3 Programa Experimental

3.1. Metodologia

O programa experimental consistiu nos ensaios de 15 pilares mistos. As variáveis adotadas foram o comprimento de flambagem, a excentricidade da carga e a taxa de armadura longitudinal. Foi realizada ainda uma série de ensaios de corpos de prova mistos, corpos de prova do perfil eletrossoldado e corpos de prova de concreto, com a finalidade de se obter as curvas tensão-deformação dos materiais.

Neste capítulo é feita a descrição das características geométricas dos corpos de prova e dos pilares, da instrumentação e do procedimento de ensaios. São apresentadas também as curvas tensão-deformação do perfil eletrossoldado do concreto e do concreto confinado.

3.2. Curva tensão-deformação dos materiais

3.2.1. Características dos corpos de prova

Os corpos de prova foram construídos com o perfil eletrossoldado – série VE 100 x 6 da USIMINAS. Esse perfil é fabricado por meio de um processo de eletrofusão a alta freqüência, resultando em um perfil mais leve, com dimensões e comprimentos variados.

Figura 3.1 – Corpo de prova na prensa (destacado dentro do círculo).

Foram testados 15 corpos de prova, sendo 3 de aço, 6 de concreto e 6 mistos, conforme mostrado na tabela 3.1.

Nome do CP	Material		
PDA	Perfil Duplo de Aço		
PIA1	Perfil Individual de Aço		
PIA2	Perfil Individual de Aço		
C1	Concreto		
C2	Concreto		
C3	Concreto		
C4	Concreto		
C5	Concreto		
C6	Concreto		

M1	Misto
M2	Misto
M3	Misto
M4	Misto
M5	Misto
M6	Misto

Tabela 3.1 – Características dos corpos de prova.

O corpo de prova PDA é composto por dois perfis VE 100x6 e o PIA1 e PIA2 são compostos apenas por um perfil.

OBS.: medidas em mm.

Figura 3.2 – Seção transversal do PIA1 e PIA2. Figura 3.3 – Seção transversal do PDA.

Todos os corpos de prova mistos são idênticos, e têm as seguintes características:

OBS.: medidas em mm.

Figura 3.4 – Seção transversal dos corpos de prova mistos.

Os corpos de prova de concreto eram prismáticos, com seção transversal 77 x 94 cm, foram moldados utilizando como fôrma os próprios perfis metálicos mostrados na figura 3.3.

Os corpos de prova de concreto e mistos foram ensaiados com a mesma idade a fim de se obter resultados comparativos.

3.2.2. Instrumentação dos corpos de prova

As deformações nos corpos de prova foram medidas com extensômetros elétricos colados nas duas faces laterais opostas dos corpos de prova. A figura 3.5 mostra a localização dos extensômetros em uma dessas faces.

Extensômetro

Figura 3.5 – Localização dos extensômetros nos corpos de prova.

Figura 3.6 – Vista lateral e frontal do CP misto na prensa.

3.2.3. Ensaios dos corpos de prova

Todos os corpos de prova do perfil eletrossoldado flambaram nos flanges, sob tensões superiores à tensão de escoamento (figuras 3.7 a 3.13). O PDA (corpo de prova formado por dois perfis) não apresentou nenhuma diferença em relação aos outros dois formados por apenas um perfil, tendo em vista que a solda presente apenas em alguns pontos, permite um comportamento quase que individual de cada parte.

Figura 3.9 – Vista lateral do PDA.

Figura 3.8 – Vista diagonal do PDA.

Figura 3.10 – Vista frontal do PDA.

Figura 3.11 - Vista superior do PIA1.

Figura 3.12 – Vista diagonal do PIA1.

Figura 3.13 – Vista frontal do PIA1.

Figura 3.14 – Vista diagonal do C1.

Todos os corpos de prova mistos ensaiados apresentaram primeiramente flambagem lateral nas abas livres e posteriormente no centro onde a união dos dois perfis "I" é feita apenas por alguns pontos de solda, tal como mostrado nas figuras 3.15 a 3.18. A flambagem local ocorreu à meia altura do corpo de prova.

Figura 3.15 – Vista superior do M4.

Figura 3.16 – Vista diagonal do M4.

Figura 3.17 – Vista lateral do M4.

Figura 3.18 – Vista frontal do M4 (as linhas destacam as deformações).

A fim de destacar a deformação dos corpos de prova foi feita uma grade na cor branca, facilitando assim a visualização. Na figura 3.16 foi desenhada uma linha vermelha na face onde estão colados os extensômetros, para destacar a flambagem local.

Na foto 3.18 pode-se ver o início da abertura do M4 devido à flambagem e o concreto fissurado em seu interior.

3.2.4. Curvas tensão-deformação do perfil eletrossoldado

As curvas tensão-deformação obtidas nos ensaios de compressão axial dos três corpos de prova do perfil de aço estão mostradas na figura 3.19. Os pontos em cada uma destas curvas representam o valor médio das deformações medidas nas faces opostas dos corpos de prova. A média destas curvas está mostrada na figura 3.20. Observa-se que o material não apresenta um patamar de escoamento definido, tendo uma tensão convencional de escoamento (correspondente à deformação residual de 2 ‰) $f_y = 335$ MPa e a deformação correspondente $\varepsilon_y = 3,5$ ‰. Esta curva média será usada adiante para obtenção da curva tensão-deformação do concreto confinado.

Figura 3.19 – Curva Tensão-Deformação Longitudinal dos corpos de prova do perfil eletrossoldado.

Figura 3.20 – Curva Tensão-Deformação Longitudinal média dos corpos de prova do perfil eletrossoldado.

3.2.5. Curvas tensão-deformação do concreto

As curvas carga-deformação dos corpos de prova de concreto estão mostradas na figura 3.21. A média destas curvas é apresentada na figura 3.22.

3.2.6. Curvas carga-deformação dos corpos de prova mistos

As curvas carga-deformação dos corpos de prova mistos estão mostradas na figura 3.23. A média destas curvas é apresentada na figura 3.24.

Figura 3.23 – Curva Carga-Deformação Longitudinal dos corpos de prova mistos.

Figura 3.24 – Curva Carga-Deformação Longitudinal média dos corpos de prova mistos.

Para efeito de comparação, na figura 3.25 estão apresentadas juntas as curvas carga-deformação dos três materiais.

Figura 3.25 – Curva Carga-Deformação Longitudinal Média dos corpos de prova de concreto, aço e misto.

A figura 3.26 mostra as curvas tensão-deformação do concreto confinado e não confinado. O confinamento causou um pequeno ganho de resistência, a tensão máxima para o concreto confinado foi de 28,49 MPa e para o concreto sem confinamento foi de 25,6 MPa. Os métodos de cálculo não consideram este acréscimo, ficando a favor da segurança, conforme visto no item 2.7. Esta figura mostra ainda que ocorre um aumento no módulo de elasticidade e na ductilidade do concreto confinado.

Figura 3.26 – Curva Tensão-Deformação do Concreto Confinado e Não-confinado.

A curva tensão-deformação do concreto confinado foi obtida a partir das curvas obtidas nos ensaios dos corpos de prova mistos e de aço, utilizando a equação 3.1.

$$\sigma_{cc} = \frac{P_M - A_a \sigma_a}{A_{cc}}$$
 Eq. 3.1

onde,

- $\begin{aligned} \sigma_{cc} & \text{tensão no concreto confinado;} \\ P_M & \text{carga no corpo de prova misto;} \\ A_{cc} & \text{área do concreto confinado;} \end{aligned}$
- A_a área de aço;
- σ_a tensão no aço.

Considerando que a deformação nos três materiais é a mesma, obtém-se o valor da tensão no aço σ_a na curva da figura 3.20 para a mesma deformação referente à carga no corpo de prova misto.

3.3. Pilares mistos

3.3.1. Características dos pilares mistos

Os pilares foram construídos com dois perfis eletrossoldados – série VE 150 x 11 da USIMINAS, cujas características geométricas são dadas na figura 3.27 e na tabela 3.2.

Todos os pilares tinham seção transversal com as mesmas dimensões, com área de aço (perfil) igual a 27,43 cm² e área de concreto igual a 136,3 cm².

Chapa de 10mm para As = $6 \phi 8.0$

furos para os vergalhões da armadura longitudinal

Chapa de 10mm para As = $6 \phi 10.0$

OBS .: medidas em mm.

Figura 3.27 – Detalhamento dos pilares.

O topo e a base dos pilares com argamassa de cimento e areia (traço 1:1), regularizada com uma placa de vidro. Após o endurecimento deste capeamento, foram soldadas chapas de aço (10mm de espessura) ao perfil eletrossoldado. Estas chapas estavam em contato direto com o concreto do núcleo e com o perfil, garantindo assim que a carga aplicada fosse transferida corretamente para os dois materiais.

3.3.2. Armadura dos pilares e excentricidade da carga

A NBR14323 [6] limita a área máxima da armadura longitudinal em 4% da área da seção transversal de concreto. Portanto, as armaduras foram escolhidas de modo a se obter valores da taxa de armadura próximo ao limite máximo e próximo a um valor intermediário.

As taxas de armaduras (ρ) escolhidas foram $\rho = 3,5$ % (6 vergalhões de 10 mm de diâmetro), $\rho = 2,2$ % (6 vergalhões de 8 mm de diâmetro) e $\rho = 0$ %.

Os ensaios foram realizados com excentricidades de carga tais que alguns pilares estivessem sujeitos à flexo-compressão com pequena excentricidade (toda seção comprimida) e outros à flexo-compressão com grande excentricidade (parte da seção comprimida e parte tracionada). Os valores das excentricidades foram 2,5 cm e 5,0 cm.

As excentricidades da carga e as armaduras dos pilares estão descritas na tabela 3.2.

Nome do Pilar	Comprimento L (m)	Armadura Longitudinal	Excentricidade da carga (cm)
L450-E0	4.5	6 φ 10.0	0
L450-E2.5	4.5	6 ¢ 10.0	2,5
L450-E5	4.5	6 ¢ 10.0	5,0
L300-E0-A0	3	-	0
L300-E2.5-A0	3	-	2,5
L300-E5-A0	3	-	5,0

L300-E0-A8	3	6 \$ 8.0	0
L300-E2.5-A8	3	6 \$ 8.0	2,5
L300-E5-A8	3	6 \$ 8.0	5,0
L300-E0-A10	3	6 ¢ 10.0	0
L300-E2.5-A10	3	6 ø 10.0	2,5
L300-E5-A10	3	6 ø 10.0	5,0
L150-E0	1.5	6 ø 10.0	0
L150-E2.5	1.5	6 ¢ 10.0	2,5
L150-E5	1.5	6φ10.0	5,0

Tabela 3.2 – Características dos pilares ensaiados.

3.3.3. Concreto dos pilares

No início dos ensaios os pilares já tinham mais de 6 meses de idade e portanto a resistência do concreto não variou significativamente do primeiro ao último dia de ensaio. A tabela 3.3 apresenta os resultados das resistências de cada corpo de prova do concreto usado nos pilares. Foram empregados corpos de prova cilíndricos com dimensões 15 x 30 cm.

	Nº CPs	fc	fc _{méd}
-	1	43,6	
da	2	41,6	
na	3	40,5	43,3
eto	4	41,0	
ă	5	49,6	
3	1	47,5	47,2
et.	2	47,5	
B	3	46,6	
	1	38,7	
a 3	2	46,7	1
ad	3	40,1	42.0
uo	4	41,2	42,0
3et	5	41,2	
3	6	43,9	
_	1	41,0	
4	2	42,6	45,0
3et	3	40,9	
-	4	55,5	
	1	40,6	
	2	47,3	47,8
2	3	47,3	
da	4	52,3	
na	5	46,2	
eto	6	49,5	
ă	7	48,2	
	8	50,9	
	9	47,8	
	1	40,0	
6	2	49,8	47,1
Betonada 6	3	48,1	
	4	43,5	
	5	51,2	
	6	44,6	
	7	49,6	
	8	50,03	
Média Total			45,4

Tabela 3.3 – Resistência do concreto dos pilares.

Para análise dos resultados foi considerado o valor médio da resistência igual a 45 MPa.

3.3.4. Instrumentação dos pilares

Nos pilares de quatro metros e meio e nos de três metros foram utilizados seis LVDTs, sendo cinco distribuídos ao longo do pilar no plano onde ocorreu a flambagem e apenas um LVDT no outro plano a fim de monitorar algum deslocamento devido a possíveis imperfeições do próprio pilar ou da aplicação da carga. Nos pilares de um metro e meio foram utilizados apenas três LVDTs no plano de flambagem e um no outro plano.

Figura 3.28 – Localização dos LVDTs nos pilares.

No primeiro pilar ensaiado, o L450-E0, os extensômetros foram colocados em três seções ao longo do pilar conforme a figura 3.29. Na seção no meio do vão (seção B) foram colocados 10 (dez) extensômetros e nas seções localizadas a L/4 (seções A e C) foram colocados 2 (dois) extensômetros em cada, figura 3.30.

Figura 3.29 – Seções dos pilares instrumentadas com extensômetros.

Figura 3.30 – Numeração dos extensômetros no pilar L450-E0.

Nos pilares L450-E2.5 e L450-E5, foram colocados 6 extensômetros na seção no meio do vão (seção B) e 2 extensômetros nas seções localizadas a L/4 (seções A e C), conforme a figura 3.31.

Figura 3.31 – Numeração dos extensômetros nos pilares L450-E2.5 e L450-E5.

Nos pilares de três metros e nos de um metro e meio, apenas a seção do meio foi instrumentada com seis extensômetros (figura 3.32).

Figura 3.32 – Numeração dos extensômetros nos pilares de um metro e meio e nos de três metros e de altura.

3.3.5. Procedimento dos ensaios dos pilares

Os pilares foram ensaiados com as extremidades rotuladas, a fim de permitir flexão com curvatura simples.

Na base foram usados placas e roletes conforme o esquema da figura 3.33, ilustrado nas figura 3.34 a 3.36.

Para fixar o topo do pilar foi colocado um quadro metálico em torno da cabeça do pilar. O quadro foi fixado ao pórtico de reação através de barras rosqueadas garantindo sustentação ao pilar. O sistema foi executado de forma que o quadro pudesse acompanhar a rotação da cabeça do pilar durante o ensaio.

As figuras 3.37 e 3.38 mostram o desenho do mecanismo do quadro colocado na cabeça do pilar.

Figura 3.33 – Esquema das rótulas na base e no topo do pilar.

Nos ensaios dos pilares de 4,5 e de 3,0 metros foram utilizados quatro macacos e uma célula de carga de capacidade de 50 toneladas entre um deles e a placa de apoio, conforme a figura 3.34. Para os ensaios dos pilares de 1,5 metros foram utilizados dois macacos e uma célula de carga de 100 toneladas entre um deles e a placa de apoio (figura 3.35).

Figura 3.34 – Rótula no topo do pilar com quatro macacos.

Figura 3.35 – Rótula no topo do pilar com dois macacos.

Figura 3.36 – Rótula na base do pilar.

Entre o pilar e as placas de apoio, tanto na base quanto no topo, foram colocados papelões (forro pacote, 1 cm de espessura) para acomodar quaisquer irregularidades.

Figura 3.37 – Vista em planta do suporte do topo do pilar.

A rotação dos parafusos "P" é permitida em relação às chapas "C" identificados na figura 3.37.

Figura 3.38 – Vista frontal do suporte do topo do pilar.

O ajuste da posição exata do pilar era facilmente executado com o auxílio dos parafusos que ligavam o quadro metálico ao pilar e ao pórtico.