REFERÊNCIAS BIBLIOGRÁFICAS

- BAIDYA, T. K. N; CASTRO,A. L. Convergência dos Modelos de árvores binomiais para avaliação de opções. Pesquisa Operacional. Vol. 21 pp.17-30, junho 2001.
- [2] BARBE, T. Aplicações de Quase Monte Carlo no Mercado de derivativos brasileiro. Dissertação de Mestrado, Departamento de Economia, USP. São Paulo 2001.
- [3] BRANDIMARTE, P. Numerical Methods in Finance. New York: John Wiley & sons, 2002.
- BROADIE, M.; GLASSERMAN, P.: Pricing American-Style Securities Using Simulation, Journal of Economic Dynamics and Control, June 1997, vol.21, nº 8-9, pp.1323-1352.
- [5] BROADIE, M.; GLASSERMAN, P.; JAIN, G. Enhanced Monte Carlo Estimates for American Option Prices, Journal of Derivatives, vol.5, pp.25-44.
- [6] CASTRO, A.L. Avaliação de Investimento de Capital em Projetos de Geração Termoelétrica no Setor Elétrico Brasileiro Usando Teoria das Opções Reais, Dissertação de Mestrado, Departemento de Engenharia Industrial, PUC-Rio, Rio de Janeiro, 2000.
- [7] CHRISS, N. A. Black Scholes and beyond option pricing models. Chicago: Irwin Professional Publishing, 1997.
- [8] CLEWTOW, L.; STRIKLAND, C. Implementing derivatives models. New York: John Wiley & sons, 1998.
- [9] DIAS, M.A.G.; Investimento Sob Incerteza em Exploração e Produção de Petróleo, Dissertação de Mestrado, Departamento de Engenharia Industrial, PUC-Rio, 1996.
- [10] DUAN, J. ; SIMONATO, J. American Option Pricing under GARCH by a Markov Chain Aproximation, Journal of Economic Dynamics & Control n.25, 2001 pp 1689-1718.

- [11] DUAN, J. ; SIMONATO, J; GAUTHIER, G; SASSEVILLE, C.
 Aproximating American Option Prices in the GARCH Framework, Working paper to appear in Journal of Futures Markets, January, 2003.
- [12] DUPIRE, B. (Ed). Monte Carlo Methodologies and Applications for Pricing and Risk Management. Risk Books, 1998.
- [13] ENGLE, R. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK Inflation, Econometrica, n 50 (1983), 987-1108.
- [14] ENGLE, R; V. NG. Measuring and Testing of the Impact of News on Volatility, Journal of Finance 48 (1993), 1749-1778.
- [15] FORSYTH, P. A. An Introduction to Computational Finance Without Agonizing Pain. University of Waterloo Working Paper. Ontario, June 23, 2002.
- [16] FU, M.C.; LAPRISE, S.B.; MADAN, D.B.; SU Y.; WU, R. Pricing American Options: A Comparison of Monte Carlo Simulation Approaches. Working Paper, University of Maryland at College Park, April 2000, 44 pp., and Journal of Computational Finance, Vol.4, n^o 3, Spring 2001, pp.39-88.
- [17] GARCIA, D. A Monte Carlo Method for pricing American Options.Working Paper, University of California at Berkeley, January 2000, 43 pp
- [18] GRANT, D.; VORA, G.; WEEKS, D.E. Path-Dependent Options: Extending the Monte Carlo Simulation Approach. Management Science, vol.43, no 11, November 1997, pp.1589-1602.
- [19] GRANT, D.; VORA, G.; WEEKS, D.E. Simulation and Early-Exercise of Option Problem. Journal of Financial Engineering, vol.5, n^o 3, September 1996, pp.211-227.
- [20] HANSELMAN, D.; LITTLEFIELD, B. Mastering Mat lab 6 A Comprehensive Tutorial and Reference. New York: Prentice Hall, 2001.
- [21] JACKEL, P. Monte Carlo Methods in Finance. New York: John Wiley & sons, 2002.
- [22] HAUG, E. G. The Complete Guide to Option Pricing Formulas. New York: Mc Graw Hill, 1998.

- [23] HOFFMANN, C. Valuation of American Options. Thesis submitted for the degree of Diploma in Mathematical Finance – University of Oxford, October 8, 2000
- [24] HULL, J. C. Options, Futures & other Derivatives. 4. ed. New York: Prentice Hall, 2000.
- [25] IBANEZ, A.; ZAPATERO, F. Monte Carlo Valuation of American Options Through Computation of the Optimal Exercise Frontier. Working Paper, Instituto Tecnológico Autónomo de México & University of South California, August 1999, 30 pp.
- [26] JOHNSTON, J.; DINARDO, J. Métodos Econométricos. 4. ed. Portugal: Mc Graw Hill, 2001.
- [27] JOY, C.; BOYLE, P.P.; TAN, K.S. Quasi-Monte Carlo Methods in Numerical Finance. Management Science, vol.42, no 6, June 1996, pgs.926-938.
- [28] JUNG, A. Improving the Performance of Low-Discrepancy Sequences. Journal of Derivatives, Winter 1998, pp.85-95.
- [29] KELLY, L.G. Handbook of Numerical Methods and Applications. California: Addison-Wesley Publishing Company, 1967.
- [30] KERMAN, J. Numerical Methods for Option Pricing: Binomial and Finite-difference Approximations. Courant Institute of Mathematical Sciences, New York University. January 15, 2002.
- [31] LEWIS, A. L. Option Valuation under Stochastic Volatility with Mathematica code. California: Finance Press, 2000.
- [32] LONGSTAFF, F.A.;SCHWARTZ, E.S. Valuing American Options By Simulation: A Simple Least-Square Approach. The Review of Financial Studies, Vol.14, nº 1, Spring 2001, pp 113-147
- [33] MORO, B. The Full Monte. Risk. vol.8, no 2, February 1995.
- [34] ODEGAARD, B. A. Financial Numerical Recipes. [S.l.:s.n.] Working Paper, September 9, 1999
- [35] OKTEN, G. Applications of a Hybrid-Monte Carlo Sequence to Option Pricing in Niederreiter & Spanier (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 1998 - Springer-Verlag, 2000, pp. 391-406.
- [36] OWEN, A. B. Monte Carlo, Quasi-Monte Carlo and Randomized Quasi-Monte Carlo in Niederreiter & Spanier. Monte Carlo and Quasi-

Monte Carlo Methods 1998 Springer-Verlag, 2000, Proceedings Claremont Conference 1998, pp.86-97.

- [37] ROCHMAN, R. R. Análise de Métodos numéricos para precificação de opções, Dissertação de Mestrado, FGV/EAESP. São Paulo, 1998.
- [38] RUBINSTEIN, R. Y. Simulation and The Monte Carlo Method. 1York: John Wiley & sons, 1981.
- [39] TAN, K.S.; BOYLE, P.P. Applications of Randomized Low Discrepancy Sequences to the Valuation of Complex Securities. Journal of Economic Dynamics & Control, vol.24, pp.1747-1782.
- [40] TAVELLA, D. A. Quantitative Methods in Derivatives Pricing. New York: John Wiley & sons, 2002.
- [41] TAVELLA, D. A.; RANDALL, C. Pricing Financial Instruments. New York: John Wiley & sons, 2002.
- [42] TIAN, T.; BURRAGE, K. Accuracy Issues of Monte Carlo Methods for Valuing American Options. Working Paper, The University of Queens land, Australia.
- [43] Site de opções reais http: //www.puc-rio.br/marco.ind, último acesso 26/03/2003.
- [44] WILMOTT, P. Derivatives The theory and practice of financial engineering. New York: John Wiley & sons, 1998.
- [45] WHITLOCK, K. Monte Carlo Methods. New York: John Wiley & sons, 1986.1v.
- [46] XIAOQING and KIANGUAN, A Parsimonious Monte Carlo Method for Pricing American-Style Options, Research paper, Centre for Financial Engineering, National University of Singapore, June, 2001.

Apêndice A: DEFINIÇÕES

A.1. Processo de Wiener

Se uma variável modifica-se ao longo do tempo de maneira aleatória, dizemos que ela segue um processo estocástico que pode ser contínuo ou discreto. O processo de Markov é um processo estocástico onde o valor presente da variável é suficiente para determinarmos seu próximo valor. Assim, o próximo valor da variável independe do caminho de valores anteriores, mas apenas do seu valor final. Já o processo de Wiener é um processo de Markov com média 0 e variância 1. Em física, esse processo é comumente conhecido como *Brownian motion*. Se uma variável aleatória *z* segue um processo de Wiener ,esta possui as seguintes propriedades:

• uma variação Δz durante um pequeno intervalo de tempo Δt é dado por:

$$\Delta z = \varepsilon \sqrt{\Delta t}$$
 ou fazendo $\Delta t \rightarrow 0$ temos $dz = \varepsilon \sqrt{dt}$

onde ε é uma variável aleatória sorteada de uma distribuição $N \sim (0,1)$. Assim, Δz também segue uma distribuição normal $N \sim (0, \sqrt{\Delta t})$.

• Os valores de Δz para dois intervalos de tempo diferentes, devem ser independentes.

Uma variável x que segue um processo de Wiener generalizado, pode ser definido em termos de dz como:

 $dx = \alpha dt + bdz$

onde α e *b* são constantes. O termo α representa o *drift* do processo e *b* sua variação. Já o termo diferencial dz é uma variável aleatória sorteada de uma distribuição $N \sim (0, \sqrt{dt})$. Os valores de dx para diferentes intervalos de tempo devem ser independentes.

Muitos instrumentos financeiros são representados por um processo onde os parâmetros α e *b* não são necessariamente constantes. Nesse caso, o processo estocástico passa a ser denominado processo de Itô.

$$dx = \alpha(x,t)dt + b(x,t)dz$$

Assim, considerando a variável S representativa do preço de um ativo, temos que seu processo estocástico pode ser definido como um passeio aleatório lognormal. Nesse caso, a equação acima assume os valores $\alpha(S,t) = \mu S$ e $b(S,t) = \sigma S$. Conseguinte, temos que:

$$dS = \mu S dt + \sigma S dz$$

onde μ (*drift*) e σ (volatilidade) são constantes.

Considerando a hipótese de neutralidade ao risco, a taxa de retorno ou *drift* (μ) da equação acima pode ser substituída pela taxa livre de risco.

$$dS = rSdt + \sigma Sdz$$

Assumindo que o ativo S paga uma taxa contínua de dividendos q, o *drift* deve então ser reduzido dessa mesma quantidade.

 $dS = (r - q)Sdt + \sigma Sdz$

A.2. Lema de Itô

Suponha a seguinte função $V(x_t, t)$, onde o subscrito t indica que a variável x é uma função dependente do tempo. No cálculo diferencial temos a regra da cadeia, que nos permite derivar V em função do tempo.

$$dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial t} dt$$

No entanto, quando temos funções envolvendo variáveis estocásticas, não podemos deriva-las aplicando diretamente a regra da cadeia conforme descrito acima. Assim, o Lema de Itô é o equivalente à regra da cadeia aplicada à uma variável estocástica x_t . Usando a expansão de Taylor e anulando os termos de ordem superior, a medida que $\Delta t \rightarrow 0$ temos que:

$$dV = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial x} dx + \frac{1}{2} \frac{\partial^2 V}{\partial x^2} dx^2 \qquad \therefore \qquad dx = \alpha(x, t) dt + b(x, t) dz$$
$$= \left(\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial x^2}\right) dt + \frac{\partial V}{\partial x} dx \qquad \qquad dx^2 = dt$$

Aplicando o Lema de Itô à função V(S,t) dependente da variável preço do ativo S. Supondo que S segue um processo estocástico de Itô $(dS = \alpha(S,t)dt + b(S,t)dz)$, temos:

$$dV = \left(\alpha(S,t)\frac{\partial V}{\partial t} + \frac{1}{2}b(S,t)^2\frac{\partial^2 V}{\partial S^2}\right)dt + \frac{\partial V}{\partial S}dS$$

Uma aplicação bastante comum do Lema de Itô é o processo estocástico dado por $V(S) = \ln(S)$. Assim, temos que:

$$dV = \frac{\partial V}{\partial S} dS + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} dt$$

$$= \frac{1}{S} \left((r-q)Sdt + \sigma Sdz \right) - \frac{1}{2}\sigma^2 S^2 \frac{1}{S^2} dt$$
$$= \left(r - q - \frac{\sigma^2}{2} \right) dt + \sigma dz$$
$$= \left(r - q - \frac{\sigma^2}{2} \right) dt + \sigma dz$$

Trabalhando a equação acima:

$$d(\ln S) = \left(r - q - \frac{\sigma^2}{2}\right) dt + \sigma dz$$

$$\ln S_T - \ln S_0 = \left(r - q - \frac{\sigma^2}{2}\right) dt + \sigma dz$$

$$\ln\left(\frac{S_T}{S_0}\right) = \left(r - q - \frac{\sigma^2}{2}\right) dt + \sigma dz \qquad \therefore \qquad dz = \varepsilon \sqrt{T}$$

$$S_T = S_0 e^{\left(r - q - \frac{\sigma^2}{2}\right) dt + \sigma \varepsilon \sqrt{T}}$$

A.3. Dedução da Equação Diferencial de Black Scholes

Premissas: (1) preço S da ação segue um processo de Wiener generalizado; (2) Short Selling com total uso da receita de venda é permitido; (3) não existem custos de transação; (4) não há pagamento de dividendos durante a vida do derivativo; (5) não existem oportunidades de arbitragem sem risco; (6) negociação de ações é feita de modo contínuo; (6) a taxa de risco r é constante para todas os vencimentos.

Partimos da seguinte premissa para o preço da ação:

 $dS = \mu S dt + \sigma S dz$

Seja f o preço de um derivativo dependente da ação básica S. É razoável supor que f seja uma função do preço da ação S e do tempo t. Então, pelo Lema de Itô, sabemos que a seguinte relação também é verdadeira:

$$df = \left(\frac{\partial f}{\partial S}\mu S + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right)dt + \frac{\partial f}{\partial S}\sigma S dz$$

As versões discretas das duas equações acima são:

$$\Delta S = \mu S \Delta t + \sigma S \Delta z$$

$$\Delta f = \left(\frac{\partial f}{\partial S} \mu S + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2\right) \Delta t + \frac{\partial f}{\partial S} \sigma S \Delta z$$

Note que o Δz das duas equações é o mesmo, e compõe a parte estocástica do modelo. Montando uma carteira apropriada de ações e opções, podemos eliminar este componente. Esta carteira é formado pela venda a descoberto de uma opção, de valor *f*, e pela compra de $\partial f / \partial S$ ações. Seja Π o valor desta carteira dado por:

$$\Pi = -f + \frac{\partial f}{\partial S}S$$

A variação $\Delta \Pi$ no valor desta carteira com o tempo Δt é dada por:

$$\Delta \Pi = -\Delta f + \frac{\partial f}{\partial S} \Delta S$$

Substituindo $\Delta f \in \Delta S$ na equação acima, temos:

$$\Delta \Pi = -\left(\frac{\partial f}{\partial S}\mu S + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right)\Delta t - \frac{\partial f}{\partial S}\sigma S \Delta z + \frac{\partial f}{\partial S}\left(\mu S \Delta t + \sigma S \Delta z\right)$$
$$\Delta \Pi = -\left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right)\Delta t$$

 $\Delta \Pi = r \Pi \Delta t$

Igualando os retornos das carteiras acima e adicionando o recebimento de uma taxa de dividendos constante q pela posse da ação S, a equação diferencial de Black Scholes é dada por :

$$-\left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right)\Delta t + \left(q\frac{\partial f}{\partial S}\right)\Delta t = r\left(-f + \frac{\partial f}{\partial S}S\right)\Delta t$$
$$rf = \frac{\partial f}{\partial S} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2 + (r-q)\frac{\partial f}{\partial S}S$$

A.4. Aproximação Analíticas

A.4.1. Barone-Adesi e Whaley

O valor de uma call americana é dada por:

$$V_{Call} = \begin{cases} V_{Call}^{BS}(S, X, T) + A_1 (S / S^*)^{q_1}, & S < S^* \\ S - X, & S \ge S^* \end{cases}$$

onde

$$A_{1} = \frac{S^{*}}{q_{1}} \left(1 - e^{-q(T-t)} N(d_{1}(S^{*})) \right)$$

$$d_{1}(S) = \frac{\ln(S/X) + (r - q + \sigma^{2}/2)(T - t)}{\sigma\sqrt{T - t}}$$

$$q_{1} = \frac{-\left(2(r - q)/\sigma^{2} - 1 \right) + \sqrt{\left(2(r - q)/\sigma^{2} - 1 \right)^{2} + \frac{8r}{\sigma^{2} \left(1 - e^{-r(T-t)} \right)}}}{2}$$

onde S^* corresponde ao preço da ação cujo valor da *call* satisfaz a equação¹⁰ abaixo:

$$S^{*} - X = V_{Call}^{BS} \left(S^{*}, X, T \right) + \frac{1 - e^{-q(T-t)} N \left(d_{1} \left(S^{*} \right) \right) S^{*}}{q_{1}}$$

Para o caso de uma *put* americana, temos:

$$V_{Put} = \begin{cases} V_{Put}^{BS}(S, X, T) + A_2(S/S^{**})^{q_2}, & S > S^{**} \\ S - X, & S \le S^{**} \end{cases}$$

onde

$$A_{2} = -\frac{S^{**}}{q_{2}} \left(1 - e^{-q(T-t)}N\left(-d_{1}\left(S^{**}\right)\right)\right)$$
$$q_{2} = \frac{-\left(2(r-q)/\sigma^{2} - 1\right) - \sqrt{\left(2(r-q)/\sigma^{2} - 1\right)^{2} + \frac{8r}{\sigma^{2}\left(1 - e^{-r(T-t)}\right)}}}{2}$$

onde S^{**} corresponde ao preço da ação cujo valor da *put* satisfaz

$$S^{**} - X = V_{Put}^{BS} \left(S^{**}, X, T \right) + \frac{1 - e^{-q(T-t)} N \left(d_1 \left(S^{**} \right) \right) S^{**}}{q_2}$$

A.4.2. Bjerksund & Stensland

 $V_{Call} = \alpha S^{\beta} - \alpha \Phi(S, T - t, 1, I, I) + \Phi(S, T - t, 1, X, I) - X \Phi(S, T - t, 0, I, I) + X \Phi(S, T - t, 0, X, I)$

para

$$\alpha = (I - X)I^{-\beta}$$

$$b = r - q$$

$$\beta = \left(\frac{1}{2} - \frac{b}{\sigma^2}\right) + \sqrt{\left(\frac{b}{\sigma^2} - \frac{1}{2}\right)^2 + 2\frac{r}{\sigma^2}}$$

¹⁰ Esta equação acima pode ser resolvida pela método da bisseção ou Newton.

A função Φ é definida como:

$$\Phi(S,T,\gamma,H,I) = e^{\lambda} S^{\gamma} \left(N(d) - \left(\frac{I}{S}\right)^{\kappa} N\left(d - \frac{2\ln(I/S)}{\sigma\sqrt{T}}\right) \right)$$

onde

$$\lambda = \left(-r + \gamma b + \frac{1}{2}\gamma(\gamma - 1)\sigma^{2}\right)T$$

$$d = -\frac{\ln(S/H) + (b + (\gamma - 1/2)\sigma^{2})T}{\sigma\sqrt{T}}$$

$$\kappa = \frac{2b}{\sigma^{2}} + (2\gamma - 1)$$

$$B_{\infty} = \frac{\beta}{\beta - 1}X$$

$$B_{0} = \max\left(X, \frac{r}{q}X\right)$$

$$h(T) = -\left(bT + 2\sigma\sqrt{T}\right)\left(\frac{B_{0}}{B_{\infty} - B_{0}}\right)$$

$$I = B_{0} + \left(B_{\infty} - B_{0}\right)\left(1 - e^{h(T)}\right)$$

Para o caso de uma *put* americana, a aproximação do valor da opção pode ser feita por uma transformação na fórmula da *call* acima :

$$V_{Put}(S, X, T, r, q, \sigma) = V_{Call}(X, S, T, q, r, \sigma)$$

A.5. Aproximação de Geske e Johnson

Em seu artigo original Geske e Johnson mostram que uma opção americana pode ser estimada usando-se uma série de opções exercíveis em instantes finitos de tempo. A fórmula desenvolvida usa o método de Extrapolação de Richardson baseado numa série de opções do estilo bermuda. Assim, supondo que P(n) seja o preço de uma *put* do estilo bermuda exercível em *n* instantes igualmente distantes, o valor de uma *put* americana pode ser aproximado por

$$P(1,2,3) = P(3) + \frac{7}{2}(P(3) - P(2)) - \frac{1}{2}(P(2) - P(1))$$

onde P(1,2,3) representa o valor aproximado de uma *put* americana baseada em opções bermuda com uma, duas e três datas de exercício respectivamente.

Existem basicamente dois problemas nesta metodologia: (1) o modelo nem sempre converge pois existem casos onde P(n) < P(m) para m < n; (2) existe uma certa dificuldade em determinarmos quantas opções bermuda (P(1,2,3,...) devemos utilizar para atingirmos o nível de precisão desejada.

Uma segunda contribuição foi desenvolvida por Bunch e Johnson (1992) sugerindo uma modificação do modelo original de Geske e Johnson.

$$P(1,2) = P^{\max}(2) + (P^{\max}(2) - P(1))$$

onde $P^{\max}(2)$ corresponde ao valor da opção exercível em um de dois instantes de tempo, onde esses instantes são determinados de modo a maximizar o valor da opção. Em seu artigo Bunch e Johnson mostram que se os instantes de exercício forem determinados de forma a maximizarem P(2), então o preço da *put* americana pode ser estimado de forma mais precisa que o modelo original de Geske e Johnson.

Outra sugestão proposta por Omberg, sugere outra modificação do modelo Geske e Johnson de modo a assegurar a convergência.

$$P(1,2,4) = P(4) + \frac{5}{3}(P(4) - P(2)) - \frac{1}{3}(P(2) - P(1))$$

onde novamente P(1,2,4) representa o valor aproximado de uma *put* americana baseada em opções bermuda com uma, duas e quatro datas de exercício respectivamente. Assim, P(4) corresponde ao valor da *put* exercível nos instantes T/4, 2T/4, 3T/4 e T. Por usarmos uma série geométrica, podemos assegurar que $P(4) \ge P(2) \ge P(1)$ sempre será válido. A razão para isto baseia-se no fato da opção P(4) incluir todos os instantes de exercício antecipado da opção P(2), da mesma forma que P(2) inclui o instante de exercício de P(1).

A.6. Equações de Diferenças: Série de Taylor

Série de Taylor:

$$df = \frac{df}{dx} \cdot dx + \frac{1}{2} \cdot \frac{d^2 f}{dx^2} \cdot dx^2 + \frac{1}{6} \cdot \frac{d^3 f}{dx^3} \cdot dx^3 + \dots$$

$$f(x + dx) - f(x) = \frac{df}{dx} \cdot dx + \frac{1}{2} \cdot \frac{d^2 f}{dx^2} \cdot dx^2 + \frac{1}{6} \cdot \frac{d^3 f}{dx^3} \cdot dx^3 + \dots$$

$$f(x + dx) = f(x) + f'(x) \cdot dx + \frac{1}{2} \cdot f''(x) \cdot dx^2 + \frac{1}{6} \cdot f'''(x) \cdot dx^3 + \dots$$

Com base na escolha da diferença *dx* teremos diferentes tipos de aproximações para as derivadas parciais: *forward, backward* e *central*.

• Derivadas de 1° ordem:

Forward
$$(dx = h)$$
: $f'(x) = \frac{f(x+h) - f(x)}{h} + \frac{1}{2} \cdot h^2 \cdot f''(x) + \frac{1}{6} \cdot h^3 \cdot f'''(x) + \dots$
 $f'(x) = \frac{f(x+h) - f(x)}{h} + \varepsilon(h)$

Backward (dx = -h): $f'(x) = \frac{f(x) - f(x-h)}{h} + \varepsilon(h)$

Central (dx = 2h):
$$f'(x) = \frac{f(x+2h) - f(x)}{2h} + \varepsilon(h^2)$$
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \varepsilon(h^2)$$

• Derivada de 2° ordem:

Resolver o sistema:

$$\begin{cases} f(x+h) = f(x) + f'(x) \cdot h + \frac{1}{2} \cdot f''(x) \cdot h^2 + \frac{1}{6} \cdot f'''(x) \cdot h^3 + \dots \\ f(x-h) = f(x) + f'(x) \cdot (-h) + \frac{1}{2} \cdot f''(x) \cdot (-h)^2 + \frac{1}{6} \cdot f'''(x) \cdot (-h)^3 + \dots \end{cases}$$

$$f(x+h) + f(x-h) = 2f(x) + f''(x) \cdot h^{2} + \varepsilon(h^{4})$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \varepsilon(h^2)$$

A.7. Métodos Iterativos

Os métodos iterativos atingem a solução do sistema através do melhoramento de uma solução inicial a cada nova iteração. Dentre os inúmeros métodos optamos por estudar apenas os chamados métodos estacionários, que utilizam parâmetros que permanecem fixos durante as iterações. São exemplos deste modelo: métodos de Jacobi, Gauss-Seidel, SOR e SSOR.

• Jacobi:

Considere o sistema linear de equações,

$$\sum_{j=1}^{N} a_{ij} u_j = f_i, \quad i = 1, \dots, N$$

Se resolvêssemos o sistema para uma variável desconhecida, assumindo o conhecimento do valor das demais, teríamos a seguinte expressão:

$$u_i = \frac{1}{a_{ii}} \left(f_i - \sum_{j \neq i} a_{ij} u_j \right)$$

A equação acima sugere o seguinte algoritmo iterativo:

$$u_i^{n+1} = \frac{1}{a_{ii}} \left(f_i - \sum_{j \neq i} a_{ij} u_j^n \right),$$

onde n corresponde à iteração.

Dado a representação matricial do sistema de equações A u = f,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2N} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} \end{pmatrix}, \qquad \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_N \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_N \end{bmatrix}$$

e decompondo a matriz A, temos:

 $\mathbf{A} = \mathbf{D} - \mathbf{L} - \mathbf{U},$

ond

de:
$$\mathbf{D} = \begin{pmatrix} a_{11} & & \\ & a_{22} & \\ & & \ddots & \\ & & & a_{NN} \end{pmatrix}, \ \mathbf{L} = - \begin{pmatrix} 0 & & \\ a_{21} & 0 & \\ \vdots & \vdots & \ddots & \\ a_{N1} & a_{N2} & \cdots & 0 \end{pmatrix}$$

 $\mathbf{e} \quad \mathbf{U} = -\begin{pmatrix} 0 & a_{12} & \cdots & a_{1N} \\ & 0 & \cdots & a_{2N} \\ & & \ddots & \vdots \\ & & & 0 \end{pmatrix}$

Em notação vetorial, o método de Jacobi é dado por:

 $\mathbf{u}^{n+1} = \mathbf{D}^{-1} (\mathbf{L} + \mathbf{U}) \mathbf{u}^n + \mathbf{D}^{-1} \mathbf{f}$

onde \mathbf{u}^{n+1} representa o vetor de variáveis desconhecidas u_i^{n+1} , i = 1, ..., N. Assim **D**, $-\mathbf{L} \mathbf{e} - \mathbf{U}$ representam as matrizes diagonal, triangular inferior e superior da respectiva matriz **A**.

• Gauss-Seidel:

Corresponde a uma generalização do método de Jacobi. A única diferença é que as alterações nas variáveis são incorporadas ao processo à medida que ocorrem. O algoritmo do método é dado por:

$$u_i^{n+1} = \frac{1}{a_{ii}} \left(f_i - \sum_{j < i} a_{ij} u_j^{n+1} - \sum_{j > i} a_{ij} u_j^n \right)$$

Em notação vetorial teríamos:

$$\mathbf{u}^{n+1} = (\mathbf{D} - \mathbf{L})^{-1} (\mathbf{U} \ \mathbf{u}^{n} + \mathbf{f})$$

• Successive overrelaxation method (SOR):

O método SOR é constituído pela ponderação de duas iterações sucessivas do Gauss-Seidel.

$$\widetilde{u}_{i}^{n+1} = \frac{1}{a_{ii}} \left(f_{i} - \sum_{j < i} a_{ij} u_{j}^{n+1} - \sum_{j > i} a_{ij} u_{j}^{n} \right)$$
$$u_{i}^{n+1} = \omega \ \widetilde{u}_{i}^{n+1} + (1 - \omega) \ u_{i}^{n}$$

O parâmetro ω é conhecido como *overrelaxation parameter*. O seu valor afeta enormemente a taxa de convergência, sendo seu valor ótimo de difícil determinação.

Se optarmos por $\omega = 1$, o método SOR transforma-se no Gauss-Seidel. Estudos tem demonstrado que o método não converge para valores de ω fora do intervalo [0,2]. Em notação vetorial teríamos:

$$\upsilon^{n+1} = (\mathbf{D} - \omega \mathbf{L})^{-1} (\omega \mathbf{U} + (1 - \omega) \mathbf{D}) \boldsymbol{\mu}^n + \omega (\mathbf{D} - \omega \mathbf{L})^{-1} \mathbf{f}$$

• Symmetric Successive overrelaxation method (SSOR):

Em notação vetorial, o algoritmo SSOR é dado por:

$$\mathbf{u}^{n+1} = \mathbf{B}_1 \mathbf{B}_2 \mathbf{u}^n + \omega \ (2 - \omega) (\mathbf{D} - \omega \ \mathbf{U})^{-1} \mathbf{D} (\mathbf{D} - \omega \ \mathbf{L})^{-1} \mathbf{f}$$

onde $\mathbf{B}_1 = (\mathbf{D} - \omega \mathbf{U})^{-1} (\omega \mathbf{L} + (1 - \omega) \mathbf{D});$ $\mathbf{B}_2 = (\mathbf{D} - \omega \mathbf{L})^{-1} (\omega \mathbf{U} + (1 - \omega) \mathbf{D}).$

A.8. Método da Bisseção

Seja f(x) uma função contínua definida no intervalo $I_0 = [a,b]$ tal que f(a).f(b) < 0. Para simplificar, suponha também que nesse intervalo exista uma única raiz. Em cada iteração, a amplitude do novo intervalo I_i será reduzida pela metade. Assim temos que: $x = \frac{a+b}{2}$

Ilustração A.1- Esquema do método da bisseção.

O novo intervalo é obtido da seguinte maneira: se f(x).f(b) < 0 então o novo intervalo é $I_1 = [a, x]$, caso contrário, f(x).f(b) > 0, $I_1 = [x, b]$. Repetimos

esse processo até que o tamanho do intervalo seja suficientemente pequeno (\in). A raiz pode então ser aproximada por qualquer número pertencente ao intervalo.

A.9. Normalização de Seqüências U ~ (0,1)

• Box-Muller:

Através de duas sequências $U \sim (0, 1)$ independentes, usaremos o método de Box-Muller para transformá-las em distribuições $N \sim (0, 1)$. Assim, temos:

Resumindo: $(u_1, u_2) \sim U(0, 1) \xrightarrow{Box-Muller} (x, y) \sim N(0, 1)$

 $x = \sqrt{-2\log(u)}sen(2\pi v)$ $y = \sqrt{-2\log(u)}\cos(2\pi v)$

Conforme observamos, para utilizarmos o Método de Box-Muller devemos gerar no mínimo duas seqüências de variáveis quase-aleatórias.

• Inversão de Moro:

O algoritmo desenvolvido por Moro divide o domínio y em duas regiões:

- 1- a região central da distribuição, $|y| \le 0.42$, é calculada com base na aproximação de Beasley e Springer (1977);
- 2- as caudas da distribuição, |y| > 0.42, são modeladas com base nas séries de Chebyshev.

A função distribuição normal acumulada é dada por:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-(t^2/2)} dt$$

Assim, dado $y = x - 0.5 (x \sim U(0,1))$, temos:

Para
$$y \le 0.42$$
: $\Phi^{-1}(x) = y \frac{\sum_{n=0}^{3} a_n y^{2n}}{\sum_{n=0}^{4} b_n y^{2n}}$

Para
$$y > 0.42$$
: $\Phi^{-1}(x) = \begin{cases} \sum_{n=0}^{8} c_n T_n(z) - \frac{c_0}{2}, & y > 0 \\ \frac{c_0}{2} - \sum_{n=0}^{8} c_n T_n(z), & y \le 0 \end{cases}$

:.
$$z = k_1 [2.\log(-\log(0.5 - |y|)) - k_2]$$

onde k_1 e k_2 são escolhidos de modo a termos z = -1 quando $\Phi(x) = 0.92$ e z = 1 quando $\Phi(x) = 1 - 10^{-12}$. As constantes, a_n , b_n , c_n , k_1 e k_2 são dadas pela tabela abaixo:

Tabela A.1- Parâmetros¹¹ do método de inversão de Moro.

n	a,	b _n	71	¢,
· 0	2.50662823884	1.00	0	7.7108870705487895
1	-18.61500062529	-8.47351093090	1	2.7772013533685169
2	41.39119773534	23.08336743743	2	0.3614964129261002
3	-25.44106049637	-21.06224101826	3	0.0373418233434554
4		3.13082909833	4	0.0028297143036967
			5	0.0001625716917922
	k,	k2	6	0.0000080173304740
	0.4179886424926431	4.2454686881376569	7	0.000003840919865
_			8	0.000000129707170

A.10. Discrepância

Uma medida comum de homogeneidade baseia-se na idéia de como um conjunto de *d* vetores de números estão dispersos num cubo multidimensional unitário. A interpretação geométrica pode ser melhor definida a seguir: Devemos gerar *d* seqüências quase-aleatórias uniformes ($\{r_i\}^d, i = 1,...,N$), compostas por *N* números. Esses vetores de números podem ser vistos como as coordenadas de

¹¹ Valores sugeridos por Joy, Boyle e Tan.

pontos do cubo unitário de dimensão igual a $d([0,1]^d)$. Agora, selecionaremos dnúmeros compreendidos entre 0 e 1 de modo a gerarmos um retângulo ddimensional representado por uma sub-região $S(y) = [(0, y_1) \times (0, y_2) \times ... \times (0, y_d)]$. Posteriormente, definimos $n_{S(y)}$ como o total de números compreendidos dentro desta sub-região.

A medida que $N \rightarrow \infty$, observamos que para um gerador de números quase-aleatórios possuir uma homogeneidade perfeita temos que:

$$\lim_{N \to \infty} \frac{n_{S(y)}}{N} = \prod_{i=1}^{d} y_i \text{ , para todo } y \in [0,1]^d$$

A equação acima resulta do fato de que para uma distribuição uniforme perfeitamente homogênea, a probabilidade de um número da seqüência estar dentro da sub-região S(y) deve ser igual ao volume da própria sub-região, definido como $V_{S(y)} = \prod_{i=1}^{d} y_i$. Com essa definição, podemos comparar $n_{S(y)}/N$ com $V_{S(y)}$ para cada uma das seqüências de forma a obtermos uma medida de erro para sua discrepância geral, definida como:

$$T_N^{(d)} = \left(\int_{[0,1]^d} \left(\frac{n_{S(y)}}{N} - \prod_{k=1}^d y_k \right)^2 dy \right)^{\frac{1}{2}}.$$

A.11. Método dos Mínimos Quadrados

$$Y_{i} = \hat{\alpha}_{1} + \hat{\alpha}_{2}X_{i} + e_{i} \qquad \therefore \qquad E[u_{i}] = 0,$$
$$Var[u_{i}] = \sigma^{2},$$
$$Cov[u_{i}, u_{i}] = 0, \text{ para } \forall i$$

A equação acima estabelece para cada observação *i* uma relação linear de dependência – suportada por dois parâmetros estimados $\hat{\alpha}_1$ e $\hat{\alpha}_2$, denominados

coeficientes de regressão – entre as variáveis observadas Y e X e um resíduo de estimação para a i-ésima observação e_i , onde:

$$e_i = Y_i - \hat{Y}_i$$
 \therefore $\hat{Y}_i = \hat{\alpha}_1 + \hat{\alpha}_2 X_i$

Resulta das hipóteses acima: $E[Y_i] = \hat{\alpha}_1 + \hat{\alpha}_2 X_i$ e $Var[Y_i] = \sigma^2$.

Na estimação dos valores α_1 e α_2 , adotamos o método dos mínimos quadrados (MQ), que se baseia no critério de minimização da soma dos quadrados dos resíduos:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \left(Y_i - \hat{\alpha}_1 - \hat{\alpha}_2 X_i \right)^2 \qquad \therefore$$

onde *n* – representa o número de observações.

Os estimadores são então definidos como:

$$\hat{\alpha}_1 = \overline{Y} - \hat{\alpha}_2 \overline{X} \qquad e \qquad \hat{\alpha}_2 = \frac{n \sum_{i=1}^n X_i Y_i - \sum_{i=1}^n X_i \sum_{i=1}^n Y_i}{n \sum_{i=1}^n X_i^2 - \left(\sum_{i=1}^n X_i\right)^2}$$

ou

 $\hat{\alpha}_2$

п

$$=\frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \qquad \text{onde}$$

onde
$$y_i = Y_i - \overline{Y}_i, \ x_i = X_i - \overline{X}_i$$

A.12. Polinômios

• Legendre

$$y(x) = \sum_{k=0}^{n} \alpha_k P_k(x)$$

para
$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1)$$

..... $P_{n+1}(x) = \frac{2n+1}{n+1}xP_n(x) - \frac{n}{n+1}P_{n-1}(x)$

• Laguerre:

$$y(x) = \sum_{k=0}^{n} \alpha_{k} L_{k}(x)$$

para $L_0(x) = 1, L_1(x) = 1 - x, L_2(x) = 2 - 4x + x^2,$

$$L_{n+1}(x) = (1+2n-x)L_n(x) - n^2 L_{n-1}(x)$$

•*Hermite*:

$$y(x) = \sum_{k=0}^{n} \alpha_k H_k(x)$$

para $H_0(x) = 1, H_1(x) = 2x, H_2(x) = 4x^2 - 2,$

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$

A.13. Fatoração LU

Dado a representação matricial do sistema de equações $\mathbf{A}.\mathbf{x} = \mathbf{f}$,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2N} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} \end{pmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_N \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_N \end{bmatrix}$$

$$\mathbf{P}.\mathbf{A} = \mathbf{L}.\mathbf{U}$$

tal que, **P** é uma matriz de pivoteamento cujos valores são 0 ou 1, e **L** e **U** são matrizes triangulares inferior e superior respectivamente. Assim, a solução do sistema (\mathbf{x}) pode ser obtida pela solução trivial de dois sistemas:

 $\mathbf{L}.\mathbf{y} = \mathbf{P}.\mathbf{f}$ e $\mathbf{U}.\mathbf{x} = \mathbf{y}$

A.14. Números de Inicialização de Sobol

Tabela A.2- Números de inicialização da seqüência de Sobol com seus respectivos polinômios primitivos até a dimensão 32.

N	Gk	a ⁰ a _{Gk}	Números de inicialização(mo m10)									
1	0	1	1	1	1	1	1	1	1	1	1	1
2	1	11	1	3	5	15	17	51	85	255	257	771
3	2	111	1	1	7	11	13	61	67	79	465	721
4	3	1011	1	3	7	5	7	43	49	147	439	1013
5	3	1101	1	1	5	3	15	51	125	141	177	759
6	4	10011	1	3	1	1	9	59	25	89	321	835
7	4	11001	1	1	3	7	31	47	109	173	181	949
8	5	100101	1	3	3	9	9	57	43	43	225	113
9	5	101001	1	3	7	7	21	61	55	19	59	761
10	5	101111	1	1	5	11	27	53	69	25	103	615
11	5	110111	1	1	5	3	29	51	47	97	233	39
12	5	111011	1	3	7	13	3	35	89	9	235	929
13	5	111101	1	3	5	1	15	19	113	115	411	157
14	6	1000011	1	1	1	9	23	37	97	97	353	169
15	6	1011011	1	1	3	13	11	7	37	101	463	657
16	6	1100001	1	3	3	5	19	33	3	197	329	983
17	6	1100111	1	1	7	13	25	5	27	71	377	719
18	6	1101101	1	1	1	3	13	39	7	23	391	389
19	6	1110011	1	3	5	11	7	11	43	25	187	825
20	7	10000011	1	3	1	7	3	23	79	65	451	321
21	7	10001001	1	3	1	15	17	63	13	113	147	881
22	7	10001111	1	3	3	3	25	17	115	17	179	883
23	7	10010001	1	3	7	9	31	29	17	121	363	783
24	7	10011101	1	1	3	15	29	15	41	249	201	923
25	7	10100111	1	3	1	9	5	21	119	53	319	693
26	7	10101011	1	1	5	5	1	27	33	253	341	385
27	7	10111001	1	1	3	1	23	13	75	29	181	895
28	7	10111111	1	1	7	7	19	25	105	173	509	75
29	7	11000001	1	3	5	5	21	9	7	143	157	959
30	7	11001011	1	1	1	15	5	49	59	71	31	111
31	7	11010011	1	3	5	15	17	19	21	227	413	727
32	7	11010101	1	1	7	11	13	29	3	15	279	17

Apêndice B:

PROGRAMAS

No estudo dos modelos numéricos abordados optei por desenvolver os programas em MatLab por ser esse um *software* bastante utilizado em finanças. Assim, apesar do tempo adicional gasto para implementar os modelos, tive domínio total das variáveis de entrada e saída dos programas. Isso significa que tive maior flexibilidade para explorar cada modelo e apresentar resultados diversos que não apenas a simples precificação de opções.

Abaixo, apresentamos a lista de programas resultantes deste trabalho assim como, as interfaces computacionais de três programas desenvolvidos com intuito de afirmar a possibilidade de utilizarmos o *software* e modelos estudados no desenvolvimento de aplicativos financeiros.

B.1. Lista de Programas

NOME	DESCRIÇÃO
American GVW	Avaliação de opções americanas pelo Modelo de GVW
American LSM	Avaliação de opções americanas pelo Modelo LSM
American DF	Avaliação de uma put americana pelo método de DF
American JumpRuin	Avaliação de opções americanas utilizando o processo estocástico jump-to-ruin
American DownOutPut	Avaliação de uma put americana do tipo barreira down-out
American UpOutPut	Avaliação de uma put americana do tipo barreira up-out
American Asian	Avaliação de opções americanas asiáticas (média aritmétrica ou geométrica)
American LookbackS	Avaliação de opções americanas lookback floating strike (valor de exercício flutuante)
American LookbackX	Avaliação de opções americanas lookback floating price (preço da ação flutuante)
American Best2	Avaliação de opções americanas compostas por dois ativos correlacionados
American Best3	Avaliação de opções americanas compostas por três ativos correlacionados
American Juros	Avaliação de opções americanas com taxas de juros variáveis
American TaxaJuros correl	Avaliação de opções americanas com taxas de juros estocásticas (CIR) e correlacionadas com o ativo
American NGARCH	Avaliação de opções americanas com volatilidade estocástica (NGARCH)
AmerCall Barone	Precificação de uma call americana pela aproximação analítica de Barone-Adesi & Whaley
American BjSt	Precificação de uma call/put americana pela aproximação analítica de de Bjerksund & Stensland
MudBase	Mudança da base decimal de um número inteiro 'N' para a base 'b'
Halton	Gera um número quase-aleatório com base 'b' em Halton
SeqHaltonBase	Gera uma sequência com 'n' números quase-aleatórios de Halton
SeqHaltonDim	Gera uma seqüência de baixa discrepância de Halton com dimensão 'D' (<100)
SeqFaure	Gera uma seqüência de baixa discrepância de Faure
DirecSobol	Gera os números direcionais da sequência de Sobol.
SeqSobol	Gera uma seqüência de baixa discrepância de Sobol com base nos números direcionais
SeqSobolDim	Gera uma seqüência de Sobol de dimensão 'D' (<100)
VetRandPerm	Gera seqüências baseadas no modelo de QMC Híbrido
Moro	Transforma uma seqüência Uniforme (0,1) em Normal (0,1) com base no método de inversão de Moro
Box Muller	Transforma duas seqüência Uniformes (0,1) em uma Normal (0,1) com base no método de Box-Muller
EurCall MC	Precificação de uma call européia por SMC
EurCall Halton	Precificação de uma call européia por QMC usando numeros aleatórios de Halton
EurCall Hibrido	Precificação de uma call européia por QMC-Hibrido (Halton)
EurCall Faure	Precificação de uma call européia por QMC usando números aleatórios de Faure
EurCall Sobol	Precificação de uma call européia por QMC usando números aleatórios de Sobol
EuroCall AV	Precificação de uma call européia por MC usando o método das variáveis antitéticas
EuroCall_CV	Precificação de uma call européia por MC usando variáveis de controle
EuroCall_SS	Precificação de uma call européia por MC usando estratificação
EuroCall_IS	Precificação de uma call européia por MC usando importance sampling
Integral_MC	Cálculo de uma integral (simples ou dupla) por SMC
Integral_Halton	Cálculo de uma integral (simples ou dupla) por QMC-Halton
Integral_Faure	Cálculo de uma integral (simples ou dupla) por QMC-Faure
Integral_Sobol	Cálculo de uma integral (simples ou dupla) por QMC-Sobol
Integral_AV	Cálculo de uma integral simples por SMC usando o método de variáveis antitéticas
Integral_CV	Cálculo de uma integral simples por SMC usando o método de variáveis de controle
Integral_SS	Cálculo de uma integral simples por SMC usando o método de estratificação
AmericanPut_Crank_SOR	Precificação de uma put americana por DF Crank-Nicholson (SOR)
Americanput_expl	Precificação de uma put americana por DF Explícito
Americanput_expl_PROB	Gráfico as probabilidades do método de DF Explícito
AmericanPut_Impl	Precificação de uma put americana por DF Implícito (Brennan & Schwartz)
AmericanPut_Impl_SOR	Precificação de uma put americana por DF Implícito (SOR)
AmericanPut_Impl_SSOR	Precificação de uma put americana por DF Implícito (SSOR)
SOR_American	Solução de um sistema pelo método SOR e programação dinâmica (usado na função AmericanPut_Impl_SOR)
SSOR_American	Solução de um sistema pelo método SSOR e programação dinâmica (usado na função SSOR_American)
Regressão	Regressão dos mínimos quadrados usando polinômios de Legendre, Hermite, Lagrange e linear
BinAm_BBSR	Precificação de uma call/put européia pelo modelo binomial BBS c/ Extrapolacao de Richardson
BinAm_BS	Precificação de uma call/put européia pelo modelo binomial Black-Scholes
BinAm_Control	Precificação de uma call/put americana pelo modelo binomial c/ variável de controle
BinAm_MVM	Precificação de uma call/put americana pelo modelo binomial c/ valores médios
BinAmCall	Precificação de uma call americana pelo modelo binomial
BinAmCall_BS	Precificação de uma call americana pelo modelo binomial Black-Scholes
BinAmPut	Precificação de uma put americana pelo modelo binomial

Quadro B.1- Lista de programas desenvolvidos.

B.2. Interface Computacional

B.2.1. Modelo de Diferenças Finitas

👍 Calculadora DF:	_ 🗆 🗙
PUT Americana: Modelo de Diferencas Finitas	
Características da opcao:	
Preço inicial (S0): Strike price (X): Tempo (T): Taxa sem risco (r): Dividendos (q): DP (sigma): 60 60 6/12 0.1 0.02 0.35	
Opcoes: GRID: Ex GRID Graficos Omega M: 100 N: 100 Smax: 100 Implicito SOR 4	(w):
	bes:
RESULTADOS:	cia:
Aprox. BjSt: PUT Tempo Erro (%) 4.83628 4.8812 00:00:03 0.9286	<u></u>
Gregas: Calcu	lar
Delta Gama Theta -0.41409 0.029176 -3.9575	

Figura B.1- Interface computacional do programa American_DF.m.

B.2.2. Modelo GVW

Figura B.2- Interface computacional do programa American_GVW.m.

B.2.3. Modelo LSM

Figura B.3- Interface computacional do programa American_LSM.m.