

Fabiana Freitas Nogueira

Estudo Experimental do Comportamento de Pilares Mistos Sujeitos a Flexo-compressão

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

Orientador: Giuseppe Barbosa Guimarães

Rio de Janeiro, agosto de 2003.

Fabiana Freitas Nogueira

Estudo Experimental do Comportamento de Pilares Mistos Sujeitos a Flexo-compressão

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Giuseppe Barbosa Guimarães** Orientador Departamento de Engenharia Civil - PUC-Rio

> > Claudia Maria de O. Campos

IME (Pesquisador)

Pedro Colmar G. da Silva Vellasco UERJ

Sebastião Arthur L. de Andrade Departamento de Engenharia Civil - PUC-Rio

Marta de Souza Lima Velasco Departamento de Engenharia Civil - PUC-Rio

Ney Augusto Dumont

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de agosto de 2003.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Fabiana Freitas Nogueira

Graduou-se em Engenharia Civil na UENF (Universidade Estadual do Norte Fluminense). Na UENF, desenvolveu projetos de Iniciação Científica nas áreas de Programação em multimídia e Cimentos pozolânicos. Na PUC-Rio desenvolveu seu trabalho de pesquisa com ênfase em Análise Experimental de Estruturas.

Ficha Catalográfica

Nogueira, Fabiana Freitas

Estudo Experimental do Comportamento de Pilares Mistos Sujeitos a Flexo-compressão/ Fabiana Freitas Nogueira; orientador: Giuseppe Barbosa Guimarães. - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2003.

[25], 134 f.; il. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil - Teses, 2. Pilares Mistos, 3. Concreto Armado, 4. Pilares Esbeltos. I. Guimarães, Giuseppe Barbosa. II. Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. III. Título.

Aos meus dois maiores amores, que durante toda minha vida foram meus exemplos: minha mãe Anna Maria e minha saudosa avó Francisca.

Agradecimentos

Agradeço inicialmente a Deus, pela dádiva da minha vida e por tudo que me permitiu conquistar.

Ao professor Giuseppe Guimarães, pela orientação e apoio recebidos ao longo da realização deste trabalho.

Ao professor João Luis Pascal Roehl pela compreensão e apoio nos momentos mais difíceis.

Aos funcionários Ana Roxo, José Nilson, Euclides, Evandro e Haroldo por toda cooperação e dedicação.

À minha mãe Anna Maria, que foi todo o meu apoio e amparo nas dificuldades. Ao meu pai Paulo Silas e à minha irmã Racquel por toda torcida e incentivo.

Aos amigos, Ricardo, Rodrigo, Fernanda, Pablo, Ivy, Paôla, Allyson, Janine, Galvão, Consuelo, Joabson, Marcos, Eduardo Achá e Ana Luiza por todos os momentos de sufoco e alegria compartilhados.

A empresa MN Engenharia pelo auxílio na viabilização deste trabalho.

Ao CNPq pelo apoio financeiro.

A todos que contribuíram de alguma forma para que esse trabalho se realizasse.

Resumo

Nogueira, Fabiana Freitas; Guimarães, Giuseppe Barbosa. **Estudo Experimental do Comportamento de Pilares Mistos Sujeitos a Flexocompressão.** Rio de Janeiro, 2003. 159p. Dissertação de Mestrado -Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Pilares mistos são pilares compostos de perfis metálicos, concreto e vergalhões. Um tipo destes pilares é aquele em que um perfil metálico fechado é preenchido com concreto armado, que é o tipo de pilar adotado neste trabalho. Uma de suas vantagens é a facilidade de execução.

O objetivo deste trabalho é estudar experimentalmente o comportamento dos pilares mistos quando sujeitos à flexão-compressão. Inicialmente foi realizada uma série de ensaios em corpos de prova mistos com a finalidade de se obter a curva tensão-deformação do concreto confinado. Em seguida foram realizados 15 ensaios de pilares mistos onde as variáveis estudadas foram o comprimento de flambagem do pilar, a excentricidade da carga e a taxa de armadura.

Os resultados experimentais foram comparados com as resistências calculadas de acordo com os métodos propostos nas normas técnicas NBR 14323 e no EuroCode 4. De uma forma geral, todos os métodos de cálculo forneceram bons resultados.

Palavras-chave

Pilares mistos; concreto armado; pilares esbeltos.

Nogueira, Fabiana Freitas; Guimarães, Giuseppe Barbosa. **Experimental Study on the Behavior of Composite Columns Subjected to Axial Compression and Bending.** Rio de Janeiro, 2003. 159p. MSc. Dissertation – Civil Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro.

Composite columns are a structural members subjected to compression and bending, made of concrete and structural steel. One particular type of composite column consists of rectangular steel hollow sections completely filled with concrete and reinforcing bars, which is the type of column considered in this work. One of the advantages of this column is the construction facility.

The objective of this work is to study experimentally the behaviour of composite columns when subjected to combined compression and bending. Initially a series of tests of composite specimens was carried out in order to obtain the stress-strain curve for the concrete confined by the steel section. Following that, 15 composite columns were tested with the purpose of studying the effect of the buckling length, load eccentricity and reinforcement ratio on the column strength.

The experimental results were compared to theoretical resistances calculated by the NBR 14323 and EuroCode 4 Code Requirements. In general, a good agreement was found between the experimental and theoretical results.

Keywords

Composite columns; reinforced concrete; slender columns.

Sumário

1 Introdução	26
1.1. Histórico	26
1.2. Objetivos	27
1.3. Conteúdo	28
2 Revisão Bibliográfica	29
2.1. Tipos de Pilares Mistos	29
2.2. Propriedades dos Materiais	30
2.2.1. Concreto	30
2.2.2. Aço Estrutural	31
2.2.3. Aço da armadura	33
2.3. Comportamento Geral de Pilares Mistos	33
2.4. Aderência aço/concreto	38
2.5. Flambagem	39
2.6. Efeitos da Retração e Fluência do Concreto	39
2.7. Efeito do Confinamento	40
2.8. Dimensionamento	44
2.8.1. Norma Brasileira	45
2.8.1.1. Resistência ao cisalhamento fora das regiões de introdução de	;
carga	46
2.8.1.2. Rigidez Efetiva do Pilar à Flexão	46
2.8.1.3. Esbeltez Relativa e efeitos de longa duração	47
2.8.1.4. Efeitos de Segunda Ordem	48
2.8.1.5. Imperfeições da Barra	49
2.8.1.6. Resistência à Compressão	49
2.8.2. Eurocode 4	55
2.8.2.1. Esbeltez Relativa	56
2.8.2.2. Rigidez Efetiva à Flexão	56
2.8.2.3. Efeitos de Segunda Ordem	57

2.8.2.4. Resistência Plástica à Compressão	58
2.8.2.5. Resistência à Compressão Axial	59
2.8.2.6. Resistência à Flexo-compressão	60
2.8.3. Norma Canadense	61
2.8.3.1. Rigidez Efetiva	62
2.8.3.2. Esbeltez	62
2.8.3.3. Resistência à Compressão	63
2.8.3.4. Resistência à Flexo-compressão	63
2.8.4. Norma Americana	65
2.8.4.1. Esbeltez	66
2.8.4.2. Resistência ao cisalhamento fora das regiões de introdução de	;
carga	66
2.8.4.3. Resistência à Compressão Axial	66
2.8.4.4. Resistência à Flexo-compressão	68
3 Programa Experimental	70
3.1. Metodologia	70
3.2. Curva tensão-deformação dos materiais	70
3.2.1. Características dos corpos de prova	70
3.2.2. Instrumentação dos corpos de prova	73
3.2.3. Ensaios dos corpos de prova	74
3.2.4. Curvas tensão-deformação do perfil eletrossoldado	77
3.2.5. Curvas tensão-deformação do concreto	79
3.2.6. Curvas carga-deformação dos corpos de prova mistos	80
3.3. Pilares mistos	83
3.3.1. Características dos pilares mistos	83
3.3.2. Armadura dos pilares e excentricidade da carga	85
3.3.3. Concreto dos pilares	86
3.3.4. Instrumentação dos pilares	87
3.3.5. Procedimento dos ensaios dos pilares	90
4 Apresentação e Análise dos Resultados	95
4.1. Comportamento dos Pilares	95
4.1.1. Controle de imperfeições e dimensões dos pilares	95

4.1.2. Modos de ruptura	97
4.1.3. Curvas carga-deslocamento e carga-deformação dos pilares	
mistos	122
4.1.4. Influência do comprimento de flambagem	143
4.1.5. Influência da taxa de armadura	144
4.1.6. Influência da excentricidade da carga	145
4.1.7. Contribuição de cada material para a resistência da seção	146
4.1.8. Problemas na concretagem	147
4.1.9. Comparação entre resultados experimentais e de cálculo	147
5 Conclusão e Sugestões para Trabalhos Futuros	155
5.1. Conclusão	155
5.2. Sugestão para trabalhos futuros	156
6 Referências Bibliográficas	157

Lista de figuras

Figura 1.1 - Seção transversal	27
Figura 2.1 - Tipos de seções transversais de pilares mistos.	29
Figura 2.2 - Curva tensão x deformação típica para concreto [5].	30
Figura 2.3 - Diagramas tensão x deformação [4].	32
Figura 2.4 - Curvas tensão x deformação típicas para aço [5].	32
Figura 2.5 - Modo de flambagem local da seção transversal mista [5].	41
Figura 2.6 – Relação tensão x deformação para o núcleo de concreto	
confinado por seções tubulares de aço [44].	42
Figura 2.7 – Curvas tensão x deformação experimentais e calculadas	
pelo método empírico [45].	43
Figura 2.8 – Comportamento do aço [45].	44
Figura 2.9 - Diagrama de Interação N x M [4].	52
Figura 2.10 – Curva de interação simplificada [8].	59
Figura 2.11 – Curva de interação do EuroCode para flexo-	
compressão.	61
Figura 3.1 – Corpo de prova na prensa (destacado dentro do círculo).	71
Figura 3.2 – Seção transversal do PIA1 e PIA2.	72
Figura 3.3 – Seção transversal do PDA.	72
Figura 3.4 – Seção transversal dos corpos de prova mistos.	73
Figura 3.5 – Localização dos extensômetros nos corpos de prova.	73
Figura 3.6 – Vista lateral e frontal do CP misto na prensa.	74
Figura 3.7 – Vista superior do PDA.	74
Figura 3.8 – Vista diagonal do PDA.	74
Figura 3.9 – Vista lateral do PDA.	74
Figura 3.10 – Vista frontal do PDA.	74
Figura 3.11 - Vista superior do PIA1.	75
Figura 3.12 – Vista diagonal do PIA1.	75
Figura 3.13 – Vista frontal do PIA1.	75
Figura 3.14 – Vista diagonal do C1.	76
Figura 3.15 – Vista superior do M4.	76

Figura 3.16 – Vista diagonal do M4.	76
Figura 3.17 – Vista lateral do M4.	
Figura 3.18 – Vista frontal do M4 (as linhas destacam as	
deformações).	76
Figura 3.19 – Curva Tensão-Deformação Longitudinal	78
dos corpos de prova do perfil eletrossoldado.	78
Figura 3.20 – Curva Tensão-Deformação Longitudinal média	78
dos corpos de prova do perfil eletrossoldado.	78
Figura 3.21 – Curva Tensão-Deformação Longitudinal	79
dos corpos de prova de concreto.	79
Figura 3.22 – Curva Tensão-Deformação Longitudinal média	79
dos corpos de prova de concreto.	80
Figura 3.23 – Curva Carga-Deformação Longitudinal dos corpos de	
prova mistos.	80
Figura 3.24 – Curva Carga-Deformação Longitudinal média	80
dos corpos de prova mistos.	81
Figura 3.25 – Curva Carga-Deformação Longitudinal Média	81
dos corpos de prova de concreto, aço e misto.	81
Figura 3.26 – Curva Tensão-Deformação do Concreto Confinado e	
Não-confinado.	82
Figura 3.27 – Detalhamento dos pilares.	84
Figura 3.28 – Localização dos LVDTs nos pilares.	88
Figura 3.29 – Seções dos pilares instrumentadas com extensômetros.	89
Figura 3.30 – Numeração dos extensômetros no pilar L450-E0.	89
Figura 3.31 – Numeração dos extensômetros nos pilares L450-E2.5 e	
L450-E5.	90
Figura 3.32 – Numeração dos extensômetros nos pilares de um metro	
e meio e nos de três metros e de altura.	90
Figura 3.33 – Esquema das rótulas na base e no topo do pilar.	91
Figura 3.34 – Rótula no topo do pilar com quatro macacos.	92
Figura 3.35 – Rótula no topo do pilar com dois macacos.	92
Figura 3.36 – Rótula na base do pilar.	93
Figura 3.37 – Vista em planta do suporte do topo do pilar.	93

Figura 3.38 – Vista frontal do suporte do topo do pilar.	94
Figura 4.1 – Eixo xy na seção transversal do pilar.	95
Figura 4.2 – Deformação final do pilar L450-E0.	99
Figura 4.3 – Flambagem local do L450-E0.	99
Figura 4.4 – Deformação final do pilar L450-E2.5.	100
Figura 4.5 – Flambagem local do L450-E2.5.	100
Figura 4.6 – Deformação final do pilar L450-E5.	101
Figuras 4.7 e 4.8 – Detalhes da flambagem local do L450-E5.	101
Figuras 4.9 e 4.10 – Vista frontal e lateral do pilar L300-E0-A0	
deformado.	102
Figuras 4.11 e 4.12 – Detalhe frontal e lateral do pilar L300-E0-A0	
deformado.	102
Figuras 4.13 – Abertura no pilar L300-E0-A0.	103
Figura 4.14 – Deformação final do pilar L300-E0-A3.	104
Figuras 4.15 e 4.16 – Detalhes da flambagem local do L300-E0-A3.	104
Figuras 4.17– Abertura no local da ruptura do pilar L300-E0-A3	105
Figuras 4.18– Pilar L300-E0-A3 aberto completamente.	105
Figuras 4.19– Detalhe do segundo par de conectores do pilar L300-	
E0-A3.	106
Figura 4.20 – Deformação final do pilar L300-E0-A4.8.	107
Figura 4.21 Flambagem local do pilar L300-E0-A4.8.	107
Figuras 4.22, 4.23 e 4.24 – Abertura no pilar L300-E0-A4.8.	108
Figura 4.25 – Deformação final do pilar L300-E2.5-A0.	109
Figura 4.26 – Flambagem local do pilar L300-E2.5-A0.	109
Figura 4.27 – Flambagem local do pilar L300-E2.5-A0.	110
Figuras 4.28 e 4.29 – Abertura da solda entre os perfis do pilar L300-	
E2.5-A0 mostrando o concreto em seu interior.	110
Figura 4.30 – Deformação final do pilar L300-E2.5-A3.	111
Figura 4.31 –Flambagem local do pilar L300-E2.5-A3.	111
Figura 4.32 – Deformação final do pilar L300-E2.5-A4.8.	112
Figuras 4.33 e 4.34 – Flambagem local do pilar L300-E2.5-A4.8.	112
Figura 4.35 – Abertura no pilar L300-E2.5-A4.8.	113
Figura 4.36 – Abertura na outra face do pilar L300-E2.5-A4.8.	113

Figura 4.37 – Deformação final do pilar L300-E5-A0.	114
Figuras 4.38 e 4.39 –Flambagem local do pilar L300-E5-A0.	114
Figura 4.40 – Deformação final do pilar L300-E5-A3.	115
Figuras 4.41 e 4.42 – Flambagem local do pilar L300-E5-A3.	115
Figura 4.43 – Deformação final do pilar L300-E5-A4.8.	116
Figuras 4.44 e 4.45 – Flambagem local do pilar L300-E5-A4.8.	116
Figura 4.46 – Deformação final do pilar L150-E0.	117
Figuras 4.47 e 4.48 –Flambagem local do pilar L150-E0.	117
Figura 4.49 – Abertura no pilar L150-E0.	118
Figura 4.50 – Deformação final do pilar L150-E2.5.	119
Figuras 4.51 e 4.52 – Flambagem local do pilar L150-E2.5.	119
Figura 4.53 – Deformação final do pilar L150-E5.	120
Figuras 4.54 e 4.55 – Flambagem local do pilar L150-E5.	120
Figura 4.56 – Abertura no pilar L150-E5.	121
Figura 4.57 – Detalhe do local da ruptura no pilar L150-E5.	121
Figura 4.58 – Curva típica Carga x Deslocamento - pilar L300-E2.5-A3	.122
Figura 4.59 – Curva típica Carga x Deformação - pilar L300-E5-A0.	122
Figura 4.60 – Curva típica das deformações na seção intermediária -	
pilar L300-E5-A3.	123
Figura 4.61 – Curva típica das deformações na seção intermediária -	
pilar L450-E5.	123
Figura 4.62 – Curva Carga x Deslocamento do pilar L450-E0.	124
Figura 4.63 – Curva Carga x Deformação dos extensômetros nas	
seções A e C, localizadas a L/4 do topo e da base do pilar L450-E0.	124
Figura 4.64 – Curva Carga x Deformação dos extensômetros 4, 6, 12	
na seção B, localizada no meio do pilar L450-E0 (extensômetro 4	
apresentou problemas).	125
Figura 4.65 – Curva Carga x Deformação dos extensômetros 7, 9, 11	
na seção B, localizada no meio do pilar do pilar L450-E0.	125
Figura 4.66 – Curva Carga x Deformação dos extensômetros 5, 6, 7 e	
8 na seção B, localizada no meio do pilar L450-E0.	126
Figura 4.67 – Curva das deformações na seção intermediária do pilar	
L450-E0, na face dos extensômetros 5, 6, 7 e 8.	126

Figura 4.68 – Curva Carga x Deformação dos extensômetros 3, 10, 11	
e 12 na seção B, localizada no meio do pilar L450-E0.	127
Figura 4.69 – Curva das deformações na seção intermediária do pilar	
L450-E0, na face dos extensômetros 3, 10, 11 e 12.	127
Figura 4.70 – Curva Carga x Deslocamento do pilar L450-E2.5.	128
Figura 4.71 – Diagrama Carga x Deformação dos extensômetros nas	
seções A e C, localizadas a L/4 do topo e da base do pilar L450-E2.5.	128
Figura 4.72 – Curva Carga x Deformação dos extensômetros na seção)
B, localizada no meio do pilar L450-E2.5.	129
Figura 4.73 – Curva das deformações na seção intermediária do pilar	
L450-E2.5, na face dos extensômetros 3, 4, 7 e 8.	129
Figura 4.74 – Curva das deformações na seção intermediária do pilar	
L450-E2.5, na face dos extensômetros 4, 5, 6 e 7.	129
Figura 4.75 – Curva Carga x Deslocamento do pilar L450-E5.	130
Figura 4.76 – Curva Carga x Deformação dos extensômetros nas	
seções A e C, localizadas a L/4 do topo e da base do pilar L450-E5.	130
Figura 4.77 – Curva Carga x Deformação dos extensômetros na seção)
B, localizada no meio do pilar L450-E5.	131
Figura 4.78 – Curva das deformações na seção intermediária do pilar	
L450-E5, na face dos extensômetros 3, 4, 7 e 8.	131
Figura 4.79 – Curva das deformações na seção intermediária do pilar	
L450-E5, na face dos extensômetros 4, 5, 6 e 7.	131
Figura 4.80 – Curva Carga x Deslocamento do pilar L300-E2.5-A0.	132
Figura 4.81 – Curva Carga x Deformação na seção B, localizada no	
meio do pilar L300-E2.5-A0.	132
Figura 4.82 – Curva das deformações na seção intermediária do pilar	
L300-E2.5-A0, na face dos extensômetros 1, 2, 5 e 6.	133
Figura 4.83 – Curva das deformações na seção intermediária do pilar	
L300-E2.5-A0, na face dos extensômetros 2, 3, 4 e 5.	133
Figura 4.84 – Curva Carga x Deslocamento do pilar L300-E2.5-A3.	133
Figura 4.85 – Curva Carga x Deformação dos extensômetros na seção)
B, localizada no meio do pilar L300-E2.5-A3.	134
Figura 4.86 – Curva das deformações na seção intermediária do pilar	

L300-E2.5-A3, na face dos extensômetros 1, 2, 5 e 6.	134
Figura 4.87 – Curva das deformações na seção intermediária do pilar	
L300-E2.5-A3, na face dos extensômetros 2, 3, 4 e 5.	134
Figura 4.88 – Curva Carga x Deslocamento do pilar L300-E2.5-A4.8.	135
Figura 4.89 – Curva Carga x Deformação na seção B, localizada no	
meio do pilar L300-E2.5-A4.8.	135
Figura 4.90 – Curva das deformações na seção intermediária do pilar	
L300-E2.5-A4.8, na face dos extensômetros 1, 2, 5 e 6.	135
Figura 4.91 – Curva das deformações na seção intermediária do pilar	
L300-E2.5-A4.8, na face dos extensômetros 2, 3, 4 e 5.	136
Figura 4.92 – Curva Carga x Deslocamento do pilar L300-E5-A0.	136
Figura 4.93 – Curva Carga x Deformação na seção B, localizada no	
meio do pilar L300-E5-A0.	136
Figura 4.94 – Curva das deformações na seção intermediária do pilar	
L300-E5-A0, na face dos extensômetros 1, 2, 5 e 6.	137
Figura 4.95 – Curva das deformações na seção intermediária do pilar	
L300-E5-A0, na face dos extensômetros 2, 3, 4 e 5.	137
Figura 4.96 – Curva Carga x Deslocamento do pilar L300-E5-A3.	137
Figura 4.97 – Curva Carga x Deformação dos extensômetros na seção)
B, localizada no meio do pilar L300-E5-A3.	138
Figura 4.98 – Curva das deformações na seção intermediária do pilar	
L300-E5-A8, na face dos extensômetros 1, 2, 5 e 6.	138
Figura 4.99 – Curva das deformações na seção intermediária do pilar	
L300-E5-A3, na face dos extensômetros 2, 3, 4 e 5.	138
Figura 4.100 – Curva Carga x Deslocamento do pilar L300-E5-A4.8.	139
Figura 4.101 – Curva Carga x Deformação dos extensômetros na	
seção B, localizada no meio do pilar L300-E5-A4.8.	139
Figura 4.102 - Curva das deformações na seção intermediária do pilar	
L300-E5-A4.8, na face dos extensômetros 1, 2, 5 e 6.	139
Figura 4.103 - Curva das deformações na seção intermediária do pilar	
L300-E5-A4.8, na face dos extensômetros 2, 3, 4 e 5.	140
Figura 4.104 – Curva Carga x Deslocamento do pilar L150-E2.5.	140
Figura 4.105 – Curva Carga x Deformação dos extensômetros na	

seção B, localizada no meio do pilar L150-E2.5.	141
Figura 4.106 – Curva das deformações na seção intermediária do pilar	•
L150-E2.5, na face dos extensômetros 1, 2, 5 e 6.	141
Figura 4.107 – Curva das deformações na seção intermediária do pilar	
L150-E2.5, na face dos extensômetros 2, 3, 4 e 5.	141
Figura 4.108 – Curva Carga x Deslocamento do pilar L150-E5.	142
Figura 4.109 – Curva Carga x Deformação dos extensômetros na	
seção B, localizada no meio do pilar L150-E5.	142
Figura 4.110 - Curva das deformações na seção intermediária do pilar	
L150-E5, na face dos extensômetros 1, 2, 5 e 6.	142
Figura 4.111 – Curva das deformações na seção intermediária do pilar	
L150-E5, na face dos extensômetros 2, 3, 4 e 5.	143
Figura 4.112 – Curva Carga x Comprimento de Flambagem com	
Armadura constante de 4.8 cm ² , valores experimentais.	144
Figura 4.113 – Curva Carga x Taxa de Armadura, valores	
experimentais.	145
Figura 4.114 – Curva Carga última x Excentricidade, valores	
experimentais.	146
Figura 4.115 – Curva Carga x Comprimento de Flambagem,	
comparação dos valores experimentais e nominais.	149
Figura 4.116 – Curva Carga x Taxa de Armadura, comparação dos	
valores experimentais e nominais.	149
Figura 4.117 – Curva Carga x Excentricidade para os pilares de 4,5	
metros, comparação dos valores experimentais e nominais.	150
Figura 4.118 – Curva Carga x Excentricidade para os pilares de 3,0	
metros sem armadura, comparação dos valores experimentais e	
nominais.	151
Figura 4.119 – Curva Carga x Excentricidade para os pilares de 3,0	
metros e armadura igual a 3,0 cm ² , comparação dos valores	
experimentais e nominais.	151
Figura 4.120 – Curva Carga x Excentricidade para os pilares de 3,0	
metros e armadura igual a 4,8 cm ² , comparação dos valores	
experimentais e nominais.	152

Figura 4.121 – Curva Carga x Excentricidade para os pilares de 1,5	
metros, comparação dos valores experimentais e nominais.	152
Figura 4.122 – Curva de Interação M x N para os pilares de 3,0 metros	3
e ρ = 3,5%, e resultados experimentais.	153
Figura 4.123 – Curva de Interação M x N para os pilares de 4,5 metros	3
e ρ = 3,5%, e resultados experimentais.	153

Lista de tabelas

Tabela 2.1 – Resumo dos trabalhos realizados com pilares mistos de	
seção tubular preenchida com concreto [5].	37
Tabela 2.2 - Valores máximos da esbeltez para	48
desprezar-se os efeitos de longa duração.	48
Tabela 2.3 – Valores mínimos de armadura.	56
Tabela 2.4 – Fatores de imperfeição para curvas de flambagem	60
de perfis tubulares retangulares.	60
Tabela 3.1 – Características dos corpos de prova.	72
Tabela 3.2 – Características dos pilares ensaiados.	86
Tabela 3.3 – Resistência do concreto dos pilares.	87
Tabela 4.1 – Imperfeições iniciais dos pilares.	95
Tabela 4.2 – Controle dimensional dos pilares.	96
Tabela 4.3 – Resultados gerais obtidos nos ensaios.	97
Tabela 4.4 – Esbeltez para cada comprimento de flambagem.	144
Tabela 4.5 – Resistências experimentais, de cálculo e nominais.	148
Tabela 4.6 - Comparação entre as resistências experimentais, de cálo	culo
e nominais.	148

Lista de Símbolos

Letras romanas maiúsculas

A _a	Área de seção transversal do perfil de aço
A _c	Área da seção transversal do concreto
As	Área da seção transversal da armadura
C _{ec}	Carga de flambagem de Euler (CSA/CAN)
C _f	Carga axial total aplicada no pilar (CSA/CAN)
C _{fa}	Carga axial permanente aplicada no pilar (CSA/CAN)
C _m	Coeficiente definido pela NBR 8800 e pelo AISC-LFRD para sistemas indeslocáveis
Cp	Resistência nominal à compressão quando os coeficientes de redução de resistência dos materiais $\phi = \phi_c = 1 \ e \ \lambda = 0$ (CSA/CAN)
Cr	Resistência à compressão devido ao aço num pilar misto (CSA/CAN)
Ċŗ	Resistência à compressão devido ao concreto num pilar misto (CSA/CAN)
C _{rco}	Resistência à compressão com λ = 0 (CSA/CAN)
D	Diâmetro
Ea	Módulo de elasticidade do aço do perfil
Ec	Módulo de elasticidade do concreto
E _{cm}	Módulo de elasticidade do concreto corrigido (Eurocode)
E _{cr}	Módulo de elasticidade do concreto corrigido (NBR)
EI	Rigidez efetiva à flexão
Es	Módulo de elasticidade do aço da armadura
F _y ou f _{ya}	tensão de escoamento do perfil de aço.

la	Momento de inércia da seção transversal do perfil
lc	Momento de inércia da seção transversal do concreto não- fissurado
S	Momento de inércia da seção transversalda armadura
Ι _Τ	Momento de inércia à torção
$I_{x, j}$	Momentos de inércia relativos aos eixos x e y respectivamente
К	Parâmetro de flambagem
KL	Comprimento efetivo de flambagem
L	Comprimento destravado do pilar
$M_1 e M_2$	Menor e maior momento fletor nas extremidades do pilar, respectivamente
M _f	Momento aplicado no pilar (CSA/CAN)
M_{NRd}	Resistência de cálculo ao momento fletor da seção mista submetida à resistência à compressão axial
M _{rc}	Momento resistente (CSA/CAN)
M_{Rd}	Resistência de cálculo ao momento fletor da seção mista submetida à força normal
M _{x,pl,Rd} e M _{y,pl,Rd}	Resistência de cálculo da seção mista à plastificação total pelo momento fletor relativos aos eixos <i>x</i> e <i>y</i> respectivamente
M _{x,Sd} e M _{y,Sd}	Momentos fletores de cálculo relativos aos eixos x e y respectivamente, considerando efeitos de segunda ordem e imperfeições de montagem
N _c	Resistência de cálculo da seção de concreto à plastificação total pela força normal
N _{cr}	Carga crítica de flambagem elástica por flexão (Eurocode)
Ne	Carga crítica de flambagem elástica por flexão (NBR)
N _{Ed}	Força normal de cálculo (Eurocode)
$N_{G,Sd}$	Parte permanente da força normal de cálculo
N _n	Força normal limite para se admitir momento devido imperfeição inicial do pilar igual a zero
N _{pl,R}	Resistência nominal da seção mista à plastificação total pela

força normal

N _{pl,Rd}	Resistência de cálculo da seção mista à plastificação total pela força normal
N _{Rd}	Resistência de cálculo à compressão axial
N _{Sd}	Força normal de cálculo (NBR)
Р	Peso
V _{a,Ed}	Força cisalhante da seção de aço
V _{pla,Rd}	Força cisalhante de projeto da seção de aço
$W_{x,}W_{y}$	Módulos de resistência elásticos em relação aos eixos <i>x</i> e <i>y</i> respectivamente
Z _x , Z _y	Módulos de resistência plásticos referentes aos eixos <i>x</i> e <i>y</i> respectivamente

Letras romanas minúsculas

b _f	Largura da mesa
C ₁ , C ₂ , C ₃	Coeficientes iguais a 1.0, 0.85, 0.4 para tubos preenchidos com concreto (AISC-LRFD)
d	Altura da seção
f _{ck}	Resistência característica do concreto à compressão
f _{cm}	Resistência característica do concreto à compressão corrigida (Eurocode)
f _{ya}	Limite de escoamento do aço do perfil
f _{ys}	Limite de escoamento do aço da armadura
h	Altura do tubo
$k_{x, j} k_{y}$	Coeficiente para levar em consideração os efeitos de segunda ordem dentro do comprimento do pilar em relação aos eixos <i>x</i> e <i>y</i> respectivamente
r _m	Raio de giração do perfil de aço
r _T	Raio de giração da seção formada pela mesa comprimida mais 1/3 da região comprimida da alma, calculado em relação ao eixo

situado no plano médio da alma

r_x, r_y	Raio de giração em relação aos eixos x e y respectivamente
t	Espessura do tubo
t _f	Espessura da mesa
tw	Espessura da alma
z _{pa}	Módulo de resistência plástico da seção de aço estrutural
Z _{pan} , Z _{pcn} e Z _{psn}	Módulos de resistência plásticos da região 2hn
Z _{pc}	Módulo de resistência plástico da seção de concreto, considerado não fissurado
Z _{ps}	Módulo de resistência plástico da seção da armadura longitudinal

Letras gregas

Ī	Esbeltez relativa
α	Coeficiente igual a 1,0 para tubos preenchidos por concreto (NBR); fator de imperfeição (Eurocode)
δ	O fator de contribuição do aço
ρ	Fator de redução devido a flambagem (NBR)
χ	Fator de redução devido a flambagem (Eurocode)
γс	Coeficiente de segurança para o módulo de elasticidade do concreto
φc	Coeficiente de redução de resistência para o concreto
Фа	Coeficiente de redução de resistência para o aço do perfil
φs	Coeficiente de redução de resistência para o aço da armadura
μ_{d}	Fator de redução
μ_k	Fator de redução relativo aos momentos aplicados nas extremidades

- τ_{Rd} Resistência cisalhante de cálculo
- ϕ_t Coeficiente de efeitos de longa duração

No final, tudo dá certo. Se ainda não deu, é porque ainda não chegou o final.

Autor desconhecido