

Regina Augusta Campos Sampaio

Espectro de Resposta de Projeto Uniformemente Provável para Sistemas Secundários Inelásticos

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Estruturas.

Orientador: João Luis Pascal Roehl

Regina Augusta Campos Sampaio

Espectro de Resposta de Projeto Uniformemente Provável para Sistemas Secundários Inelásticos

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Estruturas. Aprovada pela Comissão Examinadora abaixo assinada.

João Luis Pascal Roehl Orientador PUC-Rio

Paulo Gonçalves Batista PUC-Rio

> Raul Rosas e Silva PUC-Rio

José Eduardo Maneschy ELETRONUCLEAR

Tereza Denyse Pereira de Araújo UFC

Ney Augusto Dumont

Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 27 de outubro de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Regina Augusta Campos Sampaio

Graduou-se em Engenharia Civil, pela Universidade Federal do Pará, em março de 1996. Ingressou no curso de mestrado em Engenharia Civil da PUC-Rio no ano de 1997, na área de concentração em Estruturas. Titulou-se Mestre em Ciências de Engenharia Civil: Estruturas pela PUC-Rio em março de 1999. Participou do projeto de colaboração entre a Eletronuclear e a PUC-Rio nos anos de 1998 a 2000.

Ficha Catalográfica

Sampaio, Regina Augusta Campos

Espectro de resposta de projeto uniformemente provável para sistemas secundários inelásticos / Regina Augusta Campos Sampaio ; orientador: João Luis Pascal Roehl. - Rio de Janeiro : PUC-Rio, Departamento de Engenharia Civil, 2003.

112 f.: il.; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Incluí referências bibliográficas.

Engenharia civil - Teses. 2. Espectro de resposta.
 Inelasticidade. 4. Fator de dutilidade. 5. Sistemas secundários. I. Roehl, João Luis Pascal. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Agradecimentos

À Deus;

Ao Prof. João Luis Pascal Roehl, amigo e mestre, pela compreensão das dificuldades da vida e pela dedicação em ensinar e transmitir sua sabedoria;

Ao CNPQ, à CAPES e à PUC-Rio pelo apoio financeiro;

Aos colegas da ELETRONUCLEAR sempre disponíveis a discutir e contribuir com a pesquisa;

Aos professores da pós graduação e funcionários do departamento de engenharia civil;

À Andreia e Denyse, obrigado pelas proveitosas discussões técnicas e mais ainda pela dedicada amizade;

À Ângela, Maria Fernanda e Paôla pelo carinho dedicado a mim e à minha filha nestes últimos anos;

A todos os amigos do mestrado e doutorado que dividiram comigo as alegrias e dificuldades destes anos de pós-graduação;

Aos meus pais, Carlos e Graça e aos meus irmãos, Antonio e João, por estarem sempre ao meu lado;

Às meninas Sophia e Fernanda, que renovam as esperanças nos nossos corações e;

Ao Giorgio, por dividir comigo a alegria de sermos uma família.

Resumo

Sampaio, Regina Augusta Campos; Roehl, João Luis Pascal **Espectro de resposta de projeto uniformemente provável para sistemas secundários inelásticos.** Rio de Janeiro, 2003. 112p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Estuda-se a consideração de comportamento inelástico do material na geração de espectros de resposta de projeto. Para tanto, trabalha-se sobre um sistema secundário simplificado acoplado a um pórtico de cinco andares com características dinâmicas ajustadas para modelar um sistema principal real, de uma usina nuclear. Faz-se um estudo paramétrico sobre estes sistemas acoplados onde são variados os parâmetros: fator de escoamento, a intensidade da excitação e o nível de amortecimento. É proposto um fator de dutilidade global formulado em termos de trabalho externo realizado sobre o sistema secundário. São obtidos espectros de dutilidade e de resposta. A análise de tais espectros fornece informações sobre o desempenho do sistema secundário e seus suportes e conclui por fatores de transposição entre os espectros elástico e inelástico. Propõe-se metodologia para obtenção de espectros de resposta elásticos e inelásticos que levam em conta o acoplamento entre os sistemas principal e secundário, o movimento relativo dos suportes e o compromisso probabilístico entre as ordenadas do espectro e a sismicidade da região expressa em termos de uma função densidade de espectro de potência objetivo para a aceleração do terreno. Um exemplo de obtenção de espectros de resposta acoplada de projeto uniformemente provável inelástico é apresentado.

Palavras-chave

sistemas secundários; comportamento inelástico; espectros de resposta; inelasticidade; fator de dutilidade

Abstract

Sampaio, Regina Augusta Campos; Roehl, João Luis Pascal **Uniformly probable project response spectra for inelastic secondary system.** Rio de Janeiro, 2003. 112p. Dsc Thesis - Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

The author's concern includes two main points in the subject of design response spectra generation for secondary systems in nuclear power plant structures: the consideration of inelastic behavior in the secondary systems materials and the production of uniformly probable design response spectra.

One works with a previously developed secondary system model attached to primary structure model tuned to the frequency range of a nuclear power plant building.

A global ductility factor is formulated relating the plastic to the overall work done by the seismic external forces on the secondary system. This factor together with a particular definition of the yielding factor allows one to determine elastic to inelastic spectrum transpose factors.

A methodology is proposed to generate uniformly probable coupled response spectra for multiply supported inelastic secondary systems.

The seismic excitation is prescribed by a target power spectrum density function of the ground acceleration and an internal pressure condition is added to the seismic action. Examples illustrate the application of this proposed methodology.

Keywords

secondary systems; inelastic behavior; response spectrum; inelasticity; ductility factor

Sumário

1 Introdução	18
2 Situação no assunto	21
2.1. Aspectos Gerais	21
2.2. Métodos de análise	21
2.2.1. Definição da excitação sísmica	22
2.2.2. Domínios e métodos de análise	27
2.3. Análise modal espectral de sistemas secundários, suas razões e	
conseqüências.	30
2.3.1. Movimento relativo dos suportes.	32
2.3.2. Acoplamento dos sistemas	32
2.3.3. Espectros de resposta acoplada uniformemente provável.	37
2.3.4. Consideração das não linearidades	38
3 Metodologia	45
3.1. Estratégia	45
3.2. Sistema secundário simplificado	46
3.3. Sistema principal	50
3.4. Modelagem e análise no programa Ansys	52
3.4.1. Elementos PIPE20 e PIPE60	52
3.4.2. Comportamento não linear e inelástico na tubulação - elementos	S
PIPE20 e PIPE60	53
3.4.3. Elemento COMBIN40 e comportamento não linear dos suportes.	55
3.5. Carregamento no sistema secundário simplificado	56
3.6. Amortecimento	58
3.7. Fator de escoamento	60
3.8. Fator de dutilidade	60
3.9. Espectro de Resposta Acoplada de Projeto Uniformemente Prováv	∕el
Linear	63

4 Ensaios e Resultados para o SSS acoplado ao SP	67
4.1. Programação dos ensaios	67
4.2. Espectros de dutilidade	68
4.2.1. Apresentação	68
4.2.2. Análise geral para carga sísmica	68
4.2.3. Pressão interna	70
4.2.4. Amortecimento	71
4.2.5. Dutilidade dos apoios	79
4.3. Espectros de resposta linear elástica	81
4.4. Espectros de resposta do sistema secundário simplificado	82
4.4.1. Apresentação	82
4.4.2. Análise Geral para a carga sísmica	83
4.4.3. Pressão interna	85
4.4.4. Amortecimento	85
4.5. Avaliação do catraqueamento	92
4.6. Síntese das variações espectrais devidas à dutilidade	96
4.7. Exemplo de aplicação	97
4.7.1. Apresentação	97
4.7.2. Modelo do reator, excitação e sistema secundário.	97
4.7.3. Espectro de resposta acoplada uniformemente provável	101
5 Conclusões	105
6 Referências hibliográficas	108

Lista de figuras

Figura 2.1 – Espectro de resposta. Acelerações espectrais são as	
amplitudes de aceleração máxima do S1GL em resposta à mesma	
excitação. (Kramer, 1996)	23
Figura 2.2 Representação de um Espectro de quatro escalas	
logarítmicas.	24
Figura 2.3- Sistema com dois graus de liberdade (S2GL)	34
Figura 2.4– Primeiro e segundo modo do S2GL em função da freqüênc	cia
do sistema secundário, normalizado pela freqüência do SP	35
Figura 2.5-Procedimento esquemático para obtenção de espectros de	
resposta acoplada em vários pontos (Valverde, 1998).	37
Figura 2.6 – Definição da faixa de deformação inelástica e da deforma	ção
por catraqueamento.	41
Figura 2.7 – a) Diagrama tensão deformação – baixa tensão média. b)	
Diagrama tensão deformação – caso limite ($\varepsilon^{pc}=0$).	42
Figura 2.8 – Catraqueamento transiente e assintótico- esquema	43
Figura 2.9 – Limites de comportamento do material para o caso de plac	ca
de comprimento unitário submetida a carga permanente de tração e ca	ırga
cíclica de flexão.	43
Figura 3.1 – Representação esquemática do sistema secundário	
simplificado	49
Figura 3.2- Representação esquemática do sistema principal.	50
Figura 3.3 – Representação esquemática modelo de barras e placas d	0
SP.	51
Figura 3.4 – Geometria do elemento PIPE20	52
Figura 3.5 – Geometria do elemento PIPE60	53
Figura 3.6 – Translação da superfície de escoamento com a progressã	10
do escoamento. Encruamento cinemático.	55
Figura 3.7 – Elemento COMBIN40	55
Figura 3.8 – Sismo gerado artificialmente normalizado para uma	
aceleração máxima de 0,1 g e compatibilizado pelo espectro de respos	sta

adotado para o trabalho.	56
Figura 3.9 – Espectro de Fourier do sismo utilizado. $\ddot{v}_{g \max} = 0.1g$.	57
Figura 3.10 – Espectro de resposta de projeto em pseudo velocidade	
adotado para o trabalho, $\ddot{v}_{g \max} = 0.1g$.	57
Figura 3.11 – Densidade espectral de potência do sismo, $\ddot{v}_{g\mathrm{max}}$ = 0,1g.	58
Figura 3.12 – a) Força x tempo e deslocamento resultante. b) Relação	
bilinear histerética entre força e deslocamento.	62
Figura 3.13 – Procedimento esquemático de obtenção do Espectro de	
Resposta Uniformemente Provável. As ordenadas do espectro são	
obtidas a partir da fixação da reta horizontal que representa um nível d	le
probabilidade F de não ser ultrapassada.	65
Figura 4.1 - Espectro de dutilidade para o SSS acoplado ao SP,	
parametrizado pelo fator de escoamento, C. Sismo1g e Sismo0,1g	72
Figura 4.2 - Espectro de dutilidade para o SSS acoplado ao SP,	
parametrizado pelo fator de escoamento, C. Sismo0,1g +Pi	73
Figura 4.3 - Espectro de dutilidade para o SSS acoplado ao SP,	
parametrizado pelo fator de escoamento, C. Sismo1g+Pi.	73
Figura 4.4 - Espectro de dutilidade para o SSS acoplado ao SP,	
parametrizado pelo fator de escoamento, C.Sismo1g+Pi-7%.	74
Figura 4.5 - Espectro de dutilidade, C=0,2. Comparação dos casos.	74
Figura 4.6 - Função de transferência de acelerações do ponto de contr	ole
do sismo para os nós 206 e 210 do SSS acoplado ao SP.	75
Figura 4.7 – a) Representação esquemática do SSS com tubulação mu	uito
flexível. b) Representação esquemática do SSS com tubulação rígida.	75
Figura 4.8 - Períodos de regime linear elástico e plástico do SSS, $f_{\rm 0s}$ =	:
0,25 Hz, C=0,2	76
Figura 4.9 - Períodos de regime linear elástico e plástico do SSS, $f_{\rm 0s}$ =	5
Hz, C=0,2	76
Figura 4.10 - Períodos de regime linear elástico e plástico do SSS, $f_{\rm 0s}$	= 9
Hz, C=0,2.	77
Figura 4.11 - Períodos de regime linear elástico e plástico do SSS, $f_{\rm 0s}$	=
33 Hz. C=0.2	77

Figura 4.12 - Tensões equivalentes máximas para o elemento 399, C=1,
f_{0s} = 5 Hz e tensões de escoamento para C=0,2.
Figura 4.13 - Tensões equivalentes máximas para o elemento 399, C=1,
f_0 = 9 Hz e tensões de escoamento para C=0,2.
Figura 4.14 – Espectro de Fourier da resposta em deslocamento, u, do nó
85 do SP, com SSS acoplado, f_0 = 5 Hz e C=1. Sismo1g. 79
Figura 4.15 – Espectro de resposta acoplada linear elástica – metodologia
de Valverde (1998). Nó 46 do SP. 81
Figura 4.16 - Espectro de resposta acoplada linear elástica – metodologia
de Valverde (1998). Nó 85 do SP. 82
Figura 4.17 – Espectro de resposta em pseudovelocidade do nó 206 do
SSS. Sismo1g. 86
Figura 4.18 – Espectro de resposta em pseudovelocidade do nó 210 do
SSS. Sismo1g. 86
Figura 4.19 - Espectro de resposta em pseudovelocidade para o nó 206
do SSS. Sismo1g+Pi. 87
Figura 4.20 - Espectro de resposta em pseudovelocidade para o nó 210
do SSS. Sismo1g+Pi. 87
Figura 4.21 - Espectro de resposta em pseudovelocidade do nó 206 do
SSS. Sismo1g+Pi-7%.
Figura 4.22 - Espectro de resposta em pseudovelocidade do nó 210 do
SSS. Sismo1g+Pi-7%.
Figura 4.23 – Espectro de resposta em pseudo velocidade normalizado
pela resposta linear elástica (C=1) e parametrizado pelo fator de
escoamento, C. Nó 206 do SSS. Sismo1g.
Figura 4.24 - Espectro de resposta em pseudo velocidade normalizado
pela resposta linear elástica (C=1) e parametrizado pelo fator de
escoamento, C. Nó 210 do SSS. Sismo1g.
Figura 4.25 – Espectro de resposta em pseudo velocidade normalizado
pela resposta linear elástica (C=1) e parametrizado pelo fator de
escoamento, C. Nó 206 do SSS. Sismo1g+Pi. 90
Figura 4.26 – Espectro de resposta em pseudo velocidade normalizado
nela resposta linear elástica (C=1) e parametrizado pelo fator de

escoamento, C. Nó 210 do SSS. Sismo1g+Pi.	90
Figura 4.27 – Espectros de resposta do nó 206 do SSS. C=0,2. ξ = 0.	91
Figura 4.28 - Espectro de resposta em pseudo velocidade normalizado)
pela resposta linear elástica (C=1) e parametrizado pelo fator de	
escoamento, C. Nó 206 do SSS. Sismo1g+Pi-7%.	91
Figura 4.29 - Espectro de resposta em pseudo velocidade normalizado)
pela resposta linear elástica (C=1) e parametrizado pelo fator de	
escoamento, C. Nó 210 do SSS. Sismo1 g+Pi-7%.	92
Figura 4.30 – Relações entre tensão devido ao sismo e à pressão inter	na
normalizadas pela tensão de escoamento. Elemento 399, seção i, pon	to
de integração r.	94
Figura 4.31 – Gráfico tensão-deformação. Elemento 399, seção i, pont	0
de integração r.	95
Figura 4.32 – Gráficos de tensão deformação para Sismo0,1g+Pi e	
Sismo0,1g. Elemento 399, seção i, ponto de integração r.	95
Figura 4.33 – V/V_0 X f_{os}/f_{osp} em função de C, $\xi = 0$ e $\xi = 7\%$	97
Figura 4.34 – Modelo da superestrutura do prédio do reator	100
Figura 4.35 – Modelo da base do prédio do reator	100
Figura 4.36 – Densidade espectral de potência objetivo para o sítio de	
Angra 3 (Weston Geophisycal Research Inc,1972).	100
Figura 4.37 - Espectro de resposta acoplada de projeto uniformemente)
provável, elástico. Sistema secundário com ξ = 7%. Sistema principal:	
modelo do prédio do reator da usina Angra 3. Acoplamento em um, do	is e
quatro pontos.	102
Figura 4.38 - Espectro de resposta acoplada uniformemente provável,	
elástico e inelástico. Sistema secundário com ξ = 7%. SP -modelo do	
prédio do reator da usina Angra 3. Acoplamento em um ponto.	103

Lista de tabelas

Tabela 2.1 - Relação entre domínio de análise e regime do modelo
(Wolf, 1993)28
Tabela 3.1- Módulos de elasticidade e freqüências fundamentais do SSS
47
Tabela 3.2– Valores das relações, $f_{0i}/f_{01,}$ das 15 primeiras frequências do
SSS para a sua frequência fundamental48
Tabela 3.3 - Valores das rigidezes inicial e final dos elementos de mola,
kN ou kN.m48
Tabela 3.4- Quinze primeiras freqüências naturais do sistema principal,
f _{0pi} , e suas massas modais, m _i 51
Tabela 3.5 – Comparação entre fatores de dutilidade62
Tabela 4.1 – Valores de V/V_0 para os casos não amortecidos84
Tabela 4.2 – Fator de relação entre os espectros elástico e inelástico 96

Lista de símbolos e abreviaturas

Romanos

A Pseudo aceleração espectral

|A_n| Amplitude de Fourier

[C] Matriz de amortecimento

C Fator de escoamento

C_{ijkl} Matriz constitutiva

c_i Fator de participação no modo i

E Módulo de elasticidade

ERAUPE Espectro de resposta acoplada uniformemente provável elástico

ERAUPIN Espectro de resposta acoplada uniformemente provável inelástico

ERUP Espectro de resposta uniformemente provável

FAI_i Fator de amplificação instantâneo no modo i

 $F_{i}(a)$ Função distribuição de probabilidade da aceleração a e frequência j

Fy Força correspondente ao escoamento

F₀ Força máxima aplicada

f_i Freqüência i

f_{0i} Freqüência natural j do sistema secundário

g Aceleração da gravidade

 $H(\omega)$ Função de transferência (função resposta a um harmônico unitário)

J Momento de inércia

[K] Matriz de rigidez

k Coeficiente de rigidez, elemento da matriz de rigidez

k_r Coeficiente de rigidez rotacional

k_t Coeficiente de rigidez translacional

[M] Matriz de massa

m Massa, elemento da matriz de massa

P₀ Pressão externa no tubo

P_i Pressão interna no tubo

Resultados 16

q_i Relação entre as tensões provocadas pela pressão interna e a

provocada pelo sismo

 S_{ij} Tensor de tensões desviadoras S1GL Sistema de um grau de liberdade

S2GL Sistema de dois graus de liberdade

SP Sistema principal

SS Sistema secundário

SSS Sistema secundário simplificado

T Período

Te Trabalho elástico realizado pelas forças externas sobre o SSS

T_m Trabalho total realizado pelas forças externas sobre o SSS

T_p Trabalho plástico realizado pelas forças externas sobre o SSS

t Instante de tempo

t_d Duração da excitação

t₁ Duração do primeiro período de carregamento

U Deslocamento espectral

u, v Deslocamento

 \dot{u} , \dot{v} Velocidade

 \ddot{u} , \ddot{v} Aceleração

 $u_{v_1}v_{v_2}$ Deslocamento correspondente ao início do escoamento

v_g Deslocamento do sismo

*v*_b Deslocamento do nó de apoio do sistema secundário

 $\ddot{v}_{g \text{ max}}$ Aceleração máxima do sismo

V Pseudo velocidade espectral

V₀ Pseudo velocidade espectral – sistema secundário elástico

 v_m Deslocamento máximo

 $x_r(t)$ Função amostra de um processo aleatório

 X_{nr} Amplitude da série de Fourier

Resultados 17

Gregos

α_{ij}	Variável de encruamento que determina o centro da superfície de
	escoamento
β	Relação entre as frequências do sistema secundário e a do principal
$\Delta\omega$	Intervalo de frequência circular
$\Delta \epsilon^p$	Faixa de deformação plástica
$\delta \epsilon^p$	Deformação plástica progressiva
$\mathbf{\epsilon}^{\mathrm{p}}$	Deformação plástica
$oldsymbol{arepsilon}^{ m pc}$	Deformação plástica à compressão
$oldsymbol{\epsilon}^{ ext{pt}}$	Deformação plástica à tração
ϕ_{i}	Modo de vibração com frequência ω_{0i}
$\Phi_{\it rr}$	Densidade espectral de potência da resposta r
$\Phi^0_{\ddot{v}g\ddot{v}g}$	Densidade espectral de potência objetivo da aceleração do sismo
γ	Relação entre as massas do sistema secundário e a do principal
η	Relação entre as freqüências do sistema acoplado e a do principal
λ_{i}	Momento espectral de iésima ordem
μ , μ' , μ^*	Fator de dutilidade
ρ	Relação entre os coeficientes de rigidez final e inicial do gráfico
	força deslocamento bilinear
σ	Tensão
σ_0	Tensão equivalente elástica máxima
σ_{b}	Tensão devido a flexão
$\sigma_{ m eq}$	Tensão equivalente que depende do critério de escoamento
σ_{p}	Tensão devido a carregamento primário
$\sigma_{\rm y}$	Tensão de escoamento
ω	Freqüência circular
ω_{0i}	Freqüência circular natural i do SS
ω_{0pi}	Freqüência circular natural i do sistema principal
ξ	Fator de amortecimento