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Abstract

Achanccaray D., P.; Feitosa, R. Q. (Advisor); Sanches, I. D. (Co-
Advisor). Crop Recognition in Tropical Regions based on
spatio-temporal Conditional Random Fields from multi-
temporal and multi-resolution sequences of remote sensing
images. Rio de Janeiro, 2019. 87p. Tese de doutorado – Departa-
mento de Engenharia Elétrica, Pontifícia Universidade Católica do
Rio de Janeiro.

The earth population growth has continuously increased the demand
for agricultural production. Thus, acreage and crop yield information be-
come increasingly important. Techniques based on satellite images are one
of the most attractive options for agricultural monitoring over large areas.
Most of the scientific works on this application were developed for tem-
perate regions of the planet, which present a much simpler dynamics than
those in tropical regions. In this context, the present thesis proposes a new
automatic method based on Conditional Random Fields (CRF) for the crop
recognition in tropical regions from multi-temporal and multi-resolution im-
age sequences from orbital multi-sensors. Experiments were performed to
validate several variants of the proposed method. We used public databases
from two regions of Brazil that comprise sequences of optical and radar im-
ages with different spatial resolutions. The experiments demonstrated that
the proposed method achieved a higher accuracy than methods based on
a single image or sensor. Particularly, the reduction of the salt-and-pepper
effect in the generated maps was noticed due, mainly, to the capacity of the
method to capture contextual information.

Keywords
Crop Recognition; Remote Sensing; Probabilistic Graphical Models;

Optical imagery; Radar imagery
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Resumo

Achanccaray D., P.; Feitosa, R. Q.; Sanches, I. D.. Reconheci-
mentos de culturas em regiões tropicais baseadas em cam-
pos aleatórios condicionais espaço-temporais a partir de
sequências de imagens de sensoriamento remoto multi-
temporais e de múltiplas resoluções. Rio de Janeiro, 2019.
87p. Tese de Doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

O crescimento da população do planeta tem aumentado continua-
mente a demanda por produtos agrícolas. Assim, a informação quanto a
áreas cultivadas e estimativas de produção se tornam cada vez mais impor-
tantes. Técnicas baseadas em imagens satelitais constituem uma das opções
mais atrativas para o monitoramento agrícola sobre grandes áreas. A maior
parte dos trabalhos científicos voltados a esta aplicação foram desenvol-
vidos para regiões temperadas do planeta, que apresentam um dinâmica
muito mais simples da que se tem em regiões tropicais. Neste contexto, a
presente tese propõe um novo método automático baseado em Campos Ale-
atórios Condicionais (CRF) para o reconhecimento de culturas agrícolas em
regiões tropicais a partir de sequências de imagens multi-temporais e multi-
resolução produzidas por diferentes sensores orbitais. Experimentos foram
realizados para validar diversas variantes do método proposto. Utilizaram-
se bases de dados públicas de duas regiões do Brasil que compreendem
sequências de imagens óticas e de radar com diferentes resoluções espaciais.
Os experimentos realizados demonstraram que o método proposto atingiu
acurácias maiores do que métodos baseados em uma única imagem ou sen-
sor. Particularmente, notou-se a redução do efeito sal-e-pimenta nos mapas
gerados devido, mormente, à capacidade do método de capturar informação
contextual.

Palavras-chave
Reconhecimento de Culturas; Sensoriamento Remoto; Modelos

Graficos Probabilisticos; Imagens óticas; Imagens de radar
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All men have stars, but they are not the same things
for different people. For some, who are travelers, the
stars are guides. For others they are no more than
little lights in the sky. For others, who are scholars,
they are problems... But all these stars are silent.
You—you alone will have stars as no one else has
them.

Antoine de Saint-Exupéry, The Little Prince.
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1
INTRODUCTION

1.1
Motivation

Agricultural activities have to be monitored from local to global scales
at high temporal frequency due to their dependency on physical landscapes
and climatic conditions as well as seasonal patterns associated with crops’
biological life cycle, growing conditions, pests and diseases, and excessive
market speculation, leading to price spikes. Some of the challenges agriculture
has to deal with are: to limit or reduce agriculture’s environmental impacts,
to confront increasing global food demand and to look for pathways to boost
agricultural production.

The negative environmental impacts of agriculture are mainly related to
threatening of biodiversity by land glades and habitat dissolution [4], Green-
house gas (GHG) emissions from agricultural production, which represents
24% of global GHG emissions [5], and depletion of freshwater resources as 69%
of freshwater [6] used by humans is for irrigation, and it is estimated to in-
crease by about 19% in 2050 [7]. Furthermore, the increasing food demand is
expected to last for three to four decades [1], leading to a per capita demand
for crops to be doubled between 2005 and 2050 (see Figure 1), with strongest
increases within economic groups C-E.

Looking for alternatives to increase agricultural production is another
challenge to overcome, which could be achieved by intensification (adoption of
better agronomic practices) or extensification (expansion of agricultural lands).
According to [8], the preferred solution is the intensification to close the yield
gap between realized productivity and the best that can be accomplished under
the current conditions (see Figure 2 for an example of yield gaps from cereals
at a global scale). Thus, to map crop type and acreage is crucial to achieve
this goal by a better understanding of regional cropping practices and the
influence of potential environmental threats, and in this way, supply national
and multi-national agricultural agencies with an inventory of what was grown
in certain areas and when. These maps serve the purpose of forecasting grain
supplies (yield prediction), collecting crop production statistics, creation of
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Chapter 1. INTRODUCTION 17

crop rotation records, mapping soil productivity, identification of crop stress’
factors, crop damage assessment due to storms and drought, and monitoring
farming activity.
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Figure 1: Global demand for crop calories per economic groups based on per
capita Gross domestic product (GDP) ranking. Brazil is the economic group
C (Modified from [1]).

Figure 2: Average yield gaps for major cereal crops: Corn, Wheat, and Rice.
The yield gap is the difference between the potential yield and the realized
yield at a given location (Taken from [2]).

Agricultural monitoring systems should be able to provide timely infor-
mation on crop production, status, and yield in a standardized and regular
manner at the regional to the national level. Estimates should be provided as
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Chapter 1. INTRODUCTION 18

early as possible during the growing seasons and updated periodically through
the season until harvest. Based on the information provided, stakeholders are
enabled to take early decisions and identify geographically the areas with large
variation in production and productivity. The system should provide homoge-
neous and interchangeable datasets with statistically valid precision and accu-
racy. Probably, only (satellite) remote sensing - combined with sophisticated
modeling tools - can provide such information in a timely manner, over large
areas, in sufficient spatial detail and with reasonable costs [9].

In remote sensing, crop maps are produced by supervised classification
using Earth Observation (EO) images acquired at key phenological stages for
optimizing class separability. The need for high amounts of cloud-free imagery
impedes the employment of these approaches over large areas and in multiple
years, making necessary the usage of complementary data from different
sources such as LiDAR (Light Detection and Ranging), SAR (Synthetic
Aperture Radar), among other active sensors, which are less affected by
weather conditions.

In this context, the purpose of this work is to propose a method for crop
mapping in tropical regions, more specifically in Brazil, which is the world’s
largest producer of sugarcane, coffee and orange juice and the second largest
producer of soybeans [10]. This task is more challenging in tropical areas due to
the high crop’s dynamics generated by climatic, socio-economic, infrastructure
and agricultural practices adopted (e.g. no-tillage, crop rotation, irrigation
systems) [11].

In order to achieve this goal, Conditional Random Fields (CRF) are
employed to build a model that is able to consider contextual information in
different domains namely, spatial and temporal. Spatial context is important
for crop mapping as pixels close to each other are likely to represent the
same class. Also, temporal context is critical because the appearance, spatial
distribution and orientation change over time due to crop development, which
is strongly related to a crop’s phenological stages.

1.2
Objectives

1.2.1
General Objective

The general objective of this work is to propose a model for crop
recognition in tropical region based on Conditional Random Fields using
sequences of remote sensing images from different sensors.

DBD
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1.2.2
Specific Objectives

The specific objectives of this work are the following:

1. Introduce contextual information in spatial and temporal domains into
a model based on Conditional Random Fields.

2. Exploit information from multiple sensors with the same spatial resolu-
tion.

3. Build a model able to deal with images with different spatial resolutions.

4. Generate datasets used for crop recognition in tropical regions and
prepare them for public use in the scientific community.

5. Evaluate the influence of using different sensors and how they comple-
ment each other.

1.3
Contributions

The main contributions of this work are the following:

1. A novel method to recognize crops in tropical regions from sequences of
remote sensing images based on Conditional Random Fields.

2. A Conditional Random Fields based model for crop recognition able
to deal with image sequences generated by sensors of different spatial
resolutions.

3. An evaluation of Conditional Random Fields and Convolutional Neural
Networks to model spatial and temporal context for crop recognition
tropical regions.

4. Two public datasets for crop recognition in tropical regions.

Regarding the last contribution, it was a joint effort between the Na-
tional Institute for Space Research (INPE), Brazilian Agricultural Research
Corporation (EMBRAPA), and the Pontifical Catholic University of Rio de
Janeiro (PUC-Rio). Field works to record in-situ data from each region were
performed by experts from INPE and EMBRAPA, while the acquisition and
pre-processing of radar images have been carried out during the development
of this thesis. A detailed description and more information about each dataset
can be found in [11] and in [12].

DBD
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1.4
Organization of the remaining parts of this thesis

Chapter 2 describes the related work available in the literature for crop
recognition using different approaches such as Object-based Image Analysis,
Probabilistic Graphical models and Deep Learning.

Chapter 3 provides the fundamental concepts and theory for a better
understanding of the proposed method.

Chapter 4 introduces and explains the proposed method for crop recog-
nition based on Conditional Random Fields (CRF).

Chapter 5 presents the datasets employed in this work, the experimental
protocol followed in the experiments and the results obtained by the different
variants evaluated in this thesis.

Chapter 6 summarizes the conclusions derived from the performed ex-
periments and provides directions for further development of the proposed
method.
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2
RELATED WORK

This chapter presents an overview of different works on crop classification
in different study areas, tropical or temperate regions, using a single image or
a multi-temporal image sequence from the same or multiple domains.

Crop classification is a challenging task due to spatial and temporal
changes crops experience within and between seasons. Agricultural prediction
systems at big scales (entire cities or countries) have been proposed by the
European Space Agency (ESA): Sen2-Agri1 [13] and SENSAGRI2 [14]. Sen2-
Agri, a free and open source system, generates agricultural products (cloud-free
composites, cropland masks, crop type maps, vegetation status maps) from
Sentinel-2 and Landsat 8 times series along the growing season. SENSAGRI
is still under development and aims to combine Sentinel-1 with Sentinel-
2 and in-situ data to develop prototypes to estimate surface soil moisture,
seasonal crop mapping, and crops statistics. These systems rely on a set
of classification algorithms that are executed over the requested study area
and their predictions are combined using a decision fusion algorithm (e.g.
Dempster–Shafer [15, 16]).

Many approaches have been proposed so far for crop classification using
either pixel-wise classification techniques (e.g. Random Forest, Support Vector
Machines) [17–22], object-based methodologies [23–25], modelling context
information by graphical models (e.g. Markov Random Fields, Conditional
Random Fields) [26–35] or automatically learning representations by Neural
Networks (e.g. Convolutional or Recurrent Neural Networks) [36–42].

Crop mapping using pixel-wise techniques is performed by classification
algorithms trained upon pixel values, statistics or indices to map crops. Forkuor
et al. [17] carried out a hierarchical classification using Random Forest (RF)
trained with back-scatter intensities and spectral bands/indices from SAR
and Optical imagery, respectively. Moreover, Tatsumi et al. [19] evaluated
the employment of Tasseled-Cap bands’ statistical variables using RF for
crop recognition in Peru from a set of Landsat 7 images. Pixels can be
assigned a crop type by comparison between pixel’s candidate profile and

1Sentinel-2 for Agriculture (http://www.esa-sen2agri.org/)
2Sentinels Synergy for Agriculture (http://sensagri.eu/)
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Chapter 2. RELATED WORK 22

ideal crop curves based on spectral reflectance [18] or NDVI profiles [20].
Ancillary information, such as expert knowledge about crop’s phenological
stages, have been successfully employed to identify crops from Optical images
[22] or phenological sequence patterns from a dense stack of SAR data [21].
These techniques usually present a salt-and-pepper effect in the produced maps,
which can be overcame using post-processing methods such as majority voting
inside each plot, among other strategies. Furthermore, they are agnostic to the
type of entity that is classified.

Object-based Image Analysis (OBIA) has been adopted for many classi-
fication tasks. It comprises three main steps: generation of segments (objects),
extraction of features from each segment, training and applying a classifier
using the extracted features. In [23], Belgiu et al. assessed the usage of seg-
ments against pixels for crop mapping from Sentinel-2 time series using Time-
Weighted Dynamic Time Warping (TWDTW) [43]. Clerici et al. [24] fused
Sentinel-1A and Sentinel-2A data for land cover mapping in Colombia and per-
formed a comparison between three classifiers: RF, Support Vector Machines
(SVM) and K-Nearest Neighbors (KNN), being SVM the best one. Schultz et
al. [25] developed an autonomous workflow for supervised object-based classi-
fication from multi-temporal Landsat 8 images in Brazil. In spite of the idea of
spatial context obtained by the usage of segments, they diminish the spectral
variability within them.

The employment of Probabilistic Graphical Models (PGMs) for crop
recognition has increased during the last years due to their ability to cap-
ture context information in spatial and/or temporal domains. Methods based
on Hidden Markov Models (HMMs) [44] have been proposed to learn spectral
response variations along crops’ cycles [26] or to represent vegetation dynamics
[27] from multi-temporal image sequences. Notably, a HMM does not consider
spatial context explicitly. In contrast, Markov Random Fields (MRF) [45] and
Conditional Random Fields (CRF) [46] are able to capture spatial and tempo-
ral context. In [28], Liu et al. proposed a spatio-temporal MRF framework for
multi-temporal classification and compared a global, a local and a pixel-wise
model for temporal interactions to detect changes in forests. Likewise, Hagen-
sieker et al. [29] introduced a spatio-temporal MRF for land use/land cover
mapping, where the association potential is given by an Import Vector Ma-
chines (IVM) classifier and the spatial and temporal interaction potentials are
represented by a Potts model and transition matrices from expert knowledge,
respectively. In spite of the inclusion of spatial context, MRF based models
are limited as the spatial interaction is a function of only labels, disregarding
any dependence on the observed data.
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Conditional Random Fields (CRF) are able to capture dependency on
the observed data in both, the association and spatial interaction potentials.
Hoberg et al. [30] proposed a multi-temporal CRF-based approach for crop
type classification modeling the spatial and temporal interaction potentials
by pixel-wise feature differences between two epochs. Later, Hoberg et al.
[31] extended their work to consider images with different spatial resolutions
for land cover classification and change detection. The spatial and temporal
interaction potentials were modeled by label smoothing methods and a global
transition matrix, respectively. Kenduiywo et al. [35] model a crop’s phenology
in conjunction with expert-based phenology knowledge in temperate regions
by a higher order dynamic CRF. In our previous work, the estimation of
the temporal interaction in a CRF-based approach for crop recognition is
formulated as an optimization problem [32]. Then, spatio-temporal CRF
models were developed for crop mapping in tropical areas where the association
potential is given by a RF classifier, the spatial interaction potential is
represented by a contrast-sensitive Potts model and the temporal interaction
potential is estimated by a RF trained to learn transitions between adjacent
epochs [33] or modeled by a transition matrix based on expert knowledge about
possible and not possible transitions [34]. These approaches managed to achieve
high accuracies, producing smooth classification maps due to the spatial and/or
temporal context information embedded into the model. However, they still
rely on handcrafted features, so that a study to select and extract suitable
features for certain applications is still required.

The main advantage of Deep Learning (DL) models is their ability
to learn representations automatically from data, allowing for better results
than what can be achieved by using domain-specific handcrafted features.
In addition, Convolutional Neural Networks (CNN) [47] are able to capture
spatial context information by the application of different kernels during the
convolution.

In [37], a comparison between supervised and unsupervised DL tech-
niques for crop recognition is performed, where CNN-based approaches
achieved the highest accuracies among the tested approaches. Kussul et al.
[36] proposed a CNN-based architecture for land cover and crop type classifica-
tion in Ukraine from multi-temporal and multi-source satellite imagery, where
images from different sources are stacked to constitute a single image with
multiple bands. Cue et al. [38] applied a Fully Convolutional Neural Network
(FCN) for crop mapping in Brazil from a set of Sentinel-1A images, obtaining
higher accuracy and less processing time than a CNN-based approach despite
their computational cost. As CNN only considers spatial context, a common
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technique to include temporal context is to stack all images in the sequence to
form a single image. However, stacking multi-temporal images restricts pattern
recognition to a single feature space that may suffer from overlapping classes
due to increased class variance [35].

In contrast, Recurrent Neural Networks (RNN) [48] are designed to
capture the temporal context by introducing feedback to a neural network. In
[40], an RNN-based classifier is employed for agricultural land cover mapping
from a sequence of Sentinel-1A images in France. A comparison between two
DL architectures (an RNN variant, long short-term memory (LSTM), and
one-dimensional convolutional (Conv1D) based on an inception module) has
been performed by Zhong et al. [42], the latter presenting the best results
for crop classification using Landsat Enhanced Vegetation Index (EVI) time
series. Hybrid methods have been proposed by [39] and [41], exploiting the main
advantages of both, CNN and RNN. In [39], Bermudez et al. combined RNN
and CNN for crop mapping in Brazil, achieving slightly better results than
RF-based classification. An encoder structure with convolutional recurrent
layers has been adapted by [41] to approximate phenological models for crop
classification form a sequence of Sentinel-2 images.
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FUNDAMENTALS

This chapter aims to provide the basics for a proper understanding of the
proposed approach for crop mapping. First, a brief introduction about Remote
Sensing is given comprising active and passive sensors, as well as levels in
which data fusion can be performed. Then, Conditional Random Fields (CRF)
are explained, as well as the proposed variants for multi-temporal and multi-
resolution crop classification. Finally, some concepts related to Deep Learning
(DL) are described centering on Convolutional Neural Networks (CNN).

3.1
Remote Sensing (RS)

According to Lillesand et al. [49], Remote Sensing (RS) is “the science
and art of obtaining information about an object, area, or phenomenon through
the analysis of data acquired by a device that is not in contact with the object,
area, or phenomenon under investigation”. This data might be acquired by
different kinds of sensors. For instance, taking a photo using a smart-phone
camera might be considered as remote sensing because it involves no direct
contact of the sensor with the object of interest.

Electromagnetic RS makes use of electromagnetic energy sensors oper-
ated from airborne (aircraft, helicopters, and drones) and space platforms
(satellites and space shuttle) to assist in inventorying, mapping and mon-
itoring earth resources [49]. A summary of the advantages of each kind of
platform is presented in Table 1. For agricultural applications like crop mon-
itoring/mapping and yield estimation, it is necessary to cover vast extensions
with a high temporal frequency to acquire images during the whole crop cycle
(i.e. soil preparation, seeding, growing, harvesting and post harvest). Thus,
space-borne sensors are a practical and cost-effective option for these appli-
cations. According to the illumination source sensors might be classified as
passive or active.
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Table 1: Characteristics of main Remote Sensing platforms: Space-borne,
Aircraft and Drones. Related costs to each platform are based on [3]

Platform Characteristics

Space-borne

• Large area coverage.
• Frequent and repetitive coverage of an area of interest.
• Relatively low cost per unit area of coverage.
• Low, medium and high spatial resolutions.

Aircraft

• Small to large coverage, depending on the altitude.
• High cost per unit area of coverage for small projects.
• Relatively low cost for bigger projects.
• Medium and high spatial resolutions.

Drones
• Small area coverage.
• Low cost per unit area of coverage only for small projects.
• High and very high spatial resolutions.

Passive
Sensor

Sunlight

Skylight

Incident radiation

Reflected
energy

Total radiance

Path radiance

Active
Sensor

Pulse

Backscatter

a) b)

Figure 3: Passive and Active sensors. a) A passive sensor and the atmospheric
effects that influence the radiance measured by the sensor Ltot, which is
composed by the path radiance Lp and the reflected energy (a fraction of
the incident radiation E by the sunlight and skylight). b) An active sensor
emitting a pulse and receiving the back-scatter response after the pulse has
interacted with a surface.
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3.1.1
Passive sensors

A passive RS system is one that relies on energy that originates from
sources other than the sensor itself, typically in the form of either reflected
radiation from the sun or emitted radiation from earth surface features. Due
to the atmospheric effects (see Figure 3a), the total radiance measured by
the sensor Ltot is composed of the reflected energy (a fraction of the incident
radiation E by the sunlight and skylight) and the path radiance Lp (reflected
by the atmosphere). The reflected energy is computed as ρET/π, where ρ
represents the reflectance of an object and T is the atmospheric transmittance.

The many forms of electromagnetic energy (e.g. visible light, radio waves,
ultraviolet rays, among others) are commonly categorized by their wavelength
within the electromagnetic spectrum (see Figure 4). Optical remote sensing
operates within the optical spectrum, which extends from approximately 0.3 to
14 µm, including ultraviolet (UV), visible, near-, mid-, and thermal infrared
(IR) wavelengths. Then, as different materials reflect and absorb differently at
different wavelengths, objects can be differentiated by their spectral reflectance
signatures in the remotely sensed images.

Wavelength

gr
ee

n

bl
ue

re
d Near-infraredUV

Visible

Cosmic rays

X-rays

Ultraviolet (UV)

Visible

Near-IR

M
id-IR

Thermal IR

M
icrowave

Television
andradio

  rays

Figure 4: Electromagnetic spectrum (Modified from [1]).

3.1.2
Active sensors

An active remote sensing system is characterized by supplying its own
illumination energy. Active sensors, such as Radio Detection And Ranging
(Radar) and Light Detection and Ranging (LiDAR) systems, first emit energy
and then measure the return of that energy after it has interacted with the
object surface. Those who operates in themicrowave portion of the electromag-
netic spectrum (see Figure 4) have gained importance due to increasing amount
of valuable environmental and resource information derived from them [49].
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Microwave radiation has the ability of penetrating the atmosphere, depending
on the wavelengths involved, under different conditions to “see through” haze,
light rain and snow, clouds, and smoke. Also, it provides a different measure
of earth materials that has not direct relationship with their counterparts in
the visible or thermal portions of the spectrum.

Imaging Radar systems mainly use pulses where the energy from the
antenna is confined to a very short interval of time (see Figure 3b). These
pulses interact with the objects in a scene and some of them may be back-
scattered to return toward the antenna, which records the intensity and phase
shift of the returning pulses. Notice that as the electromagnetic energy has
two components orthogonal to each other (electrical and magnetic), the sensor
might be configured to transmit or receive different polarizations, which refer
to the orientation of the electric field. In this way, the antenna can transmit
and/or receive in either horizontal (H) or vertical (V) single polarizations (HH
or VV, where the first letter indicates transmit and the second receive) or
cross-polarization (HV or VH).

Synthetic Aperture Radar (SAR) systems operate on the principle of
using the sensor motion along a track to simulate with a single physically short
antenna an array of such antennas that can be linked together mathematically.
It can be done by considering each position as an element of a single and long
synthetic antenna (see Figure 5) as part of the data recording and processing
procedures. SAR systems use a side looking geometry illuminating a surface
at an oblique angle θl and an incidence angle θi, recording in this way in two
directions, parallel to the sensor motion (azimuth) and orthogonal to its motion
(range). Ground spatial resolutions, which is defined as the minimum possible
distance between two objects to be distinguished, depend on pulse duration
τ and antenna size L (see Figure 5). Range (ρr) and azimuth (ρa) resolutions
are computed as follows:

ρr = cτ

2 sin θi
(3-1)

ρa = L

2 (3-2)
where c is the velocity of light (in vacuum) (≈ 3 × 108m/s). Thus, these
resolutions define the minimum area, also known as cell, where back-scatter
information might be recorded by the sensor. The normalized back-scatter
coefficient σ0 (sigma nought), defined as the back-scatter measured from a
target area normalized per unit geometric cell area, depends on the received
(PR) and transmitted (PT ) power, the target’s area to be recorded (A), the
antenna gain (G) and its wavelength (λ), and range from antenna to target
(R). This dependency is stated by the so-called SAR equation, which is given
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Figure 5: Components of a Synthetic Aperture Radar (SAR) system.

by:

σ0 = PR
(4π)3R4

PTAG2λ2 (3-3)

In crop mapping applications, the frequency or wavelength might affect
crop back-scatter magnitude due to differences in dielectric properties (e.g.
moisture) and relationship between wavelength and crop/leave size and/or
canopy penetration. Polarization also alters crop discrimination as cross-
polarization is able to retrieve geometry attributes (e.g. roughness and canopy
structure) and it is very sensitive to height, shape and direction of land
vegetation [50]. Furthermore, in multi-temporal analyses, back-scatter response
is dominated by bare soil in early stages and by plant canopy in later stages.
This correlation between crop growth stages and back-scatter magnitude
suggests that knowledge about crop phenology is important for classification.

Figure 6 shows two remote sensing image taken on the same day, June
19th, 2018, by both a passive and an active sensor, corresponding to the
municipality of Luis Eduardo de Magalhães, Bahia, Brazil. The image from
a passive sensor was acquired by Sentinel-2A MSI (MultiSpectral Instrument)
satellite with a spatial resolution of 10 m, where Figure 6a presents an RGB
true color composition. Optical data are useful for crop mapping because
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the spectral response provides information about the changes in the moisture
and chlorophyll content of crop leaves. The image from an active sensor was
acquired by Sentinel-1A C-Band SAR, also with an spatial resolution of 10
m and VH polarization (see Figure 6b). From the back-scatter information
under different polarizations it is possible to extract information to describe
the structure, orientation distribution and dielectric constant characteristics
of crops.

Figure 6: Images of Luis Eduardo de Magalhães municipality in Bahia state,
Brazil acquired on the same date June 19th, 2018 from two different satellites:
a) Passive sensor: Sentinel-2A MSI (MultiSpectral Instrument), 10 m spatial
resolution, true color composition R(4)G(3)B(2), b) Active sensor: Sentinel-1A
C-Band SAR (Synthetic Aperture Radar), 10 m spatial resolution, Vertical-
Horizontal (VH) polarization.

3.2
Conditional Random Fields (CRF)

Conditional Random Fields (CRF) are discriminative undirected graph-
ical models with the capability to consider contextual information. CRF were
firstly introduced by Lafferty et al. [51] for one-dimensional text classification.
Then, Kumar & Hebert [46] extended CRF for two-dimensional image classifi-
cation using discriminative models for class associations at individual sites as
well as interactions for neighboring sites.

Let G = {S,E} be a graph with nodes S and edges E. Given a set of
image sites i ∈ S, let x = {xi}i∈S be the observed data and y = {yi}i∈S its
corresponding labels, where yi ∈ {l1, ..., lm} and m the number of available
classes. A CRF models the posterior probability P (y|x) of the set of labels y
given the data x as follows:
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P (y|x) = 1
Z

exp
∑
i∈S

A(yi,x) + θ
∑
i∈S

∑
j∈Ni

I(yi, yj,x)
 (3-4)

where Z is a normalizing constant also called partition function, A and I are
the unary term or association potential and the pair-wise term or interaction
potential, respectively, and θ expresses the interaction potential weight relative
to the association potential.

The association potential A relates to how likely an image site i takes a
label yi given the data x. The interaction potential I expresses how labels at
spatially neighboring sites i and j ∈ Ni interact given the observed data x,
where Ni is the neighborhood of site i.

This CRF model, defined by Equation 3-4, is extended to model in-
teractions between adjacent sites belonging to different epochs from a multi-
temporal image sequence.

3.3
Multi-temporal CRF

Let’s consider a set of T co-registered images from different epochs, with
t = 1, ..., T (see Figure 7) and a set of image sites i ∈ S, where i corresponds
to the same geographical region in all epochs. Let x = {xi,t}i∈S,t∈T be the data
corresponding to the site i in epoch t and y = {yi,t}i∈S,t∈T its corresponding
labels. Then, a multi-temporal CRF models the posterior probability P (y|x)
of the set of labels y given the data x as given by:

P (y|x) = 1
Z

exp
∑
t∈T

∑
i∈S

AP t(yi,t,x) + θ
∑
t∈T

∑
i∈S

∑
j∈Ni

SIP t(yi,t, yj,t,x)

+
∑
t∈T

φt
∑
i∈S

∑
k∈Ci

TIP tk(yi,t, yi,k,x)
 (3-5)

where AP , SIP and TIP represent the Association, Spatial Interaction
and Temporal Interaction Potentials, respectively. θ and φt ∈ Φ ={
φ1, φ2, ..., φT−1

}
are the spatial and temporal interaction potentials’ weights.
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Spatial Interaction Potential
Temporal Interaction Potential

. . . . . .

. . . . . .

Figure 7: Multi-temporal sequence of T co-registered images represented as a
graph where each node corresponds to an image site (e.g. a pixel or a segment)
and each edge illustrates an interaction between neighboring pixels in spatial
and temporal domains. Red and green nodes represent the same geographical
region in different epochs. Solid and dashed lines symbolize the spatial and
temporal interaction potentials, respectively.

3.3.1
Association Potential (AP )

The association potential AP t(yi,t,x) measures how likely an image site i
in epoch t will take a label yi,t given its feature vector fi,t(x) that may depend
on the entire image at epoch t or even on the whole multi-temporal image
sequence. In this thesis the association potential is defined as:

AP t(yi,t,x) = logP (yi,t|fi,t(x)) (3-6)
where P (yi,t|fi,t(x)) is a local class conditional probability at image site i given
fi,t(x) and can be given by some discriminative classifier with a probabilistic
output.

3.3.2
Spatial Interaction Potential (SIP )

The spatial interaction potential SIP t(yi,t, yj,t,x) measures how labels
yi,t and yj,t at spatially neighboring sites i and j interact in epoch t, given the
data x (see Figure 8). Contrast-sensitive smoothing methods, which penalize
label changes unless a significant data variation occurs in neighboring sites,
have been successfully applied for this purpose [52]. Then, according to these
methods, the SIP is given by:

SIP t(yi,t, yj,t,x) =
pno−change(i, j, t,x) , if yi,t = yj,t

pchange(i, j, t,x) , if yi,t 6= yj,t
(3-7)
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Figure 8: Spatial Interaction Potential (SIP ), which measures how labels at
spatially neighboring sites i and j (j ∈ Ni, Ni is the neighborhood of site i)
interact given the data observed x. Solid lines represent the SIP and red and
blue nodes are the pixel of interest and its neighbors, respectively.

where pchange and pno−change represents the probabilities of label change and
no-change between sites i and j, respectively. As it is desired to penalize label
changes, pno−change usually must be higher than pchange.

Figure 9: Temporal Interaction Potential (TIP ), which measures how labels
at sites representing the same geographical region in neighboring epochs t (red
node) and k (green node) interact given the observed data x. Solid and dashed
lines symbolize the spatial and temporal interaction potentials, respectively.

3.3.3
Temporal Interaction Potential (TIP )

The temporal interaction potential TIP tk(yi,t, yi,k,x) measures how la-
bels yi,t and yi,k at site i interact in epochs t and k , where epoch k is in the
temporal neighborhood Ct of epoch t. (see Figure 9). Similar to the spatial
interaction potential, TIP tk can be represented by a transition matrix, whose
element in row i and column k expresses how likely there is a transition be-
tween yi,t and yi,k, given the observed data x. If mt and mk are the number
of classes in epochs t and k, respectively, TIP tk(yi,t, yi,k,x) will be a mt ×mk
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matrix, whose mt ∗mk elements represent transition probabilities to be esti-
mated from training data. Alternatively, one can rely on expert knowledge,
neglecting the dependency on the data (see next chapter).

3.3.4
Inference

Exact inference, which is the task of finding the optimal label config-
uration y based on the proposed model in Equation 3-5, is computationally
intractable for CRF, except for special cases in binary classification [46]. Ap-
proximations are usually employed to infer a solution such as pseudo-likelihood,
mean field or Loopy Belief Propagation (LBP). In this thesis, sum-product
LBP[53] was adopted, which is a standard approximate inference algorithm
for undirected graphs with cycles and works by passing messages from each
node to its neighbor nodes via edges to calculate its beliefs. Then, each node
is assigned to the class with maximum belief. Further details about LBP de-
scription can be found in [54].

3.4
Gray-Level Co-Occurrence Matrix (GLCM)

Given an image xt, corresponding to epoch t, constituted by Nbandst

bands, and let xbt be the band b of image xt, where b = 1, ..., Nbandst , which
has a total of Nlevels gray levels. Then, the Gray-Level Co-Occurrence Matrix
(GLCM) - M , is a square matrix of order Nlevels, where each element pij of
M represents the number of occasions a pixels with intensity i is adjacent
to a pixel with intensity j (see Figure 10). The adjacency might be defined
to take place in each of the eight directions (0◦, 45◦, 90◦, 135◦, 180◦, 225◦,
270◦ and 315◦) at certain distance of d pixels. For instance, in Figure 10, the
computation of the matrix M is done from a 6 × 6 image with Nlevels = 8,
adjacency direction of 0◦ and distance d = 1 pixel.

Normalizing the matrix M by the total number of pixels pairs that
satisfies the adjacency criterion, pij now represents the probability that a pixels
pair (i, j) satisfies that adjacency criterion.

GLCM matrices capture texture properties but they are not directly
employed for further analysis. Instead, numeric features are computed from
them, which represent texture in a more compact way. Some of the most
common features extracted from the GLCM matrix are the following [55].
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Figure 10: Example of how the Gray-Level Co-Occurrence Matrix M is
generated from a 6× 6 Image xbt with 8 gray levels.

Correlation

A measure of how correlated a pixel is to its neighbor over the entire
image. Correlation ranges from 1 to −1 and is defined as follows:

Correlation =
Nlevels−1∑

i=0

Nlevels−1∑
j=0

pij
ijpij − µxµy

σxσy
(3-8)

where µx, µy, σx and σy are the means and standard deviations of the matrices
obtained by summing the rows or columns of M. They are defined by:

µx =
Nlevels−1∑

i=0
i
Nlevels−1∑

j=0
pij (3-9)

µy =
Nlevels−1∑

i=0

Nlevels−1∑
j=0

jpij (3-10)

σ2
x =

Nlevels−1∑
i=0

(i− µx)2
Nlevels−1∑

j=0
pij (3-11)
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σ2
y =

Nlevels−1∑
j=0

(j − µy)2
Nlevels−1∑

i=0
pij (3-12)

Homogeneity

Measures the spatial closeness of the distribution of elements in M to
the diagonal. Homogeneity ranges from 0 to 1, achieving its maximum value
when M is a diagonal matrix.

Homogeneity =
Nlevels−1∑

i=0

Nlevels−1∑
j=0

1
1 + (i− j)2pij (3-13)

3.5
Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a kind of neural network
specialized for processing data having grid-like topology such as time series
(1D grid with regular time intervals) or image data (2D grid of pixels).

Introduced by LeCun et al. [47], LeNet-5 was the first CNN , outper-
forming other approaches and becoming the state-of-the art for hand-written
digit classification.

A regular Neural Network (NN) transforms an input by putting it
through a series of hidden layers. Every layer comprises a set of neurons, where
each layer is fully connected to all neurons in the layer before. Finally, there
is a last fully-connected layer —the output layer —that represents the class
scores.

CNNs are quite different from regular NNs. First, the layers are organ-
ised in three dimensions: width (w), height (h) and depth (Nfeatures). Addi-
tionally, the neurons in one layer do not connect to all the neurons in the next
layer but only to a small region of it. Lastly, the final output will be reduced
to a single vector of probability scores, organized along the depth dimension.
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Figure 11: A CNN basic architecture with two convolutional layers.

Figure 11 illustrates a basic CNN architecture with two convolutional
layers (with kernels sizes k1 and k2) + 2 × 2 pooling, a fully-connected layer,
and finally, the output layer withmt neurons, wheremt is the number of classes
available in epoch t.

In the following, each block is detailed as well as other layers commonly
used in CNN architectures.

Convolutional layer

The term convolutional layer refers to the mathematical operation con-
volution, which is a combination of two functions to produce a third function,
merging two sets of information.

The convolution is executed on the input data w×h×Nfeatures with the
use of a filter or kernel with size k × k × Nfeatures, by sliding the kernel over
the input to produce a feature map. At every location, an element-wise matrix
multiplication is performed and the products are summed up onto the feature
map. The feature map’s dimensions depend on the dimensions w and h of the
input data, and the number of kernels employed, Nkernels, as well as the kernel
size and the stride.

Similar to regular NNs, activation functions are employed to create a
non-linear output. For CNNs, the output of the convolutional layer is passed
through the activation function. The most common activation functions are:
sigmoid, tanh, ReLU and Leaky ReLU.

Pooling layer

Such a layer is usually inserted in-between successive convolutional layers
in a CNN architecture. It reduces the spatial size of the feature map to reduce
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the amount of parameters and computation in the network. The most common
is a 2×2 max-pooling, which applies a 2×2 filter with a stride of 2 to every depth
slice of the feature map replacing all values inside the filter by the maximum
value among them. Only the spatial dimensions are reduced by a factor of 2,
while the depth dimension remains unchanged.

Batch Normalization

Batch Normalization (B.N.) [56] reduces the dependency on the initial-
ization and improves convergence. It forces the set of activations throughout
a network to have zero mean and unit variance for each training mini-batch.

Fully-connected layer

Neurons in this layer have full connections to all activations in the
previous layer, as in regular NNs. Thus, their activations are computed by
a matrix multiplication plus a bias offset.

Dropout

Dropout aims to reduce over-fitting [57] during the feature-learning
procedure by randomly setting some activations to zero in each forward pass.
It is like training a large ensemble of models that share parameters.

Weight decay

Weight decay is a standard trick to improve the generalization perfor-
mance of neural networks by encouraging the weights to be small in magni-
tude [58]. It is performed by scaling the weights by a factor less than 1 in each
iteration.

3.6
Accuracy assessment

Given the set of predicted labels ŷ = {ŷi,t} and their corresponding
references y = {yi,t}, where ŷi,t, yi,t ∈ {l1, ..., lm} and m are the number of
classes, the confusion matrix CM reports the classifier accuracy on a class-
by-class basis. The element CM(i, j) of the confusion matrix contains the
number of pixels of true class li assigned to class lj by the classifier.
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Table 2: Confusion Matrix—CM .

Classification
l1 l2 l3 · · · lm

Re
fe
re
nc
e

l1 CM11 CM12 CM13 · · · CM1m

l2 CM21 CM22 CM23 · · · CM2m

l3 CM31 CM32 CM33 · · · CM3m
··
·

··
·

··
·

··
·

··· ··
·

lm CMm1 CMm2 CMm3 · · · CMmm

True positives (tp) are defined as the correct classifications for each class
and, the number of tp is calculated by the diagonal of CM . False positives
(fp) are those pixels that were erroneously considered as a part of a class and
false negatives (fn) are those pixels that truly belongs to a class but were
considered as part of an other class. The number fp and fn for all classes can
be computed from CM by the sum of their corresponding column and row,
respectively, of its elements excluding the main diagonal (tp).

Then, the Overall Accuracy (OA) is defined by:

OA = 100×

m∑
i=1

CMii

m∑
i=1

m∑
j=1

CMij

(3-14)

OA is a global metric that measures how many pixels were correctly
classified with respect to the total number of pixels. It varies from 0 to 100
representing complete disagreement and perfect agreement between reference
and predicted classification, respectively.

Precision, also known as Correctness, and Recall, also known as Com-
pleteness, are defined as follows:

Precision = tp

tp+ fp
(3-15)

Recall = tp

tp+ fn
(3-16)

Then, the F1-score is given by the harmonic mean of Precision and
Recall, varying from 0 to 100 similar to OA.

F1− score = 100× 2× Precision×Recall
Precision+Recall

(3-17)
As the F1-score is defined per class, the average F1-score is employed

as a global metric which gives us a better idea about how accurate each class
has been classified, disregarding the fact that some classes are more abundant
than others.
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Average F1− score =

m∑
i=1

F1− scorei
mt

(3-18)

where F1-scorei is the F1-score of class li, and mt is the number of available
classes in epoch t.
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4
CRF BASED CROP RECOGNITION MODEL

This chapter describes the proposed method based on CRF for crop
recognition. In the following, we also describe the variants conceived to
accommodate single or multiple sensors with potentially different spatial
resolutions. Such variants are characterized by different definitions of AP , SIP ,
and TIP potentials as shown in the following.

Equation 3-5, which is below to facilitate reading, is a general model for
multi-temporal images, which considers the spatial and temporal contexts.

P (y|x) = 1
Z

exp
∑
t∈T

∑
i∈S

AP t(yi,t,x) + θ
∑
t∈T

∑
i∈S

∑
j∈Ni

SIP t(yi,t, yj,t,x)

+
∑
t∈T

φt
∑
i∈S

∑
k∈Ci

TIP tk(yi,t, yi,k,x)
 (4-1)

It may be instantiated in different ways, called variants hereafter,
depending on the setup of parameters θ and φt, and especially, on the design
of association, spatial and temporal interaction potentials. In this work we
propose some CRF model variants for crop recognition from multitemporal
SAR and optical images. We also consider some variants to serve as baselines
and to assess how different design choices impact the accuracy. In particular,
we investigate the contribution of the spatial and/or the temporal interaction
potentials by turning them selectively off, i.e., by setting the parameters θ
and/or φ to zero. In the following we present the alternative designs considered
in this work for the potentials that make up the model of equation 3-5.

4.1
Association Potential (AP )

The association potential AP t(yi,t,x) is given in this thesis by the
logarithm of the posterior probability of class yi,t given a feature fi,t(x). The
posterior is computed by a discriminative classifier, formally:

AP t(yi,t,x) = logPC(yi,t|fi,t(x)) (4-2)
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where the subscript C stands for the classifier used to estimate posterior
probabilities.

Three groups of model variants for the association potential are consid-
ered in the following.

Association Potential from RF classifier and GLCM features

Texture features extracted from GLCM, denoted henceforth
fGLCM(xNi,t

), are frequently used for SAR data. Instead of considering
the whole dataset (x), such texture features are computed only upon a
neighborhood Ni,t centered at the i-th pixel location in epoch t. Yet, GLCM
based features capture partially the spatial context. Some model variants that
handle SAR data in our subsequent analysis rely on a Random Forest (RF)
[59] classifier. In such variants, the association potential takes the form:

AP t(yi,t,x) = logPRF t(yi,t|fGLCM(xNi,t
)) (4-3)

Figure 12 illustrates how the association potential is computed in the
aforesaid variants.

Feature

Extraction

Raw data Extracted features Probability maps

Feature

Extraction

Feature

Extraction

Figure 12: Association Potential computed from GLCM features and a Random
Forest (RF) classifier.
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Association Potential from raw data and CNN

Some variants explored in our model rely on a CNN to learn features
from single epoch data and to provide posterior probabilities. The posterior
probabilities to a pixel at location i in epoch t is computed by a CNN taking as
input the image patch Ni,t centered at i in t. Patches are made of all available
polarizations or spectral bands for SAR and optical data, respectively. The
association potential takes the following form:

AP t(yi,t,x) = logPCNNt(yi,t|xNi,t
) (4-4)

Note that in this case the association potential also takes spatial context
into account. Figure 13 illustrates how the association potential is computed
in the CNN variants based on single epoch data.

Raw data Probability maps

Figure 13: Association Potential computed from raw SAR or optical data by
a Convolutional Neural Network.
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Association Potential from stacked data and CNN

A third group of model variants also implements the association potential
by means of CNNs. The difference to the previous approach lies in the
network input. Instead of considering only the data related to the epoch t

the association potential is to be computed for all patches centered at location
i through all epochs in the dataset up to T are stacked one upon the other
forming an input tensor for a CNN . This technique, called image stacking,
captures both the spatial and the temporal context. With some abuse of
notation, we denote these association potential variants as:

AP t(yi,t,x) = logPCNNt(yi,t|xNi,1 : xNi,2 : ... : xNi,T
) (4-5)

where xNi,1 : xNi,2 : ... : xNi,T
denotes the concatenation along the third

dimension of patches starting with the initial epoch until epoch T . Figure
14 illustrates this group of variants.

Raw data Sensor 1
(high resolution)

Probability maps

Resampling

Raw data Sensor 2
(high resolution)

Raw data Sensor 3
(coarse resolution)

Stacking

nearest
neighbor

Figure 14: Association Potential computed from stacked data by a Convolu-
tional Neural Network.
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When dealing with a multi-sensor dataset, we up-sample the lower
resolution data using the nearest neighbor approach in order to obtain a
common resolution throughout the data set. Nearest neighbor is employed
as it does not alter the distribution of pixel values. The different grid sizes
of some elements of Figure 14 points to different spatial resolutions and the
up-sampling strategy.

4.2
Spatial Interaction Potential (SIP )

The spatial interaction potential SIP t(yi,t, yj,t,x) in the CRF model
given in equation 3-5 has the whole dataset x as one of its input parameters. In
this thesis we take a somewhat simpler formulation for the spatial interaction
potential SIP t(yi,t, yj,t,xi,t,xj,t), which requires only the data in spatially
neighboring sites i and j (j ∈ Ni).

The spatial interaction potential is given by a contrast-sensitive Potts
model [60] defined by:

SIP t(yi,t, yj,t,xi,t,xj,t) =
p+ (1− p)e−d2

ij,t/2σ2
t , yi,t = yj,t

0 , yi,t 6= yj,t
(4-6)

where gi,t(xi,t) is the feature vector of site i in epoch t.
It takes into account the similarity between adjacent site features vectors

as given by its Euclidean distance, dij,t = ‖gi,t(xi,t)− gj,t(xj,t)‖. Notice that
gi,t(xi,t) might be different from fi,t(xi,t) used for the association potential.
σ2
t refers to the mean value of squared feature distances dij,t computed during

training. The parameter p ∈ [0, 1] in Equation 4-6 controls the relative influence
of the data-dependent and data-independent terms.

4.3
Temporal Interaction Potential (TIP )

The design of association and spatial interaction potentials presented in
the previous sections is pretty standard in CRF modeling. The contributions of
this thesis lie primarily in how the temporal interaction potential is designed to
accommodate the high diversity in crop dynamics in tropical regions. Variants
for single and multiple sensor sequences are proposed in the following.

4.3.1
Model for single sensor sequences

The general CRF model given by equation 3-5 admits that the temporal
interaction potential might depend on the data (x). Tuning such a model
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accurately would require a number of training samples that can’t be afforded in
most applications. Thus, we drop data dependency of the temporal interaction
potential, which takes the form TIP tk(yi,t, yi,k). In this case, the model
must provide a potential estimate for each pair of classes, which amounts
to estimating mt ∗mk values, for an application involving mt and mk classes
at epochs t and k, respectively. This would still require an amount of labeled
samples that can hardly be obtained in most real applications.

The solution we propose relies on prior knowledge about transitions that
may or may not occur between any pair of adjacent epochs present in the
dataset. It is represented by a mt × mk transition matrix, the elements of
which take either the value 0 or -∞, depending on whether the corresponding
class transition is possible or not. In this way, the probability of any class
configuration y containing at least one impossible class transition will be set to
zero, and will consequently be discarded as a solution. On the other hand, the
temporal interaction potential will take the same non-zero value determined
by φ, for all class configurations containing no impossible class transitions.

4.3.2
Model for Multi Sensor Sequences

Generally, it is difficult to obtain a sequence of multi-temporal images
from the same sensor at a regular time interval, due to different reasons, e.g.
cloud coverage in case of optical images. A possible way to circumvent this
hindrance is the usage of multi source data to fill the gaps in the sequence.
However, these images may have different spatial resolutions, besides being of
different domains (e.g. optical and radar).

Spatial Interaction Potential
Temporal Interaction Potential

. . . . . .

. . . . . .

Figure 15: Multi-temporal sequence of T co-registered images with different
spatial resolutions represented as a graph.

When dealing with images with different spatial resolutions, the edges of
CRF graph defining the temporal neighborhood are modeled as illustrated in
Figure 15 [31], where it is assumed that the spatial resolutions between two
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sensors differ by a factor of three in each spatial dimension. In this case, each
pixel of the coarser image will be connected by temporal edges to nine pixels
of the higher resolution image.

Figure 16: Images corresponding to two adjacent epochs with images of
different spatial resolutions: fine in (t− 1) and coarse in (t).

This graph may lead to violation of the prior knowledge the temporal
interaction model proposed in the previous section relies on, as will be
demonstrated in the following simple example.

Let’s suppose that a plot border goes through a 3 × 3 pixel array of a
fine resolution image captured at t − 1, as shown in Figure 16. A small part
of such pixels belong to a plot covered by class l2, while most of them belong
to class l1. In the coarser image at t this array corresponds to a single pixel.
Let’s further assume that an agriculture expert tells that between t− 1 and t
only two class transitions are possible in that area, namely l1 → l3 and l2 → l4.
And let the ground truth of the pixel at t be l3.

In this ground truth scenario, the class transition l2 → l3 will occur,
conflicting with prior knowledge constraints. Certainly, a temporal interaction
potential designed as proposed in the previous section, would prevent assign-
ment either to class l2 at t−1 or to class l3 at t or both, leading to classification
errors in at least one of these epochs.

At first glance, this problem can be easily overcome by relaxing the
constraints imposed by prior knowledge by modifying the transition matrix
to change the temporal association potential so as to allow transition l2 → l3
between t−1 and t. This simple solution has a deleterious effect on the model’s
accuracy since it renders eligible a number of class sequences that contradict
the prior knowledge about crop dynamics in the target region.

In order to mitigate this shortcoming of the aforementioned solution, we
propose the incorporation of higher order connections in the temporal domain
between any pair of high spatial resolution images separated by a sequence of
low resolution images, as depicted in Figure 17.
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Again, such high order connections carry a m by m transition matrix,
whose elements are either 0 or -∞, depending on whether the classes are
compliant with the prior knowledge or not.

In summary, our approach relaxes the constraints regarding possible and
non-possible class transitions along the temporal dimension when involving
adjacent images of different resolutions. Additionally, the high order temporal
edges reestablish such constraints in the next image of the sequence having the
same fine resolution.

Spatial Interaction Potential
Temporal Interaction Potential First Order
Temporal Interaction Potential Higher Order

. . . . . .

. . . . . .

Figure 17: Multi-temporal sequence of T co-registered images with different
spatial resolutions represented as a graph with higher order connections in the
temporal domain between high spatial resolution images.
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5
EXPERIMENTAL ANALYSIS

This chapter reports the experiments carried out in order to validate
the method proposed in the previous chapter. First, the datasets used in
the experiments are presented. Then, the experimental protocol followed for
multi-temporal classification is described, and the parameter setup is detailed.
Finally, the results obtained in the experiments are reported, in terms of
Overall Accuracy (OA) and average F1-score.

5.1
Datasets

Two municipalities from Brazil, Campo Verde in Mato Grosso and Luis
Eduardo Magalhães in Bahia, were selected to evaluate the proposed method
in tropical regions. These datasets are publicly available for the scientific
community.

The datasets corresponding to those municipalities were elaborated in
cooperation with the National Institute for Space Research (INPE) and
Brazilian Agricultural Research Corporation (EMBRAPA). They were in
charge of the field works to collect data from the study areas to assign a label
to each plot, while the acquisition and pre-processing of Sentinel-1A scenes
was performed at PUC-Rio. These datasets received financial support from
the Brazilian agencies CAPES1 and CNPq2 for Campo Verde [11], and from
the ISPRS3, for Luis Eduardo Magalhães [12].

5.1.1
Campo Verde, Mato Grosso

Campo Verde is a municipality of the Mato Grosso (MT) state in the
central west region of Brazil (see Figure 18) at a latitude of 15◦32′48′′ south
and a longitude of 55◦10′08′′ west, with an area of 4,800 km2 and approximately
with an altitude of 736 m [11]. It presents a Tropical Aw climate according to
the Köppen—Geiger classification [61], with an average temperature of 22.3◦C,
average annual rainfall of 1,726 mm and latosoils as predominant soils.

1Coordination of Superior Level Staff Improvement
2National Counsel of Technological and Scientific Development
3International Society for Photogrammetry and Remote Sensing
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Figure 18: Location of the Campo Verde dataset in the state of Mato Grosso,
Brazil. It comprises 513 fields divided into training (black fields) and validation
(gray fields) sets with approximately 20% and 80%, respectively.

Table 3: Campo Verde dataset: Acquisition dates either from Sentinel-1A or
Landsat 8.

Year Month
Date

Sentinel-1A (10m) Landsat 8 (30m)
October 29 -
November 10, 22 112015
December 04, 16 -
January 21 -
February 14 -
March 09, 21 -
April - 19
May 08, 20 05
June 13

2016

July 07, 31 08, 24

The dataset comprises a set of 513 fields4 with their respective land-
use classes and a set of Sentinel-1A and Landsat 8 images acquired between

4Available at: http://www.obt.inpe.br/agricultural-database/campoverde/
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October 2015 and July 2016 (see acquisition dates in Table 3). Level-1 Interfer-
ometric Wide Swath (IWS) mode Ground Range Detected (GRD) Sentinel-1A
products (C-band) in VV and VH polarizations were acquired the Copernicus
Open Access Hub5, geometrically corrected using SRTM’s DEM and radio-
metrically calibrated to sigma nought (σ0) back-scatter coefficient, converted
to db, co-registered and geo-referenced to UTM 21S/WGS84, mosaicked and
clipped. Level-1 Landsat 8 data products were acquired from the United States
Geological Survey (USGS) Earth Resources Observation and Science Center,
atmospherically corrected, mosaicked and clipped. Further details about this
dataset can be found in [11].
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Figure 19: Percentage of samples per class in each epoch of the Campo Verde
dataset.

The reference data was built by two field campaigns conducted between
December 14th—18th, 2015 (first harvest, summer crops and rainy season) and
May 9th—13th, 2016 (second harvest, dry season) to record the localization
and land-use classes of each field. Land-use classes for the remaining months
were assigned by visual classification. A total of 11 land-use classes are present:
Soybean,Maize, Cotton, Beans, Sorghum, Non-Commercial Crops—NCC (Mil-
let, Crotalaria, Brachiaria, Grasses), Pasture, Turf grass, Eucalyptus, Cerrado

5https://scihub.copernicus.eu/
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(brazilian savanna), Soil (i.e. bare soil, soil with crop residues/weeds). Figure
19 summarizes the percentage of each class per month. Notice the presence
of two main periods: from October 2015 to February 2016, where Soybean is
the predominant crop, and from March 2016 to July 2016, where Maize and
Cotton are the most abundant crops in this region.

5.1.2
Luis Eduardo Magalhães, Bahia

Luis Eduardo Magalhães (LEM) is a municipality in the state of Bahia in
the north-east region of Brazil (see Figure 20) at a latitude of 12◦05′31′′ south
and longitude 45◦48′18′′ west, with an area of 4,000 km2 approximately and
with an altitude of 720 m [12]. It presents a Tropical Aw climate according to
the Köppen—Geiger classification [61], with an average temperature of 24.2
◦C, average annual rainfall of 1,511 mm and yellow latosol as predominant soil
in this region.

Figure 20: Location of the LEM dataset in the state of Bahia, Brazil. It
comprises 794 fields divided into training (black fields) and validation (gray
fields) sets with approximately 75% and 25% respectively.

The dataset comprises a set of 794 fields6 with their respective land-use
classes and a set of Sentinel-1A, Sentinel-2A/-2B and Landsat 8 images ac-
quired between June 2017 and June 2018 (see acquisition dates in Table 4).

6Available at: http://www.obt.inpe.br/agricultural-database/lem/
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Similar to Campo Verde, Level-1 IWS mode GRD Sentinel-1A products (C-
band) in VV and VH polarizations were acquired, geometrically corrected and
radiometrically calibrated, converted to db, co-registered and geo-referenced,
mosaicked and clipped. Level-1C Sentinel-2A/-2B images were acquired in top-
of-atmosphere reflectance from the Copernicus Open Access Hub, atmospher-
ically corrected using the Sentinel-2 Atmospheric Correction (Sen2Cor) algo-
rithm, mosaicked and clipped. Level-2 Landsat 8 data products were acquired
from the USGS Earth Resources Observation and Science Center in surface
reflectance, mosaicked and clipped. Further details about this dataset can be
found in [12].

Table 4: LEM dataset: Acquisition dates either from Sentinel-1A, Sentinel-
2A/2B and Landsat 8.

Year Month
Date

Sentinel-1A Sentinel-2A/2B Landsat 8
(10m) (10m) (30m)

2017

June 12, 24 - 15
July 06, 30 29 01, 17

August 11, 23 03 02, 18
September 04, 16, 28 07 19
October 10 17, 22 21
November 03, 15, 27 - -
December 09, 21 - -

2018

January 02, 14, 26 - -
February 07, 19 - -
March 03, 15, 27 - -
April 08, 20 20, 30 -
May 02, 14, 26 10 01
June 07, 19 14, 19, 24 02, 18

The reference data was built by two field campaigns conducted between
June 26th—30th, 2017 (second harvest, dry season) and March 14th—19th,
2018 (first harvest, wet season) to record the geographic coordinates, land-use
classes of each field and its phenology phase. Land-use classes for the other
months to cover one crop year (from June 2017 to June 2018) were assigned
by an experienced image interpreter. A total of 14 land-use classes are present:
Soybean, Maize, Cotton, Coffee, Beans, Sorghum, Millet (commercial and non-
commercial millet), Eucalyptus, Pasture/Grass, Hay, Cerrado, Conversion Area
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(a cerrado field that has been recently deforested), Uncultivated Soil (bare soil,
soil with crop residues/weeds) and Not Identified (areas irrigated by central
pivot). Figure 21 summarizes the percentage of each class per month. Notice
the presence of two main periods: from June 2017 to November 2017, where
there is mainly Uncultivated Soil as well as other minor classes like Millet, Hay
and Maize, and from December 2017 to June 2018, where Soybean is the most
abundant crop in this region with the presence of Maize and Coffee.
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Figure 21: Percentage of samples per class in each epoch of the Luis Eduardo
Magalhães dataset.

5.2
Experimental Setup

The method presented in Chapter 4 and its variants were tested for Crop
Recognition using the datasets in Section 5.1.

The following nomenclature was employed to refer to each variant:

{C}Stack − ASTH

where {C} stands for the classification algorithm used for the association
potential, which might be either a random forest (RF ) or a convolutional
neural network (CNN). The term Stack might be present or not depending
on how the classification algorithm {C} was trained, if it was upon a single
image or an image stack, correspondingly. The subsequent four letters, A, S,
T and H are related to which potentials are considered in the CRF model:
the association potential (AP ), the spatial interaction potential (SIP ), the
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temporal interaction potential (TIP ), and finally, higher order connections in
the temporal domain, respectively.

For instance, RF -AS will denote a CRF model comprising the association
and spatial interaction potentials (AP+SIP ), where the AP is given by an
RF classifier trained upon a single epoch. Moreover, CNNStack-ASTH will
represent a CRF model considering all three potentials (AP+SIP+TIP ) with
higher order connections in the temporal domain, where the AP was provided
by a CNN trained upon an image stack.

For the variants that rely on handcrafted features, texture and spectral
features were extracted from SAR and Optical images, respectively.

Correlation, Homogeneity, Mean and Variance, as in [35], were extracted
from the Gray-Level Co-occurrence Matrix (GLCM) using 3× 3 windows per
polarization (VV and VH) in four directions (0◦, 45◦, 90◦ and 135◦), producing
a 32 dimensional feature vector. Spectral features corresponding to bands R(4),
G(3), B(2), NIR(8) and NDVI for Sentinel-2A/-2B, and bands from 1 to 7 and
NDVI for Landsat 8, were extracted, generating 5 and 8 dimensional feature
vectors, respectively. The NDVI was calculated as in Equation 5-1, using bands
8 and 4 for Sentinel-2A/-2B and bands 5 and 4 for Landsat 8.

NDV I = NIR−Red
NIR +Red

(5-1)

The Random Forest (RF ) classifier was employed with 250 random trees
[62] and depth up to 25 levels. RF generates an ensemble of randomized
decision trees during training. Then, the probabilistic output provided for the
association potential (AP ) is obtained by the ratio of the sum of all votes for
a class yi,t of image site i and epoch t (Vyi,t

), and the total number of trees
(NTrees), as given by:

PRF t(yi,t|fGLCM(xNi,t
)) =

Vyi,t

NTrees

(5-2)

As both datasets are highly unbalanced (see Figures 19 and 21), which
could affect the classification results, under-/over-sampling was applied to the
more/less abundant classes. For Campo Verde, 50,000 and 5,000 samples per
class were employed from high (Sentinel-1A) and coarse (Landsat 8) spatial
resolution images, respectively. For LEM, 10,000 and 2,000 samples per class
were considered from high (Sentinel-1A and Sentinel-2A/-2B) and coarse
(Landsat 8) spatial resolution images, correspondingly. These approaches are
referred hereafter as RF -A, RF -AS and RF -AST , according to Chapter 4.
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Table 5: CNN architecture configuration.

Layer Output Size
- Input 9× 9×Nfeatures

- Convolutional Block
(3× 3 Conv., B.N.7, Leaky ReLU )

9× 9× 80

- Max Pooling (2× 2) 5× 5× 80
- Convolutional Block
(1× 1 Conv., B.N., Leaky ReLU )

5× 5× 80

- Convolutional Block
(3× 3 Conv., B.N., Leaky ReLU )

5× 5× 96

- Max Pooling (2× 2) 3× 3× 96
- Fully Connected 256
- B.N. 256
- Leaky ReLU 256
- Dropout 256
- Softmax mt

The variants that rely on a CNN for the AP , the network architecture
employed is summarized in Table 5, where the input of the network was
directly the pixel values (back-scatter responses in VV and VH polarizations
for Sentinel-1, spectral bands R(4), G(3), B(2), NIR(8) (the bands with 10m
spatial resolution) for Sentinel-2A/-2B, and bands from 1 to 7 for Landsat
8) resulting in Nfeatures dimensional feature vectors. The parameter setup
of the CNN was: Adam optimizer, learning rate of 10−3, weight decay of
10−4, dropout of 0.35, batch size equals to 128 with 500 epochs and early
stop to break after 10 epochs without improvement. Data augmentation was
performed with flips and rotations only for minor classes. The output is a
mt dimensional vector with the local posterior probabilities, where mt is the
number of classes available in epoch t, Hereafter, these approaches are referred
as CNN -A, CNN -AS, CNN -AST and CNN -ASTH according to Chapter
4.

For the stacked variants, whether using a single sensor or multiple sensors,
the pixel values of each image were concatenated and employed as the CNN ’s
input. For multiple sensors variants, when the images from different sensors
have different spatial resolutions, the stack was done by up-sampling the coarse
resolution images, using nearest neighbor method. For instance, in Campo

7Batch Normalization
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Verde dataset, Landsat 8 images (spatial resolution 30 m) were re-sampled
to 10 m as Sentinel-1A images. Hereafter, these approaches are referred as
CNNStack-A, CNNStack-AS, CNNStack-AST and CNNStack-ASTH.

The SIP ’s weight θ (see Equation 3-5) presented in Chapter 4 might
be selected empirically or by using an optimization algorithm. We carried out
experiments varying the value of θ from 0.5 to 10 with steps of 0.5 for fixed
sequences in each dataset. Then, the θ that produced the best result was
selected for our experiments. As described in Section 4.3, in our model the
value of parameter φ is irrelevant. For that reason, in our experiments we set
it to one.

As for the spatial interaction potential SIP , the parameter σ2
t , which is

the mean value of squared feature distances, was computed during training and
the parameter p, which controls the relative influence of the data-dependent
and data-independent terms (see Equation 4-6) was set to 0.5.

Regarding the temporal interaction potential, the transition matrices
TIP tk between epochs t and k were given by an expert who provided the
information about the possible and non-possible transitions between adjacent
months during an agricultural year.

Table 6: Example of a transition matrix given by an expert with information
about the possible and non-possible transitions between adjacent months
during and agricultural year for Campo Verde dataset.

t+1
Class 1 2 3 4 5 6 7 8 9 10 11

t

1 0 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 0 0 -∞
2 -∞ 0 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 0 -∞
3 -∞ -∞ 0 0 -∞ -∞ -∞ -∞ -∞ 0 -∞
4 -∞ -∞ -∞ 0 -∞ -∞ -∞ -∞ -∞ 0 -∞
5 -∞ -∞ -∞ -∞ 0 -∞ -∞ -∞ -∞ -∞ -∞
6 -∞ -∞ -∞ -∞ -∞ 0 -∞ -∞ -∞ -∞ -∞
7 -∞ -∞ -∞ -∞ -∞ -∞ 0 -∞ -∞ -∞ -∞
8 -∞ -∞ -∞ -∞ -∞ -∞ -∞ 0 -∞ -∞ -∞
9 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ 0 -∞ -∞
10 0 0 0 0 -∞ -∞ -∞ -∞ -∞ 0 -∞
11 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ 0

Table 6 shows an example of a transition matrix given by an expert
with information about the possible and non-possible transitions between two
adjacent epochs t and t + 1, where there are 11 classes in each epoch. 0 and
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-∞ represent the possible and non-possible transitions between two classes,
respectively. For instance, it is possible to have plots belonging to classes 1, 2,
3 and 4 in epoch t, and to class 10 in epoch t+ 1.

Experimental Protocol

Our CRF based model delivers structured predictions, i.e. the class
labels of all pixels in each epoch comprised in the sequence are predicted.
Our datasets, Campo Verde and LEM, comprise 19 and 51 multi-temporal
images, either from SAR or Optical sensors, respectively. Thus, it is possible to
draw more than 104 and 1011 sub-sequences of different lengths from Campo
Verde and LEM, respectively. Instead of running experiments on all these
possible sub-sequences, we decided to assess the classification performance of
our method on just one image per month, assuming that all earlier images in
the dataset are available as input. We also tested sequences comprising only
SAR and SAR+Optical data.

The distribution of train and test sets were approximately 20%/80% for
Campo Verde (see black and gray fields in Figure 18) and 75%/25% for LEM
(see black and gray fields in Figure 20). All pixels in a plot were assigned either
for training or testing. For Campo Verde, training and test sets were selected
using stratified random sampling over the plots taking as reference the images
from May due to the presence of almost all classes. Plots were selected taking
care of having samples for all classes in all epochs. Almost 20% of plots were
selected for training, simulating a scenario with limited labeled samples. For
LEM, as it is a public benchmark, the sets are already defined and provided
with the data and the reference. It reproduces a scenario with plenty of labeled
samples.

5.3
Results

Experiments were carried out using sequences comprising only SAR im-
ages (single sensor classification) and both sensors, optical and SAR (multiple
sensor classification) using both datasets, Campo Verde and LEM.

5.3.1
Single sensor sequences
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5.3.1.1
Campo Verde

Figures 22 and 23 summarize the results obtained for Campo Verde
dataset in terms of OA and average F1-score for sequences comprising only
Sentinel-1A images, a total of 14 epochs (see Table 3 for acquisition dates)
from October 2015 to July 2016. The horizontal axis contains the image being
classified according to the protocol explained in Section 5.2. In these figures
we present just one result per month, always related to the most recent epoch.

For each epoch, there are three bar groups: light, dark and hatched. Each
of them corresponds to one out of three distinct ways of capturing spatial
and temporal context. In the first bar group (light), the spatial context was
embedded in the texture features (GLCM). For the second bar group (dark),
spatial context was learned by a CNN . In the third set of bars (hatched),
a CNN learned attributes that incorporate both, the spatial and temporal
contexts. Within each of these groups, the first bar relates to the accuracy of
the association potential (AP ) only, the second bar refers to a CRF combining
both, the association and the spatial interaction potentials (AP+SIP ), and
the third bar represents the accuracy of a CRF model comprising all three
potentials (AP+SIP+TIP ).

Each epoch in the plots is indicated along the horizontal axis by a
number, a date and a category, which denote the number of images comprised
in the sequence, the acquisition date of the image being classified, and the type
of image, SAR or Optical, respectively.

In case of image 1 (October) the sequence consists of a single image (1).
So, results involving temporal context are not presented. Yet, these results
were consistent with the results of other epochs, as explained in the following.
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Figure 22: Overall Accuracy (OA) of different model variants for crop recog-
nition in Campo Verde dataset comprising only Sentinel-1A images.

Figure 23: Average F1-score of different model variants for crop recognition in
Campo Verde dataset comprising only Sentinel-1A images.

In most epochs, the three intermediate (dark) bars are higher than their
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correspondent in the left three (light) bars groups, revealing the importance
of spatial context and the CNN ability to capture it. Similarly, the three
right most (hatched) bars in each epoch are consistently higher than their
counterparts in the same epoch. This shows that the consideration of temporal
context, as captured by the CNN upon the stacked image, allowed for an
accuracy improvement in nearly all epochs, having reached up to 29% in terms
of OA and 36% in terms of F1-score in some epochs.

Comparing the greenish bars in each epoch with the corresponding
reddish bars on their left, we found that the inclusion of the spatial interaction
potential (SIP ) in our CRF model consistently brought accuracy gains. Such
improvements were more significant for the RF classifier runing on GLCM
features (light bars), having declined for the CNN working on stacked features
(hatched bars), being about 1% to 3.5%, in terms of OA and F1-score. It is
worth noticing in the intermediate (dark) bars for all epochs, that the CRF
spatial interaction potential (SIP ) managed to improve the accuracy even for
the CNN mono-temporal features, which already take spatial context into
consideration.

Similarly, the inclusion of the temporal interaction potential (TIP ) in
the CRF model improved the performance for nearly all tested sequences, as
can be seen by comparing the blueish with their correspondent greenish bars
for all three bar groups in all epochs. Indeed, this benefit is significant for the
light and dark bars and moderate to low for the hatched bars. It is particularly
significant that the CRF temporal interaction potential was able to improve
accuracy, both in terms of OA and F1-score, even for the CNN features
learned from the image stack (hatched bars), which already capture temporal
context.

Figure 24 presents snips of the predictions delivered by the different
model variants for a sequence length equal to 14, classifying the 14th image
in the sequence (July 31st). Each column in the figure from left to right
represents CRF variants consisting of AP , AP+SIP , and AP+SIP+TIP ,
respectively. Each row from top to bottom shows the reference (Figure 24a)
and variants based on handcrafted features (Figure 24b-d), CNN trained upon
single images (Figure 24e-g), and CNN trained upon image stacks (Figure
24h-j), respectively.

The results in Figure 24 improve from left to right and from top to
bottom. In particular, Figure 24b (RF -A) shows the salt-and-pepper effect
typical of pixel-wise classification approaches, which is reduced in Figure 24c
(RF -AS) thanks to the spatial interaction potential (SIP ) of the CRF model.
This effect is further reduced in Figure 24d (RF -AST ), as the CRF model
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incorporates both, the spatial (SIP ) and the temporal (TIP ) interaction
potentials.

a)

b) c) d)

e) f) g)

h) i) j)

Classes:

Figure 24: Snips of the predictions delivered by the different model variants
for a sequence length equal to 14, classifying the 14th image (July 31st) in
Campo Verde dataset with a single sensor.

Accuracy improves and the salt-and-pepper effect reduces for the single
epoch CNN variant, as shown in Figure 24e to g. Figure 24h to j (CNNStack−
A, CNNStack −AS and CNNStack −AST ) show further improvements due to
the image stacking approach that captures the temporal information.
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5.3.1.2
LEM

Figures 25 and 26 summarize the results obtained for LEM dataset in
terms of OA and average F1-score for sequences comprising only Sentinel-1A
images, a total of 16 epochs (see Table 4 for acquisition dates) from December
2017 to June 2018. Experiments were carried out only in this period. The data
from June 2017 to June 2018 were not considered because the target area was
mostly covered by bare soil, with crop residues from previous harvest or weeds,
belonging to class Uncultivated Soil (see Figure 21)

Analogous to the previous section, each bar group (light, dark and
hatched) relates to different ways of capturing spatial and/or temporal context.
The variant based on GLCM texture features and the CNN monotemporal
variant capture spatial context only, whereas the CNN with feature stacking
exploits both spatial and temporal context.

As in the foregoing section, within each group of three bars, the first bar
relates to the accuracy of the association potential (AP ) only, the second bar
refers to a CRF combining both, the association and the spatial interaction
potentials (AP+SIP ), and the third bar represents the accuracy of a CRF
model comprising all three potentials (AP+SIP+TIP ).

For sequences up to 11 epochs, the results for LEM database in Figures
25 and 26 presented the same behaviour observed for Campo Verde. The light
bars, representing accuracies achieved from GLCM features, were lower than
the dark bars, corresponding to CNN features learned from spatial context,
which were in turn inferior to the accuracies attained with the use of CNN
features learned from image stacking, as shown by the hatched bars.

The conclusions drawn from experiments on Campo Verde regarding the
contribution of CRF spatial and temporal interaction potentials holds for the
results recorded in the experiments on LEM. The CRF model comprising
the spatial interaction potential combined with the association potential
(AP+SIP ) (greenish bars) managed to improve accuracy in relation to
the a model based on the association potential alone (AP ) (blueish bars).
Such benefit was significant even in the variants that used CNN learned
features that rely on spatial context, as shown by the dark and hatched bars,
respectively.
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Figure 25: Overall Accuracy (OA) of different model variants for crop recog-
nition in LEM dataset comprising only Sentinel-1A images.

Figure 26: Average F1-score of different model variants for crop recognition in
LEM dataset comprising only Sentinel-1A images.
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The contribution of the temporal interaction potential TIP ranged from
9% to 55% in terms of OA and from 6% to 40% in terms of F1-score for
the experiments on GLCM (light bars) and on spatial context aware features
learned by CNN (dark bars).

Such impact on accuracy for features learned by a CNN upon image
stack (hatched bars) was mostly low, even slightly detrimental, as in epochs 6
and 11. A similar marginally negative effect was also observed for sequence 5
and 6 in Campo Verde.

The results for epoch 14 and, specially for epoch 16 diverged from the
pattern observed thus far. Note that the F1-score for the CNNs on the feature
stack (dashed bars) were mostly lower than the corresponding results for spatial
only CNNs (dark bars). Besides, the full CRF model comprising AP , SIP and
TIP performed for the stacked image variant much better than a similar model
without TIP , actually, also in terms of OA. The reason for such unexpected
results can be explained as follows.

CNNs are known to be highly demanding in terms of labeled training
samples. As the ratio between the number of parameters to the number
of labeled samples increases, the CNN tends to generalize poorly. Longer
sequences imply in deeper image stacks, and consequently in deeper kernels
at the first CNN layer. Therefore, more parameters have to be learned from
the available labeled samples. Not surprisingly, we noticed in our experiments
that the CNN with feature stacking variant (hatched bars) started declining
for image sequences longer than 14. It is significant that the spatio-temporal
CNN (hatched bars) performed poorer than the single epoch CNN (dark
bars) in terms of F1-score for epoch 16. In this experiment the underlying
CNN architecture was not able to generalize and did not capture the temporal
context properly. Equally remarkable was the accuracy gain brought by the
full CRF model (hatched blueish bar) in relation to the simpler CRF model
comprising only the association and spatial interaction potentials (AP+SIP )
for sequences 14 and 16.

Figure 27 shows snips of the predictions delivered by the model variants
for a sequence length equal to 10, whereby the results refer to the last image
in the sequence, the 10th one (March 27th).

From left to right, each column represents CRF variants considering only
AP , AP+SIP , and AP+SIP+TIP , respectively. From top to bottom, each
row shows the reference (Figure 27a) and the results of variants based on
texture features (Figure 27b-d), CNN trained upon single images (Figure 27e-
g), and CNN trained upon image stacks (Figure 27h-j).
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a)

b) c) d)

e) f) g)

h) i) j)

Classes:

Figure 27: Snips of the predictions delivered by the different model variants
for a sequence length equal to 10, classifying the 10th image (March 27th) in
LEM dataset with a single sensor.

Moving from left to right and from top to bottom, the results improve,
getting more similar to the reference and smoother as more context informa-
tion is being exploited. The salt-and-pepper effect, common in pixel-wise ap-
proaches, is apparent in Figure 27b (RF -A), but diminished with the addition
of the spatial interaction potential SIP in the CRF model, as shown in Figure
27c (RF -AS). It was further attenuated when the CRF model incorporated
the temporal interaction potential (TIP ) (see Figure 27d).

The results of the CNN monotemporal variants shown in the third row
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(Figure 27e-g) are clearly better than the results shown in the second row
produced by variants based on GLCM features. This demonstrates the benefits
of using CNN to capture spatial context from single images.

Even further improvements were obtained by the image stack variants,
as shown in Figure 27h-j (CNNStack-A, CNNStack-AS and CNNStack-AST ),
In these variants the spatial and temporal context were captured by a CNN
trained upon a multi-temporal image stack.

5.3.2
Multi Sensor sequences

5.3.2.1
Campo Verde

Figures 28 and 29 summarize the results obtained for Campo Verde
dataset in terms of OA and average F1-score for sequences comprising
both Sentinel-1A and Landsat 8 images, a total of 19 epochs (see Table 3
for acquisition dates) from October 2015 to July 2016. The horizontal axis
indicates the image being classified according to the experimental protocol
described in Section 5.2.

The Campo Verde dataset contains two main periods defined by the
cycle of the most abundant crops: from October 2015 to February 2106, being
Soybean the most abundant crop, and from March 2016 to July 2016, with
Maize and Cotton as the major crops.

We report in the following just results relative to the period from March
2016 to July 2016. Only one result per month is presented, always related to
the most recent epoch. This period was selected due to its higher dynamics
(presence of more crops and crop transitions) and to the availability of images
from sensors of different spatial resolutions (see Table 3 for acquisition dates
from each sensor).

The results obtained on data from a single sensor (Section 5.3.1) clearly
demonstrated the superiority of CNN based variants combined with feature
stacking. For this reason, in our experiments on multi sensor data we did not
consider variants based on handcrafted features.
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Figure 28: Overall Accuracy (OA) obtained by different approaches for crop
recognition in Campo Verde dataset using sequences of images from multiple
sensors.

Figure 29: Average F1-score obtained by different approaches for crop recogni-
tion in Campo Verde dataset using sequences of images from multiple sensors.
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Figure 28 and 29 present the results of our experiments on multi sensor
data. For each epoch, there is a bar group which can be separated in two
groups: dark and hatched. Each of these groups is related to a different way of
capturing spatial and/or temporal context: by a CNN trained per epoch, or
by a CNN trained upon an image stack, respectively.

Each group of bars comprises four bars. The first bar relates to the
accuracy of the association potential (AP ) only, the second bar refers to a
CRF combining both, the association and the spatial interaction potentials
(AP+SIP ), the third bar represents the accuracy of a CRF model comprising
all three potentials (AP+SIP+TIP ), and the fourth bar portrays a CRF
model using higher order interactions in the temporal domain, as presented in
Section 4.3.2.

Recall that the dates the results refer to are given along the horizontal
axis by a number, a date and a category, which stand for the sequence length,
the acquisition date of the image being classified, and the image domain (SAR
or Optical), respectively.

Notice that for almost all epochs, the four right most (hatched) bars
are higher than their correspondent four left most (dark) bars, supporting
the conclusion drawn from single sensor experiments (Section 5.3.1) about
the improvements obtained by capturing spatial and temporal context using a
CNN trained upon stacked images. These improvements reached up to 33%
in terms of OA and 40% in terms of F1-score in some epochs.

As expected, the variants that do not consider temporal interaction
(reddish and greenish bars) achieved higher accuracies for optical data (epochs
11, 12 and 18) than for SAR data (epochs 10, 14, 15 and 19), because
spectral features are more discriminative than back-scatter intensities for
mono-temporal crop classification.

Concerning the contributions of CRF spatial and temporal interaction
potentials, the results here are consistent with the conclusions drawn the
previous section. CRF models comprising the association and the spatial
interaction potentials (AP+SIP ) (greenish bars) achieved better accuracies
than models based on the association potential alone (AP ) (reddish bars).
The accuracy gains amounted up to 10% in terms of OA and 4% in terms of
F1-score. Moreover, with the addition of the temporal interaction potential
(AP+SIP+TIP ) to the CRF model (blueish bars), improvements of up to
17% in terms of OA and F1-score were obtained.

The inclusion of higher order interactions in the temporal domain (brown-
ish bars) brought slight improvements in many epochs, ranging from 0.1% to
1% in terms of OA and from 0.2% to 10% in terms of F1-score, being more
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prominent for epochs 14 and 19. Notice that such epochs are characterised by
SAR data after the use of optical data, exactly when the higher order interac-
tions were expected to be more effective. Yet in these epochs the improvements
in terms of OA were low. This is probably because the high-order temporal
edges improve results mostly around plot borders, which correspond in our
datasets to a small proportion of whole the test area.

Nevertheless, the high order temporal interactions caused an accuracy
drop in epoch 18 of up to 3% in terms of F1-score and about 0.3% in terms of
OA. After analysing the generated crop maps we concluded that the observed
F1-score reduction was due to miss-classifications of Turf grass samples, which
corresponds to less than 0.02% of the test area (see Figure 19). Therefore, we
consider that this result is not representative of the performance associated to
temporal higher order CRFs.

Figure 30 shows snips of the predictions delivered by the different model
variants for a sequence length equal to 14, classifying the 14th image (May
20th).

The first column of pictures represents variants based on CNN , while
the second column relates to those based on feature stack. From top to bottom,
the row show first the reference, then the results of CRF variants that consider
only the AP (Figure 30b-c), the AP+SIP (Figure 30d-e), the AP+SIP+TIP
(Figure 30f-g), and AP+SIP+TIP+Higher order (Figure 30h-i), respectively.

As we move from left to right and from top to bottom in Figure 30, the
predictions become closer to the reference getting a smoother appearance due
to the consideration of more contextual information. Even capturing spatial
context using a CNN per epoch in Figure 30b (CNN -A), the salt-and-pepper
effect is apparent, which diminished by the successive inclusion of more spatial
and/or temporal context by means of the SIP in Figure 30d (CNN -AS), the
TIP in Figure 30f (CNN -AST ), and the higher order interactions in Figure
30h (CNN -ASTH).

Feature stacking based variants, CNNStack-A in Figure 30c, CNNStack-
AS in Figure 30e, CNNStack-AST in Figure 30g, and CNNStack-ASTH in
Figure 30i, improved their counterparts based on single epoch CNN , stressing
the capacity of CNN to capture not only spatial context, but temporal context.
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Figure 30: Snips of the predictions delivered by the different model variants
for a sequence length equal to 14, classifying the 14th image (May 20th) in
Campo Verde dataset with multiple sensors.
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Figure 31 presents snips of the predictions obtained by four CRF variants
for a sequence length equal to 19, classifying the 19th image (July 31st).

From left to right, each column represents CRF variants considering the
three potentials AP+SIP+TIP , and those including higher order interac-
tions. From top to bottom, each row relates to the reference (Figure 31a) and
variants based on CNN (Figure 31b-c), and feature stacking (Figure 31d-e),
respectively.

Higher order CRF variants, CNN -ASTH (Figure 31c) and CNNStack-
ASTH (Figure 31e), brought improvements in relation to their counterparts
that involve AP+SIP+TIP , CNN -AST (Figure 31b) and CNNStack-AST
(Figure 31d), by reducing miss-classified pixels (e.g. as in Cotton plots) and
correcting class transitions (e.g. as in Maize and Pasture plots).

a)

b) c)

Classes:

d) e)

Figure 31: Snips of the predictions delivered by four CRF variants for a
sequence length equal to 19, classifying the 19th image (July 31st)
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5.3.2.2
LEM

Figures 32 and 33 summarize the results obtained for LEM dataset in
terms of OA and F1-score for sequences comprising Sentinel-1A, Sentinel-
2A/-2B and Landsat 8 images, a total of 26 images (see Table 4 for acquisition
dates) from December 2017 to June 2018. As in preceding sections, the image
being classified is indicated in the horizontal axis according to the protocol
explained in Section 5.2. In these figures we present just one result per month,
always associated to the most recent epoch.

Similar to the previous section, the bar groups of each epoch consists of
two sub-groups: dark and hatched. Each of them refers to different alternatives
to introduce spatial and/or temporal context information into the model: by a
CNN trained per epoch (exploitation of local spatial context), or by a CNN
trained upon an image stack (taking advantage of local spatial and global
temporal context), respectively.

Each group of bars comprises up to four bars. The first bar refers to
the accuracy of the association potential (AP ) alone, the second bar relates
to a CRF considering the association and the spatial interaction potentials
(AP+SIP ), the third bar represents the accuracy of a CRF model composed
of the three potentials (AP+SIP+TIP ), and the fourth bar portrays a CRF
model including higher order interactions in the temporal domain.

As the first 12 epochs involve a single sensor (see Table 4), the first five
groups of bars are identical to those presented in Section 5.3.1.2. The reader
is referred to that section for a detailed description and explanation of those
results. Thus, only results related to epochs 14 to 21 will be analyzed in the
following paragraphs.

Regarding the influence of CRF spatial and temporal potentials as well
as the higher order interactions, the results are consistent with the conclusions
drawn in the preceding sections. CRF variants comprising the association and
spatial interaction potentials (AP+SIP ) (greenish bars) managed to improved
their counterparts based on the association potential alone (AP ) (reddish bars)
in up to 7% in terms of OA and 4% in terms of F1-score. Moreover, the
introduction of temporal context into the CRF model through the temporal
interaction potential (TIP ) (blueish bars) brought accuracy gains of up to 28%
in terms of OA and 49% in terms of F1-score. Finally, additional improvements
were obtained by the addition of higher order interactions in the temporal
domain with accuracy gains of up to 2% in terms of OA and F1-score.
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Figure 32: Overall Accuracy (OA) obtained by different approaches for crop
recognition in LEM dataset using sequences of images from multiple sensors.

Figure 33: Average F1-score obtained by different approaches for crop recog-
nition in LEM dataset using sequences of images from multiple sensors.
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Variants based on the association potential alone (AP ) (reddish) and
those comprising both the association and the spatial interaction potentials
(AP+SIP ) (greenish) achieved higher accuracies classifying Optical epochs
(14 and 17) than SAR epochs (19 and 21), strengthening what was concluded
from Campo Verde experiments for multiple sensors (Section 5.3.2.1).

In epoch 14, the CNN stack variants (hatched bars) improved the results
of their monotemporal counterparts (dark bars) in up to 6% in terms of OA
and 12% in terms of F1-score. Among the stack variants, the one comprising
all three potentials, CNNStack-AST (blueish hatched bar), obtained lower
accuracy than a CRF model considering only the association and spatial
interaction potentials, CNNStack-AS (greenish hatched bar). The accuracy
dropped 0.3% in terms of OA and 3.2% in terms of F1-score. This indicates
that the addition of TIP for epoch 14 affected predominately the classification
of less abundant classes.

The pattern observed in previous epochs was not preserved in epochs
17 and 19, as observed in the results for LEM using a single sensor (Sec-
tion 5.3.1.2). In terms of F1-score, comparing correspondent variants based
on feature stack (hatched bars) and spatial CNN (dark bars), the former
achieved greater accuracies only for CRF models comprising all three poten-
tials (blueish) and higher order CRF (brownish). However, for those consider-
ing only the association potential (AP ) (reddish bars) or both the association
and the spatial interaction potentials (AP+SIP ) (greenish bars), dark bars
were higher. This effect is even more pronounced for epoch 21, when the CNN
variants trained upon image stack (hatched bars) got worse results than those
based on spatial only CNN (dark bars).

The explanation for this behaviour is similar what was stated in Section
5.3.1.2 for single sensor classification on the same months, May and June. For
models comprising only the AP (reddish bars), or the AP+SIP (greenish
bars), a CNN trained upon image stack (hatched bars) was not able to
generalize properly due to the increasing number of parameters to be learned.
Recalling that longer sequences imply deeper image stacks and equally deeper
kernels in the first CNN layer.

Notice that it takes place during the months where sudden changes in
class distribution arose, from April to June. Thus, as many crops cycles are
finishing, not relevant information is introduced into the image stack to classify
epochs on that period.

Figure 34 presents snips of predictions delivered by the different model
variants for a sequence length equal to 19, classifying the 19th image (May
26th).
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a)

e)

f) g)

h) i)

Classes:

b) c)

d)

Figure 34: Snips of the predictions delivered by the different model variants
for a sequence length equal to 19, classifying the 19th image (May 26th) in
LEM dataset with multiple sensors.

The first column corresponds to variants based on spatial only CNN

while the second one represents those based on CNN trained upon feature
stacks. From top to bottom, each row relates to the reference (Figure 34a) and
CRF variants comprising only the AP (Figure 34b-c), the AP+SIP (Figure
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34d-e), the AP+SIP+TIP (Figure 34f-g), and higher order CRF (Figure 34h-
i), respectively.

From left to right and from top to bottom, as more context information is
being considered, the predictions get closer to the reference. For monotemporal
CNN based variants, the inclusion of the SIP in the CRF model (Figure 34d)
(CNN -AS) improved the results in relation to what had been obtained by the
association potential alone (Figure 34b) (CNN -A). The further inclusion of the
TIP (Figure 34f) (CNN -AST ), reduced the salt-and-pepper effect, providing
smoother predictions. In contrast, all image stack variants got smoother results
even with CRF considering only the AP .

It is interesting to compare the results of single image CNN variants
with and without the temporal interaction potential (CNN -AS vs. CNN -
AST ). Some plots miss-classified by the CNN -AS variant (Figure 34d) were
fixed by the inclusion of the temporal interaction potential (see Figure 34f).
The results got even better for the high order variant (CNN -ASTH in Figure
34h). A similar trend is observed by comparing the results in Figure 34e, g and
i.
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6
CONCLUSIONS

A novel method for crop recognition in tropical regions from sequences
of multi sensor remote sensing images based on Conditional Random Fields
(CRF) was proposed in this work. The method exploits contextual information
in the spatial and temporal domains for a proper characterization of crops de-
velopment. Furthermore, it is capable to work with sequences of remote sensing
images from different domains/sensors with different spatial resolutions.

Experiments to validate the proposed method were carried out over
public datasets of two municipalities in Brazil: Campo Verde, Mato Grosso
state and Luis Eduardo Magalhães (LEM), Bahia. Those two datasets are
a contribution of the present thesis. They were built in cooperation with
partners from National Institute for Space Research (INPE) and from Brazilian
Agricultural Research Corporation (EMBRAPA).

The proposed CRF model relies on three main terms called: the associ-
ation potential, the spatial interaction potential and the temporal interaction
potential. Variants of the proposed model were created, by considering only
one, two or all three potentials, to assess the influence of each of them over
model accuracy.

Three different designs for the association potential were tested: a Ran-
dom Forest (RF ) trained upon handcrafted features, a Convolutional Neural
Network (CNN) trained upon a single image, and a CNN trained upon an
image stack. For the spatial interaction potential, a contrast-sensitive Potts
model was employed, which penalizes class changes unless a significant data
variation between neighboring image sites occurs. Prior knowledge about pos-
sible and impossible temporal class transitions in adjacent epochs were used
to model temporal interaction potential.

The accuracies obtained by the proposed CRF model in our experiments
were up to 85% in terms of Overall Accuracy (OA) and 68% in terms of F1-
score for Campo Verde, and up to 92% in terms of OA and 83% in terms
of F1-score for LEM, demonstrating the capacity of the proposed method
to recognize crops in tropical regions with complex dynamics and different
agricultural practices like the selected study areas.
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About using CNN to capture contextual information

For Campo Verde dataset, variants based on CNN trained upon sin-
gle images outperformed their counterparts based on RF trained upon hand-
crafted features in up to 27% in terms of OA and 39% in terms of F1-score.
Moreover, CNN trained upon image stacks managed to further improve those
results in up to 29% in terms of OA and 31% in terms of F1-score. The same
pattern was observed for LEM dataset with improvements of up to 70% in
terms of OA and 54% in terms of F1-score obtained with a CNN trained
upon image stacks rather than upon single images to provide the association
potential.

About the influence of each CRF potential

The addition of the spatial interaction potential to the CRF model led
to accuracy improvements of up to 16% in terms of OA and 4% in terms
of F1-score for Campo Verde, and of up to 21% in terms of OA and 5% in
terms of F1-score for LEM. Further accuracy gains were reached with the
consideration of the temporal interaction potential, specifically, up to 25% in
terms of OA and 19% in terms of F1-score for Campo Verde, and 56% in
terms of OA and 40% in terms of F1-score for LEM. In this manner, we
demonstrated the benefits of each potential, being the temporal interaction
potential the one that brought most accuracy improvements. The importance
of prior knowledge about class transitions between adjacent epochs was clearly
demonstrated by the aforesaid results. Moreover, as the CRF model took more
context information into account, the classification predictions got smoother,
and the salt-and-pepper effect diminished.

About using higher order connections

We proposed the addition of higher order connections in the temporal
domain for datasets with images from different domains/sensors and spatial
resolutions, such as Sentinel-1A (SAR), Sentinel-2A/2B, and Landsat 8 (opti-
cal) images. The higher order CRF models obtained significantly better results
than models using only the three potentials, with accuracy gains of up to 17%
in terms of OA and 10% in terms of F1-score for Campo Verde, and 2% in
terms of OA and F1-score for LEM. In addition, the high order edges were
able to correct plots miss-classified by the other tested variants.
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Future directions

The proposed method will be evaluated for crop recognition in temperate
regions, which possesses different crops dynamic than tropical regions.

Additionally, different alternatives to exploit spatial and temporal con-
text will be explored. For instance, other deep architectures to provide the
association potential such as Fully Convolutional Networks (FCN) ans Re-
current Neural Networks (RNN), to capture spatial and temporal context,
respectively..
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