

Alberto Edwin Ildefonso Alvino

Aplicação da Lógica Nebulosa ao Modelo Muhlbauer Para Análise de Risco em Dutos

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós- Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio.

Orientador: José Luiz de França Freire

Rio de Janeiro Dezembro de 2003

Alberto Edwin Ildefonso Alvino

Aplicação da Lógica Nebulosa ao Modelo Muhlbauer para Análise de Risco em Dutos

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo programa de Pós – graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Luiz de França Freire Orientador Departamento de Engenharia Mecânica - PUC-Rio

Prof. Arthur Martins Barbosa Braga Departamento de Engenharia Mecânica - PUC-Rio

Prof. Carlos Valois Maciel Braga Departamento de Engenharia Mecânica - PUC-Rio

> **Prof. Tito Luiz da Silveira** Escola de Engenharia – UFRJ

Prof. Nelson Francisco Favilla Ebecken COPPE / UFRJ

Prof. Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 17 de Dezembro de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, da autora e do orientador

Alberto Edwin Ildefonso Alvino

Graduou-se em Engenharia Mecânica na Universidade Nacional de Engenharia em 1994. Cursou o Mestrado em Engenharia Mecânica em 2000 na PUC-Rio

Ficha Catalográfica

Alvino, Alberto Edwin Ildefonso

Aplicação da lógica nebulosa ao modelo Muhlbauer para análise de risco em dutos / Alberto Edwin Ildefonso Alvino; orientador: José Luiz de França Freire. – Rio de Janeiro : PUC, Departamento de Engenharia Mecânica, 2003.

223 f. : il. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Análise de risco. 3. Modelo Muhlbauer. 4. Lógica nebulosa. 5. Dutos. I. Freire, José Luiz de França. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Agradecimentos

Ao professor José Luiz de França Freire, pela orientação durante o desenvolvimento do curso de Doutorado.

A CNPQ, pelo suporte financeiro.

Aos professores da PUC – RIO pelo ensino e ajuda, que me serviram, para poder culminar o presente trabalho.

A todos os colegas da pós-graduação, pelos momentos de amizade.

A todos os funcionários do departamento de Engenharia Mecânica, pela ajuda brindada durante este tempo.

À Pontifícia Universidade Católica do Rio de Janeiro, e seus funcionários em geral, que sempre foram fontes de alegria.

Às pessoas, amigos e amigas, em especial a VOCÊ.

Ildefonso, Alvino; Freire, José Luiz de França. Aplicação da Lógica Nebulosa ao Modelo Muhlbauer Para Análise de Risco em Dutos. Rio de Janeiro, 2003. 223p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

W. Kent Muhlbauer fez uma identificação detalhada de aproximadamente 300 diferentes condições que influenciam a avaliação do Risco em uma tubulação e propôs um sistema de pontuação que é conhecido mundialmente como o método de Muhlbauer.

O método de Muhlbauer avalia as diversas variáveis que influenciam no Risco de dutovias mediante a atribuição de valores quantitativos. No entanto, sendo um método qualitativo, estas variáveis não podem ser informadas através de valores exatos. Estas variáveis podem ser tratadas como provenientes de distribuições randômicas. Entretanto, identificar as distribuições randômicas pode exigir muito esforço. Sendo assim, em vez de assumir que as avaliações das variáveis têm distribuições randômicas, pode-se considerar que têm distribuições dadas por conjuntos e números nebulosos.

No presente trabalho, os valores numéricos presentes no modelo Muhlbauer passaram a ser admitidos como não determinísticos, admitindo uma incerteza. Esta incerteza depende do engenheiro especialista avaliador do Risco. Para incorporar esta incerteza no cálculo do valor do Risco procurou-se trabalhar com os conjuntos e números nebulosos.

Na análise das incertezas mediante os conjuntos nebulosos, requer-se definir as variáveis lingüísticas (VL), os valores lingüísticos das VL de saída e entrada, as funções de pertinência, além das regras nebulosas. Com estes, um Sistema de Lógica Fuzzy (SLF) é implementado com base na inferência Mamdani. No caso dos números nebulosos, estes admitem um valor mais provável e uma incerteza. Esta incerteza é avaliada por uma função de pertinência normalizada. Operações de soma, subtração, multiplicação e divisão são possíveis para os números fuzzy. Como resultado final torna-se possível encontrar-se não só um número que define o Risco como também a incerteza (faixa de valores) que este Risco pode ter, que é uma função das incertezas das avaliações individuais das variáveis.

O presente trabalho propõe um modelo básico de Gerenciamento de Risco (**GR**) e Análise de Integridade Estrutural (**AIE**) para dutos com corrosão externa. Para isso, os resultados de uma **AIE** nível I aplicado aos dutos é relacionada com a metodologia de análise de Risco de W. Kent Muhlbauer, através de uma Matriz de Risco.

A partir de uma **AIE** nível I o cálculo da Vida Residual (**T***) é avaliada. A **T*** é comparada com uma Vida Desejada (**VD**), a qual é obtida da matriz de risco. Se **T*** é menor que a VD, recomenda-se fazer uma **AIE** nível II. Se **T*** é maior que **VD** determina-se um Tempo de Inspeção (**TI**) baseado na análise de confiabilidade.

Palavras-chave

Lógica Nebulosa, Análise de Risco, Modelo Muhlbauer, Dutos.

Ildefonso, Alvino; Freire, José Luiz de França. Application of Fuzzy Logic to the Muhlbauer Model for Pipeline Risk Analysis. Rio de Janeiro, 2003. 223p. DSc. Thesis Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

W. Kent Muhlbauer made a detailed identification of approximately 300 different conditions that influence in the evaluation of the Risk in a pipeline, so, He proposed a punctuation system that is known as the method of Muhlbauer.

Muhlbauer's method evaluates the several variables that influence in the pipeline Risk by the attribution of quantitative values. However, being a qualitative method, these variables cannot be informed through exact values. These variables can be treated as coming of distributions random. However, to identify the distributions random can demand a lot of effort. Being like this, instead of assuming that the evaluations of the variables have distributions random, it can be considered that they have distributions given by fuzzy sets and numbers.

In the present work, the values numeric presents in the model Muhlbauer will be admitted as no deterministic, admitting an uncertainty. This uncertainty depends on the engineer specialist knowledge about the Risk. To incorporate this uncertainty in the calculation of the value of the Risk Muhlbauer tried to work with the fuzzy sets and numbers.

In the analysis of the uncertainties by the fuzzy sets, it is necessary to define the linguistic variables (VL), the linguistic values of input and output of VL, the membership functions, besides the fuzzy rules. With these, a System of Logic Fuzzy (SLF) is implemented based on Mamdani's inference. In the case of the fuzzy numbers, they admit a more probable value and an uncertainty. This uncertainty is evaluated by a function of normalized membership. Sum, subtraction, multiplication and division operations are possible for the numbers fuzzy. As result, it is possible to find not only a number that defines the Risk as also the uncertainty (range of values) that the Risk can have. It is a function of the uncertainties of the individual evaluations of the variables.

The present work proposes a basic model of Management of Risk (GR) and Analysis of Structural Integrity (AIE) for pipeline with damage corrosion. For that, the results of an AIE

level one applied to the pipeline are associated with the results of Muhlbauer's method through a Risk Matrix.

Starting from an AIE level one, the calculation of the Residual Life (T *) is evaluated. T * is compared with a ideal life (VD), which is obtained of the Risk Matrix. If T * is smaller than VD, it is recommended to do an AIE level II. If T * is larger than VD is determined a Time of Inspection based on the reliability analysis.

Keywords

Fuzzy Logic, Risk Analisys, Muhlbauer's Model, Pipeline.

Sumário

CAPITULO 1 INTRODUÇÃO

1.1 SISTEMAS DE TUBULAÇÃO DE TRANSMISSÃO	1
1.2 DEFINIÇÃO DE RISCO EM SISTEMAS DE TUBULAÇÃO	
DE TRANSMISSÃO	2
1.3 AVALIAÇÃO QUANTITATIVA E QUALITATIVA DO RISCO	2
1.4 TEORIA DE LÓGICA FUZZY NA AVALIAÇÃO DE RISCO	
QUALITATIVO	3
1.5 NECESSIDADE DA COMPREENSÃO INTEGRAL DO	
PROBLEMA DE AVALIAÇÃODO RISCO EM SISTEMAS DE	
TUBULAÇÃO QUE TRANSPORTAM PETRÓLEO, GÁS OU DERIVADOS	4
1.6 IMPORTANCIA DA AVALIAÇÃO DO RISCO NA ATIVIDADE	
DUTOVIARIA	5
1.7 ESTADO DA ARTE	6
1.8 APRESENTAÇÃO DA TESE	12

CAPITULO 2

AVALIAÇÃO DO RISCO NO SISTEMA DE TUBULAÇÃO PARA TRANSMISSÃO DE PETRÓLEO E/OU GÁS MEDIANTE O MODELO MUHLBAUER 14

2.1 MODELO DE MUHLBAUER	18
2.2 CONTROLE DO RISCO ATRAVÉS DO MODELO DO MUHLBAUER	26
2.3 UMA PLANILHA PARA O MODELO MUHLBAUER	33
2.4 ANÁLISE DE CUSTO ATRAVÉS DA METODOLOGIA MUHLBAUER	39
2.5 ANÁLISE DE INTEGRIDADE ESTRUTURAL EM DUTOS	48
2.6 GERENCIAMENTO DOS RESULTADOS DE RISCO E AIE NOS DUTOS	50
2.6.1 CÁLCULO DA VIDA RESIDUAL (T*) DE UM DUTO CORROSIDO	
LONGITUDINALMENTE	53
2.6.2 AIE E SEU ACOPLAMENTO COM A MATRIZ DE RISCO	57

CAPITULO 3	
LÓGICA FUZZY NA ANÁLISE DE RISCO	62
3.1 DEFINIÇÕES BÁSICAS	65
3.1.1 VALORES LINGÜÍSTICOS	66
3.1.2 CONJUNTO FUZZY	66
3.1.3 FUNÇÃO DE PERTINÊNCIA	66
3.1.4 CORTE α (α-CUT)	68
3.1.5 PRINCÍPIO DE EXTENSÃO	68
3.1.6 VARIÁVEL LINGÜÍSTICA (VL)	69
3.1.7 RELAÇÕES FUZZY	70
3.1.8 COMPOSIÇÃO MAX-MIN	72
3.1.9 OPERAÇÕES COM CONJUNTOS FUZZY	73
3.1.10 BASE DE REGRAS FUZZY	74
3.1.8 IMPLICAÇÃO	75
3.2 METODOLOGIAS PARA AVALIAR O RISCO	
BASEADA NA LÓGICA FUZZY	76
3.3 INFERÊNCIA MAMDANI	81
3.3.1 SISTEMAS DE LÓGICA FUZZY	86
3.3.2 IDENTIFICAÇÃO DE UM SISTEMA FUZZY	87
3.3.2.1 BASE DE REGRAS	90
3.3.2.1.1 MÉTODO DE GERAÇÃO DE REGRAS BASEADA	
NO PRINCÍPIO DE EXTENSÃO	91
3.3.2.1.2 MÉTODO DE GERAÇÃO DE REGRAS BASEADA	
NOS VALORES MÁXIMOS DOS CONJUNTOS FUZZY	93
3.3.2.1.3 MÉTODO DE GERAÇÃO DE REGRAS BASEADO	
NO MÉTODO DE ISHIBUCHI	95
3.3.2.2 TIPOS DE AGREGAÇÃO E DESFUZIFICAÇÃO	99
3.3.2.3 QUANTIDADE DE CONJUNTOS FUZZY	101
3.4 NÚMERO FUZZY	108
3.4.1 DEFINIÇÃO NÚMEROS FUZZY	108

59

3.4.1.1 OPERAÇÕES COM NÚMEROS FUZZY	110
CAPITULO 4	
FUZIFICAÇÃO DO MODELO MUHLBAUER	113
4.1 PROBLEMAS A SUPERAR NA FUZIFICAÇÃO DO	
MODELO MUHLBAUER	115
4.1.1 A SENSIBILIDADE DO MODELO MUHLBAUER	115
4.1.2 PROBLEMA DE DISCRETIZAÇÃO	118
4.1.2.1 INFLUENCIA DO TIPO DE AGREGAÇÃO E DESFUZIFICAÇÃO	119
4.1.2.2 INFLUENCIA DO NÚMERO DE CONJUNTOS FUZZY	121
4.2 MODELOS PROPOSTOS PARA FUZIFICAR O MODELO	
MUHLBAUER	122
4.2.1 PRIMEIRO MODELO – SLF GENÉRICO	122
4.2.1.1 RESULTADOS DO PRIMEIRO MODELO	131
4.2.2 SEGUNDO MODELO – SLF PRECISO	133
4.2.2.1 RESULTADOS DO SEGUNDO MODELO	135
4.2.3 TERCEIRO MODELO - APLICAÇÃO DE NÚMEROS	
FUZZY NA AVALIAÇÃO DO RISCO MEDIANTE	
O MODELO DE MUHLBAUER	137
4.3 DISCUSSÃO DOS TRÊS MODELOS PROPOSTOS	140
4.3 INTERFACE GRÁFICA PARA O INGRESSO DE	
INFORMAÇÕES NOS TRES MODELOS PROPOSTOS	143
CAPÍTULO 5	
ESTUDOS DE CASOS	145
5.1 ANALISE DE RISCO DO DUTO A-G	145
5.1.1 ANALISE DE BENEFICIO/CUSTO NO DUTO A-G	160
5.1.2 CÁLCULO DO TEMPO DE INSPEÇÃO DEVIDO AO DANO	
POR CORROSÃO ATMOSFÉRICA	162
5.2 ANALISE DE RISCO DO DUTO B-A, C-A e X-B	168
5.2.1 CÁLCULO DO TEMPO DE INSPEÇÃO DEVIDO AO DANO	
POR CORROSÃO ATMOSFÉRICA NOS DUTOS B-A, C-A E X-B	169

CAPÍTULO 6	
COMENTÁRIOS, CONCLUSÕES E RECOMENDAÇÕES	172
BIBLIOGRAFIA	178
ANEXO	185

LISTA DE FIGURA

Figura 1.1: Fluxograma geral da pesquisa a realizar	13
Figura 2.1: Mapeamento dos resultados do Modelo de Muhlbauer	27
Figura 2.2: Matriz de Risco proposto pela API para equipamentos em plantas	
eletroquímicas	28
Figura 2.3: matriz de Risco proposto pela API para sistemas de tubulações	29
Figura 2.4: Matriz de Risco proposto nesta trabalho baseado nos resultados	
do modelo Muhlbauer	29
Figura 2.5: Níveis de Risco – primeira proposta.	30
Figura 2.6: Localização das avaliações A,A1 e A2 na matriz de Risco	31
Figura 2.7: Matriz de Risco –segundo proposta	32
Figura 2.8: Fluxograma proposto para a planilha de base de dados	34
Figura 2.9: Resumo das Avaliações de todos os trechos de dutovias.	35
Figura 2.10: Formas de priorização de trechos	35
Figura 2.11: Dados necessários para avaliar o risco segundo a metodologia	
de Muhlbauer	36
Figura 2.12: Continuação da figura 2.11.	37
Figura 2.13: Nível de Risco de um trecho de dutovia	38
Figura 2.14: Nível dos índices de prevenção para um trecho de dutovia	39
Tabela 2.5: Custos e pontuações das alternativas das variáveis preventivas	
do Índice de dano por corrosão de duto enterrado	41
Figura 2.5: Janela inicial do aplicativo "Análise de Risco"	42
Figura 2.6: Opções implementadas no aplicativo "Análise de Risco"	43
Figura 2.7: Janela de identificação do duto no aplicativo "Análise de Risco"	43
Figura 2.8: Janela de entrada de dados para as variáveis do tipo atributos	
no aplicativo "Análise de Risco"	44
Figura 2.9: Janela de entrada de dados para as variáveis do tipo prevenção no	
aplicativo "Análise de Risco"	45
Figura 2.10: Janela de entrada de dados para as variáveis do FIV no aplicativo	
"Análise de Risco"	45
Figura 2.11: Janela de resultados obtido do aplicativo "Análise de Risco"	46
Figura 2.12: Janela de ajuda do aplicativo "Análise de Risco"	47
Figura 2.13: Estatística de acidentes nos Estados Unidos, Europa e Canadá	48

Figura 2.14: Representação de um duto corroído com defeito longitudinal.	54
Figura 2.15: Matriz de Risco devido ao dano de corrosão no duto enterrado	57
Figura 2.16: Interface gráfica para a determinação do tempo de inspeção	60
Figura 3.1: Representação gráfica de um conjunto fuzzy M	67
Figura 3.2: Representação gráfica de $lpha$ -cut=0.5 no conjunto fuzzy M	68
Figura 3.3: Imagem do conjunto fuzzy M ao conjunto fuzzy P através da	
função y=x ²	69
Figura 3.4: Variável lingüística X com quatro conjuntos fuzzy	70
Figura 3.5: Conjuntos fuzzy A e B	73
Figura 3.6: União dos conjuntos fuzzy A e B	74
Figura 3.7: Interseção dos conjuntos fuzzy A e B	74
Figura 3.8: Procedimento geral da inferência Mamdani para obter a saída C'	com
base nos valores de entrada x1 e x2.	77
Figura 3.9: Procedimento geral da inferência monotônica para obter o	
resultado em base a uma variável de entrada x	77
Figura 3.10: Procedimento geral da inferência monotônica para obter o	
resultados para três variáveis de x1,x2 e x3	78
Figura 3.11: Inferência Mamdani com método de agregação MÁXIMO	83
Figura 3.12: Inferência Mamdani com método de agregação SOMA	84
Figura 3.13: Valores zs, zm, zl, zb e zc obtidos segundo diferentes métodos	
de desfuzificação.	85
Figura 3.14: Estrutura de um sistema de lógica fuzzy	86
Figura 3.15: Entrada de dados no aplicado.	88
Figura 3.16: Obtenção de resultados do aplicativo	89
Figura 3.17: Entrada de dados em forma CRISP ou por números fuzzy no	
aplicativo	90
Figura 3.18: Resultado obtido pelo aplicativo 1	92
Figura 3.19: Conjuntos fuzzy gerados pelo aplicativo para a variável	
lingüística X	93
Figura 3.20: Resultado obtido pelo aplicativo 2	95
Figura 3.21: Resultado obtido pelo aplicativo 3	97
Figura 3.22: Resultado obtido pelo aplicativo 4	98
Fig. 3.23: Erro quadrático e erro quadrático médio para as dez opções	
da tabela 3.3.	100

Figura 3.24: Máxima variação gerada pelas dez opções da tabela 3.3	100
Figura 3.25: Erros quadráticos gerado pelos SLF para diferentes quantidade	S
de conjuntos fuzzy	102
Figura 3.26: Variação máxima gerada pelos SLF para diferentes quantidade	S
de conjuntos fuzzy	103
Figura 3.27: Resultados dos SLF quando as variáveis de entradas são	
expressas mediante conjuntos CRIPS	105
Figura 3.28: Resultados dos SLF quando as variáveis de entradas são	
expressas mediante conjuntos fuzzy	105
Figura 3.29: Resultado gerado pelo aplicativo para o SLF escolhido	107
Figura 3.30: Representação gráfica de um número fuzzy	109
Figura 3.31: Operações com números fuzzy	111
Figura 3.32: Números fuzzy tipo trapezoidal	111
Figura 4.1: Mapeamento dos resultados do modelo Muhlabuer	115
Figura 4.2: Mapeamento dos resultados do Modelo Muhlbauer quando o	
FIV é substituído por FIV ⁻¹	116
Figura 4.3: SLF que aproxima à função multiplicação	117
Figura 4.4: SLF que aproxima a divisão	118
Fig.4.5: Seleção do tipo de desfuzificação e agregação em função dos	
resultados do erro quadrático	119
Figura 4.6: Seleção do tipo de desfuzificação e agregação em função dos	
resultado da variação máxima	120
Figura 4.7: Seleção do SLF em função da quantidade de conjuntos fuzzy da	S
variáveis lingüísticas de entrada e do resultado da variação máxima	121
Figura 4.8: Generalização do aplicativo explicado em 3.3.2.	124
Figura 4.9: SLF gerado pelo aplicativo modificado	125
Figura 4.10: Agrupamento das variáveis do índice de dano por corrosão	127
Figura 4.11: Primeiro modelo proposto para avaliar o Risco por corrosão	128
Figura 4.12: Resultado do erro quadrático para o primeiro modelo	131
Figura 4.13: Resultado da variação máxima para o primeiro modelo	131
Figura 4.14: Segundo modelo proposto para avaliar o Risco de	
dano por corrosão	134
Figura 4.15: Resultado do erro quadrático para o Modelo 2	136
Figura 4.16: Resultado da variação máxima para o Modelo 2	136

/**\ V I**

Figura 4.17: Esquema geral do modelo Muhlbauer	138
Figura 4.18: Interface gráfica para avaliar o Risco quando as variáveis	
do índice de dano por corrosão são expressas mediante números fuzzy	139
Figura 4.19: Visualização da interface utilizada para o ingresso de	
Informação necessária para avaliar o Risco por corrosão segundo o	
primeiro, segundo e terceiro modelo proposto	144
Figura 5.1: Informações do trecho A-G	146
Figura 5.2: Informações do trecho A-G (continuação)	147
Figura 5.3: Influência do Risco por danos de terceiros, corrosão, projeto	
e operações incorretas no Risco total.	150
Figura 5.4: Resultado da pontuação de prevenção nos quatro índices	150
Figura 5.5: Comparação entre os resultados do Risco obtido por Pezzi	
e o modelo Muhlbauer para o duto A-G	152
Figura 5.6: Resultados de Risco obtidos quando se introduz incerteza em 3	
variáveis do índice de dano por corrosão e 2 variáveis do FIV	157
Figura 5.7: Níveis de Risco do duto A-G com base nos resultados dos três	
modelos explicados nos capítulo quatro	159
Figura 5.8: Comparação entre os resultados do nível de Risco obtido	
por Pezz, modelo Muhlbuaer e os três modelos mencionados	
no capitulo quatro	159
Figura 5.9: Pontuações e custos das oito variáveis do índice de dano por	
Corrosão de duto enterrado	161
Figura 5.10: Resultados da análise Beneficio/Custo para o Duto A-G	161
Figura 5.11: Resultado do tempo de inspeção para o duto A-G	163
Figura 5.12: Matriz de Risco para o dano por corrosão no duto enterrado	164
Figura 5.13: Variação da pressão admissível e de operação em função	
do tempo	165
Figura 5.14: Variação da incerteza de Pa-Pa em função do tempo	166
Figura 5.15: Função de densidade das variáveis aleatorias Pa e Po.	166
Figura 5.16: Variação da vida residual em função da pressão de operação	167
Figura 5.17: Função de densidade acumulada e função de densidade	
da variável aleatória vida residual.	167
Figura 5.18: Função densidade para as variáveis aleatórias vida	
residual e vida desejada.	167

LISTA DE TABELAS

Tabela 2.1: Variáveis do índice de corrosão	22
Tabela 2.2: Alternativas e suas pontuações para a variável	
tipo de atmosfera.	22
Tabela 2.3: Variáveis do fator impacto de Vazamento	23
Tabela 2.4: Número de ítens preventivos para cada índice de dano.	26
Tabela 2.5: Custos e pontuações das alternativas das variáveis preventivas	
do Índice de dano por corrosão de duto enterrado	41
Tabela 2.6: Vida desejada, incerteza desejada e probabilidade de falha	
Desejada segundo os níveis de Risco	58
Tabela 3.1: Valores lingüísticos para L, C e E dados por Karwoski e Mital	80
Tabela 3.2: Resumo de resultados das figuras 3.18, 3.20, 3.21 e 3.22	98
Tabela 3.3: Diferentes opções de seleção para o tipo de agregação	
e desfuzificação	99
Tabela 3.4: SLF escolhidos dos 640 fuzzy analisados.	106
Tabela 4.1: SLF do primeiro modelo proposto para avaliar o Risco.	129
Tabela 4.2: SLF do primeiro modelo propost0 para avaliar o Risco	
(continuação da tabela 4.1)	130
Tabela 4.3: Resultado de seleção dos tipos de agregação e de	
Desfuzificação para os SLF da figura 4.9.	132
Tabela 4.4: Resultados da seleção dos tipos de agregação e de	
Desfuzificação dos SLF da figura 4.12	135
Tabela 5.1: Informações principais dos dutos A-G, B-A, C-A, e X-B	145
Tabela 5.2: Resultados do Risco para o trecho A-G (1)	149
Tabela 5.3: Resultado do Risco total no duto A-G (2)	158
Tabela 5.4: Resultados de Risco para os quatro trechos	168
Tabela 5.5: Cálculo do intervalo de valores para o Risco nos quatro trechos	168
Tabela 5.6: Cálculo da relação entre o Risco avaliado para cada trecho e	
o Risco mínimo possível.	169
Tabela 5.7: Resultados do tempo de inspeção para os trechos B-A, C-A e X-B	170

LISTA DE SÍMBOLOS

SLF	: sistema de lógica fuzzy
SLFs	: sistemas de lógica fuzzy
FIV	: fator impacto de vazamento
FIV ⁻¹	: inversa do fator impacto de vazamento
MAOP	: máxima pressão admissível de operação
RBI	: inspeção baseado em Risco
R _d	: taxa de corrosão radial (mm/ano)
RL	: taxa de corrosão longitudinal (mm/ano)
d	: perda de espessura por corrosão (mm)
$\sigma_{d^{\star}}$: desvio padrão de d (mm)
do	: perda de espessura inicial (mm)
σ _{do*}	: desvio padrão de do (mm)
L	: longitude do defeito por corrosão (mm)
σL*	: desvio padrão de L (mm)
Lo	: longitude do defeito inicial por corrosão (mm)
σ_{Lo^*}	: desvio padrão de Lo (mm)
т	: tempo (anos)
στ	: desvio padrão de T (anos)
То	: tempo inicial (anos)
στο	: desvio padrão de To (anos)
T*	: vida residual (anos)
σ _T *	: desvio padrão de T * (anos)
CS	: coeficiente de segurança
Ра	: pressão admissível (MPa)
σ _{Pa}	: desvio padrão de Pa (MPa)
Ро	: pressão de operação (MPa)
σρο	: desvio padrão de Po (MPa)
Sp	: tensão de ruptura que levaria o duto a falhar (MPa).
σ_{Sp}	: desvio padrão de Sp (MPa)
Sy	: limite de escoamento do duto (MPa)
σ_{Sy}	: desvio padrão de Sy (MPa)

Α	: área do defeito do duto (mm ²)
Ao	: área do defeito inicial do duto (mm ²)
t	: espessura do duto (mm)
σ_t	: desvio padrão de t (mm)
М	: fator de Folias
σ _M	: desvio padrão de M
VD	: vida desejada (anos)
σ_{VD}	: desvio padrão de VD (anos)
CV	: coeficiente de variação
\overline{VD}	: variável aleatória tipo normal de VD
$\overline{T^*}$: variável aleatória tipo normal de T *
Pfc	: probabilidade de falha calculada
Pfd	: probabilidade de falha desejada
ті	: tempo de inspeção (anos)
Po	: variável aleatória tipo normal de Po
Pa	: variável aleatória tipo normal de Pa
Х	: variável idade para o problema enunciado em 3.1
x	: um elemento de X
U	: universo de discurso de x
Y	: variável meio agressor para o problema enunciado em 3.1
Z	: variável perda por corrosão para o problema enunciado em 3.1
$\mu_{\rm M}(x)$: função de pertinência do elemento x no conjunto fuzzy M
α -cut	: corte alpha
VL	: variável lingüística
MIMO	: SLF com muitas entradas e muitas saídas
MISO	: SLF com muitas entrada e uma só saída
MOM	: método de desfuzificação pela meia dos máximos
LOM	: método de desfuzificação pela máximo dos máximos
SOM	: método de desfuzificação pela mínimo dos máximos
а	: valor meio de um numero fuzzy
α	: dispersão esquerda do numero fuzzy
β	: dispersão direita do numero fuzzy

õ	: numero fuzzy
CTE	: corrosão de tubulação enterrada
н	: relação entre a pressão de teste hidrostático com a MAOP
AC	: corrente alterna
CA	: corrosão atmosférica
ECM	: efeito da corrosão mecânica
NFPA	: Associação Americana de proteção do Fogo
IAP	: integrity assessment profiles
UM	: unidade monetária
Pcf	: Função densidade acumulada de probabilidade
Pdf	: Função densidade de probabilidade
AIE	: Análise de Integridade Estrutural