
Monique Feitosa Dali

Flow in porous media with macropores using
Brinkman’s model

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-Graduação em
Engenharia Mecânica of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia Mecânica.

Advisor : Prof. Márcio da Silveira Carvalho
Co-advisor: Dr. Frederico Carvalho Gomes

Rio de Janeiro
April 2019

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Monique Feitosa Dali

Flow in porous media with macropores using
Brinkman’s model

Dissertation presented to the Programa de Pós-Graduação em
Engenharia Mecânica of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia Mecâ-
nica. Approved by the Examination Committee.

Prof. Márcio da Silveira Carvalho
Advisor

Departamento de Engenharia Mecânica – PUC-Rio

Dr. Frederico Carvalho Gomes
Co-advisor

Departamento de Engenharia Mecânica – PUC-Rio/LMMP

Prof. Abelardo Borges Barreto Junior
Departamento de Engenharia Mecânica – PUC-Rio

Dr. Leonardo Cabral Pereira
Petrobras – CENPES

Rio de Janeiro, April 02nd, 2019

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



All rights reserved.

Monique Feitosa Dali

Bachelor in Industrial Engineering by Universidade Federal
Fluminense (2014).

Bibliographic data
Dali, Monique Feitosa

Flow in porous media with macropores using Brinkman’s
model / Monique Feitosa Dali; advisor: Márcio da Silveira
Carvalho; co-advisor: Frederico Carvalho Gomes. – 2019.

107 f: il.color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Mecânica,
2019.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Equação de Brink-
man;. 3. Método dos elementos finitos;. 4. Permeabilidade
equivalente;. 5. Meios porosos carstificados.. I. Carvalho,
Márcio da Silveira. II. Gomes, Frederico Carvalho. III. Ponti-
fícia Universidade Católica do Rio de Janeiro. Departamento
de Engenharia Mecânica. IV. Título.

CDD: 621

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



To my big family for their love and support.

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Acknowledgments

I would like to thank my entire family who has always supported, guided
and helped me at all times. In particular, to my grandparents Maria Francisca,
Moacyr Feitosa and Ismeria Maria for their dedication and my husband André
Dali for his support.

To all my university colleagues, especially my friends, Gabriela Castro
and Paulo Roberto, for personal and professional partnership.

To my advisor, Prof. Márcio Carvalho for the shared knowledge and
dedication to lead me in this project.

To my lab colleagues from LMMP, for the work environment, all the
questions and support, and Frederico Gomes for his attention.

To Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CA-
PES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio
de Janeiro (FAPERJ) and PUC-Rio for the scholarship.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Fundação
Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
(FAPERJ, E-26/200.696/2018) and Petrobras.

Finally, I appreciate I have achieved one more dream in my life.

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Abstract

Dali, Monique Feitosa; Carvalho, Márcio da Silveira (Advisor); Go-
mes, Frederico Carvalho (Co-Advisor). Flow in porous media
with macropores using Brinkman’s model. Rio de Janeiro,
2019. 107p. Dissertação de Mestrado – Departamento de Engenha-
ria Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The present work focuses on a numerical investigation of the flow through
porous media with macropores, such as carbonates. The presence of vugs
and fractures have a strong effect on the flow characteristics. The flow
through the porous matrix is usually described by the Darcy equation and
the flow through the macropores by Stokes equation. The coupling between
these two distinct approaches brings great complexity to the modeling of
such flows. In this work, we use Brinkman formulation that is able to
describe the flow, both in the porous matrix and macropores with a single
differential equation. We solved the set of differential equations using the
finite element model and implemented the code in the FEniCS platform. We
first solved the 1-D flow through parallel plates with one of the walls being
a porous material. The goal was to compare the predictions obtained with
the Brinkman formulation to that obtained by using the Beavers-Joseph
boundary condition. Then, we solved a 2-D flow through a porous medium
with macropores. The geometry of the pore structure was obtained from 2D
slices of tomographic images of carbonates. The goal of this analysis was to
evaluate an equivalent permeability as a function of macropores area and
structures.

Keywords
Brinkman Equation; Finite Element Method; Equivalent permeabi-

lity; Karst porous media.
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Resumo

Dali, Monique Feitosa; Carvalho, Márcio da Silveira; Gomes, Frede-
rico Carvalho. Escoamento em meios porosos com macropo-
ros utilizando o modelo de Brinkman. Rio de Janeiro, 2019.
107p. Dissertação de Mestrado – Departamento de Engenharia Me-
cânica, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho foca em uma investigação numérica do escoamento
através de meios porosos com macroporos, como os carbonatos. A presença
de vugs e fraturas tem um forte efeito na característica do escoamento. O
fluxo através da matriz porosa é geralmente descrito pela equação de Darcy
e o fluxo através dos macroporos pela equação de Stokes. O acoplamento
entre essas duas abordagens distintas traz grande complexidade para a
modelagem de tais fluxos. Neste trabalho, utilizamos a formulação de
Brinkman que é capaz de descrever ambos os fluxos através da matriz porosa
e macroporos com uma única equação diferencial. Resolvemos o sistema de
equações diferenciais usando o modelo de elementos finitos e implementamos
o código com auxílio da plataforma FEniCS. Primeiro, resolvemos o fluxo
1-D através de placas paralelas com uma das paredes sendo um material
poroso. O objetivo foi comparar as previsões obtidas pela formulação de
Brinkman com aquela obtida usando a condição de contorno de Beavers-
Joseph. Então, resolvemos um fluxo 2-D através de um meio poroso com
macroporos. A geometria da estrutura porosa foi obtida a partir de cortes
2D de imagens tomográficas de carbonatos. O objetivo desta análise foi
avaliar uma permeabilidade equivalente em função da área e estrutura dos
macroporos.

Palavras-chave
Equação de Brinkman; Método dos elementos finitos; Permeabilidade

equivalente; Meios porosos carstificados.
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1
Introduction

1.1
Problem Statement

In the oil industry, the difficulty of extracting hydrocarbons increases
with each new reserve found, impelling research on the required technological
development. In the case of Brazil, the increase in proved reserves brought a
greater challenge due to the high cost of extracting hydrocarbons from the
pre-salt layer. This cost is related to the hard access to oil reservoirs and
technological challenges posed by the reservoirs characteristic.

Faced with this scenario, the studies in the area seek to optimize the
techniques of production. For this, it is essential to understand in advance the
behavior of the reservoir over its useful life, so that better choices of production
techniques and infrastructure are made.

Carbonate rocks were formed through basins decomposed by biological
materials, chemicals and debris. The presence of this type of rock in reservoirs
is abundant, where surveys estimate that approximately 60% of the oil reserves
are in carbonates[1].

This type of rock has attributes that vary considerably in relation to
other types of geological formations, being expected a significant variation
in regard to the porosity and the permeability. The structure also presents
particularities, contributing to its heterogeneity, being able to present caves,
fractures, isolated and connected cavities[2].

1.2
Motivation

Permeability is a parameter of vital importance during the production
of oil fields. For a particular rock type, it is also highly dependent on pore ge-
ometry, both size and the degree of interconnectivity between pores and voids.
The permeability can be determined through experimental measurement and
theoretical calculation[3]. There are many problems in both methods due to
the spatial multi-scale of fractures and vugs in heterogeneous porous media[4].
Many available theoretical models can be used to estimate the permeability as a
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Chapter 1. Introduction 17

function of porosity. However, because of the high heterogeneity of carbonates,
the determination of permeability in carbonates samples is still a challenge.
The problem becomes even more complex because of the different pore sizes
that are encountered in carbonates. The presence of vugs and fracture have a
great impact on the fluid flow through carbonate rocks, and the equivalent per-
meability is a function of the permeability of the porous matrix (micropores)
and the volume and structure of the vugs and fractures (macropores).

1.3
Dissertation goals

The main objective of this work is to develop a methodology based on
flow simulation to estimate the permeability in heterogeneous porous media
containing large vugs.

To achieve these goals, the work will be developed through the following
steps:

– Implementation of simulation tool to study flow through vuggy porous
media using Brinkman’s model;

– Analyze the flow behavior near porous matrix-vug interface predicted by
Brinkman’s model;

– Parametric analysis of the flow behavior and estimated equivalent per-
meability as a function of vug volume (area in 2D) and structure.

The study primarily focused on evaluating whether the mathematical
model adopted replicates the flow behavior at the interface between free
flow and porous surface observed in experiments. To perform the study, the
developed simulation tool was applied to numerically determine the equivalent
permeability. Slices of two micro-tomographic carbonate samples were used to
create a two-dimensional geometry composed by two sections (vugs and porous
matrix). The purpose of the parametric analysis is to evaluate the geometry
effects of the vug structure.

1.4
State of art

In carbonates, there is the presence of many free flow domains such
as fractures, vugs, large pores, and cavities. In this case, the fluid flows
preferentially through these open spaces, leading to behavior different than
that in a heterogeneous porous media. A carbonate reservoir with large cavities
is a typical medium of double-porosity due to the different sizes between the
matrix pores and the vugs.
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The permeability for a given rock can be determined by experimental
measurement and theoretical calculation. The second method demands to
build a model that corresponds to the flow condition to predict the equivalent
permeability in complex media using equivalence principles. A common porous
media has a solid fluid flow theory that explain flow characteristic and
numerical simulation[3].

The permeability of a heterogeneous porous media can be numerically
determined by solving Navier-Stokes or Stokes equation in the pore space.
In fractured-vuggy porous media, these equations described the flow in pore-
scale (micro) and large cavities (macro). The modeling with different scales of
investigation leads to an extremely expensive computational cost.

The Two-Domain Approach (TDA) uses a mathematical model in the
two different flow regions, which are coupled by specific interface conditions.
A classical way in TDA is to solve flow in karst reservoirs or permeable surfaces
using Navier-Stokes to solve the equation in the macropores and Darcy’s Law
to solve flow in the porous solid matrix. The coupling between the two domains
demands explicitly interface modeling, which is usually done by the Beavers-
Joseph[5] equation.

The Beavers-Joseph (BJ) boundary condition (Eq.1-1) proposes a model
to describe the flow behavior at the interface between free-flow and permeable
walls. The problem of defining relevant boundary conditions at the interface
between the two domains then remains.

−du
dy

∣∣∣∣
int

= α√
k

(uB − uD) . (1-1)

where uB is the velocity at the interface, uD is the Darcy velocity of the fluid
in the porous medium, k the permeability of the material and α is a non-
dimensional parameter that represents the porous medium structure in the
interface region.

Due to few physical experiments, Beavers and Joseph work of single-
phase flow is still a representative physical experiment about the coupling
flow problem[3]. The boundary condition proposed by them was theoretically
validated by Saffman[6] for similar experiments. He proposed a more generic
boundary condition, the Beavers-Joseph-Saffman interface condition presented
in Eq.1-2.

uB =
√
k

α

du

dn
+O(k). (1-2)

where O(k) is the average velocity in the porous medium and n is the normal
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direction of the interface.
Mikelić and Jäger[7] further confirmed the Beavers-Joseph-Saffman

boundary condition by theoretical study deducing the same interface condition
based on the homogenization theory[3][8]. Despite Saffman[6], Jones[9] and,
Liu and Prosperetti[10] have proposed new boundaries conditions for generic
cases, BJ boundary condition is considered a special case for one-dimensional
channel flows.

Beavers and Joseph[5], Beavers[11], Richardson[12], Beavers et al.[13] and
Goyeau[14] pointed that the parameter α has a strong relation to the structure
of the porous media at interface. Even materials with similar permeability may
have different slip coefficients[15]. Larson and Higdon [16] concluded in their
numerical study that is not possible to define a consistent α value for any
media.

Yao and Huang[3] presented an extensive review of the coupling theory
of porous media-free flow since the relevance of Beavers and Joseph work
until validations and other scientific contributions to apply this knowledge
in a discrete fractured-vuggy network model.

An alternative way to two-domain approach is to use Brinkman formula-
tion. A single differential equation is used in both the macropores and porous
matrix domains, without the need of an explicit interfacial boundary condi-
tion. The equations parameters are set such that Darcy’s model is recovered in
the porous matrix and Stokes equation is recovered in the macropores (vugs).
This model establishes a seamless transition between Darcy and Stokes zones.

Brinkman[17] first studied the calculus of the viscous force on a dense
swarm of particles. The use of a unified approach avoids some problems faced
in coupled equations[18]. This model is currently used as a general momentum
equation for a mixture of two materials, one incompressible fluid and another
composed by rigid solid[15][19].

The work of Taylor [20] showed that the BJ condition can be deduced
from the Brinkman equation. Neale and Nader [21] demonstrated that the
predictions of Beavers-Joseph and Brinkman’s [22] extension of Darcy’s law
are identical in seepage region.

The single-domain Brinkman model and the multiple-domain Stokes-
Darcy model were compared by Le Bars and Worster[23] using flow through
adjacent porous media and free fluid region during binary alloy solidification.
Defining a viscous transition zone inside the porous domain, a good agreement
between the two formulations for the solid, liquid and mushy layer was
obtained.

Many papers[4][24][25][26][2][18][27] on karst reservoirs consider a 2D
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synthetic geometry composed by perfect cavities (ellipsis and circles), con-
nected by fractures or isolated, as a representation of the rock. Stokes-
Brinkman equation is used in many of them in numerical formulation consid-
ering single-phase steady-state flow. Simplified modeling approach facilitates
the flow simulation and is less computationally expensive being an effective
alternative to obtain information about the main flow characteristics.

Arbogast et al.[4] solve Darcy-Stokes coupled equations in a macro-model
for vuggy porous media using the finite element method. The computational
study considered synthetic vuggy media with layered vugs, meandering vug
channels, constricted vug channels, and isolated vugs to accurately predict the
effective flow properties in this type of aquifers on the field scale. The results
showed that vug interconnectivity is the most critical variable in predicting
effective permeability.

Using a mixed finite element method, Popov et al.[24] solve Brinkman’s
model at fine-scale to study flow through vuggy porous media with isolated
and connected vugs by different types of fracture networks. The analysis
showed that Stokes-Brinkman equations can be used to model physical effects
pertaining to vugular porous media on a fine-scale model. Taking these
equations to a coarser scale, the presence of short fractures connecting large
vugs increase the effective permeability by a factor of 2-4 remaining in the same
order of magnitude. Long fractures with large apertures changed the effective
permeability by many orders of magnitude.

Multi-scale approaches and numerical solution of Brinkman model were
used in Gulbransen et al.[25] and Qin et al. [26] on artificial carbonate
karst formation composed by fractures and cavities. A multiscale mixed finite
element method is applied by Gulbransen et al.[25] to solve fluid transport on
a fine scale. The basis functions extracted in the first step are subsequently
used in Darcy equation solution to approximate pressure and velocity on a
coarse grid.

Upscaling analysis of vuggy porous media using Brinkman equation was
successfully applied by Qin et al.[26]. In this paper, the effective permeability is
obtained from local solution on fine scale and then the upscaled permeability is
used to solve Darcy equation on coarse scale. It also shows that global scale-up
gives better results than local scale-up.

In the same way as Krotkiewskiet al.[28], this study proposes to estimate
permeability based on simulations made in a digital rock physics of carbonate
samples. It was used the same model to calculate the equivalent permeability
of carbonate karst rock samples in 3D but used Darcy or Stokes in some parts
of the domain.
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Brinkman model was used by them when the ratio between crack and
matrix permeability does not exceed four orders of magnitude, uses Darcy in
the low permeability matrix and Stokes in large channels. This approach was
employed to reduce the computational cost of the 3D model. The void space
connection proved once again to be an important factor in determining the
effective permeability.

In He et al.[18] research, it was also employed Brinkman model in 2D
synthetic representations of naturally fractured carbonate karst reservoirs. The
application of this model in a single-phase transient flow properly described
fluid flow in both domains. Their results showed that the presence of cavities
has a significant impact on fluid transport in this type of heterogeneous media.

Pore space representations of vuggy porous media were used in Okabe
and Blunt[29], and Golfier et al.[27] to predict equivalent permeability. Okabe
and Blunt[29] analyzed the permeability under the control of vugs and small-
scale pores, managing to capture the behavior of computed permeability in
relation to macroporosity. The multi-scale study combined microtomography
and multiple-point statistics images for a Cretaceous carbonate rock and
compute the permeabilities using Lattice Boltzmann method. The average of
computed permeability reached a good agreement with the measured value for
a small sample.

Golfier et al.[27] focused on macroscopic behavior using the Darcy-
Brinkman model. Representations of fractured and cavity porous media are
numerically solved. An explicitly analytical solution for effective permeability
is derived and compared to the numerical solution. The relation obtained
of effective global permeability of a two-dimensional vuggy system made
of circular fluid inclusion showed consistent values for a certain range of
dimensionless porous region permeability and macroporosity, kω/l2 . 10−4

and R� l.
Previously, in our research group, a dissertation [2] on numerical simula-

tion in two dimensions was done using Brinkman’s model in simple geometries
- pores and fractures, connected or not - besides preliminary studies with core
samples. Now, we use this knowledge to deepen the simulation on several slices
of microtomographic images of carbonate samples.

The first focus was to demonstrate the efficiency of the Brinkman model
in describing the transport of fluids at the interface between free flow and
porous surface. For this, we use a geometry composed by a channel and a
porous material inspired in the Beavers and Joseph experiment and compare
the obtained data. In sequence, micro-tomographic images of carbonate sam-
ples were used to create a geometry composed by vugs and porous matrix, to
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determinate the equivalent permeability based on flow simulation.

1.5
Delimitation of the study

This thesis aims to analyze the behavior of the flow in porous media
with the presence of macropores. Simulations were carried out on two core
samples of carbonate rocks taken from the Morro do Chaves Formation in
the Sergipe-Alagoas Basin located in northeastern Brazil. These samples are
considered analogous to those found in oil reservoirs on the Brazilian east coast
pre-salt reservoirs. The simulations were done in two dimensions based on the
tomography slices of these samples where the macropores were identified and
later classified as vugs.

Several softwares were used in the characterization phase of the samples,
vug geometry construction, mesh generation and flow modeling. The simulated
flow is in steady state in the presence of only one fluid. We impose a pressure
gradient on the 2D section. Numerous simulations were done by the program
developed in Python with the addition of the FEniCS library where geometry,
mesh size, flow direction, pressure gradient, material permeability and fluid
viscosity were varied.

1.6
Division of Chapters

Chapter 1: Introduction
Chapter §1 gives a brief introduction of the subject, defines the problem

and motivation. Also, it shows the objectives and delimitation of this disser-
tation.

Chapter 2: Literature review
Chapter §2 presents an analysis of the information contained in the

literature and previous work on flow in porous media, type of porous media,
the scale of investigation and description of finite element method.

Chapter 3: Methodology
Chapter §3 presents the main equations, its fundamentals and the as-

pects of the numerical methodology employed to solve the flow. It also presents
the variational form implemented in the computational simulation.

Chapter 4: Model Analysis
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Chapter §4 starts with mesh testing and numerical validation of the
model. The model developed in this work was analyzed under different con-
ditions for the problem of flow between permeable surface and free flow. The
synthetic model was constructed to be a the reproduction of the Beavers-
Joseph experiment. The results of this analysis was compared to the Beavers
and Joseph data. After, it presents the results obtained with the simulation
in two carbonate samples.

Chapter 5: Results
Chapter §5 presents the methodology used to create a 2D virtual rep-

resentation of rocks. The simulation tool described in chapter §4 is used and
some validations were presented. After, it shows the results obtained with the
flow simulation in two carbonate samples.

Chapter 6: Discussions and Conclusions
Based on the results obtained by the program, we discuss the conclusions

for the phenomenon investigated and suggest future works.
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2
Literature Review

The bibliographic review chapter was divided into 3 sections. First, basic
concepts about porous media flow are introduced. It also includes a brief
introduction to the most common average techniques to homogenizing the
permeability of a non-homogeneous reservoir. The second section presents the
type of rock studied and used to build virtual representations of small segments
of a reservoir. The third section presents a numerical method that is crucial in
this work to solve the partial differential equations of the flow problem.

2.1
Porous Media Flow

A permeable porous medium is a type of material that contains connected
pores that allow the flow of fluids through it[30]. Porosity and permeability
are important properties of a porous medium. Porosity is how much empty
space exists in a material in relation to its total volume as eq. 2-1, therefore,
it measures the ability to retain fluids. These voids are formed between the
grains of the solid matrix and vary in size depending on the shape, packaging
and selectivity of these forming particles.

φ = Vpores
Vtotal

(2-1)

The permeability tells us how easily the fluid flow through a porous
medium. Permeability is a function of the porous structure, including pore
size distribution and connectivity[31].

For the hypothesis that the permeability does not have a uniform value
for the system, an average value for the permeability of the system can be
calculated using typical methods for permeability upscaling, that are weighted
(eq.2-2a), harmonic (eq. 2-2b) and geometric (eq.2-2c). In this case, the region
can be approximated to a system in layers, blocks or rings with different
permeabilities[32]. These representative values of given regions, represented
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in fig. 2.1[33], are used to upscale the properties.

kavg = k1 · h1 + k1 · h2 + ...+ kn · hn
h1 + h2 + ...+ hn

=

n∑
i=1

ki · hi
n∑
i=1

hi
(2-2a)

kavg = l1 + l2 + ...+ ln
l1
k1

+ l2
k2

+ ...+ ln
kn

=

n∑
i=1

li

n∑
i=1

li
ki

(2-2b)

kavg = n
√
k1 · k2...kn (2-2c)

(a) Weighted-average (b) Harmonic-average (c) Geometric-average

Figure 2.1: Permeability combinations. From Exploration and Production
Geology.

For a linear flux of an incompressible fluid through parallel and horizontal
beds is used weighted-average permeability. The harmonic-average is used
when the flow direction is perpendicular to the beds, layers in series, and
geometric when there is no apparent flow preference for any direction, in this
case, the beds are similar to the blocks.

2.2
Carbonate Rocks

The generic term coquinas represents rocks composed by the accumu-
lation of shells of diverse origins[34]. The variability of the depositional and
diagenetic process contributes to the high heterogeneity, which makes these
reservoirs complex, thus interfering with the predictability of the flow behav-
ior.

Coquinas are sedimentary rocks consisting mainly of calcium carbonate.
According to Terra[35], carbonates are rocks composed of carbonaceous par-
ticles (forming grains) - which may be peloids, oncolites, oolites, spherulites,
bioclasts and intraclasts - micrite (microcrystalline calcite) and very often
cement. Figure 2.2 shows the Dunham classification expanded by Embry &
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Klovan for carbonate rocks, which is widely used and is based on depositional
texture. This method classifies rocks based on the mud-grains relation.

Figure 2.2: Dunham (1967) classification for carbonate sedimentary rocks with
Embry & Klovan (1971) modifications. From Nichols, 1999.

The discovery of carbonate reservoirs in the 1950s in different parts of
the world stimulated research[35][36]. Later, carbonate rocks were found in
some Brazilian reservoirs and, currently, most of the known reserves are found
in sandstones and carbonates[1][37]. Nowadays, the study of this type of rock
has become important again due to the exploration of large offshore deposits
in the pre-salt range. The determination of the porosity, permeability and
connectivity allows for a better understanding of the behavior of the system,
refining the prediction of reserves and fluid flow[38].

We can classify carbonate porosity according to Choquete & Pray[39],
which is based on the relation between porosity and fabric, as shown in fig.
2.3. In the fabric selective group are the interparticles, intraparticles, fenestral,
shelter and framework costitute the primary porosity type, which is formed
during sedimentation; and intercrystalline and moldic establish the secondary
porosity, developed after deposition. In the group with no relation between
porosity and fabric (not fabric selective) are channel, fracture and vuggy[40].
There are also caverns, which are holes the size of a man.
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Figure 2.3: Porosity types usually found in carbonates. From Choquette &
Pray, 1970.

The difference between moldic and vuggy is the selection of the dissolu-
tion of the material, where, in the moldic, it would be only one material, which
could be grain or matrix; while in the vugs, there are more than one. In our
case, we will analyze the vug porosity that comes from the dissolution of the
shell together with part of the matrix.

The core samples under investigation are coquinas, a type of carbonate
rocks, with large vugs. The interest is to observe the flow behavior in this
heterogeneous rock and how the presence of vugs changes the equivalent
permeability. A methodology to describe the relation between macroporosity
and equivalent permeability is the main goal.

2.2.1
Finite element method

The Finite Element Method (FEM) is a method for numerical solution
of partial differential equations (PDE’s), in which a continuous medium
is subdivided into multiple small parts, elements, which are connected by
nodes[41]. This is a tool used to determine solutions, mainly to those problems
that do not have an exact solution. The approximate solution is a projection
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of the exact solution in a finite-dimensional subspace[42].
The method presented is widely used to solve engineering problems, such

as fluid dynamics, due to its robustness and efficiency. Some typical steps used
in problem-solving by finite element analysis are described in fig. 2.4.

Figure 2.4: Steps of Finite Element Analysis

Firstly, a representative geometric model of the system is constructed as
a CAD model. Then, a mesh is generated for the geometry, thus dividing
the CAD model into numerous small pieces. From there, it is required to
model the problem, the definition of the constraints, boundary conditions and
parameters. In the FEM, the differential equation is transformed into a set of
algebric equations. The solution of the linear system yields the approximate
solution. The post-processing step is the graphic representation of the solution.

Next chapter presents the mathematical model selected and the applica-
tion of the variational formulation required by the finite element method.
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3
Methodology

For this study, a mathematical model is developed based on the equations
of mass and momentum conservation. The Brinkman equation is used, which
combines Darcy and Stokes equations in a single partial differential equation
[22], making it possible to model the fluid flow in the porous medium and in
the voids with a single equation.

The finite element method (FEM) will be used to find an approximate
solution for the partial differential equation (PDE) for flow through a 2D
section. The code will be implemented in the Python programming language
in conjunction with the Dolfin library, developed in the FEniCS [43] project
for the PDE solution using FEM.

This chapter presents the mathematical formulation of the numerical
methodology used to solve the coupled equations that describe the flow through
porous media with macropores.

3.1
Mathematical modeling

This section presents the set of differential equations that govern the flow
in vuggy porous media based on the mathematical formulation developed by
Brinkman [22]. The variational form of the Brinkman equation is also derived
in order to obtain a solution by the finite element method.

3.1.1
Conservations equations

Mass conservation is described by eq. 3-1.

∂ρ

∂t
+∇ · (ρu) = 0, (3-1)

where ρ is the liquid density, and u is the velocity field.
The specific mass of the an incompressible fluid is independent of the

spatial coordinates and time. So, the continuity equation reduces to:
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∇ · u = 0 (3-2)

3.1.2
Conservation of linear momentum

The conservation of momentum for incompressible fluids is described by
the Cauchy equation. For a Newtonian fluid, it becomes the Navier-Stokes
equation.

3.1.2.1
Navier-Stokes Equations

Navier-Stokes equation (3-3) and continuity equation (3-2), when cou-
pled, form a set of nonlinear second order partial differential equations that
can not be solved analytically in most situations, except for basic cases where
the initial conditions, boundary conditions and geometries are simple[44].

ρ

(
∂u

∂t
+ u∇ · u

)
= ρg −∇p+ µ∇2u (3-3)

For slow velocity flows at which inertia is negligible, i.e., for low Reynolds
number flows, the Navier-Stokes equation is simplified to Stokes equation:

ρg + µ∇2u = ∇p. (3-4)

3.1.2.2
Darcy’s Law

Proposed by french engineer Henry Darcy during experiments on water
filtration in sand beds in 1856, Darcy’s Law describes flow behavior through a
permeable material.

Q = −k
µ
A∇p. (3-5)

The flow rate per unit area is proportional to the pressure gradient and
inversily proportional to the fluid viscosity. The proportionality constant is the
medium permeability.
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3.1.2.3
Brinkman Equation

The Brinkman equation (3-6) is an extension of Darcy’s law to describe
both the flow through a porous material and in an open channel. Therefore,
Brinkman suggested a general interpolation equation that combines Darcy’s
law, which governs slow flow in porous media, and Stokes equation, in order
to describe flow in a channel[22][17].

∇p = −µk−1u+ µ∗∇2u, (3-6)

where p is the pressure, µ the fluid viscosity, µ∗ a model parameter, u the
velocity field and k the permeability tensor of the porous medium.

As sketched in fig. 3.1, when the fluid particle is inside a pore or vug,
we can assume that k is infinite and µ∗=µ, consequently, Darcy’s term µk−1u

vanishes, which leads to Stokes equation. Whereas, if the particle is flowing
within the porous media, we set µ∗=0 and Darcy equation is recovered. With
a choice of parameters, we change the equation term to be solved in each
domain.

Figure 3.1: Brinkman’s model. Adapted from Choquette & Pray, 1970.

The hypothesis considered in this model to simplify the problem are
steady-state regime, fully-developed laminar flow in the inlet and outlet planes,
rigid porous matrix, Newtonian and incompressible liquid, isothermal flow.
There is also no chemical interaction, and it was neglected gravitational and
inertial effects.
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3.2
Numerical formulation

For the solution of the mathematical model, composed of a system of
partial differential equations, the numerical approach known as finite element
method is used. In this way, it is possible to obtain an approximate solution
for the flow in different arrangements using the FEniCS package, a library that
can be used with the python interface for solving partial differential equations.

3.2.1
FEniCS

FEniCS is an open-source platform for solving partial differential equa-
tions (PDEs) by finite element method. Dolfin is a library that acts as FEniCS
computational backend which can be used in Python or C++ interfaces[43].

To use this library, first, we have to transform the PDE problem into
the proper weak formulation readable for FEniCS. For this, the problem has
to be expressed as a variational formulation while finite elements are used for
discretization in space[43].

In order to discretize the space, we have to choose the appropriate set of
basis functions. Returning to eq. 3-6, we can see that the dependent variables
are pressure p and velocity field u. Fluid viscosity µ and permeability of the
porous medium k are parameters of the problem.

We choose the triangular elements on fig. 3.2. This type of element
belongs to the Lagrange family, also known as Continuous Galerkin, and are
based on polynomial equations[45]. The element with 6 degrees of freedom on
fig. 3.2b was used for velocity and the element with 3 degrees of freedom (fig.
3.2a) for pressure. Thus, the pressure varies linearly (P1) and the velocity is
based on quadratic polynomials (P2).

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Chapter 3. Methodology 33

(a) edge element of 3 degrees of freedom (b) edge element of 6 degrees of freedom

Figure 3.2: Type of finite element used. From Arnold and Logg, 2014.

In the following section, the variational formulation used in this project
is described.

3.2.2
Brinkman’s variational formulation

Consider the following PDE system, the Brinkman’s flow equation 3-6
presented in section §3.1.2.3 and the continuity equation 3-2 for an incom-
pressible fluid:

−µ∗∇2u +∇p+ µk−1u = f in Ω, (3-7a)

∇ · u = 0 in Ω. (3-7b)

where f is a known function, an external force applied to the fluid and subject
to the following boundary conditions:

u · n = u0 on ΓD, (3-8a)

p = pin on Γpin
, (3-8b)

p = pout on Γpout . (3-8c)

where Γ represents the domain boundary defined for the pressure boundary
conditions, with pin, the input pressure, and pout, the output pressure, are
imposed, u0 the velocity pointing out of the boundary ΓD and n the vector
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normal to the border ΓD.
The basic recipe for turning a PDE into a variational problem is take

the equation as eq. 3-7a, multiply by a function v, called weight function, and
integrate over the domain Ω[43], resulting in:

−
∫

Ω
µ∗∇2u · v ∂Ω +

∫
Ω
∇p · v ∂Ω +

∫
Ω
µk−1u · v ∂Ω =

∫
Ω

f · v ∂Ω (3-9)

For the mass conservation 3-7b, we multiply this by a scalar weight
function q and integrate over Ω transforming into a variational form:

∫
Ω
∇ · u · q ∂Ω = 0. (3-10)

Integration by parts of terms with second-order derivatives is required[43]
in order to be able to use basis functions, which have discontinuous derivatives.
Following that, it will apply these concepts at the first integration on eq. 3-9.

−
∫

Ω
µ∗∇2u · v ∂Ω =

∫
Ω
µ∗∇u · ∇v ∂Ω−

∫
Ω
µ∗∇ · (v · ∇u) ∂Ω (3-11)

Using the divergence theorem, which states
∫

Ω∇· f ∂Ω =
∫

Γ n · f ∂S, the
second derivative term in the weak formulation becomes:

−
∫

Ω
µ∗∇2u · v ∂Ω =

∫
Ω
µ∗∇u · ∇v ∂Ω−

∫
Γ
µ∗ n · (v · ∇u) ∂S (3-12)

As ∇u at the entrance is zero, eq. 3-12 becomes:
∫

Ω
µ∗∇u · ∇v ∂Ω (3-13)

Moving to the second integration on eq. 3-9, the term is rewritten with
integration by parts on 3-14a and the Gauss-Green’s theorem on 3-14b:

∫
Ω
∇p · v ∂Ω =

∫
Ω
∇ · (p · v) ∂Ω−

∫
Ω
p · (∇ · v) ∂Ω (3-14a)

=
∫

Γ
n · (p · v) ∂S −

∫
Ω
p · (∇ · v) ∂Ω (3-14b)

Assuming an isotropic medium, the permeability k becomes a scalar, thus, the
variational form of eq. 3-7a becomes:

∫
Ω
µ∗∇u · ∇v ∂Ω +

∫
Γ

n · (p · v) ∂S −
∫

Ω
p · (∇ · v) ∂Ω (3-15)

+
∫

Ω
µk−1u · v ∂Ω =

∫
Ω

f · v ∂Ω
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The canonical notation for variational problems is:

aB (u,v) + b (v, p) + b (u, q) = L (v) (3-16)

where:

aB (u,v) =
∫

Ω
µ∗∇u · ∇v ∂Ω +

∫
Ω
µk−1u · v ∂Ω (3-17a)

b (v, p) = −
∫

Ω
p · (∇ · v) ∂Ω (3-17b)

b (u, q) = −
∫

Ω
∇ · u · q ∂Ω (3-17c)

L (v) =
∫

Ω
f · v ∂Ω−

∫
Γ

n · (p · v) ∂S (3-17d)

The variational formulation was implemented into our code using the
mathematical operators of Dolfin library. Each integral is applied to one part
of the domain. The first integral which is based on the Stokes flow is used
only in the vug domain. The integral associated with the Darcy equation, the
second, is used only within the porous matrix domain. The pressure assumes
a certain value pin at inlet and value pout is imposed on the outlet wall.

Appendix A.1 contains the implementation of the mathematical model
that can be used to solve the pressure and velocity fields in a porous medium
composed of two domains. The code was applied in both problems that we
simulated, a channel with a bounding porous media and porous media with
large vugs.

In next chapter, the model developed in this section will be applied to
the problem of a flow through a channel with a permeable porous wall to study
the flow behavior at the interface and if the Brinkman model can describe the
behavior near matrix-vug observed in physical experiments.
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4
Model analysis

This chapter presents the analysis of the flow behavior at interface
between void and porous surface. The numerical methodology to solve the set
of partial differential equation composed by momentum conservation and mass
is applied in a coupling flow problem. The model presented in the previous
chapter was implemented as described before and the implementation was
validated by obtaining solution of simple problems, such as flow between two
parallel plates.

The geometry used is composed by a channel and a porous material. The
results for this case was compared with the classical experimental analysis of
Beavers and Joseph. An extensive analysis of the model was made in order
to check the accuracy of the methodology used to describe the phenomenon
observed in experimental data. The results show that Brinkman model is able
to describe flow behavior at laminar channel flow over a porous surface.

4.1
Flow behavior near a porous solid and channel interface

We first study the flow through a channel composed of a permeable solid
region and an open region, as sketched in fig. 4.1.

Since the finite element method was chosen as the solution method, one
of the crucial steps is to generate a mesh based on the geometry of the problem
to be studied. After create the geometry in Gmsh software, its necessary to
divide it in many small parts. Triangle elements were chosen to form together
a mesh. As can be seen in fig. 4.1, it was created a non-structured mesh in
a simple rectangle geometry with 2 cm x 20 cm. This section was divided
into two sub-domains, Darcy and Stokes domain, corresponding to the porous
matrix and void, respectively. This mesh is used in the simulation tool where
it was imposed a horizontal flow, a pressure gradient at inlet and outlet plane,
and a scalar permeability is defined for the porous section.
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Figure 4.1: First mesh generated to be tested, where the green area is the free
flow section and the brown one is the porous medium.

4.1.1
Mesh test

To ensure that the solution is independent of the mesh size, a mesh test
was performed for the geometry shown in fig. 4.1. The flow rate at a given set
of parameters was obtained for different meshes. The benchmark chosen was
the values calculated for flow rate through a rectangular section. This form is
composed of two regions that divide the vertical section in the middle, which
a channel with a thickness of 1 cm is simulated, where a free flow occurs and
a porous medium with 1 cm of height.

The hypotheses considered in the simulation are steady-state regime,
fully-developed flow in the inlet and outlet planes and no-slip condition in the
upper impermeable wall.

Three different meshes sizes were tested for different set of parameters:
imposed pressure difference and permeability of the permeable region.

Table 4.1: Comparison of results for mesh refining.
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The results for each mesh are shown in tab. 4.1. Five values of permeabil-
ity of the porous matrix was defined for the porous domain and five values of
pressure gradient at inlet and outlet planes. The choice of the best mesh was
guided by the total flow rate. The flow rate was calculate integrating the veloc-
ity at each node of the outlet wall. The third mesh tested was chosen because
it had little variation of the result of the simulation in relation to the others
and a greater amount of elements in the border between the two regions. For
this mesh, the values for the flow differed by a maximum of 3.28% in the case
of a porous medium with high permeability. The element size varies between
3x10−4 and 5x10−4, where the smallest element size was used to increase the
accuracy of the calculations near the interface between the two regions and
the largest at the top and bottom wall of the domain.

In order to validate our numerical implementation, the permeability of
the porous wall was set to a value close to zero, such that all the flow occurred
through the void. The flow rate was compared to the analytical solution of the
flow through parallel plates. The results are shown in tab. 4.2. The deviation
values are the same because the problem solved is linear.

Table 4.2: Comparison of the values obtained between Poiseuille’s flow and
this numerical model.
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Figure 4.2: Comparison between Poiseuille and our numeric model.

The numerical solution deviated only by 0.16% from the analytical
Poiseuille equation, Eq.4-1. The same deviation is expected for the same
imposed conditions because the problem is linear.

Q = −dp
dx

h3

12µ. (4-1)

The results for 5 pressure values imposed and permeability of the lower
region defined as kpm = 1x10−20m2 also reproduced the Poiseuille solution, as
shown in fig. 4.2. The code was validated by this analysis.

4.2
Flow behavior at solid/void interface

Beavers and Joseph (BJ) [5] proposed a semi-empirical boundary condi-
tion for an interface between a channel and a permeable porous medium. This
experiment in a channel formed by an impermeable wall on top of a perme-
able surface provides a velocity profile in the channel similar to Poiseuille flow.
However, as a consequence of the permeable surface presence, the velocity at
the interface is not zero, showing an apparent slip velocity.

It was observed that there was a viscous shear effect on the permeable
material in a boundary layer region[21], producing a velocity distribution
shown in fig. 4.3. Based on the slip velocity at the interface between the channel
and the porous medium, they proposed a boundary condition for this transition
zone, in order to enable the calculation of this type of problem through the
coupling between Darcy’s law and Stokes equation.
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Figure 4.3: Speed profile proposed by Beavers and Joseph. From Beavers &
Joseph, 1967

In order to investigate the flow prediction of the Brinkman model, used
in this work, near the surface, a parametric analysis is performed to compare
the results with the Beavers and Joseph experiments. In these computations,
a pressure gradient was imposed through the inlet and outlet of both domains.

Figure 4.4 shows an almost parabolic profile in the void region and a
very low velocity in the permeable solid matrix of the porous medium. Figure
4.5 presents detail of the velocity field near the interface between the open
channel and permeable region. As expected, the slip velocity increases as the
permeability of the porous region rises.

Figure 4.6 shows the velocity field for the same mesh with different
permeability values of the porous medium and ∆P = 6, 894.76 Pa. The
velocity values within the permeable material are close to zero for the three
cases if compared with the free flow at the channel. A parabolic profile is
formed in the channel region. Figure 4.6a presents a similar profile reached by
physical experiments near the interface between domains, h = 0.01 m. With
the velocity profile observed in Figs. 4.5 and 4.6a, it is possible to confirm that
the Brinkman model is able to reproduce the same velocity profile reported in
experiments without the necessity of a formulation for the boundary.

To verify the accuracy of the predicted velocity field, the results were
compared to the experimental values presented by Yao and Huang[3] which
are also based on the BJ experiment. The same properties established in their
experiment were used, where the pressure gradient is -0.33 Pa/m and the fluid
used is water with its viscosity being 0.001 Pa.s. Another mesh is constructed.
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The representative porous media in this model is similar to that of figure 4.1,
having a permeability of kpm =5 x 10−9m2 and a rectangular geometry of 20
cm by 5 cm. The height of the free flow region is 2 cm and 5 cm for the porous
medium. The mesh composed by the sum of the described porous medium and
the channel has 20 cm of extension and 7 cm of height.

Figure 4.7 show that the velocity profile predicted here matches well the
one presented by Yao and Huang, with similar slip velocity.

Figure 4.4: Velocity profile at the midpoint of the section (x = 0.1 m) with
multiple permeabilities input and ∆P = 6, 894.76 Pa.

Figure 4.5: Zoom in at the interface (y = 0.01 m) between free section and
permeable wall to show the slip velocity above the interface.
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(a) kpm = 1x10−8m2.

(b) kpm = 1x10−10m2.

(c) kpm = 1x10−12m2.

Figure 4.6: Velocity field for three different porous medium permeabilities input
and ∆P = 6, 894.76 Pa. Below each velocity field is the velocity profile at the
midpoint of the section (x = 0.1 m).
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Figure 4.7: Comparison of velocity profile between theoretical and experimental
presented by Yao & Huang, and numerical results of this work.

4.2.1
The effect of aperture

By varying the channel thickness it is possible to study the impact of
porous matrix permeability kpm and channel aperture h. This free path can
be interpreted as a fracture in a reservoir. With this intention, it was created
a second mesh, shown in fig. 4.9, similar to the experiment that this study
is trying to recover, sketched in fig. 4.8. The no-slip condition was defined in
the upper impermeable wall to re-create the conditions of the BJ experimental
arrangement.
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Figure 4.8: Beavers & Joseph experimental arrangement. From Beavers &
Joseph, 1967.

Figure 4.9: Generated mesh to analyze the Beavers-Joseph condition with an
smaller aperture, where the green area is the free section and the other is the
porous medium.

Figures 4.10 and 4.11 show the results for gaps of 0.0008, 0.002 and 0.004
m. The permeability values kpm were chosen to allow a comparison between
experimental and numerical values. It is possible to observe the velocity profile
formed inside the channel, blue area, and in the permeable material at the
middle of the section, x = 0.01 m. A parabolic velocity profile is formed in
the channel, with a slip velocity at the interface with the permeable wall. This
behavior is similar to the one predicted by using the BJ boundary condition.

As expected, the average velocity in the channel and the slip velocity
rises as the channel height increases.

For a larger channel as in fig. 4.11b with 4 mm, the velocity in the channel
is much higher than that of the previous case, fig. 4.11a, and that has an abrupt
transfer at the interface and a higher sliding velocity.

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Chapter 4. Model analysis 45

(a) Velocity.

(b) Pressure.

Figure 4.10: Velocity and pressure field for 0.0008 m aperture with kpm = 1.98
x 10−9m2 and ∆P = 6, 894.76 Pa. On top, 4.10a, are the velocity diagram
and profile at x = 0.1 m. Below this is the pressure diagram and pressure
distribution from an inlet to the outlet at y = 0.01 m.
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(a) h = 0.002 m and kpm = 10−8m2.

(b) h = 0.004 m and kpm = 4.94 x 10−8m2.

Figure 4.11: Velocity diagram and profile with same velocity scale for two
heights of aperture and ∆P = 6, 894.76 Pa.
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In order to analyze the effect of the permeable boundary in the mass flow
through the channel, the results of the flow through the channel were evaluated
for different heights. This effect is quantified by a parameter Φ, first presented
by Beavers and Joseph[5]. Equation 4-2 was defined by them as the relative
increase in flow rate due to the presence of a permeable boundary with respect
to the flow rate through a channel with impermeable walls:

Φ = (M −Mp)
Mp

, (4-2)

where M is the total flux through the channel outlet and Mp is the total flux
of the outlet in Poiseuille flow problem (impermeable walls).

It is expected an increase in mass flow rate in the free flow region due to
velocity slip condition if compared with a no-slip wall with the same channel
height h and pressure gradient. Figure 4.12 shows the fractional increase in
mass flow rate as a function of h/

√
(k), considering water as the flowing

liquid. The effect of the permeable wall is stronger for narrow gap and high
permeability values.

However, it cannot be verified an agreement between the data points (fig.
4.12) and the BJ’s experimental flow data (fig. 4.13). The results for the aloxite
blocks showed a slight increment in the flow rate due to its permeability, the
lowest studied, explained by its small slip velocity. Hence, the largest increment
belongs to the material that has the highest permeability, kpm = 8.19 x 10−8m2.

Thus, a reasonable explanation would be the relevance of the structure of
the porous medium in the experiment[3], which Brinkman model considers only
permeability kpm as a characteristic of the material. As discussed in section 1.4,
the parameter α has a strong relation to the structure of the porous interface
and sensitive to microscopic changes in the definition of the interface point[8].
In this way, a value for the parameter α for any curve was not found and the
results diverged to a different condition for a given experiment material.
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Figure 4.12: Φ as a function of h/
√
kpm for the same permeabilities of porous

specimens used by Beavers-Joseph. l, kpm = 8.19 x 10−8m2; s, kpm = 3.94
x 10−8; n, kpm = 9.68 x 10−9m2; u, kpm = 1.6 x 10−9m2 and kpm = 6.45 x
10−10m2.

Figure 4.13: Φ as a function of h/
√
kpm. C, kpm = 8.19 x 10−8m2; B, kpm =

3.94 x 10−8; A, kpm = 9.68 x 10−9m2; D, kpm = 1.6 x 10−9m2 and kpm = 6.45
x 10−10m2. From Beavers & Joseph, 1967.

4.2.2
Comparison Beavers-Joseph boundary condition

In this section, we analyzed how close the flow fluid, predicted by solving
Brinkman’s model, follows the BJ boundary condition:
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−du
dy

∣∣∣∣
int

= α√
kpm

(uB − uD) . (4-3)

where uB is the velocity at the interface, uD is the Darcy velocity of the
fluid in the porous medium, kpm the permeability of the material and α is
a dimensionless parameter, which as suggested by Beavers and Joseph, is a
function of the porous medium structure.

Here, four channel thicknesses, 0.8 mm, 2 mm, 4 mm and 1 cm, and
different permeabilities for the permeable material kpm were used. The results
obtained in this test are presented in fig. 4.14, as the parameter Z, definided
as:

Z =
duB

dy

uB − uD
. (4-4)

The BJ condition states that Z is inversely proportional to kpm. the value
of Z is plotted as a function of permeability for different channel heights in fig.
4.14. A curve fit with a power law relation is used, i.e. Z ≈ knpm. The parameter
n for each case is presented in tab. 4.3.

Only the data obtained for a channel with a thickness of 0.8 mm shows
the same dependence on kpm as the Beavers-Joseph boundary condition.
It is important to note that this was the channel height used in their
experiment. For the other channel heights, the data present a better fit for
other permeability power values.

Table 4.3: Curve adjustment for boundary condition equation.

4.2.3
Effect of model parameter µ∗ in the flow prediction

In the results shown up to now, the value of the parameter µ∗ is set to be
equal the fluid viscosity in the channel, µ∗ = µ, and arbitrarily to zero in the
permeable region, µ∗ = 0. In order to evaluate the effect of this approximation
in the predictions, we obtained flow fields using µ∗ = µ for the entire flow
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(a) h = 0.0008 m.

(b) h = 0.002 m.

(c) h = 0.004 m.

(d) h = 0.01 m.

Figure 4.14: Curve adjustment for various apertures.

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Chapter 4. Model analysis 51

domain. The comparison is shown in figs. 4.15 and 4.16, for a channel with 2
mm height, a pressure gradient of 6,894.76 Pa and permeability of the porous
region of kpm = 1x10−12m2.

Figure 4.15: Stability model test: Pressure.

Figure 4.16 shows that the velocity profile is almost insensitive to the
value of µ∗. The flows rates through the porous layer Qpm differ by only
1.79% for the highest permeability (kpm = 1x10−10m2) and there is virtually
no significant difference for lower permeability values, as shown in tab. 4.4.

Table 4.4: Difference between methods.
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Figure 4.16: Stability model test: Velocity.

The analysis of the model at solid/void interface reported similar ex-
perimental predictions. The simulation tool using the Brinkman equation was
validated and was capable to reproduce the behavior described by the Beavers-
Joseph boundary condition. This comparison also recovers the same boundary
equation of BJ for the same channel height (h = 0.0008 m). Once it is shown
that the model is solid, it is possible to apply the simulation tool on a piece
of vuggy porous media. The next chapter presents modeling and simulation
in segments of digital rocks with the purpose of developing a methodology to
estimate equivalent permeability.
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5
Flow through vuggy porous media

This chapter presents the results of this work concerning the analysis of
flow through porous media with large vugs. The expected result of the project is
a methodology to estimate equivalent permeability in different geometries with
heterogeneous characteristics. The cores tested were similar to those found in
the real case of carbonate reservoirs, that is, with the presence of cavities that
may or may not be interconnected. Hence, it is necessary to define a virtual
model that represent carbonate samples.

In order to evaluate the flow through the core sample, a methodology
was created to obtain the two-dimensional geometry model from two core
samples. Three tomographic images of each core sample were selected and
virtually modified to expand the macroporosity area studied in this analysis.
The use of images from more than one sample and the manipulated expansion
of macroporosity also permit the study of the influence of the vug shape,
size, and distribution in flux. Then, the simulation tool was used to determine
the equivalent permeability of each geometry. Finally, the results from the
numerical analysis based on vuggy porous media are presented.

5.1
Core Samples

Two plugs of coquinas withdrawn from Morro do Chaves Formation
located in the Sergipe-Alagoas Basin were used as the porous media for this
part of the analysis. Samples from this formation are considered analogous
to the reservoir rocks of the pre-salt layer of the Campos and Santos Basins
because they date from the same period of geological formation[46].

The collected material was submitted to a micro-tomography of X-ray
as well as the determination of the absolute permeability and porosity of
the samples as a function of the confinement pressure. Table 5.1 contains a
summary of the core samples properties.
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Table 5.1: Core plug geometry details and routine core analysis results for
coquinas samples.

Lima et al.[38] analyzed the pore size distribution of six samples extracted
from the same formation and showed that most of the pores in these materials
are qualitatively classified as macropores according to fig. 5.1.

Figure 5.1: Pore size distribution for coquinas samples. Adapted from Lima et
al.,2018.

In order to make possible a determination of the porous geometry, the
two-dimensional µCT images of the first sample (AM08) extracted in the
vertical direction and the other (AM05) in the horizontal direction were
analyzed. Figures 5.2 and 5.3 show the digital rock reconstruction of the void
spaces where it can be observed a visible stratigraphic difference between them.
The complexity and high characteristic heterogeneity of this type of rocks are
most apparent by the difference between the directions of the cut used during
the extraction of each core sample. Also, it is possible to note in the tomography
image in fig. 5.2 structures formed by shell fragments whit a concave format
and white color.
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Figure 5.2: Construction of the virtual model for sample 1.

Figure 5.3: Virtual model for sample 2.

5.1.1
Model of a rock sample

This study proposes the acquisition and processing of 2D images of
coquinas samples obtained by MRX for analysis of the internal microstructure
(pore space morphology and connectivity) as well as for the evaluation of rock
heterogeneity and use of the porous structure for simulations flow. The image
acquisition was performed by the Laboratory of Digital Microscopy of the
Department of Chemical Engineering and Materials of PUC-Rio.

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Chapter 5. Flow through vuggy porous media 56

(a) Sample Am05. (b) Sample Am08.

Figure 5.4: X-ray microtomography of coquine samples: 3D images of the
samples.

The technique is based on the principle of X-ray imaging, in which several
X-rays of the analyzed object are recorded at different angles of rotation.
These images are used to compose a representation in three dimensions
through computational processing. The sample is positioned between the X-
ray emission source and the detector and is then rotated to acquire projections
at various positions. These projections are proportional to the amount of
radiation arriving at the detector, which varies according to the different X-ray
attenuation coefficients of each material.

The reconstructed 3D images were processed using the software Dragon-
fly v3.5 (ORS) and the processing of the images contemplated the application
of Non-Local Means digital filter for noise reduction. The two-dimensional cut-
segmentation process of each sample and the representation of the volume of
digitally processed data is shown in figs. 5.4 and 5.5. The first sample, Am08,
has in digital format 2,056 slices with 1001 x 1024 pixels each; and the second
sample, Am05, has 2,011 slices with 999 x 1024 pixels each.

Figure 5.6: Procedure used for a 2D simulation in representative geometries
based on µ-tomography images.

For the purpose of simulating a 2D flow through carbonate porous
geometry, the procedure summarized in fig. 5.6 was used. The flowchart of
fig. 5.7 illustrates the steps that each software was used in image processing.
In order to construct a 2D model that represented a section of carbonate,
first, a slice of the microtomography was chosen, as shown in fig. 5.10a, and
this image was further processed in the ImageJ software, which is a popular
open-source for scientific image processing [47].

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Chapter 5. Flow through vuggy porous media 57

Figure 5.5: X-ray microtomography of coquine samples: slices extracted at the
top, middle and bottom of the rocks.

Figure 5.7: Flow chart of digital image processing.

To understand the effect of the size of the cavities on the flow, the
methodology presented in the previous sub-section was used in the calcula-
tion of the equivalent permeability for different geometries. For this, ImageJ
software was chosen because it has high performance and practicality in im-
age processing. The open source software allows the development of various
plug-ins, adding different applications to the software. The visualization and
quantification of two-dimensional images of this software are efficient and ro-
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bust enough to process the tomographic images of this work.
In this software, a sequence of commands was applied in fig. 5.8a in order

to separate the object of interest, which is the vug region. The image file type
choose was 8 bits allowing 256 shades of gray. The Sigma Filter and Gray
Morphology were applied to soften the noise and smooth the borders.

(a) Original (b) Processed

Figure 5.8: Pre-processing of a slice of the upper part (slice 1) of sample 1.

Figure 5.8b was binarized and segmented into two regions (one containing
vugs and one containing porous matrix) as shown in fig. 5.9a. Figure 5.9b
illustrates the holes filled to not permit the existence of a porous matrix inside
a vug what difficult the mesh creation. Figure 5.10b shows the segmented
rock, where the identified holes were filled with black color. The image was
cropped in a square format to create the domain of interest and facilitate
the definition of the boundary conditions at the simulation tool. Before the
attributes extraction, the noise was reduced to eliminate thin or very small
objects, less than an element size used in the mesh parameters which an element
cannot be created inside this tiny hole.

Then, the contours of the processed image were identified, as presented in
fig. 5.10c, with a Matlab based program developed during this study. Appendix
A.2 contains the full implementation of the contours extraction code. A CAD
geometry generated for this code was imported to the Gmsh software. This
application is a generator of three-dimensional finite element mesh[48].
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(a) Threshold (b) Fill Holes

Figure 5.9: Segmentation of a slice of the upper part (slice 1) of sample 1.

As a final procedure, a two-dimensional mesh with two distinct regions
was constructed using Gmsh software based on the points cloud extracted in
Matlab, as shown in fig. 5.11. This discretization of a rigid porous matrix is
a non-structured mesh composed by triangular elements. The mesh used in
this work was not uniform, in this way, a smaller element size was employed
near porous matrix-void interface to possibility a better accuracy of the model
analysis at the transition of sub-domains.

(a) µCT image (b) Image processing (c) Contour extraction

Figure 5.10: Defining the voids in a slice of the upper part (slice 1) of sample
1.

Figure 5.11 shows two domains: the green area, where the flow is free, is
modeled as the Stokes region ΩS and the yellow area, representing the porous
medium with a defined permeability kpm is modeled as the Darcy region ΩD.
Figure 5.12 shows the detail of how the mesh is separated into two regions.
Thus, the pre-processing of these images consists of following above steps until
their discretization in a finite elements mesh.
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(a) Geometry (b) Mesh

Figure 5.11: Domains for one 2D slice of sample 1.

Figure 5.12: Zoom in one part of the mesh to show the limit between the 2
domains.

With the mesh in hand, the code developed in Python to solve
Brinkman’s model is used to numerically solve the horizontal laminar flow
of a fluid through the 2D domain shown in fig. 5.13. The geometry boundary
was divided into 4 segments corresponding to the boundaries at left, top, right
and bottom of the domain. In these computations, a pressure gradient was
imposed at inlet, left boundary, and outlet of the geometry, right boundary.
Impermeable condition is applied in the top and bottom boundaries and a
scalar permeability was defined for the porous material. The liquid considered
in this flow has demineralized water properties.

The hypothesis considered in this part was the same for the mathematical
model, which are steady-state regime, fully-developed laminar flow in the inlet
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and outlet planes, rigid porous matrix, Newtonian and incompressible liquid,
isothermal flow, no chemical interaction, neglected gravitational and inertial
effects.

A personal computer with Ubuntu 17.10 64-bit operating system was
used in these simulations under an Intel Core i7-7700 3.6GHz processor and
8 GB of RAM memory. The execution time of the program for a mesh with
122,724 elements was 29.8 seconds and for a core analysis with a mesh of 37,606
elements was 10.98 seconds. The solution is then post-processed to generate
pressure and velocity fields plots.

Figure 5.13: Section under investigation.

Using the mesh based in fig. 5.13, it is possible to study the impact of
the vug presence in pressure and velocity fields. Figure 5.14 shows the pressure
field in the entire domain and along the vertical and horizontal lines marked
in fig. 5.14a. It is important to note that the pressure is almost constant inside
each vug.

Figure 5.15 shows the velocity vectors, colored by their magnitude.
Clearly, the liquid velocity is much higher inside the vugs, where the flow
resistance is smaller. Figures 5.16 and 5.17 show the horizontal and vertical
velocity along a vertical and horizontal line in the domain, for the conditions
of fig. 5.15.
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(a) Pressure field.

(b) Pressure along x and y lines.

Figure 5.14: Pressure field: x-axis and y-axis with fluid flowing in the x-
direction, ∆P = 6, 894.76 Pa and kpm = 10−12 m2.
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Figure 5.15: Velocity field with fluid flowing in the x-direction, ∆P = 6, 894.76
Pa and kpm = 10−12 m2.

With the velocity values in hand, the flow rate at the outlet is evaluated
for five pressure inputs, ∆P = 6,894.76, 34,473.80, 68,947.60, 172,369 and
344,738 Pa, as shown in fig. 5.18.

Figure 5.18: Flow rate for different pressure gradient inputs for the domain
shown in fig. 5.13 with kpm = 10−12 m2 and fluid flowing in the x direction.

For further analysis, it is necessary to investigate if the results are
influenced by the flow direction. So, in a similar way to the previous one,
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Figure 5.16: Velocity field: y-axis with fluid flowing in the x-direction, ∆P =
6, 894.76 Pa and kpm = 10−12 m2.
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Figure 5.17: Velocity field: x-axis with fluid flowing in the x-direction, ∆P =
6, 894.76 Pa and kpm = 10−12 m2.
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a pressure difference between the bottom and top boundaries was supposed,
causing a flow in the vertical direction. The pressure and velocity field are
shown in figs. 5.19, 5.20 and 5.21, respectively.

Figure 5.22: Flow rate for different pressure gradient inputs for the domain
shown in fig. 5.13 with kpm = 10−12 m2 and fluid flowing in the y-direction.

The flow rate in the vertical direction as a function of the imposed
pressure difference is shown in fig. 5.22. Figure 5.23 shows a comparison of the
flow behavior in both directions. For this domain (geometry and configuration
of vugs), the flow rate is slightly higher for the flow in the vertical direction
using the same simulation parameters.
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Figure 5.19: Pressure field: x-axis and y-axis with fluid flowing in the y-
direction, ∆P = 6, 894.76 Pa and kpm = 10−12 m2.
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Figure 5.20: Velocity field: y-axis with fluid flowing in the y-direction, ∆P =
6, 894.76 Pa and kpm = 10−12 m2.
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Figure 5.21: Velocity field: x-axis with fluid flowing in the y-direction, ∆P =
6, 894.76 Pa and kpm = 10−12 m2.
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Figure 5.23: Comparison of the flow rate as function of pressure gradient on
both flow directions with kpm = 10−12 m2 for the domain shown in 5.13.

With the analysis of the graphs shown, it was observed the change in
flow pattern near vugs, as high velocities and uniform pressure inside the voids,
and the pressure distribution along the section respecting the imposed pressure
values at inlet and outlet boundaries. Somehow the vugs arrangement in the
investigated domain favored the flow in y-direction resulting in a higher flow
rate. In the next sections, the impact of vug shape and flow direction are
examined, aiming to identify a particular flow behavior related to vug size.

5.1.2
The effect of vug size

To understand the effect of the size of the cavities on the flow, the
methodology presented in the previous sub-section was used in the calculation
of the equivalent permeability for different geometries. For this, three distinct
filters were applied to the originally treated image of fig. 5.24a in order to
increase the area of the voids, that is, enlarging the already existing ones.
Segmentation methods based in global thresholding were used to create more
three images virtual manipulated from the core sample image. The threshold
methods Moments, Mean and Huang were respectively applied. These methods
are used in segmentation to create four distinct zones of vug area and
expand the cases analyzed. The section chosen was an image slice of the
microtomography referring to the upper part of sample Am08 (Sample 1).
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(a) 10.29% Voids. (b) 16.24% Voids. (c) 41.62% Voids. (d) 53.61% Voids.

Figure 5.24: Vugs enlargement on slice 1 of sample 1. From left to right, the
first image is the one which was processed to identify voids as seen in 5.10,
next to this were applied different thresholds to enlarge the voids.

Figure 5.24 shows the different geometries considered and the correspond-
ing void porosity φη (area of the voids over total area of the domain).

The velocity magnitude and pressure field for the four geometries consid-
ered are shown in figs. 5.25 and 5.26 for ∆P = 6, 894.76 Pa and kpm = 10−12

m2.
For φη = 10.29% and φη = 16.24%, the flow behavior is similar. However,

for φη > 41.6%, there is a strong change in the flow behavior. The very large
vugs, led to regions of almost constant pressure and very high velocity. The
pressure gradient becomes very strong near the inlet plane. For φη = 53.6%,
the vugs almost percolates from the left to the right boundary, leading to very
high velocity through the vugs.

The equivalent permeability of each case is calculated based on the flow
predictions as eq. 5-1. The results are presented in fig. 5.27. Tests were also
performed for different permeability values of the porous matrix.

keq = Q

A
· µL∆P (5-1)
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(a) 10.29% Voids.

(b) 16.24% Voids.

Figure 5.25: Pressure and velocity field for first cells described in the domains
shown in fig. 5.24 with flow in the x-direction, ∆P = 6, 894.76 Pa and
kpm = 10−12 m2.
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(a) 41.62% Voids.

(b) 53.61% Voids.

Figure 5.26: Pressure and velocity field for last cells described in the domains
shown in fig. 5.24 with flow in the x-direction, ∆P = 6, 894.76 Pa and
kpm = 10−12 m2.
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Figure 5.27: Equivalent permeability (keq) of the geometries shown in fig. 5.24
with different permeabilities of porous matrix, fluid flowing in the x-direction
and ∆P = 6, 894.76 Pa.

Figure 5.28: Equivalent permeability (keq) obtained at the outlet with flow on
x-direction and ∆P = 6, 894.76 Pa, divided by each porous media permeability
(kpm) as a function of the voids of the cells shown in fig. 5.24. The dependent
variable is on the logarithmic scale.

The results are presented as the ratio between the equivalent permeability
to the porous matrix permeability in fig. 5.28. For low vug porosity, the ratio is
almost independent of the porous matrix permeability. For high vug porosity,
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the keq/kpm ratio is higher for low kpm. The effect of the vugs is stronger in a
low permeability porous matrix.

The results for the flow in the vertical direction are shown in figs. 5.29,
5.30 and 5.31. Although the values of the ratio keq/kpm are different, the
conclusions are the same.

Figure 5.31: Equivalent permeability (keq) obtained at the outlet with flow on
y-direction and ∆P = 6, 894.76 Pa, divided by each porous media permeability
(kpm) as a function of the voids of the cells shown in fig. 5.24. The dependent
variable is on the logarithmic scale.

Figure 5.32 compares the equivalent permeability keq of the flow in the
vertical and horizontal direction for kpm = 10−12 m2. For low vug porosity,
the permeabilities are similar. For high vug porosity, the permeability in the
vertical direction flow is much higher. This behavior is associated with the
connectivity of the vugs in both directions.
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(a) 10.29% Voids.

(b) 16.24% Voids.

Figure 5.29: Pressure and velocity field for first cells described in fig. 5.24 with
flow in the y-direction, ∆P = 6, 894.76 Pa and kpm = 10−12 m2.
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(a) 41.62% Voids.

(b) 53.61% Voids.

Figure 5.30: Pressure and velocity field for last cells described in fig. 5.24 with
flow in the y-direction, ∆P = 6, 894.76 Pa and kpm = 10−12 m2.
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Figure 5.32: Comparison of equivalent permeability as function of vugs area
on both flow directions with kpm = 10−12 m2 and ∆P = 6, 894.76 Pa for slice
1 of sample 1.

Other slices of the two samples of carbonates available were analyzed
(AM05 and AM08). Three slices were selected from each sample, one from the
upper, one from the middle and one from the bottom sections. Then, during
the treatment of images, three filters to enlarge the black areas (vugs) were
applied in order to study the effect of vug porosity and connectivity in the
equivalent permeability.

In the left-hand column of fig. 5.33 are the images originally processed
from the middle and lower parts of sample Am08 for the voids to be identified
as done in fig. 5.10. Eroding filters were used to generate images of different
vug porosity.

Flow fluids were obtained for both flow in the x and y directions, for
an imposed pressure gradient of 6,894.76 Pa and a range of porous matrix
permeabilities (kpm = 10−12m2 to 10−8m2). The equivalent permeability in
units of the porous matrix permeability for all the images of figs. 5.24 and
5.33, and both flow directions are presented in fig. 5.34.
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(a) 10.67% Voids. (b) 14.47% Voids. (c) 39.45% Voids. (d) 72.52% Voids.

(e) 9.36% Voids. (f) 10.69% Voids. (g) 32.76% Voids. (h) 34.84% Voids.

Figure 5.33: From b-d are the vugs enlarged of slice 2 (middle part) and from
f-h, slice 3 (lower part) of sample 1. On left column are the ones which were
processed to identify voids as done from 5.24a to 5.24b, next to this were
applied different thresholds to enlarge voids with same threshold methods
applied in fig. 5.24.

Figure 5.34: Equivalent permeability (keq) for ∆P = 6, 894.76 Pa, divided by
each porous medium permeability input (kpm) as a function of voids of the
cells shown in fig. 5.24 for sample 1. kx represents permeability of the porous
medium when flow guidance is on the x-direction and ky is when flow guidance
is on the y-direction.
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Turning to the second sample, fig. 5.35 shows the three selected and
treated slices of the microtomography images. In the first line are the images
for slice 1 which was taken from the top of Am05. In the left column, there are
those that were processed to identify voids, while in the right are the images in
which different filters were applied to increase the voids with the same methods
applied in fig.5.24. It is possible to observe an essential difference between the
two samples. Contrarily to the first sample, the vugs in the second are much
smaller, and there is no formation of large cavities when the filters are applied.

The simulations were made with the same conditions imposed in the first
case. The equivalent permeability values for the different sections of fig. 5.35
are much smaller than that of the first sample (Am08), possibly due to the
scarcity of connections between the voids. Among the graphs of figs. 5.34 and
5.36, also note the difference in scale of equivalent permeability to that defined
in the porous material.

These results are similar to those observed by Okabe and Blunt[29] in
fig. 5.38 where they calculated the permeability using the Lattice Boltzmann
method. When the correlation between macroporosity and computed perme-
ability was analyzed, an increase in macro-porosity, in our case % vugs, also
leads to an increases in the dispersion of computed permeability. This fact is
attributed to the heterogeneous distributions of macropores.
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(a) 2.46% Voids. (b) 4.27% Voids. (c) 15.35% Voids. (d) 22.42% Voids.

(e) 2.58% Voids. (f) 4.70% Voids. (g) 14.69% Voids. (h) 16.98% Voids.

(i) 5.47% Voids. (j) 6.36% Voids. (k) 11.82% Voids. (l) 23.7% Voids.

Figure 5.35: Vugs enlargement on slice 1 (a-d), 2 (e-h) and 3 (i-l) of sample 2.
In first row are the images for slice 1, which was taken from the upper part
of the core sample 2. In the left column are those that have been processed to
identify voids as done from 5.24a to 5.24b, next to this was applied different
thresholds to increase voids with same methods applied in fig. 5.24.
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Figure 5.36: Equivalent permeability (keq) for ∆P = 6, 894.76 Pa, divided by
each porous medium permeability (kpm) input as a function of the voids of
the cells shown in fig. 5.35 for sample 2. kx represents permeability of porous
media when flow guidance is on the x-direction and ky is when flow guidance
is on the y-direction.

Figure 5.37: Subsets from the 3-D microtomography of macropores with
different porosity values: (a) φ = 0.05, (b) φ = 0.075, and (c–f) φ = 0.10.
From Okabe & Blunt, 2007
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Figure 5.38: Variation of computed permeabilities in combined images of fig.
5.37 with different macroporosities. From Okabe & Blunt, 2007.

In this section, the equivalent permeability data obtained with the
simulation in coquinas samples is presented. The presence of vugs with different
arrangements and sizes resulted in an anisotropic equivalent permeability.
Sections with small isolated vugs, at most, doubled the permeability value. The
presence of connected vugs significantly increases the equivalent permeability
keq to orders of magnitude higher than the matrix permeability kpm.

This analysis did not show a direct or exponential relation between equiv-
alent permeability and macroporosity. Aiming to identify some similarities be-
tween the simulations values, some relations presented in the literature are
tested to estimate the permeability.

5.1.3
Results analysis

In order to determine a behavior for the equivalent permeability observed
in fig. 5.32, the Carman-Kozeny’s Equation[49] [50] was used. Equation 5-2 is
traditionally used to relate the permeability k to porosity φ and grain size
Dp, providing a link between medium properties and flow resistance in pore
channels[51].

k = αDp
2 φ3

(1− φ)2 . (5-2)

where α includes proportionality parameters and unit factor.
It was used an approximation of eq. 5-2 substituting the parameters α

and Dp for coefficient ”a”, as a data fit curve for slice 1 of sample 1. However,
it can be seen in fig. 5.39 that the fit does not have coefficients ”a” with close
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values for x and y-directions, since the properties of the analyzed section do not
change within the same portion, the equation does not represent the difference
in values due to change of direction of flow and neither transmits the influence
of the vuggy geometry to the result.

Figure 5.39: Curve adjustment based on the Carman-Kozeny equation with
∆P = 6, 894.76 Pa and kpm = 10−12 m2.

In the final analysis, a method to determine the equivalent permeability
in porous media with large vugs that reach similar results with the observed
in figs. 5.34 and 5.36 is required. Thus, a theoretical calculation that describes
the phenomenon observed in this numerical study can be used as a primary
method to predict the permeability in porous media with macropores.

Figure 5.40: Representative cell of a 2D vuggy porous media. From Golfier et
al., 2015.
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Golfier et al.[27] proposed a relation between equivalent permeability and
circular inclusion as eq. 5-3 for a two-dimensional vuggy system. Figure 5.40
illustrates the representative cell which eq. 5-3 was formulated. A comparison
between our computational values and the results for this equation was
performed and presented in tab. 5.2. For this calculation, an equivalent vuggy
media was considered to fill out eq. 5-3 that is based in a circular inclusion
model, η-region, surrounded by a square-shaped porous matrix, ω-region.

K∗
eq,vug =

Kω

[
R2 (1 + φη)− 2 (φη − 1)Kω − 3R (1 + φη)α

√
Kω

]
R2 (1− φη) + 2 (φη + 1)Kω + 3R (φη − 1)α

√
Kω

. (5-3)

R =
√
φη
π
l. (5-4)

where R represents the vug radius, Kω the porous matrix permeability, φη the
area fraction of the vug and α =

√
1/εβ with εβ = 0.3 denoting the porosity

inside porous matrix.
Figure 5.41 illustrates a representative unit cell created based on an area

fraction of a slice of the core samples under investigation. Using the fraction
of vug area, an equivalent circular vug was built. Then, with this information
extracted from this perfect geometry, it is possible to calculate the equivalent
permeability through equations 5-3 and 5-4. In this case, one large vug is
created to substitute all tiny macropores in a microtomography section.

Table 5.2 presents the comparison between both methods, where it is
possible to observe a similarity in the results.

Direction Computed keq/kpm Calculated keq/kpm Difference (%)
X 1.28 1.23 3.6
Y 1.33 1.23 7.6

Table 5.2: Comparison between calculated equivalent permeability (keq) using
eq.5-3 and equivalent permeability (keq) for a µCT image divided by porous
region permeability (kpm).

A better representation could be made decentralizing this measure,
partitioning each section in many sub-samples and calculating theoretical
equivalent permeability with the intention of bringing the representative model
closer to the base image. In this case, the reservoir section contains distinct
blocks of varying permeabilities.
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Figure 5.41: Procedure adopted to create an equivalent vug system.

Permeability-averaging techniques are commonly used to determine an
appropriate average permeability to represent an equivalent homogeneous sys-
tem. With this in hand, an equivalent global permeability was then determined
by combining weighted and harmonic-average. An expression for weighted and
harmonic-average permeability of blocks with the same thickness for four sub-
divisions, presented in fig. 5.41, is:

kavg = (k1 + k3)(k2 + k4)
4∑
i=1

ki

(5-5)

Although the geometric-average permeability is often used in carbonates,
this method did not represent very well the simulation results because it retains
both high and low values and what has been observed is that high permeability
sections have a great impact on the output flow rate, mainly when the voids
are interconnected.

Figure 5.42: Size partitioning and number of sub-samples for a slice of sample
Am05.

Figure 5.42 shows how the sample was partitioned in sub-samples created
for this analysis. Figure 5.43 illustrates the comparison between computational
results for the domains shown in fig. 5.45, flow in x-direction and the average-
permeability solution where the variation of keq/kpm is represented as a
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function of the macroporosity for the porous matrix permeability of kpm =
10−12 m2.

Analyzing the results, it is possible to observe a similarity between nu-
merical and theoretical model results, except for large values of macroporosity
for which the relation requires more partitions. For φη < 20%, good agreement
between both results is achieved for small values of n sub-samples. For large
values of % vugs, equivalent medium approximation needs more n divisions. In
this case, 100 partitions worked very well for point 7 and 256 sub-samples have
the lowest deviation for points 8 and 9. However, for point 9 the approximation
fails. In this case, for n = 100 the solution is far from the computational and
for n = 256 the value passes the target.

By the results obtained, it was possible estimate the equivalent perme-
ability based on flow simulations in virtual representations of Coquinas sam-
ples. The methodology developed to estimate equivalent permeability from
segmented images is a combination of an equation available in literature and
partition of these images into sub-samples.
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Figure 5.43: Equivalent homogeneous permeabilities for ∆P = 6, 894.76 Pa,
different slices of core samples and n sub-samples.

Figure 5.44: Equivalent homogeneous permeability for macroporosity under
25%.
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(a) 1 (b) 2 (c) 3

(d) 4 (e) 5 (f) 6

(g) 7 (h) 8 (i) 9

Figure 5.45: Images used to build graphic 5.43. Figures 5.45a, 5.45b, 5.45e and
5.45g were extracted from sample 2, Am05. The others are images based on
sample 1, Am08.
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6
Discussion and conclusions

In this work, the effect of the macropores presence on the flow in porous
media was studied by solving the Brinkman’s equation. To achieve the objective
of develop a methodology to estimate the permeability in heterogeneous porous
medium, a numerical model was implemented using the finite element method
and the library of FEniCS platform for solving partial differential equations.

This study parametrically investigated the effect of vug area and struc-
ture on the flow in carbonate rock samples. Before that, it was necessary to
carry out the validation of the model and to analyze the interface condition
between free flow region and permeable material.

Based on the finite element method, we derived a model using Darcy-
Brinkman equation to simulate flow through heterogeneous porous media. The
study of coupled parallel flows within a two-region domain elucidated the mode
in which Brinkman equation is able to replicate the flow between the transition
zone by comparison with the classic Beavers and Joseph[5] analysis.

Despite the lack of equivalence concerning the effect of the porous
bounding on the mass flow rate increment, the presence of channels that
connect opposite faces in our model showed consistent results relative to the
velocity profile and the velocity slip value.

After these analysis, we were able to focus on the main purpose of this
work, which was the estimation of the permeability in representative sections
of carbonate rock samples. For this, a 2D geometry representative model was
built from a tomography image reading.

In order to upscale the equivalent permeability tensor, flow in two
different directions through the discrete segmented regions of the sample was
imposed. The presence of vugs with different sizes and locations resulted in
an anisotropic scaled-up permeability. The velocity magnitude field and the
back-calculated permeabilities clearly showed a preferential path aligned with
the direction of vugs and connectivity. This relation was evidenced when the
vugs were enlarged, by eroding the holes with the threshold technique. This
method divided the pixels of the samples images into two distinct regions by
choosing a cut off value.

The numerical solution of the flow in slices and manipulated images of

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Chapter 6. Discussion and conclusions 91

carbonate samples did not show a simple relation between macroporosity and
permeability, as expected for this type of rock. Next, an analytic formula that
describes the phenomenon observed was searched and an equation to determine
the permeability for vugs of circular shape was tested. For the purpose of
using this equation, an equivalent circular shape was calculated based on the
percentual of the free area of the image. The comparison between computed
permeability and analytical for one large circular vug showed promising values.

For achieving better approximations, some images studied were divided
into blocks. For each block, an equivalent circular inclusion was calculated
in order to analytically estimate the permeability. These values for sub-slices
were upscaled using the weighted and the harmonic average. The mean value of
the estimated permeability for images, using this technique, reached extremely
close values to the previously numerically determined, except at exceedingly
large values of vug area fraction. These large vug area values are extreme cases
that no longer match the real case. The equivalent permeabilities obtained
from the two approaches presented less than 3% of deviation for macroporosity
under 25% and sub-divisions with 100 blocks.

6.1
Future works

There are some open questions regarding the study of carbonate karst
reservoirs due to their high heterogeneity in small sections. The equivalent
permeability as a function of the geometry and structure of the vugs could
be interesting as an input parameter in simulators. For this to be feasible, it
would be necessary to analytically determine the equivalent permeability for a
wide range of macroporosities, using various combinations of fracture and vug
models. Then, a major step would be to measure and understand how the flow
is affected by the direction and angles of the void spaces.

In relation to the coupled parallel flow and its surface condition, the work
of Beavers and Joseph is a representative physical experiment on the coupling
of the single-phase flow problem. It was difficult to reproduce numerically the
same experiments, mainly due to the relevance of the structure characteristic
of porous media. Thus, further analysis of the relative increase of flow through
the channel due to sliding with the porous surface is required.

Another important point is to expand the analysis to the 3D model
in order to provide a more accurate permeability estimate. There are many
benefits involving a 3D approach, since it would incorporate more precisely the
effects of the connection between pores, allowing for a more exact comparison
of numerical results with experimental data.
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When upscaling permeability from a fine scale model to a coarse scale,
several considerations should be taken into account. One step forward in this
direction could be the use of permeability and microporosity measured in
laboratory from small pieces of core samples in order to allow the comparison of
the modelled results with reservoirs based on the geological statistical database
of wells.
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A
FEniCS Algorithms

Scripts A.1: Main Program
1 #!/usr/bin/env python2

2 # -*- coding: utf-8 -*-

3 """

4 A FEniCS program for solving flow in heterogeneous porous media

↪→ using the

5 Brinkman equation in 2D through meshes generated in Gmsh

6
7
8 Created on Thu Jul 26 15:42:23 2018

9 @author: Monique Feitosa

10 """

11
12 from dolfin import *
13 import time
14
15 start_time = time.time()
16
17 ##############################################################

18
19 # Import mesh information

20 # Define mesh

21 mesh = Mesh("sample.xml");
22 # Initialize domain instances (physical lines)

23 boundaries = MeshFunction(’size_t’,mesh,"sample_facet_region.xml
↪→ ");

24 # Initialize subdomains (holes)

25 subdomains = MeshFunction(’size_t’,mesh,"sample_physical_region.
↪→ xml");

26
27 ##############################################################

28
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29 # Function space over the mesh

30 V = VectorElement(’CG’,mesh.ufl_cell(),2)
31 Q = FiniteElement(’CG’,mesh.ufl_cell(),1)
32 Element = V*Q
33 W = FunctionSpace(mesh,Element)
34
35 # Define variational problem

36 (u,p) = TrialFunctions(W)
37 (v,q) = TestFunctions(W)
38
39 ##############################################################

40
41 # Material properties

42 mu = 0.001002 # Water viscosity [Pa.s]

43 k = 1E-14 # Porous media permeability [m2] (1 Darcy = E-12 m2)

44 pr = 6894.76 # Pressure = 1 psi

45 pin = 2*pr # Imposed pressure at the entrance [Pa]

46 pout = pr # Imposed pressure on output [Pa]

47
48 # Define expressions used in variational forms

49 dp = pin-pout
50 u_in = Constant((0.0)) #Initial velocity in x [m/s]

51 f = Constant((0.0,0.0)) #External force

52 n = FacetNormal(mesh) #Normal vector to mesh

53
54 ##############################################################

55
56 # Define boundary conditions

57 bc1 = DirichletBC(W.sub(0).sub(0),Constant(0.0),boundaries,7)
58 bc2 = DirichletBC(W.sub(0).sub(0),Constant(0.0),boundaries,8)
59 bc3 = DirichletBC(W.sub(0).sub(0),Constant(0.0),boundaries,9)
60 bc4 = DirichletBC(W.sub(0).sub(0),Constant(0.0),boundaries,10)
61
62 bcs = [bc1,bc2,bc3,bc4]
63
64 # Define measures associated with the boundaries and holes

65 ds = Measure(’ds’,domain=mesh, subdomain_data = boundaries)
66 dx = Measure(’dx’, domain=mesh, subdomain_data = subdomains)
67
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68 ##############################################################

69
70 # Define variational form for Brinkman

71 a =(mu*inner(grad(u),grad(v))*dx(1)+(mu/k)*inner(u,v)*dx(0)-div(
↪→ v)*p*dx(1)-div(v)*p*dx(0)-div(u)*q*dx(1)-div(u)*q*dx(0))

72
73 L = (inner(f,v)*dx(1)+inner(f,v)*dx(0)-pin*dot(v,n)*ds(10)-pout*

↪→ dot(v,n)*ds(8))
74
75 # Compute solution

76 U = Function (W)
77 solve(a==L,U,bcs)
78
79 ##############################################################

80 # Calculations of flow rate and equivalent permeability

81
82 # Get sub functions

83 (u, p) = U.split()
84 ux, uy = u.split(deepcopy=True)
85 # Get dimension

86 D = mesh.topology().dim()
87
88 # get vertex coordinates

89 coords = mesh.coordinates()
90
91 # get elements at BC1

92 mks = bc2.markers()
93
94 # compute velocities at vertex

95 u_vertex = uy.compute_vertex_values(mesh)
96
97 #print(len(mks))

98
99 int_u_dx = 0
100 for i in range(len(mks)):
101 cc = Facet(mesh,mks[i])
102 # check if it is boundary edge with one cell (FE element)

103 if len(cc.entities(D)) == 2:# facet’s adj cells

104 # interior facets: two adj cells
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105 continue
106 # obtain the boundary facet’s cell’s verticies

107
108 for edge in edges(cc):
109 sum_u_e = 0.0
110 num_vet = 0
111 for pt in vertices(edge):
112 sum_u_e += u_vertex[pt.index()] # node velocity

113 num_vet += 1 # number of nodes on face

114 int_u_dx += (sum_u_e/num_vet) * edge.length() # Flow rate

↪→ calculation

115
116 k_calc = (int_u_dx * mu)/(dp) # Equivalent permeability back-

↪→ calculated

117
118 save = False
119
120 # Solution

121 # Plot solution

122 if save is False :
123 plot(u,title = "Velocity")
124 plot(p,title = "Pressure")
125 # Hold plot

126 interactive()
127
128 # Save solution in VTK format

129 else :
130 file = File("test_u.pvd")
131 file << u
132 file = File("test_p.pvd")
133 file << p
134
135 # Print calculation and time

136 print("K_m=",k_calc)
137
138 print("---␣%s␣seconds␣---" % (time.time() - start_time))
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Scripts A.2: Finite element mesh
1 %-----------------------------------%

2 % Binary image to Finite Element mesh%

3 % This create a .geo file from a binarized image calculating

↪→ boundary of a binary image and forming a surface using

↪→ spline function %

4 % Adapted on Apr 27 2018

5 % @coauthor: Monique Dali

6 % Copyright (c) 2017, Sathyanarayan Rao

7 % All rights reserved.

8 %-----------------------------------%

9
10 %Reading file

11 [I,map] = imread(’image.tif’);
12 BW = im2bw(I);
13 Ifill = imfill(BW,’holes’);
14 %Extract contour between black & white

15 [B,L,N,A] = bwboundaries(BW);
16 %Read size of image

17 [NyI, NxI] = size(Ifill);
18 %Plot binarized image

19 figure; imshow(BW);
20 figure; hold on;
21
22 % Loop through object boundaries

23 u = [];
24 v = [];
25
26 %Plot boundary and each contour

27 for k = 1:N
28 % Boundary k is the parent of a hole if the k-th column

29 % of the adjacency matrix A contains a non-zero element

30 if (nnz(A(:,k)) > 0)
31 boundary = B{k};
32 u = [u k];
33 c2 = boundary(:,1);
34 %Mirror the image

35 y = NyI - c2;
36 plot(boundary(:,2),...
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37 y,’r’,’LineWidth’,2);
38 % Loop through the children of boundary k

39 for l = find(A(:,k))’
40 boundary = B{l};
41 v = [v l];
42 c2 = boundary(:,1);
43 %Mirror the image

44 y = NyI - c2;
45 plot(boundary(:,2),...
46 y,’g’,’LineWidth’,2);
47 end
48 end
49 end
50
51 %element size

52 cl_1 = 0.0005;
53 cl_2 = 0.0003;
54
55 % uCT scale (m)

56 xi = 0.027;
57 yi = 0.027;
58 sc = 23629.63; %scale

59
60 % domain extent

61 xmin = 1;
62 xmax = NxI; %sample size

63 ymin = 1;
64 ymax = NyI;
65
66 %------- Writing a GMsh code (geo file)-------%

67
68 %Text file to export data

69 fileID = fopen(’holesuCT.txt’,’w’);
70
71 %Mesh size

72 fprintf(fileID,’\n’);
73 C = sprintf(’//␣mesh␣size␣description’);
74 fprintf(fileID,’%s\n’,C);
75 fprintf(fileID,’\n’);
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76 C = sprintf(’cl_1␣␣␣=␣␣%.4f;’,cl_1);
77 fprintf(fileID,’%s\n’,C);
78 C = sprintf(’cl_2␣␣␣=␣␣%.4f;’,cl_2);
79 fprintf(fileID,’%s\n’,C);
80
81 %Boundary information

82 fprintf(fileID,’\n’);
83 C = sprintf(’//␣boundary␣points’);
84 fprintf(fileID,’%s\n’,C);
85 C = sprintf(’Point(1)␣=␣{0,␣0,␣0,␣cl_1};’);
86 fprintf(fileID,’%s\n’,C);
87 C = sprintf(’Point(2)␣=␣{%.3f,␣0,␣0,␣cl_1};’,xi);
88 fprintf(fileID,’%s\n’,C);
89 C = sprintf(’Point(3)␣=␣{%.3f,␣%.3f,␣0,␣cl_1};’,xi,yi);
90 fprintf(fileID,’%s\n’,C);
91 C = sprintf(’Point(4)␣=␣{0,␣%.3f,␣0,␣cl_1};’,yi);
92 fprintf(fileID,’%s\n’,C);
93 fprintf(fileID,’\n’);
94 fprintf(fileID,’\n’);
95
96 %Lines: Connecting boundary points

97 C = sprintf(’//␣lines␣that␣connect␣boundary’);
98 fprintf(fileID,’%s\n’,C);
99
100 C = sprintf(’Line(1)␣=␣{1,␣2};’);
101 fprintf(fileID,’%s\n’,C);
102 C = sprintf(’Line(2)␣=␣{3,␣2};’);
103 fprintf(fileID,’%s\n’,C);
104 C = sprintf(’Line(3)␣=␣{4,␣3};’);
105 fprintf(fileID,’%s\n’,C);
106 C = sprintf(’Line(4)␣=␣{1,␣4};’);
107 fprintf(fileID,’%s\n’,C);
108 fprintf(fileID,’\n’);
109
110 %Mesh info

111 C = sprintf(’//␣Mesh␣Parameters’);
112 fprintf(fileID,’%s\n’,C);
113 C = sprintf(’Mesh.CharacteristicLengthExtendFromBoundary␣=␣0;’);
114 fprintf(fileID,’%s\n’,C);
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115 C = sprintf(’Mesh.CharacteristicLengthMax␣=␣0.0025;’);
116 fprintf(fileID,’%s\n’,C);
117 fprintf(fileID,’\n’);
118
119 %Exporting holes contour

120 C = sprintf(’//␣Define␣Segment␣coordinates’);
121 fprintf(fileID,’%s\n’,C);
122
123 %Exporting points cloud

124 [a,b] = size(B);
125
126 for k = 2:a
127 boundary = B{k};
128 c1 = boundary(:,2);
129 c2 = boundary(:,1);
130 x = (c1-1)/sc; y = (ymax - (c2-1))/sc;
131 xs = sprintf(’X%d␣=’,k);
132 ys = sprintf(’Y%d␣=’,k);
133 c = strjoin(arrayfun(@(x) num2str(x),x,’UniformOutput’,false

↪→ ),’,’);
134 d = strjoin(arrayfun(@(y) num2str(y),y,’UniformOutput’,false

↪→ ),’,’);
135 C = strcat(xs,’{’,c,’};’);
136 D = strcat(ys,’{’,d,’};’);
137 fprintf(fileID,’\n’);
138 fprintf(fileID,’//␣Hole␣%d\n’,k);
139 fprintf(fileID,’%s\n’,C);
140 fprintf(fileID,’%s\n’,D);
141 end
142
143 %Transforming vector points into polygons

144 fprintf(fileID,’\n’);
145 C = sprintf(’//␣Define␣spline␣surface’);
146 fprintf(fileID,’%s\n’,C);
147 fprintf(fileID,’\n’);
148 C = sprintf(’LN␣=␣90;’);
149 fprintf(fileID,’%s\n’,C);
150 fprintf(fileID,’\n’);
151
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152 line_loop = [];
153 surfaces = [];
154 i = 90;
155 for k = 2:a
156 j = i+1;
157 m = j+1;
158 C = sprintf(’nR␣=␣#X%d[␣];’,k);
159 fprintf(fileID,’%s\n’,C);
160 C = sprintf(’p0␣␣=␣␣newp;’);
161 fprintf(fileID,’%s\n’,C);
162 C = sprintf(’p␣␣␣=␣␣p0;’);
163 fprintf(fileID,’%s\n’,C);
164 C = sprintf(’For␣i␣In␣{0:nR-1}’);
165 fprintf(fileID,’%s\n’,C);
166 C = sprintf(’Point(newp)␣␣=␣␣␣␣{X%d[i],␣Y%d[i],␣0,␣cl_2};’,k

↪→ ,k);
167 fprintf(fileID,’%s\n’,C);
168 C = sprintf(’EndFor’);
169 fprintf(fileID,’%s\n’,C);
170 C = sprintf(’p2␣␣=␣␣newp-1;’);
171 fprintf(fileID,’%s\n’,C);
172 %Connecting points

173 C = sprintf(’BSpline(%i)␣␣␣=␣␣{p:p2,p};’,i);
174 fprintf(fileID,’%s\n’,C);
175 %Connecting segments

176 C = sprintf(’Line␣Loop(%i)␣=␣{%i};’,j,i);
177 fprintf(fileID,’%s\n’,C);
178 %Defining a contour as surface

179 C = sprintf(’Plane␣Surface(%i)␣=␣{%i};’,m,j);
180 fprintf(fileID,’%s\n’,C);
181 fprintf(fileID,’\n’);
182 line_loop = [line_loop j];
183 surfaces = [surfaces m];
184 i = m+1;
185 end
186
187 l = line_loop;
188 s = surfaces;
189

DBD
PUC-Rio - Certificação Digital Nº 1712557/CA



Appendix A. FEniCS Algorithms 107

190 %Defining domains

191 fprintf(fileID,’\n’);
192 C = sprintf(’//␣Define␣all␣surfaces’);
193 fprintf(fileID,’%s\n’,C);
194 C = sprintf(’Line␣Loop(5)␣=␣{1,␣-2,␣-3,␣-4};’);
195 fprintf(fileID,’%s\n’,C);
196 fprintf(fileID,’\n’);
197 C = sprintf(’Physical␣Line(1)␣=␣{4};’);
198 fprintf(fileID,’%s\n’,C);
199 C = sprintf(’Physical␣Line(2)␣=␣{3};’);
200 fprintf(fileID,’%s\n’,C);
201 C = sprintf(’Physical␣Line(3)␣=␣{2};’);
202 fprintf(fileID,’%s\n’,C);
203 C = sprintf(’Physical␣Line(4)␣=␣{1};’);
204 fprintf(fileID,’%s\n’,C);
205 fprintf(fileID,’\n’);
206
207 %Defining subdomains

208 xs = sprintf(’Plane␣Surface(%i)␣=’,m+1);
209 %Internal subdomain (holes)

210 ys = sprintf(’Physical␣Surface(1)␣=’);
211 c = strjoin(arrayfun(@(l) num2str(l),l,’UniformOutput’,false),’,

↪→ ’);
212 d = strjoin(arrayfun(@(s) num2str(s),s,’UniformOutput’,false),’,

↪→ ’);
213 C = strcat(xs,’{5,’,c,’};’);
214 D = strcat(ys,’{’,d,’};’);
215 fprintf(fileID,’%s\n’,C);
216 %External subdomain (boundaries - holes)

217 C = sprintf(’Physical␣Surface(0)␣=␣{%i};’,m+1);
218 fprintf(fileID,’%s\n’,C);
219 fprintf(fileID,’%s\n’,D);
220
221 %Close the text file

222 fclose(fileID);
223
224 % open the geo file

225 uiopen(’holesuCT.txt’,1)
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