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Abstract

Leão Ramos, Dimas; Michel Valladão, Davi (Advisor); Dodsworth
Martins Froment Fernandes, Betina (Co-Advisor). Robust
Portfolio Optimization Under Conflicting Views: a Black-
Litterman Model Approach. Rio de Janeiro, 2017. 103p.
Dissertação de Mestrado — Departamento de Engenharia
Industrial, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Black and Litterman proposed a portfolio optimization model that

combines investor’s views on future asset’s returns with neutral market

equilibrium. However, specifying portfolio views is a challenging task,

specially when investors have conflicting opinions on the same asset. In this

thesis, we suggest a new portfolio optimization formulation that is robust

for investor’s views. Our approach was tested on synthetic and real data

available on a framework developed by Central Bank of Brazil. This online

framework collects projections on main macroeconomics variables from more

than a hundred professional forecasters and provides public online access on

a weekly basis. The performance of this new robust formulation is compared

with the traditional Black-Litterman model. The result show that our robust

methodology can provide better risk adjusted performance compared to the

orignial model and are less sensitive to incorrect inverstor views.

Keywords
Robust Optimization; Portfolio Optimization; Black-Litterman

Model; Finance.
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Resumo

Leão Ramos, Dimas; Michel Valladão, Davi; Dodsworth Mar-
tins Froment Fernandes, Betina. Otimização de Portfólio Ro-
busta Sob Visões Conflitantes: Uma Abordagem Black-
Litterman. Rio de Janeiro, 2017. 103p. Dissertação de Mestrado
— Departamento de Engenharia Industrial, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Black e Litterman propuseram um modelo de otimização de portfólio

que combina visões do investidor sobre retornos esperados de ativos com

o equiĺıbrio neutro de mercado. No entanto, especificar visões sobre uma

carteira de investimentos é uma tarefa dif́ıcil, especialmente quando os

investidores têm opiniões conflitantes sobre o mesmo ativo. Neste trabalho,

é proposto uma nova formulação para otimização de carteiras, que é robusta

diferentes à visões do investidor. A nossa abordagem foi testada em dados

sintéticos e dados reais dispońıveis em uma plataforma do Banco Central

do Brasil. Esta plataforma consolida projeções macroeconômicas de mais

de uma centena de analistas profissionais e disponibiliza para o mercado

numa base semanal. Por fim, é comparado o desempenho desta formulação

robusta com o modelo Black-Litterman tradicional frequentemente utilizado

na indústria financeira. Os resultados mostram que a metodologia robusta

pode providenciar melhor desempenho ajustado ao risco em comparação

com o modelo orignial e são menos senśıveis às visões do investor.

Palavras–chave
Otimização Robusta; Modelo Black-Litterman; Otimização de

Portfólio; Finanças.
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1
Introduction

In 1952 Professor Harry Markowitz published one of his most notori-

ous work named “Portfolio Selection” (Markowitz, 1952), which is considered

one of the main articles in quantitative finance and states the beginning of

modern portfolio theory. His innovative approach goes beyond the traditional

asset management, which focused on predicting stock price changes using fun-

damental and technical analysis. According to Markowitz, portfolio selection

problem consists on finding the optimal trade o↵ between risk and return.

Moreover, his results form the theoretical foundation of a concept that practi-

tioners and academics have always known, that diversification reduces risk on

a given portfolio.

Markowitz’s model requires distribution information concerning the be-

havior of future assets returns. However, returns are not completely known

by academics or practitioners, therefore approximate return models are used

to describe its dynamics. Thus, in order to implement the mean-variance ap-

proach proposed by Markowitz, one needs to estimate means and covariances

of asset returns and plug these estimates into an optimization problem mod-

eled by the investor. This leads to an important drawback of the conventional

mean-variance approach, the estimation error from data samples. However, a

significant number of researchers have tried to diminish the impact of estima-

tion errors in the optimal allocation (see DeMiguel et al. (2009); Chopra and

Ziemba (1993); Best and Grauer (1992)). Some of the techniques proposed are

portfolio re-sampling and Bayesian shrinkage, for more details on the topic we

refer to Jorion (1986) and Basak et al. (2009).

These practical drawbacks motivated Fisher Black and Robert Litterman

while working at Goldman Sachs to develop a new asset allocation method-

ology. As a result, the idea to combine equilibrium estimates of asset returns

with investor’s private opinions about future returns was introduced at Black

and Litterman (1992). Their approach employed a Bayesian analytical method-

ology to estimate new asset returns and a covariance matrix. Computational

tests have shown that the optimal portfolios resulted by this method are more

intuitive, stable and diversified, when compared to the conventional Markowitz

methodology. As a result, the model has found much favor with practitioners.

In the Brazilian financial market, robot advisor firms (Vérios, Warren) have

published on their website that they use the Black-Litterman model at the

DBD
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core of their investment analytics. For further details on the model see Walters

(2011).

Black and Litterman’s original paper (Black and Litterman, 1992) only

explained the main ideas, leaving it to other researchers to better explain

the implications of their model. Subsequent research on the Black-Litterman

model was done by Satchell and Scowcroft (2000); Walters (2011); He and

Litterman (2002), where they provide a more complete survey on the model

and explains it in further detail. Also, a complete applied perspective of the

Black-Litterman model was conducted by Mankert (2010). Other authors have

focused on extensions of the original model, as in Herold (2005); Idzorek (2002);

Fernandes et al. (2013); Meucci (2008); Silva et al. (2017).

A very dynamic area of research in asset management is robust portfolio

optimization. This approach acknowledges the impacts of estimation error and

seeks for the optimal portfolio under the worst-case realizations of estimation

uncertainty. Among many studies on portfolio robust optimization, Lobo

and Boyd (2000) provide an introduction to robust portfolio optimization

formulations, listing uncertainty sets that are convex and tractable to model

asset returns. Moreover, Halldórsson and Tütüncü (2003) introduce a robust

formulation for the mean-variance model, that allocates the solution in the

worst-case performance within the set of values for the mean and covariance

matrix in the uncertainty set. More recently, Fernandes et al. (2016), proposed

a new adaptive robust portfolio model. Their asset allocation model uses data-

driven polyhedral uncertainty sets to construct robust loss constraints on a

rolling horizon scheme. Moreover, through empirical results using realistic

transaction costs in the Brazilian Market, they show that this new strategy can

introduce a new perspective of robust optimization for industry practitioners.

For a thorough discussion related to robust portfolio management see Fabozzi

et al. (2007), Kim et al. (2013), Fabozzi et al. (2009) and Fernandes et al.

(2016).

1.1
Contributions

The objective of portfolio managers is to achieve results beyond market

benchmarks by using information and techniques that is not broadly available

to general investors. In this thesis we provide a robust optimization approach

on the Black-Litterman model that can significantly improve the performance

and risk management of practitioners. We summarize the main contributions

of this thesis as follows:

1. Using concepts from robust optimization, we propose a general robust
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allocation model based on the Black-Litterman framework. In particular,

our framework enables to incorporate robustness through uncertainty

sets on the views from di↵erent forecasters and on the market model.

2. We provide computational evidence using synthetic data that robust

black-litterman portfolios can present better risk-adjusted performance

profiles compared to the original model. By introducing robustness on

views, we empirically show that the overall performance of the portfolios

are less sensitive to accuracy on portfolio views. We also show that

incorporating the overall uncertainty structure of multiple forecasters

can improve portfolio allocation.

3. Our framework was tested using real market data from the asset classes

available to Brazilain investors. The views were modeled using a database

of macroeconomics forecasts from market participants provided by the

Central Bank of Brazil. The results suggests using the total uncertainty

structure of market views from di↵erent experts can provide a better

out of sample risk-reward performance compared to the original Black-

Litterman model.

1.2
Organization

The remainder of this thesis is structured as follows. In Chapter 2 we

review the theoretical background. First, we introduce the general setting of

second order cone optimization problems that represents the foundations of

the models we further propose. Then, we discuss recent advances on robust

portfolio optimization. We show that the modified original problem can be

transformed into a continuous and convex problem using robust optimization

techniques. Finally, we briefly discuss the Black-Litterman Model and set an

asset allocation example using the model.

Chapter 3 derives the robust allocation models based on the Black-

Litterman approach under the assumption of conflicting information on the

views and shows a simple example of how to use these techniques in practice.

Chapter 4 provides numerical results illustrating the capabilities of these new

models on synthetic data. Chapter 5 we use real market data and source of

conflicting views from the Market Expectation System to backtest the robust

models we have proposed. Finally, Chapter 6 contains our conclusions on the

work shown in this thesis.

DBD
PUC-Rio - Certificação Digital Nº 1513216/CA



Chapter 1. Introduction 13

1.3
Notation

Througout this article we use bold characters to represent vectors and

matrices. Matrices are denoted by upper case letters (e.g. A), lower case letters

(e.g. a) are used to represent vectors and ordinary letters (e.g. R, t, ✏, . . . )

to represent scalars. Boldface are also used for column and row vectors of

a matrix, for instance Ai stands for the ith column vector of the matrix

A, and lower case ai are used for the ith row vector. Apostrophe (e.g. a0)

is used for transposed matrix or vector. Hat (e.g. â) denotes the nominal

value of a. The bold character number 1 denotes a vector of ones. Overline

(e.g. a ) and underline (e.g. a) denote the upper and lower bound of a given

variable. To represent identity matrix of dimension n is used In. Finally, �
denotes element-wise products between matrices or vectors, also known as the

Hadamard product.
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2
Literature Review

In this chapter, we present and discuss the theoretical background for

the current work. The literature review is organized in three major sections.

The first covers a review of second-order cone programming. The following

section reviews robust optimization techniques and relates it to the discussion

associated with second-order cone programming problems. Finally, we present

the Black-Litterman method and recent relevant extensions of the method.

2.1
Second-order Cone Programming

Many problems in financial applications are designed as convex problems,

in particular a wide variety of practical problems can be formulated as second-

order cone programming (SOCP). A few examples of SOCPs that occur in

finance include variants of Markowitz asset allocation framework, problems

with loss constraints and portfolio problems with transaction cost models.

In this section our objective is to present an overview on second-order cone

programming. Here we follow the work done in Lobo et al. (1998), Fabozzi

et al. (2007), Lutgens (2004) and Nemirovski (2013) on second-order cone

programming and conic programming.

Second-order cone programming is a class of conic optimization problems

that generalizes linear and quadratic programming. Some of the problems

that can be modeled as an SOCPs include quadratic constrained quadratic

programming (QCQP), sum of norms and maximum of norms and hyperbolic

constraints. Moreover, as linear programming (LP), SOCPs can be solved

e�ciently using primal-dual interior point methods.

First, consider a general conic programming (CP) problem

minimize
x

f0x

subject to Ax = b

x ⌫C 0,

(2-1)

where C is a proper cone (i.e. closed, convex, solid and pointed), x 2 Rn is the

decision variable, and f 2 Rn, b 2 Rm and A 2 Rm⇥n are the parameters

related to the problem. If C is defined properly, this standard form can

represent any convex optimization problem. For instance, when C is taken
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as the nonnegative orthant (Rn
+) the problem reduces to a linear optimization

problem.

The vector inequality x ⌫C 0 is often used to define a generalized

inequality. For a proper cone C, this inequality induces a partial ordering

on Rn which satisfies some of the properties on the standard ordering of the

reals. From the definition of this ordering we have that

x� y ⌫C 0 () x ⌫C y () x� y 2 C (2-2)

Here we mention a few of the basic properties that is satisfied by a

generalized inequality ⌫C

– Transitivity: if y ⌫C x and z ⌫C y then z ⌫C x;

– Reflexivity: x ⌫C x;

– Anti-symmetry: if y ⌫C x and x ⌫C y then x = y;

– Homogeneity: if x ⌫C y and ↵ is a nonnegative scalar then ↵x ⌫C ↵y;

– Additivity: if y ⌫C x and z ⌫C v then y + z ⌫C v + x.

Observe that when C is defined as the nonnegative orthant (i.e. C =

Rn
+), the associated generalized inequality x ⌫Rn

+
y is equivalent to an

ordinary component-wise inequality between vectors, meaning that xi � yi.

Furthermore, in CP a specific cone C is associated to conic problem in the

form of equation (2-1). Thus, the only di↵erence between this program and

an LP problem is the particular choice of cone and its implications. Also, the

CP formulation allows to represent a broader class of problems that cannot be

done by a LP problem. Here we restrict our applications to SOCP.

In a second-order cone programming, problem (2-1) is minimized over

the cartesian products of second-order cones (which is also known as Lorentz

cone, ice-cream cone and quadratic cone), where the standard second-order

cone with dimension k has the form

Lk =

("

u

t

#

�

�

�

�

�

u 2 Rk�1, t 2 R+, kuk2  t

)

. (2-3)

In figure 2.1 we illustrate a second-order cone in R3, note that by

intersecting it with a hyperplane at di↵erent angles one obtain spherical and

ellipsoidal sets. More interestingly, we will show that any quadratic constraint

can be represented by a second-order cone.
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Figure 2.1: Illustration of a L3,
�

(u1, u2, t) | (u1 + u2)1/2  t
 

Formally, the a second-order cone optimization problem is expressed

when problem (2-1) takes the following form

minimize
x

f0x

subject to kAix+ bik2  c0ix+ di, i = 1, . . . , N,
(2-4)

where x 2 Rm are the decision variables, and bi 2 Rni , di 2 R, Ai 2 Rni⇥m

and ci 2 Rni are the parameters associated to the problem. In addition, the

constraint kAix� bik2  c0ix � di is denoted as an second-order constraint,

since satisfying this constraint is the same as restricting an a�ne function to

lie in a unit second order cone of dimension k + 1

kAix+ bik2  c0ix+ di ()
"

Aix+ bi

c0ix+ di

#

2 Lk+1. (2-5)

This class of conic optimization problem can be used to represent several

usual convex programming problems. For instance, a special type of second

order cone is the linear cone, which is defined for k = 1 and the unit second

order cone becomes L1 = {t| t 2 R+, t � 0}. Thus, by taking Lni = L1, for

each constraint i = 1, . . . , N , the standard SOCP in problem (2-4) becomes a

LP

minimize
x

f0x

subject to c0ix+ di � 0, i = 1, . . . , N.
(2-6)

Moreover, another class of problems that can be modeled as SOCPs is

the quadratically constrained linear programming (QCLP). By assuming that

the ith ci = 0 for all constraints i = 1, . . . , N , it becomes equivalent convex

DBD
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quadratic constraints and the problem reduces to a quadratically constrained

linear program

minimize
x

f0x

subject to kAix+ bik22  d2i , i = 1, . . . , N,
(2-7)

From these two problem transformations, it is clear that the SOCPs

problems are more general than LPs and QCLPs. In fact, many other nonlinear

convex optimization problems can formulated into SOCPs as well.

2.1.1
SOCP Dual Problem

Duality theory arise in mathematical programming as a methodology to

find the best bound on the optimal value of an optimization problem. Often

this original problem is known as primal and the one that its solution provides

the best bound is called dual problem. The di↵erence between their optimal

values is called dual gap. Under special circumstances the duality gap is zero

for convex optimization problems.

To illustrate, as a first example consider a standard LP as the primal

problem

minimize
x

c0x

subject to Ax � b,
(2-8)

here this would be considered the primal problem and its optimal is denoted

as p⇤. Furthermore, applying an inner product on both sides of the inequality

in problem (2-8), we arrive at the following

hy,Axi � hy,bi () y0Ax � y0b, (2-9)

where the elements of the vector y are nonnegative. This is a general result

for LP problems and this inequality actually holds for every feasible solution

of problem (2-8). Moreover, when the left hand side of the inequality (2-9) is

equal to the objective function, i.e. c0x, which is whenever the given equality

is satisfied for all nonnegative y

A0y = c, (2-10)

the result of inequality (2-9) lead to a lower bound on the objective function

of (2-8) for all decision variables x. As a result, it is also a lower bound to the

optimal value p⇤

c0x � p⇤ � y0b, (2-11)

The dual problem is defined as the optimization problem that yields

the best lower bound of p⇤. Moreover, we are interested in maximizing hy,bi
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satisfying the relation given on the scalar inequality (2-11), which is equivalent

to solving the following problem

maximize
y

y0b

subject to A0y = c

y � 0.

(2-12)

An analog methodology can be applied to develop the dual problem

of other conic programming problems, including SOCP. First, consider a

rewritten form of problem (2-8) as a generic CP problem

minimize
x

c0x

subject to Ax �C b.
(2-13)

In standard conic problems there are special weight vectors y that

satisfies the subsequent scalar inequality

hy,Axi � hy,bi, (2-14)

and at the same time, these special vectors preservers the generalized inequality

Ax �C b presented in (2-13), for all decision variables x. In the particular case

of LP problems, the cone C is the Rn
+ and the admissible vectors are those

with nonnegative elements, which is the same as writing y 2 C or y 2 Rn
+.

However, when the inequality �C is associated with a cone C di↵erent from

the nonnegative orthant, these acceptable vectors are not necessarily the as

the one we have seen for LP problems. We are actually looking for a particular

set of vectors y such that

8d �C 0 : hy, di � 0, (2-15)

which are the same vectors from the set

C⇤ = {y 2 Rn| y0d � 0, 8d 2 C} . (2-16)

The set C⇤ is called dual cone, as the name indicates it is a cone and

since C⇤ is a intersection of halfspaces, it is a closed convex set, even when the

original cone is not. Also, several other important properties relates C to its

dual cone C⇤, some of them are

– If the interior of C is nonempty, then C⇤ is pointed;

– C1 ✓ C2, then C⇤
2 ✓ C⇤

1 ;

– If C is a closed convex set, then the interior of C⇤ is nonempty;

– If C is closed and convex set, then the dual cone of C⇤ is the original

cone C.
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Using the definition of the dual cone, we are set to derive the dual problem

of the CP problem (2-13). First, we use the same idea that was developed for

the LP problem, whenever x is a feasible solution for problem (2-13) and y is

a vector in the dual cone, then the scalar inequality is satisfied

hy,Axi � hy,bi, for all y �C⇤ 0 and Ax �C b (2-17)

As in the LP example, whenever y is an admissible vector in the dual

cone and it also satisfies the following equality expression

A0y = c, (2-18)

we have that

c0x = yA0x = hy,Axi � hy,bi, for all y �C⇤ 0, (2-19)

where for all decision variable x the y0b is a lower bound on the optimal value.

Hence, the best bound one can achieve for the CP problem is the maximum

value of the dual program (2-20)

maximize
y

y0b

subject to A0y = c

y �C⇤ 0

(2-20)

Now we are ready to derive the dual of SOCP, which is the case where

C is defined as second-order cone.

2.1.2
Problems Transformations

In this section we show some of the techniques for transforming a

robust feasible set, which is defined by an infinite number of constraints. Such

constraints come from restricting a set of uncertain parameters in a predefined

uncertainty set, usually convex and tractable. The result of this transformation

is a finite number of constraints that have an equivalent representation of

these robust feasible sets. These representations are useful for solving robust

optimization problems, however, unfortunately it can only be properly defined

for specific combinations of constraints and uncertainty sets. Here we give an

illustration of combinations of uncertainty sets and constraints that will be

used throughout this dissertation.

First, consider the feasible region restricted by the following linear

constraint

X (⌘) = {x : x0⌘ � b} , (2-21)
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here x is the vector decision variables and ⌘ is the vector uncertainty parame-

ters associated to them. Additionally, assume that the uncertainty parameters

are confined in an ellipsoidal uncertainty set

U⌘ =
�

⌘ : (⌘ � ⌘̂)0⌃�1
⌘ (⌘ � ⌘̂)  ✏2

 

, (2-22)

where⌃⌘ is a positive definite matrix, usually taken as the covariance matrix of

the uncertainty coe�cients and ✏2 is the tolerance level set by the user. Notice

that the size of ✏2 states the distance (scaled by a positive definite matrix)

that the uncertain parameter can deviate from its nominal value ⌘̂. A useful

equivalent representation of this uncertainty set is given by

U⌘ =
n

⌘ :
�

�⌃�1/2
⌘ (⌘ � ⌘̂)

�

�

2
 ✏

o

, (2-23)

where⌃�1/2
⌘ is lower triangular matrix resulted from the Cholesky factorization

of ⌃⌘.

Observe that the feasible set (X
R

) which satisfies all possible realiza-

tions of the uncertainty parameter is defined by a infinite number of linear

constraints

X
R

=
\

⌘2U⌘

X (⌘) = {x : x0⌘ � b, 8⌘ 2 U⌘} .

To derive useful transformations for robust optimization problems we

illustrate a technique based on conic duality theory. First, we look for the

worst-case of the constraint (2-21) over the uncertainty set U⌘, which resumes

to the following SOCP problem

minimize
⌘

x0⌘

subject to
�

�

�

⌃
�1/2
⌘ (⌘ � ⌘̂)

�

�

�

2
 ✏.

(2-24)

The dual problem of the SOCP (2-24) is defined as

maximize
z,w

z0⌃
�1/2
⌘ ⌘̂ � w✏

subject to z0⌃
�1/2
⌘ = x0

kzk2  w,

(2-25)

where w and z are the dual variables. Now, substituting the equality constraint

of problem (2-25) on the objective function the dual problem can be rewritten

as the following

maximize
w

x0⌘̂ � w✏

subject to
�

�

�

⌃
1/2
⌘ x

�

�

�

2
 w.

(2-26)

Observe that the objective function assumes its maximum value when

the dual variable w takes its lowest possible value. Since w is bounded by
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�

�

�

⌃
1/2
⌘ x

�

�

�

2
, the maximum is achieved when the constraint is satisfied with

equality, therefore

w =
�

�⌃1/2
⌘ x

�

�

2
. (2-27)

Due to conic strong duality theory the optimal objective function will

be the same as the value of the primal problem, thus the minimum value of

problem (2-24) for any decision variable x will be

x0⌘̂ � ✏
�

�⌃1/2
⌘ x

�

�

2
. (2-28)

Replacing (2-28) in the original constraint we obtain the worst-case

scenario under the ellipsoidal uncertainty set for the original constraint in terms

of the decision variables x. Therefore, the feasible constraint is equivalent to

X
R

=
n

x0⌘̂ � ✏
�

�⌃1/2
⌘ x

�

�

2
� b

o

. (2-29)

This constraint reformulation is very common in robust optimization and

is equivalent to solving the original constraint under the feasible set. These and

other useful transformations have been reported by other authors. For instance

Ben-Tal and Nemirovski (1998) show that a�ne constraints combined with

uncertainty sets defined by a finite number of second order cone problems can

be transformed to a finite number of conic constraints on the original problem.

This a general definition of the transformation that was demonstrated here.

Also, Ben-Tal et al. (2002) and Sturm and Zhang (2003) derive a

semidefinite programming formulation to quantify the robust feasible sets of

quadratic constraints under uncertainty sets defined by a quadratic inequality.

Sturm and Zhang (2003) have studied uncertainty sets given by strictly convex

or concave quadratic function. Moreover, the complexity to solve problems

using ellipsoidal uncertainty sets was studied in Ben-Tal and Nemirovski

(1998), where they show that its combination with semidefinite programming

constraints are in general NP-hard.

2.2
Robust Optimization

Real optimization problems often have uncertainty parameters. Parame-

ters can be naturally stochastic or uncertain due to errors (e.g., measurement,

estimation errors). Preceding to the establishment of robust optimization,

data uncertainty problems were often modeled using stochastic optimization.

Stochastic optimization assumes that the probability distribution is known or

estimated. If it is plausible to assume this condition and the reformulated opti-

mization problem is computationally tractable, then stochastic optimization is
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a possible methodology to solve this problem. For further details in stochastic

optimization, see Shapiro et al. (2009) and Birge and Louveaux (1997).

Conversely, robust optimization does not assume that the probabilities

distributions are known, instead, it assumes that the parameters uncertainty

lies in a predefined uncertainty set. The first idea of uncertainty set was

introduced by Soyster (1973), who suggested a linear optimization model in

which its optimal value is feasible to all data within a convex set. In exchange

for a robust solution to all possible scenarios, this model is known in the

literature to produce optimal solutions that are too conservative.

Even though the first published work dates back to the 1970s Soyster

(1973), it was many years later that a major development in the theory of ro-

bust optimization was taken by Ben-Tal and Nemirovski (1998, 1999), Ghaoui

and Lebret (1997) and Ghaoui et al. (1998). Their work provided a detailed

analysis on robust optimization framework, in either linear optimization and

general convex optimization. To solve the conservativeness issue, Ben-Tal and

Nemirovski (1999) introduced a less conservative model, by considering a lin-

ear optimization problem with ellipsoidal uncertainties which involved solving

a robust counterpart of the nominal problem. They showed that ellipsoidal

uncertainty sets resulted in a tractable robust convex problem that could be

solved as second-order conic program. Using the concepts of robust optimiza-

tion, Bertsimas and Sim (2004) provided a new framework to control conser-

vatism of the optimal solution while maintaining the advantages of the linear

formulation proposed by Soyster (1973).

Robust optimization reflects the trade-o↵ between robustness and each

possible realization of the uncertainty parameter. Since the probability distri-

bution of the parameter is unknown, the general approach is to specify the size

and shape of the set around the uncertainty parameter. Where the size of the

set determines the probability that the uncertain parameter takes on a value

in the set, and the shape dictates the complexity of the optimization problem

Fabozzi et al. (2009).

2.2.1
Robust Optimization Concepts

As an example we consider an uncertain linear optimization model,

however the discussions that arise from this problem can be extended to other

classes of uncertain convex optimization problems. The standard uncertain

linear optimization problem takes the following form
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minimize
x

f0x

subject to Ax  b

(A,b) 2 U ,
(2-30)

where x 2 Rn are the decision variables, A 2 Rm⇥n, b 2 Rm are the uncertain

coe�cients related to the LO problem and U is a uncertainty set that is

specified by the user. Notice that this problem is equivalent to a collection

of LO problems with a common structure that the parameters may varying in

a given uncertainty set.

Robust optimization problems that we mention throughout this work

are modeled to focus on problems with three main characteristics Nemirovski

(2012). First, all decision variables x 2 Rn are “here and now” decisions, mean-

ing that each decision variable must be specified before the uncertainty param-

eters unfold. The decision maker takes responsibility for the consequences of

his decisions when, and only when, the actual data lies in the uncertainty set

U that was previously established. Finally, the decision maker cannot bear vi-

olations of the constraints when the data is within the given uncertainty set

U , in the literature these type of constraints are known as “hard” constraints

Ben-Tal and Nemirovski (1999).

Based on the assumption that the problem must be protected against

all uncertainty realizations, we introduce the concept of robust feasibility, that

is, the optimization problem should be feasible within all realizations of the

uncertainty set. Therefore, a vector x 2 Rn is robust feasible if it satisfies the

constraints for all realizations of uncertainty, as follows

Ax  b 8(A,b) 2 U . (2-31)

The idea of robust feasibility naturally leads to these worst-case oriented

optimization problems. A central concept around robust optimization method-

ology is the robust counterpart of an uncertain problem, which is defined as

the optimization problem that seeks for the best robust feasible solution over

the uncertainty set. The robust counterpart of (2-30) is equivalent to

minimize
x

f0x

subject to Ax  b, 8(A,b) 2 U .
(2-32)

Notice that the robustness with respect to the uncertainty set U can

always be formulated constraint-wise. For some of the examples we may focus

on a single constraint, thus for problem (2-32) a constraint-wise uncertainty

can be modeled as

(a+P⌘)0 x  b, 8⌘ 2 U⌘, (2-33)
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where ⌘ is a constraint-wise realization of the uncertainty set that belongs to

the predefined set U⌘. Moreover, in this formulation a robust feasible solution

x 2 Rn satisfies all uncertainty constraints (A(⌘)x  b), for all realizations of

⌘ 2 U⌘.

2.2.2
Solving the Robust Counterpart

Observe that problem (2-32) can be defined as a problem with infinitely

many constraints due to the worst case formulation, which makes it intractable

in its current form. However, there are robust reformulation techniques to

transform it into a one-level optimization problem. Here we describe the details

of this approach.

The robust reformation technique is the main procedure in Robust

Optimization, which consists of three steps. And as result, we obtain a

computationally tractable robust counterpart, which contains a finite number

of constraints.

To illustrate the three steps to derive the Robust Counterpart we use a

polyhedral uncertainty set:

U = {⌘ : D⌘ + q � 0} .

Step 1 (worst case reformulation): Observe that (2-33) can be reformu-

lated in a worst case perspective as

a0x+max
⌘2U

(P0⌘)0 x  b (2-34)

Step 2 (duality): In the next step we obtain the dual of the inner

maximization problem. Due to strong duality, the dual (minimization problem)

is an upper bound of the primal problem (maximization problem) and their

optimal value coincides. Therefore, the constraint (2-34) is equivalent to

a0x+min
w

{q0w : D0w = �P0x,w � 0}  b. (2-35)

Step 3 (Robust Counterpart): It is important to mention that the inner

minimization problem can be omitted from the constraint. By strong duality,

the dual problem is also bounded and feasible, in addition the constraint holds

for at least one w 2 Rm. Therefore, the final equivalent formulation of the

Robust Counterpart (2-32) for this uncertainty set becomes the following

minimize
x,w

f0x

subject to a0x+ q0w  b

D0w = �P0x

w � 0,

(2-36)
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note that the constraints for (2-36) are linear in x 2 Rn and w 2 Rm and the

objective function is also linear, therefore this equivalent problem is tractable.

This simple example is just to illustrate this powerful setup to deal with

problems that have hard constraints. Moreover, using this same three steps

that was described, one can arrive at tractable robust counterparts for di↵erent

conic uncertainty sets.

2.2.3
Defining Uncertainty Sets

One way of modeling uncertainty is to generate possible outcomes for

the uncertain parameters, for instance, one could define a range of values for

future asset returns. Optimization under uncertainty is dealt in the robust

optimization framework by specifying an uncertainty set, which is a collection

of possible scenarios for the uncertain parameters. Moreover, the robust

counterpart of the original problem would then contain a set of constraints for

each uncertain parameter, and ensure that the original constraint is satisfied

for the worst-case scenario under the predefined uncertainty set. Typically the

uncertainty sets are chosen such that it satisfies two important properties:

– The robust constraint a(⌘)0x  b 8⌘ 2 U⌘ is computationally tractable

– For a predefined level of confidence ⇠, the uncertainty set can be modeled

such that the constraints hold with at least a probability ⇠. This property

implicates that for all x 2 Rn and b 2 R the chance constraint holds,

therefore

If a(⌘)0x  b 8⌘ 2 U⌘ , then x also satisfies P⌘(a(⌘)0x  b) � 1� ⇠.

Usually uncertainty sets that are used in practice range from polytopes

to more sophisticated conic-representable sets, that are derived from di↵erent

assumptions about the uncertainty parameter. For instance, a confidence in-

terval can be defined for an uncertainty parameter, which leads to a polyhedral

set known as box uncertainty set. For an uncertainty parameter ⌘ 2 Rn, the

box uncertainty set is given as follows

U⌘ = {⌘ : |⌘i � ⌘̂i|  ✏i, i = 1, . . . , n} , (2-37)

where ⌘̂ is the nominal estimated value for ⌘ and ✏ denotes the absolute

distance di↵erence around the nominal value. This uncertainty set contains the

full range of realizations for each uncertainty parameter, therefore it guarantees

that each constraint is hardly ever violated (⇠ = 0). On the other hand, there

is a small chance that all uncertain parameters assume their the worst case

values at once. The conservativeness of this set led to the development of
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smaller uncertainty sets that still guarantees that each constraint holds in

almost every possible scenario.

When additional information, such as moments, symmetry or unimodal-

ity about the distributions of uncertainty parameter are available, smaller un-

certainty sets can be used. For example, the ellipsoidal uncertainty set proposed

by Ben-Tal and Nemirovski (2000) allows to include second moment informa-

tion on the uncertainty set. Most generally this uncertainty set can be written

as the following

U⌘ =
�

⌘ : (⌘ � ⌘̂)0⌃�1
⌘ (⌘ � ⌘̂)  ✏

 

, (2-38)

where ⌃⌘ is usually assumed to be the covariance matrix of the parameter ⌘.

The authors have also proved that if ⌘ are symmetric distributed independent

random variables the robust constraint is violated at most with probability

exp(�✏2/2). In figure (2.2), we illustrate an example of a two dimensional

ellipsoidal uncertainty set.

Figure 2.2: Example of an ellipsoidal uncertainty set

A second polyhedron set was proposed by Bertsimas and Sim (2004),

they introduced the concept of budgeted uncertainty set. Following the as-

sumption that not all uncertain parameters would go to its worst-case value

simultaneously, they introduce a parameter called budget of uncertainty, �,

which controls the number of uncertain parameters (⌘) that are allowed to

deviate from its nominal value. This uncertainty set is given by

U⌘ =

(

⌘ : |⌘i � ⌘̂i|  ✏izi,

n
X

i=1

zi  �, 0  zi  1, i = 1, . . . , n

)

, (2-39)
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here ⌘ 2 Rn and if ⌘ are independent and symmetrically distributed the

confidence level is at most exp(��2/(2n)). Note that when � = 0 the constraint

is equivalent to the constraint in the nominal problem and when assumes the

same value as the number of uncertainties we have the box uncertainty set.

This is the reason � is called budget of uncertainty, after all its value exposes

the trade o↵ between the nominal problem and the more conservative box

uncertainty. It is also important to mention that this uncertainty set leads to

a linear programming problem, therefore more tractable than the ellipsoidal

uncertainty set.

As an example, we illustrate how the budget of uncertainty a↵ects this

uncertainty set and its relation with the box uncertainty set. First, consider a

Bertsimas uncertainty set in two dimensions:

Uµ =

(

µ : |µi � 2|  1zi,
n
X

i=1

zi  �, 0  zi  1, i = 1, 2

)

. (2-40)

In figure 2.3 we project this uncertainty set in a two dimensional space,

for � = 1 and � = 2. Notice that, for � = 2, the uncertainty set is equivalent

to the uncertainty in equation 2-37, and as the budget of uncertainty becomes

smaller the set also reduces. For the specific value of � = 1, the set allows one

of the parameters to take its nominal value (i.e. average in this example), and

the other parameter assumes its worst case value.

Figure 2.3: Example of Bertsimas uncertainty. On the left: � = 2, on the right:

� = 1.

If regression techniques are used to estimate the uncertainty parameters,

polyhedral and ellipsoidal sets comes naturally as potential uncertainty sets,

and as was previously mentioned, it can also be associated to probability

guarantees for each constraint.
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A newly data driven approach was introduced by Bertsimas et al. (2014).

They propose a new methodology that uses data to construct uncertainty sets

for robust optimization using hypothesis test. Moreover, on the same article

is also provided a thorough guideline with recommendations for practitioners

and illustrates applications with portfolio management and queuing.

In recent papers, Bertsimas and Brown (2009) and Natarajan et al.

(2009) independently formulated coherent risk measure minimization as robust

optimization problem and showed the relation between coherent risk measures

and its equivalent uncertainty sets. Moreover, Bertsimas and Takeda (2015)

study minimizing a coherent risk measure under a norm equality constraint

using a robust optimization framework. To illustrate the correspondence

between risk measures and robust optimization uncertainty sets, consider the

uncertainty set associated with discrete Conditional Value at Risk (CVaR)

generated by a discrete distribution of ⌘̃ such that P (⌘̃ = ⌘i) = pi, i = 1, . . . , n

UCV aR1�↵ =

(

n
X

i=1

zi⌘i :
n
X

i=1

zi = 1,0  z  1

↵
p

)

, (2-41)

In figure 2.4 we illustrate a CVaR uncertainty set of an equiprobable

discrete distribution with 20 elements in its sample space (i.e. The set of

possible out comes is {⌘1, . . . ,⌘20} and P (⌘̃ = ⌘i) =
1
20 , 8i = 1, . . . , 20).

Figure 2.4: Example of CVaR uncertainty set.
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To conclude this section we draw attention to an important misconcep-

tion regarding the interpretation of the uncertainty set. When an uncertainty

set is constructed to include the true parameter with a confidence level of ⇠,

it implicates a stronger probability guarantee than it seems at first. For the

reason that, the constraint realization holds at this probability for all real-

izations of the uncertain parameters outside of the uncertainty set, not only

the worst-case scenarios, since it also includes the “good” scenarios. Hence, by

solving a problem through a robust optimization perspective the probability

guarantee is usually much higher than 1� ⇠.

2.2.4
Robust Portfolio Optimization

Estimated expected returns are likely to diverge from the actual future

asset returns, however, we may assume a uncertainty set that can predict the

actual future asset return with high probably margin. Hence, for expected

returns, uncertainty sets describes a geometric structure around estimated

values of future asset returns (Kim et al., 2013). In this dissertation we only

consider the case when the covariance matrix of returns is known and the

uncertainty relies on the expected returns.

The simplest choice of uncertainty sets for expected returns (µ) is a box,

Uµ = {µ : |µi � µ̂i|  ✏i, i = 1, . . . , n}, where ✏i is related to the confidence

level around each estimated return. And, the robust portfolio optimization

problem is formulated as

minimize
x

x0⌃x

subject to min
µ2Uµ

µ0x � µ0,
(2-42)

where µ0 is the required expected return from the portfolio. Notice that this

is the same uncertainty set proposed by Soyster (1973). Moreover, this model

can be reformulated as a one-level optimization problem

minimize
x

x0⌃x

subject to µ̂0x� ✏0 |x| � µ0.
(2-43)

From problem (2-43) we can derive a intuitive explanation for the single-

level robust optimization problem. When the weight of an asset i is negative,

the robust problem increases its required expected return, µ̂+ ✏i, on the other

hand when it assumes positive values the expected return takes reduction,

µ̂� ✏i. Fabozzi et al. (2009) interpreted this fact as the risk adjustment by an

investor that is averse to estimation error.

Another common structure for the uncertainty set is to consider it an

ellipsoidal set, Uµ =
�

µ : (µ� µ̂)0⌃�1
µ (µ� µ̂)  ✏2

 

, where ✏2 is often chosen
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as the quantile of a chi-squared distribution with n degrees of freedom and ⌃µ

is the covariance matrix of the estimated expected return. Again, it can be

shown by using SOCP duality that problem (2-42) can be formulated as

minimize
x

x0⌃x

subject to µ̂0x� ✏2
�

�

�

⌃
1/2
µ x

�

�

�

2
� µ0,

(2-44)

which is a Second Order Cone Programming problem. Ceria and Stubbs (2006)

observe that the term �✏2
�

�

�

⌃
1/2
µ x

�

�

�

2
is related to the estimation error and

its inclusion in the constraint minimize the e↵ect of estimation error on the

optimal decision.

More recently, Fernandes et al. (2016) proposed a new perspective on

uncertainty sets for robust portfolio optimization. Their work focused on

data-driven polyhedral uncertainty sets constructed with an intuitive loss

constraint for asset returns in a rolling horizon scheme. They have also shown

empirically that this methodology is able to capture market dynamics and

the dependence structure between assets. To illustrate, let’s consider a simple

return maximization problem subject to an robust loss constraint

maximize
x

µ̂0x

subject to L(r,x)  ✏, 8r 2 U
r

,
(2-45)

where, r is the unknown vector of asset returns, x are the decision variables

and ✏ is a scalar that defines the investor’s maximum tolerance to a daily loss

in his portfolio. Moreover, the loss constraint is defined as

r0x � �, 8r 2 U
r

, (2-46)

where � is a parameter that denotes the percentage of loss in the portfolio.

Moreover, the uncertainty set U
r

is defined as the convex hull of past n observed

vectors of daily returns, which can be expressed as

U
r

=

(

r : r =
n
X

t=1

rt⇠t,
n
X

t=1

⇠t = 1, 0  ⇠  1,

)

, (2-47)

here, rt are n sample historical returns.

The authors have shown that to guarantee robust feasibility of the

loss constraint for any optimal decision x it is su�cient to include n linear

constraints (2-46) for each return sample rt. Therefore, problem (2-45) can be

formulated in this framework as

maximize
x

µ̂0x

subject to r0tx � �, 8rt = 1, . . . , n,
(2-48)

This approach enables the investor to adaptively generate polyhedral

uncertainty sets that changes over time according to market dynamics. In
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figure 2.5 we illustrate this uncertainty set in di↵erent days using a sample

of 252 daily returns observations. We can clearly see that the uncertainty set

expands when the market is more volatile, as well is captures the negative

correlation between both assets.
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Figure 2.5: Example of robust loss constraint in di↵erent market conditions.

2.3
Black-Litterman Model

The Black-Litterman method (Black and Litterman, 1990) was created

to be a practical and more stable portfolio management method. The portfolio

is created to provide intuitive weights to for the investors that can be ad-

justed according to their opinions about the market. The methodology starts

by defining a neutral market portfolio and views determined by the user, then

these parameters are combined to construct a new updated market distribu-

tion. The optimal porfolio is achieved by using this new distribution as input

to the classical mean-variance portfolio optimization problem.

This section reviews the Black-Litterman model, proposed by Black and

Litterman (1990) and Black and Litterman (1992), for more information on

the topic we also refer to Walters (2009), Meucci (2008) and Idzorek (2007).

It is also presented here a extension of the Black-Litterman model done by

Meucci (2008).
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2.3.1
The Model

Consider a market of N risky securities or asset classes where all investors

maximize their portfolio return for a given limit of risk. That is, investors look

to solve the classical Markowitz’s portfolio optimization problem:

maximize
x

µ0x

subject to x0⌃x  �2
0,

(2-49)

where ⌃ is the covariance matrix of asset returns, x is the amount of wealth

invested on each security, µ is the expected asset excess returns and �2
0 is the

risk limit specified by the investor.

A common path that is taken to solve equation (2-49), is to estimate

the covariance matrix and asset returns from an econometric model. However,

finding a stable estimation is rather a di�cult task. With that in mind, Black

and Litterman (1990) suggested a framework that combines two set of inputs,

the market equilibrium and investor’s views.

Market Equilibrium Model

We start by considering a market with n risky assets, where the returns

follows a multivariate normal distribution:

r ⇠ N(µ,⌃), (2-50)

where µ 2 Rn is the expected return and ⌃ 2 Rn⇥n is the covariance matrix,

which is considered to be known and estimated from historical data.

The Black Litterman model assumes that distributions of asset returns

are consistent with the market equilibrium. Hence, if all investors solve

equation (2-49) there exists �, such that we can solve explicitly this problem

and obtain the relationship between market equilibrium portfolio (xmkt) and

the reference expected returns (µ)

µ = 2�⌃xmkt. (2-51)

Now, multiplying (2-51) by xmkt, � = x0
mktµ/(2x

0
mkt⌃xmkt). This pa-

rameter is known in the literature as risk aversion level, as it measures the

risk-return trade-o↵ of the portfolio. Thus, we define a market price of risk,

which for an unobservable value, �2
mkt, we have that the market allocation,

xmkt, satisfies the optimal value of 2-49 and

�̂ =
x0
mktµ

2�2
mkt

, (2-52)
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where �̂ is the average portfolio risk aversion. The magnitude of �̂ reflects

investor’s aversion to estimation risk. When �̂ is small, the investor’s aversion

to risk is also small, which leads to more risky portfolios. From an optimization

perspective, it happens because the portfolio variance is not penalized as much

in the objective function. The Black-Litterman model aims to find the average

risk aversion parameter of a given reference portfolio. Although there are

multiple studies on �̂, which a↵ects directly the market equilibrium returns,

there is no consensus on how to estimate �̂. Moreover, these results are centered

around the capital asset price model equilibrium (CAPM). For the classical

proofs of these equations and further results on CAPM theory see Elton et al.

(2009) and Sharpe (1964).

It is a common practice to calibrate �̂ so that the portfolio can better

represent the risk-return characteristics that is desired. Pachamanova and

Fabozzi (2011) recommends to calibrate via backtests using the historical data.

Furthermore, other authors specified the value of �̂ that they have chosen.

For instance, Bevan and Winkelmann (1998) calibrate the market equilibrium

returns to an average target Sharpe Ratio based on their past experience, in

their global fixed income example they used a Sharpe Ratio of 1.0. Black and

Litterman (1992) used a Sharpe Ratio approximately 0.5 in the example shown

in their paper. Allaj (2013) proposed a econometric methodology to estimate

the risk averse parameter for the Black-Litterman framework. In practice, there

is no consensus on how this parameter should be estimated.

The Black-Litterman model considers the true expected returns µ of the

securities are unknown and assumes that the CAPM serves as a reasonable

estimate for the expected returns, as a result the equilibrium model is defined

as

⇡ = 2�̂⌃xmkt + ✏m, ✏m ⇠ N(0, ⌧⌃), (2-53)

here ⌧⌃ represents the confidence on the equilibrium expected return model.

For instance, a small value of ⌧ implies a low confidence in our market equi-

librium estimate. On the other hand a high value indicates a high confidence.

As a result, the model states that µ is normally distributed

µ ⇠ N(⇡, ⌧⌃), (2-54)

The parameter ⌧ was proposed to deal with market equilibrium uncer-

tainties, which is a scaling factor for the uncertainty of the estimated mean

return (see He and Litterman (1999); Meucci (2008)). This parameter is con-

sidered one of the most confusing aspects of the Black-Litterman model. The

original model presented in Black and Litterman (1992) does not specify how
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to estimate it. Despite that, in the literature there are several methodologies

to estimate ⌧ . The first methodology provides an idea of the magnitude of ⌧

by replacing it with 1
T
, where T is the number of observations. However, this

methodology is not well-founded, it is simply provides an idea of the magnitude

of ⌧ . Moreover, Satchell and Scowcroft (2000) treats ⌧ as a random variable

and others scholars give only recommended values of ⌧ . Many of these authors

argues that ⌧ is greater than zero and smaller than one.

2.3.2
Specifying Investor’s Views

An investor view is an information or opinion on the market that

possibly diverges from the reference market model. Black Litterman model

considers these views as expectations, q1, q2, . . . , qm, on di↵erent portfolios,

p1,p2, . . . ,pm, which is represented as the matrix P 2 Rm⇥n. In the normal

market these views corresponds to statements on the expected asset returns µ

Meucci (2008). Formally, the Black-Litterman model expresses the views as

q = Pµ+ ✏v, ✏v ⇠ N(0,⌦), (2-55)

where ⌦ is the covariance matrix of the views extimation error, which, in a

sense, expresses the confidence of the investor on the views, P is the matrix of

the portfolios which the investor has a view and and q states the expected

return of each portfolio view. Originally the covariance matrix ⌦ can be

expressed in two di↵erent ways, which is di↵erentiated by the dependence

between views.

– In the case of independent views, the matrix ⌦ is chosen in such a way

that the o↵ diagonal elements should be equal to zero, therefore

⌦ = diag(⌧1, . . . , ⌧n) (2-56)

– In the case where there is dependence between each view, Meucci

(2008) suggested to use the same dependent structure expressed by the

estimated covariance matrix, modified by the portfolio matrixP to match

the dimension of the original views q.

⌦ =
1

⌧0
P⌃P0. (2-57)

Where, ⌧0 2 (0,1) represents the confidence on the views. When lim
⌧0!0

⌧0

it neglects the market and only consider the views and with lim
⌧0!1

⌧0

expresses full confidence on the CAPM model.
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2.3.3
Market Distribution Update

After the market equilibrium and investor’s views are specified, we pro-

ceed to update the returns distributions. There are two equivalent approaches

that can be used to arrive at the Black-Litterman formulation, which is known

as the posterior distribution. Here we follow the derivation shown at Fabozzi

et al. (2007) which based on a standard econometrical technique, known as

mixed estimation technique described by Theil (1971). First, we combine the

investor views and market equilibrium equations in a standard linear model

for the expected returns

y = Xµ+ ✏, ✏ ⇠ N(0,W), (2-58)

with each respective term being

y =

"

⇡

q

#

,X =

"

In

P

#

,W =

"

⌧⌃ 0

0 ⌦

#

, (2-59)

where In is an identity matrix of the same dimension as the number of assets.

From the following optimization problem we calculate the Generalized Least

Squares (GLS) estimatior for µ

minimize
µ

kW�1(y�Xµ)k22. (2-60)

From the solution of the optimization problem (2-60) we obtain the

estimated expected return of the Black-Litterman model, where µ̂BL =

(X0W�1X)�1X0W�1y. Applying this result to the original values of y,X and

W we arrive at

µ̂BL = [(⌧⌃)�1 +P0⌦�1P]�1[(⌧⌃)�1⇡ +P0⌦�1q]. (2-61)

And, the variance estimated by the Bayesian update is given by

⌃µ
BL = [(⌧⌃)�1 +P0⌦�1P]�1 (2-62)

However we are interested in the posterior distribution of the risky

securities, not the posterior distribution of the mean estimate. To find this

distribution we can equivalently rewrite (2-50) as r
d
= µ + ✏r, where ✏r ⇠

N(0,⌃). Hence, assuming that µ and ✏r are independent, the posterior

covariance matrix of reference model is

⌃BL = ⌃+ [(⌧⌃)�1 +P0⌦�1P]�1 (2-63)

From equation (2-61) we see that the Black-Litterman expected return

is a weighted linear combination of market equilibrium ⇡ and the investor’s

views q. As we will later show, our approach uses this fact to develop

robust formulations of the Black-Litterman model under conflicting views
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q 2 Qq, where Qq is the uncertainty set of the views created from multiple

forecasters. In addition, one could also extend our models to an uncertain

market equilibrium ⇡ 2 P⇡, in the same manner, P⇡ is the uncertainty set of

the market equilibrium.

Example 1 To ilustrate, we consider a simplified case of a Brazilian hedge

fund that invests in four asset classes: Brazilian fixed income bonds, Brazilian

inflation-linked bonds, U.S. Dollar (BRLUS) and Brazilian stock market index

(IBOV). To represent the historical daily return series of the fixed income

securities it is used ANBIMA fixed income index IRF-M and ANBIMA

inflation-linked box index IMA-B. We consider a data set starting from October

’16 and use 12 months of past daily returns observations to estimate de

covariance matrix.

The estimated historical variances (annualized) on the asset classes

mentioned are approximately � ⇡ [3.5% 7.1% 18.1% 26.9%]0 and the

correlation matrix

C =

2

6

6

6

6

4

1 0.84 �0.27 0.51

1 �0.28 0.49

1 �0.42

1

3

7

7

7

7

5

.

To determine the reference model excess mean returns ⇡ we start from a

hypothetical market portfolio weights xmkt = [20% 26% 17% 37%]0. Next, we

follow He and Litterman (1999) and exogenously define �̂ = 1.25. Now, from

(2-53) we obtain

⇡ = [0.6% 1.1% � 0.8% 6.4%]0. (2-64)

We have taken ⌧ = 1/252, corresponding to using 252 historical obser-

vations and in equation (2-57) we set ⌧0 = 2/⌧ , representing a conviction 2

times stronger in views compared to the equilibrium estimate model. Also, we

assume that the investor has two views, the first view is an absolute view and

the second one is a relative view:

1. Inflation-indexed bonds will have an excess return of 1.5%.

2. U.S Dollar will outperform Brazilian stock market index by 1%.

Mathematically, these views are expressed as
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"

1.5%

1%

#

=

"

0 1 0 0

0 0 1 �1

#

2

6

6

6

6

4

µIRF�M

µIMA�B

µDOL

µIBOV

3

7

7

7

7

5

+

"

✏1

✏2

#

.

Moreover, using the Black-Littermaan framework the excess return vector

becomes

µBL = [0.6% 1.3% 1.4% 3.17%]0. (2-65)

With the updated distribution, it is now possible to solve Markowitz

problem (2-49), possibly under a set of additional convex constraints, such as

boundaries on asset classes, turnover, or risk exposure constraint. This second-

order cone programming problem can be easily solved numerically. In this

example, in our portfolio optimization model we assume no short sales and

leverage allowed, i.e. x � 0 and x01 = 1.

In figure 2.6 we plot the optimal allocation for the reference model and

the posterior model. Consistently with the views, the exposure to US Dollar

increases to lower risk levels of risk aversion, also the exposure to inflation-

indexed bonds increases across all levels of risk aversion whereas at the same

time the exposure to fixed income bonds and equity index decreases for the

same levels of volatility.
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Figure 2.6: Black-Litterman allocation model with and without views

2.3.4
Black-Litterman Model Extensions: View on Risk Factors

Meucci (2008) proposed minor modifications to the original model, which

can improve its range of applications. Meucci proposes a model that expresses

the views on the market r, not directly on the expected return µ.

On the extreme condition when ⌦ ! 1, intuitively one would presume

that the estimated distribution would be equal to the market reference model

(2-50). However, in the Black-Litterman model under this condition the

estimated distribution becomes

rBL ⇠ N(⇡, (1 + ⌧)⌃), (2-66)
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Therefore, for a specific reference market model the posterior distribution

is distorted, unless ⌧ = 0, which might go against the user’s intuition. To solve

this problem Meucci (2008) uses the same framework of the original Black-

Litterman model. However, he assumes that the expected return µ is not a

random variable, therefore ⌧ = 0 and µ = ⇡. In addition, the investor has

views on linear functions of the market q = Pr, where P is the portfolio

matrix as in (2-55). As in the original Black-Litterman, the views are assumed

to be normal random variables

q = Pr+ ✏v, ✏v ⇠ N(0,⌦), (2-67)

where ⌦ represents the uncertainty related to the investor’s views on the mar-

ket reference model, as in (2-55). Moreover, applying the same methodology

showed for original model, we obtain an similar market posterior distribution,

given as follows

r | q;⌦ ⇠ N(µr

BL,⌃
r

BL), (2-68)

where, the mean and covariance matrix are

µr

BL = [(⌃)�1 +P0⌦�1P]�1[(⌃)�1⇡ +P0⌦�1q]. (2-69)

⌃r

BL = [(⌃)�1 +P0⌦�1P]�1 (2-70)

These extension proposed by Meucci is very similar to the original

Black-Litterman model. However, there are a couple advantages of using this

formulation. First, parameter ⌧ is never used here, which eliminates part of

the subjectivity underling the original model. Second, in the market posterior

model there is no need to include the original covariance matrix as in (2-63).

In addition, under extreme confidence level (i.e. ⌦ ! 1) these formulation

results in a model that is consistent with the market reference. In other words,

the posterior distribution would be the same as the prior distribution.
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3
Proposed Robust Model based on Black-Litterman Approach

In this chapter we propose robust models based on the Black-Litterman

framework, where the investor incorporates conflicting views on the same asset

and sets a confidence region for the market equilibrium. We propose models

that construct uncertainty sets on the views with complete and incomplete

information. To model uncertainty, we adapt the uncertainty sets presented in

(2.2.3) to di↵erent possible scenarios from an investor’s perspective. We divide

this chapter in three sections: in the first section we present our general robust

model based on Black-Litterman approach, in the second one we propose

an uncertainty set based on complete information on the views from the

forecasters, therefore the investor is perfectly informed of all portfolio views

from the forecasters, before the realization of future asset returns. Whereas

in the last part of this chapter we focus on uncertainty sets constructed with

partial information about the views, which is assumed that the decision maker

has some statistical information about the forecasters.

3.1
General Robust Black-Litterman Model

We have seen in section 2.3 that the Black-Litterman model expected

return is a linear combination of the market reference model and the expected

return implied by the views, this result is shown in equation (2-61). The linear

combination are given by the following matrices

A = [(⌧⌃)�1 +P0⌦�1P]�1(⌧⌃)�1,

B = [(⌧⌃)�1 +P0⌦�1P]�1[P0⌦�1],

and, for n assets we have that A + BP = I, where I 2 Rn⇥n is an identity

matrix. Following this line of thought, we start by defining our proposed general

mean-variance robust Black-Litterman framework

minimize
x

x0⌃BLx

subject to µBL(⇡,q)0x � µ0, 8⇡ 2 P⇡,q 2 Qq

(3-1)

where µ0 2 R is the expected return constraint and µBL(⇡,q) 2 Rn is the

return implied by the Black-Litterman model, defined as µBL(⇡,q) = A⇡+Bq

and q and ⇡ belongs uncertainty sets. This general model considers a possible

robustness on both the market equilibrium and investor’s opinion. To deal only

DBD
PUC-Rio - Certificação Digital Nº 1513216/CA



Chapter 3. Proposed Robust Model based on Black-Litterman Approach 41

with conflicting views in a robust optimization framework, we rewrite (3-1) as

the following

minimize
x

x0⌃BLx

subject to (a+Bq)0x � µ0, 8q 2 Qq,
(3-2)

where a = A⇡ (i.e. the market equilibrium is defined as a point-wise estimate

of CAPM) and Qq is the uncertainty set defined by the user. Here we interpret

Qq as an uncertainty set of conflicting views on the same universe of asset

classes.

In problem (3-2), observe that µBL is an a�ne function of the views q

and the expected return constraint is linear in both the decision variables x

and the uncertainty parameter q. Moreover, assuming that Qq is a compact

convex set allows to derive a tractable robust formulation applying the three

steps described in section 2.2.2. In the next sections, we propose three models

that explore uncertainty sets regarding the views q under this framework. For

each model, we also try to give some intuition and how they would fit for

practical use.

3.2
Black-Litterman with Multiple Forecasters

In the first model, suppose that the portfolio manager receives n views

from f di↵erent analysts , q1,q2, . . . ,qf for the same portfolio P 2 Rm⇥n, on

di↵erent assets and each one of these views has to satisfy the robust problem

(3-2). Collectively the uncertainty set can be represented as a convex hull of

the analysts views

Qq =
�

q 2 Rn | q = ✓1q1 + · · ·+ ✓fqf ,✓ 2 �p

 

, (3-3)

where �p describes the probability simplex, which is given by

�p =
�

✓ 2 Rf |✓ � 0,✓01 = 1
 

. (3-4)

Notice that Qq is a polyhedron set, and it can also be expressed by a set

of linear equalities and inequalities. Thus, under this uncertainty set we can

write the robust constraint of problem (3-2) as

f
X

i=1

✓i(a+Bqi)
0x � µ0, 8✓ 2 �p, (3-5)

hence, in the worst case perspective, constraint (3-5) can be formulated as

min
✓2�p

(

f
X

t=1

✓i(a+Bqi)
0x

)

� µ0. (3-6)
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To guarantee that (3-6) is satisfied for all forecasters and for any

allocation x, it is enough to include f constraints which will bound the robust

constraint to the convex hull denoted by uncertainty set Qq.

Proof. First, consider inner optimization problem of (3-6)

minimize
✓

Pf
t=1 ✓i(a+Bqi)

0x

subject to ✓01 = 1 : �

✓ � 0,

(3-7)

where � is a dual variable. Then, the dual problem of (3-7) corresponds to the

following LP

maximize
�

�

subject to �  (a+Bqi)
0x, 8i = 1, . . . , f,

(3-8)

which yields to an equivalent robust constraint

max
�

{� | �  (a+Bqi)
0x, 8i = 1, . . . , f, } � µ0. (3-9)

Therefore, following step 3 of section (2.2.2), we can omit the inner

maximization problem. In addition, we apply Fourier-Motzkin scheme to

generate an equivalent set of constraints and eliminate the dual variable � from

the robust constraint. Hence, the final formulation of the robust counterpart

becomes

(a+Bqi)
0x � µ0, 8i = 1, . . . , f. (3-10)

Now, we can rewrite the original optimization problem (3-1) as a single-

level equivalent problem

minimize
x

x0⌃BLx

subject to µ̂0
BL,ix � µ0, 8i = 1, . . . , f

(3-11)

where µ̂BL,i = a + Bqi. Notice, in problem (3-11) the optimal value satisfies

the return constraint for all forecasters.

Example 2 We illustrate this model using the same Brazilian hedge fund case

study presented in Example (1). However, now let’s consider that the Brazilian

fund wants to add one conflicting view to the Black-Litterman framework from

a di↵erent analyst. Let’s recall the views and the Black-Litterman excess return

vector

"

1.5%

1%

#

=

"

0 1 0 0

0 0 1 �1

#

2

6

6

6

6

4

µIRF�M

µIMA�B

µDOL

µIBOV

3

7

7

7

7

5

+

"

✏1

✏2

#

.
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µ̂BL,1 = [0.6% 1.3% 1.4% 3.17%]0. (3-12)

Suppose that the second analyst is more optimistic about the stock

market and less optimistic about inflation-indexed bonds. Thus, he expresses

his views mathematically in the Black-Litterman framework as

"

0.5%

�4%

#

=

"

0 1 0 0

0 0 1 �1

#

2

6

6

6

6

4

µIRF�M

µIMA�B

µDOL

µIBOV

3

7

7

7

7

5

+

"

✏1

✏2

#

,

using these views the calculation of Black-Litterman excess returns leads to

µ̂BL,2 = [0.4% 0.76% � 0.05% 5.0%]0. (3-13)

To demonstrate that the robust approach also leads to rather di↵erent

portfolio allocations compared to the classical setting, we perform analogous

calculations as in Example 1. In figure 3.1, we see this uncertainty set resulted

in a significant change in the portfolio allocations in comparison to the classical

one. In our example, the robust problem reduced the allocation in fixed

income and inflation-index bonds, due to the pessimistic view of analyst 2.

Furthermore, the allocation in US Dollar had an expressive increase for high

levels of volatility, attributed to its negative correlation with all other assets,

which is consistent with diversification principles
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Figure 3.1: Classical and Robust Black-Litterman allocations

3.3
Robust Black-Litterman with Incomplete Information

In this section we start to explore models with incomplete information

about the views. The ideas presented in this section can be used by investors

to employ views from market polls, in the robust Black-Litterman model. We

provide two methodologies to model uncertainty sets from a sample of market

participants.
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3.3.1
Bertsimas and Sim’s Uncertainty Set

Suppose now that there are incomplete information about the views and

the investor only has the maximum, minimum and nominal values (i.e. average

or median value) of the views on the future asset returns from the forecasters,

for the same portfolio P 2 Rm⇥n and covariance matrix ⌦ 2 Rm⇥m. In this

scenario, our second model is based on the robust optimization framework

proposed by Bertsimas and Sim (2004). Their approach retains the advantages

of the linear formulation proposed by Soyster (1973), in addition o↵ers a

methodology to control the degree of robustness for every constraint by

introducing the parameter �, that, in our model, take a real value on the

interval [0,m]. The problem is formulated to protect deterministically against

worst case violation of the i constraint, only when a predetermined number of

� uncertainty coe�cients are allowed to change. In other words, � controls the

number of uncertainty coe�cients that may deviate from the nominal value.

Using the robust formulation proposed by Bertsimas and Sim (2004), the

uncertainty set for a general correlated set of views can be modeled as

Qq =
n

q : q = q̂+C�1/2
q ⌘|z � (q� q̂) � ⌘ � z � (q� q̂), z01  �, 0  z  1

o

,

where C�1/2
q is the Cholesky decomposition of the views’s correlation matrix

Cq , ⌘ is the parameter that controls the uncertainty on the views q, � is

the parameter introduced by Bertsimas and Sim (2004) known as uncertainty

budget, q is the upper bound, q is the lower bound, q̂ is the nominal value

and � is an element-wise product of two matrices (Hadamard Product).

In order to formulate problem (3-2) as a one-level optimization problem

under this uncertainty set, consider the following linear optimization model

minimize
z,⌘

(a+B(q̂+C�1/2
q ⌘))0x

subject to ⌘i � zi(qi � q̂i), 8i : �

⌘i  zi(qi � q̂i), 8i : �
Pm

i=1 zi  � : �

z  1 : �

z � 0,

(3-14)

where �,�,� and � are the dual variables associated to each constraint of the

problem. The dual problem of (3-14) is given by
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maximize
�,�,�,�

µ̂0
BLx� ��� 10�

subject to �i(qi � q̂i)� �
i
(q

i
� q̂i) + �+ �i � 0, 8i

�� � = C1/2
q B0x,

� � 0,� � 0,� � 0, � � 0

(3-15)

Since problem (3-14) is convex, feasible and bounded for all � 2 [0,m], by

strong duality problem (3-15) is also bounded and feasible and their optimal

values are the same. Therefore, substituting problem (3-14) to its dual we

arrive at the following equivalent one-level allocation problem

minimize
�,�,�,�

x0⌃BLx

subject to µ̂0
BLx� ��� 10� � µ0

�i(qi � q̂i)� �
i
(q

i
� q̂i) + �+ �i � 0, 8i

�� � = C1/2
q B0x

� � 0,� � 0,� � 0, � � 0.

(3-16)

This general robust formulation allows the decision maker to input upper

bounds and lower bounds on each view. In addition, using the budget of

uncertainty �, it is also possible to control the number of views that might

take their worst value simultaneously.

3.3.2
Ellipsoidal Uncertainty Sets

We motivate our next model as follows. Let’s consider two possible

scenarios, first the manager has only the average return view q̂ 2 R of

N di↵erent independent identically distributed portfolio views, on the same

portfolio P 2 Rm⇥n and known confidence covariance matrix ⌦ 2 Rm⇥m.

In the second case, we also assume that the investor has information on the

covariance matrix of the forecasts, which we denote S
q

2 Rm⇥m. Note that the

covariance matrix in average return forecasts is not necessarily the same as the

confidence covariance matrix. Throughout this section we provide insights on

how to use these informations on our general robust model (3-2).

We start with the first scenario. To use the information on average return

of the views and the number of forecasters N as a robust form of the Black-

Litterman model, we provide a new perspective in light of hypothesis testing.

For that, consider the hypotheses

Ho : µBL = µ̂ML
BL vs Ha : µBL 6= µ̂ML

BL ,

where µ̂ML
BL is the maximum likelihood estimated Black-Litterman return con-
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sidering the average return of N forecasters. We consider that the distribution

of the maximum likelihood estimator µ̂BL, based on an i.i.d sample of N in-

vestors is given by

µ̂ML
BL ⇠ N (µ̂BL,

⌃̂µ
BL

N
). (3-17)

where, ⌃µ
BL is the covariance matrix obtained from the Bayesian update

estimator in equation (2-62).

To create an uncertainty set around the vector of the posterior mean

returns µBL or, in the case of the Black-Litterman model, around the estimate

µ̂BL since the true market parameter is unknown, we need the distribution of

µ̂BL. In case of elliptical distribution, information about the first two moments

is su�cient to determine an ellipsoidal confidence interval. Therefore, it is

possible to create a confidence ellipsoid centered at the point estimate µ̂BL

and using to describe the shape ⌃̂BL, thus

UµBL =
�

µBL 2 Rn | (µBL � E[µ̂ML
BL ])

0(Cov[µ̂ML
BL ])

�1(µBL � E[µ̂ML
BL ]))  �2

 

=

(

µBL 2 Rn | (µBL � µ̂BL)0
✓

⌃µ
BL

N

◆�1

(µBL � µ̂BL)  �2

)

= {µBL 2 Rn | (µBL � µ̂BL)0(⌃
µ
BL)

�1(µBL � µ̂BL)  �2/N} ,

where the size of �2 determines the size of the uncertainty set and defines the

desired confidence from the investor. In case of a multivariate normal distri-

butions, (µBL � µ̂BL)0(⌃
µ
BL)

�1(µBL � µ̂BL) follows a chi-squared distribution

with n degrees of freedom. Thus, the size of �2 can be defined appropriate

by a confidence level ↵ 2 (0, 1), such that �2 = �2
n(↵). In figure 3.2 we illus-

trate a multivariate normal setting in two dimensions originating ellipsoidal

uncertainty sets for di↵erent values of ↵.
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Figure 3.2: Example of Black-Litterman model using confidence ellipsoid. On

the left: N = 2, on the right: N=10.

Observe that from this figure we could also infer that the US Dollar has

a smaller estimated volatility compared to Ibovespa index, as its respective

axis of the ellipse is quite shorter. Moreover, the ellipse coordinate axes are

tilted downward showing that the two assets are negatively correlated. And,

more importantly, we notice that the uncertainty set reduces as the number

of forecasters N increases, resembling a higher confidence for a larger sample.

Therefore, this setting is more appropriate when the decision maker is able to

infer more accurate results for larger samples of forecasters without any extra

information about the forecasts besides average return.

As was shown for problem (2-44), using an ellipsoidal uncertainty set the

original mean variance problem (3-2) can be reduced to the following second-

order cone programming problem

minimize
x

x0⌃BLx

subject to µ̂0
BLx� �2

n(↵)

N

�

�(⌃µ
BL)

1/2x
�

�

2
� µ0.

(3-18)

A quite interesting result can be found in this particular setting: the gap

between the robust e�cient frontier and the classical Black-Litterman frontier

increases with respect to the risk axis, to, the optimal porfolio tends to be

relatively more conservative for higher levels of volatility. Also, for the same

level of risk the investor always chooses a more conservative portfolio when

performing a robust optimization. These results are illustrated in figure 3.3

using the same two assets from the previous example, confidence level ↵ = 0.90

and neither short selling or leveraging allowed.
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Figure 3.3: E�cient frontier for ↵ = 0.95.

Besides this general ellipsoidal µBL uncertainty set, one could use the

robust optimization approach to model only the uncertainty related to the

views q 2 Rm, therefore not considering the variance of the mean return

estimator. A similar approach to the previous model can be performed. We

assume that the views forecast would describe an ellipsoidal uncertainty

with the same shape of the confidence covariance matrix ⌦, is this case the

uncertainty set would be:

Qq =

⇢

q 2 Rm | (q� q̂)0⌦�1(q� q̂)  �2
m(↵)

N

�

.

Using this uncertainty we can represent the inner problem of (3-2) as

minimize
q

(a+Bq)0x

subject to
�

�⌦�1/2(q� q̂)
�

�

2

2
 �2

n(↵)

N
,

(3-19)

where ⌦�1/2 2 Rm⇥m is the lower triangular matrix from the Cholesky

decomposition of ⌦�1. Following the methodology presented in section 2.1.2,

we find that the closed form solution of the SOCP dual problem is

µ̂0
BLx� �2

m(↵)

N

�

�⌦1/2B0x
�

�

2
, (3-20)

hence, the robust problem formulation of (3-2) becomes

minimize
x

x0⌃BLx

subject to µ̂0
BLx� �2

m(↵)

N

�

�⌦1/2B0x
�

�

2
� µ0.

(3-21)
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In these two robust models we see a very intuitive interpretation of the

uncertainty set. As the number of forecasters N increases, the uncertainty set

reduces and the robust model converges to the original Black-Litterman model.

However for a small number of forecasters N , the uncertainty set becomes

larger enough to account for possible estimation errors.

In the second case we assume now that we actually have the information

about the covariance matrix of the forecasts. An investor with multiple fore-

casts information may be uncomfortable specifying the average view q̂. Rather,

one might specify an uncertainty set that captures the actual dispersion of the

views and constrain the portfolio to incur in all the possible scenarios set by

the analysts with a particular level of confidence. In this case, the investor

might form a portfolio robust to uncertainty market views.

Suppose that the decision maker believes that the conflicting forecasts

are distributed as a multivariate normal distribution with covariance matrix

S
q

and average q̂. Thus, it is natural to assume an ellipsoidal uncertainty set

for the views

Qq =
�

q 2 Rm | (q� q̂)0S�1
q

(q� q̂)  �2
m(↵)

 

.

With this uncertainty set problem (3-2) reduces to the following

minimize
x

x0⌃BLx

subject to µ̂0
BLx� �2

m(↵)
�

�

�

S1/2
q

B0x
�

�

�

2
� µ0.

(3-22)

Analogous to the models presented in the previous sections, this model

allow to define an uncertainty structure of q that is independent of the inputs

defined in the Black-Litterman model, leading to optimal solutions. In the next

chapters we empirically study each robust model that we have proposed and

present situations where each model might be useful.
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4
Controlled Tests

In this section we empirically study how the models behave with a small

number of forecasters (i.e. 5) as the uncertainty of their views increased by

the parameter, which here we denominate as ⌧
q

. We also investigate how the

precision on the views influences each robust model and the original Black-

Litterman. The robust approach generalizes the traditional Black-Litterman

methodology, where the uncertainty sets are defined as a single point estimate.

However, the role of these numerical tests is not to evaluate which is the best

model, but rather to help understand when and how each model can be used

as a better alternative.

For simplicity, we consider the scenario where the returns follow a

multivariate normal distribution. Furthermore, we assume that the CAPM

equilibrium model is estimated by a simulated returns from this distribution.

Then, we test the proposed robust models and the original using synthetic

data and manipulated examples. Using this setting, our controlled numerical

tests are divided in two experiments. First, we compare the performance of the

models when views are static and in average correct to a similar case where

the views are static and in average incorrect, for various levels of uncertainty

in the views. This example aims to simulate di↵erent scenarios of specialist

views (i.e. correct and incorrect in average) and see how it e↵ects each model.

In our second test we want to measure the actual impact of views’s

accuracy on the expected returns. In this case we consider fixed levels for

the uncertainty parameter ⌧
q

and stress the accuracy of the forecasts. In

this experiment, we also compare the out of sample performance of the

portfolios using all robust methods. In the next section, we present in detail

the assumptions used in each experiment.

4.1
Experiment Setup

We illustrate both examples using a model with 4 risky assets and a risk-

free asset. To simplify, the rate of return of the risk-free asset is fixed at zero.

We consider that the investor is not allowed to short sell positions, thus the

wealth allocation has the following setting

X =
�

x 2 R4 | x � 0, 10x = 1
 

.
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The returns of the four risky assets are assumed as multivariate normal.

In percentages, the nominal returns (µ) and variances (�) of each asset are

taken as

µ = [0.85 0.89 3.87 0.40]0,

� = [8.7 18.4 26.56 9.56]0,

and, correlation matrix chosen as

C =

2

6

6

6

6

4

1 �0.25 0.45 �0.15

1 �0.35 0.18

1 �0.15

1

3

7

7

7

7

5

.

The assumption of a normal market implies that the mean-variance

framework is the optimal allocation for any set of investor preferences. For

instance, consider a portfolio with target variance �target = 8% per annum,

then, the theoretical optimal portfolio would be xopt = (0.27, 0.29, 0.43, 0). We

are interested to see how each model performs under di↵erent scenario.

The experiments will go as follows:

– Market and Black-Litterman Assumptions

1. We simulate a sample of N = 60 observations from the multivariate

distribution with mean and covariance matrix as defined;

2. We maximize the return in the Robust mean-variance Black-

Litterman model for standard deviation target of 8% (i.e. �  8%).

Without loss of generality we solve the following reformulation of

general robust problem 3-1

maximize
x

t

subject to µBL(q)0x � t, 8q 2 Qq

x0⌃̂BLx  (8%)2

x01 = 1

x � 0

(4-1)

3. We set the CAPM as the sample mean and sample covariance matrix

from the simulated data, thus

⇡ = 1
N

PN
i=1 µi,

⌃̂ = 1
N�1

PN
i=1(µi � µ̄)(µi � µ̄)0,

(4-2)
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and the Black-Litterman parameter ⌧ = 0.05 as in He and Litter-

man (1999).

4. We use the same market assumption and optimization model in

both experiments

– Views and Forecasters Assumptions

1. We assume a scenario of a hedge fund with 5 analysts, where each

of them has two views on the following portfolio P:

P =

"

1 1 0 �1

0 �1 1 0

#

2. The views on the aforementioned portfolio are randomly simulated

as the following distribution:

qi = q̂+ eq ⇠ N(0, ⌧
q

P⌃P0),

where, ⌧
q

is the parameter is added to the experiment to control

the dispersion of the views, notice that it is independent of ⌧

which is a parameter that determines the uncertainty of the average

market equilibrium returns. Therefore, for larger values of ⌧
q

the

uncertainty sets on the robust models increases correspondingly.

Moreover, the average view controls the accuracy of the forecasts,

for example, when q̂ = Pµ the forecasters are generally correct

about the returns. The covariance matrix of the forecasters’s views

are not completely random, we assume that it follows the market

dynamics scaled by the uncertainty parameters ⌧
q

.

3. The confidence matrix for each generated view is defined as ⌦ =

P(⌧⌃̂)P0/10, implying a belief ten times stronger than the CAPM

estimate with the same market dynamics.

– Views on Experiment 1 - Sensitivity to Uncertainty of the Views

1. In this experiment we consider two realizations for the average

forecast on the portfolio. In the first scenario, we assume in average

a perfect foresight, therefore, generating unbiased expected returns

in the posterior distribution. For simulations purposes, we consider

that each forecast qi follows a multivariate normal distribution:
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qi = Pµ+ eq ⇠ N(0, ⌧
q

P⌃P0)

=

"

2.1

3.0

#

+ eq ⇠ N(0, ⌧
q

P⌃P0).

2. The second setting assumes that analysts are systematically wrong

about their views, which we express as the following

qi =

"

0

0

#

+ eq ⇠ N(0, ⌧
q

P⌃P0).

The parameter ⌧
q

defines the size of the uncertainty sets. Our

objective here is to test the uncertainty sets under di↵erent values of

⌧
q

and from this experiment to have a better understanding of their

benefits. To illustrate, in figure 4.1 we display the 99% confidence

interval of q for ⌧
q

= {0.1, 0.25}.

-1 0 1 2 3
q1

-2

-1

0

1

2

3
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5

q 2
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Biased View

-1 0 1 2 3
q1

-2

0

2
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q 2

Unbiased View
Biased View

a) ⌧
q

= 0.1 b) ⌧
q

= 0.25

Figure 4.1: Confidence interval for ⌧
q

.

3. We simulate this experiment for ⌧
q

varying from 0.005 to 5.

– Views on Experiment 2 - Sensitivity to Accuracy of the Forecasters

1. In the second experiment we consider multiples scenarios for q̂ as

a linear function of the optimal value Pµ. Thus, the views on the

portfolio P are simulated as

qi = q̂(⇠
q

) + eq ⇠ N(0, ⌧
q

P⌃P0)

where q̂(⇠
q

) = ⇠
q

and ⇠
q

is used to control the accuracy of the

forecasters.

2. We perform this experiment varying the accuracy parameter ⇠
q

linearly from �2 to 2.
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3. We repeat this experiment for the following values of the uncertainty

parameter: ⌧
q

= (0.5, 1, 2, 4).

– Simulations and Statistics

1. We simulate the market returns and forecasts 500 times, for each

simulation we calculate the out of sample return and standard

deviation from the optimal strategy;

2. We compute the following statistics from the data set of portfolio

returns:

– Mean: average observed out of sample portfolio return for 500

simulations;
– Standard deviation: standard deviation of the portfolio return

over all simulations;
– Minimum return and maximum return portfolio returns ob-

served over all simulations;
– Sharpe Ratio: ratio between mean and standard deviation;
– Empirical constraint-violation probability: empirical probabil-

ity that the portfolio out of sample standard deviation goes

above 8%. It is obtained by the ratio between the number of ob-

servations that violated the standard deviation constraint (i.e.

� > 8%) and the number of simulations (i.e. 500).

– Assumptions on Uncertainty sets

1. Multiple Forecasters: we assume perfect information on all five views

from the simulated forecasters;

2. Bertsimas and Sims uncertainty set: in this case, the investor only

has access to the average, maximum and minimum value of each

view;

3. Ellipsoidal uncertainty set: we use the three proposed models.

Therefore, we assume that the there is only information about the

number of investors and their average view on the simulations for

models 3-18 and 3-21 and for model 3-22 we also assume that

the investor has information about the covariance matrix of the

forecasters. For all models we assume a confidence level ↵ of 0.95;

4. We compare the uncertainty sets under this assumptions against

the original Black-Litterman using the average of all 5 views as an

input.
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4.2
Sensitivity to Uncertainty of the Views

In this section we analyze the results of robust and traditional Black-

Litterman methodologies, when applying the empirical tests from a multivari-

ate Normal distribution. All the numerical results are reported in tables A.1

- A.7, from appendix A. Here, we refer to experiments where the forecasters

are consistently wrong about the views with the label “With bias”, and exper-

iments when on average the forecasters are right about the views as “Without

Bias”. We also distinguish the ellipsoidal uncertainty sets thoughtout the fig-

ures of this section, we use Ellipsoidal (µBL), Ellipsoidal(q) and Ellipsoidal(Sq)

to refer models 3-18, 3-21 and 3-22 from section 3.3.2.

In figure 4.2 we see that with and without bias the average return

decreases as the uncertainty parameter ⌧
q

grows. This result is expected.

Intuitively as the views get more disperse, we observe a negative impact on

the average out of sample results. However, the impacts change depending on

the robustness of the model and on the precision of the views.

We observe that the average returns of the simulations in the models

with multiple forecasters, Bertsimas uncertainty and Ellipsoidal (Sq) sets are

more sensitive to the uncertainty parameter ⌧
q

. This is because the uncertainty

sets on these models naturally grow with the dispersion of the views, thus,

making more conservative allocations for a given level of volatility. And, in

both cases the most conservative model (i.e. Bertsimas � = 2) presented the

lowest average return. We also observe the impact of the bias on the average

return. With bias on the forecast the models have a high impact in low values

of ⌧
q

and get more stable as the parameter increases, and Without bias the

average return decreases almost monotonically for all models.

On the other hand, the uncertainty set of the ellipsoidal sets µBL, q and

the original Black-Litterman remains the same for all ⌧
q

. In this case, the worst

impact is seen when the forecasts are done with bias. Whereas, when the views

are in average right we note that the average returns are almost stable, only

decreasing by a low rate. The stability of the average return also contrasts

in both tests. In addition, for the value of the parameter ⌧ and confidence

of the views that was assumed, the results suggested that these models are

more vulnerable to the impact of estimation errors of views. These first results

are intended to show the trade-o↵ between performance and robustness. It

becomes clear that the robust models are more conservative, in case of where

the return is maximized and the risk is constrained.
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Figure 4.2: Average return ⇥ ⌧
q

The empirical probability gives a measure of how the feasibility of the

variance constraint behaves under di↵erent possible scenarios. In figure 4.3, we

observe that the empirical probability decreases for the models with multiple

forecasters and Bertsimas and Sim’s uncertainty sets and it drifts upwards for

the other models. As the uncertainty set expands with ⌧
q

, the robust models

with multiple forecasters and Bertsimas uncertainty set reduces the risk of the

allocations accordingly which increases the chances of an out sample variance

below 8%. Comparing with bias and without bias in these three robust models,

we see a similar graphical pattern to the one observed in figure 4.2. This

empirically shows that there is trade-o↵ between average return and the price

of robustness, which is independent of the bias. Moreover, we note that the

price of robustness observed in the average return of the simulations might

come at low cost for investors with tight volatility constraints.
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Figure 4.3: Empirical probability ⇥ ⌧
q

In order to obtain a higher average return, the original Black-Litterman

and the robust models with ellipsoidal uncertainty sets q and µBL take more

risk. This is corroborated by the higher levels of out of sample variance and

empirical probabilities that can be seen with and without bias. We observe the

extra risk is taken without taking into account the increasing uncertainty on

the views. As a matter of fact, comparing the behavior of figure 4.3 a) and

figure 4.2 a), we see that the average return is highly penalized, whereas, the

probability of constraint violation slightly increases. These results suggest that

the approaches that considers more information about the forecasters are more

robust to inaccuracy regarding the views.

Visual illustration of the results are presented in figures 4.4 and 4.5. We

have taken ⌧
q

= 5. In the robust models with Multiple forecasts and Bertsimas

uncertainty sets, we observe a concentration of the sample results around the

8% volatility level. These results are more evident when the forecasters are

biased and on more conservative uncertainty sets (e.g. Bertsimas uncertainty

sets in figure 4.4).
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Figure 4.4: Out of sample standard deviation and portfolio returns without

bias views for ⌧
q

= 5.

The models with ellipsoidal uncertainty sets (µBL and q) display a more

scattered behavior, similar to the single point average Black-Litterman in figure

4.5. In particular, these results occurred because these robust feasible sets

are a function of the confidence covariance matrix ⌦ and the parameter ⌧ ,

which remained the same as the accuracy on the views gets worse. Therefore,

the impact of a large uncertainty parameter ⌧
q

is not incorporated in the

uncertainty sets. Consequently, the empirical probability was higher than
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the ones observed on other robust models, as it was previously mentioned.

Furthermore, we see an agglomeration of points around the optimal frontier in

figure 4.4. This is consistent with our intuition, when the investor is on average

correct about his views we would expect a good overall performance. In figures

4.4 and 4.5, we can visualize these insights.
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Figure 4.5: Out of sample standard deviation and portfolio returns with bias

views for ⌧
q

= 5.

Figure 4.6 illustrates the evolution of the Sharpe ratio, which measures
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the e�ciency of the robust models on each assumption. We observe there are

opposite behaviors of the robust Black-Litterman methods as the uncertainty

parameter increases. There are substantial Sharpe ratio loss associated with

both the precision of the views and ignoring its uncertainty structure. Robust

models takes into account ⌧q has a more stable behavior when the views are

biased, we even observe that for large values of ⌧q the Sharpe ratio with or

without bias converges to similar values. However, without bias we note that

these models su↵er a stronger impact, which is mostly due to a better overall

result of the ellipsoidal uncertainty sets q, µBL and average Black-Litterman

model under this assumption.
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Figure 4.6: Sharpe Ratio ⇥ ⌧
q

The results for standard deviation and risk are quite surprising. In

figure 4.7, we see that as ⌧
q

increases the standard deviation of models

Multiple Forecasters, Bertsimas and Ellipsoidal(Sq) converges to almost the

same values with and without bias. The robustness becomes more apparent

as the uncertainty in that view increases. In special, Bertsimas � = 2 has

the lowest standard deviation when the views are biased. It is interesting to

note that the largest uncertainty set becomes more conservative as uncertainty

grows protecting against worst-case realizations of asset’s returns.

As ⌧
q

increases, all three models that do not consider the uncertainty

in the views have a lower standard deviation for unbiased forecasters. Note,

however, in the biased scenario the standard deviation is higher compared to

the robust models and never stabilizes, it keeps increasing as ⌧
q

goes to 5.

These results suggest that the robust approaches are appropriate to deal with

inaccuracy and uncertainty in the views.
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Figure 4.7: Standard deviation of the simulations ⇥ ⌧
q

Summarizing, we observe that the performance indicator of both original

and robust Black-Litterman strategies are very sensitive to the uncertainty of

the views. Specifically, the original model perform poorly when the views are

biased and well when the forecasters are generally correct. We also see that the

robust models outperforms when the views are generally incorrect (i.e. with

bias) and the performance gap becomes wider when the uncertainty parameter

⌧
q

increases. This insights may provide considerable benefits for investors that

use the Black-Litterman model on their investment strategy.

4.3
Sensitivity to Accuracy of the Forecasters

In this section we test the point estimates for the classical Black-

Litterman and our robust Black-Litterman models for di↵erent levels of

accuracy on the views. The data used on the simulations are obtained from the

data we simulate as described in section 4.1. Besides comparing the models on

accuracy basis, we also check our insights for various levels of views’s dispersion

(i.e. ⌧
q

). However, most of the results on the topic were presented on the

previous section.

In figure 4.8 we investigate the empirical performance of our simulations.

We also note that ⇠
q

= 0 is a turning point of our simulations, which is when

robust models that consider views’s dispersion start to perform worse. The

reason is that, all of our hypothetical assets have positive expected return,

thus, when the accuracy parameter (⇠
q

) takes positive value the average view

begins to capture the true direction of the returns. We would argue that this
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region is possibly the most realistic dynamic faced by practitioners, where

market bets fluctuate between right and wrong directions. At this value of ⇠
q

,

we see a clear di↵erent of behavior on all statistical metrics.

An intuitive insight from this experiment is that, the relative advantage

of the robust Black-Litterman strategies to the traditional one depends on

both the precision of the views and its dispersion. From the Black-Litterman

models that does not incorporate views’s uncertainty structure (i.e. Average,

Ellipsoidal (q) and Ellipsoidal (µBL), we observe that the precision is only

relevant factor for the performance. In fact, there is minimal impact on the

average performance as ⌧
q

varies. This behavior, however, is not observed on

other robust models. On these models we see that they do not tilt as much on

the exposure of the precision parameter.
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Figure 4.8: Average return of the simulations x ⇠
q

For Bertsimas and Sim, Multiple Forecasters and Elipsoidal(q) we observe
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a similar pattern on the average returns. For these models the average return

is not only a function of the accuracy factor ⇠
q

, there is also a substantial part

of the impact comes from the dispersion of the forecasters. In relative terms,

we have that for ⇠
q

below zero the the average return is higher for greater

levels of ⌧
q

. On the other hand, we observe the opposite behavior when ⇠
q

is positive, the size of the uncertainty set has a negative contribution on the

performance. This corroborates with the idea we have mentioned about the

cost of robustness.
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Figure 4.9: Standard deviation of the simulations ⇥ ⇠
q

We plot in figure 4.9 the standard deviation of the simulations as a

function of the accuracy parameter ⇠
q

. Analogous to the results from the

previous section, using the uncertainty structure of the views results on a

more stable out of sample standard deviation. This general fact is observable

in all considered robustifications that acknowledge the uncertainty structure,
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independently of the particular specification of the employed uncertainty set

and degree of dispersion ⌧
q

.

A more interesting finding is observed for values of ⇠
q

around zero. As we

mentioned, this is a transition region of forecasts direction of the actual returns.

In this region the original Black-Litterman model have a spike of volatility,

which is due to the uncertainty around actual direction of the market’s views.

However, robust models have a smooth volatility transition around this region.

These results empirically confirm an intuitive understanding that the robust

strategy less sensitive to the accuracy of the views.
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Figure 4.10: Sharpe ratio ⇥ ⇠
q
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Figure 4.11: Empirical probability of the simulations ⇥ ⇠
q

Figures 4.10 and 4.11 we plot the Sharpe ratio and empirical probability.

These plots support the following observations:

(a) The robust strategies that consider the structure of the views have higher

Sharpe ratios around ⇠
q

= 0 mark and lower ratios on extreme values

of the parameter. For positive values of ⇠
q

it is mostly due to the better

performance of the less robust models and the original Black-Litterman.

Moreover, as the accuracy parameter assumes negative values the higher

Sharpe ratio comes from the low volatility of these strategies, which

actually have lower average return compared to the other models;

(b) The empirical probability is significantly dependent on the level of robust-

ness. For larger uncertainty sets we observe a lower empirical probability

in the results of figure 4.11. For example, we note that the empirical prob-
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ability of the most robust model Bertsimas with � = 2 lower bounds all

other models on most part of our simulations. We also observe a reduction

of the empirical probability around ⇠
q

equal zero and as ⌧
q

increases.

The results presented in this section demonstrate several important

points. First, our argument of the importance of considering a robust structure

on the views of the Black-Litterman model. As we have show empirically,

its influence can substantially e↵ect both the standard deviation and average

return of the portfolio. Second, our observations have shown that increasing

the robustness of views decrease the performance dependency on the accuracy

of the forecasts. Also, we have seen that the robust formulation has a cost when

the forecasters are in general correct, a price to pay to be insured on multiple

market views. Moreover, the robustness e↵ect becomes more apparent when

multiple forecasters are uncertain about the direction of the returns, which is

the case for ⇠
q

equal to zero. Finally, To restate the computational tractability

of our robust formulation, we generate a fictitious problem with 100 risky

assets and 100 absolute views. This large scale problem was solved in 0.4 s and

0.8 s for Bertsimas and Ellipsoidal uncertainty sets respectively, which is an

acceptable time for most practical portfolio problems.
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5
Market Expectations System Backtest

In this case study we analyze the performance of two proposed models

(Bertsimas approach and ellipsoidal uncertainty) in an out-of-sample exercise

applied to the Brazilian financial market data considering a hedge fund

strategy. The views were modeled using the Market Expectations System,

which was developed by the Central Bank of Brazil to collect macroeconomic

projections from the industry. We divided this chapter in four parts. First,

we explain what is the Market Expectations System. Second, we present the

assumptions for the backtests and data sets that used throughout our studies.

Then, we explain how we modeled the views on fixed income securities. Finally,

we present the results from the backtests. The backtests were conducted in

Julia Language using JuMP for mathematical optimization (Dunning et al.,

2015).

5.1
Market Expectations System

Here we briefly describe the Market Expectations System developed by

the Central Bank of Brazil to aid in its monetary policy decisions. For more

details on the platform we recommend Barbosa (2012).

The platform started in May 1999, as an online tool, where projections

are input by institutions working in the financial market, such as banks, asset

managers and consultants. In other cases, th are also added companies that

have specialized teams who produce forecasts concerning the main macroeco-

nomic variables. Its main objective is to assist the decision making by pro-

fessionals of the Central Bank itself as well as other enterprises and citizens

who may use the data to plan their actions. The projections are performed

for variables related to economic activity, interest rates and exchange rates,

the variation of price indices, the balance of payments and the fiscal sector

of the Brazilian economy. However, the individual information of the partic-

ipants are confidential and it is only is available to the Brazilian Monetary

Policy Committee (COPOM) and the managers of the system itself.

Currently, there are around 130 logins active in the system. For statistics

purposes, the system only considers the data provided in the last 30 days.

Therefore, the system automatically disregards its projections when calculating

the daily statistics, if the institution does not update its forecast in a frequency

DBD
PUC-Rio - Certificação Digital Nº 1513216/CA



Chapter 5. Market Expectations System Backtest 69

of at least 30 days. The statistics generated by the system are available to the

public in a daily basis by the Central Bank, where they provide the median,

average, standard deviation, coe�cient of variation, maximum and minimum.

Also, the Brazilian Central bank releases on a weekly basis Focus Market

readout with a summary of these statistics. The projections can be done in a

yearly, monthly or quarterly basis, depending on the macroeconomic variable.

The Central Bank also ranks the top five institutions by their forecasts,

classifying based upon their accuracy in short, medium and long term.

In this work we are only interested the projections of three macroeco-

nomic variables, the Selic Rate1, Consumer Price Index (IPCA) and US Dollar

exchange rate. Their reference dates (i.e. day of the prediction) are:

1. US Dollar Exchange Rate: there are two references date for the exchange

rate forecast, the last day of the previous month and last business day

before or on the 15th of the current month;

2. Selic rate: last business day before or on the Wednesday of the week

preceding the Brazilian monetary policy committee meeting of the ref-

erence period and the last business day before or on the 4th Wednesday

preceding the COPOM meeting of the reference period. For months with

no meeting the forecasts are not registered in the system;

3. IPCA: last business day before IPCA-15 is released;

Statistics generated from these variables are inputs to model views in the

Black-Litterman. Since it is not provided the forecast of each institution, we

do not use the Robust Model with multiple forecasts.

5.2
Interest Rate Forecast to Returns

In this section we present how to price a government bond. Then,

we briefly introduce the dynamics of interest rate term structure based on

expectation hypothesis and how we used the forecasts on the spot rate to

make views for the Black-Litterman model.

Bond portfolios are vulnerable to a considerable number of risk factors.

However, for government fixed and index-linked bonds, Koivu and Pennanen

(2014) show most of monthly portfolio returns are consistently explained by

the yield to maturity and the underlying index. Which reduces the return

1
Selic rate is an average of the interbank interest rates which are charged for the trade

in government securities with a maturity of 1 day. Since March 1999, the Central Bank

of Brazil is using this interest rate as benchmark short-term interest rate for its monetary

policy.
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uncertainty into one and two factors, for further details see Fabozzi and Mann

(2011); Fabozzi (2012); Koivu and Pennanen (2014). Here we explain how to

use the interest rate and inflation predictions to forecast returns for government

bond securities.

Fixed income security can be divided in two di↵erent groups, zero-

coupon bonds, also known as discount bonds and coupon bonds. The di↵erence

between them is how the payment is delivered to its buyer, zero-coupon

bonds makes a single payment at the maturity, whereas coupon bonds makes

regular interest payment that are predetermined in the purchase and the last

compensation is due at its maturity. Fabozzi and Mann (2011) defines a coupon

bond as a set cash flows, that each redemption payment is equivalent to a zero

coupon bond maturing at its respective date.

Consider a general portfolio of bonds with payments that is due at times

t1, t2, . . . , tN 2 R+. We denote the nominal payment as Ctn 2 R+, forward rate

from t to tn and linked index at time t as , Yt,tn 2 R and It 2 R respectively.

Thus, the bond portfolio market price, Pt 2 R+, at t < t1 is given by

Pt =
N
X

n=1

ItCtn

(1 + Yt,tn)(tn�t)
, (5-1)

for continuous compounded interest rate the price is defined as

Pt =
N
X

n=1

exp(�yt,tn(tn � t))ItCtn . (5-2)

The relation between continuously compounded rate and discrete rate is

denoted as

yt,tn = ln(Yt,tn + 1) (5-3)

For inflation-indexed bonds, It is the consumer price index, which in

Brazil is called IPCA and Yt,tn is the real yield. In case of fixed income

securities, there is no indexed cash flow, meaning that It always takes value

one and Yt,tn is the nominal interest rate. Observe that the nominal payments

is not a function of t, it is the future cash flow to be received at tn.

5.2.1
Interest Rate Curve Dynamics

There are many empirical studies in the literature that aims to identify

the expected return relationships between bond securities across time. Accord-

ing to Campbell et al. (1997), the expectations hypothesis is the most popular

model of the term structure of interest rate. The theory determines a relation-

ship between long term and short term interest rates. For a more thorough

discussion in this subject, see Luenberger (1998), Campbell et al. (1997) and
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Tabak and Andrade (2001). To simplify, in the remaining of this section we

discuss these concepts assuming zero-coupon bonds, however, it could also be

generalized for coupon bonds.

The underlying idea of this method is that the implied forward rates

from the current yield curve will be realized. In other words, long term bonds

are defined as the expected future spot rates. One can also interpret that

it assumes zero expected excess return on long-term bonds over short-term

bonds. Under these assumptions we can imply future spot rates and forward

rates from the current yield curve. In discrete time, one form to represent this

hypothesis is assuming that a n-period bond return is a combination of the

market’s expectations for m ⌧ -period short interest bond. We can express it

as the following:

(1 + Yt,tn)
n = E[(1 + Yt,t+⌧ )

⌧ (1 + Yt+⌧,t+2⌧ )
⌧ . . . (1 + Yt+(m�1)⌧,tn)

⌧ ], (5-4)

where tn = t + m⌧ and the left side of the equality is the return guaranteed

when buying the bond at time t and holding until maturity at tn.

In table 5.1 we illustrate these

A second form of the expectation hypothesis states that a ⌧ period ahead

expected return reflects the expectations on the forward rate from ⌧ to tn

E[(1 + Yt,t+⌧ )
⌧ ] = (1 + Yt,tn)

nE[(1 + Yt+⌧,tn)
⌧�n]. (5-5)

Although equations 5-5 and 5-4 represents di↵erent forms of the expecta-

tion hypothesis in discrete time, they are not equivalent whenever the interest

rate are random. There are two issues in assuming that both equations are

true. First we would have to make another assumption that the forward rates

(1 + Yt+j⌧,t+(j+1)⌧ )⌧ 8 j = 0, . . . ,m � 1 are independent. Also, the expected

value of a random variable is not necessarily the inverse of its expected value.

Due to these issues, it is common to work with log returns of compounded

interest rate random variables, which has the benefit of linearizing exponential

a�ne functions. When the expectation hypothesis are formulated in this

manner, all forms of expectation hypothesis become equivalent. Furthermore,

it becomes possible to define comparable forward rates for independent values

of the investment horizon ⌧ . Using log returns, the counterpart of equation 5-5

becomes

E [rt,t+⌧ ] = (yt,tn � E [yt+⌧,tn ])n+ E [yt+⌧,tn ] ⌧, (5-6)

where rt,t+⌧ defines the log return from time t to t + ⌧ . Moreover, for zero-

coupon inflation-linked bonds we have the equivalent log return formulation
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E [rt,t+⌧ ] = (yt,tn � E [yt+⌧,tn ])n+ E [yt+⌧,tn ] ⌧ + E [⇡t,t+⌧ ] ⌧, (5-7)

where ⇡t,t+⌧ is the continuously compounded rate of inflation. The views

returns on fixed-income securities are modeled using equations 5-6 and 5-7.

In the following example we illustrate how to use forecasts on spot rates to

generate return views on fixed rate bonds.

In this example we compare the implied SELIC rates from the current

Brazilian Yield curve with forecasts predicted by market practitioners available

on the Market Expectations System. We use the short term top five institu-

tions. The implied SELIC rates are assumed as the forward rates between

COPOM meetings, which are the dates when Brazil’s Central bank announces

a possible change on the current SELIC rate. To model the yield curve, we use

data from fixed-float rate swap contracts of 02/07/2017. These contracts are

traded in the Brazilian Mercantile and Futures Exchange (BM&F Bovespa) on

business days according to the Brazilian calendar.

Table 5.1 displays the yield curve data and the forecasts on the interest

rate from the Market Expectations System. We detone t0 as the current yield

curve date (02/07/2017), t1, . . . , tn as the COPOM meetings dates and the

annualized interest rates are all in percentage. The maximum, average and

minimum forecasts are denoted asMax F.,Mean F. andMin F. respectively.

COPOM (tn) Yt0,tn Ytn,tn+1 �Ytn,tn+1 Max F. Mean F. Min F.

2/23/2017 12.88 12.08 -0.80 12.25 12.25 12.25

4/13/2017 12.30 11.39 -0.68 11.50 11.50 11.50

6/1/17 11.92 10.83 -0.56 11.00 10.89 10.75

7/27/17 11.55 10.40 -0.44 10.50 10.36 10.00

9/8/17 11.32 10.08 -0.32 10.00 9.86 9.50

10/26/17 11.09 9.87 -0.21 10.00 9.64 9.50

12/7/17 10.92 9.75 -0.11 10.00 9.57 9.25

1/11/18 10.80 9.70 -0.05 10.00 9.58 9.25

2/22/18 10.68 9.68 -0.02 10.00 9.54 9.25

4/12/18 10.56 9.69 0.01 9.75 9.50 9.00

5/24/18 10.39 9.72 0.03 9.75 9.33 9.00

7/12/18 10.41 9.78 0.05 9.75 9.33 9.00

Table 5.1: Comparison of implied SELIC rates and its forecasts from the

Market Expectations system.

The expected returns for a one year government bond for an investment
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horizon of 21 business days is presented in table 5.2. As expected, we see the

analysts forecasting a higher spot rate a year from now results in a lower

estimated return. On the other hand, the average and minimum forecasts are

expecting a higher return than what is already priced in the yield curve.

Market Max F. Mean F. Min F.

Expected Return 0.85 % 0.73 % 0.88 % 1.04 %

Table 5.2: Expected return using the Market Expectations system as views

Using the forecasts, figure 5.1 shows that the implied curves and the

actual yield curve are very close. However, the gap between the maximum

and minimum yield forecasts increases with maturity, reinforcing the need of

optimization under uncertainty for allocation decisions.

Mar 2017 Jul 2017 Nov 2017 Mar 2018 Jul 2018
Maturity
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Yield Curve
Maximum Forecast
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Figure 5.1: Implied yield curves from the forecasts and the nominal yield curve

at 02/07/2016.

5.3
Data and Assumptions

We consider daily data set ranging from March ’09 to October ’16,

which is the total data available from the market expectations system top

five forecasters at the time this test was conducted. We start our investment

in March ’10 and use one year of historical data to estimate the covariance
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matrix. The investor rebalances his portfolio on a monthly basis. Portfolios

are modeled with a target annualized standard deviation of 6%. In addition,

leverage and short selling are not allowed. The universe of assets are set as the

following asset classes

– U.S Dollar (BRLUS);

– Bovespa Index (IBOV);

– Brazilian fixed income bonds with constant duration of 2 years (iDkA -

PRE 2Y);

– Brazilian inflation-linked bonds with constant duration of 2 years (iDkA

- IPCA 2Y);

– Risk-Free asset: Interbank Deposit Rate (CDI)2;

The cumulative return of these assets in the period of tests is presented

in figure 5.2
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iDkA - PRE 2Y

US Dollar

IBOV

CDI

Figure 5.2: Cumulative returns of the asset classes from March 2010 until

October 2016
2
The Interbank Deposit Rate (CDI) is the overnight rate which a financial institution

lends funds to another financial institution in the overnight market. The overnight rate is

the lowest available interest rate used by Brazilian financial institutions to manage liquidity

and satisfy norms and regulations. It is the most common risk-free benchmark used by hedge

fund in the Brazilian financial market.
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As can be observed in figure 5.2, on our period of analysis the Brazilian

stock market goes through a period of bear market, resulting in a negative

performance of the stock index.

We opted to use fixed income securities using constant duration. Accord-

ing to Meucci (2005) this is the most convenient representation of the time-

homogeneous invariants (i.e. Distribution independent of a reference time t)

for the fixed-income market. To represent these securities we use the Index of

Constant Duration Anbima (IDkA), which is a series of synthetic indexes to

represent Brazilian government bonds with constant duration.

The assumptions of the Black-Litterman model go as follows

– Market Assumptions

1. We consider the following for the capitalization weights for the

CAPM

(a) U.S Dollar: Total investment abroad by Brazilian citizens re-

ported by the Brazilian Central Bank;

(b) Bovespa Index: Total market value of the companies that

compose the index;

(c) Brazilian fixed-rate bonds: Total national debt issued by the

Brazilian government with fixed-rate bonds;

(d) Brazilian inflation-indexed bonds: Total national debt issued by

the Brazilian government with inflation-indexed bonds;

In figure 5.3, we illustrate the market portfolio from September 2003

to October 2016
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Figure 5.3: Market portfolio from September 2003 to October 2016.

2. Parameter ⌧ is set 0.05 as in He and Litterman (1999).

– Views Assumptions

1. We consider absolute views on U.S. Dollar, fixed-rate bonds and

inflation indexed bonds, therefore
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2. All views are done using the short-term top five institutions from the

Market Expectations system. For each uncertainty set we consider

the following inputs:

(a) Bertsimas and Sims uncertainty sets: average, maximum and

minimum values;

(b) Ellipsoidal uncertainty sets: average and five forecasters. Since

there is no information about the dispersion of the forecasters

we only use the first two models presented in this work.

3. The confidence matrix is parametrized by parameter ⌧c, which is

used to analyze how the confidence in the forecasters a↵ects the
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overall portfolio results. Therefore, the confidence matrix is chosen

as ⌦ = P(⌧⌃̂)P0/⌧c, where we set ⌧c = (0.01, 1, 10, 100).

5.4
Results

We now present the out of sample results of the portfolio weights using

di↵erent robust strategies on the Black-Litterman model. Our analysis are

done in two steps. First, compare the performance of all strategies. To better

isolate the e↵ects of the uncertainty set and accuracy from the data base, we

proceed our studies contrasting the models for di↵erent levels of confidence

on the views. Second, we study the e↵ect of the uncertainty sets on portfolio

allocation.

In table 5.3 we calculate the mean return and standard deviation expe-

rienced for all strategies employed over the backtests. It can be observed that

the performance on both the classical and the robust portfolio increases as

the confidence parameter ⌧c assumes higher values. Therefore, it suggests that

macroeconomic forecasts on the Market Expectation system data base adds

values to the portfolio allocation. Further in this section we analyze periods

where the forecasts were more e↵ective.

⌧c B (� = 2) B (� = 1) EL (µBL) EL (q) Av. BL CAPM

0.1 Return 8.55 8.35 7.97 8.18 8.32 8.28

Standard Dev. 6.18 6.17 6.22 6.17 6.15 6.26

1 Return 9.11 8.83 8.66 8.02 8.28 8.28

Standard Dev. 6.33 6.34 6.36 6.36 6.33 6.26

10 Return 9.09 9.26 8.98 8.63 8.78 8.28

Standard Dev. 6.41 6.39 6.38 6.41 6.41 6.26

100 Return 10.00 9.70 8.97 8.80 8.84 8.28

Standard Dev. 6.18 6.25 6.38 6.42 6.42 6.26

Table 5.3: Annualized average return and standard deviation from all strate-

gies. All results are shown in percentage.

Across strategies, we note that Bertsimas with � = 1 and � = 2

have the best overall performance for all values of ⌧c, including the reference

market model (CAPM). Between these two models we observe that � = 2

is only outperformed when ⌧c = 10. These numerical results suggests that

robustification on the views of the Black-Litterman approach can really lead

to an added value in asset management, as it can incorporate more information

on views of asset returns.
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The same performance is not observable in the robustifications that only

considers the average value of the views. The case of using confidence ellipsoid

on µBL the perfomance is slightly above the original Black-Litterman, the

exception here is when we assume the lowest confidence on the views (i.e.

⌧c = 0.1). For Ellipsoidal (q), the performance is always below the average

Black-Litterman, however, it is still higher than the CAPM when ⌧c equals to

10 and 100.

For standard deviation, we observe that both the classical and the

robust Black-Litterman models underestimate the volatility for the portfolios.

Therefore, a higher volatility are actually realized on the out of sample results.

To closely examine the characteristics of the out of sample returns, in figure

5.4 we show the boxplots of a total 1669 daily out of sample returns for all

allocation methodologies for ⌧c assuming values of 1 and 100.
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Figure 5.4: Boxplots of the out of sample daily returns for all allocation

methodologies using ⌧c = 1 and ⌧c = 100.

The boxplots of the di↵erent portfolio allocation strategies give a graph-

ical representation of the impact of both the confidence parameter and uncer-

tainty sets on the out of sample returns. In the case of ellipsoidal uncertainty

sets, the results look very similar to the average Black-Littermann. This result

is expected, since the standard form of the original Black-Litterman considers

that the uncertainty on both the posterior average return µBL and views q

are small, as we have mentioned chapters. Estimation of the Black-Litterman

parameters are out of the scope of this thesis, however, one might use the sta-

tistical techniques presented in Allaj (2013) to estimate the Black-Litterman

parameters and combine with our robust model. This robust approach might

be useful for practitioners that use the Black-Litterman as an allocation model.
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We now discuss the boxplots of the daily returns using the strategies

based on the Bertsimas and Sim’s uncertainty set. It is clear from figure

5.4 that when the confidence on the views increases the worst-case scenario

captured on the uncertainty set reflects on the portfolio allocation. We see

that the uncertainty structure available on the views actually helps to mitigate

possible downsides that is not captured when we only use the average. As a

result, we observe that the worst daily returns seen for ⌧ = 1 is not repeated

when the confidence parameter increases to 100. However, the robust trade-o↵

is also observed for the positive daily returns which has its maximum lower

compared to other models. This results show that the average Black-Litterman

is more dependent on the realization of the views, which corroborates with our

empirical analysis using synthetic data.

The di↵erence in out of sample returns we have discussed can be nicely

seen in the cumulative historical performance illustrated in figure 5.5. All opti-

mization methodologies attempt to realize the view by adjusting the estimate

of the mean return away from the CAPMmarket equilibrium assumption. Con-

sequently, the portfolios are very correlated and the performance are similar,

however, when ⌧c increases we have that the adjustment tilts heavier towards

the views (i.e. a higher confidence on the forecasters). We note that the overall

cumulative performance improved from the CAPM benchmark for all models

when we use higher values of ⌧c.
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Figure 5.5: All strategies cumulative return for ⌧c = (0.1, 1, 10, 100).

We can also see that in the first half of our data period Bertsimas and

Sim’s uncertainty lead to moderately better out of sample results. Later on,

towards the end of the time period all assets classes went through periods of

bear and bull markets, mostly due to the Brazilian financial recession on the

years of 2014 and 2015 and beginning of recovery in 2016 (see figure 5.2). The

results in the second half showed that these robust models benefited from the

uncertainty sets on the views throughout the di↵erent market phases.

We now turn to discuss our insights on the allocations of the robust

methodologies constructed using di↵erent information on the views. Figures

5.6, 5.7, 5.8 and 5.9 plots the time-varying portfolio weights for each alloca-

tion approach and di↵erent values of ⌧c. Notice that the CAPM equilibrium is

more of a passive strategy with a set target volatility and the Black-Litterman

models actively tilts the allocations according to market expectations. There-
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fore, we can check that for lower confidence on the views the relative stability

of all portfolios are higher, deviating less from the CAPM equilibrium. On

the other hand, higher confidence impose heavier weights on directional views

resulting in less stable monthly portfolios.
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Figure 5.6: Portfolio weights in the period of analysis for ⌧c = 0.1.
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Figure 5.7: Portfolio weights in the period of analysis for ⌧c = 1.
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Figure 5.8: Portfolio weights in the period of analysis for ⌧c = 10.
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Figure 5.9: Portfolio weights in the period of analysis for ⌧c = 100.

Two interesting observations can be made from these plots. The first is

that the views reduced the exposure on US Dollar when the currency started

to devalue in the beginning of 2016. In this same period, the reduction on

the US Dollar weights are progressively increasing with the paramter ⌧c for

all models. However, the CAPM equilibrium US Dollar allocation relative to

other asset classes remained practically unchanged during 2016. This behavior

is expected from a passive strategy. Second, the views tilted the government

bonds portfolio to fixed-income government bonds and reduced the allocation

on inflation-indexed bonds, which is due to the greater uncertainty on inflation

during this period. Nevertheless, during the beginning of 2015 when real

yield significantly to outperformed nominal yields all models had most of its

government bonds weighs in inflation-indexed bonds. The exceptions here are

the robust Bertsimas models which started to allocate in inflation indexed
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bonds in the beginning of 2014.

The average portfolio weights on our data set are presented in table 5.4.

Note that the average allocation on other asset classes changes significantly

with both the confidence parameter and the allocation model. We also observe

that the average allocation in the risk-free asset is higher on the Bertsimas,

which indicates that these models are taking less unnecessary risk due to the

conflicting information on the absolute views.

⌧c B (� = 2) B (� = 1) EL (µBL) EL (q) Av. BL CAPM

CDI 0.25 0.24 0.19 0.23 0.22 0.25

iDkA - IPCA 2Y 0.17 0.13 0.04 0.07 0.09 0.22

0.1 iDkA - PRE 2Y 0.24 0.28 0.41 0.34 0.35 0.18

US Dollar 0.09 0.08 0.10 0.10 0.08 0.09

IBOV 0.26 0.26 0.26 0.26 0.25 0.26

CDI 0.25 0.20 0.13 0.17 0.16 0.25

iDkA - IPCA 2Y 0.11 0.11 0.04 0.08 0.10 0.22

1 iDkA - PRE 2Y 0.29 0.36 0.50 0.41 0.43 0.18

US Dollar 0.09 0.08 0.08 0.09 0.06 0.09

IBOV 0.26 0.26 0.25 0.25 0.25 0.26

CDI 0.22 0.19 0.15 0.16 0.15 0.25

iDkA - IPCA 2Y 0.10 0.10 0.09 0.09 0.10 0.22

10 iDkA - PRE 2Y 0.32 0.37 0.45 0.43 0.43 0.18

US Dollar 0.11 0.09 0.07 0.07 0.06 0.09

IBOV 0.25 0.25 0.24 0.25 0.25 0.26

CDI 0.22 0.19 0.14 0.15 0.15 0.25

iDkA - IPCA 2Y 0.10 0.10 0.10 0.10 0.10 0.22

100 iDkA - PRE 2Y 0.32 0.37 0.45 0.43 0.43 0.18

US Dollar 0.11 0.09 0.07 0.07 0.07 0.09

IBOV 0.24 0.25 0.24 0.25 0.25 0.26

Table 5.4: Average portfolio weights on the data set for ⌧c = (0.1, 1, 10, 100).
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Figure 5.10: Boxplot of the monthly portfolio weights for ⌧c = 1.
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Figure 5.11: Boxplot of the monthly portfolio weights for ⌧c = 100.

Analogous to the study on the out of sample daily returns, in figures 5.10

and 5.11 we present the boxplot of the monthly allocations for all strategies and

⌧c = (1, 100), in a total of 76 observations. These plots support the following

remarks:

(a) The robust strategies using Bertsimas and Sim’s uncertainty set remains

conservative on the risk-free allocation when ⌧c increases. In the case of

� = 2 there are periods where the portfolio is only allocated in risk-free,

which is caused by worst-case pessimistic views on all asset classes.

(b) The statistics of the monthly weights on Ibovespa index is approximate the

same for all models and both levels of confidence. The average allocation

is also similiar as is shown is table 5.4. This is expected since we are not

assuming views on the stock market. However, this shows the ability of

DBD
PUC-Rio - Certificação Digital Nº 1513216/CA



Chapter 5. Market Expectations System Backtest 88

the Black-Litterman model to impose active views on portfolios and asset

classes.

(c) In the average Black-Litterman and ellipsoidal uncertainty sets, the me-

dian(red line) on the US Dollar allocation reduces to zero when ⌧c = 100.

However, the number of obsevations of weights above 20% increases for

the same asset class. This simple example shows how the portfolio weights

of original Black-Litterman is sensitive to the confidence on the views.

Summarizing the numerical results based on our historical data sample,

it can be said that robust version of the Black-Litterman model can lead

to an added value portfolios compared to the original model. Our out-of-

sample evaluation results presented in this section show that the robust Black-

Litterman portfolios can substantially outperformed the original model. As we

argued in the previous chapter, the reason for this is that estimates of views can

be improved when we consider an uncertainty structure instead of a pointwise

estimate. In our tests we have seen that the robust models that considered the

maximum, minimum and average values of the views have outperformed the

ones that only assumed information on the average. Moreover, as we increased

the confidence (⌧c) these models had even better relative results.
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6
Conclusions

The aim of the work was to further the understanding of robust asset al-

location, in particular, we propose a robust approach to the Black-Litterman to

asset allocation model. We have also extended the Black–Litterman methodol-

ogy using recent developments of robust optimization techniques to introduce

conflicting source of input views. The major distinction between the approaches

is that the first allows investor to input a single point estimation for the views,

whereas the second allows to create a uncertainty sets on these inputs.

Further we studied properties of the original and robust Black-Litterman

models for various degrees of accuracy and dispersion of the input views.

Through empirical results on synthetic data we have showed situation which

the robust model can benefit from this new setting. Computational evidence

suggests that the robust approaches provide certain benefits on the perfor-

mance over the traditional model, especially in scenarios where views are not

known with accuracy. We also observed that the robust models are less volatile

in two situations, when the forecasters are uncertain about the direction of the

market and when the uncertainty sets of the views are large.

We have also tested our models on real market data from the Brazilian

financial market. For the views, we used a public data provided by the

Central Bank of Brazil. The numerical results suggest that robust version

can outperform the original Black-Litterman model when there are conflicting

and di↵erent sources of information about the views. We have also shown in

our out of sample exercise that the portfolio weights of the robust model is

less sensitive to the accuracy of the forecasters when we consider the total

uncertainty structure of the views.

We believe that these robust formulations, given its simplicity provide a

feasible strategy to practitioners incorporate on their Black-Litterman alloca-

tions. In addition, for future work one might consider modeling the uncertainty

sets in a purely data-drive methodology and test the properties of each model

under these circumstances. We also encourage to use other sources of data sets

from di↵erent countries to further compare the models. There are also several

interesting extensions that are worth exploring. The models in this thesis are

all related to uncertainty on the views for multiple forecasters, one can also

study the impact of the CAPM on the Black-Litterman model and how a ro-

bust formulation can help mitigate estimation error and improve performance.
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