.0532 1.4700 26111 20.15%
4801 1.6841 1.8371 2.0411 1.4510 26249 20.25%
4802 1.3897 1.4118 1.5990 1.1433 28277 21.82%
4803 1.5060 1.5084 1.7897 1.2306 27721 21.39%

Trig

MSE

4624 57.6816 66.8097 99.7589 39.4957 51842 40.00%
4625 0.9168 1.1874 1.5913 0.5393 70446 54.36%
4634 57.0664 66.4187 101.5935 40.7172 51798 39.97%
4800 7.3827 10.3185 17.0442 7.0982 51580 39.80%
4801 6.5142 8.1232 13.0563 4.6416 51966 40.10%
4802 3.8455 4.9307 6.8386 2.5562 56723 43.77%
4803 30.3047 30.0738 38.3748 14.5867 54464 42.02%

MAE

4624 2.0361 2.3369 2.8391 1.7498 51842 40.00%
4625 0.2971 0.3400 0.3834 0.2360 70446 54.36%
4634 2.0818 2.3708 2.8927 1.7980 51798 39.97%
4800 0.9357 1.1258 1.3295 0.8301 51580 39.80%
4801 0.8732 1.0062 1.2190 0.7532 51966 40.10%
4802 0.8459 0.9323 1.0866 0.6683 56723 43.77%
4803 0.9059 0.9825 1.1523 0.7037 54464 42.02%

Table 3.6: One step ahead estimation accuracy in cyber-security events by
ID adopting At(γt) 6= ∅. Response variable is the count of events by minute
over 90 days, which end up with 129600 observations. Both forecasting metrics
MSE and MAE are calculated only considering point where At(γt) 6= ∅. The
last two columns states the total number of points in which the weights β̂t(γt)
are different from zero and the proportion compared to the total number of
observations T = 129000.
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Basis Error Metric EVENT AFF VAR NAIVE RAC

Cycle

MSE

4624 91.0496 98.5110 251.9971 52.6347
4625 1.7107 1.4753 4.2392 0.8761
4634 91.2466 98.6927 251.6752 52.7576
4800 14.7294 18.3550 42.0677 9.2123
4801 14.2279 15.8053 39.4890 8.5523
4802 4.5636 4.6923 12.4191 2.4991
4803 12.2102 13.6369 22.0932 6.2720

MAE

4624 4.9507 5.3135 8.2301 3.8090
4625 0.6147 0.5779 0.9345 0.4347
4634 4.9656 5.3288 8.2437 3.8206
4800 2.0308 2.3335 3.4235 1.6256
4801 1.9908 2.1672 3.3116 1.5431
4802 1.2995 1.3300 2.0608 0.9605
4803 1.3572 1.3220 2.0698 0.9668

Trig

MSE

4624 133.0916 144.6666 348.8498 75.9926
4625 3.5565 5.6040 8.2942 1.7866
4634 132.7266 144.3692 346.2823 75.8284
4800 21.1436 27.0388 56.2152 13.2486
4801 20.9698 23.9592 54.2028 12.1999
4802 6.8249 10.5370 17.4267 3.7890
4803 17.2771 22.7239 52.0130 13.2162

MAE

4624 6.6488 7.1859 10.7738 5.0791
4625 1.1662 1.4797 1.7324 0.8286
4634 6.6102 7.1623 10.7280 5.0490
4800 2.6325 3.1145 4.3493 2.0935
4801 2.6354 2.9529 4.2828 2.0279
4802 1.6874 2.1321 2.6399 1.2439
4803 1.7393 2.1099 2.6315 1.2419

Table 3.7: One step ahead estimation accuracy in cybersecurity events by ID
adopting At(γt) = ∅. Response variable is the count of events by minute over
90 days, which end up with 129600 observations. Both forecasting metrics MSE
and MAE are calculated only considering point where At(γt) = ∅.
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Figure 3.3: Detection performance of RAC using Cycle basis and the approach
described in Section 3.2.6 during the first 6 days, discarding the burn-in day.
The p-value used to detect anomalous behaviour was fixed in 1/B.
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Figure 3.4: Detection performance of RAC using Trig basis and the approach
described in Section 3.2.6 during the first 6 days, discarding the burn-in day.
The p-value used to detect anomalous behaviour was fixed in 1/B.
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3.5
Conclusion

This paper propose RAC, a framework to estimate, forecast and perform

anomaly detection in streaming data environments. Empirical results regarding

Estimation and Detection performance, both for simulated and real data sets,

provides evidence that our proposed framework is able to track a moving target,

and identify changes in local structure.

In the cyber-security example, the forecasting accuracy of RAC was

better than existing methods for almost all of the ID events. Additionally,

both bases proposed to sequentially fit the underlying structure of the signal,

namely Trig and Cycle had excellent performance. Regarding the Detection

performance, we could only evaluate it in simulation studies, due to the fact

that LANL’s cyber-security data set is unlabelled. Still, RAC performed well

when comparing correct and false detection rates against the benchmarks.

For future work, we mention a few possible extensions of this framework,

(i) sequential prediction intervals might be calculated adapting the results of

(91) to a time-varying penalty term γt, (ii) extensions respecting the range of

response, essentially extending the framework to the coverage of GLMs.
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4
Unsupervised streaming methods for anomaly structure
detection in instrumented infrastructure

Keywords: Structural Health Monitoring, streaming PCA, stochastic
gradient descent, adaptive estimation, conformal prediction.

Abstract: Structure Health Monitoring often involves instrumenting
structures with distributed sensor networks. These networks typically provide
high frequency data describing the spatio-temporal behaviour of the assets. A
main objective of SHM is to reason about changes in structures’ behaviour
using sensor data. We construct a streaming anomaly detection method for
data from a railway bridge instrumented with a fibre-optic sensor network.
The data exhibits trend over time, which may be attributed to environmental
factors, calling for a temporally adaptive estimation. Exploiting a latent
structure present in the data motivates a quantity of interest. This quantity
is estimated sequentially and adaptively using a new formulation of streaming
Principal Component Analysis. Anomaly detection for this quantity is then
provided using Conformal Prediction. Like all streaming methods, the
proposed method has free control parameters which are set using simulations
based on bridge data. Experiments demonstrate that this method can operate
at data rate while providing accurate tracking of the target quantity. Further,
the anomaly detection is able to detect train passage events. Finally the
method reveals a previously unreported cyclic structure present in the data.
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4.1
Introduction

Modern civil engineering is increasingly leveraging sensor technology to

understand and monitor physical assets, such as bridges and pipe networks

(92, 93). This sensor technology is becoming cheaper to deploy and hence

more widely used. The ultimate ambition for such sensor networks is to better

understand the behaviour and degradation of physical assets. However, there

are significant data processing and analysis challenges prior to this.

We are concerned with the analysis of sensor data from railway bridges

instrumented with a fibre-optic sensor network. The sensor system is used to

quantify the stress behaviour of the asset, typically at high frequency. Taking

bridges as an example, the sensor network is distributed spatially over the

bridge and in some sense captures spatio-temporal response. Our experience

suggests that civil engineers do not yet fully appreciate that these sensor

systems manifest a noise process independent of the behaviour of the bridge

and moreover the measurements represent only a partial characterisation of

the physics assumed to define bridge behaviour.

We seek to develop a streaming method for monitoring the bridge, as

a whole, for train passage events and other events which manifest similar

responses. This is challenging for a number of reasons. First, the data is

recorded at high frequency, often 250 Hz. Constructing sequential methods

that can update at this rate is challenging. Second, the data is subject to

explainable temporal drift, for example relating to temperature, and other less

understood processes. This calls for temporally adaptive methodology. Third,

since the sensor system is physically distributed, it provides a view of the whole

bridge at every time instance (hereafter, tick). A train passage event has a

direction with relation to the sensors and hence manifests differentially over

the network at any tick. Analysing sensors separately will lead to definitional

problems (e.g. when did the event start) and issues of multiple testing.

In this paper we propose a novel streaming methodology that accurately
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detects the start of train passage events over the entire bridge. Exploratory

data analysis reveals a striking low dimensional latent structure arising from

these sensor networks. This structure is observed when the bridge is “at rest”,

that is when a train is not interacting with the bridge. Further, the structure

is a linear combination of all sensors in the network, and hence represents

the collective behaviour of the bridge. We develop a streaming estimation

procedure for tracking components of this structure at data rate. Data analysis

further reveals a collapse of this latent structure during train passage events.

Our estimation procedure forms the basis of an anomaly detection procedure

designed to capture the start of train passage events.

The structure of this paper is as follows. Section 4.2 provides a detailed

overview of the bridge sensor system and a specific data set. Principal

Component Analysis (PCA) reveals a specific low dimensional latent

structure during at rest periods. In Section 4.3 a streaming PCA procedure is

developed. This procedure synthesises ideas of adaptive estimation (9) with

ideas for sequential eigendecomposition (see (94, 95) and references therein).

A collection of numerical problems arise with sequential eigendecomposition,

which we address. Additionally, like all streaming estimation methods a

number of input parameters need to be set. In Section 4.4 we use ideas from

Conformal Prediction (11, 12) to deal with the challenge of statistical

anomaly detection for eigendecomposition. The detection performance of the

method relates to its estimation performance, which in turn depends on

input parameters, as noted above. Section 4.5 reports a simulation study

designed to both compare variants of the methodology and determine input

parameters for practical deployment. Finally, the preferred methodology is

deployed against a large amount of bridge data in Section 4.6. In addition to

demonstrating the detection capabilities of the methodology, the proposed

method also reveals interesting and previously unreported properties of the

sensor system.
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4.2
Instrumented infrastructure and data

In this section, a brief review of Structure Health Monitoring (SHM) and

a detailed description of the bridge data set are provided.

4.2.1
Structural health monitoring

The area of SHM has changed in recent times due to the automated

collection of data pertaining to physical assets. Historically and currently

most integrity evaluation is performed on a manual basis, which is costly

and time-consuming. Structures such as railway bridges and pipe networks

are now being instrumented with a variety of sensor systems in an effort to

better understand their behaviour and reduce the cost burden of monitoring

(96, 97, 98, 99, 100, 101, 102, 103, 104). Asset operators are using these data

to reason about SHM questions. There are significant challenges related to

the development of statistical methods for handling such data. Physical assets

have both spatial and temporal extent and the data exhibits rich idiosyncratic

structure which raises challenges for spatio-temporal modelling. The high

frequency recording rate of the data poses a challenge for data curation and

statistical analysis. Detection of train passage events at data rate requires

both acquiring the data and performing a statistical procedure. Some of these

statistical aspects have been addressed by (105). Data generated by the sensor

system is a combination of physical response of the bridge, noise arising from

the sensor system and environmental factors at each sensor location.

4.2.2
Fiber bragg grating sensors

Fiber Bragg Grating (FBG) sensors are commonly used to measure

strain, that is, for example, the vertical deflection of a bridge under load.

In this work, the sensor system consists of a distributed network of fibre-optic

strain sensors. These sensors used inscribed Bragg Gratings (106) within the
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fibre-optic cable which refract light at a particular wavelength. When subjected

to strain, the cable is deformed resulting in a change of wavelength.

A statistical challenge arises because the FBG cable, and hence data, also

responds to environmental factors such as temperature changes. This is just

one of several possible factors that contribute to temporal variations observed

in the data. A sophisticated algorithm is used to transform the refracted light

in the optical cable to wavelength (more details in (106)).

The raw data is measured in wavelength (nano-meters), although

engineers prefer the physical quantity, strain. By construction, each sensor’s

wavelength is offset by a fixed constant. Wavelength and strain are linearly

related and hence we will report results on the wavelength scale. Denote the

wavelength measurement at tick N from sensor j as xj,N for which we form

the vector over d sensors

xN = (x1,N , . . . , xd,N).

4.2.3
Data

We are concerned with data from a steel-concrete railway bridge located

in Staffordshire, UK. This bridge is a 26.8 metre composite instrumented

with 80 FBG sensors. In this case, the sensor network was installed during

construction, though retrofitting is possible. The acquisition rate of the data is

250 Hz, i.e., each sensor records 250 ticks a second. The sensors are organised

as in Figure 4.1, spaced one metre along the fibre-optic cable. There are four

cables located in the main girders, which are each 20 metres long.

Examining data from an individual sensor reveals unusual structures. For

example, Figure 4.2 presents a sequence of observations from a single sensor

which exhibits a “banding” structure. This is an artefact of the sensor recording

algorithm mentioned above. Further, Figure 4.3 presents a smoothed version of

multiple sensors over time. This shows that there is temporal variation which
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Figure 4.1: Configuration of sensor cables along the bridge. Each of the four
sensors contains 20 fibre Bragg gratings.

is different by sensor. Figure 4.4 presents measurements from multiple sensors

including a train passage event. Note that sensor measurements during the

event differ according to their spatial location.
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Figure 4.2: Wavelength measurements of a randomly selected sensor during an
at rest period.

It is important to distinguish the two types of periods present in the data:

periods at rest and train passage events. Both types capture the space-time

response of the sensor system, however at rest it is reasonable to assume that
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Figure 4.3: LOESS curves fitted to five sensors during an at rest period. For
illustration, the first value of each sensor was subtracted from each stream.
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Figure 4.4: Measurement for five sensors including a train passage event. For
illustration, the first value of each sensor was subtracted from each stream.

the variation in the sensor system is simply noise. Identifying train passage

events is a step toward SHM, since changes in response during train passage

events might indicate degradation.

The collective response of the sensor system can be understood using

various statistical procedures. In this case Principal Component Analysis

(PCA), as used in (107), reveals an unexpected structure. Using PCA on an at

rest period of 5000 ticks of data, we find that the first 2 principal components
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accounts for almost 40% of the variation in the data. The scores of PCA are

computed as

Tq = UqX

where X is the centred matrix where each column has its mean subtracted

and Uq = [u1 . . .uq] is the loading matrix consisting of the eigenvectors of

the first q principal components. Denote the covariance matrix of X as Σ and

the eigenvalue corresponding to eigenvector uj as γj. Figure 4.5 shows that

the distribution of the first q = 2 principal components scores has an annular

support. In fact, this latent structure is observed for all at rest periods in this

particular data and we observe it for other FBG instrumented bridges. This

annular structure is seldom observed in multivariate data analysis, although

has been noted on occasion (108, 109).

As far as we are aware, this latent structure is not fully appreciated in

the SHM community. Again, we stress that this structure does not characterise

the physics of the bridge but rather the innate properties of the sensor system.

The train passage event has a marked effect on this latent structure, see Figure

4.6. More variation is attributed to the first component rather than being

shared approximately equally across the first two. This property is observed

over many data examples and is exactly this difference that we exploit to

construct an anomaly detection system concerned with the collective spatio-

temporal response of the bridge.

Figure 4.9 is a schematic that shows an illustrative data stream from

a single sensor during an at rest period, followed by a train passage event,

followed by another at rest period. The tick in which the train passage event

starts is denoted by JS while JE denotes the end of the event. Our anomaly

detection system will attempt to detect JS. In practice we would want to

identify the whole event but it is more convenient to simply collect a fixed

amount of data, κ, following the detection. These blocks of data would then

be subject to further offline analysis. The period δ is an allowance for measuring
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Figure 4.5: First two scores during at rest period based on a batch of 5000
measurements.

Figure 4.6: First two scores, computed using a sliding window of 5000
measurements including a train passage event. The left “lobe” corresponds
to at rest periods.
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Figure 4.7: Scaled screeplot during at rest period.

Figure 4.8: Scaled screeplot during train passage event.

the detection delay, see Section 4.4. Detection problems of this type raise the

unresolved question of whether to continue estimation following detection or

to restart. This is addressed further in Section 4.5.
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Figure 4.9: Illustration of detection when the train passage event happens.
The events starts at tick JS and ends at tick JE. We aim to capture the event
between JS and the tolerance period δ, which we deem correct detection in
simulation studies.

4.3
Streaming PCA

Computing PCA on batches of data is generally straightforward.

However, computing PCA sequentially and with some capacity for temporal

adaption is challenging, as described in the conclusions of (94). We develop a

sequential estimation method in Section 4.3.2 through the use of adaptive

filtering techniques and extend it to a streaming PCA context in Section

4.3.3.

4.3.1
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Principal component analysis

Denote X ∈ RN×d as a column-centred data matrix whose rows consists

of x1, ...,xN , where xi is the d-dimensional multivariate sensor measurement at

tick i. This centering is achieved using the mean vector µ = [µ1, . . . , µd] where

µj = 1
N

∑N
i=1Xi,j. Our methodology will later reformulate this estimator. PCA

seeks an accurate representation of the original data set in a lower-dimensional

subspace Rq, q < d, which maximizes the explained variance. PCA seeks a

projection matrix ÛÛT which is approximated by

Û = argmin
U∈Rd×q ,UTU=Iq

||X −UUTX||2F (4-1)

where || · ||F denotes the Frobenius norm, Iq denotes the q dimensional identity

matrix and Û = [û1, ..., ûq] are the q largest eigenvectors of the sample

covariance matrix Σ. These largest q eigenvectors, associated with the q leading

eigenvalues γ(1) ≥ γ(2) ≥ ... ≥ γ(d), are the principal components. For reasons

explained in the previous section, we are interested in q = 2.

A streaming PCA framework needs both a sequential updating

mechanism and a method for reweighting estimators as the data process

changes. Recalling the quantities involved in the eigendecomposition,

sequential updates are required for the mean vector µµµ, to achieve centering,

and the covariance matrix Σ. To accommodate trend and changes in the

covariance structure over time, we require time-dependent estimators, µµµN

and ΣN . The following sections outline the construction of adaptive and

sequential estimates of µµµN and ΣN and the subsequent sequential

construction of the eigendecomposition. In this latter step, there is some

scope for reducing computational burden by evaluating a partial

eigendecomposition.

4.3.2
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Adaptive estimation

Adaptive filtering (9) provides suitable tools for both sequential and

time-dependent estimation of µµµN and ΣN . In practice, when dealing with

streaming data, methods need to cope with (i) memory efficiency, i.e., the entire

data set cannot be stored, and (ii) sequential estimation of model parameters

(56, 57, 59). Temporal adaptation is provided by incorporating a forgetting

factor (FF), that controls the contribution of each data point to the estimator.

Practically setting this FF parameter, λ ∈ (0, 1), is challenging in a streaming

data context. Therefore much interest has focused on sequentially selecting an

adaptive forgetting factor (AFF) – λN , using an updating mechanism based

on stochastic gradient descent (9, 63, 62).

Consider the univariate data stream

〈y1, y2, ..., yN−1, yN , ...〉,

from which the objective is to accurately estimate E[Yj] sequentially at each

tick j. If E[Yj] is the same constant for all j then the sample mean

ȳj = 1
j

j∑
i=1

yi, (4-2)

is a sensible estimate which admits a sequential formulation. On the other

hand, if E[Yj] varies over j, then the estimate would be inappropriate. This

limitation motivates the use of adaptive estimation to calculate the mean

at time N , in which more weight is placed on more recent measurements.

These methods result in improved estimation for time-varying processes (62).

A fixed FF λ is introduced into Equation (4-2) with normalizing constant

(wN,λ) (sometimes called the effective sample size) to weight the estimation

DBD
PUC-Rio - Certificação Digital Nº 1612996/CA



Chapter 4. Unsupervised streaming methods for anomaly structure detection in
instrumented infrastructure 86

process as follows

ȳN,λ = 1
wN,λ

N∑
i=1

λN−iyi, wN,λ =
N∑
i=1

λN−i.

This formulation leads to a sequential computation for streaming

contexts by defining the following updating mechanism for N ≥ 1,

mN+1,λ = λmN,λ + yN+1 (4-3)

wN+1,λ = λwN,λ + 1 (4-4)

ȳN,λ = mN,λ

wN,λ
, (4-5)

with m1,λ = y1 and w1,λ = 1. Setting λ = 0 corresponds to forgetting all

previous measurements and only using the most recent measurement, i.e.

ȳN,λ = yN . On the other hand, λ = 1 corresponds to no forgetting, and then the

forgetting factor mean, ȳN,λ, is simply the arithmetic mean given in Equation

(4-2).

A more flexible approach is based on AFF, which results in a sequence

of FFs −→λ = (λ1, ..., λN) over time. As shown later this sequence can be

selected using sequential stochastic gradient descent (SGD) approaches.

Practical algorithms restrict the range of λ to prevent it becoming too small,

see for example (62). We use these adaptive filtering techniques to update µµµN

and ΣN in the eigendecomposition as described next.

Consider the following system of sequential update equations for a mean

vector

m
N+1,

−→
λ

= λNm
N,
−→
λ

+ xN+1 (4-6)

w
N+1,

−→
λ

= λNwN,−→λ + 1 (4-7)

µµµ
N,
−→
λ

= w−1
N,
−→
λ

m
N,
−→
λ
, (4-8)

with m1,
−→
λ

= x1 and w1,
−→
λ

= 1. As pointed out by (62) and shown in Appendix

DBD
PUC-Rio - Certificação Digital Nº 1612996/CA



Chapter 4. Unsupervised streaming methods for anomaly structure detection in
instrumented infrastructure 87

4-24, it is possible to rewrite Equation (4-8) as

µµµ
N+1,

−→
λ

=
[
1− w−1

N+1,
−→
λ

]
µµµ
N,
−→
λ

+
[
w−1
N+1,

−→
λ

]
xN+1, (4-9)

which, following further manipulation, results in the following updating

mechanism for the covariance matrix

Σ
N+1,

−→
λ

=
[
1− w−1

N+1,
−→
λ

]
Σ
N,
−→
λ

(4-10)

+
[
w−1
N+1,

−→
λ

]
(xN+1 − µµµN+1,

−→
λ

)(xN+1 − µµµN+1,
−→
λ

)T ,

with µµµ1,
−→
λ

= x1 and Σ1,
−→
λ

= Id.

The fixed forgetting version of updates (4-9) and (4-10) are familiar in

the streaming PCA literature (see (94, 110, 95) and references therein). Our

contribution is the introduction of an adaptive forgetting factor mechanism to

provide time-dependent estimation.

To select λN , we use SGD which requires a cost function, L
N+1,

−→
λ
. The

update of λN is defined as

λN+1 = λN − η
∂

∂
−→
λ
L
N+1,

−→
λ
, (4-11)

where η is the step size and λ1 = 1. We will set the step size based on

performance in realistic simulations experiments.

In this paper, similar to (62), the cost function is

L
N+1,

−→
λ

=
[
µµµ
N,
−→
λ
− xN+1

]T [
µµµ
N,
−→
λ
− xN+1

]
. (4-12)

There is some flexibility in the choice of cost function. (63) shows

that differentiable and likelihood-based cost functions yield efficient update

equations for the exponential family of distributions. For example, Equation

(4-9) can be motivated by an i.i.d. Gaussian argument.

The derivative in (4-11) depends on time-varying quantities which are
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evident after some manipulation, resulting in

∂

∂
−→
λ
L
N+1,

−→
λ

= 2
[
∂

∂
−→
λ
µµµ
N,
−→
λ

]T [
µµµ
N,
−→
λ
− xN+1

]
. (4-13)

(62) compute ∂

∂
−→
λ
µµµ
N,
−→
λ
from first principles. From their computation

∂

∂
−→
λ
µµµ
N,
−→
λ

=
[
∆∆∆
N,
−→
λ
w
N,
−→
λ
−m

N,
−→
λ

Ω
N,
−→
λ

]
/w2

N,
−→
λ
,

the following two auxiliary quantities appear

Ω
N+1,

−→
λ

= λNΩ
N,
−→
λ

+ w
N+1,

−→
λ
,

∆∆∆
N+1,

−→
λ

= λN∆∆∆
N,
−→
λ

+ m
N+1,

−→
λ
,

which must also be updated sequentially. Note that ∆∆∆
N,
−→
λ
is a vector and Ω

N,
−→
λ

is a scalar valued quantity where Ω1,
−→
λ

= 1 and ∆∆∆1,
−→
λ

= x1.

This section has outlined a complete sequential updating mechanism for

estimating the mean vector and covariance matrix for a time-varying process.

We now turn to the construction of principal components using these time-

varying estimates.

4.3.3
Streaming PCA

A naive approach would evaluate the full eigendecomposition of ΣN or

the Singular Value Decomposition (SVD). However for streaming problems this

will be computationally burdensome at each tick. A number of approaches for

sequentially updating an eigendecomposition have been proposed (111, 112,

113, 114, 115). In the case of a known covariance matrix Ψ, (116, 117), proposed

a gradient ascent update for the full projection matrix of the form

UN+1 = UN + ξNΨUN , (4-14)
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where ξN is the step size scaled by tick N , so that ξN → 0 as N → ∞.

The columns of the matrix, UN , are the sequential updates for the q largest

eigenvectors.

As pointed out by (116) and (117), Ψ is in fact unknown and so a random

approximation must be adopted. As a new vector xN+1 arrives, the update is

ŨN+1 = UN + ξN(xN+1 − µµµN+1)(xN+1 − µµµN+1)TUN (4-15)

UN+1 = Π(ŨN+1), (4-16)

where Π(·) denotes an orthonormalization operator. Orthonormalization can

be achieved, for instance, using a Gram-Schmidt (GS) procedure. In (117), a

sequential version of GS was proposed by combining Equations (4-15)-(4-16)

(detailed in Equations (4-29)-(4-31) of Appendix 4.8.2). This operator is

necessary to guarantee orthonormality as is required by PCA. The proposal

included Robbins-Monro conditions on the sequence of ξN to ensure

convergence (117, 116), i.e., ∑N≥1 ξ
2
N <∞ and ∑N≥1 ξN =∞. This condition

is clearly satisfied in the case when ξN is scaled by tick N . This procedure,

while theoretically well justified for i.i.d. data, requires modification to match

the requirements of streaming data analysis. In particular, we do not scale

the sequence of ξN to decrease with time as is required to satisfy the

Robbins-Monro conditions. Future data may not be generated by the same

process as current data and hence it is undesirable to suppress the learning

capabilities of the estimator. Bearing this in mind, we modified the results in

(117), using the adaptive estimators µµµ
N,
−→
λ

and ΣΣΣ
N,
−→
λ
, to update the j-th
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column of the matrix UN+1 as

uj,N+1 = uj,N + ξφj,N (4-17)(xN+1 − µµµN+1,
−→
λ

)− φj,Nuj,N − 2
q−1∑
i=1

φi,Nui,N


φj,N = (xN+1 − µµµN+1,

−→
λ

)Tuj,N (4-18)

γj,N+1 = γj,N + ξ(φ2
j,N − γj,N), (4-19)

denoting γj,N as the j-th largest eigenvalue at time N and φj,N is an auxiliary

quantity. The subscript of ξ was removed to denote that this is a fixed value

henceforth. An advantage of this scheme is that only the q largest eigenvectors

and eigenvalues are updated, which introduces a trade-off between accuracy

and computational speed (94).

4.3.4
Computational implementation

In this section we present two implementations of streaming PCA, which

we refer to as Multivariate Adaptive Forgetting Factor (MAFF) PCA, which

uses adaptive estimation, and Multivariate Fixed Forgetting Factor (MFFF)

PCA. The main difference between the two methods is that MAFF uses time-

varying forgetting factors, tuned as in Equation (4-11). Later we prefer MAFF

since it alleviates the need to select, and rely on, a single forgetting factor in

perpetuity.

The step by step implementation of MFFF is implemented in Algorithm

2 while MAFF is detailed in Algorithm 3. Note that both algorithms require

a burn-in period, based on B consecutive measurements. Both algorithms

thus feature a burn-in phase, followed by adaptive and sequential updating.

Note also that both algorithms include a sequential anomaly detection stage,

described in Section 4.4.

In Algorithm 2, first select the value for the FF and step size ξ ∈ R+.

There is no principled method to select the FF in advance. Then initial values
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for the recursive estimators are set as m1,λ = x1, w1,λ = 1, Σ1 = Id. Note that

the updates of mN+1,λ, wN+1,λ, µµµN+1,λ and ΣN+1,λ are the same as Equations

(4-6), (4-7), (4-9), (4-10). The only difference is that λN = λ. Other input

parameters, such as ξ, will be determined by simulation studies based on

properties of the real data.

Algorithm 2 Multivariate Fixed Forgetting Factor PCA
Require: ξ, x1, m1,λ, w1,λ, Σ1, λ, B, δ, W

1: for N ← 1, ...,B do
2: Receive xN+1
3: Update mN+1,λ, wN+1,λ, µµµN+1,λ, ΣN+1,λ

4: if N = B then
5: [UN , γγγN ] = SV D(ΣN,λ)
6: for N ← B + 1, ... do
7: Receive xN+1
8: Update mN+1,λ, wN+1,λ, µµµN+1,λ, ΣN+1,λ
9: Update UN+1, φφφN , γγγN+1

10: if N ≥ B +W then
11: `N = (γ1,N − γ2,N)2

12: p̂N = 1
W+1

∑N
j=N−W 1(`j ≥ `N)

13: Flag if p̂N < 1
W is satisfied 3 times in a row

14: Save the set {`N−W , `N−W+1, ..., `N} in memory.

For the implementation of MAFF, Algorithm 3, first select the values for

both step sizes ξ ∈ R+ and η ∈ R+. Then initial values for the recursive

estimators are set as m1,
−→
λ

= x1, ∆∆∆1,
−→
λ

= x1, w1,
−→
λ

= 1, Ω1,
−→
λ

= 1,

Σ1 = Id, λ1 = 1, λmin = 0.6. After updating λN , the equation λN+1 =

max{min{λN+1, 1}, λmin} in Line 4, is to guarantee that λN ∈ (λmin, 1).

The first B ticks, corresponding to a burn-in, are used to estimate UN

and γγγN+1 using SVD (Lines 1-5 in Algorithm 2 and Lines 1-6 in Algorithm

3). After this burn-in the estimation of the eigendecomposition is sequential

and adaptive. Note that the vectors φφφN and γγγN in Lines 9 (Algorithm 2) and

11 (Algorithm 3) are updated after the burn-in using Equation (4-18) and

Equation (4-19), respectively.

This instrumented infrastructure application involves data measured at

high frequency, and so it is reasonable to set the burn-in period of both
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Algorithm 3 Multivariate Adaptive Forgetting Factor PCA
Require: ξ, η, x1, m1,

−→
λ
, w1,

−→
λ
, ∆∆∆1,

−→
λ
, Ω1,

−→
λ
, Σ1, λ1, λmin, B, δ, W

1: for N ← 1, ...,B do
2: Receive xN+1
3: Update m

N+1,
−→
λ
, w

N+1,
−→
λ
, µµµ

N+1,
−→
λ
, Σ

N+1,
−→
λ
, ∆∆∆

N+1,
−→
λ
, Ω

N+1,
−→
λ
, λN+1

4: With λN+1 = max{min{λN+1, 1}, λmin}
5: if N = B then
6: [UN , γN ] = SV D(Σ

N,
−→
λ

)
7: for N ← B + 1, ... do
8: Receive xN+1
9: Update m

N+1,
−→
λ
, w

N+1,
−→
λ
, µµµ

N+1,
−→
λ
, Σ

N+1,
−→
λ
, ∆∆∆

N+1,
−→
λ
, Ω

N+1,
−→
λ
, λN+1

10: With λN+1 = max{min{λN+1, 1}, λmin}
11: Update UN+1, φφφN , γγγN+1
12: if N ≥ B +W then
13: `N = (γ1,N − γ2,N)2

14: p̂N = 1
W+1

∑N
j=N−W 1(`j ≥ `N)

15: Flag if p̂N < 1
W is satisfied 3 times in a row

16: Save the set {`N−W , `N−W+1, ..., `N} in memory.

algorithms B to 500 ticks. Post burn-in, anomaly detection is performed by

retaining a set of W derived values, see Lines 10-14 (Algorithm 2) and 12-16

(Algorithm 3). This set is used to calculate a p-value which provides the basis

of the anomaly detector.

4.4
Anomaly detection

Given the estimation methodology introduced in the previous section,

we now develop an anomaly detection mechanism. In general, inference for the

parameters of an eigendecomposition is difficult, and there are few results on

the distribution of such estimators (118, 119). One can reason about tracking

the largest eigenvalue in PCA (118), or even the ratio of the largest eigenvalue

to the sum of all eigenvalues (119), using the Tracy-Widom distribution.

However, these results require assumptions based on asymptotic theory which

are not valid for streaming data. A different approach is required.

To overcome these issues and avoid making distributional assumptions,

we adapt Conformal Prediction (CP) to propose a streaming PCA anomaly
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detector. CP was developed by the machine learning community

(11, 120, 12, 121, 122) and is now receiving substantial attention from the

statistics community (123, 124, 125, 126, 127). CP methods require storage of

W derived quantities. These derived quantities are called non-conformity

measures, which makes reference to a distance metric specified by the user.

Selecting an appropriate measure remains an open problem in the literature

(11). We propose a particular measure that is designed for this instrumented

infrastructure application, motivated by the behaviour depicted in Figures

4.7 and 4.8.

4.4.1
Non-conformity measure

Given the multivariate data stream xN and the eigenvalues derived from

it, γγγN , we seek to construct a non-conformity measure with which to perform

inference.

To monitor for anomalies, the sequence of eigenvalues is converted into

the stream of distances

〈`2, `3, . . . , `N−1, `N , . . .〉, `N ≡ D(γ1,N , γ2,N), (4-20)

using any valid distance metric D(·, ·). Inspection of extensive bridge data

shows that during at rest periods the eigendecomposition is consistent with

that depicted in Figures 4.5 and 4.7. In contrast during train passage events,

there is a significant difference between the two first eigenvalues, which are

approximately equal during periods of rest. Hence Equation (4-20) restricts

attention to the first two eigenvalues. This motivates the use of a non-

conformity measure
`N = (γ1,N − γ2,N)2. (4-21)

Of course, other measures are possible, but as noted above there is no

principled way to select a measure.

Following CP we sequentially estimate a p-value as
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p̂N = 1
W + 1

N∑
j=N−W

1(`j ≥ `N), (4-22)

where 1(·) is the indicator function. Generally CP would allow the set of derived

quantities, W , to increase with data arrival. This is not suitable for streaming

data contexts because both the computational and memory demand would

increases over time. Instead we restrict this set to a sliding window of fixed

size. By construction p̂N ∈ [ 1
W+1 , 1].

Equation (4-22) defines the p-value, p̂N , which forms the basis of our

anomaly detection system. As is often the case in practical sequential analysis,

it is useful to incorporate a “run rule” (128), which both reduces false positives

and provides some resistance to outliers. We will adopt a run rule in which

an anomaly is flagged at tick j if p̂j, p̂j−1 and p̂j−2 are all less than α = 1
W .

The latter implies that at least one anomaly will be detected, on average, after

observing a set ofW measurements. Theoretically, settingW large is desirable.

Practically however, a balance must be struck between memory and computing

constraints. For the bridge data, experimentation suggests that W = 10000,

40 seconds of data, provides good results.

4.5
Simulation

In this section, the performance of these streaming PCA methods, MFFF

(Algorithm 2) and MAFF (Algoritm 3), are evaluated. The scaled version of

MFFF (as discussed in Section 4.3.3), in which the Robins-Monroe conditions

are satisfied, does not perform well in simulations and is not considered in

detail. This latter approach, which makes little sense in a streaming context,

is denoted as MFFFS.

These three methods are compared based on Estimation Accuracy and

Detection Performance. The first is intended to evaluate how well the algorithm

tracks properties of a time-varying eigendecomposition. The second measures

the effectiveness of the method proposed in Section 4.4, at detecting anomalies.
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It is well known that such computational methods are sensitive to the choice

of input parameters. Thus, these simulations are also used to determine input

parameters for the bridge data analysis of Section 4.6. Details of the search

grid for input parameters are presented in Appendix 4.8.3.

We simulate data, X ∈ RN×d, that reproduces important characteristics

reported in Section 4.2, with d = 80 for consistency with the bridge data and

N = 40500 ticks. The key features to be replicated are the annular structure

observed during at rest periods and its collapse during train passage events.

A detailed description of the data generation processes is given in Appendix

4.8.4.

Considering Estimation Accuracy, recall that γγγj is a vector of the 2

leading eigenvalues estimated by a streaming PCA procedure. In the simulated

setting the corresponding true eigenvalues are denoted as ΓΓΓj. Accuracy is

measured using
1
N

N∑
j=1

∥∥∥∥ΓΓΓj − γγγj∥∥∥∥ . (4-23)

We will report the average of this error measure, E , over 100 Monte

Carlo replicates considering i.i.d. data (data generation described in Appendix

4.8.4.1).

To identify whether a flagged change corresponds to a real anomaly in

simulation studies we will use a window around the real anomaly. Recall we use

a run rule which flags the anomaly as the first tick in the run. Similar to (85), if

a flag is given in a window of δ = 125 measurements following a true anomaly,

the detection is deemed a correct detection (CD). A flag outside this window is

deemed a false detection (FD). The tolerance period, δ, is equivalent to half a

second for these data. Average number of FD and CD rates are calculated over

100 replicates of simulated train passage event data (see Appendix 4.8.4.2).

4.5.1
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Simulation results and control parameter selection

We seek to compare MAFF and MFFF according to various measures of

performance. Additionally we use the results of the simulation study to identify

control parameters for Section 4.6.

η ξ E CD FD
0.1 0.01 0.17 0.70 3.40
0.01 0.01 0.10 0.61 3.66
0.001 0.01 0.09 0.75 3.45
1e-04 0.01 0.08 0.76 2.99
1e-05 0.01 0.08 0.70 3.76
1e-06 0.01 0.08 0.77 3.58
1e-07 0.01 0.08 0.73 3.33

λ ξ E CD FD
0.85 0.01 0.22 0.63 3.80
0.9 0.01 0.15 0.67 3.60
0.95 0.01 0.10 0.76 3.37
0.99 0.01 0.08 0.79 3.35

Table 4.1: Average results over 100 Monte Carlo replicates, where the first two
columns are control parameters of each method, E is the average error. CD is
expressed as a rate and FD is the average number of points. Left: results for
MAFF. Right: results for MFFF.

Table 4.1 reports the results of the performance measures for MAFF

and MFFF, left and right, respectively. The first two columns of each table

refer to input parameters for the respective methods. Note, these tables have

been reduced to report only configurations of input parameters which have

CD > 0.5 and FD < 4. The full tables are available in Appendix 4.8.5.

The complete results demonstrate that good performance requires very specific

choice of parameters.

The results in Tables 4.1 embody two scenarios. First, i.i.d. data which

is included to address estimation issues alone. The column denoted E reports

the average estimation accuracy, Equation (4-23). Interestingly, the parameter

ξ, which has the same role in both methods, the value 0.01 is very frequently

selected as a good choice.

In terms of detection performance, simulated train passage event data

was used to assess detection performance, as reported in the CD and FD

column of Table 4.1. These tables indicate broadly the same performance over

the reported input parameters. Specifically, a CD rate of around 0.7 and FD
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around 3.5. Without using the run-rule, we expect an average of four false

detections.

As always, different performance measures demonstrate different

characteristics for fixed choices of parameters, and hence our selection will

seek to balance estimation accuracy and detection performance. This balance

is biased in favour of detection performance which itself is characterised by

two measures, CD and FD.

Given the simulation results, we use MAFF for the bridge data with

parameters η = 1e−6, ξ = 0.01. We favour MAFF over MFFF, because fixing

λ in perpetuity seems an overcommitment of knowledge.

Finally, note that MFFFS behaves in a predictable and practically useless

manner. Specifically, MFFFS is shown by simulation (see Table 4.4 in the

Appendix 4.8.5) to be incapable of adaptively revising its estimates following

the train passage event. This is unsurprising since the scaling of MFFFS

renders adaptive learning impossible after sufficient data have been observed.

4.6
Bridge data

In this section we demonstrate the result of our MAFF approach for the

bridge data described in Section 4.2. Input parameters selected in the previous

section were used throughout this section.

As noted earlier, the existence of the latent annular structure, illustrated

in Figure 4.5, has rarely been documented, a notable exception being (108).

This structure is persistent when evaluated over sliding windows during periods

of rest. Notably when using MAFF, this structure is preserved, see Figure 4.10.

The MAFF method also reveals a previously unknown feature of this

type of distributed sensor system. Figure 4.11 shows the maximum eigenvalue

computed by MAFF over a long period. There were four train passage events

in this period. The striking feature of this figure does not relate to train

passage events but rather is the obvious periodicity. The periodicity is very
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Figure 4.10: Online annulus calculated considering 5000 data points,
sequentially centred with µµµ

N+1,
−→
λ
, and a selected UN during an at rest period.

close to 5 minutes and 40 seconds. Neither we, nor engineering colleagues,

are able to explain this beyond attributing it to spatio-temporal proprieties of

the sensor system. Worth to mention that one could reason about an anomaly

detector that flags a train passage event when the maximum eigenvalue exceeds

a threshold. We argue that such a proposal would be ad-hoc in nature, which

is unfeasible considering that this data is sequentially revealed.

Turning now to anomaly detection, recall that the data set has four train

passage events, which were manually identified. Each frame of Figure 4.12

shows p̂N zoomed-in around the train passage events. The MAFF misses only

one of these four events. Excluding the four train event periods the anomaly

detector signalled 0.0262%, 157 ticks of 598422, as false positives.

Finally, considering computational burden, we need to address memory

and efficiency issues. The MAFF method has constant memory and compute

demand per tick, as required by streaming applications. In the example just

given, the entire data set consists of 611108 measurements which is equivalent
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Figure 4.11: Maximum eigenvalue sequentially estimated by MAFF over
611108 data points (approximately 40 minutes and 44 seconds). The four spikes
corresponds to train passage events. The maximum value on the vertical axis
was selected so the cyclic feature is more evident.

to 40 minutes and 44 seconds on a 250 Hz frequency sample. The code

developed in R, not optimized, required 8 minutes and 49 seconds to process

the data. Thus the procedure is capable of processing such data in real time.
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Figure 4.12: Conformal p-values, p̂N , for flagged periods. Solid vertical lines
denote the tick in which the train passage event started. The interval between
the solid vertical lines and dashed vertical lines denote the tolerance period δ.
Horizontal dotted lines indicate α = 1

W . The red cross indicates the first tick
for which a flag occurred, based on the run rule.
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4.7
Conclusion

We have considered data analysis challenges arising from instrumented

infrastructure. Specifically, we have developed a novel streaming methodology

for multivariate anomaly detection over a spatio-temporal object. The MAFF

method has been extended using an adaptive forgetting factor and derived

quantities from the method are calibrated using Conformal Prediction in

a fixed window. Given appropriate control parameters, and a run-rule, the

algorithm provides both effective tracking performance and accurate detection

capability.

Deployed against real bridge data, the method has an acceptable

detection performance for train passage events. Notably the method reveals a

long term cyclic dependence structure that has not been previously reported.

4.8
Appendix

4.8.1
Proof

Equivalence between Equation (4-8) and Equation (4-9) considering the

univariate case.

ȳN,λ = mN,λ

wN,λ
(4-24)

ȳN,λ = λmN−1,λ + yN
wN,λ

(4-25)

ȳN,λ = λwN−1,λȳN−1,λ

wN,λ
+ yN
wN

(4-26)

ȳN,λ = [wN,λ − 1]ȳN−1,λ

wN,λ
+ yN
wN

(4-27)

ȳN,λ =
(

1− 1
wN,λ

)
ȳN−1,λ + yN

wN
(4-28)
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4.8.2
Stochastic gradient ascent

In order to update the j-th column of the matrix UN+1 under

orthonormality conditions, (117) proposed the following

uj,N+1 = uj,N + ξNφj,N (4-29)(xN+1 − µµµN+1)− φj,Nuj,N − 2
j−1∑
i=1

φi,Nui,N


φj,N = (xN+1 − µµµN+1)Tuj,N (4-30)

γj,N+1 = γj,N + ξN(φ2
j,N − γj,N), (4-31)

where ξN = ξ
N
.

4.8.3
Input parameters

The lack of theoretical background on the optimal choice of SGD step size

(129) motivates the exploration of a grid of values for the proposed methods.

The adopted grids are

ξ ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6},

for the eigendecomposition step,

η ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6},

for the adaptive forgetting factor step and

λ ∈ {0.6, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99},

for the FF. This simulation study explores all possible combinations of ξ, η

and λ.
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4.8.4
Data generation process

For both data generation processes, calculate the sample covariance

matrix Σ as
NΣ = XTX = UΛUT , (4-32)

where Λ denotes a diagonal matrix composed of the eigenvalues γ1 ≥ γ2 ≥

... ≥ γ80.

4.8.4.1
Independent identical distributed data

In order to generate the i.i.d. data set, with only resting periods, one

should adopt the following steps.

1. Generate one random orthonormal matrix, Υ ∈ R80×80 using QR

decomposition (130) or Householder projections (131);

2. Generate one diagonal matrix A ∈ R80×80 with elements A[1,1] = 1,

A[2,2] = 0.01, A[j,j] ∼ Unif [−10−6, 10−6], ∀ j = 3, ...80. Note that the

notation ψ[j,j] makes reference to the element in the j-th row, j-th column

of the ψ matrix.

3. Fixing 40500 as the sample size, generates the stream

X ∈ R40500×80 ∼ N (µµµ,ΥTAΥ) where N (µµµ,Σ) denotes a multivariate

Gaussian distribution, with mean vector µµµ = [1, 2, ..., 80] ∈ R80 and

covariance matrix Σ. Such mean vector was proposed since the sensors

are aligned in an increasing sequence equally spaced.

4.8.4.2
Train passage event data

To generate data considering a rest period, followed by a train passage

event and followed by another rest period, we adopted the following steps.

1. Generate two random orthonormal matrixes, Υ ∈ R80×80 and Ξ ∈ R80×80

using QR decomposition (130) or Householder projections (131);
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2. Generate two diagonal matrixes A ∈ R80×80 and B ∈ R80×80 with

elements A[1,1] = 1, A[2,2] = 0.01, A[j,j] ∼ Unif [−10−6, 10−6], ∀ j =

3, ...80 and B[1,1] = 5 B[j,j] ∼ Unif [−10−6, 10−6], ∀ j = 2, ...80. Note

that the notation ψ[j,j] makes reference to the element in the j-th row,

j-th column of the ψ matrix.

3. Fixing 40500 as the sample size, generates the stream X ∈ R40500×80 as

XN =



N (µµµ,ΥTAΥ), N ≤ 20000,

N (µµµ,ΞTBΞ), 20001 ≤ N ≤ 20500,

N (µµµ,ΥTAΥ), 20501 ≤ N ≤ 40500

where N (µµµ,Σ) denotes a multivariate Gaussian distribution, with mean

vector µµµ = [1, 2, ..., 80] ∈ R80 and covariance matrix Σ. Such mean vector

was proposed since the sensors are align in an increasing sequence equally

spaced.

4.8.5
Simulation results

In this subsection, we report the results of Section 4.5 for the whole grid

of input parameters. The average error metric of Equation (4-23), considering

i.i.d. context and also the CD and FD performances on the train passage event

scenario for MAFFF (Table 4.2), MFFF (Table 4.3) and MFFFS (Table 4.4)

methods.
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η ξ E CD FD
0.1 0.1 0.27 0.41 68.01
0.1 0.01 0.17 0.70 3.40
0.1 0.001 0.16 0.00 2.32
0.1 1e-04 0.17 0.00 20.93
0.1 1e-05 0.23 0.00 98.77
0.1 1e-06 0.29 0.01 213.61
0.1 1e-07 0.28 0.00 126.96
0.01 0.1 0.26 0.34 203.80
0.01 0.01 0.10 0.61 3.66
0.01 0.001 0.08 0.00 2.62
0.01 1e-04 0.10 0.00 14.32
0.01 1e-05 0.14 0.00 85.11
0.01 1e-06 0.15 0.00 97.74
0.01 1e-07 0.19 0.00 92.91
0.001 0.1 0.26 0.35 203.77
0.001 0.01 0.09 0.75 3.45
0.001 0.001 0.04 0.00 2.92
0.001 1e-04 0.05 0.00 11.04
0.001 1e-05 0.10 0.00 32.81
0.001 1e-06 0.10 0.00 52.15
0.001 1e-07 0.11 0.00 44.40
1e-04 0.1 0.26 0.40 271.73
1e-04 0.01 0.08 0.76 2.99
1e-04 0.001 0.03 0.00 3.12
1e-04 1e-04 0.02 0.00 9.11
1e-04 1e-05 0.05 0.00 20.02
1e-04 1e-06 0.07 0.00 24.03
1e-04 1e-07 0.06 0.00 22.69
1e-05 0.1 0.26 0.48 339.58
1e-05 0.01 0.08 0.70 3.76
1e-05 0.001 0.03 0.00 3.08
1e-05 1e-04 0.02 0.00 9.44
1e-05 1e-05 0.04 0.00 20.32
1e-05 1e-06 0.06 0.00 20.51
1e-05 1e-07 0.05 0.00 23.05
1e-06 0.1 0.26 0.50 747.09
1e-06 0.01 0.08 0.77 3.58
1e-06 0.001 0.03 0.00 3.15
1e-06 1e-04 0.02 0.00 8.63
1e-06 1e-05 0.05 0.00 12.25
1e-06 1e-06 0.05 0.00 22.47
1e-06 1e-07 0.05 0.00 22.01
1e-07 0.1 0.26 0.31 135.87
1e-07 0.01 0.08 0.73 3.33
1e-07 0.001 0.03 0.00 3.09
1e-07 1e-04 0.02 0.00 8.16
1e-07 1e-05 0.05 0.00 22.77
1e-07 1e-06 0.05 0.00 25.65
1e-07 1e-07 0.05 0.00 27.85

Table 4.2: Average results for MAFF over 100 Monte Carlo replicates, where
the first two columns are control parameters of each method, E is the average
error. CD is expressed as a rate and FD is the average number of points.
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λ ξ E CD FD
0.6 0.1 0.56 0.32 0.07
0.6 0.01 0.56 0.22 4.71
0.6 0.001 0.56 0.00 2.30
0.6 1e-04 0.55 0.00 29.96
0.6 1e-05 0.62 0.01 265.87
0.6 1e-06 0.59 0.01 291.35
0.6 1e-07 0.61 0.00 309.84
0.75 0.1 0.38 0.44 68.04
0.75 0.01 0.36 0.50 4.06
0.75 0.001 0.36 0.00 2.23
0.75 1e-04 0.38 0.00 26.90
0.75 1e-05 0.42 0.00 151.68
0.75 1e-06 0.42 0.00 195.25
0.75 1e-07 0.45 0.01 242.70
0.8 0.1 0.33 0.40 67.94
0.8 0.01 0.29 0.44 4.03
0.8 0.001 0.29 0.00 2.12
0.8 1e-04 0.29 0.00 19.65
0.8 1e-05 0.36 0.00 142.96
0.8 1e-06 0.42 0.01 214.73
0.8 1e-07 0.41 0.00 211.68
0.85 0.1 0.29 0.36 135.89
0.85 0.01 0.22 0.63 3.80
0.85 0.001 0.22 0.00 2.31
0.85 1e-04 0.27 0.00 23.87
0.85 1e-05 0.30 0.01 121.21
0.85 1e-06 0.33 0.00 191.14
0.85 1e-07 0.32 0.00 161.07
0.9 0.1 0.27 0.32 0.05
0.9 0.01 0.15 0.67 3.60
0.9 0.001 0.15 0.00 2.57
0.9 1e-04 0.17 0.00 16.58
0.9 1e-05 0.25 0.01 105.92
0.9 1e-06 0.26 0.00 136.35
0.9 1e-07 0.30 0.00 149.92
0.95 0.1 0.25 0.43 407.55
0.95 0.01 0.10 0.76 3.37
0.95 0.001 0.08 0.00 2.58
0.95 1e-04 0.11 0.00 12.84
0.95 1e-05 0.15 0.00 53.32
0.95 1e-06 0.18 0.00 75.07
0.95 1e-07 0.17 0.00 74.40
0.99 0.1 0.25 0.45 475.43
0.99 0.01 0.08 0.79 3.35
0.99 0.001 0.03 0.00 2.78
0.99 1e-04 0.04 0.00 9.12
0.99 1e-05 0.07 0.00 27.86
0.99 1e-06 0.08 0.00 30.89
0.99 1e-07 0.08 0.00 30.53

Table 4.3: Average results for MFFF over 100 Monte Carlo replicates, where
the first two columns are control parameters of each method, E is the average
error. CD is expressed as a rate and FD is the average number of points.
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λ ξ E CD FD
0.6 0.1 0.56 0.00 176.69
0.6 0.01 0.59 0.02 264.79
0.6 0.001 0.58 0.01 284.16
0.6 1e-04 0.57 0.00 301.95
0.6 1e-05 0.60 0.01 324.99
0.6 1e-06 0.58 0.02 282.45
0.6 1e-07 0.61 0.01 358.75
0.75 0.1 0.42 0.00 148.67
0.75 0.01 0.44 0.00 250.38
0.75 0.001 0.49 0.01 287.51
0.75 1e-04 0.41 0.00 184.63
0.75 1e-05 0.42 0.00 236.80
0.75 1e-06 0.46 0.01 211.95
0.75 1e-07 0.45 0.02 201.07
0.8 0.1 0.39 0.00 155.10
0.8 0.01 0.43 0.00 229.62
0.8 0.001 0.38 0.01 194.33
0.8 1e-04 0.43 0.01 243.41
0.8 1e-05 0.38 0.00 189.50
0.8 1e-06 0.39 0.00 200.82
0.8 1e-07 0.37 0.00 172.78
0.85 0.1 0.28 0.00 118.21
0.85 0.01 0.34 0.00 135.31
0.85 0.001 0.34 0.00 183.92
0.85 1e-04 0.34 0.00 169.95
0.85 1e-05 0.37 0.00 231.49
0.85 1e-06 0.32 0.01 181.24
0.85 1e-07 0.37 0.00 214.87
0.9 0.1 0.23 0.00 84.41
0.9 0.01 0.27 0.00 152.84
0.9 0.001 0.28 0.00 169.79
0.9 1e-04 0.24 0.00 123.97
0.9 1e-05 0.25 0.00 112.74
0.9 1e-06 0.29 0.00 169.13
0.9 1e-07 0.29 0.00 150.57
0.95 0.1 0.15 0.00 54.82
0.95 0.01 0.18 0.00 87.02
0.95 0.001 0.18 0.00 77.35
0.95 1e-04 0.19 0.00 82.84
0.95 1e-05 0.18 0.00 82.65
0.95 1e-06 0.18 0.00 80.87
0.95 1e-07 0.17 0.00 72.61
0.99 0.1 0.06 0.00 24.13
0.99 0.01 0.08 0.00 29.55
0.99 0.001 0.08 0.00 30.96
0.99 1e-04 0.08 0.00 35.79
0.99 1e-05 0.08 0.00 27.28
0.99 1e-06 0.08 0.00 34.42
0.99 1e-07 0.08 0.00 29.16

Table 4.4: Average results for MFFFS over 100 Monte Carlo replicates, where
the first two columns are control parameters of each method, E is the average
error. CD is expressed as a rate and FD is the average number of points.
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