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Abstract

Albuquerque Araujo, Igor; Griffiths, Simon (Advisor). The dif-
ferential equations method and independent sets in hy-
pergraphs. Rio de Janeiro, 2019. 89p. Dissertação de Mestrado –
Departamento de Matemática, Pontifícia Universidade Católica do
Rio de Janeiro.

In this dissertation, we will discuss Wormald’s differential equations
method, which has recently had many intriguing applications in Combina-
torics. This method explores the interplay between discrete and continuous
mathematics and it can be used to prove concentration in a number of dis-
crete random processes. In particular, we will discuss the H-free process and
the random greedy algorithm to obtain independent sets in hypergraphs.
These processes had been extensively studied through the past few years,
culminating in the recent breakthrough of Tom Bohman and Patrick Ben-
nett in 2016, who obtained a lower bound for hypergraphs with certain
density conditions. We not only reproduce the proof given by them but also
obtain a stronger result (expanding their result to sparser hypergraphs) and
we analyze the case of linear hypergraphs, in order to make progress towards
a conjecture by Johnson and Pinto concerning the Q2-free process in the
hypercube Qd.

Keywords
Differential Equations Method; Random Graphs; Martingales;

Random Processes; Hypergraphs;
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Resumo

Albuquerque Araujo, Igor; Griffiths, Simon. O método de equa-
ções diferenciais e conjuntos independentes em hipergra-
fos. Rio de Janeiro, 2019. 89p. Dissertação de Mestrado – Departa-
mento de Matemática, Pontifícia Universidade Católica do Rio de
Janeiro.

Nesta dissertação, discutiremos o método de equações diferenciais de
Wormald, que possui muitas aplicações recentes em Combinatória. Esse
método explora a interação entre a matemática discreta e contínua e
pode ser usado para provar concentração em uma grande quantidade de
processos aleatórios discretos. Em particular, estudaremos o processo livre
de H e o algoritmo guloso aleatório para gerar conjuntos independentes em
hipergrafos. Esses processos tem sido amplamente estudados nos últimos
anos, culminando com o recente grande avanço de Tom Bohman e Patrick
Bennett em 2016, que obtiveram uma cota inferior para hipergrafos com
certas condições de densidade. Nós não só reproduzimos sua demonstração
mas também obtemos um resultado mais forte (expandindo seu resultado
para hipergrafos mais esparsos) e analisamos o caso de hipergrafos lineares,
com o intuito de progredir rumo a uma conjectura de Johnson e Pinto sobre
o processo livre de Q2 no hipercubo Qd.

Palavras-chave
Método de equções diferenciais; Grafos aleatórios; Martingales;

Processos aleatórios; Hipergrafos;
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We’ll continue tomorrow - if I live.
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1
Introduction

1.1
Our goals

In this dissertation, we will discuss the differential equations method,
which has recently had many intriguing applications in Combinatorics. This
method explores the interplay between discrete and continuous mathematics
and it can be used to prove concentration in a number of discrete random
processes. The origins of the method can be found in the work of Kurtz ([1]).
The first application to random graphs is due to Karp and Sipser in 1981 ([2]),
but the general method was set by Nick Wormald in the ’90s ([3],[4],[5]).

In particular, a large variety of extremal combinatorics problems can
be stated in terms of maximal independent sets (with some properties) in
hypergraphs. So we are interested in the application of the method to the
random greedy independent set algorithm for hypergraphs, as studied by
Patrick Bennett and Tom Bohman ([6]).

1.2
The probabilistic method

Probabilistic techniques have been widely used in Combinatorics in the
past years. This is mainly due to the difficulty in giving explicit constructions.
One way to avoid this problem, by showing that such a structure exists instead
of defining it, is the so-called probabilistic method. This method consists in
showing that some randomly chosen object has a positive probability of having
the desired properties. While applications of the probabilistic method (due
to Szele and Shannon) appeared in the early 40’s, it was Paul Erdős who
developed the method and showed its true power over the last century.

Building on the ideas introduced by Erdős, the probabilistic method has
become a vital technique for anyone studying discrete mathematics. A good
reference for it is The Probabilistic Method by N. Alon and J. Spencer ([7]),
which gives wide ranging applications and an overview of the method. As we
can see there, a motivation for the method comes from the Ramsey Theory. In
fact, an easy example of the method appears in a paper of Erdős in 1947.
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Chapter 1. Introduction 12

1.2.1
Ramsey numbers

The Ramsey number R(k, `) is the smallest integer n such that in any
(two-)coloring of the edges of a complete graph with n vertices by red and blue,
either there exists a monochromatic red Kk or a monochromatic blue K`.

Figure 1.1: A 2-coloring of the edges of K5 without
monochromatic K3, showing that R(3, 3) ≥ 6.

The study of these numbers started in 1929 when Ramsey showed that
R(k, `) is finite for any integers k and `. Some years later, Erdős obtained
a lower bound for the diagonal Ramsey numbers R(k, k) by showing that the
desired coloring exists in a nonconstructive way, using probabilistic arguments.

Proposition 1.1 (Erdős, 1947). If
(
n
k

)
21−(k2) < 1, then R(k, k) > n. Thus

R(k, k) > b2k/2c for all k ≥ 3.

Proof. Consider a random coloring of the complete graph Kn, in which each
edge has probability 1/2 to be either colored red or blue, independent of
the other edges. For any set S of k vertices from Kn, let AS be the event
that the subgraph induced by S is monochromatic in our coloring. Then
P(AS) = 21−(k2). Since there are

(
n
k

)
sets of k vertices in Kn, the probability

that one of the events occur is at most
(
n
k

)
21−(k2) < 1. Then, there is a positive

probability that none of the events AS occur. This means that there exists a
coloring of Kn without monochromatic Kk and thus R(k, k) > n. The last part
of the proposition follows noticing that if n = b2k/2c, then

(
n

k

)
21−(k2) < 21+ k

2

k! ·
nk

2k2/2 < 1.
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Chapter 1. Introduction 13

Another way to look at the Ramsey numbers is by considering a graph
G on n vertices rather than a coloring of Kn (the red edges corresponds to the
edges of G and the blue ones to the edges not present in G). In this context, the
proof of Erdős is showing us that the random graph G(n, 1/2) (in which each
edge has probability 1/2 of being present) has a positive (high) probability
of both not containing a large clique and having small independence number.
Then the random Erdős-Rényi graph gives the lower bound for the diagonal
Ramsey problem.

Alternatively to the diagonal case R(k, k), the next most studied case is
the so-called off-diagonal problem R(3, k). In 1961 Erdős proved that

R(3, k) = Ω
(

k2

(log k)2

)

by applying a deterministic algorithm toG(n, p). But based on the proof above,
to obtain a lower bound on R(3, k) we could consider a “random” triangle-free
graph G (i.e., a graph that does not have K3 as subgraph) and hope that
it has small independence number with positive probability. In fact, since a
random graph should have smaller independence number than the explicit
known triangle-free graphs, such a graph should indeed represent an extremal
coloring. However, it was only in 1990 (in the “Quo Vadis, Graph Theory?”
conference) when Erdős and Bollobás first suggested the triangle-free process
defined as follows.

1.3
The triangle-free process

Consider the following process: We begin with the empty graph G0 on
n vertices. At each step i we obtain Gi+1 by adding to Gi one edge chosen
uniformly at random from the collection of edges that neither are edges of Gi

nor create a copy of K3 with the edges of Gi. The process ends with a maximal
triangle-free graph on n vertices, denoted by GM (M is the random variable
that counts the total number of steps of the process).

In 1995, Kim ([8]) used a similar semi-random process to prove that

R(3, k) = Ω
(

k2

log k

)
,

matching the order of magnitude of a previous upper bound from Ajtai, Komlós
and Szemerédi (from 1980, [9], [10]), refined by Shearer in [11], who obtained

R(3, k) ≤ (1 + o(1)) k2

log k .
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In 2008, Tom Bohman used the differential equations method to show that GM

has asymptotically almost surelyM = Θ
(
n3/2√log n

)
edges and independence

number Θ
(√

n log n
)
. This result ([12]) not only provides another proof of

the lower bound R(3, k) = Ω(k2/ log k) but also showed that the triangle-free
process is very likely to generate a good Ramsey R(3, k) graph for larger values
of k.

Improving on the results of Bohman for the triangle-free process, Bohman
and Keevash ([13]) and, independently, Fiz Pontiveros, Griffiths and Morris
([14]) proved that GM has

M =
(

1
2
√

2
+ o(1)

)
n3/2

√
log n

edges and independence number at most (
√

2 + o(1))
√
n log n with high

probability, which implies that

R(3, k) ≥
(1

4 − o(1)
)

k2

log k

(only a factor of 4 + o(1) far from the best known upper bound from Shearer).
Actually, shortly afterwards the result from Bohman that the triangle-free

process is very likely to generate a good Ramsey R(3, k) graph, Bohman and
Keevash ([15]) extended this result, by showing that for any strictly balanced
graph H the number of edges in the final graph obtained in the H-free process
is

Ω
(
n2− v(H)−2

e(H)−1 (log n)
1

e(H)−1

)
.

Then, in 2015, Bennett and Bohman ([4]) extended this result even further by
considering a random greeedy independent set algorithm on hypergraphs.

Our main goal in the present dissertation is to study this algorithm. By
using the differential equations method we will be able to obtain a lower bound
for the number of steps in the process, which will have many applications (for
instance, not only in Ramsey Theory but in additive combinatorics as well).

1.4
Overview of the dissertation

The layout of the dissertation is as follows. In Chapter 2, we introduce
some standard probability theory. In particular, we discuss martingales, which
play an important role in all applications of the differential equations method.
Also, we name some useful probability inequalities that will be extensively
used throughout the dissertation.
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In Chapter 3, we introduce the differential equations method and a very
general theorem of Wormald (Theorem 3.1, for a recent slightly improved result
see [16]), which applies in a wide variety of contexts. We explore a direct
application of the theorem and conclude by discussing another way of applying
the method (the wholistic approach) which is more versatile in many settings,
including most recent applications of the differential equations method.

In Chapter 4, we define the H-free process and its generalization (the
random greedy independent set algorithm on hypergraphs). We state the main
theorem proved by Patrick Bennett and Tom Bohman (Theorem 4.1) about
this algorithm, giving a lower bound on the size of the independent set obtained
by the process in the case when the original hypergraph satisfies some density
conditions. Furthermore, we show that their result implies a lower bound on
the number of steps of the H-free process when H is a strictly balanced graph
(that is, their result is indeed an extension of the previous result of Bohman
and Keevash).

In Chapter 5, we discuss a variant of the H-free process in which the
original graph of allowed edges is not the complete graph Kn. In particular,
we discuss the results of J. Robert Johnson and Trevor Pinto ([17],[18]) on the
C4-free process in the hypercube Qd. Furthermore, we obtain a generalization
of one of their results.

In Chapter 6, we reproduce the proof of Theorem 4.1 given by Bennett
and Bohman with small modifications, obtaining a stronger result than the
stated in [6] (see Theorem 6.2). In Chapter 7, we show that the proof may
be adjusted for linear hypergraphs (see Theorem 7.1), in which case we
need weaker density conditions. Finally, in the appendix A, we address some
technical standard results (that we use in Chapter 5) about the well-known
gamma function.
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PUC-Rio - Certificação Digital Nº 1712695/CA



2
Probabilistic tools

Throughout the dissertation we will use standard Probability Theory
definitions. In particular, we assume the reader is familiar with standard defi-
nitions such as σ-fields, probability spaces, random variables and (conditional)
expectation. In this chapter, we recall basic definitions and notation related to
martingales (in Section 2.1), and give a number of useful inequalities related to
deviation probabilities of martingales (in Section 2.2). These inequalities are
essential tools used throughout the dissertation.

2.1
Probability background

Random graph processes
A random process is simply a sequence of random variables X(t) indexed

by t (we think of t as being time). A random graph process is a sequence of
graphs (G0, G1, . . . ) in which every graph Gm is chosen randomly by some
distribution that depends on the previous graphs G0, G1. . . . , Gm−1. Given a
random graph process we can associate a random variable Xt (which depends
only on Gt) and the natural σ-field Ft generated by the process.
Martingales

Let Fn be a filtration (an increasing sequence of σ-fields). A sequence of
random variables Xn (with Xn being Fn-measurable for each n) is said to be
a martingale if, for all n,

• E|Xn| <∞ and

• E[Xn+1|Fn] = Xn.

If the last condition is replaced by E[Xn+1|Fn] ≤ Xn, then Xn is called a
supermartingale. Moreover, if E[Xn+1|Fn] ≥ Xn, Xn is called a submartingale.

Remark 2.1. Given a random graph process and a sequence of random
variables associated with the process, we call this sequence a martingale when
it is a martingale with respect to the natural filtration generated by the process.

Stopping time
An important tool that we will use in the next chapters is the notion of

a stopping time for a supermartingale. Given a filtration Fn, a stopping time
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T is any random variable with values in {0, 1, 2, . . . }∪{∞} such that {T = n}
is Fn-measurable for every n. Denoting min{i, T} by i ∧ T , the crucial result
about stopping times is the following.

Lemma 2.1. If Xi is a supermartingale and T is a stopping time, then Xi∧T

is also a supermartingale.

2.2
Useful probability inequalities

If X is a positive valued random variable with finite expectation and
k > 0, then as X ≥ k · 1{X≥k} (here 1A denotes the indicator variable of the
event A), by monotonicity of expectation we obtain Markov’s inequality:

E[X] ≥ k ·P(X ≥ k).

Applying it to the random variable (X −E[X])2 we obtain that

Var(X) = E
[
(X −E[X])2

]
≤ k2 ·P

(
|X −E[X]|2 ≥ k2

)
.

In other words, we obtain Chebyshev’s inequality:

Lemma 2.2 (Chebyshev’s inequality). Let X be a random variable with
expectation E[X] and variance Var(X). Then for any k > 0,

P

(
|X −E[X]| ≥ k

√
Var(X)

)
≤ 1
k2 .

Martingale inequalities
Now, suppose we have a supermartingale X0, X1, . . . , i.e., E[Xi+1|Fi] ≤

Xi for every i ≥ 0. Then the increments ∆Xi = Xi − Xi−1 satisfy
E[∆Xi|Fi−1] ≤ 0. If we knew that |∆X| ≤ c for some constant c then by the
convexity of the exponential we would have that (for y ∈ [−c, c] and λ > 0)

exp(λy) = exp
(
λc
(1

2 + y

2c

)
+ (−λc)

(1
2 −

y

2c

))

≤ eλc + e−λc

2 + y

c
· e

λc − e−λc

2
and then

E[eλ∆X ] ≤ E
[
eλc + e−λc

2 + ∆X
c
· e

λc − e−λc

2

]

= eλc + e−λc

2 + E[∆X]
c

· e
λc − e−λc

2
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≤ eλc + e−λc

2 = cosh(λc) ≤ e
λ2c2

2 ,

where in the last inequality we used that, for every a > 0,

ea + e−a

2 = cosh(a) ≤ ea
2/2.

Now, if |∆Xi| ≤ ci a.s. for each i, then E
[
eλ∆Xm|Fm−1

]
≤ eλ

2c2
m/2 and

we can compute, by induction on m,

E

[
eλ(Xm−X0)

]
= E

[
eλ(
∑m

i=1 ∆Xi)
]

= E
[
eλ∆Xmeλ(

∑m−1
i=1 ∆Xi)

]

= E
[
E

[
eλ∆Xmeλ(

∑m−1
i=1 ∆Xi)|Fm−1

]]

= E
[
eλ(
∑m−1

i=1 ∆Xi)E
[
eλ∆Xm|Fm−1

]]

≤ E
[
eλ(
∑m−1

i=1 ∆Xi)eλ2c2
m/2

]

= eλ
2c2
m/2E

[
eλ(
∑m−1

i=1 ∆Xi)
]

= exp
(
λ2

2

m∑
i=1

c2
i

)
.

So, by Markov’s inequality, for all a, λ > 0,

P(Xm −X0 > a) = P
(
eλ(Xm−X0) > eλa

)

≤
E

[
eλ(Xm−X0)

]
eλa

≤ exp
(
λ2

2

m∑
i=1

c2
i − λa

)
.

Hence, choosing λ = a
m∑
i=1

c2
i

, we obtain (Hoeffding-Azuma inequality) that

P(Xm −X0 > a) ≤ exp
(
λ2

2

m∑
i=1

c2
i − λa

)
= exp

(
−a2

2∑m
i=1 c

2
i

)
.

Lemma 2.3 (Hoeffding-Azuma inequality). Let Xi be a supermartingale such
that |∆Xi| ≤ ci a.s. for all i. Then

P(Xm −X0 > d) ≤ exp

− d2

2 ∑
i≤m

c2
i

 .

With a slight modification in the proof above we can get the similar
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Chapter 2. Probabilistic tools 19

bound:

Lemma 2.4 (Asymmetric Hoeffding-Azuma inequality). Let Xi be a super-
martingale such that −M ≤ ∆Xi ≤ η a.s. for all i, for some η < M

10 . Then for
any d < ηm we have

P(Xm −X0 > d) ≤ exp
(
− d2

3mηM

)
.

Sometimes the random variables |∆X| have small probability of being
close to the extremal value ci, in which cases the above bounds are not good
estimates. In these cases we will then use the following result due to Freedman
([19]).

Lemma 2.5 (Freedman inequality). Let Xi be a supermartingale, with
|∆Xi| ≤ C a.s. for all i, and V (i) := ∑

k≤i
Var[∆Xk|Fk−1]. Then

P[∃i : V (i) ≤ v,Xi −X0 ≥ d] ≤ exp
(
− d2

2(v + Cd)

)
.

We can also note that when we have asymmetric bounds −M ≤ ∆X ≤ η,
but η > M we can use Freedman inequality, together to the following easy fact

Claim 2.6. If X is a random variable such that E[X] ≤ 0 and X ∈ [−a, b]
almost surely (with b > a > 0) then Var[X] ≤ ab.

Proof. Since X ∈ [−a, b], we have (X + a)(b − X) ≥ 0 which implies
X2 ≤ (b− a)X + ab and Var[X] ≤ E[X2] ≤ (b− a)E[X] + ab ≤ ab.

And we obtain the similar estimate

P[Xm −X0 ≥ d] ≤ exp
(
− d2

2η(mM + d)

)
.

Lemma 2.7. Let Xi be a supermartingale such that −M ≤ ∆X ≤ η a.s. for
all i, for some η > M . Then for any d < mM we have

P(Xm −X0 > d) ≤ exp
(
− d2

4mηM

)
.
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If the sequence Xi is not a supermartingale, but we can bound its
expectation and the absolute value of its increments, we can create a auxiliar
supermartingale and apply the above estimates as follows. Suppose Xi is a
sequence of random variables such that E[∆Xi|Fi−1] ≤ b and |∆Xi − b| ≤ ci

for every i. Then, Yi = Xi − X0 − ib is a supermartingale and we can define
the stopping time T as being the first i for which Yi ≥ α. Then, by Hoeffding-
Azuma inequality applied to Yi∧T , we obtain that

Lemma 2.8. Let F0,F1, . . . be a filtration and X0, X1, . . . random variables
with Xi measurable with respect to Fi, 0 ≤ i ≤ t. Suppose that for some real b
and constants ci > 0,

E(Xi −Xi−1|Fi−1) < b and

|Xi −Xi−1 − b| ≤ ci a.s. for all 1 ≤ i ≤ t.

Then for all α > 0,

P(∃i (0 ≤ i ≤ t) : Xi −X0 ≥ ib+ α) ≤ exp
(
− α2

2∑ c2
j

)
.
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3
The differential equations method

In this chapter, we will introduce the differential equations method by
first explaining the purpose of it and introducing a general setting where we
can apply it. Next, we give a number of applications of the method to various
random processes. The main goal here is to make the reader familiar with the
method that will be used in a more intricate setting in the next chapters. Our
main reference is Wormald’s lecture notes ([4]).

The differential equations method is a method to prove that some random
variables associated with a certain random process stay close to a solution of
a system of differential equations calculated based on the expected changes
in the steps of the process. This theory applies to a wide variety of random
processes, in particular in the study of randomized algorithms and random
graphs. The idea is that the solutions of the associated differential equations
offer a deterministic good approximation to the trajectories of the random
variables.

Formally, we consider a sequence of random variables Y (t) indexed by
time. In all applications, the proof is separated into two parts: the first in
which we consider the expected changes between Y (t) and Y (t+1) to obtain a
differential equation whose solution will be the expected path followed by Y ; in
the second part, we make our guess precise by using concentration inequalities
and showing the desired convergence of the variable.

3.1
The general setting

Consider a sequence of discrete time random processes indexed by n. For
simplicity, we omit the dependency on n from the notation. For each n, we
study a sequence of discrete time random variables Y1(t), . . . , Ya(t) associated
with a random process. We write Ft for the corresponding natural filtration.
That is, Ft = σ ({Yi(s) : 1 ≤ i ≤ a, 0 ≤ s ≤ t}) for all t ≥ 0.

For many applications, it is better to consider scaled variables and time,
as it will give a single differential equation rather than different equations for
each n. In the main theorem below we scale by a factor of n, which will be
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sufficient for most applications. In some cases, when necessary, we may pre-
scale variables before applying the theorem.

Associated with the process we have random variables Y1, . . . , Ya

and we consider the stopping time TD to be the minimum t such that
(t/n, Y1(t)/n, . . . , Ya(t)/n) 6∈ D, where D ⊂ Ra+1 is an appropriate bounded
connected open set. We think of D as being the neighborhood of the predicted
trajectories. So that TD is the first time we leave the neighborhood of the
trajectories.

A theorem using the differential equations method can be stated with
great generality but for our purposes, we will prove a simplified version and
discuss how it can be extended to other cases later in this section.

3.1.1
The main result: Wormald’s theorem

Theorem 3.1 (Wormald). Consider a sequence of discrete time random
processes indexed by n and variables Y` associated with the processes (a
sequence of variables indexed by n for each `), for 1 ≤ ` ≤ a, where a is
fixed, and functions f` : Ra+1 → R, such that for some constant C0 and all `,
we have

|Y`| < C0n for all ` and all n whenever during the process.

Assume the following three conditions hold, where, in (ii) and (iii), D is some
bounded connected open set containing the closure of

{(0, z1, . . . , za) : P(Y`(0) = z`n, 1 ≤ ` ≤ a) 6= 0 for some n}.

(i) (Boundedness hypothesis.) For some functions β = β(n) ≥ 1 and
γ = γ(n), the probability that

max
1≤`≤a

|Y`(t+ 1)− Y`(t)| ≤ β,

conditional upon Ft, is at least 1− γ for t < TD.

(ii) (Trend hypothesis.) For some function λ1 = λ1(n) = o(1), for all ` ≤ a

∣∣∣∣∣E(Y`(t+ 1)− Y`(t)|Ft)− f`
(
t

n
,
Y1(t)
n

, . . . ,
Ya(t)
n

)∣∣∣∣∣ ≤ λ1

for t < TD.

(iii) (Lipschitz hypothesis.) Each function f` is continuous, and satisfies a
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Lipschitz condition, on

D ∩ {(t, z1, . . . , za) : t ≥ 0},

with the same Lipschitz constant for each `.

Then the following are true.

(a) For (0, ẑ1, . . . , ẑa) ∈ D the system of differential equations

dz`
dx

= f`(x, z1, . . . , za), ` = 1, . . . , a

has a unique solution in D for z` : R→ R passing through

z`(0) = ẑ`,

1 ≤ ` ≤ a, and which extends to points arbitrarily close to the boundary
of D;

(b) Let λ > λ1 + C0nγ with λ = o(1). For a sufficiently large constant C,
with probability 1−O

(
nγ + β

λ
exp

(
−nλ3

β3

))
,

Y`(t) = n · z`
(
t

n

)
+O(λn)

uniformly for 0 ≤ t ≤ σn and for each `, where z`(x) is the solution in
(a) with ẑ` = 1

n
Y`(0), and σ = σ(n) is the supremum of those x to which

the solution can be extended before reaching within `∞−distance Cλ of
the boundary of D.

Remark 3.1. “Uniformly” in the statement of theorem refers to the fact that
the implicit constant in the O(λn) term does not depend on t.

Remark 3.2. The theorem also holds when D depends on n but all Lipschitz
constants are uniformly bounded.

Remark 3.3. The theorem also holds when “a” is a function of n changing
the probability in (b) by

1−O
(
anγ + aβ

λ
exp

(
−nλ

3

β3

))
,

and if each function f` depends only on x and z1, . . . , z`.
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3.1.2
An application: The coupon collector

As an example of a simple application of the theorem, we will consider
the following process. At each step one of n different labeled coupons is selected
uniformly at random with repetition. It is well-known that the coupon collector
needs, in average, to wait time n log n in order to complete the entire collection.
Here we want to track the number of coupons left to be obtained throughout
the process. Formally, this means that Y (0) = n and, for each i,

Y (i+ 1) =

Y (i)− 1 , with probability Y (i)
n

Y (i) , with probability 1− Y (i)
n

Then we have, for every t,

|Y (t)| ≤ n,

|Y (t+ 1)− Y (t)| ≤ 1 and

E[Y (t+ 1)− Y (t)|Ft] = −Y (t)
n

.

Thus, applying Theorem 3.1 with C0 = 1, β = 1, γ = 0, λ1 = 0 and the
Lipschitz function f : R2 → R given by f(x, y) = −y, we have that the unique
solution of 

dz
dx

= f(x, z) = −z

z(0) = 1

is given by z(x) = exp(−x) and then for every λ = o(1) > 0, with probability
1−O

(
1
λ

exp (−nλ3)
)
,

Y (t) = n · exp
(
− t
n

)
+O(λn).

The choice of λ can be made either to make the probability smaller or
to have a smaller error term. For example, setting λ = n−

1
3 +ε we get

Y (t) = n · exp
(
− t
n

)
+O

(
n2/3+ε

)

with probability 1−O
(
n1/3−ε · exp(−n3ε)

)
,

and letting λ =
(

logn
n

)1/3
we have

Y (t) = n · exp
(
− t
n

)
+O

(
n2/3 · (log n)1/3

)
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with probability 1−O
(
n−2/3 · (log n)−1/3

)
.

Remark 3.4. The values of t for which our approximations are still valid
depends on the set D. In this case the function f is everywhere Lipschitz, we
can choose D ⊃ [0, A]× [0, 1] and then the approximation holds for t < An and
it is important to note that the implicit constants on the O(·) terms depend on
A.

3.1.3
Proof of Wormald’s theorem: a piecewise approach

Proof in special case a = 1 and γ = 0.
The first part of the theorem is well-known from the theory of differential

equations (see [20]). For the second part we will write Y , z and f for Y1, z1

and f1, respectively. Define

ω =
⌈
nλ

β

⌉

and note we can assume β/λ < n1/3 and λ < 1 (otherwise our conclusion
is trivially obtained). From now on we assume ω > n2/3. In order to show
that the trajectory is followed almost surely, we will prove concentration of
Y (t+ ω)− Y (t).

For now consider that
(
t
n
, Y (t)

n

)
is `∞-distance at least Cλ from the

boundary ofD for some large constant C that will depend only on the Lipschitz
constant of f . 1

By the trend hypothesis we have

E[Y (t+ k + 1)− Y (t+ k)|Ft+k] = f

(
t+ k

n
,
Y (t+ k)

n

)
+O(λ1).

Then, as for 0 ≤ k < ω we have |Y (t+ k)−Y (t)| ≤ kβ and kβ
n

= O(λ), by the
Lipschitz hypothesis

E[Y (t+ k + 1)− Y (t+ k)|Ft+k] = f

(
t

n
,
Y (t)
n

)
+O(λ)

and there is a function g(n) = O(λ) such that (conditioned on Ft)

Y (t+ k)− Y (t)− k · f
(
t

n
,
Y (t)
n

)
− k · g(n) is a supermartingale in k.2

1Observe then that throughout the proof we will use assumptions (i) and (ii) for
t+ ω < TD, since ωβ/n = O(λ).

2Notice we can choose g such that −Y (t + k) + Y (t) + kf
(
t
n ,

Y (t)
n

)
− kg(n) is also a

supermartingale.
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The step changes in these supermartingales are at most

|Y (t+ k+ 1)− Y (t+ k)|+
∣∣∣∣∣f
(
t

n
,
Y (t)
n

)∣∣∣∣∣+ |g(n)| ≤ β + (β + λ1) +O(λ) ≤ κβ

for some κ > 0 as β ≥ 1.
Applying the Hoeffding-Azuma inequality,3 we obtain for α = nλ3

β3

P

(∣∣∣∣∣Y (t+ ω)− Y (t)− ωf
(
t

n
,
Y (t)
n

)∣∣∣∣∣ ≥ ωg(n) + κβ
√

2ωα
∣∣∣∣Ft

)
≤ 2 exp(−α). (3.1)

Now we want to prove by induction the following claim.

Claim 3.2. Defining ki = iω for i = 0, 1, . . . , i0, with i0 =
⌊
σn
ω

⌋
. Then for

each i,

P

(∣∣∣∣∣Y (kj)− z
(
kj
n

)
· n
∣∣∣∣∣ ≥ Bj for some j ≤ i

)
= O(ie−α)

where Bj = (λn+ ω)
[(

1 + Bω
n

)j
− 1

]
.

The base case follows from the fact that z(0) = Y (0)
n

. For the induction
step, note that

∣∣∣∣∣Y (ki+1)− z
(
ki+1

n

)
· n
∣∣∣∣∣ = |A1 + A2 + A3 + A4|

where

A1 = Y (ki)− z
(
ki
n

)
· n,

A2 = Y (ki+1)− Y (ki)− ω · f
(
ki
n
,
Y (ki)
n

)
,

A3 = ωz′
(
ki
n

)
+ z

(
ki
n

)
· n− z

(
ki+1

n

)
· n,

A4 = ω · f
(
ki
n
,
Y (ki)
n

)
− ω · z′

(
ki
n

)
.

Part I: By the induction hypothesis, we have that
∣∣∣Y (kj)− z

(
kj
n

)
· n
∣∣∣ <

Bj for all j < i and

|A1| < Bi with probability 1−O(ie−α). (3.2)
3For this supermartingale and the supermartingale in the previous footnote.
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From now on we will suppose that these events happen.
Part II: By (3.1) with t = ki, since g(n) = O(λ) and β

√
ωα = ωλ4 we

have, for some constant B′ that does not depend on i,

|A2| < B′ωλ with probability 1−O(exp(−α)). (3.3)

Part III: As z is differentiable, by the Taylor formula we have

z

(
ki+1

n

)
= z

(
ki
n

)
+ ω

n
z′
(
ki
n

)
+O

(
ω2

n2

)

and then, for some constant B′′ that does not depend on i,

|A3| ≤
B′′ω2

n
. (3.4)

Part IV: As z is the solution given in (a), we have z′
(
ki
n

)
= f

(
ki
n
, z
(
ki
n

))
.

Since f is Lipschitz, conditioned to (3.2), we conclude (for some constant
B′′′ > 0)

|A4| = ω

∣∣∣∣∣f
(
ki
n
,
Y (ki)
n

)
− f

(
ki
n
, z

(
ki
n

))∣∣∣∣∣
≤ B′′′ω

∣∣∣∣∣Y (ki)
n
− z

(
ki
n

)∣∣∣∣∣ < B′′′ωBi

n
. (3.5)

Set B = max{B′, B′′, B′′′}. Then as

Bi

(
1 + Bω

n

)
+ Bω

n
(λn+ ω) = Bi+1,

by (3.2)-(3.5), with probability 1−O((i+ 1)e−α),
∣∣∣Y (kj)− z

(
kj
n

)
· n
∣∣∣ < Bj for

all j ≤ i+ 1 and we are done with the induction.
To complete the proof, for t ≤ σn, we put i =

⌊
t
ω

⌋
. Note that

Bi = O(nλ + ω) = O(nλ)5, the change from ki to t in Y is at most
β|t − ki| ≤ ωβ = O(λn) and the change in z is at most ω(β + λ1) = O(λn).
Thus with probability 1−O

(
n
ω
· e−α

)
we have

∣∣∣∣Y (t)− z
(
t

n

)
· n
∣∣∣∣ = O(λn).

Now we discuss how to deduce the full version of Theorem 3.1 from the

4Actually we have
√⌈

nλ
β

⌉(
nλ
β

)
and not ω, but we will only use the fact that this is

O(ω).
5Since

(
1 + Bω

n

)σn/ω = O(1).
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special case proved above. For an arbitrary a > 1 the inductive hypothesis of
the Claim 3.2 is modified to

P

(∣∣∣∣∣Y`(kj)− z`
(
kj
n

)
· n
∣∣∣∣∣ ≥ Bj for some j ≤ i

)
= O(aie−α)

for every ` ≤ a. For the induction step, the statement has to be verified for
all a variables and then the failure probability is multiplied by a. Then the
theorem follows.

For an arbitrary γ, we need to condition on the event that

max
1≤`≤a

|Y`(t+ 1)− Y`(t)| ≤ β

holds at each step. This alters the expected change of Y but as |Y | ≤ C0n it
will be changed by at most C0nγ. Then replacing λ1 by λ1 + C0nγ it suffices
to note that the probability of failure throughout the process is O(nγ) and the
theorem follows for arbitrary γ.

3.2
The bounded 2-degree process

Not all applications of the differential equations method are direct
applications of Theorem 3.1. Remarkably, it is not always necessary to formally
define (and solve) the underlying system of differential equations. In this
section, we show that it is sometimes possible to guess the trajectories
corresponding to the random variables Yi(t), which turns out to be equivalent
to solving the system of differential equations. This “guess” is made using
heuristic probabilistic arguments. We then prove concentration of the number
of isolated vertices in the bounded 2-degree process (Theorem 3.3).

The bounded 2-degree process is the process to generate a n-vertex graph
in which at each step an edge is chosen uniformly at random conditioned in the
event that neither vertex has degree more than 2. In other words, you choose
one edge among all (not already added) edges between vertices of degrees 0 or
1. Formally, we set G0 to be the empty graph on the n vertices and Gi+1 is the
graph obtained from Gi by adding the edge ei+1, taken uniformly at random
from the set {uv 6∈ E(Gi) : dGi(u) < 2, dGi(v) < 2}, which we will call the
“available edges”.

Let Yj(t) be the number of vertices of degree j in Gt for j = 0, 1 or 2.
Note that the number of vertices of the graph is n = Y0(t) + Y1(t) + Y2(t) and
by double counting the number of edges in Gt we have t = 1

2(Y1(t) + 2Y2(t)).
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It follows that n− t = Y0(t) + 1
2Y1(t), so

Y1(t) = 2n− 2t− 2Y0(t) (3.6)

and Y2(t) = −n+ 2t+ Y0(t). (3.7)

Equations (3.6) and (3.7) tell us that in order to investigate the trajectory of
the number of vertices of every given degree during the process it suffices to
study the number of isolated vertices.

3.2.1
Isolated vertices in the bounded 2-degree process

Let A(t) the number of available edges in Gt (i.e., at time t). Note that

A(t) =
(
n− Y2(t)

2

)
− F (t),

where F (t) is the number of edges already present between vertices of degree
less than 2. By the handshake lemma, the number of such edges can be at
most n and, using (3.7), we can write

A(t) = 1
2(n− Y2(t))2 +O(n) = 1

2(2n− 2t− Y0(t))2 +O(n). (3.8)

The probability of et+1 to be any given available edge is 1
A(t) . The number

of isolated vertices Y0(t) can drop at each step by two or one, depending on
whether the edge et+1 added is between vertices that previously have both
degree 0 or have degrees 0 and 1, respectively. It follows that the expected
change in Y0 is

E[Y0(t+ 1)− Y0(t)|Ft] = −2 ·

(
Y0(t)

2

)
A(t) − 1 · Y0(t)Y1(t)

A(t)

Then, from (3.6)-(3.8), we can compute

E[Y0(t+ 1)− Y0(t)|Ft] =− 2 ·

(
Y0(t)

2

)
A(t) − 1 · Y0(t)Y1(t)

A(t)

=−Y0(t)(Y0(t)− 1)− Y0(t)(2n− 2t− 2Y0(t))
1
2(2n− 2t− Y0(t))2 +O(n)

=−Y0(t)(2n− 2t− Y0(t)− 1)
1
2(2n− 2t− Y0(t))2 +O(n)

=
−2Y0(t) + 2Y0(t)

(2n−2t−Y0(t))

(2n− 2t− Y0(t)) +O
(

2n
2n−2t−Y0(t)

) .
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Now, supposing
√
n

n−t = o(1), we can use 6

n

(2n− 2t− Y0(t))2 ≤
n

(n− t)2 = o(1)

to obtain that

1
(2n− 2t− Y0(t)) +O

(
2n

2n−2t−Y0(t)

) =
1 +O

(
n

(2n−2t−Y0)2

)
2n− 2t− Y0(t) ≤

1 +O
(

n
(n−t)2

)
2n− 2t− Y0(t)

and noticing that

0 ≤ Y0(t)
2n− 2t− Y0(t) ≤

n− t
2n− 2t− (n− t) = 1

and 2Y0(t)
(2n− 2t− Y0(t))2 ≤

2(n− t)
(2n− 2t− (n− t))2 = O

(
n

(n− t)2

)
,

we finally conclude

E[Y0(t+ 1)− Y0(t)|Ft] =
−2Y0(t) + 2Y0(t)

(2n−2t−Y0(t))

(2n− 2t− Y0(t)) +O
(

2n
2n−2t−Y0(t)

)
=
−2Y0(t) + 2Y0(t)

(2n−2t−Y0(t))

2n− 2t− Y0(t) ·
(

1 +O

(
n

(n− t)2

))

= −2Y0

2n− 2t− Y0
+O

(
n

(n− t)2

)

= −2Y0(t)
2n− 2t− Y0(t) + o(1).

Which suggests that y0(x) ≈ 1
n
Y0(xn) satisfies the differential equation

y′0(x) = −2y0(x)
2− 2x− y0(x) , (3.9)

with general solution

y0(x)(C − log y0(x)) = 2− 2x.

As y0(0) = Y0(0)
n

= 1 we have C = 2 and conclude

y0(x)(2− log y0(x)) = 2− 2x. (3.10)

6Here we are using the bound Y0(t) ≤ n− t, which can be inferred from (3.6).
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3.2.2
Probabilistic intuition - How to guess the trajectories

Instead of finding the differential equation (3.9), we could derive (3.10)
directly by estimating the probabilities that a vertex has degree 0, 1 or 2 during
the process. Although by proceeding this way we don’t arrive at a differential
equation we will still call it the differential equations method since it is only
an alternative to find the guessed trajectory of our random variable when we
do not want to (or cannot) compute the expected changes during the process.

We write yi for the continuous approximation of Yi. From (3.8), we know
that

A(t) ∼ 1
2n

2α(t)2, where α(t) = 1− y2(t).

The probability that a given vertex u (with degree < 2 at step t) is
incident to et+1 is the number of available edges incident to u over the total
number of available edges A(t) and the number of available edges incident to
u is expected to be close to n − 1 − Y2(t) ∼ nα(t) (neglecting edges already
present between vertices of degree less than 2). So

P(u incident to et+1) ∼ nα(t)
A(t) ∼

2
nα(t) and

P(u not incident to et+1) ∼ 1− 2
nα(t) ∼ exp

(
− 2
nα(t)

)
.

Letting λ(s) ∼
s−1∑
t=0

2
nα(t) . Then the probability that the vertex u remains

isolated after s steps should be close to

s−1∏
t=0

exp
(
− 2
nα(t)

)
∼ exp

(
−

s−1∑
t=0

2
nα(t)

)
∼ exp(−λ(s)).

And the probability that it has degree 1 should be

(
s−1∏
t=0

exp
(
− 2
nα(t)

))
s−1∑
t=0

2
nα(t)

exp
(
− 2
nα(t)

) ∼ λ(s) exp(−λ(s)).

We deduce that the functions y0 and y1 should be

y0(x) = e−λ(x)

y1(x) = λ(x)e−λ(x),

where from (3.6) we obtain

(2 + λ(x))e−λ(x) = 2− 2x,
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as in (3.10), which implicitly determine y0.

3.2.3
Wholistic approach

In the proof of the main theorem, we introduced a large enough variable
ω and used concentration of Y (t + ω) − Y (t) to show that the variable Y
remains close to its predicted trajectory for multiples of ω. However, we are
not required to use this “piecewise” method. As we know that Y (t) should be
close to n · y

(
t
n

)
, we expect that Y (t)− n · y

(
t
n

)
should be close to zero and

summing or subtracting a function f(t) we would obtain a supermartingale or
submartingale.

This “wholistic” approach can be used when the Lipschitz condition
fails or when we know something more about the solution of the differential
equation. In some cases, we may obtain better approximations for larger values
of t. Formally, the idea of summing or subtracting a function will be made
essentially by applying Lemma 2.8 (see Chapter 2).

Now we are able to state and prove the desired conclusion about the
number of isolated vertices on the bounded 2-degree process.

Theorem 3.3. Take 0 < δ < min
{

3ε, 1
6 + ε

2

}
. With probability at least

1− exp
(
−Ω

(
n1/3+ε−2δ

))
,

n− t = Y0(t)
(

1 +O
(
n−δ

)
+ 1

2 log n

Y0(t)

)

for all 0 ≤ t < bn− n2/3+εc.

Proof. As we know that Y0(t) should follow n·y0
(
t
n

)
, then remembering (3.10)

we have
y0

(
t

n

)
·
(

2− log
(
y0

(
t

n

)))
= 2− 2t

n
,

and the solution of the differential equation for Y0 is

Y0(t)
n
·
(

2− log
(
Y0(t)
n

))
= 2(n− t)

n
,

or, rearranging the terms,

2 = 2(n− t)
Y0(t) + log

(
Y0(t)
n

)
.

Letting F (x, y) = 2(n−x)
y

+ log
(
y
n

)
and vt = (t, Y0(t)). Then the solution

above is F (vt) = 2. The idea of the proof will be to show that F (vt) remains
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close to 2 with high probability. But since F (vt) is not defined if Y0(t) = 0, we
need to define a stopping time when Y0 comes near zero. This can be done by
setting

T = min{t : |F (vt)− 2| ≥ n−δ}.

If n−t
Y0(t) ≥ log n then

2(n− t)
Y0

+ log Y0

n
− 2 ≥ log n+ log Y0 − 2 ≥ n−δ

and |F (vt)− 2| ≥ n−δ. This means we can assume Y0(t) > n−t
logn for t < T .

As grad F =
(
− 2
y
,−2(n−x)

y2 + 1
y

)
and the second derivatives are allO

(
1
y2

)
,

we obtain

F (vt+1)− F (vt) = (vt+1 − vt) · grad F (vt) +O

(
1
Y 2

0

)
(3.11)

Now we just need to note, by our previous calculations,

E[vt+1 − vt|Ft] = (1,E[Y0(t+ 1)− Y0(t)|Ft])

=
(

1, −2Y0

2n− 2t− Y0
+O

(
n

(n− t)2

))

and
(
1, −2Y0

2n−2t−Y0

)
· grad F (vt) = 07. Then

E[F (vt+1)− F (vt)|Ft] = O

(
(2n− 2t− Y0)n
Y 2

0 (n− t)2

)
+O

(
1
Y 2

0

)

= O

(
n

Y 2
0 (n− t)

)
.

Now, using that Y0 >
n−t
logn ,

E[F (vt+1)− F (vt)|Ft] = O

(
n

Y 2
0 (n− t)

)

= O

(
n(log n)2

(n− t)3

)
for t ≤ n− n1/2+ε. (3.12)

As |Y0(t+ 1)− Y0(t)| ≤ 2 and by (3.11) we also have

|F (vt+1)− F (vt)| ≤
2
Y0

+ 2 · 2n− 2t− Y0

Y 2
0

+O

(
1
Y 2

0

)

= O

(
n− t
Y 2

0

)
= O

(
(log n)2

n− t

)
(3.13)

7Since grad F (vt) =
(
− 2
Y0(t) ,−

2n−2t−Y0(t)
Y0(t)2

)
.
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Then, by (3.12) and (3.13) , applying Lemma 2.8 with

b = O

(
(log n)2

n1+3ε

)
,

ct = O

(
(log n)2

n− t

)
,

t ≤ t0 = n− n2/3+ε

and α = 1
2n
−δ,

noticing

n(log n)2

(n− t)3 ≤
(log n)2

n1+3ε for t < n− n2/3+ε,

ib+ α ≤ (n− n2/3+ε)O
(

(log n)2

n1+3ε

)
+ 1

2n
−δ

= O

(
(log n)2

n3ε

)
+ 1

2n
−δ <

2
3n
−δ (since δ < 3ε)

and
∑

c2
j ≤ O((log n)4)(n− n2/3+ε) 1

n4/3+2ε

≤ O((log n)4n−1/3−2ε) = O
(
n−1/3−ε

)
,

we obtain

P

(
∃i (0 ≤ i ≤ t0) : |F (vi)− F (v0)| ≥ 2

3n
−δ
)
≤ exp

(
−Ω

(
n1/3+ε−2δ

))
.

As F (v0) = 2, this implies that T < t0 with the same low probability and
T ≥ t0 implies |F (vi) − F (v0)| ≤ n−δ for i < t0 as well, the result follows
(changing the implicit constant in the Ω(·) term if needed).
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4
The random greedy independent set algorithm in dense hy-
pergraphs and the H-free process for strictly balanced graphs

In this chapter, we will study the H-free process for strictly balanced
graphs H. First, we introduce the H-free process for general H and describe an
auxiliary hypergraph HH . Next, we see that the H-free process is analogous to
the random greedy independent set algorithm on HH . We then state the main
theorem, obtained by Bennett and Bohman in [6], which asserts that with high
probability this algorithm produces a large independent set provided that the
hypergraph satisfies certain degree conditions. Finally, we conclude by showing
that this result, when applied to HH , generalizes a lower bound, obtained by
Bohman and Keevash in [15], on the number of steps in the H-free process
for strictly balanced graphs. The proof of the main theorem, which uses the
differential equations method to track several variables throughout the process,
is presented in Chapter 6.

4.1
The H-free process

4.1.1
The process

Let H be a fixed graph. We call a graph G with n vertices a maximal H-
free graph (also called H-saturated graph) if it has no copy of H as a subgraph
and the addition of any new edge to G would create such a copy. The H-free
process is a random process to obtain a maximal H-free graph as follows.

The process generates a nested sequence G0, . . . , GM of graphs with the
same vertex set. We begin with the empty graph G0 with n vertices. At each
step, we add uniformly at random a new edge (among all edges that would not
create a copy of H) to the graph Gi to obtain Gi+1. The process stops when
we arrive at a maximal H-free graph GM .

As a random H-saturated graph, GM has some interesting properties and
we are particularly interested in the behavior of the random variable M .
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(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3

(e) Step 3’ (f) Step 4’

Figure 4.1: The K3-free process with 4 vertices. Notice that the process
can stop with a different number of edges depending on the chosen edges.

4.1.2
The underlying hypergraph

Associated with the H-free process, we can consider a hypergraph HH

with vertex-set the edges of the complete graph Kn, i.e. V =
(

[n]
2

)
and the edge

set being all copies of H in Kn.

1

3 4

2 1

3 4

2 1

3 4

2 1

3 4

2

Figure 4.2: The copies of K3 in K4.

12

34

1314

2324

Figure 4.3: HK3 for n = 4.
The vertex ij of HK3 represents the edge connecting i and j on K4.

The edges of HK3 correspond to the triangles of K4.

In this context, choosing a new edge at random that does not create a
copy of H is analogous to choosing a new vertex at random that does not form
an edge in the hypergraph (i.e., a vertex that forms an independent set with
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the previously chosen vertices). Then, the H-free process can be generalized
in the hypergraph setting by the following algorithm.

4.2
The random greedy independent set algorithm

4.2.1
The algorithm

The random greedy independent set algorithm is the algorithm that forms an
independent set by choosing one vertex at a time such that no edge is entirely
chosen. In other words, at each step, we take uniformly at random a vertex
that does not create an edge together with the already chosen vertices.

Formally we have at the beginning H(0) = H, V (0) = V and I(0) = ∅.
Given i ≥ 0, an independent set I(i) and a hypergraph H(i) on the vertex-set
V (i), we choose uniformly at random a vertex vi+1 ∈ V (i). Then we take

• I(i+1) := I(i)∪{vi+1}, which will be an independent set of H with i+1
vertices;
• V (i+ 1), the new vertex-set, is V (i) without vi+1 and every other vertex
u such that {u, vi+1} is an edge of H(i);
• H(i + 1), the new hypergraph, is H(i) removing vi+1 from every edge

that contains vi+1 and at least 2 other vertices and removing every edge
incident to vertex (different from vi+1) removed from V (i).

Note that H(i) is no longer an uniform hypergraph.

vi+1

u

(a) H(i) (b) H(i+ 1)

Figure 4.4: When the vertex vi+1 is chosen, notice that the vertex u is deleted
and then the red edge that contained u is also deleted.

Remark 4.1. If we arrive at a hypergraph H(i) that has edges e, e′ such that
e ⊂ e′ we can remove e′ from H without causing any differences in the process,
as the presence of e ensures that we will never have e′ ⊂ I(j). As a convention,
we will then remove all such e′ edges in the study of the process.
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4.2.2
The main result: Bennett-Bohman’s theorem

For a subset A ⊂ V we define the degree of A in H, denoted deg(A),
as the number of edges in H that contain A. We highlight that by deg(A) we
denote the degree of A in the initial hypergraph H.

Definition 4.1 (∆`(H)). The `-maximum degree ∆`(H) of a hypergraph H
with vertex-set V is the maximum degree of A over all A ∈

(
V
`

)
.

Definition 4.2 (Γ(H)). The (r−1)-codegree of v and v′ (where v, v′ ∈ V and
v 6= v′) is the number of pairs of edges (e, e′) such that v ∈ e\e′, v′ ∈ e′\e and
|e ∩ e′| = r − 1.

|e ∩ e′| = r − 1.

e e′

v v′

Figure 4.5: The (r − 1)-codegree of v and v′ is
the number of pairs (e, e′) as above.

Then Γ(H) is the maximum (r − 1)-codegree over all choices of v, v′ ∈ V .

Theorem 4.1 (Bennett-Bohman [6]; proof in Chapter 6). Let r and ε > 0
be fixed. Let H be a r-uniform, D-regular hypergraph on N vertices such that
D > N ε. If

∆`(H) < D
r−`
r−1−ε for ` = 2, . . . , r − 1 (4.1)

and Γ(H) < D1−ε then the random greedy independent set algorithm produces
an independent set I in H with

|I| = Ω
N · ( logN

D

) 1
r−1
 (4.2)

with probability 1− exp{−NΩ(1)}.

4.3
Strictly balanced graphs

Definition 4.3 (Strictly balanced graph). We call a graph H = (VH , EH)
strictly balanced if it has at least 3 vertices, 3 edges and

eH[W ] − 1
|W | − 2 <

eH − 1
vH − 2 for all W ( VH such that |W | ≥ 3, (4.3)
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where vH = |VH | is the number of vertices in H, eH = |EH | is the number
of edges in H and eH[W ] is the number of edges in the subgraph H[W ] of H
induced by the subset W .

We will see that the hypothesis (4.1) is valid for HH if and only if H
is strictly balanced. Hence, Theorem 4.1 is a generalization of the following
result due to Bohman and Keevash.

Theorem 4.2 (Bohman-Keevash [13]). Let H be a strictly balanced graph and
G be the maximal H-free graph on n vertices obtained by the H-free process.
Then, with high probability, the number of edges of G is at least

Ω
(
n

2− vH−2
eH−1 (log n)

1
eH−1

)
.

First, let’s see that eq.(4.1) holds for HH if and only if H is strictly
balanced. For a ≥ 2, let va be the minimum number of vertices spanned by a
edges of H. The degree of a set of a vertices in HH is Θ(nv) where v is the
number of vertices not present in the correspondent a edges of H. So

∆a(HH) = Θ
(
nvH−va

)
= Θ

(
n

(vH−2)
[

1− va−2
vH−2

])
.

Also, HH is D-regular with D = Θ (nvH−2) and

D
eH−a
eH−1 = Θ

(
n

(vH−2)(eH−a)
eH−1

)
= Θ

(
n

(vH−2)
[

1− a−1
eH−1

])
.

Comparing above equations, we have that (4.1) is valid for HH (for some
ε > 0) if and only if va−2

vH−2 >
a−1
eH−1 for all a ≥ 2, which holds if and only if (4.3)

holds.
Now, to prove Theorem 4.2, let H be strictly balanced and take

ε < min
{
vH − 2

2 ,
1

vH − 2 ,
va − 2
vH − 2 −

a− 1
eH − 1 : for all 2 ≤ a < eH

}
.

The result will follow by applying Theorem 4.1 to HH . Notice that HH

has N =
(
n
2

)
vertices, is eH-uniform and D-regular with D = Θ (nvH−2). Since

ε < vH−2
2 , we have D > N ε .
As we discussed above, HH satisfies (4.1) because H is strictly balanced.

To be precise, since ε < va−2
vH−2 −

a−1
eH−1 for all 2 ≤ a < eH ,

∆a(HH) = Θ
(
n

(vH−2)
[

1− va−2
vH−2

])
< Θ

(
n

(vH−2)
[

1− a−1
eH−1−ε

])
= D

eH−a
eH−1−ε.
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As H is strictly balanced, it has no isolated vertices nor vertices with
degree 1. Then two distinct copies of H with eH − 1 edges in common can
together span at most vH vertices. This means that Γ(HH) = O(nvH−3). And,
since ε < 1

vH−2 implies that vH−3
vH−2 = 1 − 1

vH−2 < 1 − ε, we conclude that
Γ(HH) = O(nvH−3) < Θ

(
n(vH−2)(1−ε)

)
= D1−ε.

As all hypotheses of Theorem 4.1 are satisfied, we have that the number
of edges of the maximal H-free graph obtained in the H-free process is at least

Ω
N · ( logN

D

) 1
eH−1

 = Ω
(
n

2− vH−2
eH−1 (log n)

1
eH−1

)
.
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5
The random greedy independent set algorithm in linear hy-
pergraphs and the H-free process on a host graph F

In this chapter, we will give a lower bound on the number of vertices
obtained in the random greedy independent set algorithm by computing
just some of the vertices added. This method covers the case of linear
hypergraphs (i.e., hypergraphs H such that ∆2(H) = 1). However, the bound
is a logarithmic factor far from the right order of magnitude guessed by the
differential equations heuristic. Then we introduce the H-free process where
we have a host graph F instead of the complete graph Kn.

Our first theorem is a generalization of the lower bound on the number
of edges in the the Q2-free process on the hypercube Qd given by J. Robert
Johnson and Trevor Pinto in [17], which we obtain in Section 5.2.1 as a
corollary. The proof of the general theorem (Theorem 5.1) is obtained by a
direct adaptation of the proof by Johnson and Pinto.

5.1
A different approach - Counting good vertices

We will produce a random permutation of the vertices of the hypergraph
H by considering independent random variables Tv, for each vertex v, dis-
tributed uniformly in [0, 1]. We think of the random algorithm as adding the
vertices in order from the smaller variable to the greater. We call a vertex good
if it is not the last vertex of any of the edges of H. With this definition, a good
vertex will always appear in the final independent set. To bound the number
of edges obtained in the random greedy algorithm we will bound the number
of good edges as below.

Theorem 5.1. Let r ≥ 2 be a fixed integer. Let H = (V, E) be a r-uniform
hypergraph with N vertices such that ∆2(H) = 1. Suppose that the r-degree
of each vertex v ∈ V is denoted by d(v) and the minimum degree δ satisfies
δ → ∞ as N → ∞. Let ∆ be the maximum of such degrees. Then, with

probability 1−O


∆·
(∑
v∈V

d(v)
)

(∑
v∈V

d(v)−
1
r−1

)2

, the number of good vertices in a uniformly
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distributed random permutation of the vertices of H is Θ
( ∑
v∈V

d(v)−
1
r−1

)
.

Before we prove the theorem above, we will state some lemmas about the
Gamma function that we will need to use. The proofs of these lemmas can be
found in Appendix A.

Definition 5.1 (The Gamma function). The gamma function is defined for
complex numbers with positive real part by

Γ(z) =
∫ ∞

0
uz−1e−u du.

Lemma 5.2. For all complex numbers a, b with positive real part the following
equation holds ∫ 1

0
(1− xa)b dx =

Γ
(
1 + 1

a

)
Γ(b+ 1)

Γ
(
b+ 1 + 1

a

) .

Lemma 5.3. Let α be a positive real number. Then

lim
n→∞

Γ(n+ α)
Γ(n) · nα = 1.

Proof of Theorem 5.1. Let Av be the indicator variable of v being good and
A = ∑

v∈V
Av. Hence, conditioning on the event that Tv = x, the probability

that v is the last vertex added to an edge is xr−1. Also, as ∆2(HH) = 1, the
events of v being the last vertex of different edges are independent since these
events depend on variables Tu for disjoint sets of vertices u. Then

P(Av = 1) =
∫ 1

0
(1− xr−1)d(v) dx

=
Γ
(
1 + 1

r−1

)
Γ(d(v) + 1)

Γ
(
d(v) + 1 + 1

r−1

)
∼ Γ

(
1 + 1

r − 1

)
d(v)−

1
r−1 ,

where we used Lemmas 5.2 and 5.3 as well as the fact that d(v)→∞.
By linearity of expectation,

E[A] = Θ
(∑
v∈V

d(v)−
1
r−1

)
.

As ∆2(H) = 1, the event Av depends only on variables Tu for at most
(r − 1)d(v) values of u different from v. Then Av is independent of all but at
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most (r − 1)∆ · (r − 1)d(v) other Af . Therefore

Var(A) =
∑
v∈V

Var(Av) +
∑
u6=v

Cov(Av, Au) ≤ E[A] + (r − 1)2∆ ·
∑
v∈V

d(v).

By Chebyshev’s inequality we have

P

(
|A−E[A]| ≥ k

√
Var(A)

)
≤ 1
k2

and
(
choosing k

√
Var(A) = E[A]

10 for example we have 1
k2 = 100 Var(A)

E[A]2
)

we ob-

tain that A = Θ
( ∑
v∈V

d(v)−
1
r−1

)
with probability 1−O


∆·
(∑
v∈V

d(v)
)

(∑
v∈V

d(v)−
1
r−1

)2

.
The previous theorem is very general but in most applications we work

with regular hypergraphs. So we will state the very same result for D-regular
hypergraphs, in which case the statement is cleaner. Notice that in this case
we have ∆ = D and d(v) = D for all v ∈ V .

Corollary 5.4. Let r ≥ 2 be a fixed integer and D be a function of N .
Let H = (V, E) be a D-regular r-uniform hypergraph with N vertices such
that ∆2(H) = 1. Then, with probability 1 − O

(
D

2+ 2
r−1

N

)
, the number of good

vertices in a uniformly distributed random permutation of the vertices of H is
Θ
(
ND−

1
r−1
)
.

Remembering that a good vertex will always appear in the final indepen-
dent set obtained by the random greedy algorithm, we have that the number of
good vertices is always a lower bound on the number of steps of the algorithm
and then we obtain the following:

Corollary 5.5. Let H be a D-regular, r-uniform hypergraph with N vertices
and such that ∆2(H) = 1. Then, with probability 1 − O

(
N−1D

2r
r−1
)
, the

random greedy independent set algorithm creates an independent set of size
Ω
(
ND−

1
r−1
)
.

It is important to note that as we obtain not only lower bounds but also
upper bounds in Theorem 5.1 and Corollary 5.4 it shows us that we cannot
expect to obtain better results using this approach. In other words, by counting
good vertices we can only obtain the lower bound Ω

(
ND−

1
r−1
)
. As we saw in

the statement of Bennett-Bohman’s theorem and we will see later when we
compute the differential equations heuristic, this is a logarithmic factor far
from the estimated correct value.
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5.2
The H-free process on a host graph F

In the H-free process, we consider a fixed graph H and we create a
random H-saturated graph. Instead of creating a general graph with no copy
of H, we can try to find such a graph as a subgraph of other given graph
F . The classical H-free process is viewed now as the H-free process on the
complete graph Kn and for a general graph F on n vertices we have the H-free
process on the host graph F as follows.

The process generates a nested sequence G0, . . . , GM of graphs with the
same vertex set of F . We begin with the empty graph G0 with n vertices. At
each step, we add uniformly at random a new edge (among all edges of F that
would not create a copy of H) to the graph Gi to obtain Gi+1. The process
stops when we arrive at a maximal H-free subgraph of F .

As before, we can associate a hypergraph to the H-free process on F .
HH,F will denote the hypergraph with vertex-set the edges of F , i.e. V = E(F )
and the edge set being all copies of H in F . Now, the H-free process on F is
analogous to the random greedy independent set algorithm on HH,F .

5.2.1
The Q2-free process on the hypercube Qd

Theorem 5.6 (J. Robert Johnson, T. Pinto [17]). The Q2-free process on the
hypercube Qd with high probability generates a Q2-free subgraph with at least
Ω(d2/32d) edges.

Proof. Consider the hypergraph HQ2,Qd . As Qd has d2d−1 edges (and Q2 has 4
edges), this hypergraph is 4-uniform and has d2d−1 vertices. Also, every edge
of Qd is contained in d−1 Q2’s and those Q2 share only one edge. Thus HQ2,Qd

is (d− 1)-regular and ∆2 (HQ2,Qd) = 1.
Applying Corollary 5.5 to HQ2,Qd (with N = d2d−1, D = d−1 and r = 4)

we then obtain that with probability 1−O
(
d8/3

d2d−1

)
(i.e., with high probability)

the Q2-free process on Qd generates a graph whose number of edges is at least

Ω
(

N

D
1
r−1

)
= Ω

(
d2d−1

(d− 1) 1
3

)
= Ω

(
d2/32d

)
.
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6
Random greedy independent set algorithm

In this chapter, we present the proof of Theorem 4.1 by Bennett and
Bohman as in [6]. We recall that the theorem asserts that with high probability
this algorithm produces a large independent set provided that the hypergraph
satisfies certain density conditions. As we saw in Chapter 4, this result
generalizes a lower bound on the number of steps in theH-free process obtained
by Bohman and Keevash in [15]. In fact, we will see that the proof actually
gives a stronger result (see Theorem 6.2).

The method used here is a more sophisticated version of the “wholistic
approach” presented in Chapter 3. In fact, we want to track the number of
vertices V (i) of the hypergraph during the algorithm. For this, we will find
variables that together, when controlled, allow us to study the corresponding
martingale. Besides that, those variables must form a “closed system” (in the
sense that we can be able to write the expected values and variances of changes
in those variables only in function of them) and then we will calculate the right
error functions to obtain auxiliary supermartingales.

The chapter is presented as follows. First, we define the variables we
will track and compute their expected trajectories by assuming that our
independent set should look like a random set. We then will be able to state
claims that together clearly imply the theorem. Last, we will finally be able to
prove these claims, always following the ideas presented in Chapters 2 and 3.

6.1
Bennett-Bohman’s theorem

We restate Theorem 4.1 for convenience.

Theorem 6.1 (Bennett-Bohman). Let r and ε > 0 be fixed. Let H be a r-
uniform, D-regular hypergraph on N vertices such that D > N ε. If

∆`(H) < D
r−`
r−1−ε for ` = 2, . . . , r − 1 (6.1)

and Γ(H) < D1−ε then the random greedy independent set algorithm produces
an independent set I in H with

|I| = Ω
N · ( logN

D

) 1
r−1
 (6.2)
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with probability 1− exp{−NΩ(1)}.

First, we want to remark that the hypothesis of Theorem 6.1 implies that
H is not too dense. To see this we can double count the number of edges |H|:
The number of pairs (v, e) where v is a vertex and e an edge such that v ∈ e is
ND = r|H|. The number of triples (v, v′, e) where v and v′ are vertices incident
to the edge e is |H|

(
r
2

)
≤
(
N
2

)
∆2(H). Then we have, using ∆2(H) < D

r−2
r−1−ε:

ND

r
= |H| ≤ 1(

r
2

)(N
2

)
D

r−2
r−1−ε.

And it follows that

N ≥ 1 + (r − 1)D
1
r−1 +ε = Ω

(
D

1
r−1 +ε

)
. (6.3)

This estimate, which we use throughout this chapter, corresponds to
D = O

(
N

r−1
1+ε(r−1)

)
. Since this is o(N r−1), this means that H is not too dense,

as stated before.
We also want to remark that we will prove the theorem with (6.2)

replaced by

|I| = Ω
N · ( logD

D

) 1
r−1
 ,

this means, with logD instead of logN . Although Bennett and Bohman proved
their theorem with logN , these results are equivalent since we are assuming
D > N ε and, as we will see later on the heuristics (Section 6.4), we hope that
the result with logD can be extended for smaller D, while the result with
logN can only hold when D is at least polynomial in N (otherwise, |I| would
be even greater than N). Furthermore, we will be able to obtain our estimates
without using that D > N ε, obtaining the stronger version:

Theorem 6.2. Let r and ε > 0 be fixed. Let H be a r-uniform, D-regular
hypergraph on N vertices. If

∆`(H) < D
r−`
r−1−ε for ` = 2, . . . , r − 1

and Γ(H) < D1−ε then the random greedy independent set algorithm produces
an independent set I in H with

|I| = Ω
N · ( logD

D

) 1
r−1


with probability 1−NO(1) · exp{−DΩ(1)}.
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Remark 6.1. We highlight that the probability in Theorem 6.2 is trivial unless
D is at least a power of logN . In fact, a careful examination of our proof can
lead to the result that, if D > (logN) 9r

ε (here we made no attempt in finding
the best constant in the exponent), then the probability of failure is at most
exp(−(logN)1+Ω(1)). On the other hand, under the stronger condition that the
hypergraph is linear (i.e., ∆2(H) = 1) we may obtain the constant 2(r−1)+σ,
for any σ > 0, see Theorem 7.1.

6.2
Scope of proof

The idea of the proof is as follows: First, we will use the differential
equations method to define the trajectories that several variables ought to
follow during the process. Then we will bound one step changes of each of these
variables so that we can use martingale deviation inequalities as lemmas.

With these lemmas in hand (see Chapter 2) we will be able to prove
concentration of |V (i)| (i.e., prove that with high probability |V (i)| remains
close to the expected trajectory guessed by the differential equations method),
which is our main goal since this is the number of vertices that remain in the
hypergraph. For this, we will have to track some other variables as well.

Definition 6.1. For every vertex v ∈ V (i) and ` ∈ {2, . . . , r}, let d`(i, v) =
d`(v) be the number of edges of cardinality ` in H(i) that contain v.

Definition 6.2 (Degrees of Sets). For a set A of at least 2 vertices, let dA↑b(i)
be the number of edges of size b containing A in H(i).

Definition 6.3 (Co-degrees). For a pair of vertices v, v′, let ca,a′→k(v, v′, i)
be the number of pairs of edges e, e′, such that v ∈ e\e′, v′ ∈ e′\e, |e| = a,
|e′| = a′ and |e ∩ e′| = k and e, e′ ∈ H(i).

e e′

v v′

Figure 6.1: For example, c5,6→3(v, v′) counts
the number of pairs (e, e′) as above.
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6.3
Notation and conventions

Before we start, here are some notation and conventions we will use
throughout the proof: ∆X represents the one-step change of a variable X, this
means ∆X := X(i + 1) −X(i). Since all expectations are conditional on the
first steps we omit this conditioning for brevity, i.e., we write E[·] instead of
E[·|Fi] (where F0,F1, . . . ,Fi, . . . is the natural filtration associated with the
process).

We use a± b to denote the interval [a− b, a+ b]. If f and g are functions
of D with the property that f is bounded from above by g times some poly-
logarithmic function (in D) then we write f = Õ(g). Furthermore, if f is
bounded from below by g times some poly-logarithmic function (in D) then
we write f = Ω̃(g).

6.4
The differential equations heuristic

Vertices
To guess the trajectories of our variables we will assume that our

independent set behaves like a binomial random set. So let S(i) denote the
random vertex set such that each vertex v is in S(i) independently with
probability p = p(i) = i/N . Then, for a fixed vertex v, the expected number
of edges e ∈ H such that v ∈ e and e\{v} ⊂ S(i) is

Dpr−1 = D
(
i

N

)r−1
.

Then we can think the probability of a vertex to be in V (i) as q ≈
1 − D

(
i
N

)r−1
and we must have |V (i)| ≈ qN . It turns out that the natural

parametrization of time is

t := D
1
r−1

N
· i.

So we want to prove a bound of the type

|V (i)| ∈ Nq ±ND−δfv, (6.4)

where δ > 0 is a constant and fv is a function of t that is small enough so
that the error term is little-o of the main term. Actually, we set q = q(i) :=
exp

(
−D

(
i
N

)r−1
)
or, in other words, q = q(t) := exp (−tr−1).

Degrees of vertices
Because the expected number of edges of size ` is the number of possible

`-edges, which is D
(
r−1
`−1

)
, times the probability that a given `-set forms an
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edge, which is q`−1pr−`, d`(v) should follow

s` := D

(
r − 1
`− 1

)
q`−1pr−`.

However, it will be easier to separate the positive and negative contri-
butions to the variable. Formally, we will write d`(v) = d+

` (v) − d−` (v), where
d±` means the number of edges of size ` containing v that are created and
destroyed (respectively) during the process. And we have that

s`(t) = D

(
r − 1
`− 1

)
q`−1

(
t

D
1
r−1

)r−`
=
(
r − 1
`− 1

)
D

`−1
r−1 tr−`q`−1

satisfies the differential equation

s′` = `s`+1 − (`− 1)s`s2

D
1
r−1 q

.

Indeed, remembering q = exp (−tr−1), we have that q′ = −(r − 1)tr−2q,

d

dt

(
tr−`q`−1

)
= (r − `)tr−`−1q`−1 + tr−`(`− 1)q`−2

(
− (r − 1)tr−2q

)
= tr−`−1q`−1

(
(r − `)− (`− 1)(r − 1)tr−1

)

and also

`s`+1 = `

(
r − 1
`

)
D

`
r−1 tr−`−1q`

= (r − `)
(
r − 1
`− 1

)
D

`
r−1 tr−`−1q` and

(`− 1)s`s2 = (`− 1)
(
r − 1
`− 1

)(
r − 1

1

)
D

`−1
r−1D

1
r−1 tr−`+r−2q`.

Therefore

`s`+1 − (`− 1)s`s2 =(
r − 1
`− 1

)
D

`
r−1 tr−`−1q`

(
(r − `)− (`− 1)(r − 1)tr−1

)
= D

1
r−1 q(s`)′.

We then define

s+
` (t) := D−

1
r−1

∫ t

0

`s`+1(τ)
q(τ) dτ s−` (t) := D−

1
r−1

∫ t

0

(`− 1)s`(τ)s2(τ)
q(τ) dτ,
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so that
s′` = (s+

` )′ − (s−` )′,

we have s` = s+
` − s−` and claim that d±` ≈ s±` . We then want to prove bounds

of the type

d±` (v) ∈ s±` ±D
`−1
r−1−δf` for ` = 2, . . . , r and all v ∈ V (i), (6.5)

where δ > 0 is a constant (the same δ from (6.4)) and f2, . . . , fr are functions
of t that are small enough so that the error terms are little-o of the main terms.
Degrees of sets and co-degrees

For dA↑b we can give an upper bound: it should follow (letting a = |A|)

deg(A)
(
r − a
b− a

)
qb−apr−b ≤ ∆a(H)

(
r − a
b− a

)
qb−apr−b.

And, since we have the condition ∆`(H) < D
r−`
r−1−ε and p = tD−

1
r−1 , the

function dA↑b should satisfies

dA↑b ≤ ∆a(H)
(
r − a
b− a

)
qb−apr−b

≤ D
r−a
r−1−ε

(
r − a
b− a

)
qb−atr−bD−

r−b
r−1

≤ D
b−a
r−1−ε

(
r − a
b− a

)
qb−atr−b,

which gives a hint of how the upper bound on dA↑b must look like.
Similarly, we can bound ca,a′→k(v, v′, i) using the co-degree of the pair of

vertices v, v′ in the original hypergraph H and derive how the upper bound on
ca,a′→k should look like but, for briefness, we will omit these calculations.

For those variables, we want to prove only upper bounds of the type

dA↑b ≤ Da↑b for 2 ≤ a < b ≤ r and all A ∈
(
V (i)
a

)
(6.6)

ca,a′→k(v, v′) ≤ Ca,a′→k for all v, v′ ∈ V (i) (6.7)

where Da↑b and Ca,a′→k are functions of D (and not of t).
Stopping time

Finally we introduce a constant ζ > 0 that will be chosen so that
ζ � δ � ε (meaning that given ε > 0 we choose δ > 0 sufficiently small and
then ζ > 0 sufficiently small with respect to δ) and we claim that the variables
with high probability follow their trajectories until time tmax := ζ log

1
r−1 D (i.e.,

imax = ζND−
1
r−1 log

1
r−1 D). Hence, let the stopping time T be the minimum
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between imax and the first step when any of (6.4), (6.5), (6.6) or (6.7) fails to
hold.

We know that, for all i > 0 (as long as our heuristic assumptions are good
approximations), i and i+ |V (i)| are lower and upper bounds to the number of
steps of the algorithm. We then highlight that imax is the natural choice of a end
time because it is the moment when we expect |V (i)| and i to have the same
order of magnitude. This is the main difference between the proof from [6] and
the present one. Bennett and Bohman considered imax = ζND−

1
r−1 (logN)

1
r−1

because this is when |V (i)| ≈ constant. The issue with this choice is that
we need to believe our heuristic assumptions are good approximations for a
much longer period, which may not be the case for smaller D. By setting
imax = ζND−

1
r−1 (logD)

1
r−1 we are able to obtain a more general result (for

instance, D can be poly-logarithmic in N and does not need to be at least
polynomial in N).
Summarizing

Formally, we prove Theorem 6.2 by proving that P(T < imax) <

NO(1) exp{−DΩ(1)}. For this, it suffices to bound the probability of any of
inequalities to fail for some i+ 1 given that all of them hold for smaller values
of i. In the following claims, we then understand the bounds on P(∃iAi) as
being bounds on the conditional probability of Ai+1 to occur given all (6.4),
(6.5), (6.6) and (6.7) hold. So Theorem 6.2 is a consequence of the following
claims:

Claim 6.3. Let 2 ≤ a < b ≤ r, λ = ε/8r and

Da↑b := D
b−a
r−1−ε+2(r−b)λ.

Then

P

(
∃i ≤ imax and A ∈

(
V (i)
a

)
such that dA↑b ≥ DA↑b

)
≤ NO(1) · exp

{
−DΩ(1)

}
.

Claim 6.4. Let 2 ≤ a, a′ ≤ r and 1 ≤ k < a, a′ be fixed. Let λ = ε/8r and

Ca,a′→k := 2rD
a+a′−k−2

r−1 −ε+(4r−2a−2a′)λ.
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Then

P (∃i ≤ imax and v, v′ ∈ V (i) such that ca,a′→k(v, v′, i) ≥ Ca,a′→k)

≤ NO(1) · exp
{
−DΩ(1)

}
.

Claim 6.5. Setting

fv :=
(
1 + t2

)
· exp(αt+ βtr−1) · q2,

where α, β are constants that depends only on r, we have

P

(
∃i ≤ imax such that |V (i)| 6∈ Nq ±ND−δfv

)
≤ NO(1) · exp

{
−DΩ(1)

}
.

Claim 6.6. Setting

f` =
(
1 + tr−`+2

)
· exp(αt+ βtr−1) · q`,

where α, β are constants that depends only on r (in fact that will be chosen the
same constants as in Claim 6.5), we have

P

(
∃i ≤ imax, ` ∈ {2, . . . , r} and v ∈ V (i) such that d±` (v) 6∈ s±` ±D

`−1
r−1−δf`

)
≤ NO(1) · exp

{
−DΩ(1)

}
.

Claims 6.3 to 6.6 imply that, with probability 1−NO(1) · exp
{
−DΩ(1)

}
,

|V (imax)| > 0 and then the independent set obtained in the random greedy
algorithm has size at least imax = ζND−

1
r−1 log

1
r−1 D, as desired.

We break the proof into several parts. We first prove Claims 6.3 and
6.4 in Section 6.5 and then we prove Claims 6.5 and 6.6 in Section 6.6
using some auxiliary supermartingales and concentration inequalities for these
supermartingales. To this, we will need to bound the martingale increments.

Remark 6.2. The martingales Z that depends on a vertex v or a set of vertices
A are frozen in the sense that Z(i) = Z(i − 1) if the vertex v or some of the
vertices of A are not in V (i). Also, when we write Z(i) we actually work with
Z(i ∧ T ).
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6.5
Proof of the theorem: Part I

Since we may choose ζ > 0 sufficiently small relatively to ε, and
q(tmax) = exp

(
−(ζ log

1
r−1 D)r−1

)
= D−ζ

r−1 , we can let ζr−1 < λ so that
Nq(tmax) > ND−λ + r and then

|V (i)| > ND−λ + r (6.8)

is valid whenever we have (6.4). In this section we will assume that this holds
to prove Claims 6.3 and 6.4.

Since we are also assuming (6.5), it is important to note that it is an easy
calculus exercise to show that

s`(t) =
(
r − 1
`− 1

)
D

`−1
r−1 tr−`q`−1 ≤

(
r − 1
`− 1

)
D

`−1
r−1 , 1

implying we can also assume

d` ≤
(
r − 1
`− 1

)
D

`−1
r−1 ≤ D

`−1
r−1 +(2r−2`)λ. (6.9)

6.5.1
How many `-edges a fixed set of vertices belongs to

Proof of Claim 6.3: Bound on dA↑b.
The proof is by reverse induction on b. The base case is for b = r where we

have, by definition of dA↑r and the hypothesis on maximum degrees of Theorem
6.1,

dA↑r(i) ≤ ∆a(H) < D
r−a
r−1−ε = Da↑r

and the desired bound is valid.
Now let b < r and A ∈

(
V
a

)
be a fixed set. Assume that Claim 6.3 is true

for b + 1. We define Nj(i), the number of vertices in V (i) and not in A that
appear in j edges counted by dA↑b+1(i) (i.e., the vertices v such that there is
j edges with b + 1 vertices containing A ∪ {v}). Note that Nj(i) can be non-

zero only for 0 ≤ j ≤ Da+1↑b+1. Hence we have that
Da+1↑b+1∑

j=0
Nj(i) counts the

vertices in V (i) not in A (we then have that ∑
j
Nj(i) = |V (i)| − a). Moreover,

we can double count the pairs of vertex and edge (v, e) where v ∈ e and v 6∈ A
by

Da+1↑b+1∑
j=0

jNj(i) = (b+ 1− a)dA↑b+1,

1Careful calculations show us max
t≥0

s`(t) =
(
r−1
`−1
) (

r−`
e(r−1)(`−1)

) r−`
r−1

D
`−1
r−1 .
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and using the induction hypothesis we have (with probability 1 −
NO(1) exp

(
−DΩ(1)

)
)

Da+1↑b+1∑
j=0

jNj(i) ≤ (b+ 1− a)Da↑b+1. (6.10)

We have that dA↑b can increase at most j when a vertex v counted by
Nj(i) is chosen at the next step of the algorithm. So define the auxiliary random
variable X by X(0) = 0 and

P(∆X(i) = j) = Nj(i)
|V (i)| − a.

As observed above we have that P(∆dA↑b ≥ j) ≤ P(∆X ≥ j) (in other
words, ∆dA↑b is stochastically dominated by ∆X) and to bound dA↑b(i) is
sufficient to bound X(i).
Bounds on the one step change

Before applying Freedman’s inequality (Lemma 2.5), we need to calculate

E[∆X] = 1
|V (i)| − a

∑
j

jNj(i) ≤
(b+ 1− a)Da↑b+1

|V (i)| − a

and, since we are assuming (6.8), we have

E[∆X] ≤ (b+ 1− a)Da↑b+1

ND−λ
≤ r

N
D

b−a+1
r−1 −ε+(2r−2b−1)λ.

Thus we define the supermartingale

Y (i) := X(i)− r

N
D

b−a+1
r−1 −ε+(2r−2b−1)λ · i

and calculate (using (6.8) and (6.10))

Var[∆Y ] = Var[∆X] ≤ E
[
(∆X)2

]
= 1
|V (i)| − a

Da+1↑b+1∑
j=0

j2Nj(i)

≤ Da+1↑b+1

|V (i)| − a
∑
j

jNj ≤
Da+1↑b+1

|V (i)| − a · rDa↑b+1

≤ r

ND−λ
·D

b−a
r−1−ε+2(r−b−1)λ ·D

b+1−a
r−1 −ε+2(r−b−1)λ

≤ r

N
D

2b−2a+1
r−1 −2ε+(4r−4b−3)λ.

Applying Freedman’s inequality
Letting C = Da+1↑b+1 = D

b−a
r−1−ε+(2r−2b−2)λ we have that ∆Y (i) ≤ C for

DBD
PUC-Rio - Certificação Digital Nº 1712695/CA



Chapter 6. Random greedy independent set algorithm 55

all i. We set
v = (logD)D

2b−2a
r−1 −2ε+(4r−4b−3)λ,

and then, for i ≤ imax = ζND−
1
r−1 log

1
r−1 D and sufficiently large D (when

r > 2; for r = 2 we choose ζ sufficiently small),

∑
k≤i

Var[∆Y (k)|Fk] ≤ imax ·
r

N
D

2b−2a+1
r−1 −2ε+(4r−4b−3)λ

= ζr log
1
r−1 D ·D

2b−2a
r−1 −2ε+(4r−4b−3)λ < v.

Applying Freedman’s inequality with d = D
b−a
r−1−ε+(2r−2b−1)λ we conclude

P

[
∃i : Y (i) ≥ D

b−a
r−1−ε+(2r−2b−1)λ

]
≤ exp

(
− d2

2(v + Cd)

)
=

exp

 −D
2b−2a
r−1 −2ε+(4r−4b−2)λ

2
(
(logD)D

2b−2a
r−1 −2ε+(4r−4b−3)λ +D

b−a
r−1−ε+(2r−2b−2)λ ·D

b−a
r−1−ε+(2r−2b−1)λ

)


= exp
(
− Dλ

2((logD) + 1)

)
.

Then we have

P

[
∃i : X(i) ≥

(
r

N
D

1
r−1 i+ 1

)
D

b−a
r−1−ε+(2r−2b−1)λ

]
≤ exp

(
− Dλ

2((logD) + 1)

)

and we also have
(
r
N
D

1
r−1 · i+ 1

)
≤
(
ζr · log

1
r−1 D + 1

)
≤ Dλ for sufficiently

large D. Therefore, taking the union bound over all choices of set A with
|A| = a,

P

[
∃i and A ∈

(
V (i)
a

)
: dA↑b(i) ≥ Da↑b

]
≤

≤
(
N

a

)
P

[
∃i : X(i) ≥ Da↑b = D

b−a
r−1−ε+(2r−2b)λ

]
≤
(
N

a

)
P

[
∃i : X(i) ≥

(
r

N
D

1
r−1 i+ 1

)
D

b−a
r−1−ε+(2r−2b−1)λ

]

≤
(
N

a

)
exp

(
− Dλ

2((logD) + 1)

)
.

6.5.2
Controlling codegrees

Proof of Claim 6.4: Bound on ca,a′→k(v, v′).
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First we note that Claim 6.4 follows from Claim 6.3 except for a = a′ =
k + 1. If a′ > k + 1 then we have that ca,a′→k (i.e., the number of pairs (e, e′)
counted by this variable) is at most the number of edges e of size a that contains
v times the number of ways of choosing the edge e′ given the specific choice of
the k vertices of e that belongs to e′ too. Hence we have

ca,a′→k(v, v′) ≤ da(v) ·
(
a− 1
k

)
·Dk+1↑a′ .

As da(v) ≤ D
a−1
r−1 +(2r−2a)λ (by (6.9)) and

(
a−1
k

)
≤ 2a ≤ 2r, we conclude

ca,a′→k(v, v′) ≤

D
a−1
r−1 +(2r−2a)λ · 2r ·D

a′−(k+1)
r−1 −ε+2(r−a′)λ = 2rD

a+a′−k−2
r−1 −ε+(4r−2a−2a′)λ,

and, since 2rD
a+a′−k−2

r−1 −ε+(4r−2a−2a′)λ = Ca,a′→k, we are done in this case.
Note that supposing a > k + 1 we have the similar bound ca,a′→k(v, v′) ≤
da′(v) ·

(
a′−1
k

)
·Dk+1↑a and this case is completely analogous.

Now we can turn to case a = a′ = k+1 and proceed by reserve induction
on k. The base case k = r − 1 follows from the definition of cr,r→r−1 and the
hypothesis on Γ(H) in Theorem 6.1:

cr,r→r−1 ≤ Γ(H) < D1−ε ≤ 2rD1−ε = Cr,r→r−1.

Assume k < r− 1. Note that ck+1,k+1→k can increase when the algorithm
chooses one vertex of the following:

• In the intersection of a pair of edges counted by ck+2,k+2→k+1(v, v′);
• Not contained in the intersection of a pair of edges counted by
ck+2,k+1→k(v, v′) or ck+1,k+2→k(v, v′).

e e′

v v′

vi+1

(a) Case (I)

e e′

v v′

vi+1

(b) Case (II)

e e′

v v′

vi+1

(c) Case (III)

Figure 6.2: Illustration of the three cases when k = 3.

Then when ck+1,k+1→k increases, it can increase at most by 3D2↑k+2 =
3D

k
r−1−ε+2(r−k−2)λ as choosing a vertex u can increase ck+1,k+1→k(v, v′) at most

by
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a) The number of edges e of size k + 2 that contains {u, v} (and then the
choice of e′ with k+2 vertices, k+1 in common with e and not containing
v is at most unique);

b) The number of edges e of size k + 2 that contains {u, v} (and then the
choice of e′ with k + 1 vertices, k in common with e and not containing
u and v is at most unique);

c) The number of edges e′ of size k + 2 that contains {u, v′} (and then the
choice of e with k + 1 vertices, k in common with e′ and not containing
u and v′ is at most unique).

For 0 ≤ j ≤ 3D
k
r−1−ε+2(r−k−2)λ, let Nj(i) denote the number of vertices

from V (i) that would increase ck+1,k+1→k(v, v′) by j if chosen in the next step

of the algorithm. Then
3D2↑k+2∑
j=0

Nj(i) = |V (i)| − 2 and, double-counting the

number of vertex and edges (u, e, e′) that would increase ck+1,k+1→k (in the
sense that they are as in items a), b) or c) above), we have

∑
jNj(i) ≤ (k + 1)Ck+2,k+2→k+1 + Ck+2,k+1→k + Ck+1,k+2→k

= 2r ·D
k+1
r−1−ε+(4r−4k−6)λ ·

(
(k + 1)D−2λ + 2

)
.

We have that (k + 1)D−2λ ≤ 1 for D sufficiently large and it follows that

∑
jNj(i) ≤ 3 · 2r ·D

k+1
r−1−ε+(4r−4k−6)λ.

Defining X(i) by X(0) = 0 and

P(∆X(i) = j) = Nj(i)
|V (i)| − 2 ,

we have that ∆ck+1,k+1→k(v, v′, i) is stochastically dominated by ∆X(i) and in
order to prove our desired bound on ck+1,k+1→k it’s sufficient to prove it for X.
Bounds on the one step change

Hence

E[∆X(i)] = 1
|V (i)| − 2

∑
j

jNj(i) ≤
3 · 2r
ND−λ

D
k+1
r−1−ε+(4r−4k−6)λ,

we define the auxiliary supermartingale

Y (i) := X(i)− 3 · 2r
N

D
k+1
r−1−ε+(4r−4k−5)λ · i
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and calculate

Var[∆Y ] = Var[∆X] ≤ E[(∆X)2] =

= 1
|V (i)| − 2

∑
j

j2Nj(i) ≤
3D2↑k+2

ND−λ
∑
j

jNj(i)

≤ 3D
k
r−1−ε+(2r−2k−4)λ

ND−λ
· 3 · 2rD

k+1
r−1−ε+(4r−4k−6)λ

= 9 · 2r
N

D
2k+1
r−1 −2ε+(6r−6k−9)λ.

Applying Freedman’s inequality
Letting C = 3D2↑k+2 = 3D

k
r−1−ε+(2r−2k−4)λ we have that ∆Y (i) ≤ C for

all i. We set
v = (logD) ·D

2k
r−1−2ε+(6r−6k−9)λ,

and then, for i ≤ imax = ζND−
1
r−1 log

1
r−1 D and sufficiently large D (when

r > 2; for r = 2 we choose ζ sufficiently small),

∑
k≤i

Var[∆Y (k)|Fk] ≤ imax ·
9 · 2r
N

D
2k+1
r−1 −2ε+(6r−6k−9)λ

= 9 · 2rζ log
1
r−1 D ·D

2k
r−1−2ε+(6r−6k−9)λ < (logD) ·D

2k
r−1−2ε+(6r−6k−9)λ = v.

Applying Freedman’s inequality with d = D
k
r−1−ε+(4r−4k−5)λ we conclude

P

[
∃i : Y (i) ≥ D

k
r−1−ε+(4r−4k−5)λ

]
≤ exp

(
− d2

2(v + Cd)

)
=

exp

 −D
2k
r−1−2ε+(8r−8k−10)λ

2
(
(logD)D

2k
r−1−2ε+(6r−6k−9)λ + 3D

k
r−1−ε+(2r−2k−4)λ ·D

k
r−1−ε+(4r−4k−5)λ

)


= exp
(
− D(2r−2k−1)λ

2((logD) + 3)

)
.

Then we have

P

[
∃i : X(i) ≥

(3 · 2r
N

D
1
r−1 i+ 1

)
D

k
r−1−ε+(4r−4k−5)λ

]
≤ exp

(
− D(2r−2k−1)λ

2((logD) + 3)

)

and we also have
(

3·2r
N
D

1
r−1 i+ 1

)
≤

(
3 · 2r · ζ · log

1
r−1 D + 1

)
≤ 2rDλ for
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sufficiently large D. Then, taking the union bound over all choices of v and v′,

P [∃i and v, v′ ∈ V (i) : ck+1,k+1→k(v, v′, i) ≥ Ck+1,k+1→k] ≤

≤
(
N

2

)
P

[
∃i : X(i) ≥ Ck+1,k+1→k = 2rD

k
r−1−ε+(4r−4k−4)λ

]
≤
(
N

2

)
P

[
∃i : X(i) ≥

(3 · 2r
N

D
1
r−1 i+ 1

)
D

k
r−1−ε+(4r−4k−5)λ

]

≤
(
N

2

)
exp

(
− D(2r−2k−1)λ

2((logD) + 3)

)
.

6.6
Proof of the theorem: Part II

Until now we only obtained upper bounds for the variables dA↑b and
ca,a′→k(v, v′). From now on, we will need upper and lower bounds for the main
variables |V (i)| and d`(v), while the previous upper bounds obtained will be
used as auxiliary estimates.

In this section, to prove the upper bounds in (6.4) and (6.5) (this means,
upper bounds in Claims 6.5 and 6.6) we will define auxiliary supermartingales
and, since they will have initial values negative and relatively large in absolute
value, with the help of some martingale deviation inequalities we will obtain
that is very unlikely them to ever be positive. For the correspondent lower
bounds we will need analogous random variables, then similar arguments and
calculations will apply the desired claims.

6.6.1
Auxiliary supermartingales

Consider

ZV (i) := |V (i)| −Nq(t)−ND−δfv(t);

Z+
` (v, i) := d+

` (v, i)− s+
` (t)−D

`−1
r−1−δf`(t), for 2 ≤ ` ≤ r − 1;

Z−` (v, i) := d−` (v, i)− s−` (t)−D
`−1
r−1−δf`(t), for 2 ≤ ` ≤ r;

where fv(t) and f`(t) are functions which will be chosen such that each of ZV ,
Z+
` and Z−` are supermartingales.

Lemma 6.7. If

fv(t) =
(
1 + t2

)
· exp(αt+ βtr−1) · q2 and
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f`(t) =
(
1 + tr−`+2

)
· exp(αt+ βtr−1) · q`,

with α and β sufficiently large (depending only on r), then ZV , Z+
` and Z−`

are supermartingales.

Next, we will address conditions on the function fv and f` (for 2 ≤ ` ≤ r)
so that the variables above are supermartingales. Then in subsection 6.6.2 we
will see that the chosen functions satisfy the desired conditions (completing the
proof of Lemma 6.7) and in subsection 6.6.3 we will use auxiliary lemmas to
complete the proof of the upper bounds in Claims 6.5 and 6.6. Throughout our
estimates we will keep in mind that our error functions are chosen so that they
all evaluate 1 at t = 0, are increasing in t and are well-behaved in the sense that
they are smooth (then we can differentiate and use Taylor approximations).

6.6.1.1
Controlling the number of vertices

ZV is a supermartingale
Let St = N/D

1
r−1 and recall that t = i/St. We write

∆ZV = (|V (i+1)|−|V (i)|)−N(q(t+1/St)−q(t))−ND−δ(fv(t+1/St)−fv(t)),
(6.11)

and make use of the Taylor approximations

q(t+ 1/St)− q(t) = q′(t)
St
−O

(
q′′

S2
t

)
(6.12)

fv(t+ 1/St)− fv(t) = f ′v(t)
St
−O

(
f ′′v
S2
t

)
(6.13)

where q′′ and f ′′v are understood to be bounds on the second derivative that
hold uniformly in the interval of interest. Remembering q(t) = exp (−tr−1) and
s2(t) = (r − 1)D

1
r−1 tr−2 · q, we have that

q′(t) = −(r − 1)tr−2 exp
(
−tr−1

)
= −s2(t) ·D−

1
r−1 (6.14)

q′′(t) =
(
(r − 1)2t2r−4 − (r − 1)(r − 2)tr−3

)
· q(t) = O(1) (6.15)

Where the last equality we obtain because q′′(t) is a continuous function
that satisfies q′′(0) = 0 and q′′(t) tends to 0 as t goes to infinity, then q′′ is
bounded (with bounds that depend only on r). 2

Then, by (6.12), (6.14), (6.15) and the definition St = N/D
1
r−1 ,

2Using that q′′(t) ≤ (r − 1)2(tr−1)2e−t
r−1 for t ≥ 1 by example, it’s an easy calculus

exercise to show that q′′ ≤ (r − 1)2.
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N (q(t+ 1/St)− q(t)) = N
q′(t)D

1
r−1

N
−O

D 2
r−1 · q′′

N

 = −s2(t)−O
D 2

r−1

N

 .
(6.16)

Now using (6.13) and St = N/D
1
r−1 we have

ND−δ(fv(t+ 1/St)− fv(t)) = D
1
r−1−δf ′v(t)−O

D 2
r−1−δf ′′v
N

 (6.17)

To estimate E[∆ZV ] we need first to estimate E[∆|V (i)|]. Notice that if
we choose a vertex v in the next step of the algorithm the number of vertices
of the hypergraph deleted are d2(v) + 1 and then

E[∆|V (i)|] = −1
|V (i)|

∑
v∈V (i)

(d2(v) + 1) ≤ −s2(t) + 2D
1
r−1−δf2(t), (6.18)

where we make use of the estimate d2(v) ≥ s2(t)− 2D
1
r−1−δf2(t).

Finally, remembering (6.3), we have O
(

1
N

)
= O

(
D−

1
r−1−ε

)
and, by

(6.11), (6.16), (6.17) and (6.18),

E[∆ZV ] ≤

≤ −s2(t)+2D
1
r−1−δf2(t)+s2(t)−D

1
r−1−δf ′v(t)+O

(
D

1
r−1−ε

)
+O

(
D

1
r−1−ε−δf ′′v

)
≤ D

1
r−1−δ[2f2 − f ′v] +O

(
D

1
r−1−δ−εf ′′v +D

1
r−1−ε

)
. (6.19)

From the above estimate we conclude that ZV is a supermartingale so
long as ε > δ and

f ′′v = o(Dε) (6.20)

f ′v > 3f2. (6.21)

6.6.1.2
How many `-edges containing a fixed v are created

Z+
` is a supermartingale

Now we turn to Z+
` (v) for 2 ≤ ` ≤ r − 1 and a fixed vertex v. We write

∆Z+
` (v) = ∆d+

` (v)−(s+
` (t+1/St)−s+

` (t))−D
`−1
r−1−δ(f`(t+1/St)−f`(t)) (6.22)

and make use of the Taylor approximations

s+
` (t+ 1/St)− s+

` (t) =

(
s+
`

)′
(t)

St
−O


(
s+
`

)′′
S2
t

 (6.23)

f`(t+ 1/St)− f`(t) = (f`)′ (t)
St

−O
(

(f`)′′

S2
t

)
(6.24)
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where again
(
s+
`

)′′
and (f`)′′ are understood to be bounds on the second

derivative that hold uniformly in the interval of interest. Remembering s`(t) =(
r−1
`−1

)
D

`−1
r−1 tr−`q`−1 and s+

` (t) = D−
1
r−1

∫ t
0
`s`+1(τ)
q(τ) dτ , we have that

(
s+
`

)′
(t) = D−

1
r−1

`s`+1(t)
q(t)

and then (
s+
`

)′
(t)

St
=
D−

1
r−1 `s`+1(t)

q(t)

ND−
1
r−1

= `s`+1(t)
Nq(t) . (6.25)

We also have that

(
s+
`

)′′
(t) = `D−

1
r−1

[
q(t)(s`+1)′(t)− s`+1(t)

q(t)2

]

= `D−
1
r−1

q
(
D−

1
r−1

(
(`+1)s`+2−`s`+1s2

q

))
− s`+1

q2

⇒
(
s+
`

)′′
(t) = `

(
r − 1
`

)
D

`−1
r−1 tr−`−2q(t)`−2

[(
r − `− 1− `(r − 1)tr−1

)
q(t)− t

]
.

As in (6.15), we conclude that (s+
` )′′(t)
D
`−1
r−1

is bounded if ` > 2 (with bounds
that depend only on r) and for ` = 2

∣∣∣∣(s+
2

)′′
(t)
∣∣∣∣ = 2

(
r − 1

2

)
D

1
r−1 |t|r−2

∣∣∣∣∣(r − 3)q(t)− 2(r − 1)tr−1q(t)− t
t2

∣∣∣∣∣ .
If r = 3 we have
∣∣∣∣(s+

2

)′′
(t)
∣∣∣∣ = 2D 1

2

∣∣∣∣∣−4t2q(t)− t
t

∣∣∣∣∣ = 2D 1
2 |4tq(t) + 1| = O

(
D

1
2
)
.

If r = 4 we have∣∣∣∣(s+
2

)′′
(t)
∣∣∣∣ = 6D 1

3
∣∣∣q(t)− 6t3q(t)− t

∣∣∣ = O
(
D

1
3 |t|

)
.

If r ≥ 4 we have
∣∣∣∣(s+

2

)′′
(t)
∣∣∣∣ =

= 2
(
r − 1

2

)
D

1
r−1 |t|r−4

∣∣∣(r − 3)q(t)− 2(r − 1)tr−1q(t)− t
∣∣∣

= O
(
D

1
r−1 |t|r−3

)
.
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In any case, as |t| ≤ tmax = ζ (logD)
1
r−1 we have that

(
s+

2

)′′
= O

(
D

1
r−1 (tmax)r−3

)
= O

(
(logD)

r−3
r−1D

1
r−1
)

= Õ
(
D

1
r−1
)

and then (
s+
`

)′′
S2
t

= Õ

D `+1
r−1

N2

 . (6.26)

To compute E[∆d+
` (v)] we need to notice that by choosing the vertex

u in the next step of the algorithm we create d{u,v}↑`+1 new edges of size `
containing v. Thus

E[∆d+
` (v)] = 1

|V (i)|
∑

u∈V (i)\{v}
d{u,v}↑`+1

and double-counting the triples (v, u, e) where {u, v} ⊂ e and |e| = ` + 1 we
have that ∑

u∈V (i)\{v}
d{u,v}↑`+1 = `d`+1(v),

therefore we conclude
E[∆d+

` (v)] = `d`+1(v)
|V (i)| . (6.27)

Gathering (6.22)-(6.27) we obtain

E[∆Z+
` (v)] =

`d`+1(v)
|V (i)| −

`s`+1

Nq
− D

`
r−1−δ

N
f ′` + Õ

D `+1
r−1

N2

+O

D `+1
r−1−δ (f`)′′

N2


≤
`
(
s`+1 + 2D

`
r−1−δf`+1

)
Nq −ND−δfv

− `s`+1

Nq
− D

`
r−1−δ

N
f ′`

+ Õ

D `
r−1−ε

N

+O

D `
r−1−δ−ε

N
f ′′`

 ,
where we used the bounds |V (i)| ≥ Nq −ND−δfv, d`+1 ≤ s`+1 + 2D

1
r−1−δf`+1

and N = Ω
(
D

1
r−1 +ε

)
. As

`
(
s`+1 + 2D

`
r−1−δf`+1

)
Nq −ND−δfv

− `s`+1

Nq
= 2`D

`
r−1−δf`+1Nq + `s`+1ND

−δfv
Nq(Nq −ND−δfv)

,

1
Nq −ND−δfv

= 1
Nq(1−D−δq−1fv)

=
1 +O

(
D−δq−1fv

)
Nq

and

s` =
(
r − 1
`− 1

)
D

`−1
r−1 tr−`q`−1
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we conclude 3

E[∆Z+
` (v)] ≤ D

`
r−1−δ

N

[
2lq−1f`+1 + `

(
r − 1
`

)
tr−`−1q`−2fv − f ′` + o(1)

]

+ Õ

D `
r−1−ε

N

+O

D `
r−1−δ−ε

N
f ′′`

 . (6.28)

Whence we have that Z+
` (v) is a supermartingale so long as δ < ε and

f ′′` = o(Dε) (6.29)

f ′` > 5lq−1f`+1 (6.30)

f ′` > 2l
(
r − 1
`

)
tr−`−1q`−2fv. (6.31)

6.6.1.3
How many `-edges containing a fixed v are destroyed

Z−` is a supermartingale
As before, but for Z−` (v), we analogously write

∆Z−` (v) = ∆d−` (v)−(s−` (t+1/St)−s−` (t))−D
`−1
r−1−δ(f`(t+1/St)−f`(t)) (6.32)

and make use of the Taylor approximations (6.24) and

s−` (t+ 1/St)− s−` (t) =

(
s+
`

)′
(t)

St
−O


(
s+
`

)′′
S2
t

 (6.33)

where again
(
s−`
)′′

is understood to be a bound on the second derivative that
hold uniformly in the interval of interest. We now have

(
s−`
)′

(t) = D−
1
r−1

(`− 1)s`(t)s2(t)
q(t) = (`− 1)(r − 1)

(
r − 1
`− 1

)
D

`−1
r−1 t2r−`−2q`−1

and
(
s−`
)′′

(t) =

O(1) ·D
`−1
r−1

[
(2r − `− 2)t2r−`−3q`−1 − (`− 1)(r − 1)t3r−`−4q`−1

]
= O

(
D

`−1
r−1
)
,

3Here we used that the functions fv and f` are sufficiently small, we will see that this
will follow from the choice of ζ sufficiently small with respect to α and β.
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which implies
(
s−`
)′

(t)
St

= (`− 1)s`s2

Nq
(6.34)(

s−`
)′′

S2
t

= O

D `+1
r−1

N2

 (6.35)

Gathering (6.24) and (6.32)-(6.35) we obtain

∆Z−` (v) = ∆d−` (v)− (`− 1)s`s2

Nq
−D

`
r−1−δf ′`
N

+O
D `+1

r−1

N2

+O
D `+1

r−1−δ (f`)′′

N2


(6.36)

Finally, we need to estimate the changes ∆d−` (v). To this note that there
are 3 ways of removing an edge e from the count d` by choosing a vertex
y ∈ V (i):

1. If the vertex y is contained in e.

2. If there exists x with {x, y} ∈ H(i) and {x, v} ⊂ e.

3. If there exists e′ ∈ H(i) such that y ∈ e′, |e′| ≥ 3 and e′\{y} ⊂ e.

v

e

v1

v2

v3

Figure 6.3: The vertices v1, v2 and v3 illustrates the cases 1, 2 and 3,
respectively. If one of them is chosen to be vi+1, then the

edge e will be removed from the count of d8(v).

The number of vertices of the first type are ` − 1 and the main term in
the expectation will come from the other ways of deleting an edge. First note
that the sums ∑

x∈e\{v}
d2(x) +

∑
A⊂e,|A|≥2

dA↑|A|+1
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count each vertex in cases 2 and 3 at least once and at most 2` times (the
number of subsets of e is 2`). Also the number of vertices that are counted
more than once in the first sum is at most

(
`−1

2

)
C2,2→1. Then the number of

vertices that make e deleted is 4

∑
x∈e\{v}

d2(x) +O

(
C2,2→1 +

`−1∑
k=2

Dk↑k+1

)
.

Therefore

E[∆d−` (v)] = 1
|V (i)|

 ∑
e∈d`(v)

∑
x∈e\{v}

d2(x) +O

(
d` ·

[
C2,2→1 +

`−1∑
k=2

Dk↑k+1

]) .
Recording that C2,2→1 = 2rD

1
r−1−ε+(4r−8)λ, Dk↑k+1 = D

1
r−1−ε+(2r−2k−2)λ and

d` ≤ D
`−1
r−1 +(2r−2`)λ (the last by (6.9)) we have

d` ·
[
C2,2→1 +

`−1∑
k=2

Dk↑k+1

]
= O

(
D

`
r−1−ε+(6r−2`−8)λ

)
= O

(
D

`
r−1−

ε
4
)
, 5

using d` ≤ s` + 2D
`−1
r−1−δf` and |V (i)| ≥ Nq −ND−δfv we have

1
|V (i)|

∑
e∈d`(v)

∑
x∈e\{v}

d2(x) ≤ (`− 1) · (s` + 2D
`−1
r−1−δf`) · (s2 + 2D

1
r−1−δf2)

Nq −ND−δfv
,

where it is concluded that

E[∆d−` (v)] ≤ (`− 1) · (s` + 2D
`−1
r−1−δf`) · (s2 + 2D

1
r−1−δf2)

Nq −ND−δfv
+O

D `
r−1−

ε
4

Nq


(6.37)

Now by (6.36) and (6.37) we get

E[∆Z−` (v)] ≤
(`− 1)

(
s` + 2D

`−1
r−1−δf`

) (
s2 + 2D

1
r−1−δf2

)
Nq −ND−δfv

− (`− 1)s` · s2

Nq

− D
`

r−1−δ

N
f ′` +O

D `
r−1−

ε
4

Nq
+ D

`+1
r−1

N2 + D
`+1
r−1−δ

N2 f ′′`



Using again that 1
Nq−ND−δfv = 1+O(D−δq−1fv)

Nq
and s` =

(
r−1
`−1

)
D

`−1
r−1 tr−`q`−1

4Here we write the number of vertices as being a+O(b) meaning that it’s bounded from
below by a−O(b) and from above by a+O(b).

5Notice here we used our choice of λ = ε/8r.
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we conclude 6

E[∆Z−` (v)] ≤ D
`

r−1−δ

N
·
[
2(`− 1)

(
r − 1
`− 1

)
tr−`q`−2f2 + 2(`− 1)(r − 1)tr−2f`

+(`− 1)(r − 1)
(
r − 1
`− 1

)
t2r−`−2q`−2fv − f ′` + o(1)

]

+O

D `
r−1−

ε
4

Nq
+ D

`+1
r−1

N2 + D
`+1
r−1−δ

N2 f ′′`

 (6.38)

Whence we have that Z−` (v) is a supermartingale so long as δ < ε
4 − λ,

f ′′` = o(Dε) and

f ′` > 7(`− 1)
(
r − 1
`− 1

)
tr−`q`−2f2 (6.39)

f ′` > 6(`− 1)(r − 1)tr−2f` (6.40)

f ′` > 3(`− 1)(r − 1)
(
r − 1
`− 1

)
t2r−`−2q`−2fv (6.41)

6.6.2
Choosing the error functions

Recalling that the functions f` and fv are chosen

f` =
(
1 + tr−`+2

)
· exp(αt+ βtr−1) · q`,

fv =
(
1 + t2

)
· exp(αt+ βtr−1) · q2.

Then 7

f ′` =
(
(r − `+ 2)tr−`+1

)
· exp(αt+ βtr−1) · q`+(

1 + tr−`+2
)
· (α + (r − 1)βtr−2) exp(αt+ βtr−1) · q`+(

1 + tr−`+2
)
· exp(αt+ βtr−1) · (−`(r − 1)tr−2)q` ≥[

α + (β − `)(r − 1)t2r−`
]
· exp(αt+ βtr−1) · q`.

Analogously

f ′v ≥ [α + (β − 2)(r − 1)tr] · exp(αt+ βtr−1) · q2.

Using the above estimates in the variation equations (6.21), (6.30), (6.31),
6Again we used that the functions fv and f` are sufficiently small, which will follow from

the choice of ζ.
7Note that here we use we will take β > `.
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(6.39), (6.40), (6.41) we see that the exponential terms are equal in both left
and right-hand size of each inequality, remaining to check the polynomial term.
This means, we are only left to, respectively, check

α + (β − 2)(r − 1)tr ≥ 3 (1 + tr)

α + (β − `)(r − 1)t2r−` ≥ 5l (1 + tr−`+1)

α + (β − `)(r − 1)t2r−` ≥ 2l
(
r − 1
`

)
tr−`−1 (1 + t2)

α + (β − `)(r − 1)t2r−` ≥ 7(`− 1)
(
r − 1
`− 1

)
tr−` (1 + tr)

α + (β − `)(r − 1)t2r−` ≥ 6(`− 1)(r − 1)tr−2 (1 + tr−`+2)

α + (β − `)(r − 1)t2r−` ≥ 3(`− 1)(r − 1)
(
r − 1
`− 1

)
t2r−`−2 (1 + t2)

and all the variation equations hold because we choose α and β sufficiently
large depending on r.

Differentiating one more time we have f ′′` is still of the form: a polynomial
in t times exp(αt + (β − `)tr−1)8. As tmax = ζ (logD)

1
r−1 , we get exp(tr−1

max) =
Dζr−1 . Then we have that all f`, fv, f ′′` and f ′′v are Õ

(
Dβζr−1+o(1)

)
. Thus,

choosing ζ such that
3βζr−1 < δ (6.42)

we obtain the estimates f ′′` , f ′′v = o (Dε) and

D−δq−1fv
[
f`+1 + tr−`−1q`−1fv

]
= Õ

(
D2βζr−1−δ+o(1)

)
= o(1)

D−δq−1fv
[
D−δq−1f`f2

]
= Õ

(
D3βζr−1−2δ+o(1)

)
= o(1)

D−δq−1fv
[
tr−`q`−2f2 + tr−2f` + t2r−`−2q`−2fv

]
= Õ

(
D2βζr−1−δ+o(1)

)
= o(1)

D−δq−1f`f2 = Õ
(
D2βζr−1−δ+o(1)

)
= o(1)

implying the estimates that were remaining in (6.28) and (6.38).

6.6.3
Applying martingale variation inequalities

We recall we want to prove Claim 6.5, i.e., the bounds

|V (i)| ∈ Nq ±ND−δfv.
8And the same changing β − ` to β − 2 for f ′′v .
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In order to obtain the upper bound in Claim 6.5 we use the Hoeffding-Azuma
inequality.

Proof of Claim 6.5: Upper bound on |V (i)|.
As we saw in subsection 6.6.1, choosing the vertex v at step i makes

∆V = −1− d2(v) ∈ −s2 ±D
1
r−1−δf2 and Nq′

St
= s2, where we derive

|∆ZV | ≤ D
1
r−1−δf2 +O

D 2
r−1 q′′

N

+D
1
r−1−δf ′v +O

D 2
r−1−δf ′′v
N


= O

(
D

1
r−1−δ(f2 + f ′v)

)
Then Hoeffding-Azuma inequality (Lemma 2.3) with d = ZV (0) =

−ND−δ shows that for each m ≤ imax = O
(
ND−

1
r−1 (logD)

1
r−1
)
the prob-

ability that ZV (m) is positive is at most

exp

−Ω

 (ND−δ)2

m
[
D

1
r−1−δ(f2 + f ′v)

]2

 ≤

≤ exp
−Ω

 (ND−δ)2

ND−
1
r−1 (logD)

1
r−1 (D

1
r−1−δ(f2 + f ′v))2

 =

exp
−Ω

 ND−
1
r−1

(logD)
1
r−1 (f2 + f ′v)2

 = exp
(
−Ω̃

(
Dε−2βζr−1−o(1)

))
,

where we used N = Ω
(
D

1
r−1 +ε

)
and f2, f

′
v = Õ

(
Dβζr−1+o(1)

)
to get the last

equality.

Remark 6.3. To show the lower bound we need to use the auxiliary variable

YV := −|V (i)|+Nq −ND−δfv

and, similar to subsection 6.6.1, we obtain the estimates

E[∆YV ] ≤

s2(t) + 2D
1
r−1−δf2(t)− s2(t)−D

1
r−1−δf ′v(t) +O

(
D

1
r−1−ε

)
+O

(
D

1
r−1−ε−δf ′′v

)
≤ D

1
r−1−δ[2f2 − f ′v] +O

(
D

1
r−1−δ−εf ′′v +D

1
r−1−ε

)
,

where we conclude that YV is a supermartingale since δ < ε, f ′′v = o (Dε)
and f ′v > 3f2. To finish the proof, using Hoeffding-Azuma inequality, we
only need to see that the bound |∆YV | = O

(
D

`
r−1−δ(f2 + f ′v)

)
still holds and

YV (0) = −ND−δ. Then the same calculations above shows the desired result.
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We recall we want to prove in Claim 6.6, the bounds

d±` (v) 6∈ s±` ±D
`−1
r−1−δf`.

Now to infer the upper bounds in Claim 6.6 we use Lemma 2.7.

Proof of Claim 6.6: Upper bound on d±` (v).
As all d±` , s±` and f` are increasing functions we have that

−∆s±` −D
`−1
r−1−δ∆f` ≤ |∆Z±` (v)| ≤ ∆d±` (v)

It’s sufficient now to note that choosing the vertex u at step i makes
∆d+

` (v) = d{u,v}↑`+1 and by our previous estimates in subsection 6.6.1.2 we get

∆d+
` (v) ≤ D2↑`+1 ≤ D

`−1
r−1−

ε
2 ,

∆d−` (v) ≤ O

(
D2↑` +

`−1∑
k=1

C`,k+1→k

)
= O

(
D

`−1
r−1−

ε
2
)

and

∆s±` +D
`−1
r−1−δ∆f` = O

(s±` )′ · D
1
r−1

N
+ f ′l ·

D
l

r−1−δ

N

 = O

D `
r−1

N

 .
Since

Z±` (0) = −D
`−1
r−1−δ,

D
`

r−1

N
= o

(
D

`−1
r−1−

ε
2
)

and

D
`−1
r−1−δ = o

imax ·
D

`
r−1

N

 ,
applying Lemma 2.7 with

η = O
(
D

`−1
r−1−

ε
2
)
,

M = O

D `
r−1

N


and d = D

`−1
r−1−δ

we obtain that the probability that Z±` (v) is positive at a time m ≤ imax is at
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most

exp

−Ω


(
D

`−1
r−1−δ

)2

ND−
1
r−1 (logD)

1
r−1 · 1

N
D

`
r−1 ·D

`−1
r−1−

ε
2




≤ exp

−Ω
 D

ε
2−2δ

(logD)
1
r−1

 .

Remark 6.4. To obtain the lower bounds in Claim 6.6 we use the asymmetric
version of Hoeffding-Azuma inequality (Lemma 2.4).

The auxiliary variables in this case will be

Y +
` (v) :=− d+

` (v) + s+
` −D

`−1
r−1−δf`, for 2 ≤ ` ≤ r − 1;

Y −` (v) :=− d−` (v) + s−` −D
`−1
r−1−δf`, for 2 ≤ ` ≤ r.

and, similar to subsection 6.6.1.2, we obtain the estimates

E[∆Y +
` (v)] ≤

−`
(
s`+1 − 2D

`
r−1−δf`+1

)
Nq −ND−δfv

+ `s`+1

Nq
− D

`
r−1−δ

N
f ′`

+ Õ

D `
r−1−ε

N

+O

D `
r−1−δ−ε

N
f ′′`


≤ D

`
r−1−δ

N

[
2lq−1f`+1 − `

(
r − 1
`

)
tr−`−1q`−2fv − f ′` + o(1)

]

+ Õ

D `
r−1−ε

N

+O

D `
r−1−δ−ε

N
f ′′`

 .
and

E[∆Y −` (v)] ≤
−(`− 1)

(
s` − 2D

`−1
r−1−δf`

) (
s2 − 2D

1
r−1−δf2

)
Nq −ND−δfv

+ (`− 1)s` · s2

Nq

− D
`

r−1−δ

N
f ′` +O

D `
r−1−

ε
4

Nq
+ D

`+1
r−1

N2 + D
`+1
r−1−δ

N2 f ′′`


≤ D

`
r−1−δ

N
·
[
2(`− 1)

(
r − 1
`− 1

)
tr−`q`−2f2 + 2(`− 1)(r − 1)tr−2f`

−(`− 1)(r − 1)
(
r − 1
`− 1

)
t2r−`−2q`−2fv − f ′` + o(1)

]

+O

D `
r−1−

ε
4

Nq
+ D

`+1
r−1

N2 + D
`+1
r−1−δ

N2 f ′′`
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where we conclude that Y ±` are supermartingales by our established conditions
on f` and fv.

Again as all d±` , s±` and f` are increasing functions we have that

−O
(
D

`−1
r−1−

ε
2
)

= −∆d±` (v)−D
`−1
r−1−δ∆f` ≤ |∆Y ±` (v)| ≤ ∆s±` = O

D `
r−1

N

 .
Since Y ±` (0) = −D

`−1
r−1−δ and the hypotheses of Lemma 2.4 are valid

because D
`

r−1

N
= o

(
D

`−1
r−1−

ε
2
)
and D

`−1
r−1−δ = o

(
D

`
r−1

N
· imax

)
, the probability

that Y ±` (v) is positive at a time m ≤ imax is at most

exp

−Ω


(
D

`−1
r−1−δ

)2

ND−
1
r−1 (logD)

1
r−1 · 1

N
D

`
r−1 ·D

`−1
r−1−

ε
2




≤ exp

−Ω
 D

ε
2−2δ

(logD)
1
r−1

 .
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7
Random greedy independent set algorithm in linear hyper-
graphs

In this chapter, we will discuss the issues of making the differential
equations heuristics rigorous in a sparse setting. Precisely, we will present the
argument given by Robert Johnson and Pinto [17] in the Q2-free process on Qd

in Section 7.1 and extend it to the random greedy independent set algorithm
setting for linear hypergraphs.

Then, we will follow the proof given in last chapter to obtain that
the random variables associated with the random greedy independent set
algorithm follow their expected trajectories for D-regular linear hypergraphs
when D > (logN)2(r−1)+σ for some σ > 0. In Section 7.2, we state our
result and highlight some differences from the proof of Bennett and Bohman.
Finally, in Sections 7.3 and 7.4 we present the estimates that are different
from the previous chapter. Through this chapter, we will use the definitions
and notations from the previous ones.

7.1
Q2-free process on the hypercube Qd revisited

Remembering that d2 counts the number of 2-edges in the random greedy
independent set algorithm, we can consider the variable d2(uv) for an edge uv
in Qd (which corresponds to a vertex in HQ2,Qd). This variable is zero while
the vertices u and v are isolated during the Q2-free process. Then

P(d2(uv, i) = 0) ≥

(
d2d−1−2d

j

)
(
d2d−1

j

)
= (d2d−1 − j) . . . (d2d−1 − 2d+ 1− j)

(d2d−1) . . . (d2d−1 − 2d+ 1)

≥
(

1− j

d2d−1

)2d−1

≥ exp
(
− j

2d−2

)
,
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where j(i) is the number of edges chosen in the Q2-free process to have i edges
added. If j(i) ≤ cd2d−1 then

P(d2(uv, i) = 0) ≥ exp (−2cd) .

In expectation, we have at least d2d−1 exp (−2cd) edges with d2 = 0. Then
we have high probability that, for some edge uv, d2(uv) doesn’t follow its
trajectory for a constant proportion of the process.

For a general D-regular and r-uniform linear hypergraphH, the analogue
of the vertices u and v being isolated would be to consider a vertex v and two
vertices from each r-edge that contain v. Then we bound the probability that
d2 = 0 by the probability that none of those 2D vertices (together with the
vertex v) is chosen among the first j vertices. Therefore, we conclude

P(d2(v, i) = 0) ≥

(
N−2D−1

j

)
(
N
j

)

= (N − j) . . . (N − 2D − j)
N . . . (N − 2D)

≥
(

1− j

N

)2D+1

≥ exp
(
−j(2D + 1)

N

)
.

So, with high probability, for some v, d2(v) doesn’t follow its expected
trajectory for a constant proportion of the process when D = O(logN). This
means our approach can only prove that all variables follow their trajectories
when D � logN . However, we will be able to prove our heuristics when D is
a power of logN .

7.2
The theorem

Theorem 7.1. Let σ > 0 and r ≥ 3 be fixed. Let H be a r-uniform, D-regular
hypergraph on N vertices such that ∆2(H) = 1. If D > (logN)2(r−1)+σ then
the random greedy independent set algorithm produces an independent set I in
H with

|I| = Ω
N · ( logD

D

) 1
r−1
 (7.1)

with probability at least 1−O((logN)1+Ω(1)).

Remark 7.1. We encourage the reader to compare this result with Theorem
6.2. The current result requires a weaker condition on D, provided H is linear
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(i.e., ∆2(H) = 1). Furthermore, the linearity condition helps us simplify some
aspects of the proof.

First, we want to remark that for linear hypergraphs N = Ω(D). To
see this we can double count the number of edges |H|: The number of pairs
(v, e) where v is a vertex and e an edge such that v ∈ e is ND = r|H|. The
number of triples (v, v′, e) where v and v′ are vertices incident to the edge e is
|H|

(
r
2

)
≤
(
N
2

)
∆2(H). Then

ND

r
= |H| ≤ 1(

r
2

)(N
2

)
.

And it follows that
N ≥ 1 + (r − 1)D = Ω(D). (7.2)

We will use this estimate throughout this chapter.

Remark 7.2. Note that (7.2) is one of the differences between last chapter
setting and the current one. We highlight that we did not use the previous
bound N = Ω

(
D

1
r−1 +ε

)
to obtain most of the estimates.

The heuristics from the last chapter still hold in our setting, with the
difference that dA↑b ≤ 1 for every set A with at least two vertices and that
ca,a′→k(v, v′) = 0 if k ≥ 2. We then want to prove that

|V (i)| ∈ Nq ±ND−δfv, (7.3)

d±` (v) ∈ s±` ±D
`−1
r−1−δf` for ` = 2, . . . , r and all v ∈ V (i), (7.4)

ca,a′→1(v, v′) ≤ Ca,a′→1 for all v, v′ ∈ V (i) (7.5)
As before we consider the stopping time T as the minimum between

imax = ζND−
1
r−1 (logD)

1
r−1 and the first i such that any of the above equations

fail to hold. Theorem 7.1 is a consequence of the following claims:

Claim 7.2. Let 2 ≤ a, a′ ≤ r. Then

ca,a′→1(v, v′) ≤ (a− 1) · da(v)

ca,a′→1(v, v′) ≤ (a′ − 1) · da′(v′).

Claim 7.3.

P

(
∃i ≤ imax and v, v′ ∈ V (i) such that c2,2→1(v, v′, i) ≥ 2 ·D

1
2(r−1)

)
≤ exp

(
−(logN)1+Ω(1)

)
.
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Claim 7.4. Setting

fv :=
(
1 + t2

)
· exp(αt+ βtr−1) · q2,

where α, β are constants that depends only on r, we have

P

(
∃i ≤ imax such that |V (i)| 6∈ Nq ±ND−δfv

)
≤ exp

(
−(logN)1+Ω(1)

)
.

Claim 7.5. Setting

f` =
(
1 + tr−`+2

)
· exp(αt+ βtr−1) · q`,

we have

P

(
∃i ≤ imax, ` ∈ {2, . . . , r} and v ∈ V (i) such that d±` (v) 6∈ s±` ±D

`−1
r−1−δf`

)
≤ exp

(
−(logN)1+Ω(1)

)
.

Claims 7.2 to 7.5 imply that, with probability 1− exp
(
−(logN)1+Ω(1)

)
,

|V (imax)| > 0 and then the independent set obtained in the random greedy
algorithm has size at least imax = ζND−

1
r−1 log

1
r−1 D, as desired.

Most of the estimates from the previous chapter are analogous for this
case. For the sake of brevity, we omit them and focus only on the different
computations in this new setting. We prove Claims 7.2 and 7.3 in Section 7.3
and then we prove Claims 7.4 and 7.5 in Section 7.4.

Remark 7.3. The martingales Z that depends on a vertex v are frozen in the
sense that Z(i) = Z(i− 1) if the vertex v is not in V (i).

7.3
Proof of the theorem: Part I

Since we may choose ζ > 0 sufficiently small relatively to r, and
q(tmax) = exp

(
−(ζ log

1
r−1 D)r−1

)
= D−ζ

r−1 , we can let ζr−1 < λ = 1
4(r−1)

so that q(tmax) > D−λ and then

|V (i)| > ND−λ + r (7.6)

is valid whenever we have (7.3). As in the previous chapter, we also obtain
that
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d` = O
(
D

`−1
r−1
)

(7.7)
is valid from (7.4). In this section we will assume that these equations hold.

7.3.1
Controlling codegrees

Proof of Claims 7.2 and 7.3: Bound on ca,a′→k(v, v′).
First we note that Claim 7.2 follows from ∆2(H) = 1. Indeed, we have

that ca,a′→1 (i.e., the number of pairs (e, e′) counted by this variable) is at most
the number of edges e of size a that contains v times the number of ways of
choosing the edge e′ given the specific choice of the one vertex of e that belongs
to e′ too. Hence we have

ca,a′→k(v, v′) ≤ da(v) ·
(
a− 1

1

)
.

Notice we have the similar bound da′(v) ·
(
a′−1

1

)
.

Now we can turn to case k = 1 and a = a′ = 2. Note that c2,2→1 can
increase when the algorithm chooses one vertex of the following:

• Not contained in the intersection of a pair of edges counted by c3,2→1(v, v′)
or c2,3→1(v, v′).

vi+1

v v′

vi+1

v v′

Figure 7.1: In each case, when the vertex vi+1 is chosen, it increases
c2,2→1(v, v′).

Then when c2,2→1 increases, it can increase at most by 2.
For 0 ≤ j ≤ 2, let Nj(i) denote the number of vertices from V (i) that

would increase c2,2→1(v, v′) by j if chosen in the next step of the algorithm.
Then N0(i) + N1(i) + N2(i) = |V (i)| − 2 and, double-counting the number of
vertex and edges (u, e, e′) that would increase c2,2→1, we have

N1(i) + 2N2(i) = c3,2→1(v, v′) + c2,3→1(v, v′) ≤ d2(v) + d2(v′) ≤ 2 ·D
1
r−1 .
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vi+1

v v′

Figure 7.2: This is the only case when c2,2→1(v, v′) can increase by 2.

Defining X(i) by X(0) = 0 and

P(∆X(i) = j) = Nj(i)
|V (i)| − 2 ,

we have that ∆c2,2→1(v, v′, i) is stochastically dominated by ∆X(i) and ir order
to prove our desired bound on c2,2→1 it’s sufficient to prove it for X.
Bounds on the one step change

Hence

E[∆X(i)] = 1
|V (i)| − 2

∑
j

jNj(i) ≤
2 ·D

1
r−1

|V (i)| − 2 ≤
2 ·D

1
r−1 +λ

N
,

we define the auxiliary supermartingale

Y (i) := X(i)− 2 ·D
1
r−1 +λ

N
· i

and calculate

Var[∆Y ] = Var[∆X] ≤ E[(∆X)2] =

1
|V (i)| − 2

∑
j

j2Nj(i) ≤ 2 ·E[∆X] ≤ 4 ·D
1
r−1 +λ

N
.

Applying Freedman’s inequality
Letting C = 2 we have that ∆Y (i) ≤ C for all i. We set

v = (logD)
1
r−1Dλ,
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and then, for i ≤ imax = ζND−
1
r−1 log

1
r−1 D,

V (i) :=
∑
k≤i

Var[∆Y (k)|Fk] ≤ imax ·
4 ·D

1
r−1 +λ

N
= 4ζ(logD)

1
r−1Dλ ≤ v.

Applying Freedman’s inequality (Lemma 2.5) with d = D
1

2(r−1) we
conclude

P

[
∃i : Y (i) ≥ D

1
2(r−1)

]
≤ exp

(
− d2

2(v + Cd)

)

= exp

− D
1
r−1

2
(

(logD)
1
r−1Dλ + 2 ·D

1
2(r−1)

)


≤ exp
(
−Ω

(
D

1
2(r−1)

))
≤ exp

(
−(logN)1+Ω(1)

)
.

Then we have

P

∃i : X(i) ≥ 2 ·D
1
r−1 +λ

N
· i+D

1
2(r−1)

 ≤ exp
(
−(logN)1+Ω(1)

)

and we also have

2 ·D
1
r−1 +λ

N
· i+D

1
2(r−1) ≤ 2ζ(logD)

1
r−1Dλ +D

1
2(r−1) ≤ 2 ·D

1
2(r−1)

for sufficiently large D.
Then, taking the union bound over all choices of v and v′,

P

[
∃i and v, v′ ∈ V (i) : c2,2→1(v, v′, i) ≥ 2 ·D

1
2(r−1)

]
≤
(
N

2

)
P

[
∃i : X(i) ≥ 2 ·D

1
2(r−1)

]

≤
(
N

2

)
P

∃i : X(i) ≥ 2 ·D
1
r−1 +λ

N
· i+D

1
2(r−1)


≤ exp

(
−(logN)1+Ω(1)

)
.
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7.4
Proof of the theorem: Part II

In this section, to prove the upper bounds in (7.3) and (7.4) we will use
the auxiliary supermartingales

ZV :=|V (i)| −Nq −ND−δfv;

Z+
` (v) :=d+

` (v)− s+
` −D

`−1
r−1−δf`, for 2 ≤ ` ≤ r − 1;

Z−` (v) :=d−` (v)− s−` −D
`−1
r−1−δf`, for 2 ≤ ` ≤ r.

We obtain analogous estimates for ZV and Z+
` :

E[∆ZV ] ≤ −s2(t) + 2D
1
r−1−δf2(t) + s2(t)−D

1
r−1−δf ′v(t)

+O

D 2
r−1

N

+O

D 2
r−1−δf ′′v
N


≤ D

1
r−1−δ[2f2 − f ′v] +O

D 2
r−1

N
+ D

2
r−1−δf ′′v
N

 . (7.8)

E[∆Z+
` (v)] ≤ D

`
r−1−δ

N

[
2lq−1f`+1 + `

(
r − 1
`

)
tr−`−1q`−2fv − f ′` + o(1)

]

+ Õ

D `+1
r−1

N2

+O

D `+1
r−1−δ

N2 f ′′`

 . (7.9)

For Z−` , it is a little different because we have to use our bound on c2,2→1

to estimate the changes ∆d−` (v). For completeness, we repeat the arguments
to bound the increments ∆d−` (v). Note that there are 2 ways of removing an
edge e from the count d` by choosing a vertex y ∈ V (i):

1. If the vertex y is contained in e.

2. If there exists x with {x, y} ∈ H(i) and {x, v} ⊂ e.

The number of vertices of the first type are ` − 1 and the main term in
the expectation will come from the other way of deleting an edge. First note
that the sum ∑

x∈e\{v}
d2(x)

count each vertex in case 2 at least once and at most ` times. Also the number
of vertices that are counted more than once in the sum is at most

(
`−1

2

)
C2,2→1.
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v

e

v1

v2

Figure 7.3: The vertices v1 and v2 illustrates the cases 1 and 2, respectively.
If one of them is chosen to be vi+1, then the edge e

will be removed from the count of d8(v).

Then the number of vertices that make e deleted is 1

∑
x∈e\{v}

d2(x) +O (C2,2→1) .

Therefore

E[∆d−` (v)] = 1
|V (i)|

 ∑
e∈d`(v)

∑
x∈e\{v}

d2(x) +O (d` · C2,2→1)

 .
Recording that C2,2→1 = 2 ·D

1
2(r−1) and d` = O

(
D

`−1
r−1
)
we have

d` · C2,2→1 = O
(
D

`
r−1−

1
2(r−1)

)
.

Then, as before, we conclude that

E[∆Z−` (v)] ≤ D
`

r−1−δ

N
·
[
2(`− 1)

(
r − 1
`− 1

)
tr−`q`−2f2 + 2(`− 1)(r − 1)tr−2f`

+(`− 1)(r − 1)
(
r − 1
`− 1

)
t2r−`−2q`−2fv − f ′` + o(1)

]

+O

D `
r−1−

1
2(r−1)

Nq
+ D

`+1
r−1

N2 + D
`+1
r−1−δ

N2 f ′′`

 (7.10)

Finally, remembering (7.2), we have O
(

1
N

)
= O (D−1), the conditions

1Here we write the number of vertices as being a+O(b) meaning that it’s bounded from
below by a−O(b) and from above by a+O(b).
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on δ for ZV , Z±` to be supermartingales are then

δ < 1− 1
r − 1 (7.11)

δ <
1

2(r − 1) − λ = 1
4(r − 1) (7.12)

We also need that

f ′′v = o
(
D1− 1

r−1
)

(7.13)

f ′′` = o
(
D1− 1

r−1
)

(7.14)

and the variaton equation, as before,

f ′v > 3f2. (7.15)

f ′` > 5lq−1f`+1 (7.16)

f ′` > 2l
(
r − 1
`

)
tr−`−1q`−2fv. (7.17)

f ′` > 7(`− 1)
(
r − 1
`− 1

)
tr−`q`−2f2 (7.18)

f ′` > 6(`− 1)(r − 1)tr−2f` (7.19)

f ′` > 3(`− 1)(r − 1)
(
r − 1
`− 1

)
t2r−`−2q`−2fv (7.20)

7.4.1
Choosing the error functions

As before, all the variation equations hold because we choose α and β

sufficiently large depending on r.
Since f`, fv, f ′′` and f ′′v are Õ

(
Dβζr−1+o(1)

)
, choosing ζ and δ such that

2βζr−1 < δ (for the estimates in (7.9) and (7.10) to hold) and

2βζr−1 < 1− 1
(r − 1) , (7.21)

we obtain f ′′` , f ′′v = o
(
D1− 1

r−1
)
.

7.4.2
Applying martingale variation inequalities

7.4.2.1
Controlling the number of vertices

Proof of Claim 7.4: Bound on |V (i)|.
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Again, we will use the computations from the last chapter for brevity.
Choosing ζ such that 2βζr−1 < 1− 3

2(r−1) , we have 1− 1
r−1−2βζr−1 > 1

2(r−1) . As
before, by Hoeffding-Azuma inequality, the probability that ZV (m) is positive
for some m ≤ imax is at most

exp
−Ω̃

 ND−
1
r−1

(f2 + f ′v)2

 = exp
(
−Ω̃

(
D1− 1

r−1−2βζr−1))
≤ exp

(
−(logN)1+Ω(1)

)
.

The same applies for the supermartingale

YV := −|V (i)|+Nq −ND−δfv,

which gives us the lower bound on |V (i)|.

7.4.2.2
How many `-edges a fixed vertex v belongs to

Proof of Claim 7.5: Upper bound on d±` (v). Now to infer the upper bounds in
Claim 7.5, we note that

−∆s±` −D
`−1
r−1−δ∆f` ≤ |∆Z±` (v)| ≤ ∆d±` (v)

and

∆d+
` (v) ≤ D2↑`+1 ≤ 1,

∆d−` (v) ≤ O (C`,2→1) = O
(
D

`−1
r−1−

1
2(r−1)

)

∆s±` +D
`−1
r−1−δ∆f` = O

D `
r−1

N

 .

Since Z±` (0) = −D
`−1
r−1−δ, D

`
r−1

N
= o

(
D

`−1
r−1−

1
2(r−1)

)
and D

`−1
r−1−δ =

o
(
imax · D

`
r−1

N

)
, we obtain that the probability that Z±` (v) is positive at a

time m ≤ imax is at most

exp

−Ω̃


(
D

`−1
r−1−δ

)2

ND−
1
r−1 · 1

N
D

`
r−1 ·D

`−1
r−1−

1
2(r−1)




≤ exp
{
−Ω̃

(
D

1
2(r−1)−2δ

)}
≤ exp

(
−(logN)1+Ω(1)

)
.
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Note that we can choose 2δ < 1
2(r−1) −

1
2(r−1)+σ to obtain the last

expression.

Remark 7.4. To obtain the lower bounds in Claim 7.5 we use the asymmetric
version of Hoeffding-Azuma inequality to the supermartingales

Y +
` (v) :=− d+

` (v) + s+
` −D

`−1
r−1−δf`, for 2 ≤ ` ≤ r − 1;

Y −` (v) :=− d−` (v) + s−` −D
`−1
r−1−δf`, for 2 ≤ ` ≤ r.

For Y −` (v), we have

−O
(
D

`−1
r−1−

1
2(r−1)

)
≤ |∆Y −` (v)| ≤ O

D `
r−1

N


and the same calculations above apply.

For Y +
` (v), we have

−O

D `
r−1

N

 ≤ |∆Y +
` (v)| ≤ O

D `
r−1

N


and, by the Hoeffding-Azuma inequality, the probability that Y +

` is ever
positive is at most

exp

−Ω̃


(
D

`−1
r−1−δ

)2

ND−
1
r−1 ·

(
1
N
D

`
r−1
)2




≤ exp
{
−Ω̃

(
N ·D−

1
r−1
)}
≤ exp

(
−(logN)1+Ω(1)

)
.
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A
Gamma function

The goal of this appendix is to give a proof of the lemmas used in Chapter
5 about the gamma function. Just for completeness, we remember the definition
of Gamma function and the statement of the lemmas.

Definition A.1 (Gamma function). The gamma function is defined for
complex numbers with positive real part by

Γ(z) =
∫ ∞

0
uz−1e−u du.

Lemma A.1. For all complex numbers a, b with positive real part the following
equation holds ∫ 1

0
(1− xa)b dx =

Γ
(
1 + 1

a

)
Γ(b+ 1)

Γ
(
b+ 1 + 1

a

) .

Lemma A.2. Let α be a positive real number. Then

lim
n→∞

Γ(n+ α)
Γ(n) · nα = 1.

To prove the first lemma, we need to show a property of the gamma
function and we will introduce the beta function. Then, the result will follow
from standard calculus computations.

By integrating by parts, with v = tz and u = −e−t, we have

Γ(z + 1) =
∫ ∞

0
tze−t dt =

[
−e−ttz

]∞
t=0

+ z
∫ ∞

0
uz−1e−t dt

and, using that lim
t→∞

e−ttz = 0, we conclude that

Γ(z + 1) = zΓ(z). (A.1)

Definition A.2 (Beta function). The beta function is defined for complex
numbers x and y with positive real part by

B(x, y) =
∫ 1

0
ux−1(1− u)y−1 du.
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Let x and y be complex numbers with positive real part. We will see that

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) . (A.2)

We will prove that Γ(x)Γ(y) = Γ(x+ y)B(x, y). Begin with

Γ(x)Γ(y) =
(∫ ∞

0
e−uux−1 du

)
·
(∫ ∞

0
e−vvy−1 dv

)
=
∫ ∞

0

∫ ∞
0

e−u−vux−1vy−1 du dv,

and changing variables by u = f(z, t) = zt and v = g(z, t) = z(1− t) we have
that

Γ(x)Γ(y) =
∫ ∞

0

∫ 1

0
e−z(zt)x−1(z − zt)y−1

∣∣∣J(z, t)
∣∣∣ dt dz

=
∫ ∞

0

∫ 1

0
e−zzx+y−1tx−1(1− t)y−1 dt dz,

where |J(z, t)| =

∣∣∣∣∣∣ t z

1− t −z

∣∣∣∣∣∣ = z is the Jacobian determinant of the change of

variables u = f(z, t) and v = g(z, t). Then we conclude

Γ(x)Γ(y) =
(∫ ∞

0
e−zzx+y−1 dz

)(∫ 1

0
tx−1(1− t)y−1 dt

)
= Γ(x+ y)B(x, y).

Proof of Lemma A.1. Changing variable by x = u1/a we have
∫ 1

0
(1− xa)b dx =

∫ 1

0

1
a
u

1
a
−1(1− u)b du,

and then using the definition of beta function, (A.2) and (A.1) respectively,
we obtain

∫ 1

0
(1− xa)b dx = 1

a
B
(1
a
, b+ 1

)
=

1
a
Γ
(

1
a

)
Γ(b+ 1)

Γ
(
b+ 1 + 1

a

) =
Γ
(
1 + 1

a

)
Γ(b+ 1)

Γ
(
b+ 1 + 1

a

) .

To prove the second lemma we need to use Stirling’s approximation
formula

Γ(z) =
√

2π
z

(
z

e

)z (
1 +O

(1
z

))
(A.3)

Proof of Lemma A.2. Using (A.3) we have

Γ(n+ α)
Γ(n) ∼

√
n

n+ α

(
n+α
e

)n+α(
n
e

)n =
√

n

n+ α
e−α

(
n+ α

n

)n
(n+ α)α.

DBD
PUC-Rio - Certificação Digital Nº 1712695/CA



Appendix A. Gamma function 89

Then, remembering that
(
1 + α

n

)n
→ eα when n→∞, we conclude

lim
n→∞

Γ(n+ α)
Γ(n) · nα = e−α ·

(
lim
n→∞

(
n+ α

n

)n)
·
(

lim
n→∞

(
n+ α

n

)α− 1
2
)

= 1.
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